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Poisson-Lie T-duality

Two-dimensional σ-model

(Σ, h) an oriented 2-dimensional Lorentzian manifold;

G a Lie group with a metric g and a 2-form B, g = Lie(G );

An action functional for the field ` : Σ→ G (smooth):

Sσ[`] =

∫
Σ

〈h, `∗(g)〉h · d volh +

∫
Σ

`∗(B). (1)

Writing Sσ[`] using some local coordinates (τ, σ), where h is the
Minkowski metric, and writing z = σ + τ and z̄ = σ − τ , one has

Sσ[`] =

∫
Σ

dzdz̄ (`∗E)(∂z , ∂z̄) ≡
∫

Σ

dzdz̄
∂`i

∂z

∂`j

∂z̄
Eij(`(z , z̄)), (2)

where E = g + B, a single map E ∈ Hom(TG ,T ∗G ).

To a solution `, one assigns a ”Noetherian” 1-form J ∈ Ω1(Σ, g∗).
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One wants J to satisfy the Maurer-Cartan equation for some Lie
algebra structure [·, ·]g∗ on g∗: dJ = 1

2 [J ∧ J]g∗ .

This is not possible in general. However, there is a solution.

Definition

Let D be a 2n-dimensional Lie group, with a quadratic Lie algebra
(d, 〈·, ·〉d), the signature of 〈·, ·〉d is (n, n);

There exist Lie subgroups G ,G∗ ⊂ D, g = Lie(G ), g∗ = Lie(G∗);

d = g⊕ g∗ is a Lagrangian decomposition of d w.r.t. 〈·, ·〉d.

D is called the Drinfel’d double, (d, g, g∗) the Manin triple

We find the restrictions on E, it is constructed using the structures
on D and a fixed maximal positive subspace E ⊂ d.

M-C equation ensures: there is h̃ : Σ→ G∗, such that J = h̃∗(θR′).

Form a single map d : Σ→ D, d(z , z̄) = `(z , z̄) · h̃(z , z̄)
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Sometimes, one can decompose d the other way round:

d(z , z̄) = h(z , z̄) · ˜̀(z , z̄). (3)

Construct the background Ẽ = g̃ + B̃ on G∗ using the similar (dual)
procedure and the same subspace E ⊂ d.

Theorem (Poisson-Lie T-duality)

Let ` : Σ→ G be a solution of EOM for Sσ[`] with background E.

Then ˜̀ : Σ→ G∗ solves EOM for S̃σ[˜̀] with background Ẽ, and the

corresponding Noetherian 1-forms J̃ are obtained as J̃ = h∗(θR).

One can use also a scalar field φ ∈ C∞(G ) and modify Sσ[`].

Consistence of the quantization of such a theory leads to the EOM
of the effective field theory given by the action:

S [g ,B, φ] =

∫
G

e−2φ{R(g)− 1

2
〈dB, dB〉g + 4‖∇gφ‖2

g} ·d volg . (4)

How does PLT duality work on the level of effective actions?
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Quasi-Poisson Lie Groups

Definition

A Manin pair (d, g) is a quadratic Lie algebra (d, 〈·, ·〉d) with its
Lagrangian subalgebra g, that is g = g⊥. In particular dim(g) = 1

2 dim(d).

We assume that it integrates to a (connected Lie) group pair
(D,G ), where G ⊂ D is a closed Lie subgroup, such that d = Lie(D)
and g = Lie(G ).

As g is Lagrangian, we have a canonical short exact sequence

0 g d g∗ 0.i i ′

j

(5)

Choose its isotropic splitting j ∈ Hom(g∗, g). The triple (d, g, j) is
called the split Manin pair.

One can define δ ∈ Hom(g,Λ2g) and µ ∈ Λ3g by setting

δ(x)(ξ, η) = 〈[j(ξ), j(η)]d, i(x)〉d, (6)

µ(ξ, η, ζ) = 〈[j(ξ), j(η)]d, j(ζ)〉d. (7)
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A triple (g, δ, µ) satisfies certain axioms, forming so called Lie
quasi-bialgebra. They are 1-1 with split Manin pairs.

If j(g∗) ⊂ d is a Lie subalgebra, one has µ = 0, (g, δ) is called a Lie
bialgebra and (d, g, g∗) a Manin triple. This is exactly the PLT
duality scenario.

Every (d, g, j) induces some structure on the group pair (D,G ). One
can define a standard r-matrix r ∈ d⊗ d as

r(ξ, η) := 〈iT (ξ), jT (η)〉. (8)

Then ΠD := rL − rR is a multiplicative bivector on D:

(ΠD)dd′ = Ld∗(ΠD)d′ + Rd′∗(ΠD)d . (9)

It is not (in general) a Poisson structure, as it satisfies the equations

1

2
[ΠD ,ΠD ] = i(µ)L − i(µ)R , [ΠD , i(µ)L] = 0. (10)
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ΠD restricts naturally to a bivector ΠG ∈ X2(G ), which inherits the
multiplicativity and the two properties

1

2
[ΠG ,ΠG ] = µL − µR , [ΠG , µ

L] = 0. (11)

Any triple (G ,ΠG , µ) having these these properties is called the
quasi-Poisson Lie group. It contains full information about Lie
quasi-bialgebra (g, δ, µ) and vice versa.

Consider now the left coset space S = D/G . This is a smooth
manifold making the quotient map π : D → S into a smooth
surjective submersion.

D acts transitively on S using the dressing action . given by

d . π(d ′) := π(dd ′) (12)

let #. : d→ X(S) denote its infinitesimal generator.

Note that also (d, ad(2)(r), i(µ)) is a Lie quasi-bialgebra, and
(D,ΠD , i(µ)) is a quasi-Poisson Lie group.
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There is a unique bivector ΠS ∈ X2(S) such that ΠS = π∗(ΠD).
Once more, it may not be a Poisson structure, one has

1

2
[ΠS ,ΠS ] = −#.(i(µ)), [ΠS ,#

.(i(µ)] = 0. (13)

It also behaves in a certain way with respect to the action ., namely

L#.(x)(ΠS) = #.(Dx(ΠS)), (14)

where Dx(ΠS) = (LxL(ΠS))e ∈ Λ2d is the intrinsic derivative of
ΠS , and the map . : (D × S ,ΠD + ΠS)→ (S ,ΠS) is a bivector map.

(S ,ΠS) is thus an example of quasi-Poisson D-space, and . is
called a quasi-Poisson action of (D,ΠD , i(µ)) on (S ,ΠS).

Via restriction, (S ,ΠS) is also a quasi-Poisson G -space where the
quasi-Poisson action of (G ,ΠG , µ) on (S , πS) is the restriction of .
onto its Lie subgroup G .

For µ = 0, one can identify S ∼= G∗, where g∗ = Lie(G∗) and
ΠG∗ = −ΠS is the Poisson-Lie group integrating the dual Lie
bialgebra (g∗, δ∗).
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Courant algebroids

CA should be thought of as a generalization of quadratic LA.

Definition (Courant algebroid)

CA is a 4-tuple (E , ρ, 〈·, ·〉E , [·, ·]E ) of interplaying objects:

1 Vector bundle q : E → M;

2 Bundle map ρ ∈ Hom(E ,TM), called the anchor of CA;

3 C∞(M)-bilinear metric gE = 〈·, ·〉E on Γ(E );

4 R-bilinear bracket [·, ·]E on Γ(E ).

These are subject to four axioms:

Leibniz rule: [ψ, f ψ′]E = f [ψ,ψ′]E + (Lρ(ψ)f )ψ′.

gE is invariant: Lρ(ψ)〈ψ′, ψ′′〉E = 〈[ψ,ψ′]E , ψ′′〉E + 〈ψ′, [ψ,ψ′′]E 〉E .

Leibniz identity: [ψ, ·]E is a derivation of [·, ·]E .

Symmetric part: [ψ,ψ]E = 1
2D〈ψ,ψ〉E , where D = g−1

E ◦ ρT ◦ d .
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Example (H-twisted Dorfman bracket)

Let E = TM = (T ⊕ T ∗)M. Set ρ = prTM and

〈(X , ξ), (Y , η)〉E = η(X ) + ξ(Y ) (15)

For any H ∈ Ω3
cl(M), define the H-twisted Dorfman bracket:

[(X , ξ), (Y , η)]E = ([X ,Y ],LXη − iY (dξ)− H(X ,Y , ·)) (16)

Definition (Generalized metric)

Let (E , 〈·, ·〉E ) be a VB equipped with a fiber-wise metric. Generalized
metric (GM) is a maximal positive subbundle V+ ⊆ E . E decomposes as

E = V+ ⊕ V−, (17)

where V− = V⊥+ is a maximal negative subundle of E .

Example

For E = TM, one has Γ(V+) = {(X , (g + B)(X )) | X ∈ X(M)}, where
g > 0 is a Riemannian metric and B ∈ Ω2(M).
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Definition (Courant algebroid connections)

Courant algebroid connection ∇ on (E , ρ, 〈·, ·〉E ) is a R-bilinear map
∇ : Γ(E )× Γ(E )→ Γ(E ) satisfying

∇ψ(f ψ′) = f∇ψψ′ + (Lρ(ψ)f )ψ′, ∇fψψ
′ = f∇ψψ′, (18)

where ∇ψ = ∇(ψ, ·), and ∇ψgE = 0 for all ψ ∈ Γ(E ).

Proposition (Gualtieri, Jurčo & Vysoký)

To any CA connection ∇, there exists a well-defined torsion 3-form
T∇ ∈ Ω3(E ) and a generalized Riemann tensor R∇ ∈ T 0

4 (E ).

Definition (LC connections)

We say that ∇ is compatible with the generalized metric V+, if

∇ψ(V+) ⊆ V+. (19)

One says that ∇ is torsion-free, if T∇ = 0. Levi-Civita connection on
E with respect to V+ has both properties. We write ∇ ∈ LC(E ,V+).
For any E and V+, one has LC(E ,V+) 6= ∅. However, also
LC(E ,V+) 6= {∇}, there are infinitely many of them.
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Definition

Generalized Ricci tensor Ric∇ is a unique symmetric tensor
(modulo sign) given as a partial trace of R∇.

There is a divergence operator div∇ : Γ(E )→ C∞(M).

The connection ∇ is Ricci compatible with V+, if
Ric∇(V+,V−) = 0.

Generalized metric V+ induces a scalar curvature R+
∇ ∈ C∞(M).

Low-energy effective action

Let M be any manifold, g be a Riemannian metric, B ∈ Ω2(M),
φ ∈ C∞(M) and let H ′ = H + dB for a closed 3-form H ∈ Ω3(M). We
consider the action functional:

S [g ,B, φ] =

∫
M

e−2φ{R(g)− 1

2
〈H ′,H ′〉g + 4‖∇gφ‖2

g} · d volg , (20)

In the following theorem E = TM with the H-twisted Dorfman bracket.
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Theorem (EOM in terms of LC connections)

Let ∇ ∈ LC(TM,V+), where V+ corresponds to fields (g ,B). Suppose
there exists a scalar function φ ∈ C∞(M), such that

div∇(ψ) = div∇LC
g
ρ(ψ)− Lρ(ψ)(φ). (21)

Then (g ,B, φ) solve EOM for low-energy effective action (20) iff ∇ is
Ricci compatible with V+ and R+

∇ = 0.

The condition (21) restricts us to a certain subset LC(TM,V+, φ) of
the space LC(TM,V+). This subset is non-empty.

Observe that whenever ∇,∇′ ∈ LC(TM,V+) have the same
divergence operator, one has R+

∇′ = R+
∇ and Ric+−

∇′ = Ric+−
∇ .

In particular, we can choose any ∇ ∈ LC(TM,V+, φ) to
geometrically describe the EOM.
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Geometry of q-PLT plurality

We consider the group double (D,G ).

If E is a Courant algebroid over some principal G -bundle π : P → G ,
there exists a notion of a G -equivariant Courant algebroid, where G
acts also on the total space E , preserving all of the involved
structures.

For any G -equivariant Courant algebroid, there is a reduction
procedure defining the reduced Courant algebroid E ′ over the
base P/G . It involves the reduction of the fiber-wise metric 〈·, ·〉E .
It resembles a symplectic reduction.

One can equip the bundle TD with the structure of twisted Dorfman
bracket with H = 1

2CS3(θL), θL is the left Maurer-Cartan form.

It turns out that this makes TD into the D-invariant and
G -invariant Courant algebroid at once. We thus have two options to
obtain a reduced Courant algebroid.
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Reduction by the whole group D

View D as a principal D-bundle πD : D → {∗}.
The action on TD is induced by the right multiplication of D.

The reduced CA E ′d over D/D = {∗} is just (d, 0, 〈·, ·〉d,−[·, ·]d).

Reduction by the Lagrangian subgroup G ⊂ D

View D as a principal G -bundle π : D → S ≡ D/G (left cosets).

We have the corresponding dressing action . : D × S → S .

Then E ′g = S × d, where on constant sections ψx ∈ Γ(E ′g):

ρ′g(ψx) = #.(x), 〈ψx , ψy 〉E ′g = 〈x , y〉d, (22)

[ψx , ψy ]E ′g = −ψ[x,y ]d . (23)
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Moving the generalized metric

Pick a generalized metric, maximal positive subspace E ⊆ d ≡ E ′d.

Lift it to the D-invariant subbundle of E = TD.

Push it downwards to the subbundle E ′g of E ′g = S × d.

This subbundle is positive and maximal - generalized metric.

One has to make certain technical assumptions on the split Manin
pair (d, g, j). One says that j is an admissible splitting at s ∈ S if

Add(i(g)) ∩ j(g∗) = 0, (24)

for all d ∈ π−1(s). Every splitting is admissible at s0 = π(e).

If j is admissible at s ∈ S , it is admissible on some its neighborhood.

For s ∈ S , there is a splitting admissible at that point.

One says that the (D,G ) is a complete group pair if there exists
an everywhere admissible splitting. There are many convenient
consequences of the assumption.
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1 The map ξ 7→ #.
s (j(ξ)) is a linear isomorphism of g∗ and Ts(S).

X(S) is thus globally generated by vector fields

ξ. := #.(j(ξ)). (25)

2 There are global generators x. ∈ Ω1(S) for x ∈ g, and one has

#.(i(x) + j(ξ)) = ξ. − ΠS(x.). (26)

3 The choice of admissible splitting chooses a convenient vector
bundle isomorphism Ψ : TS → E ′g. The CA structure on E ′g then
corresponds to the H-twisted Dorfman on TS with

H(ξ., η., ζ.) = −1

2
µ(ξ, η, ζ). (27)

4 The adjoint representation Ad on g⊕ j(g∗) can be decomposed as

Add =

(
k(d) b(d)
c(d) a(d)

)
, (28)

where k(d) ∈ End(g) is invertible for all d ∈ D.
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We can this use the isomorphism Ψ : TS → E ′g to induce a
generalized metric V ′+ ⊂ TS .

This provides us with a unique Riemannian metric g > 0 on S and a
2-form B ∈ Ω2(S).

One can find an explicit formula using the special frame above. Let

Π(x , y) := −ΠS(x., y.), (29)

thus defining Π ∈ C∞(S ,Λ2g∗). The subspace E ⊂ d can be written
as a graph of a map x 7→ j(E0(x)). The tensor E = g + B can be
then for all ξ, η ∈ g∗ written as

E(ξ., η.) ≡ E(ξ, η) = (E0 + Π)−1(ξ, η). (30)

PLT scenario fits into this procedure. One usually assumes the
completeness of the dressing fields, which implies that the
inclusion j ∈ Hom(g∗, d) of the dual Lie algebra is everywhere
admissible isotropic splitting. There S = D/G ∼= G∗ and E forms
precisely the background of the dual sigma model on G∗.
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The Idea

We will consider ∇0 ∈ LC(d, E).

Lift it upstairs and push it downwards to obtain ∇g ∈ LC(E ′, E ′g).

Under the same isomorphism, we obtain ∇ ∈ LC(TS ,V ′+).

Theorem (Jurčo & Vysoký)

This works and does not depend on any intermediate steps.

∇0 is Ricci compatible with respect to E if and only if ∇ is Ricci
compatible with respect to V ′+.

R+
∇0 = R+

∇ (in parcirular, R+
∇ is always constant).

A Tiny Little Catch

∇ does not in general satisfy the assumptions of the theorem
interpreting properties of LC connections as EOM.
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In other words, there is no scalar function which satisfies the divergence
condition (21). Finding the sufficient assumptions was the most
complicated part of the entire procedure.

Proposition

Suppose ∇0 is divergence-free and the Lie algebra g is unimodular.
Then the connection ∇ satisfies the assumptions of the EOM theorem for
a scalar function φ ∈ C∞(S) unique up to an additive constant.

Fitting the connection to our theorems thus provides a final
background for the effective theory on S up to an additive constant.

Explicitly, the formula for φ is

φ = −1

2
ln(1 + g−1

0 (Π + B0)) +
1

2
ν(s), (31)

where ν(π(d)) = ln(det(k(d))), and E0 = g0 + B0 is a
decomposition onto its symmetric and skew-symmetric part.

Note that the function ν is well-defined as det(k(g)) = 1 for all
g ∈ G , as g is unimodular, and det(k(d)) 6= 0 for all d ∈ D.
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quasi-PLT plurality

The EOM for the (particular) backgrounds (g ,B, φ) and the low
energy effective action on S = D/G are equivalent to the algebraic
conditions for the connection ∇0 and consequently for the positive
subspace E ⊂ d.

These conditions depend only on d and the subspace E .

One can thus choose another Manin triple (d, g′) integrating to a
complete group pair (D,G ′) and consider the coset space
S ′ = D/G . The algebra g′ must be unimodular.

One can use the same subspace E ⊂ d to construct a background
(g ′,B ′, φ′) on S ′, together with the closed 3-from H ′.

The main statement

The backgrounds (g ′,B ′, φ′) satisfy the EOM of the effective action on
S ′ with H ′, if and only if (g ,B, φ) satisfy the EOM of the effective action
on S with H.
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Some concluding remarks & outlooks

By fixing the divergence of ∇0, the whole statement does not
depend on the remaining freedom. Note that there always exists a
divergence-free ∇0.

The choice of the admissible splitting is in fact not very relevant, as
(g , φ) do not change at all, whereas B and H change so that
H + dB remains constant.

By solving the algebraic equations for E ⊂ d, we obtain a machine
for producing backgrounds (g ,B, φ) and H on any of the coset
spaces S = D/G solving the EOM for the respective low-energy
effective actions.

If (d, g, g∗) and (d, g′, g′∗) are Manin triples integrating to their
respective Poisson-Lie groups, one has H ′ = H = 0 and obtains a
pair of sigma model backgrounds on G∗ and G ′∗, respectively. These
sigma models are equivalent due to the Poisson-Lie T-plurality.
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The same formula (in the Poisson-Lie plurality case) for the dilaton
was obtained in the literature via a careful analysis of the path
integral densities, whereas we have used the effective actions
(invented to describe the β-functions for the sigma models).

In fact, the corresponding sigma models (with WZW term) targeted
in S with the background (g ,B,H) have been quite recently (in
some sense) proved equivalent, see

Pavol Ševera: On integrability of 2-dimensional σ-models of
Poisson-Lie type, JHEP 1711 (2017) 015, arXiv:1709.02213

Our result supports this observation on the level of effective actions.

It should be possible to generalize everything to the case where P is
a general principal D-bundle. This leads to an interesting relation of
the orbit spaces P/G and P/D and their (generalized) geometry. It
also includes the Poisson-Lie T-duality with spectators.
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Branislav Jurčo, Jan Vysoký: Poisson-Lie T-duality of String Effective
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Thank you for your attention!
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