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Introduction

Collaboration with Branislav Jurčo (Charles University) and Peter
Schupp (JUB).

Based on two papers:
1 Branislav Jurčo, Peter Schupp a Jan Vysoký. “On the Generalized

Geometry Origin of Noncommutative Gauge Theory”. In: JHEP
1307 (2013), s. 126. doi: 10.1007/JHEP07(2013)126. arXiv:
1303.6096 [hep-th]

2 Branislav Jurčo, Peter Schupp a Jan Vysoký. “Extended generalized
geometry and a DBI-type effective action for branes ending on
branes”. In: JHEP 1408 (2014), s. 170. doi:
10.1007/JHEP08(2014)170. arXiv: 1404.2795 [hep-th]

To appear in extended form in my PhD. thesis (soon :))
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Generalized geometry & string sigma model

Start with Polyakov sigma model action

SP [X , h] =
1

2

∫
Σ

gij(X )dX i ∧ ∗hdX j + Bij(X )dX i ∧ dX j ,

Fixing hαβ = diag(1,−1), and calculating the Hamiltonian gives

H[X ,P] =
1

2

∫
d2σ

(
∂1X
P

)T (
g − Bg−1B Bg−1

−g−1B g−1

)(
∂1X
P

)
.

We are interested in the 2n × 2n matrix in the middle, we have

G =

(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)
.

It can be interpreted as positive definite fiberwise metric on vector
bundle E = TM ⊕ T ∗M → Generalized geometry.
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G is called generalized metric, with various equivalent definitions.

It is equivalent to definition of rank n positive definite subbundle
V+ ⊆ E with respect to canonical pairing 〈·, ·〉E on TM ⊕ T ∗M.

Space of all generalized metrices is O(n, n)/(O(n)× O(n)), where
O(n, n) is a group of vector bundle morphisms preserving 〈·, ·〉E .

This space is invariant with respect to natural O(n, n) action:

G′ = OTGO, where O ∈ O(n, n).

This can encode various field redefinitions in string theory

1 O = e−F =

(
1 0
−F 1

)
for F ∈ Ω2(M). If G ≈ (g ,B), then

G′ ≈ (g ,B + F ) → Gauge transformations

2 O = e−θ =

(
1 0
−θ 1

)
for θ ∈ X2(M). For G′ ≈ (G ,Φ), this gives

1

g + B
=

1

G + Φ
+ θ,

→ Seiberg-Witten OC relations.
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Adding a non-commutative parameter θ ⇔ orthogonal
transformation of G.

Generalized metric G corresponds to subbundle

V+ = {X + (g + B)(X ) | X ∈ TM} ⊆ E .

The map g + B : TM → T ∗M plays the role in DBI action. In
particular, the same map corresponding to e−FG defines the integral
density in

SDBI[F ] = −
∫
D

ddx
1

gm

√
det (g + B + F ).

We can now use the generalized metric interpretation to re-derive the
correspondence of commutative and non-commutative DBI actions.

Let θ ∈ X2(M), and (G ,Φ) be the fields satisfying

(g + B)−1 = (G + Φ)−1 + θ.

We add a fluctuation F → We look for a fluctuation F ′ of Φ, and
possibly new θ′, such that

(g + B + F )−1 = (G + Φ + F ′)−1 + θ′.
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In fact, we just solve the matrix equation(
1 −θ
0 1

)(
1 0
−F 1

)
=

(
1 0
−F ′ 1

)(
N 0
0 N−T

)(
1 0
−θ′ 1

)
.

It has unique solutions for all θ and F such that det(1 + θF ) 6= 0.

θ′ = (1 + θF )−1θ, F ′ = (1 + Fθ)−1F , N = 1 + θF .

Just by formal block matrix multiplications, one obtains
non-commutative field strength F ′ of Seiberg and Witten.

Presence of non-trivial map N hints that there must be a change of
coordinates to compensate in the equivalence of commutative and
non-commutative DBI actions. For F = dA, and θ a Poisson bivector
we can define it as a flow of time dependent vector field
At = (1 + tθF )−1θ(A), which does the job → Seiberg-Witten map.
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Membrane sigma model

Consider now a p-brane instead of string, p ≥ 0.

We assume that p-brane moves in Eucleidian spacetime (M, g) in a
presence of C ∈ Ωp+1(M).

Geometrical Nambu-Goto action is classically equivalent to
Polyakov-like action, Hamiltonian of which can be after some gauge
fixing written as

H[X ,P] =
1

2

∫
dpσ

(
P

∂̃X

)T (
g−1 −g−1C

−CTg−1 g̃ + Cg−1C

)(
P

∂̃X

)
,

where ∂̃X
I

= (dX i1 ∧ . . . ∧ dX ip )1...p, and g̃IJ = δ
k1...kp
I gk1j1 . . . gkp jp

defines a fiberwise metric on ΛpTM.

What is the interpration of the matrix in the middle?
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It can be viewed as fiberwise metric on T ∗M ⊕ ΛpTM, an inverse of
the following fiberwise metric G on E = TM ⊕ ΛpT ∗M:

G =

(
1 −C
0 1

)(
g 0
0 g̃−1

)(
1 0
−CT 1

)
.

This looks exactly as for p = 1, and for p = 1 it limits to the original
case. However, there is no canonical O(D,D) form on E .

There is canonical pairing valued in Λp−1T ∗M, defined as

〈V + ξ,W + η〉E = iV η + iW ξ.

We can however still work formally using the same manipulations.

For example, let Π ∈ Xp+1(M), and define e−Π =

(
1 −Π
0 1

)
. Then

G′ =

(
1 −Φ
0 1

)(
G 0

0 G̃−1

)(
1 0
−ΦT 1

)
, G′ = (e−Π)TGe−Π,

still has the unique solution (G , G̃ ,Φ) for arbitrary Π.
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Somehow mysteriously, this could be written also as block matrix
equation(

g C
−CT g̃

)−1

=

(
G Φ

−ΦT G̃−1

)
+

(
0 Π
−ΠT 0

)
.

There is a simple observation explaining this. Denote

G =

(
g 0
0 g̃

)
, B =

(
0 B
−BT 0

)
, Θ =

(
0 Π
−ΠT 0

)
,

H =

(
G 0

0 G̃

)
, Ξ =

(
0 Φ
−ΦT 0

)
.

We then write the above equation as (G + B)−1 = (H+ Ξ)−1 + Θ.

It has the same form as open-closed relations for p = 1.

This is an equality of two maps from W ∗ to W , where the vector
bundle W is defined as W = TM ⊕ ΛpTM.

We can thus embed the objects of membrane sigma models into
generalized geometry of W ⊕W ∗.
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Note that W ⊕W ∗ has natural pairing 〈·, ·〉W , and hence an
O(D,D) structure (where D = n +

(
n
p

)
).

G is then just a restriction of bigger generalized metric on W ⊕W ∗.

Every single calculation for p = 1 case then carries out in the same
way, simply because it is based on the same underying objects.

The geometrical nature of this ”embedding”is still not clear.

Vector bundle W ⊕W ∗ can be equipped with a natural Leibniz
algebroid structure. Explicitly, define

[(X ,P, α, ξ), (Y ,Q, β, η)] = ([X ,Y ],LXQ,LXβ+dξ(Q),LXη−iydξ).

This bracket allows to treat closed (p + 1)-forms and
Nambu-Poisson manifolds Π ∈ Xp+1(M) on equal footing - as
isotropic involutive subbundles of W ⊕W ∗.
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DBI action

We have used this framework to develop the idea of p-DBI action
first proposed in
Branislav Jurčo a Peter Schupp. “Nambu-Sigma model and effective
membrane actions”. In: Phys.Lett. B713 (2012), s. 313–316. doi:
10.1016/j.physletb.2012.05.067. arXiv: 1203.2910 [hep-th]

They considered the action

Sp-DBI[F ] = −
∫

dp′+1x
1

gm
det

p
2(p+1) (g) det

1
2(p+1) [g+(C+F )g̃−1(C+F )T ].

Note that integrand is of the form [det (g)]
1
2−N [detG + B]N , where

the power N was determined by equivalence of commutative and
non-commutative action.

Generalized geometry can be again used by repeating every line of
p = 1 calculation, in particular to obtain some non-trivial
determinant formulas.
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Non-commutative parameter θ ∈ X2(M) is replaced by
(p + 1)-vector Π.

If F = dA for A ∈ Ωp(M), and Π is Nambu-Poisson, we can
construct a generalization of Seiberg-Witten map ρ, inducing the
crucial change of variables.

Non-commutative version of p-DBI action is defined as

−
∫

dp′+1x
1

Ĝm

|̂Π|
1

p+1

|Π|
1

p+1

det
p

2(p+1) Ĝ ·det
1

2(p+1)
[
Ĝ+(Φ̂+F̂ ′) ̂̃G−1(Φ̂+F̂ ′)T

]
,

where F̂ (x) = F (ρ(x)), and equivalently for other fields.

|Π| is the Jacobian of the change of coordinates of Π into
Weinstein-Darboux coordinates.

Gm = gm(detG/ det g)
p

2(p+1)
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We can show the advantages of ”doubled geometry”approach on the
following generalization of p = 1 background independent gauge.

For given G and B (in the form above), there always exists Θ, such
that ΘB = P, PΘ = Θ, where P is an OG projector onto kerB⊥.

Now solve open-closed relations for such Θ. One gets

Ξ = −B, H = (1− P)TG(1− P)− BG−1B.

Now one can simply harvest these results, to find a couple of
projectors P and P̃, projecting onto ”non-singular”subspaces of CT

and C , and

G = (1− P)Tg(1− P) + Cg̃−1CT ,

G̃ = (1− P̃)T g̃(1− P̃) + CTg−1C , Φ = −C .

Under certain considerations about C , projectors P and P̃ give us
well-behaved integrable distributions in M - ”non-commutative
directions”.
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Having non-commutative directions, we could introduce the idea of
”double scaling limit”, generalized the approach of Seiberg-Witten
who used it to cut-off the terms in the non-commutative DBI
expansion to obtain non-commutative Yang-Mills model.

It correctly gives background independent gauge as a result of
scaling the fields g and C .

We can now expand the DBI action above up to the first order in
double scaling parameter ε, to obtain a version of semi-classical
”matrix model”:

Sp-NCDBI =

∫
dp′+1x D(x)(1+

1

2(p + 1)!
{X̂ a, . . . , X̂ b}{X̂a, . . . , X̂b}+. . . .

Here {. . . } denotes the Nambu-Poisson bracket corresponding to Θ,
and X̂ a = ρ∗(xa), where ρ is the Seiberg-Witten map, and xa are
original coordinates on M.
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Outlook

We still have only bosonic part → supersymmetrization?

We would like to understand the underlying geometry on W ⊕W ∗.
In particular, not all O(D,D) transformations and generalized
metrics are relevant for membrane theory → is there reasonable
geometrical restriction (some O(D,D) subgroup?).

Seiberg-Witten map and non-commutative DBI action induce
”Nambu-Poisson Gauge Theory”, which can be formulated
independently of M-theory, see
Branislav Jurčo, Peter Schupp a Jan Vysoký. “Nambu-Poisson
Gauge Theory”. In: Physics Letters B 733C (2014), s. 221–225.
eprint: arXiv:1403.6121.

It seems that dimensional reduction of our p-DBI action works, as
was shown recently by J-H. Ho, C-T. Ma.

We would like to understand the duality rotations of Duff-Lu in the
language of generalized geometry.
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Thank you for your attention!
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