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Definition (Courant algebroid)

It is a vector bundle E over M equipped with additional structures:
@ fiber-wise metric (-,-) on E;
@ anchor, vector bundle map p: E — TM,;
© R-bilinear bracket [-, -] on ['(E);

Then there are four axioms, summarized as:
@ bracket is not C*°-linear = Leibniz rule using p;
@ metric and bracket are compatible a la quadratic Lie algebras;
@ some Jacobi-like identity for [-, -];

@ symmetric part of [, -] is non-trivial, but determined by p and (-, -).

CA'’s appear naturally in string theory, e.g.
@ current algebras of non-linear o-models;
@ various aspects of (Poisson—Lie) T-duality
@ geometrical description of (exceptional, heterotic) supergravity;
@ DFT and its relation with para-Hermitian geometry.
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Looking for a category

The main question

How to define a category of Courant algebroids?

© objects: Courant algebroids
@ morphisms: ?7

For two CA’s E; and E; over the same base M, this is easy.

Definition (Naive CA morphism)

Let F : E; — E, be vector bundle map over 1. For every ¢; € I'(Ey),
we have F(v1) € T(Ey).

@ F preserves metrics: (F (1), F(¢1))2 = (¥1,¢1)1.

@ F intertwines the anchor maps: py o F = p;.

@ F is a bracket morphism: [F (1), F(¢7)]2 = [¢1,¥]1-

We need F : E; — E, over any smooth map ¢ : My — Ms.
Immediate challenge: there is no section F(1)1)!!
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Desired properties

@ For My = My = M and ¢ = 1y, it reduces to the naive case;
@ Sections 11 € [(Ey) and o, € [(Ey) are F-related, ¢y ~x 1)y, if

.F(’l/)l(ml)) = wg(go(ml)), for all my € M. (1)

We want ¢1 ~x 12, P ~F ¥3 to imply [1,91]1 ~F [2, 93]
o F is fiber-wise bijective and ¢ a diffeomorphism: (F~1, 1) is
automatically a CA morphism.

Question: Is there such a definition?
Answer: Yes, there is one 23 years old, but no one knows it.

P. Popescu, On generalized algebroids, in New Developments in

Differential Geometry, Budapest 1996, pp. 329-342. Springer, 1999.

It appears there as an example, the modern definition of CA was not even
born yet (Roytenberg 1999).
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Category of CA's, not good enough

Definition (Classical CA morphism)
F : Ey — E; over o : M — M, satisfying:
@ F fiber-wise preserves metrics.
@ F intertwines the anchor maps p; o F = T () o p1.
o For every f, € C*°(M,), we have Di(f 0 p) ~x Dafr, where

(Dafa,h2)2 i= Ly, f2, forall o € C(My), (2)

and D; defined similarly.

o F satisfies a complicated relation of the two brackets, which can be
explicitly written only locally. Similar to Lie algebroid morphism.
We obtain a nice category CAlg.

Immediate drawback: F must be fiber-wise ingjctive.

Burning question

Can one throw in more morphisms?

Jan Vysoky
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Weinstein's symplectic " category”

Let (M1, w1) and (Ma,w;) be two symplectic manifolds. A map
v : My — M, is called symplectic, if p*(w2) = w;.

@ ¢ must always be an immersion.

@ In order to preserve the respective Poisson brackets, ¢ must be a
local diffeomorphism. Hence in symplectic category, only
diffeomorphic symplectic maps (symplectomorphisms) are
considered.

Symplectic ” category”, A. Weinstein (1982)

Consider canonical relations R : M; --» My, where R C My x M, is a
Lagrangian submanifold of the product symplectic manifold.

@ M, denotes the symplectic manifold (Ma, —w»);
o A submanifold S of (M,w) is Lagrangian, iff TS = TSt in TM.

There is a natural composition operation o. It does not work for all
canonical relations, hence the quotes.
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Involutive structures in CA's

Definition (Supported subbundles)

Let E be a vector bundle over M, S C M a submanifold.
We say that L C E is a subbundle of E supported on S, if L is a
subbundle of the restricted vector bundle Es.

Let (E,p,{-,"),[",:]) be a CA. We can impose various conditions on L:

Definition (Properties of subbundles)

@ L is isotropic, if L C L+, L+ C Es OG complement w.r.t. {-,-);

@ It is maximally isotropic, if it is isotropic and rk(L) = min{p, g},
where (p, q) is the signature of (-, -);
@ L is compatible with the anchor, if p(L) C TS;

Note that if p = g, L is maximally isotropic, iff L = L+, i.e. Lis
Lagrangian. This condition has no sense for p # q!

Definition (Sections taking values in L)
We write ¢ € T(E; L), if » € T(E) and v¢|s € T(L).
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Definition (Involutive subbundles)

We say that L is an involutive subbundle, if for ¢, v’ € T(E; L), one has
also [, 9] € T(E; L).

If L is involutive, it must compatible with the anchor (for L # Es), L+
also (for L # 0s). If it is not isotropic, some bad things happen.

Definition (Involutive structures)

L is an almost involutive structure in E supported on S, if
o L is isotropic;
o L and Lt are compatible with the anchor.

Delete "almost” when L is involutive. If L is maximally isotropic, one
says that L is an (almost) Dirac structure in E supported on S.

For general S, there is no induced algebroid structure on L.

Example

L =TS @ an(TS) is a Dirac structure in TM & T*M equipped with the
standard CA (Dorfman bracket).
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CA relations

Let £; and E, be a pair of CA's over M; and M. By E», one denotes
the CA (Ez, p2, —(*, )2, [, *]2) with the flipped pairing.

@ Involutive structure R C E; x E, is called a CA relation from E;
to E>. One writes R : E; --» E>.

e If R is supported on gr(y) for a smooth map ¢ : M; — M, one says
that R is a CA morphism over ¢.

o CA morphisms were introduced by Alekseev and Xu (date unknown),
CA relations by Li-Bland and Meinrenken (2014).

@ They only consider Lagrangian R = R*. This makes sense only for
split signature!

o We do not assume that R is a Dirac structure (maximally isotropic).
Otherwise the composition fails already on the linear algebra level!
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Composing CA relations

Let R: E; --» E; and R’ : E; --» E3 be a pair of CA relations supported
on submanifolds S C M; x M, and S’ C M, x Mjz, respectively. Set

R'oR={(e1,e3) € E1 x E3 | Jey € E» s.t. (€1, &) € R, (&2, 3) € R'}.

Theorem (Li-Bland, Meinrenken (2014))

@ R'oR: E; --» E3 is not always a CA relation.

o However, there exist reasonable sufficient conditions (manifold-ish
for the supports, constant rank-ish for the total spaces).

@ Support of R" o R is S’ o S given by the same formula.

The diagonal embedding A(E) = gr(1g) C E x E plays the role of the
identity at E. o is associative.

We get the Courant algebroids " category” Calg.

Future endeavor: reformulate using symplectic NQ manifolds.
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EIES

Example (Classical CA morphisms)

@ Let F: E; — E, be a vector bundle map over ¢ : My — Mj;

o Set R = gr(F) C E; x E,, supported on gr(¢);
Then R : E; --» E> is a CA relation, iff F is a classical CA morphism a la
Popescu. Hence Calg C Calg.

One can easily deduce all the "desired” properties of classical CA
morphisms from general statements.
Example (Pull & push)

@ Let L C E be an involutive structure supported on S C M.

@ One can view them as L x {0} : E --» {0} or {0} x L: {0} --» E.

@ Let R: E; --» E> be a CA relation, and let L; C E;, L, C E; be
involutive structures.

Pullback involutive structure: R*(L;) x {0} := (L, x {0})o R.
Pushforward involutive structure: {0} x R.(L;) := ({0} x L1) o R.
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Example (Dorfman functor)

o Let (A, a,[,]a) be a Lie algebroid. There is an induced differential
d?: Q*(A) — Q**1(A) and a Lie derivative £ = {d*, i}.

@ There is an induced CA structure on Df(A) := A@ A*, with the
anchor p(X, &) = a(X), canonical pairing (-,) , and the bracket

[(X,€), (Y. m)] = (X, Y1a, L7 — iv (d"€)). (3)

@ Let F: A; — Ay be a Lie algebroid morphism.

Then there exists a canonical CA relation Rr : Df(A;) — Df(Az). One
has R]:/ o R]: = R]:/O]: and RlA = gr(lDf(A)).
In other words, we have a Dorfman " functor” Df : Lalg — Calg.

The overline cannot be deleted, we need the bigger category here!

Remark

The standard Courant algebroid on TM & T*M can be viewed as a
composition of Df with the tangent functor T : Man® — Lalg.
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Example (Para-Hermitian geometry, a.k.a. global DFT)

@ An almost para-Hermitian manifold (P,n, K) is
© 2n-manifold P;
@ metric n on P of a signature (n, n);
@ vector bundle map K : TP — TP such that K?> =1 and
n(K(X), K(Y)) = —n(X, Y).

@ One deletes almost, if the +1 eigenbundles T of K are involutive.

@ Ty form Lie algebroids (restricted from TP). Df(T) are CA’'s!

@ There are canonical v.b. isomorphisms p1 of Df(TL) with TP.

Declaring them into CA isomorphisms, we have two CA’s on TP.
Let F be a foliation corresponding to T and pick its leaf F € F,. By
definition, T(ig): TF — T, is a Lie algebroid morphism.

o There is thus Rr(;.y : Df(F) --» Df(T).

@ In this case, Ry(j.) is a graph of a classical CA morphism.
Composing it with p gives a classical CA morphism W} : Df(F) — TP.
This is how generalized geometry on F "injects” into the ordinary
geometry on the "doubled space” P.
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Example (Reduction of CA's)

@ Let w: P — M be a principal G-bundle, G connected Lie group.
Write g = Lie(G) for its Lie algebra.

e Equivariant CA over P: (E,p, (-,"),[:,:],R) where R : g — ['(E) is
linear and satisfies (# : g — X(P) generator of G-action on P)

R(lx, la) = [R(x), R(y)], poR=#. (4)

Moreover, the induced action x » ) := [R(x), ] integrates to a Lie
group action R on E, making it into G-equviariant vector bundle.

@ For technical reasons, p has to be fiber-wise surjective.

There is a procedure to obtain a reduced CA E’ over M:
Q@ Let K = R(P x g). This is a G-invariant subbundle of E. So is K.
@ There is a canonical CA structure on E’ given as the quotient:

) K/G
20 = KK (5)

Statement: There is a canonical CA relation Q(R) : E --» E’.
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@ Q(R) is supported on gr(w) and is not a graph of a bundle map.

@ For compact G, this can serve as a geometrical framework for
Kaluza-Klein-like reduction of supergravity (see my paper!).

Example (Poisson—Lie T-duality, preparation)

Consider the above reduction where K N K+ = 0.

Let H C G be any closed connected Lie subgroup.

By restricting R, one obtains H-equivariant CA (E, p, (-,-), [, -], Ro)-
There is thus a reduced CA Ej over N = P/H.

One can always construct a canonical CA relation R(H) : Ej --» E’ over
gr(¢), where ¢ : P/H — P/G = M.

Remark

@ There is a non-degenerate form (-,-)4 induced by R on g = Lie(G).

e R(H) is a graph of a classical CA morphism, iff b = Lie(H) is
coisotropic in g with respect to (-, )4, b~ C b.

Jan Vysoky Courant algebroid morphisms revisited



Example (Poisson—Lie T-duality, conclusion)

@ Let H,H' C G be two subgroups with coisotropic Lie algebras b, b’

@ For any CA relation R : E; --» E;, we can view it (trivially) as a CA
relation RT : E, --» E;. Distinguished for composition purposes.

We thus have R(H) : Ej --» E' and R(H') : E{ --» E’. Define
Ruyp = R(H)T o R(H) : E} -+ E]. (6)

This is a CA relation supported on the fibered product N xp N’. lts
existence is the reason why Poisson—Lie T-duality works.

Some concluding remarks

o CA relations interplay very well with other notions, e.g. generalized
metrics, CA connections and their induced torsion & curvature.

@ It should be easy (bachelor’s thesis?) to examine the relation of
relations and generalized complex structures.

o Graded manifolds perspective (I have to learn it first). Translating
the manifold-ish obstructions may be a little complicated.
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Thank you for your attention!




