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Motivation

Jet geometry allows for an intrinsic geometrical description of
“derivatives of objects”. Crucial e.g. for geometrical formulation of
classical (Lagrangian) mechanics.

To any vector bundle π : E → M, one can assign a sequence of
vector bundles {ϖk : JkE → M}k∈N0 . For each m ∈ M, the fiber is

(JkE )m = {[ψ]m | ψ ∈ ΓE (U) for some U ∈ Opm(M)},

where ψ ∼ ψ′, iff partial derivates of the components of ψ and ψ′ at
m agree up to the order k (i.e. the k-th order Taylor polynomials of
the components at m coincide). JkE is k-th order jet bundle of E .

Differential equations are submanifolds of JkE . Solutions are their
certain submanifolds (integral submanifolds of Cartan distribution).

Linear differential operators are bundle maps JkE → E .

Can we do this for graded manifolds and graded vector bundles
(or supermanifolds) as well?
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Graded manifolds

Layman’s terms: Graded manifolds are geometrical objects,
functions on which locally depend on coordinates which do not
necessarily commute. The coordinates commute according to their
degree valued in Z. We mean exclusively Z-graded manifolds.

Definition (Graded manifold)

The graded manifoldM consists of the following data:

1 M be a second countable Hausdorff space; M is called the body of M.

2 Suppose C∞
M be a sheaf of Z-graded commutative associative algebras

with a unit; C∞
M is a sheaf of functions on M.

3 There is a finite sequence (nj)j∈Z of non-negative integers, such that C∞
M

is locally isomorphic to the graded domain C∞
(nj )

. The sequence (nj)j∈Z is

called the graded dimension of M. Note that n :=
∑

j∈Z nj <∞.

To each U ∈ Op(M), we assign an algebra C∞M(U), and for V ⊆ U,
we can restrict f ∈ C∞M(U) to f |V ∈ C∞M(V ).
Functions can be compared locally and glued from locally defined
functions, if they agree on overlaps.
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Example (Graded domain)

Let (nj)j∈Z be a finite sequence in N0. Let n∗ :=
∑

j ̸=0 nj . Consider the
variables {ξ1, . . . , ξn∗}, each of them is assigned a degree |ξµ| ∈ Z.

1 Exactly nj of them has degree j ∈ Z.
2 Suppose that they commute according to the rule

ξµξν = (−1)|ξµ||ξν |ξνξµ.

For each U ∈ Op(Rn), C∞(nj )(U) is declared to be the algebra of formal

power series in {ξ1, . . . , ξn} with coefficients in C∞(U), that is

f =
∑
p

fp(x
1, . . . , xn0)ξp,

where p = (p1, . . . , pn∗) run over certain subset of (N0)
n∗ and

ξp := (ξ1)
p1 . . . (ξn∗)

pn∗ . Restrictions act by restricting the coefficients.
It is a (tautological) example of a graded manifold.
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Graded vector bundles

They are defined (solely) in terms of sheaves of their sections. Let
M be a graded manifold. A sheaf of graded C∞M-modules F

1 Assigns to each U ∈ Op(M) a graded C∞
M(U)-module F(U).

2 For any V ⊆ U, we have a restriction F(U) 7→ F(V ) compatible
with the additional structures.

3 We can compare locally and glue.

Definition (Graded vector bundle)

By a graded vector bundle E over a graded manifoldM, we mean a
locally freely and finitely generated sheaf ΓE of graded C∞M-modules of a
constant graded rank (rj)j∈Z.

Elements of ΓE(U) are called sections of E over U.
For each m ∈ M, there exists U ∈ Opm(M) and a local frame for E
over U: {Φλ}rλ=1 ⊆ ΓE(U), such that

1 Exactly rj of them has degree j and r =
∑

j∈Z rj .
2 For each V ∈ Op(U), every ψ ∈ ΓE(V ) can be uniquely decomposed

as ψ = ψλ · Φλ|V .
The sequence (rj)j∈Z is called the graded rank of E .
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Example (Tangent bundle)

LetM be a graded manifold. For each U ∈ Op(M), let

XM(U) := {X ∈ EndR(C∞M(U)) | X (fg) = X (f )g + (−1)|X ||f |fX (g)}.

1 Elements of XM(U) are called vector fields on M over U. XM
can be made into a sheaf of graded C∞M-modules.

2 Around each point there is a local frame
{ ∂
∂x1 , . . . ,

∂
∂xn0

, ∂
∂ξ1
, . . . , ∂

∂ξn∗
}. Consequently, XM is locally freely

and finitely generated.

3 Set ΓTM := XM. TM is called the tangent bundle toM. If
(nj)j∈Z := gdim(M), then grk(TM) = (n−j)j∈Z.

Example (Trivial graded vector bundle)

Let K be a finite-dimensional graded vector space. Let

(C∞M[K ])(U) := C∞M(U)⊗R K .

C∞M[K ] is a sheaf of sections of a trivial graded vector bundle

Jan Vysoký Graded Jet Geometry 5 / 17



Bundle of differential operators

Definition (Differential operators)

Let E be a graded vector bundle overM. Let U ∈ Op(M) and k ∈ N0.
An R-linear map D : ΓE(U)→ ΓE(U) is called a k-th order differential
operator on E over U, if

1 It is C∞M(U)-linear, if k = 0;

2 For each f ∈ C∞M(U), the operator D
(1)
(f ) defined by the formula

D
(1)
(f )(ψ) = f · D(ψ)− (−1)|f ||D|D(f · ψ)

is a (k − 1)-th order differential opereator, if k > 0.

Such operators form a graded C∞M(U)-module DifkE(U).

Theorem (It is nice!)

The assignment U 7→ DifkE(U) is a locally freely and finitely generated
sheaf of graded C∞M-modules, hence a sheaf of sections of a graded
vector bundle Dk

E of k-th order differential operators on E .
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It is easy to prove (by induction on k and definitions) that it is a
sheaf of graded C∞M-modules.

To find a local frame, one needs the following local data:
1 A local coordinates {zA}nA=1 for M over U ⊆ M;
2 A local frame {Φλ}rλ=1 for E over U.
3 Let Nn(q) be certain subset of all N0-valued n-indices:

Nn(q) := {I = (i1, . . . , in) ∈ (N0)
n | w(I) = q and z

I ̸= 0},

where w(I) =
∑n

A=1 iA and z I = (z1)i1 · · · (zn)in . For I ∈ Nn(q) let

∂op
I := (

∂

∂zn
)in · · · ( ∂

∂z1
)i1 .

Then every D ∈ DifkE(U) can be uniquely decomposed as a
C∞M(U)-linear combination of

PI
λ
µ(ψ) = ±∂opI (ψλ) · Φµ,

where ψ = ψλ · Φλ, and I ∈
⋃k

q=0 Nn(q) and λ, µ ∈ {1, . . . , r}.
One proves this using “combinatorics” for polynomial ψλ, the
general case uses Hadamard’s lemma (similarly to vector fields!).
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For example, there is a (principal) symbol map σ fitting into the
short exact sequence

0 Dk−1
E Dk

E Hom(Sk(T ∗M),D0) 0σ ,

where Hom is the inner hom in the category of vector bundles.

There is an inclusion I(k) : S
k(TM)→ Hom(Sk(T ∗M),D0). Set

DifkE(U) = {D ∈ DifkE(U) | σ(D) = I(k)(X ) for some X ∈ X̃k
M(U)}

Write ℓ(k)(D) = X (it is unique).

D ∈ Dif
k

E(U) and D ′ ∈ Dif
m

E (U). Then [D,D ′] ∈ Dif
k+m−1

E (U) and

ℓ(k+m−1)([D,D
′]) = [ℓ(k)(D), ℓ(ℓ)(D

′)]S ,

where [·, ·]S is a Schouten-Nijenhuis bracket on X̃•
M(U).

In particular, AtE := D
1

E together with ℓ(1) and [·, ·] is a graded Lie
algebroid.
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Geometric presheaves

For each a ∈ M and U ∈ Op(M), let

J a
M(U) =

{
{f ∈ C∞M(U) | f (a) = 0} for a ∈ U

C∞M(U) for a /∈ U.

J a
M ⊆ C∞M is a sheaf of ideals. Let f ∈ C∞M(U). Then

f = 0⇔ f ∈
⋂
a∈U

⋂
q∈N

(J a
M(U))q.

This is crucial e.g. in the proof of the above theorem!

Let P be a graded C∞M(U)-module, p ∈ P. What if

p = 0⇔ p ∈
⋂
a∈U

⋂
q∈N
{(J a

M(U))q ▷ P} ≡ P•?

One says that P is geometric, iff P• = 0.

More generally, a presheaf F of graded C∞M-modules is geometric, iff
F(U) is geometric for all U ∈ Op(M).
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For any graded vector bundle E overM, ΓE is geometric.

For any presheaf F of graded C∞M(U)-modules, the presheaf

U 7→ Geo(F)(U) := F(U)/F(U)•

is geometric. Geo(F) is called the geometrization of F . The
quotient map defines a presheaf morphism geoF : F → Geo(F).
Universality: for any geometric presheaf G and any presheaf
morphism φ : F → G, there is a unique φ̂ fitting into

F G

Geo(F)

φ

geoF
φ̂

One can make F 7→ Geo(F) into a functor into the category of
geometric presheaves of graded C∞M-modules.

If F(M) is finitely generated and F is a sheaf, then so is Geo(F).
The dual F∗ of any presheaf F is a geometric sheaf.
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Jet bundle: construction

It is not possible to define graded jet bundles by describing their
fibers! Ordinary construction is destined to fail.

There is an construction of “jet modules” associated to any modules
over commutative algebras by Krasil’shchik, Lychagin and
Vinogradov. We used similar ideas to directly define the sheaf of
sections of a graded jet bundle.

Throughout this section, E is a fixed graded vector bundle over a
fixed graded manifoldM.

For each U ∈ Op(M), let us consider a graded vector space

X (U) := C∞M(U)⊗R ΓE(U)

There are two different graded C∞M(U)-module structures on X (U):
1 f ▷ (h ⊗ ψ) := (fh)⊗ ψ;
2 f ▶ (h ⊗ ψ) := (−1)|f ||h|h ⊗ (f · ψ).

They are not the same, let δf := (f ▷ ·)− (f ▶ ·). This map is
C∞M(U)-linear (w.r.t. both ▷ and ▶) of degree |f |.
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Let k ∈ N0 and consider a graded subspace

V(k)(U) = R{δf1 . . . δfk+1
(h⊗ψ) | f1, . . . , fk+1, h ∈ C∞M(U), ψ ∈ ΓE(U)}.

In fact, it forms a graded C∞M(U)-submodule (w.r.t both ▷ and ▶).

For any k ∈ N0, one can thus form a quotient graded vector space

pJetkE(U) := X (U)/V(k)(U).

In fact, it forms a graded C∞M(U)-module (with two actions ▷ and ▶
inherited from X (U)).

pJetkE forms a presheaf of graded C∞M(U)-modules. In ideal case
scenario, it would be a locally finitely and freely generated sheaf.

The proof resembles the one for DifkE , except at certain remainder
from Hadamard’s lemma ends up in pJetkE(U)•. No reason to
conclude that it is zero.

One can avoid this problem by geometrization functor. Let

gpJetkE := Geo(pJetkE).

This one is locally freely and finitely generated, but not a sheaf.
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Theorem (The one and only)

Let JetkE be a sheafification of the presheaf gpJetkE . Then it is a locally
freely and finitely generated sheaf of graded C∞M-modules of a constant
graded rank, hence a sheaf of sections of a graded vector bundle JkE .
JkE is called a k-th order jet bundle of a graded vector bundle E .

The proof explicitly constructs the local frame for JkE over U, where
we have some graded local chart (U, φ) forM and a local frame
{Φλ}rλ=1 for E over U. Let us explain this a bit:

1 Let h ⊗(k) ψ denote the equivalence class in pJetkE(U) represented by
h ⊗ ψ ∈ X (U);

2 Let [h ⊗(k) ψ]
• denote the equivalence class in the quotient

gpJetkE(U) represented by h ⊗(k) ψ;
3 Then the local generators for gpJetkE over U are elements of the form

[δ
z
B1 · · · δzBq (1⊗(k) Φλ)]

•,

where 0 ≤ q ≤ k, and {zB}nB=1 are the local coordinate functions for
M corresponding to (U, φ).
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Jet bundle: properties

So far, it is not completely clear why JkE is a good candidate. Let us list
some expected properties.

There is a canonical “jet prolongation” jk : ΓE → JetkE . It is a
composition of the sheafification morphism and a presheaf morphism

ĵkU(ψ) := [1⊗(k) ψ]
•,

for all U ∈ Op(M) and ψ ∈ ΓE(U).

j0 : ΓE → Jet0E is a C∞M-linear isomorphism, that is E ∼= J0E .

More generally, one can obtain a graded vector bundle Dk
E,F of k-th

order differential operators from E to F .
To any D ∈ DifkE,F (U), there is a unique C∞M(U)-linear map

D̂ : JetkE(U)→ ΓF (U) satisfying

D = D̂ ◦ jkU
One uses the universality of sheafification and first defines

D̂0[f ⊗(k) ψ]
• := (−1)|f ||D|f · D(ψ).
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This correspondence in fact defines a canonical graded vector bundle
isomorphism

DE,F ∼= Hom(JkE ,F).

This bijection is natural in E and F . In particular, for a fixed E , the
properties of the “internal Yoneda” functor fix JkE (having this
property) up to the unique isomorphism.

For each ℓ ≤ k , there is a canonical surjective degree zero C∞M-linear
sheaf morphism

πk,ℓ : JetkE → JetℓE

satisfying πk,ℓ ◦ jk = jℓ. Obtained from the maps

π̂k,ℓ
U [f ⊗(k) ψ]

• = [f ⊗(ℓ) ψ]
•.

{JetkE}k∈N0 together with these morphisms form a inverse system in
the category of sheaves of graded C∞M-modules. Thus

Jet∞E := lim←− JetkE

makes sense. This is a sheaf of graded C∞M-modules.
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One can construct a short exact sequence of graded vector bundles

0 Hom(Sk(TM), E) JkE Jk−1
E 0,

J(k) πk,k−1

for all k ∈ N0 (if we declare J−1
E := 0). This property also

determines the sequence {JkE}k∈N0 up to isomorphisms.

Let a ∈ M. Let C∞M,a be the stalk of C∞M at a. This is a local graded
ring with the maximal ideal JM,a.
The k-th order jet space at a ∈ M is a graded vector space

JkE,a :=
ΓE,a

(JM,a)k+1 ▷ ΓE,a
.

Two germs [ψ]a and [ψ′]a coincide in the quotient, iff their
components (w.r.t. to any local frame) have the same Taylor
polynomials of order k at a (w.r.t. to any local coordinates).
Then there is a canonical isomorphism (JkE)a

∼= JkE,a, i.e. the fibers

of JkE are jet spaces.

For E := RM ≡M× R, Jk[M] := JkRM
is called the k-th order jet

manifold of M.
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Remarks and outlooks

Where is the jet geometry? To an arbitrary graded vector bundle E
overM, there is an actual graded manifold E and a surjective
submersion π : E →M, unique up to the isomorphism (commuting
with projections).(Algebraic) graded vector bundle maps are then
graded smooth maps of total spaces.
Consequently, Dk

E and JkE or Jk[M] provide new examples of graded
manifolds.

Every graded vector bundle allows one to construct its total space
graded manifold. We can thus talk about submanifolds of JkE . Do
they in some cases correspond to “differential equations” similarly to
the ordinary case?

The crucial part of the standard jet geometry is the Cartan
distribution, a vital example of a contact structure. Is there a
suitable “graded” generalization of contact geometry? This could
prove problematic since there are no “top forms” and there is no
Frobenius theorem (yet).
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Thank you for your attention!


