Generalized geometry and effective actions for strings and branes

Jan Vysoký

Jacobs University Bremen / Czech Technical University in Prague

February 19, Nordic String Meeting 2015, Gronningen

Introduction

- Collaboration with Branislav Jurčo (Charles University) and Peter Schupp (JUB).
- Based on two papers:
 - Branislav Jurčo, Peter Schupp a Jan Vysoký. "On the Generalized Geometry Origin of Noncommutative Gauge Theory". In: JHEP 1307 (2013), s. 126. DOI: 10.1007/JHEP07 (2013) 126. arXiv: 1303.6096 [hep-th]
 - Branislav Jurčo, Peter Schupp a Jan Vysoký. "Extended generalized geometry and a DBI-type effective action for branes ending on branes". In: JHEP 1408 (2014), s. 170. DOI: 10.1007/JHEP08 (2014) 170. arXiv: 1404.2795 [hep-th]
- To appear in extended form in my PhD. thesis (soon :))

Generalized geometry & string sigma model

Start with Polyakov sigma model action

$$S_P[X,h] = rac{1}{2} \int_{\Sigma} g_{ij}(X) dX^i \wedge *_h dX^j + B_{ij}(X) dX^i \wedge dX^j,$$

ullet Fixing $h_{lphaeta}={\sf diag}(1,-1)$, and calculating the Hamiltonian gives

$$H[X,P] = \frac{1}{2} \int d^2 \sigma \begin{pmatrix} \partial_1 X \\ P \end{pmatrix}^T \begin{pmatrix} g - Bg^{-1}B & Bg^{-1} \\ -g^{-1}B & g^{-1} \end{pmatrix} \begin{pmatrix} \partial_1 X \\ P \end{pmatrix}.$$

• We are interested in the $2n \times 2n$ matrix in the middle, we have

$$\mathbf{G} = \begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -B & 1 \end{pmatrix}.$$

• It can be interpreted as positive definite fiberwise metric on vector bundle $E = TM \oplus T^*M \rightarrow$ **Generalized geometry**.

- **G** is called **generalized metric**, with various equivalent definitions.
- It is equivalent to definition of rank n positive definite subbundle $V_+ \subseteq E$ with respect to canonical pairing $\langle \cdot, \cdot \rangle_E$ on $TM \oplus T^*M$.
- Space of all generalized metrices is $O(n,n)/(O(n)\times O(n))$, where O(n,n) is a group of vector bundle morphisms preserving $\langle\cdot,\cdot\rangle_E$.
- This space is invariant with respect to natural O(n, n) action:

$$\mathbf{G}' = \mathcal{O}^T \mathbf{G} \mathcal{O}$$
, where $\mathcal{O} \in O(n, n)$.

• This can encode various field redefinitions in string theory

$$\frac{1}{g+B} = \frac{1}{G+\Phi} + \theta,$$

→ Seiberg-Witten OC relations.

- Adding a non-commutative parameter $\theta \Leftrightarrow$ orthogonal transformation of ${\bf G}.$
- Generalized metric G corresponds to subbundle

$$V_+ = \{X + (g+B)(X) \mid X \in TM\} \subseteq E.$$

• The map $g+B:TM\to T^*M$ plays the role in DBI action. In particular, the same map corresponding to $e^{-F}\mathbf{G}$ defines the integral density in

$$S_{\mathrm{DBI}}[F] = -\int_{D} d^{d}x \frac{1}{g_{m}} \sqrt{\det\left(g + B + F\right)}.$$

- We can now use the generalized metric interpretation to re-derive the correspondence of commutative and non-commutative DBI actions.
- Let $\theta \in \mathfrak{X}^2(M)$, and (G, Φ) be the fields satisfying

$$(g+B)^{-1}=(G+\Phi)^{-1}+\theta.$$

• We add a fluctuation $F \to We$ look for a fluctuation F' of Φ , and possibly new θ' , such that

$$(g + B + F)^{-1} = (G + \Phi + F')^{-1} + \theta'.$$

In fact, we just solve the matrix equation

$$\begin{pmatrix} 1 & -\theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\mathbf{\digamma} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\mathbf{\digamma}' & 1 \end{pmatrix} \begin{pmatrix} \mathbf{N} & 0 \\ 0 & \mathbf{N}^{-\mathbf{T}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\theta' & 1 \end{pmatrix}.$$

It has unique solutions for all θ and F such that $\det(1 + \theta F) \neq 0$.

$$\theta' = (1 + \theta F)^{-1}\theta, \ F' = (1 + F\theta)^{-1}F, \ N = 1 + \theta F.$$

- Just by formal block matrix multiplications, one obtains non-commutative field strength F' of Seiberg and Witten.
- Presence of non-trivial map N hints that there must be a change of coordinates to compensate in the equivalence of commutative and non-commutative DBI actions. For F=dA, and θ a Poisson bivector we can define it as a flow of time dependent vector field $A_t=(1+t\theta F)^{-1}\theta(A)$, which does the job \to Seiberg-Witten map.

Membrane sigma model

- Consider now a *p*-brane instead of string, $p \ge 0$.
- We assume that *p*-brane moves in Eucleidian spacetime (M, g) in a presence of $C \in \Omega^{p+1}(M)$.
- Geometrical Nambu-Goto action is classically equivalent to Polyakov-like action, Hamiltonian of which can be after some gauge fixing written as

$$H[X,P] = \frac{1}{2} \int d^p \sigma \begin{pmatrix} P \\ \widetilde{\partial X} \end{pmatrix}^T \begin{pmatrix} g^{-1} & -g^{-1}C \\ -C^T g^{-1} & \widetilde{g} + C g^{-1}C \end{pmatrix} \begin{pmatrix} P \\ \widetilde{\partial X} \end{pmatrix},$$

where $\widetilde{\partial X}^I = (dX^{i_1} \wedge \ldots \wedge dX^{i_p})_{1\ldots p}$, and $\widetilde{g}_{IJ} = \delta_I^{k_1\ldots k_p} g_{k_1j_1}\ldots g_{k_pj_p}$ defines a fiberwise metric on $\Lambda^p TM$.

• What is the interpration of the matrix in the middle?

• It can be viewed as fiberwise metric on $T^*M \oplus \Lambda^p TM$, an inverse of the following fiberwise metric **G** on $E = TM \oplus \Lambda^p T^*M$:

$$\boldsymbol{G} = \begin{pmatrix} 1 & -\boldsymbol{C} \\ \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \begin{pmatrix} \boldsymbol{g} & \boldsymbol{0} \\ \boldsymbol{0} & \widetilde{\boldsymbol{g}}^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ -\boldsymbol{C}^{\mathcal{T}} & \boldsymbol{1} \end{pmatrix}.$$

- This looks exactly as for p = 1, and for p = 1 it limits to the original case. However, there is no canonical O(D, D) form on E.
- There is canonical pairing valued in $\Lambda^{p-1}T^*M$, defined as

$$\langle V + \xi, W + \eta \rangle_{\mathsf{E}} = i_{\mathsf{V}} \eta + i_{\mathsf{W}} \xi.$$

- We can however still work formally using the same manipulations.
- For example, let $\Pi \in \mathfrak{X}^{p+1}(M)$, and define $e^{-\Pi} = \begin{pmatrix} 1 & -\Pi \\ 0 & 1 \end{pmatrix}$. Then

$$\boldsymbol{G}' = \begin{pmatrix} 1 & -\boldsymbol{\Phi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{G} & \boldsymbol{0} \\ \boldsymbol{0} & \widetilde{\boldsymbol{G}}^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ -\boldsymbol{\Phi}^{\mathcal{T}} & 1 \end{pmatrix}, \; \boldsymbol{G}' = (\boldsymbol{e}^{-\boldsymbol{\Pi}})^{\mathcal{T}} \boldsymbol{G} \boldsymbol{e}^{-\boldsymbol{\Pi}},$$

still has the unique solution (G, \widetilde{G}, Φ) for arbitrary Π .

 Somehow mysteriously, this could be written also as block matrix equation

$$\begin{pmatrix} g & C \\ -C^T & \widetilde{g} \end{pmatrix}^{-1} = \begin{pmatrix} G & \Phi \\ -\Phi^T & \widetilde{G}^{-1} \end{pmatrix} + \begin{pmatrix} 0 & \Pi \\ -\Pi^T & 0 \end{pmatrix}.$$

There is a simple observation explaining this. Denote

$$\begin{split} \mathcal{G} &= \begin{pmatrix} g & 0 \\ 0 & \widetilde{g} \end{pmatrix}, \; \mathcal{B} = \begin{pmatrix} 0 & B \\ -B^T & 0 \end{pmatrix}, \; \Theta = \begin{pmatrix} 0 & \Pi \\ -\Pi^T & 0 \end{pmatrix}, \\ \mathcal{H} &= \begin{pmatrix} G & 0 \\ 0 & \widetilde{G} \end{pmatrix}, \; \Xi = \begin{pmatrix} 0 & \Phi \\ -\Phi^T & 0 \end{pmatrix}. \end{split}$$

- We then write the above equation as $(\mathcal{G} + \mathcal{B})^{-1} = (\mathcal{H} + \Xi)^{-1} + \Theta$.
- It has the same form as open-closed relations for p = 1.
- This is an equality of two maps from W^* to W, where the vector bundle W is defined as $W = TM \oplus \Lambda^p TM$.
- We can thus embed the objects of membrane sigma models into generalized geometry of $W \oplus W^*$.

- Note that $W \oplus W^*$ has natural pairing $\langle \cdot, \cdot \rangle_W$, and hence an O(D, D) structure (where $D = n + \binom{n}{p}$).
- **G** is then just a restriction of bigger generalized metric on $W \oplus W^*$.
- Every single calculation for p=1 case then carries out in the same way, simply because it is based on the same underlying objects.
- The geometrical nature of this "embedding" is still not clear.
- Vector bundle $W \oplus W^*$ can be equipped with a natural Leibniz algebroid structure. Explicitly, define

$$[(X, P, \alpha, \xi), (Y, Q, \beta, \eta)] = ([X, Y], \mathcal{L}_X Q, \mathcal{L}_X \beta + d\xi(Q), \mathcal{L}_X \eta - i_y d\xi).$$

This bracket allows to treat closed (p+1)-forms and Nambu-Poisson manifolds $\Pi \in \mathfrak{X}^{p+1}(M)$ on equal footing - as isotropic involutive subbundles of $W \oplus W^*$.

DBI action

- We have used this framework to develop the idea of p-DBI action first proposed in
 Branislav Jurčo a Peter Schupp. "Nambu-Sigma model and effective membrane actions". In: Phys.Lett. B713 (2012), s. 313–316. DOI: 10.1016/j.physletb.2012.05.067. arXiv: 1203.2910 [hep-th]
- They considered the action

$$S_{p\text{-DBI}}[F] = -\int d^{p'+1}x \frac{1}{g_m} \det \frac{\frac{p}{2(p+1)}}{(g)} \det \frac{1}{2(p+1)} [g + (C+F)\widetilde{g}^{-1}(C+F)^T].$$

- Note that integrand is of the form $[\det(g)]^{\frac{1}{2}-N}[\det\mathcal{G}+\mathcal{B}]^N$, where the power N was determined by equivalence of commutative and non-commutative action.
- Generalized geometry can be again used by repeating every line of p=1 calculation, in particular to obtain some non-trivial determinant formulas.

- Non-commutative parameter $\theta \in \mathfrak{X}^2(M)$ is replaced by (p+1)-vector Π .
- If F = dA for $A \in \Omega^p(M)$, and Π is Nambu-Poisson, we can construct a generalization of Seiberg-Witten map ρ , inducing the crucial change of variables.
- Non-commutative version of p-DBI action is defined as

$$-\int d^{p'+1}x\,\frac{1}{\widehat{G}_m}\,\frac{|\widehat{\boldsymbol{\Pi}}|^{\frac{1}{p+1}}}{|\boldsymbol{\Pi}|^{\frac{1}{p+1}}}\det^{\frac{p}{2(p+1)}}\widehat{G}\cdot\det^{\frac{1}{2(p+1)}}\big[\widehat{G}+(\widehat{\boldsymbol{\Phi}}+\widehat{F}')\widehat{\widetilde{G}}^{-1}(\widehat{\boldsymbol{\Phi}}+\widehat{F}')^T\big]\,,$$

where $\hat{F}(x) = F(\rho(x))$, and equivalently for other fields.

- $|\Pi|$ is the Jacobian of the change of coordinates of Π into Weinstein-Darboux coordinates.
- $G_m = g_m(\det G / \det g)^{\frac{p}{2(p+1)}}$

- We can show the advantages of "doubled geometry" approach on the following generalization of p=1 background independent gauge.
- For given \mathcal{G} and \mathcal{B} (in the form above), there always exists Θ , such that $\Theta\mathcal{B} = \mathcal{P}$, $\mathcal{P}\Theta = \Theta$, where \mathcal{P} is an OG projector onto ker \mathcal{B}^{\perp} .
- Now solve open-closed relations for such Θ . One gets

$$\Xi = -\mathcal{B}, \ \mathcal{H} = (1 - \mathcal{P})^T \mathcal{G}(1 - \mathcal{P}) - \mathcal{B}\mathcal{G}^{-1}\mathcal{B}.$$

• Now one can simply harvest these results, to find a couple of projectors P and \widetilde{P} , projecting onto "non-singular" subspaces of C^T and C, and

$$G = (1 - P)^T g (1 - P) + C \widetilde{g}^{-1} C^T,$$

$$\widetilde{G} = (1 - \widetilde{P})^T \widetilde{g} (1 - \widetilde{P}) + C^T g^{-1} C, \ \Phi = -C.$$

Under certain considerations about C, projectors P and \widetilde{P} give us well-behaved integrable distributions in M - "non-commutative directions".

- Having non-commutative directions, we could introduce the idea of "double scaling limit", generalized the approach of Seiberg-Witten who used it to cut-off the terms in the non-commutative DBI expansion to obtain non-commutative Yang-Mills model.
- It correctly gives background independent gauge as a result of scaling the fields g and C.
- We can now expand the DBI action above up to the first order in double scaling parameter ϵ , to obtain a version of semi-classical "matrix model":

$$S_{p\text{-NCDBI}} = \int d^{p'+1}x \, D(x) (1 + \frac{1}{2(p+1)!} \{\hat{X}^a, \dots, \hat{X}^b\} \{\hat{X}_a, \dots, \hat{X}_b\} + \dots$$

• Here $\{\dots\}$ denotes the Nambu-Poisson bracket corresponding to Θ , and $\hat{X}^a = \rho^*(x^a)$, where ρ is the Seiberg-Witten map, and x^a are original coordinates on M.

Outlook

- We still have only bosonic part → supersymmetrization?
- We would like to understand the underlying geometry on $W \oplus W^*$. In particular, not all O(D,D) transformations and generalized metrics are relevant for membrane theory \rightarrow is there reasonable geometrical restriction (some O(D,D) subgroup?).
- Seiberg-Witten map and non-commutative DBI action induce "Nambu-Poisson Gauge Theory", which can be formulated independently of *M*-theory, see
 Branislav Jurčo, Peter Schupp a Jan Vysoký. "Nambu-Poisson Gauge Theory". In: *Physics Letters B* 733C (2014), s. 221–225. eprint: arXiv:1403.6121.
- It seems that dimensional reduction of our *p*-DBI action works, as was shown recently by J-H. Ho, C-T. Ma.
- We would like to understand the duality rotations of Duff-Lu in the language of generalized geometry.

Thank you for your attention!