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These are little notes serving as a guide to the famous paper by Héctor J. Sussmann [1]. In
the second part, we will look on the paper on the same topic by Peter Štefan [2]. Notably, both
papers contain some significant mistakes, which we mean to clarify in detail.

1 Sussmann story

1.1 Vector fields and their flows

LetM be a smooth manifold. By X(M), we denote the set of global smooth vector fields. For an

open subset U ⊆M , we write X(U) of XU (M) for smooth vector fields defined on U . By X̂(M)
we denote the set of all locally defined vector fields on all open subsets of M .

Let X ∈ X(M) be a globally well-defined vector field. It is a fundamental theorem of differ-
ential geometry proving that there exists a unique maximal local flow ϕX : D →M , where

1. D ⊆M × R is an open subset called the flow domain of X, such that for each m ∈M

Im = {t ∈ R | (m, t) ∈ D} (1)

is an open interval containing 0. Moreover, for any s ∈ Im, one has

IϕX(m,s) = {t− s | t ∈ Im}. (2)

2. For each m ∈ M , the map ϕX(m) : Im → M obtained as ϕX(m)(t) = ϕX(m, t) is the unique
maximal integral curve of the vector field X starting at m.

3. For all m ∈M , one has ϕX(m, 0) = m and for all t ∈ Im, s ∈ IϕX(m,t) we have

ϕX(ϕX(m, t), s) = ϕX(m, t+ s). (3)

This usually called the 1-parameter subgroup property.

4. For each t ∈ R, let Mt = {m ∈ M | (m, t) ∈ D}. Then ϕXt : Mt → M−t defined as
ϕXt (m) = ϕX(m, t) is a diffeomorphism whose inverse is ϕX−t.

Remark 1.1. (i) First, note that Im is always an open subset of R. Indeed, its complement Icm
consists of points t ∈ R, such that (m, t) ∈ Dc (a closed complement of D). If {tn} ⊆ Icm
converges to t ∈ R, then {(m, tn)} ⊆ Dc has to converge to (m, t) ∈ Dc, whence t ∈ Icm.
For similar reasons, Mt form open subsets of M , with M0 =M .
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(ii) For the future reference, note that if m ∈ Mt, there is ϵ > 0, such that m ∈ Ms for all
s ∈ (−ϵ, t + ϵ). Indeed, if m ∈ Mt, we have (m, t) ∈ D and thus t ∈ Im. This is an open
interval containing 0, so it has to contain (−ϵ, t + ϵ) for some ϵ > 0. But then (m, s) ∈ D
for all s ∈ (−ϵ, t+ ϵ), which proves the claim.

(iii) Next, observe that (2) ensures that the right-hand side of (3) makes sense. Indeed, for any
t ∈ Im and s ∈ IϕX(m,t), one has t+ s ∈ Im.

(iv) Finally, note that the fourth property can be in fact deduced from the previous ones. Indeed,
we can deduce that ϕXt (Mt) = M−t: Let m

′ ∈ ϕXt (Mt). There is thus some m ∈ Mt, such
that m′ = ϕX(m, t). In particular, t ∈ Im. From (2) it follows that −t ∈ Im′ , which proves
that m′ ∈ M−t. This proves the inclusion ϕXt (Mt) ⊆ M−t. But we can now apply ϕX−t on
both sides and use (3) to find Mt ⊆ ϕX−t(M−t). But we could have started with −t instead
of t, which gives us M−t ⊆ ϕXt (Mt). Whence ϕXt (Mt) =M−t.

If X ∈ X(U) is defined locally on some open subset U ⊆M , everything remains valid, except

that for the flow domain, we have D ⊆ U × R. If X,Y ∈ X̂(M), their commutator [X,Y ] is
well-defined on the intersection of their domains. We formally include the empty vector field on
empty domain, so we do not have to discuss whether the domains of X and Y intersect.

Let ξ denote the m-tuple of vector fields ξ = (X1, . . . , Xm), where Xi ∈ X̂(M). Let Di ⊆
M × R be their flow domains. Let T = (t1, . . . , tm) ∈ Rm. Then the composition

ξT (m) := (ϕX1
t1 ◦ · · · ◦ ϕXm

tm )(m) (4)

is defined for (m,T ) ∈ M × Rm in some open subset D(ξ). Let DT (ξ) ⊆ M be a subset of all
m ∈M , such that (m,T ) ∈ D(ξ).

Finally, let us clarify the following technicalities:

Lemma 1.2. Let M be a smooth manifold and i : S → M any its immersed submanifold.
Suppose X ∈ X̂(M) is some (possibly local) smooth vector field. Suppose that X(s) ∈ TsS for all
s ∈ Dom(X) ∩ S.

Then there is a unique smooth vector field X ′ ∈ X̂(S), such that (Tsi)(X
′(s)) = X(i(s))

for all s ∈ Dom(X) ∩ S. In other words, X ′ and X are i-related, X ′ ∼i X. In particular, if

Y ∈ X̂(M) is another smooth vector field also tangent to S, then [X,Y ] is tangent to S.

Finally, suppose γ : I → M is some integral curve of X, such that γ(0) ∈ S. Then there is
an open subinterval I ′ ⊆ I containing 0, such that γ(I ′) ⊆ S.

Proof. Write U := Dom(X). By definition X ∈ ΓU (TM). We can always define a smooth section
X ! ∈ ΓU ′(TMS) by composing it with i . Here U ′ = U ∩ S. Equivalently, the restricted vector
bundle TMS is nothing but a pullback vector bundle i !(TM). The tangent map T (i) : TS → TM
defines a vector bundle morphism, which uniquely factorizes through the pullback bundle:

TS TMS TM

S S M

τS

T !(i) i !

τ !
M

τM

1S i

(5)

The tangent bundle TS is usually identified with its image under the fiber-wise injective vector
bundle morphism T !(i) in TMS . Now, the smooth pullback section X ! : U ′ → TMS has by
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assumption values in the subbundle im(T !(i)) ⊆ TMS . Every subbundle is a closed embedded
submanifold, whenceX ! defines a smooth local section of im(T !(i)). This subbundle is isomorphic
to TS, and we define X ′ ∈ ΓU ′(TS) using X ! and this isomorphism. It is clear from the
construction that (Tsi)(X

′(s)) = X(i(s)) for all s ∈ U ′.

If Y ∈ X̂(M) is another local vector field defined on V ⊆ M , such that Y (s) ∈ TsS for all
s ∈ V ∩ S, we find Y ′ ∈ ΓV ′(TS) defined on V ′ = V ∩ S with (Tsi)(V

′(s)) = V (i(s)). We have
[X,Y ] ∈ ΓU∩V (TM) and [X ′, Y ′] ∈ ΓU ′∩V ′(TS). It is a well-known fact that

(Tsi)([X
′, Y ′](s)) = [X,Y ](i(s)) (6)

for all s ∈ U ′ ∩V ′ = (U ∩V )∩S. As the left-hand side is tangent to S, then so is the right-hand
side. This proves the second claim.

Finally, let γ : I → M be any integral curve for X with γ(0) ∈ S. Write γ(0) = i(s0) for
s0 ∈ S. Find the vector field X ′ as above. Let γ′ : J → S be any its integral curve, such that
γ′(0) = s0. Then γ̃ := i ◦ γ′ : J →M is an integral curve of X, such that γ̃(0) = i(s0). But any
two integral curves of a vector field have to coincide on the intersection of their domain. For any
t ∈ I ∩ J , we thus have γ(t) = γ̃(t) = i(γ′(t)). Choosing I ′ = I ∩ J , we have the result. ■

1.2 Families of vector fields and their orbits

A local diffeomorphism ofM is a smooth diffeomorphism from an open subset U ⊆M to an open
subset U ′ ⊆M . If δi : Ui → U ′

i , i ∈ {1, 2} are two local diffeomorphism, their composition δ1 ◦ δ2
is a local diffeomorphism with the domain δ−1

2 (U1) and the image δ1(U1 ∩U ′
2). Compositions, if

they are defined, satisfy the formal laws

(δ1 ◦ δ2) ◦ δ3 = δ1 ◦ (δ2 ◦ δ3), (δ1 ◦ δ2)−1 = δ−1
2 ◦ δ−1

1 . (7)

A group of local diffeomorphisms is a set G of local diffeomorphisms closed under compo-
sitions and inverses. For any vector field X ∈ X̂(M), each map ϕXt : Mt → M−t forms a local
diffeomorphism. A collection GX = {ϕXt }t∈R is clearly closed under compositions and inverses,
and it is called the group of local diffeomorphisms generated by X.

More generally, let D ⊆ X̂(M). Then there exists the smallest group of local diffeomorphisms
containing the union ∪X∈DGX . It is denoted by GD and called the group of local diffeomor-
phisms generated by X. Let ξ ∗ η denote the concatenation of sequences. GD then consists
of mappings ξT for all possible ξ ∈ Dn and T ∈ Rn for all integers n ≥ 1. If T = (t1, . . . , tn), let
T̂ denote the sequence T̂ = (tn, . . . , t1). We then obtain the rules:

ξT ◦ ηT ′ = (ξ ∗ η)T∗T ′ , (ξT )
−1 = ξ−T̂ . (8)

We say that the subset D ⊆ X̂(M) is everywhere defined, if the union of domains of elements
of D isM . Similarly, a group of local diffeomorphisms G is everywhere defined if each m ∈M
belongs to a domain of some g ∈ G. Clearly, if D is everywhere defined, then so is GD.

Let G be an everywhere defined group of local diffeomorphisms. We say that two elements
m and m′ of M are G-equivalent, if there is g ∈ G, such that g(m1) = m2. This determines an
equivalence relation on M . The equivalence classes are called the orbits of G (or G-orbits). For

an everywhere defined D ⊆ X̂(M), the orbits of GD are called just the orbits of D. Two points
m1 and m2 belong to the same D-orbit, if and only if there exists ξ ∈ Dn and T ∈ Rn, such that
ξT (m1) = m2. There exists a following alternative description:

3



Lemma 1.3. The two points m1 and m2 belong to the same D-orbit, if there exists a curve
γ : [a, b] →M such that γ(a) = m1 and γ(b) = m2, which has the property:

(PI) There exist numbers ti, such that a = t0 < t1 < · · · < tr = b and vector fields Xi ∈ D,
i ∈ {1, . . . , r}, such that for each i ∈ {1, . . . , r}, the restriction of γ to [ti−1, ti] is a restriction of
some integral curve of Xi of of −Xi.

A curve γ satisfying (PI) is called a piecewise integral curve of D.

Proof. Let m1 and m2 be D-equivalent. There is thus ξ = (Y1, . . . , Yr) ∈ Dr and T =
(s1, . . . , sr) ∈ Rr, such that m2 = ξT (m1). This means that

m2 = (ϕY1
s1 ◦ ϕY2

s2 ◦ · · · ◦ ϕYr
sr )(m1). (9)

We can assume that si ̸= 0, otherwise we could have left them out from the sequence.

Suppose that sr > 0. Set X1 = Yr, set t0 = 0 and t1 = sr, and define γ1 : [t0, t1] → M as
γ1(t) = ϕYr

t (m1). Clearly γ1 comes from a restriction of some integral curve for X1 on [t0, t1]. If
sr < 0, one sets t1 = −sr and define γ1(t) = ϕYr

−t(m1) on [t0, t1]. In this case γ1(t) is a restriction
of the integral curve for −X1.

Next, suppose sr−1 > 0. Let X2 = Yr. Let t2 = t1 + sr−1, and define γ2 : [t1, t2] → M as

γ2(t) = ϕ
Yr−1

t−t1 (ϕ
Yr
sr (m1)). For sr−1 < 0, we set t2 = t1 − sr−1 and γ2(t) = ϕ

Yr−1

−(t−t1)(ϕ
Yr
sr (m1)).

By repeating this procedure, we obtain a collection of curves {γi}ri=1, where γi : [ti, ti−1] →M
is a restriction of some integral curve of Xi or −Xi, based on the sign of si. Using them to define
a single curve γ, we obtain the curve γ having the property (PI).

For the converse, let γ : [a, b] → M be the smooth curve having the property (PI). Let
γ1 : [t0, t1] → M be the restriction of γ. By definition, γ1 is a restriction of some integral
curve γ̂1 : (q0, q1) → M , so that [t0, t1] ⊆ (q0, q1). Define γ̃1(t) = γ̂1(t0 + t). Then γ̃1 is the
integral curve for X1 defined on an open interval (q0 − t0, q1 − t0) starting (at the zero time)
at γ(t0) = m0. In particular, we have γ(t1) = γ̃1(t1 − t0) = ϕX1

t1−t0(m0). Set sr = t1 − t0 and
Yr = X1. This procedure is then simply repeated, until we find a collection of vector fields in D
and time parameters fitting into (9). ■

One can define a topology on each D-orbit. Let m ∈ M and ξ ∈ Dn. Define the map ρξ,m
by ρξ,m(T ) = ξT (m). Let Uξ,m ⊆ Rn be its domain. Now, let S be any orbit of D through m.
Then S can be written as union of images of all ρξ,m. We declare U ⊆ S to be open, if and only
if ρ−1

ξ,m(U) ⊆ Uξ,m is open for all ξ ∈ Dn and all n ≥ 1.

Clearly S and ∅ are open. Let {Uα}α∈I be any union of open sets of S. Then

ρ−1
ξ,m(

⋃
α∈I

Uα) = {T ∈ Uξ,m | ρξ,m(T ) ∈
⋃
α∈I

Uα}

= {T ∈ Uξ,m | ∃α ∈ I such that ρξ,m(T ) ∈ Uα}

=
⋃
α∈I

ρ−1
ξ,m(Uα).

(10)

But this is an open subset of Uξ,m, whence
⋃
α∈I Uα is open in S. Similarly, one proves that any

finite intersection of open sets is open. Whence we got ourselves a topology on S.

Importantly, let U ⊆ S be a set open in the subset topology of S, that is U = S ∩ V for an
open subset V ⊆ M . We have ρ−1

ξ,m(U) = ρ−1
ξ,m(V ) ⊆ Uξ,m, which is open. Whence U is open
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in the D-orbit topology of S. This proves that the inclusion map i : S → M is continuous. In
particular, this proves that S is Hausdorff, as we can certainly separate two points of S by two
sets open in the subspace topology, hence in the D-orbit topology.

It remains to argue that the topology on S does not depend on the choice of the base point
m ∈ S. By definition, there exists η ∈ Dk and T0 ∈ Rk, such that m = ηT0(m

′). Then for any
ξ ∈ Dn and T ∈ Uξ,m, one has ρξ,m(T ) = ξT (ηT0

(m′)) = ρξ∗η,m′ ◦RT0
(T ), where RT0

(T ) = T ∗T0.
This is a continuous map from Rn to Rn+k. Whence if ρξ,m′ are continuous for all ξ ∈ Dn and
n ≥ 1, then so are ρξ,m for all ξ ∈ Dn and n ≥ 1. But this proves that two topologies coincide.

1.3 Distributions

A distribution on a manifoldM is a mapping ∆ which assigns to everym ∈M a linear subspace
∆(m) ⊆ TmM . A set of vector fields is said to span ∆, if for every m ∈M , ∆(m) is a linear hull

of values of the vector fields from this set, that is if A ⊆ X̂(M), one has ∆(m) = R{X(m) | X ∈
A(m)}, where A(m) = {X ∈ A | m ∈ Dom(X)}

Let D ⊆ X̂(M) be an everywhere defined set, there is a distribution ∆D spanned by D:

∆D(m) := R{X(m) | X ∈ D(m)} (11)

∆ is called the smooth distribution, if there exists an everywhere defined family D ⊆ X̂(M),

such that ∆ = ∆D. A vector field X ∈ X̂(M) belongs to the distribution, if X(m) ∈ ∆(m)

for all m ∈ Dom(X). For a given distribution ∆, let D∆ ⊆ X̂(M) be the family of all vector
fields which belong to ∆. Note that D∆ is everywhere defined. There is a simple observation:

Proposition 1.4. A distribution ∆ is smooth if and only if it is spanned by D∆.

Proof. Let ∆ be smooth. The inclusion ∆D∆
(m) ⊆ ∆(m) for all m ∈M is trivial and holds for

any distribution. If ∆ = ∆D for some everywhere defined family D ⊆ X̂(M), every X ∈ D is
in D(m) for all m ∈ Dom(X) and thus X(m) ∈ ∆D(m) = ∆(m) for all m ∈ Dom(X). But this
shows that D ⊆ D∆ and the inclusion ∆(m) ⊆ ∆D∆

(m) follows. ■

The following lemma gives a good criterion for the smoothness of the distribution:

Lemma 1.5. Let ∆ be a distribution. Then ∆ is smooth, if and only if for every m ∈ M and
every x ∈ ∆(m), there is a vector field X ∈ D∆, such that X(m) = x.

Proof. If ∆ is smooth, it is by previous proposition spanned by D∆. There is thus some k-tuple
(Xi)

k
i=1 of vector fields in D∆, such that x = αiXi(m) for some constants αi ∈ R. Taking

U = ∩ki=1 Dom(Xi), X = αiXi is a smooth vector field on U . Clearly X ∈ D∆ and X(m) = x.
Conversely, the statement immediately implies the non-trivial inclusion ∆(m) ⊆ ∆D∆(m). ■

Definition 1.6. If dim(∆(m)) = k for all m ∈ M , one says that ∆ is a regular distribu-
tion. Smooth regular distributions can be easily shown to be in one-to-one correspondence with
subbundles of the tangent bundle TM .

Define the function rk(∆) : M → R as rk(∆)(m) := dim(∆(m)). For smooth distribution,
quite a lot can be said about rk(∆).

Lemma 1.7. For each point m ∈M , there exists an open neighborhood U , such that rk(∆)(m′) ≥
rk(∆)(m) for all m′ ∈ U . In particular, rk(∆) is lower semi-continuous.
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Proof. Let m ∈M . Choose any basis (v1, . . . , vk) of ∆(m). Here k = rk(∆)(m). By Lemma 1.5,
there are some vector fields V1, . . . , Vk ∈ D∆, such that Vi(m) = vi for all i ∈ {1, . . . , k}.
The subset of n × n matrices with rank greater then k is open, which proves that the k-
tuple (V1(m

′), . . . , Vk(m
′)) is formed of linearly-independent vectors for all m′ ∈ U for some

neighborhood U of m. But by definition, Vi(m
′) ∈ ∆(m′) for all i ∈ {1, . . . , k}. Whence

rk(∆)(m′) ≥ rk(∆(m) for all m′ ∈ U .

Now, recall that f : M → R is lower semi-continuous, if for any λ ∈ R, the set Uλ = {m ∈
M | f(m) > λ} is open in M . Let λ ∈ R and m ∈ Uλ. In particular, rk(∆)(m) > λ. We have
an open neighborhood U of m with the property rk(∆)(m′) ≥ rk(∆)(m) > λ for all m′ ∈ U .
Clearly U ⊆ Uλ and we see that Uλ is indeed open. Note that lower semi-continuity does not
imply the first property. ■

Let G be any group of local diffeomorphisms on M . The distribution ∆ is said to be G-
invariant, if Tm(g)(∆(m)) ⊆ ∆(g(m)) for any g ∈ G and m ∈ Dom(g). In fact, for any
G-invariant distribution, we have Tm(g)(∆(m)) = ∆(g(m)). In particular, the dimension of
∆(m) is constant along any given G-orbit.

For any distributions ∆1 and ∆2, we say that ∆1 is contained in ∆2, if ∆1(m) ⊆ ∆2(m) for
allm ∈M . We write ∆1 ⊆ ∆2. For any distribution ∆ and any groupG of local diffeomorphisms,
there is the smallest distribution ∆G which contains ∆ and is G-invariant. Explicitly, at all m ∈
M , ∆G(m) must be a linear hull of ∆(m) together with all w ∈ TmM , such that w = Tm′(g)(v)
for some v ∈ ∆(m′) and g ∈ G, such that g(m′) = m.

For any D ⊆ X̂(M), we may form a family DG ⊆ X̂(M) defined as the union of D together
with all vector fields obtained as T (g)-images of vector fields in D, for all g ∈ G. If ∆ is spanned

by D, then ∆G is panned by DG. In particular, if ∆ is smooth, then so is ∆G. If D ⊆ X̂(M)
is any subset, we say that distribution ∆ is D-invariant, if it is GD-invariant. The smallest
D-invariant distribution which contains ∆ is denoted as ∆D.

For an everywhere defined set D ⊆ X̂(M) spans a smooth distribution ∆D. We will be
interested in the smallest D-invariant distribution ∆D

D which contains ∆D. We denote this
distribution as PD. It is a smooth distribution. Moreover, the dimension of PD(m) is constant
along any D-orbit; if S is any D-orbit, we may define rk(S) = dim(PD(m)) for any m ∈M . The
number rk(S) is called the rank of the orbit S.

A set D ⊆ X̂(M) is involutive if for any X ∈ D and Y ∈ D we have [X,Y ] ∈ D. For any

D, there is the smallest involutive subset D∗ ⊆ X̂(M) which contains D. A smooth distribution
∆ is involutive, if the set D∆ is involutive.

In the following, we will show that for everywhere defined D ⊆ X̂(M), the distribution PD is
involutive. We claim that we have three inclusions

∆D ⊆ ∆D∗ ⊆ PD. (12)

The first one is obvious. For the second inclusion, by definition every X,Y ∈ D belong to PD.
As PD is involutive (to be shown), then [X,Y ] must also belong to PD. But this shows that any
vector field in D∗ belongs to PD, which proves the inclusion. The left inclusion may be proper,
but so may be the rightmost one:

Example 1.8. Consider M = R2 with standard coordinates (x, y). Consider the family D
consisting of

X1 =
∂

∂x
, X2 = ψ(x) · ∂

∂y
, (13)
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where ψ ∈ C∞(R), such that ψ(x) = 0 for all x ≤ 0 and ψ(x) > 0 for all x > 0. One example of
such function is ψ(x) = e−x for all x > 0. Now, observe that any point (x, y) ∈ R2 can be joined
with the point say (1, 1) by a piece-wise integral curve of D. Simply flow along X1 to reach the
x = 1 line and then along X2 to reach the point (1, 1). By Lemma 1.3, this means that R2 is the
single D-orbit.

According to our remark above, the dimension of PD(x, y) is thus constant and equal to 2.
However, for any x ≤ 0, we have D∗(x, y) = R{X1(x, y)}, which has a dimension 1.

A submanifold S of M is called the integral submanifold of the distribution ∆, if for
every s ∈ S, the tangent space TsS is exactly ∆(s). A smooth distribution ∆ has the integral
manifolds property if for every m ∈M there exists an integral submanifold S of ∆, such that
m ∈ S. If ∆ has the integral manifolds property, every vector field X which belongs to ∆ must
be tangent to every its integral submanifold. This proves the following:

Proposition 1.9. Every smooth distribution with integral manifolds property is involutive.

The converse is not true, see the previous example. None of the points (0, y) to some integral
submanifold of ∆D spanned by D = {X1, X2}.

Definition 1.10. Let ∆ be a smooth distribution. A maximal integral submanifold of ∆
is a connected submanifold S of M such that

(a) S is an integral submanifold of ∆

(b) Every connected integral submanifold of ∆ which intersects S is its open submanifold.

Clearly, two maximal integral submanifolds through a point m ∈ M must coincide. We say
that ∆ has a maximal integral manifolds property if through every m ∈ M there passes a
maximal integral submanifold of M .

Remark 1.11. Let D be an everywhere defined family of vector fields. We want to find a smooth
distribution ∆, such that the D-orbits are precisely the maximal integral submanifolds of ∆.
It makes sense to define ∆(m) to be the space of all vectors in TmM which are at m tangent
to some smooth curve γ : I → M entirely contained in some D-orbit. Denote the set of such
smooth curves as Γm.

First, as for each X ∈ D, X(m) is tangent to the integral curve ϕXt (m) which is obviously
contained in the single D-orbit. Whence ∆D ⊆ ∆. Moreover, for any X,Y ∈ D, the curve
γ(t) := ϕXt ◦ ϕYt ◦ ϕX−t ◦ ϕY−t is also in Γm. But γ̇(0) = [X,Y ](m). This proves that necessarily
∆D∗ ⊆ ∆. Finally, let X ∈ D and s ∈ R be arbitrary. Let m′ = ϕX−s(m), and let γ ∈ Γm′ be

arbitrary. Then the curve δ(t) = ϕXs (γ(t)) is the curve in Γm. Whence δ̇(0) ∈ ∆(m). But

δ̇(0) =
d

dt

∣∣∣∣
t=0

ϕXs (γ(t)) = Tm′(ϕXs )(γ̇(0)). (14)

By definition, γ̇(0) ∈ ∆(m′). This shows that ∆ must be D-invariant. It is thus suggestive that
the natural candidate is ∆ = PD. In particular, this will show that PD is involutive, proving the
inclusion ∆D∗ ⊆ PD.
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1.4 Main theorems

Theorem 1.12. Let M be a smooth manifold, and let D be an everywhere defined set of smooth
vector fields.

(a) If S is an orbit of D, then S (with the topology introduced in Section 1.2) admits a unique
smooth structure, such that S is an immersed submanifold of M . The dimension of S is
equal to its rank.

(b) With the topology and smooth structure of (a), every orbit of D is a maximal integral sub-
manifold of PD.

(c) PD has the maximal integral manifolds property.

(d) PD is involutive.

This theorem emphasizes the pivotal role of the family D and its D-orbits. Clearly, the
statements (c) and (d) immediately follow from (a) and (b). For the second theorem, we write
it in its original version. It turned out that one implication is in fact not correct, as we will
comment below.

Theorem 1.13. Let M be a smooth manifold, and let ∆ be a smooth distribution on M . Let D
be a set of smooth vector fields spanning ∆. Then the following conditions are equivalent:

(a) ∆ has the integral manifolds property.

(b) ∆ has the maximal integral manifolds property.

(c) ∆ is D-invariant.

(d) For every X ∈ D, t ∈ R and m ∈M , such that ϕXt is defined, the map Tm(ϕXt ) maps ∆(m)
into ∆(ϕXt (m)).

(e) For every m ∈M , there exist elements X1, . . . , Xk of D, such that

(1) ∆(m) = R{X1(m), . . . , Xk(m)}.
(2) For every X ∈ D, there exists ϵ > 0 and smooth functions fij ∈ C∞(−ϵ, ϵ), such that

[X,Xi](ϕ
X
t (m)) =

k∑
j=1

fij(t)X
j(ϕXt (m)), (15)

for all t ∈ (−ϵ, ϵ)

(f) ∆ = PD.

Remark 1.14. In fact, it was shown by Balan in [3] that the implication (e) ⇒ (d) in the
Sussmann’s proof is not correct. However, all remaining equivalences in fact hold. We will
comment on that later, providing a modification to the condition
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1.5 Proof of the first theorem

Let D ∈ X̂(M) be an everywhere defined set of smooth vector fields. Let S be an orbit of D. Let
k = rk(S). We will use the maps ρξ,m : Uξ,m →M as defined in Section 1.2. Let D∞ = ∪∞

n=1D
n,

where Dn is just the n-th Cartesian power of D. Recall that for ξ ∈ Dn, we have an open subset
Uξ,m ⊆ Rn. We have defined the topology on S, such that ρξ,m : Uξ,m → S is continuous. For
any ξ ∈ D∞, m ∈M and T ∈ Uξ,m, let V (ξ,m, T ) denote the vector subspace

V (ξ,m, T ) = im(TT (ρξ,m)) ⊆ TξT (m)(M). (16)

We will now state the sequence of four lemmas, the proof which (except for the first one) we
postpone.

Lemma 1.15. Let N and S be any smooth manifolds. Suppose there is a continuous map
φ : N → N ′ and two smooth maps f : N → M and i : S → M into some smooth manifold M ,
such that the following diagram commutes:

N S

M

φ

f i
. (17)

If i is an injective immersion, then φ is smooth.

Proof. This relies on the rank theorem. Let n ∈ N be an arbitrary point. Write s = φ(n) and
m = i(s). As i is an injective immersion, there are neighborhoods U of s and V of m, such that
i(U) ⊆ V , together with the coordinates (x1, . . . , xk) on U and (y1, . . . , yµ) on V , such that i
locally looks like

i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0). (18)

On the other hand, we can find a neighborhoodW ⊆ N of n, together with some local coordinates
(z1, . . . , zq) onW , such that φ(W ) ⊆ U . This is where we have to use that φ is continuous, as we
need to know that φ−1(U) is open in N . Write φi(z) := xi(φ(z1, . . . , zq)) for all i ∈ {1, . . . , k}
and fν(z) := yν(f(z1, . . . , zq)) for all ν ∈ {1, . . . , µ}. Then

(i ◦ φ)(z1, . . . , zq) = (φ1(z), . . . , φk(z), 0, . . . , 0). (19)

On the other hand, from the commutativity of the diagram, one has

(i ◦ φ)(z1, . . . , zq) = (f1(z), . . . , fk(z), fk+1(z), . . . , fµ(z)). (20)

Note that in particular, we have fν(z) = 0 for ν > k. By assumption, all functions fµ(z) are
smooth. Then φi(z) = f i(z) are smooth for all i ∈ {1, . . . , k}. But this proves that for each point
n ∈ N , there is an open neighborhood W of n, an open neighborhood U of φ(n), together with
local coordinates, such that the local representation of φ is smooth. Whence φ is smooth. ■

Corollary 1.16. Let i : S → M be a continuous injective map, where S is a given topological
space and M a smooth manifold. If there exists a smooth structure on S making i into the
injective immersion, it is unique.

Proof. Let S′ denote the topological space S equipped with another smooth structure, such that
i ′ : S′ → M is an injective immersion based on the same map i . We then simply apply the

9



previous lemma on the commutative diagram

S S′

M

1S

i i′
(21)

This proves that 1S : S → S′ is smooth. Exchanging the role of S and S′, we prove that 1S is a
diffeomorphism. Both smooth structures on S coincide. ■

Lemma 1.17. Let ξ ∈ D∞, m ∈ S, T ∈ Uξ,m, m0 = ξT (m). Then V (ξ,m, T ) ⊆ PD(m0).

Lemma 1.18. Let m0 ∈ S. Then there exist ξ ∈ D∞, m ∈ S, T ∈ Uξ,m, such that ξT (m) = m0

and V (ξ,m, T ) = PD(m0).

Lemma 1.19. Let N be a connected integral submanifold of PD and let U be its underlying set
of points. If U intersects S then U is an open subset of S.

Proof of the theorem based on lemmas. Let m0 ∈ S. By Lemma 1.18 there exist m ∈ S,
ξ ∈ D∞ and T ∈ Uξ,m, such that ξT (m) = m0 and V (ξ,m, T ) = PD(m0). In particular, the
differential T (ρξ,m) has the rank k = rk(S) at T . In fact, by Lemma 1.17 the rank of T (ρξ,m)
cannot be larger then k on entire Uξ,m. The set of of points where T (ρξ,m) has the rank greater
or equal to k is open in Uξ,m. These two facts imply that ρξ,m has a locally constant rank. By
usual rank theorem, there exist open neighborhoods U ⊆ Uξ,m of T and V ⊆ M of m0, and
diffeomorphisms ϕ, ψ fitting into the commutative diagram

U V

Cn Cµ,

ρξ,m

ϕ ψ

En,µ,k

(22)

where Cq = {(t1, . . . , tq) ∈ Rq | − 1 < ti < 1 for all i ∈ {1, . . . , q}} are ”open cubes” in Rq
centered at 0 and En,µ,k(t

1, . . . , tk, . . . , tn) = (t1, . . . , tk, 0, . . . , 0). Here µ = dim(M).

Now, let Λ = ρξ,m(U). This is a submanifold of M as it is an inverse image by ψ of
the submanifold En,µ,k(C

n). For any T ′ ∈ U , the tangent space to Λ at m′ = ρξ,m(T ′) is
V (ξ,m, T ′). By Lemma 1.17, we have V (ξ,m, T ′) ⊆ PD(m

′). both spaces are k-dimensional,
whence Tm′Λ = V (ξ,m, T ′) = PD(m

′). This proves that Λ is an integral submanifold of PD,
which is clearly contained in S. Let I : Λ → S be the inclusion map.

By Lemma 1.19, the set of points of Λ is open in S. Clearly, one can use it also to any
connected open subset W of Λ, and such open connected sets constitute a basis for the topology
of Λ. Whence the inclusion map I : Λ → S is open. On the other hand, we can write

Λ V Cµ Cn U S

I

I′ ψ Eµ,n,k ϕ−1 ρξ,m
, (23)

where I ′ : Λ → V is the inclusion. All maps are continuous, especially the last one, which follows
from the definition of topology on S. This shows that I is continuous open map, that is I(Λ) is
an open subset of S homeomorphic to Λ.

Let Σ denote the set of all manifolds Λ which are obtained by the construction in the previous
paragraph. For each Λ ∈ Σ, let U(Λ) ⊆ S denote the underlying set of Λ which is open in S. It
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follows that U(Λ) form an open cover of S, where the inclusion of Λ into S is a homeomorphism
onto its image.

Declaring them into diffeomorphisms, we obtain a smooth atlas on each element of an open
cover U(Λ). We want to define a smooth structure on S, such that the elements of Σ will be the
open submanifolds of S.

It suffices to show that for any Λ1,Λ2 ∈ Σ, the U(Λ1)∩U(Λ2) has the same smooth structure
viewed as an open submanifold of Λ1 or Λ2. Let W1 ⊆ Λ1 and W2 ⊆ Λ2 denote these smooth
structures. We have to show that the identity map J :W1 →W2 is smooth. But J fits into the
commutative diagram:

W1 W2

M

I1

J

I2

, (24)

where I1 and I2 are smooth injective immersions. If J is continuous, one can use Lemma 1.15
to show that J has to be smooth. But J is continuous as W1 and W2 are homeomorphic images
of the same open subset U(Λ1) ∩ U(Λ2) in S.

By construction, the inclusion i : S → M is a smooth injective immersion, making S into
an integral submanifold of PD. As the topology on S is fixed (it is the one in Section 1.2), such
smooth structure is unique by Corollary 1.16. Note that dim(S) = k = rk(S).

We have to argue that S is a maximal integral submanifold of PD. It is clearly connected,
as it is a D-orbit, where all points are connected by piecewise integral curve of D. Let Γ be
some connected integral submanifold of PD which intersects S. Let U(Γ) be the underlying set
of points. By Lemma 1.19, the set U(Γ) is the open subset of S. Moreover, we can apply the
same lemma on any open connected subset of Γ (we now know that it automatically intersects
S). As open connected subsets form the basis for topology of Γ, we prove that the inclusion map
I : Γ → S is open.

Let Γ′ be the open submanifold1 with the same underlying set U(Γ). Let 1 : Γ′ → Γ be the
identity map. By previous remarks it is continuous. It fits into the commutative diagram

Γ′ Γ

S M,

e

1

j

i

(25)

where j : Γ → M is the injective immersion from the definition. As 1 is continuous and the
composition of the remaining two arrows is smooth, it follows from 1.15 that 1 : Γ′ → Γ is
smooth. Moreover, it is an immersion, which follows from the commutativity of the above
diagram. Any smooth bijective immersion has to be a diffeomorphism, which proves that Γ is
an open submanifold of S.

This proves that S is the maximal integral submanifold of PD. We have thus proved the
claims (a) and (b) of Theorem 1.12. The claims (c) and (d) follow immediately. ■

Proof of Lemma 1.17. Let ξ ∈ Dn. We will prove the claim by induction on n.

For n = 1, we have ξ = (X) for some X ∈ D. The set Uξ,m is the interval Im ⊆ R where the
integral curve t 7→ ϕXt (m) is defined. In fact, ρξ,m(t) = ϕXt (m). Let t0 ∈ I. We identify Tt0(Im)

1With smooth structure inherited from S.
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with R. For any λ ∈ R, we have λ = σ̇(0) for some smooth curve σ : I → Im with σ(0) = t0.
Then

Tt0(ρξ,m)(λ) =
d

dt

∣∣∣∣
t=0

ϕXσ(t)(m) = λ · d
dt

∣∣∣∣
t=t0

ϕXt (m) = λ ·X(ϕXt0 (m)) = λ ·X(m0). (26)

But in particular, we have ∆D(m0) ⊆ PD(m0), that is λ · X(m0) ∈ PD(m0). This proves the
n = 1 statement.

Now, let ξ ∈ Dn, and let T ∈ Uξ,m. We have ξ = X ∗ η for η ∈ Dn and T = t0 ∗ T ′,
where T ′ ∈ Uη,m and t0 ∈ R. Let v ∈ TT (Uξ,m) be any tangent vector. Then v = σ̇(0), where
σ : I → Uξ,m decomposes as σ(t) = (σ0(t), σ

′(t)), such that σ0 : I → R satisfies σ0(0) = t0 and
σ′ : I → Uη,m satisfies σ′(0) = T ′. Then

TT (ρξ,m)(v) =
d

dt

∣∣∣∣
t=0

ϕXσ0(t)
(ρη,m(σ1(t)) = TηT ′ (m)(ϕ

X
t )(TT ′(ρη,m)(w)) + λ ·X(ρξ,m(T )), (27)

where w = σ̇′(0) and λ = σ̇0(0). This proves that V (ξ,m, T ) is spanned by X(ξT (m)) and the
image of V (η,m, T ′) under the linear map TηT ′ (m)(ϕ

X
t0 ). The span of X(ξT (m)) is in PD(ξT (m))

as in n = 1 case. By induction hypothesis V (η,m, T ′) ∈ PD(ηT ′(m)) and the result follows from
the D-invariance of PD. ■

Proof of Lemma 1.18. We will prove the two assertions:

(a) If (ξ,m, T ) ∈ D∞ × S × Uξ,m and (η,m′, T ′) ∈ D∞ × S × Uη,m′ are such that ξT (m) =
ηT ′(m′) = m0, then there exists (σ,m′′, T ′′) ∈ D∞ × S × Ωσ,m′′ , such that both V (ξ,m, T )
and V (η,m′, T ′) are contained in V (σ,m′′, T ′′).

(b) There is a subset A of PD(m0) which spans PD(m0) and is such that for every v ∈ A, there
exists ξ ∈ D∞, m ∈ S, T ∈ Uξ,m, such that ξT (m) = m0 and v ∈ V (ξ,m, T ).

Let us first argue why this already implies the main statement of the lemma. As one inclusion
is true is true for all (ξ,m, T ) by Lemma 1.17 , we only have to find a particular (ξ,m, T ), such
that m0 = ξT (m) and P (m0) ⊆ V (ξ,m, T ). From (b) we obtain the set generating set A. As
PD(m0) is a finite-dimensional vector space, we may choose its basis (v1, . . . , vk) of consisting of
the elements of A and find (ξi,mi, Ti) such that vi ∈ V (ξi,mi, Ti) for all i ∈ {1, . . . , k}. Clearly,
one can use the induction to generalize (a) to any finite collection (ξi,mi, Ti)

k
i=1 to find (ξ,m, T ),

such that V (ξi,mi, Ti) ⊆ V (ξ,m, T ) for all i ∈ {1, . . . , k}. By construction PD(m0) ⊆ V (ξ,m, T )
and the proof is finished.

Let us thus prove the claim (a): Take m′′ = m′, σ = ξ ∗ ξ̂ ∗ η and T ′′ = T ∗ (−T̂ ) ∗ T ′. Then

σ′′
T ′′(m′′) = ξT (ξ̂−T̂ (ηT ′(m′))) = ηT ′(m′) = m0. Let ξ ∈ Dn and η ∈ Dn′

. We can choose the

tangent vector v ∈ Rn⊕Rn⊕Rn′
at T ′′ to have first two components zero. Image of such vectors

under TT ′′(ρσ,m′′) is precisely V (η,m′, T ′). Similarly, choosing the last two components zero, we
obtain V (ξ,m, T ). This proves that both of the subspaces are contained in V (σ,m′′, T ′′). This
proves the claim (a).

We can finish by proving (b). As already noted, PD(m0) is spanned by values X(m0), where
X is a T (g)-image of some vector field in Y ∈ D, where g ∈ GD. Take A to be such set.
Every element v ∈ A is thus of the form v = T (ξT )(Y (m)) where Y ∈ D and ξT (m) = m0.
Consider η = ξ ∗ Y and T ′ = (T, 0). Clearly ηT ′(m) = m0. Finally, consider the tangent vector
w = (0, 1) ∈ Rn ⊕ R at T ′. It is easy to see that TT ′(ρη,m)(w) = T (ξT )(Y (m)) = v, and thus
v ∈ V (η,m, T ′). This concludes the proof. ■
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Proof of Lemma 1.19. Let D be the set of all vector fields that are of the form T (g)(X) for
some X ∈ D and g ∈ GD. Let Y ∈ D, that is Y = T (g)(X) for some X ∈ D. If γ is an integral
curve of Y , it is the image under g of an integral curve of X. In particular, all points of γ are in
the same D-orbit.

Now, let N be a connected integral submanifold of PD, and let m ∈ N . Let (X1, . . . , Xp) be
elements of D, such that (X1(m), . . . , Xp(m)) is a basis of PD(m). Consider the mapping

(t1, . . . , tp) 7→ (ϕX1
t1 ◦ · · · ◦ ϕXp

tp )(m) (28)

Its differential at 0 is an isomorphism of T0(Rp) with TmN = PD(m). It thus defines a diffeo-
morphism of some neighborhood of 0 in Rp onto a neighborhood of m in N . As noted above,
images of the above map are contained in the single D-orbit S containing m. Every point of N
thus has an open neighborhood entirely contained in one D-orbit.

Now, we make use of the fact that N is connected. Let m1,m2 ∈ N be two distinct points.
There is thus a continuous path σ : [0, 1] → N connecting these two points. We can cover this
path by finitely many open subsets of N , each of them contained in the single D-orbit. As any
point cannot be contained in two orbits simultaneously, it follows that all of them must be in
the single D-orbit. In particular, this is true for m1 and m2.

We have thus proved that the underlying set U (of N) is contained entirely in the single
D-orbit. For any orbit S, if U ∩ S is non-empty, then U ⊆ S.It remains to prove that U is
open in S. We must show that, for any m ∈ S and ξ ∈ Dn, the set ρ−1

ξ,m(U) is open in Rn.
Let T ∈ Uξ,m be in this set, that is ρξ,m(T ) ∈ U . Clearly, for any i ∈ {1, . . . , n}, any curve
γ(t) := ρξ,m(τ1, . . . , τi−1, t, τi+1, . . . , τn) is an integral curve of some X ∈ D. If γ(t0) ∈ U for
some t0, this must be true for all t in some open neighborhood of t0. We can thus inductively
find an open neighborhood of T , such that its image under ρξ,m is in U . Whence U is open in S
and the proof of the Lemma is finished. ■

1.6 Proof of the second theorem

Implications (d) ⇒ (c) ⇒ (f) are trivial, as is (b) ⇒ (a). The implication (f) ⇒ (b) is precisely
Theorem 1.12.

One can now prove (a) ⇒ (e). Assume that ∆ has the integral manifolds property. Let
m ∈ M and let S be the integral manifold of ∆ through m. Let X1, . . . , Xk be elements of
D, such that (X1(m), . . . , Xk(m)) forms a basis of ∆(m). For any X ∈ D, the vector fields
[X,Xi] are tangent to S. Therefore, their restrictions to S are linear combinations of Xi with
smooth coefficients in some neighborhood U of m (open in S). For small enough ϵ > 0, the curve
t 7→ ϕXt (m) is contained in U (for |t| < ϵ). This implies (a) ⇒ (e).

However, the final implication (e) ⇒ (d) required to complete the implication snake is not
valid. This was noted in [3]. Fortunately, not everything is lost. Sussmann used the following
simple observation to proceed:

Lemma 1.20. Let X,Y ∈ X̂(M), let m ∈ M and ϵ > 0, such that ϕXt (m) is defined for all
t ∈ (−ϵ, ϵ). Define W (t) ∈ TmM as

W (t) = ϕX−t∗(Y (ϕXt (m))) (29)

for all t ∈ (−ϵ, ϵ). Then W (t) satisfies the ordinary differential equation

d

dt
W (t) = ϕX−t∗([X,Y ](ϕXt (m))) (30)
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with the initial condition W (0) = Y (m).

Proof. This is just a definition of the Lie derivative (or Lie bracket of vector fields). Indeed:

d

dt
W (t) =

d

ds

∣∣∣∣
s=0

W (t+ s) = ϕX−t∗(
d

ds

∣∣∣∣
s=0

ϕX−s∗(Y (ϕXs (m′))))

= ϕX−t∗([X,Y ](m′)) = ϕX−t∗([X,Y ](ϕXt (m))),

(31)

where we have denoted m′ = ϕXt (m). This finishes the proof of this simple lemma. ■

To prove (d), it suffices to show2 it for every X ∈ D, every m and t ∈ (−ϵ, ϵ) for arbitrarily
small ϵ > 0. Suppose that (e) holds. In particular, we get ϵ > 0 and a collection X1, . . . , Xk

forming a basis of ∆(m) when evaluated at m. One defines

Wi(t) = ϕX−t∗(Xi(ϕ
X
t (m))) (32)

Clearly, Wi(0) = Xi(m). From (30), we find the equation

d

dt
Wi(t) = ϕX−t∗([X,Xi](ϕ

X
t (m))). =

k∑
j=1

fij(t)Wj(t), (33)

where we have plugged in from the assumption (15).

Lemma 1.21. The set (W1(t), . . . ,Wk(t)) forms a basis of ∆(m) for any t ∈ (−ϵ, ϵ).

Proof. First, as the initial conditions live in ∆(m), the existence and uniqueness theorem for
linear systems of first-order differential equations ensures that Wi(t) ∈ ∆(m) for all t ∈ (−ϵ, ϵ).
The next step is to form a matrix (without the loss of generality, we may now work in Rk)
(Φ(t))ij = (Wi(t))j . Let A(t) be the k × k matrix (A(t))ij = fij(t). The system (30) can be
then rewritten as a matrix equation:

d

dt
Φ(t) = A(t) · Φ(t). (34)

We can now look for a differential equation satisfied by a single function det(Φ(t)). Recall that
the time derivative of the determinant of any t-dependent matrix can be written as

d

dt
det(Φ(t)) = Tr(Adj(Φ(t)) · d

dt
Φ(t)), (35)

where Adj(Φ(t)) is the adjugate matrix, defined as (Adj(Φ(t))ij = (−1)i+j det(Φ(t)(ji)). Here
Φ(t)(ji) is the (k − 1) × (k − 1) matrix obtained from Φ by erasing j-th row and i-th column.
Equivalently, it is given by formula

Φ(t) ·Adj(Φ(t)) = det(Φ) · 1 (36)

Plugging in from (34), we find that

d

dt
det(Φ(t)) = Tr(Adj(Φ(t)) ·A(t) · Φ(t))

= Tr(Φ(t) ·Adj(Φ(t)) ·A(t))

= det(Φ(t)) · Tr(A(t))

(37)

2Mark this exact point - this is where the error was committed.
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This resulting ordinary differential equation is easily solvable, one finds

det(Φ(t)) = det(Φ(0)) · exp
(∫ t

0

Tr(A(t′))dt′
)
. (38)

This a famous result known as the Liouville’s formula. In particular, it shows that det(Φ(0)) =
0 if and only if det(Φ(t)) = 0. We have assumed that (W1(0), . . . ,Wk(0)) form the basis of ∆(m),
whence det(Φ(0)) ̸= 0. But this proves that (W1(t), . . . ,Wk(t)) form a basis for every t ∈ (−ϵ, ϵ).
This finishes the proof of the lemma. ■

Using the definition of Wi(t), we immediately obtain the equation

ϕXt∗(Wi(t)) = Xi(ϕ
X
t (m)). (39)

But this proves that ϕXt∗(∆(m)) ⊆ ∆(ϕXt (m)). Where is the error hidden? As always, the devil
lies hidden in the tiniest of details. Note that although Balan [3] found a counter-example,
he found the gap in the Sussmann’s proof where there was none, and missed the actual one.
Actually, Sussmann just modified the erroneous statement of Lobry [4]. The gap in the proof of
therein Lemma 1.2.1. was noted by Štefan e.g. in [2]. It is in fact a quite general problem, so it
is worth noting it here.

Let X ∈ X̂(M) be any smooth vector field, and let ∆ be any distribution. We say that X
preserves ∆, if for all (m, t) ∈ DX , one has (Tmϕ

X
t )(∆(m)) = ∆(ϕXt (m)). Here DX denotes

the maximal flow domain of X. We now prove the following theorem:

Proposition 1.22. Let ∆ be a smooth distribution and X ∈ X̂(M) be a smooth vector field.
Then the following statements are equivalent:

(i) X preserves ∆.

(ii) For every (m, t) ∈ DX , one has (Tmϕ
X
t )(∆(m)) ⊆ ∆(ϕXt (m)).

(iii) For each m ∈ M , there exists a real number ϵ(m) > 0 such that for all t ∈ (−ϵ(m), ϵ(m)),
one has (Tmϕ

X
t )(∆(m)) = ∆(ϕXt (m)).

Proof. Implications (i) ⇒ (ii) and (i) ⇒ (iii) are trivial. The implication (ii) ⇒ (i) follows from
the fact that for (m, t) ∈ DX , one has (ϕXt (m),−t) ∈ DX . An application of (i) for this pair
then yields the converse inclusion.

To show (iii) ⇒ (i), let Im be the domain for maximal integral curve t 7→ ϕXt (m), and let
Jm ⊆ Im be the set Jm = {t ∈ Im | (TmϕXt )(∆(m)) = ∆(ϕXt (m))}. Suppose t0 ∈ Jm. Let
m′ = ϕXt0 (m). Then for all t ∈ (t0 − ϵ(m′), t0 + ϵ(m′)), one has

Tm(ϕXt ) = Tm′(ϕXt−t0) ◦ Tm(ϕXt0 ) (40)

The first map maps ∆(m) bijectively onto ∆(m′), the second one maps ∆(m′) bijectively onto
∆(ϕXt (m)) as t−t0 ∈ (−ϵ(m′), ϵ(m′)). We thus have an open neighborhood of t0 which is entirely
contained in Jm. Whence Jm is open.

We will show that it is also closed. Suppose there is a convergent sequence {tn}∞n=1 of points
in Jm, that is Tm(ϕXtn)(∆(m)) = ∆(ϕXtn(m)). Let mn = ϕXtn(m). We have tn → t′ and mn → m′.
We have to show that Tm(ϕXt′ ) = ∆(m′). But note that each of the points mn is reachable from
m′ using the integral curve of X, that is

mn = ϕXtn(m) = ϕXtn(ϕ
X
−t′(m

′)) = ϕXtn−t′(m
′). (41)
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As tn → t′, there exists n, such that |tn − t′| < ϵ(m′). We can write

Tm(ϕXt′ ) = Tmn(ϕ
X
t′−tn) ◦ Tm(ϕXtn) = Tm′(ϕXtn−t′)

−1 ◦ Tm(ϕXtn). (42)

The first map maps ∆(m) isomorphically onto ∆(ϕXtm(m)) , whereas the second map is the inverse
of the isomorphism which maps ∆(m′) onto ∆(ϕXtm(m)). This proves the claim above, that is
t′ ∈ Jm. Whence Jm is closed in Im.

As Im is a connected space, this proves that Jm = Im and (i) is proved. ■

Example 1.23. We will now show that in Proposition 1.22, we cannot replace the equality in
(iii) by inclusion (as the equivalence (i) ⇔ (ii) suggests).

Let M = R2 and consider ∆ spanned by the family of vector fields D = {X,Y }, where
X = ∂x, Y = x · ∂y. Clearly rk(∆)(x, y) = 2 whenever x ̸= 0 and rk(∆)(0, y) = 1. We will now
show that although X satisfies the local version of (ii), it does not preserve ∆.

Its (globally defined) flow is ϕXt (x, y) = (x + t, y) and its action on the generators of ∆ can
be trivially calculated:

(T(x,y)ϕ
X
t )(X(x,y)) = XϕX

t (x,y),

(T(x,y)ϕ
X
t )(Y(x,y)) = x · (∂y)ϕX

t (x,y) =
x

x+ t
· YϕX

t (x,y).
(43)

Let J ′
(x,y) denote the subset of I(x,y), where (ii) is satisfied. We will distinguish two cases, namely

x ̸= 0 and x = 0 case.

For x ̸= 0, we see the only problem arises for t = −x. This is clearly the point where the
curve ϕXt (x, y) crosses the x = 0 line. We thus have J ′

(x,y) = R− {−x}. This is an open set, but

it is not closed. For x = 0, observe that Y(0,y) = 0. The linear map T(0,y)ϕ
X
t maps the single

generator X(0,y) onto X(t,y). This is well-defined for all t ∈ R, and we find J ′
(0,y) = R. We see

that problem arises only with the closedness of J ′
(x,y) and exactly at the points of M , where the

rank of the distribution ∆ jumps down.

We see on this example that it is not only the proof of the previous proposition which fails.
This also shows that X simply does not preserve ∆, whence the implication ”local (ii)” ⇒ (i)
is plainly wrong. This is where Lobry made the crucial mistake. He used the ”compactness”
argument for the integral curve ϕXt (m) - as the assumption of local (ii) gives one the cover of the
image of the interval Im. When Im is compact, we can choose a finite subcover and inductively
deduce (ii) from its local version. However, as shows the above Im = R example, this does not
work for non-compact intervals.

Example 1.24 (The implication (e) ⇒ (d) of Theorem 1.13 is wrong). We can use the
same example as above. One can easily show that ∆ satisfies (e), but not (d).

Luckily, the other five equivalences of Theorem 1.13 are correct. One just has to leave out
(e) (unfortunately obviously the most useful one). We thus have

Theorem 1.25 (Sussmann modified). Statements in Theorem 1.13 except for (e) are equiv-
alent.

Proof. Based on the original proof, we will prove that (a) implies (d). We have already shown
that (a) implies (e). It remains to show that (a) together with (e) imply (d). The statement (d)
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says that every X ∈ D satisfies the condition (ii) of Proposition 1.22. It thus suffices to show
that every X ∈ D satisfies the condition (iii) of Proposition 1.22.

We have already proved that for each m ∈ M , there is ϵ′(m) > 0, such that the inclusion
Tm(ϕXt )(∆D(m)) ⊆ ∆D(ϕ

X
t (m)). holds for all t ∈ (−ϵ′(m), ϵ′(m)). If we assume (a), there is

an integral submanifold S containing m. By Lemma 1.2, there is an open subinterval Km ⊆ Im
containing zero, such that ϕXt (m) ∈ S for all t ∈ Km. But for t ∈ Km ∩ (−ϵ′(m), ϵ′(m)), we
certainly have dim(∆(m)) = dim(∆(ϕXt (m)), which proves that both subspaces have to be equal.
This finishes the proof. ■

1.7 Hermann integrability

Let us start with the following definition.

Definition 1.26. Let D be a family of smooth vector fields. We say that D is locally finitely
generated, if for each m ∈ M , there exists a finite tuple (X1, . . . , Xk) of vector fields in D
defined on some neighborhood U of m, such that every X ∈ D can be on U ′ = Dom(X) ∩ U
decomposed as

X =

k∑
j=1

fj ·Xk (44)

for some smooth functions fj ∈ C∞(U ′).

First, let us note an obvious but important observation.

Lemma 1.27. Let ∆ be a distribution spanned by a locally finitely generated family D. Then to
each point m ∈M , there exists a finite tuple (X1, . . . , Xk) of vector fields in D defined on some
neighborhood U of M , such that ∆(m̃) = R{X1(m̃), . . . , Xk(m̃)} for all m̃ ∈ U .

Proof. For everym ∈M , find (X1, . . . , Xk) and U from the definition of locally finitely generated
distributions. Let m̃ ∈ U , and v ∈ ∆(m̃). By definition, v = αqVq(m̃) for some finite collection
V1, . . . , Vp ∈ D. By assumption, each of Vq(m̃) is a R-linear combination of (X1(m̃), . . . , Xk(m̃)).
Whence clearly v ∈ R{X1(m̃), . . . , Xk(m̃)}. The converse inclusion is trivial. ■

We will now prove the crucial property of locally finitely generated families of vector fields,
which will in fact close the gap in the Lobry’s proof.

Lemma 1.28 (Hermann [5]). Let D be a locally finitely generated family of vector fields. Let
m ∈M and (X1, . . . , Xk) be the generators of D on some neighborhood U of m as by definition.

Suppose X ∈ X̂(M) is some vector field which on U ′ := U ∩Dom(X) satisfies the condition

[X,Xi] =

k∑
j=1

fij ·Xj , (45)

for some smooth functions fij ∈ C∞(U ′). Then there exists ϵ > 0, such that for all t ∈ (−ϵ, ϵ)

dim(∆D(ϕ
X
t (m))) = dim(∆D(m)). (46)
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Proof. We can safely assume that X(m) ̸= 0, otherwise one has ϕXt (m) = m and the result
holds trivially. There are thus some local coordinates (x1, . . . , xµ) on some neighborhood W ⊆
U ∩Dom(X) of m, such that X = ∂1 on W . The generators Xi can be on W decomposed:

Xi(m
′) =

µ∑
ν=1

Aiν(m
′) · ∂ν(m′). (47)

for k × µ matrix A(m′) at each point m′. Clearly, dim(∆D(m
′)) = rank(A(m′)). To prove our

claim, it suffices to show that this rank does not depend on x1. By assumption, we have

[∂1, Xi] =

k∑
j=1

fij ·Xj (48)

Plugging into this equation from (47) provides the matrix equation

∂1Aiν = fijAjν . (49)

Fixing the values of all other coordinates, this is a linear homogeneous system of ordinary differ-
ential equations (in x1). Using the arguments similar to those of Lieouville’s formula (see proof
of Lemma 1.21), one can show that the rank of the matrix A does not depend on x1. ■

The main assumption of the previous lemma suggests that one could impose it on all vector
fields from the family generating a given smooth distribution.

Definition 1.29. Let D be a locally finitely generated family of vector fields. We say that D is
locally of a finite type if each X ∈ D satisfies the condition (45).

Remark 1.30. Note that originally, in Lobry’s paper [4], one only assumed that there are vector
fields (X1, . . . , Xk) generating ∆D(m) at a given point m ∈ M , not in some its neighborhood.
As already discussed in this section, this is not good enough definition.

Theorem 1.31. Let D be of a locally finite type. Then ∆D is integrable.

Proof. By assumption, ∆D satisfies the condition (e) in Theorem 1.13. This was enough to prove
that for each m ∈M and X ∈ D, there exists ϵ > 0, such that

(Tmϕ
X
t )(∆D(m)) ⊆ ∆D(ϕ

X
t (m)). (50)

However, by Lemma 1.28, the dimension of ∆D(ϕ
X
t (m)) is constant in t on some neighborhood

of 0, whence we have ϵ′ > 0, such that (Tmϕ
X
t )(∆D(m)) = ∆D(ϕ

X
t (m)) for all t ∈ (−ϵ′, ϵ′). By

Proposition 1.22, this is enough to prove (d) of Theorem 1.13, whence ∆D is integrable. ■

We can now quite easily prove the following theorem.

Theorem 1.32 (Hermann integrability [5]). Suppose D is a Lie subalgebra of X(M), such
that for every m ∈M , there exists its neighborhood U and a finite-dimensional subspace DU ⊆ D,
such that each X ∈ D can be on U written as a C∞(U)-linear combination of elements in DU .

Then ∆D is an integrable smooth distribution.
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Proof. One just has to prove that D is of a locally finite type. For each m ∈M , we find U from
the assumptions of the theorem. Let (X1, . . . , Xk) be any basis of DU . This clearly makes D into
a locally finitely generated family. Finally, for any X ∈ D and Xi as above, we have [X,Xi] ∈ D
as D is assumed to be a Lie subalgebra. As it is locally finitely generated, [X,Xi] can be on U
decomposed as

[X,Xi] =

k∑
j=1

fij ·Xj . (51)

Whence D is of a locally finite type, thus integrable. ■

In fact, one can easily deduce the other well-known integrability condition.

Theorem 1.33 (Frobenius). Let ∆ be an involutive smooth distribution, such that dim(∆(m)) =
k for all m ∈M . Then ∆ is integrable.

Proof. First, we know that ∆ is spanned by the family D∆. Any constant rank distribution
forms a subbundle ∆ ⊆ TM . In particular, for each m ∈ M , there is a neighborhood U and
some vector fields (X1, . . . , Xk) on U which form the local frame for the subbundle ∆ over U . In
particular, they make D∆ into a locally finitely generated family. Moreover, as D∆ is involutive,
it can be easily seen to be locally of a finite type. By Theorem 1.31, it is integrable. ■

Example 1.34. To conclude this section, it to examine the distribution ∆ from Example 1.23
and see which of the assumptions of Theorem 1.31 fail.

Recall that M = R2 and ∆ is spanned by D = {X,Y }, where X = ∂x and Y = x · ∂y.
Obviously, D is locally (in fact globally) finitely generated. However, one has

[X,Y ] = ∂y. (52)

This shows that any point on the x = 0 line is in trouble, as the right-hand side must be a smooth
combination of X and Y on whole its neighborhood. This is not possible and we conclude that
D is not of a locally finite type according to our Definition 1.29.

1.8 Leibniz algebroids and induced distributions

We will now introduce a rather large class of integrable distributions. In fact, this class includes
a well-known characteristic distribution of a Poisson manifold.

Definition 1.35. Let q : E →M be a vector bundle. Let ρ ∈ Hom(E, TM) be a vector bundle
map and [·, ·]E a R-bilinear bracket on Γ(E). We say that (E, ρ, [·, ·]E) is a Leibniz algebroid,
if the following two conditions are satisfied:

(i) The bracket [·, ·]E and the anchor map ρ satisfy the Leibniz rule:

[ψ, fψ′]E = f · [ψ,ψ′]E + Lρ(ψ)(f) · ψ′, (53)

for all ψ,ψ′ ∈ Γ(E) and f ∈ C∞(M).

(ii) The bracket [·, ·]E makes Γ(E) into a Leibniz algebra, that is the Leibniz identity

[ψ, [ψ′, ψ′′]E ]E = [[ψ,ψ′]E , ψ
′′]E + [ψ′, [ψ,ψ′′]E ]E (54)

holds for all ψ,ψ′, ψ′′ ∈ Γ(E).
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From the definition of Leibniz algebroid, one can immediately deduce the following property:

Lemma 1.36. For any Leibniz algebroid (E, ρ, [·, ·]E), the map ρ : Γ(E) → X(M) is a bracket
homomorphism, that is for all ψ,ψ′ ∈ Γ(E), one has

ρ([ψ,ψ′]E) = [ρ(ψ), ρ(ψ′)]. (55)

This observation naturally leads to the following statement:

Proposition 1.37. Let (E, ρ, [·, ·]E) be a Leibniz algebroid. Then the family D = ρ(Γ(E)) =
{ρ(ψ) | ψ ∈ Γ(E)} spans the integrable distribution ∆D, called the characteristic distribution
of the Leibniz algebroid (E, ρ, [·, ·]E).

Proof. Instead of D, we can take the family D̂ of ρ-images of all local sections of E. We will
show that D̂ satisfies the assumptions of Theorem 1.31.

Let m ∈ M be any point. As E is a vector bundle, there exists some local frame (ψµ)
rk(E)
µ=1

over some neighborhood U of m. Then Xµ = ρ(ψµ) are smooth vector fields in D̂ defined on

U for all µ ∈ {1, . . . , rk(E)}. Now, let X ∈ D̂. Let V = Dom(X). By definition, there is some
local smooth section ψ ∈ ΓV (E), such that X = ρ(ψ). By definition of the local frame, there are
unique smooth functions fµ ∈ C∞(U ∩ V ), such that on U ∩ V , one has ψ = fµψµ. Thus

X = ρ(ψ) = fµρ(ψµ) = fµXµ, (56)

on U ∩ V . This proves that D̂ is locally finitely generated. Using the same notation, we have

[X,Xµ] = [ρ(ψ), ρ(ψµ)] = ρ([ψ,ψµ]E) = ⟨ψν , [ψ,ψµ]E⟩ ·Xν . (57)

Here (ψν)
rk(E)
ν=1 is the dual frame for E∗ over U . The whole equations makes sense on U∩Dom(X),

which proves that D̂ is locally of a finite type.

Using Theorem 1.31, we conclude that ∆D is integrable. ■

Example 1.38 (Lie algebra actions). First, one can do it the pedestrian way.

Let # : g → X(M) be the infinitesimal Lie algebra action. Define D = #(g). By definition,

D is a Lie subalgebra of X(M) and it is globally generated by Xµ = #(tµ), where (tµ)
dim(g)
µ=1 is

some fixed basis for g. Whence by Theorem 1.32, it is integrable. Maximal integral submanifolds
are orbits of the local flows of the vector fields #x. If there is a Lie group G integrating g and
a Lie group action ◁ : M ×G → M integrating #, the maximal integral submanifolds of D are
precisely the orbits of this action.

Second, one can do it in a more fancy way. Set E =M×g. Let ρ : E → TM be the fiber-wise
extension of # and let [·, ·]E be the Leibniz-rule extension of [·, ·]g. Then (E, ρ, [·, ·]E) is a Leibniz
algebroid (in fact a Lie algebroid). Its characteristic distribution is precisely ∆D.

Example 1.39 (Poisson manifolds). Let (M,Π) be a Poisson manifold. The Hamiltonian
vector field Xf corresponding to f ∈ C∞(M) is defined via its action on g ∈ C∞(M):

LXf
(g) := {f, g}Π, (58)

where {·, ·}Π is the Poisson bracket corresponding to Π. SettingD to be the set of all Hamiltonian
vector fields, the corresponding smooth distribution ∆D is called the characteristic distribu-
tion of (M,Π). First, note that one of the basic features of Hamiltonian vector fields is the
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property LXΠ = 0 for all X ∈ D. Indeed, let α ∈ Ω1(M) be arbitrary, and let Π(α) ∈ X(M) be
the induced vector field. One can show that there holds the equation

1

2
[Π,Π]S(α, β, ·) = (LΠ(α)Π)(β) + Π(iΠ(β)(dα)) (59)

for any Π ∈ X2(M) and all α, β ∈ Ω1(M). However, if Π is Poisson and α closed, this gives the
equation LΠ(α)Π = 0. In particular, we have Xf = −Π(df), what proves our claim. Thus for any
X ∈ D, this can be integrated to the equation ϕXt∗(Π(m)) = Π(ϕXt (m)) for any (m, t) ∈ DX .In
view of the induced linear maps, this can be written as

(Tmϕ
X
t ) ◦Π(m) = Π(ϕXt (m)) ◦ TϕX

t (m)(ϕ
X
−t). (60)

By definition, one can clearly write ∆D(m) = Π(m)(T ∗
mM). The above equation shows that

(Tmϕ
X
t )(∆D(m)) ⊆ ∆D(ϕ

X
t (m)). By Theorem 1.13, this implies the integrability.

In fact, this example is another consequence of Proposition 1.37. Indeed, for a Poisson
manifold (M,Π), one can consider the Lie algebroid (T ∗M,Π, [·, ·]Π), where the bracket is given
by

[ξ, η]Π = LΠ(ξ)η − iΠ(η)(dξ), (61)

for all ξ, η ∈ Ω1(M). After some effort, this can be shown to be a Lie algebroid, and clearly ∆D

is its characteristic distribution.

2 Štefan story

We will now recall the content of two of the Štefan’s papers [6, 2]. It requires a lot of definitions,
as Štefan introduced a lot of names (more or less common) for the assumptions he made. A
stellar example is the first subsection.

2.1 Neat submanifolds and singular foliations

Let (E, ∥ · ∥) be a normed finite-dimensional real vector space. One writes E1 for an open unit
ball E1 = {x ∈ E | ∥x∥ < 1}. A box on the differentiable manifold M is a triple (ψ,E, F ),
where E and F are normed finite-dimensional real vector spaces and ψ : E1 × F 1 → U is a
diffeomorphism onto some open subset U ⊆ M . Equivalently, ϕ = ψ−1 defines a coordinate
chart (U, ϕ) on M , which maps U onto the product E1 × F 1 of open unit balls.

Now, let S be an immersed submanifold of M , and let i : S → M be the corresponding
smooth immersion. As usual, we will identify S with its image i(S) ⊆M .

Remark 2.1. It will be obvious in the following that Štefan allows (sub)manifolds to be a disjoint
union of connected components, each of a possibly different dimension.

We will now distinguish a special class of immersed submanifolds:

Definition 2.2. An immersed submanifold S ⊆M is called tame if for each s ∈ S, there exists
a box (ψ,E, F ) on M , such that

(a) ψ(0, 0) = s and S ∩ ψ(E1 × F 1) = ψ(E1 ×A) for some subset A ⊆ F 1.

(b) ψ(·, 0) : E1 → S is a diffeomorphism of E1 onto some open subset of S.
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(c) ψ(·, t) : E1 → S is a smooth map for any t ∈ A.

Moreover, one says that S is neat, if each point s ∈ S has a box (ψ,E, F ) satisfying (a) and

(d) ψ(·, t) : E1 → S is a diffeomorphism of E1 onto some open subset of S for any t ∈ A.

Remark 2.3. Again, it is quite convenient to reformulate this definition in terms of the local
coordinates on M . The immersed submanifold S is tame, if for each s ∈ S, there exists a
coordinate chart (U,φ) on some neighborhood, such that φ(U) = E1 × F 1, and

(a) φ(U ∩ S) = E1 ×A for some subset A ⊆ F 1.

(b) The set V = φ−1(E1 × {0}) is open in S, and the restriction of φ′ = φ ◦ i onto V defines a
diffeomorphism φ′ : V → E1. This implies that (V, φ′) is in fact a coordinate chart for S.
Note that necessarily s ∈ V .

(c) For any t ∈ A, we can restrict ϕ−1 to an embedded submanifold E1 × {t} of E1 × F 1. This
defines a map from E1 to M which happens to have values in the immersed submanifold S.
This maps in general fails to be continuous from E1 to S (this is because topology of S is
finer than the subspace topology). However, one assumes that it is continuous.

Let jt : E
1 → E1 × F 1 denote the embedding of E1 onto its image E1 × {t}. The axiom (c)

says that the unique map ψ′
t : E

1 → S fitting into the diagram

E1 E1 × F 1

S M

jt

ψ′
t ψ

i

(62)

is smooth. By taking the tangents of this diagram, we find that ψ′
t : E1 → S has to be an

injective immersion.

In fact, neat submanifolds and tame submanifolds are almost the same definition, as every
every tame submanifold S is always just a disjoint union of neat components.

Lemma 2.4. Every connected component of a tame submanifold is neat.

Proof. Let S be a neat submanifold. Let s ∈ S and let S0 ⊆ S be the connected component
containing s. Let (ψ,E, F ) be the box for S on some neighborhood containing s. By assumption,
ψ′
t : E

1 → S are smooth for all t ∈ A. In particular, each ψ′
t(E

1) ⊆ S is contained in a single
connected component of S. It thus makes sense to define

A0 = {t ∈ A | ψ′
t(E

1) ⊆ S0}. (63)

We claim that A0 is a set which ”parametrizes” S0, that is one has

S0 ∩ ψ(E1 × F 1) = ψ(E1 ×A0). (64)

The inclusion of the right-hand side into the left-hand side set is clear. On the other hand, if
s ∈ S0 ∩ ψ(E1 × F 1), from Definition 2.2 (a), s ∈ ψ′

t(E) for some t ∈ A. But ψ′
t(E) is then a

connected set non-trivially intersecting S0. Whence t ∈ A0. Whence s ∈ ψ(E1 ×A0).

To show that S0 is neat, we have to verify that ψ′
t : E

1 → S0 forms a diffeomorphism onto
an open subset of S0 for each t ∈ A0. We have already argued that for each t ∈ A, ψ′

t : E
1 → S

is an injective immersion. However, it follows from Definition 2.2 (b) that dim(S0) = dim(E1),
whence for each t ∈ A0, ψ

′
t : E

1 → S0 is an injective local diffeomorphism. In particular, it is an
open map and thus a diffeomorphism onto its open image ψ′

t(E
1) ⊆ S0. ■
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In fact, the proof of this lemma can be easily generalized to show the following:

Corollary 2.5. Any disjoint union of connected components of a tame submanifold, where all
are of the same dimension, is neat.

Proof. Let S′ be the union of connected components in question. For each s ∈ S′, one again
starts with a box (ψ,E, F ) for S around s. Instead of A0, define

A′ = {t ∈ A | ψ′
t(E

1) ⊆ S′}. (65)

For the same reasons as above, one can write S′ ∩ ψ(E1 × F 1) = ψ(E1 × A′). By assumption,
all components forming S′ have the same dimension, which is by Definition 2.2 (b) equal to the
dimension of E1. In particular, for each t ∈ A′, the map ψ′

t : E1 → S′ is an injective local
diffeomorphism and the conclusion follows as above. ■

We see that every tame submanifold is a disjoint union of its neat components. The notion
of tame immersed submanifolds with multiple components of varying dimension allows for the
following neat (and very compact) definition of foliations:

Definition 2.6. Let M be a smooth manifold. The foliation of M is a tame submanifold
i : F → M , such that i(F) = M . F is called the regular foliation of M , if F is neat. The
connected components of F are called the leaves of the foliation.

Before continuing onward, let us bring up some examples.

Example 2.7 (Embedded submanifolds are neat). Let S ⊆ M be an embedded subman-
ifold. For each s ∈ S, there exists local chart (U,φ) onto some open set φ(U) ⊆ Rn, such
that φ(U ∩ S) = {(x1, . . . , xn) ∈ φ(U) | xk+1 = ck+1, . . . , xn = cn}. One can shrink U and
modify the coordinate functions so that φ(U) = E1 × F 1 for E = Rk and F = Rn−k, and
φ(U ∩ S) = E1 × {0}. Taking ψ = φ−1 defines a box (ψ,E, F ) for S around s. As S has a
subspace topology, Definition 2.2 (b) is easily satisfied and (c) is trivial (in this case A = {0}).

Remark 2.8 (The set A). Let i : S →M be a tame submanifold. For each s ∈ S, we thus have
the corresponding box (ψ,E, F ). By definition, we have ψ(E1 × F 1) ∩ S = ψ(E1 ×A) for some
subset A ⊆ F 1. How to characterize this set? We claim that

A = {t ∈ F 1 | ψ(0, t) ∈ S}. (66)

Let A′ denote the set on the right-hand side of this equation. If t ∈ A, we have ψ(e, t) ∈ S for all
e ∈ E1, in particular for e = 0. Whence t ∈ A′. Conversely, if t ∈ A′, we have ψ(0, t) ∈ ψ(E1×A)
and in particular, t ∈ A. Let ψ0 : F1 → M be the smooth map ψ0(f) = ψ(0, f). We can thus
write the set A as smooth preimage of S (strictly speaking of i(S))

A = ψ−1
0 (S). (67)

This is important in the case of a singular foliation, as then A = ψ−1
0 (M) = F1.

We can now prove a certain implication of the definition of (singular) foliations. It is some-
times given as a definition of the foliation. However, it is not equivalent to the original one.

Proposition 2.9. Let F be the foliation of M . Then M can be written as a disjoint union of
the leaves of F . Let m ∈M and Fm ⊆ F be the leaf through m. Let k = dim(Fm).

Then there exists a local coordinate chart (U,φ) around m, such that φ(U) is an open cube
(−ϵ, ϵ)n in Rn and the following is true:
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(i) Let (Fm ∩ U)0 be the connected component of Fm ∩ U which contains m. Then

φ(Fm ∩ U)0 = {(x1, . . . , xn) ∈ Rn | xk+1 = · · · = xn = 0}. (68)

(ii) For any (ck+1, . . . , cn) ∈ (−ϵ, ϵ)n−k, the φ−1-image of the slice

{(x1, . . . , xn) ∈ Rn | xk+1 = ck+1, . . . , xn = cn} (69)

is entirely contained in a single leaf of F .

Proof. By definition, for each m ∈ M , we have a diffeomorphism ψ : E1 × F 1 → U , such that
ψ′
0 : E1 → F is a diffeomorphism onto an open subset and ψ′

t : E1 → F is smooth for each
t ∈ F 1. Recall that i ◦ ψ′

t(e) = ψ(e, t) for all (e, t) ∈ E1 × F 1. We claim that

ψ′
0(E

1) = (Fm ∩ U)0. (70)

By assumption, ψ′
0(E

1) is a connected open subset of F . It is thus contained in a single leaf.
As ψ′

0(0) = m, it must be Fm. Clearly it is also contained in U , whence in Fm ∩ U . As it is
connected and contains m, it must be in (Fm ∩ U)0. Thus ψ′

0(E
1) ⊆ (Fm ∩ U)0. We will now

prove that ψ′
0(E

1) is closed in (Fm ∩ U)0.

As ψ : E1 × F 1 → U is a diffeomorphism, ψ(E1 × {0}) ⊆ U is closed. Let im : Fm → M be
the inclusion of the leaf Fm. Consequently ψ′

0(E1) = i−1
m (ψ(E1 × {0})) is closed in Fm ∩ U and

as it is connected, it is closed in the connected component (Fm ∩ U)0.

This proves that ψ′
0(E

1) is both closed and open subset of a connected space (Fm ∩ U)0
containing m, whence the equality (70) must hold. Finally, for each point t ∈ F1, the map
ψ′
t : E1 → F is smooth, whence ψ′

t(E1) ⊆ F is connected, and thus contained in a single leaf
of F . Replacing the open balls E1 and F 1 with the (diffeomorphic) open cubes (−ϵ, ϵ)k and
(−ϵ, ϵ)n−k, we already obtain the statement of the proposition. ■

In fact, connected neat submanifolds have a very useful property which distinguishes them
among the general immersed submanifolds. We start with the following observation:

Lemma 2.10. Let i : S →M be a connected neat submanifold. Let ψ : E1 ×F 1 → U be the box
for S as given by the definition of neat submanifolds. Then S ∩ U consists of countably many
connected components, each of them is open in S and embedded in M .

Proof. By definition, we have U ∩ S = ψ(E1 × A), where A = {t ∈ F 1 | ψ(0, t) ∈ S}. For
each t ∈ A, we have St := ψ′

t(E
1) ⊆ S. We will now claim that St are exactly the connected

components of U ∩ S.
By assumption, each St is an open connected subset of U ∩ S. It is thus entirely contained

in the connected component W ⊆ U ∩ S containing the point ψ(0, t). It suffices to show that
it is closed in U ∩ S. As ψ is a diffeomorphism onto U , S′

t = ψ(E1 × {t}) ⊆ U is closed in U :
S′
t = U ∩ C for C ⊆M closed. Then St = S′

t ∩ S = (U ∩ S) ∩ (C ∩ S). As C ∩ S is closed in S,
we have just proved that St is closed in U ∩ S. But this shows that St =W .

Conversely, let W be a connected component of U ∩ S. Let w ∈ W be arbitrary. There is
thus (e, t) ∈ E1×A, such that w = ψ(e, t). But by the preceding paragraph, necessarilyW = St.

We can thus write (S ∩ U) = ⊔t∈ASt. We have assumed that S is connected, whence second
countable. As S ∩ U is its open submanifold, it is also second countable. In particular, it has
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at most countably many connected components. In fact, we have just shown that A itself is at
most countable.

By definition each St is open in S. It remains to prove that it is embedded in M . But
φ = ψ−1 : U → E1 × F 1 defines a local coordinate chart on U , such that St corresponds exactly
to the slice E1 × {t}. This proves that each of the connected components of U ∩ S is embedded
in M . This finishes the proof. ■

We can now use this lemma to prove the following important observation.

Proposition 2.11. Connected neat submanifolds are weakly embedded.

Proof. Let φ : N → M be any smooth map, such that φ(N) ⊆ S. To show that S is weakly
embedded, we must prove that the unique map φ′ : N → S defined by

φ = i ◦ φ′ (71)

is smooth. Let n ∈ N and set s = φ(n). Let ψ : E1 × F 1 → U be the box centered at s. Find
arbitrary connected neighborhood B of n, such that φ(B) ⊆ U . We can thus form a proposition
µ := π2 ◦ψ−1 ◦φ, where π2 : E1×F 1 → F 1 is the projection. Clearly µ : B → F 1 is smooth and
µ(B) is a connected subset of F 1. As φ(N) ⊆ S, we have µ(B) ⊆ A. From the previous lemma,
A is at most countable. But the only at most countable connected subset of F 1 is a single point:
µ(B) = {t0}. In fact, as φ(n) = s, we have t0 = 0.

We have just proved that φ(B) ⊆ S0 ≡ ψ′
0(E

1). By previous lemma, S0 is an open subset of
S and an embedded submanifold of M . It follows that φ|B : B → M is a smooth map taking
values in the embedded submanifold S0. It follows that φ

′|B : B → S0 is smooth. As S0 is open
submanifold of S, it φ′|B is smooth as a map from B to S.

We have just shown that each point n ∈ N has a neighborhood B, such that φ′|B is smooth.
Whence φ′ : N → S is smooth. ■

Example 2.12 (Some submanifolds are feral). Consider i : (0, 2π) → R2 given by

i(t) = (sin(t), cos(t) sin(t)) (72)

This is the infamous figure eight curve. It looks like this:

It is easy to see that i is the injective immersion. Clearly, i is not an embedding as an image of an
open subinterval of (0, 2π) does not need to be open in the subspace topology. The submanifold
S is connected.

We will now show that it is not weakly embedded, hence not neat. Consider the smooth map
φ : R → R2 defined by φ(t) = (sin(t), cos(t) sin(t)) for all t ∈ R. Clearly φ(R) ⊆ S. However,
the induced map φ′ : R → (0, 2π) is not even continuous. Indeed, consider the connected set
B = ( 3π2 ,

5π
2 ). Then φ′(B) = (0, π2 ) ∪ ( 3π2 , 2π), which is not connected.
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Remark 2.13. The previous example can be used to demonstrate a funny non-pleasant property
of feral immersed submanifolds. Let i : S →M be an immersed submanifold and let φ : N →M
be a smooth map, such that φ(M) ⊆ S. Let X ∈ TnN be a vector tangent to a curve γ : I → N ,
X = γ̇(0). Then φ∗(X) ∈ Tφ(n)M is a vector tangent to the curve φ ◦ γ. As φ(γ(t)) ∈ S for all
t ∈ I, one would naively expect φ∗(X) to be tangent to the submanifold S: φ∗(X) ∈ Tφ(x)S.

However, this is simply not true. Consider the example above. Consider the tangent vector
X = ∂t|2π ∈ T2πR. It is tangent to the smooth curve γ(s) = 2π + s, where s ∈ (−1, 1). We have
φ(2π) = (0, 0) and one easily finds that (using the pedestrian notation for tangent vectors):

φ∗(X) = (1, 1) (73)

But the tangent space T(0,0)S is one-dimensional and spanned by the vector tangent vector
(−1, 1). This shows that φ∗(X) /∈ T(0,0)S. The reason is of course that the curve φ(γ(s)) is not
smooth as viewed as a map from (−1, 1) to (0, 2π).

Weakly embedded submanifolds have one more advantage. Unlike for general immersed
submanifolds, both their topology and smooth structure is uniquely determined.

Proposition 2.14. Let i : S → M be a weakly embedded submanifold. Then there is a unique
topology and smooth structure such that S has this property.

Proof. Let S̃ denote the same set S with a possible different smooth structure and topology, and
let ĩ : S̃ → M be the map i . As S is weakly embedded, it follows that the identity 1 : S̃ → S
is smooth. Replacing the role of S and S̃, the identity 1 : S̃ → S is smooth. It follows that
1 : S̃ → S is a diffeomorphism and both smooth structures (and topologies) coincide. ■

2.2 Arrows and accessible sets

We will now consider the special class of local diffeomorphism of a manifold. It is motivated by
properties of vector field flows - however, it is slightly more general.

Definition 2.15. Let M be a smooth manifold. A map a : D →M is called the arrow, if

(i) D ⊆M × R is open subset, such that for each m ∈M , the open subset

Im = {t ∈ R | (m, t) ∈ D} (74)

is either empty or an interval containing 0.

(ii) For every t ∈ R, let Mt = {m ∈ M | (m, t) ∈ D}. Then the map at : Mt → M defined by
at(m) = a(m, t) for all m ∈Mt is a diffeomorphism onto an open subset of M .

Finally, a0 :M0 →M is an identity on M0.

We see that arrows provide a generalization of local flows of vector fields, where we do not
impose any composition rules. Clearly, for any X ∈ X̂(M), ϕX : DX → M is an example of
an arrow. Clearly, for each m ∈ M , we have a curve t 7→ at(m) whose tangent vector at at(m)
is denoted as ȧt(m). For each (m, t) ∈ D, we also have a linear isomorphism of the respective
tangent spaces: Tm(at) : TmM → Tat(m)M .

Now, let A be a collection of arrows. We form the following sets.
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1. Let θ(A) be the set of all local diffeomorphisms induced by all arrows of A.

2. Let Ψ(A) be the set containing the identity onM and all local diffeomorphisms of the form
φ1 ◦ · · · ◦ φp where p is an arbitrary positive integer and for all i ∈ {1, . . . , p} either φi or
its inverse belong to θ(A).

We can now define a new equivalence relation on M . We say that x ∼A y if there is an element
φ ∈ Ψ(A), such that y = φ(x). Equivalence classes of ∼A are called the accessible sets of A.
For each x ∈M , we can form two linear subspaces of TxM , namely

A(x) = R{ȧt(y) | a ∈ A and x = at(y)}, (75)

Ā(x) = R{Ty(φ)(X) | φ ∈ Ψ(A), x = φ(y) and X ∈ A(y)}. (76)

Let φ ∈ Ψ(A), let y = φ(x). Then clearly (Txφ)(Ā(x)) = Ā(y). It follows that whenever x ∼A y,
one has dim(Ā(y)) = dim(Ā(x)), that is the dimension of Ā(x) is constant along the accessible
sets. Let us now formulate two main theorems of Štefan from [6].

Theorem 2.16. Let F be a partition of M into the accessible sets of A. Then F is a singular
foliation of M and for every x ∈M , Tx(F) = Ā(x). In particular, every accessible set of A is a
leaf of F , thus having a unique topology and a smooth structure making it into a connected neat
submanifold of M .

Let ∼ be any equivalence relation on M . We say that a local diffeomorphism φ preserves
∼, if φ(x) ∼ x whenever x ∈ Dom(φ). We say that φ respects ∼ if φ(x) ∼ φ(y) whenever
x ∼ y and x, y ∈ Dom(φ). One says that an arrow a preserves (or respects) ∼ if any φ ∈ θ({a})
preserves (or respects) ∼. For example, given a family of arrows A, every a ∈ A both preserves
and respects the equivalence relation ∼A.

Theorem 2.17. Let ∼ be an equivalence relation on M and let A be the collection of all the
arrows of M which preserve ∼. If φ is a local diffeomorphism of M which respects ∼, then φ is
a local diffeomorphism of F given by the foliation of M into the accessible sets of A.

2.3 Homogeneous and symmetric envelopes

A collection A of arrows on M is called to be homogeneous if A(x) = Ā(x) for every x ∈ M .
In other words, we have (Txφ)(A(x)) ⊆ A(y) whenever φ or φ−1 belong to θ(A) and y = φ(x).
We say that A is symmetric if φ ∈ θ(A) implies that φ−1 is a composition of finitely many
members of θ(A). Let A0(x) denote the subspace of TxM spanned by the tangents to the curves
at(x) at t = 0, of all arrows a ∈ A where (x, 0) ∈ Dom(a).

Proposition 2.18. If A is any collection of arrows on M , there exists a symmetric homogeneous
collection of arrows B, such that the accessible sets of A and B coincide and Ā(x) = B(x) =
B0(x) for every x ∈M .

Lemma 2.19. Let A# be the collection of all arrows a′, such that a′t = as+t ◦ (as)
−1 or a′t =

as−t ◦ (as)−1 for some arrow a ∈ A and some s ∈ R. Then

(a) Ψ(A#) = Ψ(A);

(b) A# is symmetric;

(c) A#
0 (x) = A#(x) = A(x) for every x ∈M ;
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(d) The accessible sets of A and A# are the same;

(e) If A is homogeneous, then so is A#.

Proof. Obviously, (d) follows at once from (a), whereas (e) follows from the combination of (a)
and (c). We thus only have to prove (a) - (c). Let bt = as+t ◦ (as)−1 and ct = as−t ◦ (as)−1 be
the samples of two elements of A#. We have to prove that b and c are indeed arrows.

First, we must analyze the set Db ⊆ M × R where b is defined. For any given s ∈ R, we
compose a : D → M with the following map. By definition as : M

a
s → Uas is a diffeomorphism

onto an open subset Uas . We define a smooth map χs : U
a
s × R →M × R by setting

χs(m, t) = (a−1
s (m), s+ t) (77)

We can thus write b = a◦χs. Indeed, we have bt(m) = a(a−1
s (m), t+s) = at+s(a

−1
s (m)). Then the

domain Db can be written as a preimage Db = χ−1
s (Da) which is clearly open in Uas ×R, whence

in M × R. It remains to prove that for each m ∈M , the open set Jm = {t ∈ R | (m, t) ∈ Db} is
empty or an open interval containing 0. But this is clear, as for each t ∈ Jm, there is ϵ > 0, such
that (−ϵ, t + ϵ) ⊆ Jm, where we use the definition of the arrow a. Clearly b0 : Uas → M is the
identity and thus b is an arrow. The proof for c is analogous.

By considering s = 0, we obtain bt = at, and by considering t = s, this gives us cs = (as)
−1.

This gives us the inclusions θ(A) ⊆ θ(A♯) ⊆ Ψ(A) and θ(A)−1 ⊆ θ(A♯).

We want to prove (a). As θ(A) ⊆ θ(A♯), we easily obtain the inclusion Ψ(A) ⊆ Ψ(A♯). But
the other inclusion follows from the observation that θ(A#)−1 ⊆ Ψ(A). Whence Ψ(A) = Ψ(A#).

It is easy to see that A# is symmetric, as inverse of φ ∈ θ(A#) is product of elements in θ(A)
and their inverses - both of them are in θ(A#). Whence (b) is proved.

Now, let x ∈ M be arbitrary. Suppose x = bt(y) for (y, t) ∈ Db of some arrow b ∈ A#. By
definition, there is s ∈ R and a ∈ A, such that bt(y) = at+s(a

−1
s (y)). One has

ḃt(y) = ȧt+s(a
−1
s (y)). (78)

But this proves that the generator of A#(x) in the form ḃt(y) is also in A(x). Similar proof
shows that the other generator ċt(y) too. Whence A#(x) ⊆ A(x). The other inclusion follows
from the fact that θ(A) ⊆ θ(A#) and we conclude that A(x) = A#(x) for any x ∈M . Moreover,

we have ḃ0(y) = ȧs(a
−1
s (y)). This proves the inclusion A(x) ⊆ A#

0 (x). Whence A#(x) ⊆ A#
0 (x).

The other inclusion is trivial and (c) follows. ■

Lemma 2.20. Let A∗ be a collection of all the arrows a of M such that

(i) the domain of a is of the form V × J , where J ⊆ R is an open interval and V ⊆ M is an
open subset of M ;

(ii) there exists b ∈ A# and φ ∈ Ψ(A) such that for (x, t) ∈ V × J , one has

a(x, t) = (φ ◦ bt ◦ φ−1)(x). (79)

Then the following properties stand true:

(a) every φ ∈ Ψ(A∗) is a restriction of some map in Ψ(A);

(b) the accessible sets of A∗ and A are the same;
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(c) A∗(x) = Ā(x) for all x ∈M ;

(d) A∗ is an homogeneous set of arrows.

Proof. The assertion (d) immediately follows from (a) and (c). Note that arrows A∗ are just
the various composition of the original arrows and their inverses with their domain eventually
restricted to be the product V ×J . This proves (a). As we can always consider φ = 1, we see also
(b). Next, the inclusion A∗(x) ⊆ Ā(x) is obvious. It thus remains to show that Ā(x) ⊆ A∗(x).

Let W ∈ A(y), x = φ(y) and φ ∈ Ψ(A). We have to show that (Tyφ)(W ) ∈ A∗(x). But

by Lemma 2.19, we may write W as ḃ0(y) for some b ∈ A#. It follows that there exists a
neighborhood (−δ, δ) for some δ > 0, such that at = φ ◦ bt ◦ φ−1 is for all t ∈ (−δ, δ) defined on
some open neighborhood of x. Then (Tyφ)(W ) = ȧ0(x). As a ∈ A∗, we have ȧ0(x) ∈ A∗(x). ■

Proof of Proposition 2.18. Simply take B = (A∗)#. ■

This proposition is quite important, as for a given family of arrows, we can always switch to
the one with the same accessible sets, which has much better properties (it is homogeneous and
symmetric). The only cost is that we have to enlarge the tangent space from A(x) to Ā(x).

2.4 Lemmas and proofs

The proof of the main theorem 2.16 is based on the following lemma.

Lemma 2.21. Let L be a subset of M . For any x ∈ L, let L(x) be a vector subspace of
TxM . Suppose dim(L(x)) = k for all x ∈ L and for each x ∈ L, there exists a diffeomorphism
ψ : V ×W → U onto an open subset U ⊆M , such that:

(a) V and W are connected open neighborhoods of the origin in Rk and Rn−k, respectively;

(b) ψ(0, 0) = x;

(c) L ∩ U = ψ(U ×A), where A = {s ∈W | ψ(0, s) ∈ L}.

(d) T(t,s)ψ maps the subspace Rk × {0} ⊆ T(t,s)(V ×W ) into L(ψ(t, s)) for all (t, s) ∈ ψ−1(L).

Then there exists a unique topology and smooth structure on L, such that

(i) L becomes a neat submanifold of M and for all x ∈ L, one has TxL = L(x);

(ii) Every smooth map φ : N →M satisfying φ(N) ⊆ L and φ∗(TnN) ⊆ L(φ(n)) is smooth as
a map φ : N → L.

Proof. First, observe that connected neat submanifolds are weakly embedded, see Proposition
2.11. However, in general they can have, according to Štefan’s definition of a submanifold,
uncountably many connected components. In this case, some strange things can happen. Fortu-
nately, this is saved by a weaker version of the weak embedding (ii). In particular, it proves the
uniqueness of a smooth structure on L.

Glancing back, it is clear that it only remains to show that ψ satisfies the condition (d) of
Definition 2.2. Any map ψ : V ×W → U satisfying (a), (c) and (d) is called the privileged
chart of M . We will prove the Lemma in stages:
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(A) Let ψ : V ×W → U be a privileged chart ofM and let φ : N →M be a smooth map from
a connected manifold N into M , such that φ(N) ⊆ L ∩ U . Moreover, assume that φ∗(TnN) ⊆
L(φ(n)) for all n ∈ N . Then there exists a constant w ∈W , such that f(N) ⊆ ψ(V × {w}).

To prove this, let π2 : Rk × Rn−k → Rn−k be the projection onto the second factor, and set
g = π2 ◦ ψ−1. We have (g ◦ ψ)(t, s) = s. Let ei ∈ Rk be the element of a standard basis, viewed
as a vector in Rk × {0} ⊆ T(t,s)(V ×W ). We thus have

0 = (T(t,s)(g ◦ ψ))(ei) = (Tψ(t,s)g) ◦ (T(t,s)ψ)(ei). (80)

For ψ(t, s) ∈ L, we have by assumption (T(t,s)ψ)(ei) ∈ L(ψ(t, s)). As ψ is a diffeomorphism, this
set of vectors generates L(ψ(t, s)). But this proves that (Txg)(L(x)) = 0 for any x ∈ U ∩ L. In
particular, the assumptions on φ give us that Tn(g ◦ φ) = 0 for all n ∈ N . As N is connected,
this can happen if and only if g ◦ φ is constant. This proves the claim (A).

(B) Let Ψ be the collection of all the functions of the form ψw = ψ(·, w) : Vψ → L, where
ψ : Vψ ×Wψ → Uψ is some privileged chart on M , and w ∈ Aψ = {w ∈ Wψ | ψ(0, w) ∈ L}.
Let φ : N → M be a smooth map, such that φ(N) ⊆ L and for all n ∈ N , one has φ∗(TnN) ⊆
L(φ(n)). If ψw ∈ Ψ, then G = φ−1(ψw(Vψ)) is an open subset of N , and (ψw)

−1 ◦ φ : G → Rk
is smooth.

Indeed, let us consider the open subset B = φ−1(Uψ). Then each its connected component
B0 together with the restriction of φ : B0 → M satisfies the assumptions of (A) and it is thus
mapped into a single slice ψ(Vψ×{w0}). It follows that G is a collection of connected components
of B, whence an open subset of N . Moreover, we can write (ψw)

−1 ◦ φ = π1 ◦ ψ−1 ◦ φ|G, where
π1 : Rk × Rn−k → Rk is the projection.

(C) We declare Ψ to be the smooth atlas for L.

First, we have to check that it is indeed an atlas. Let ψ′
z ∈ Ψ be arbitrary, such that

ψ′
z(Vψ′) ∩ ψw(Vψ) ̸= ∅. Then ψ′

z : Vψ′ → M satisfies the assumptions of (B), based on the
requirement (d) of this lemma. But then G = ψ′−1

z (ψw(Vψ)) is open in Vψ′ and (ψw)
−1 ◦ ψ′

z :
G → Rk is smooth. Whence the transition maps are smooth. Moreover, let i : L → M be the
inclusion. By construction, we can compose ψ−1 ◦ i ◦ ψw, which is just an inclusion of Vψ × {w}
into Vψ ×Wψ, whence i is a smooth injective immersion.

To fit into the usual definitions of manifold, we have to argue that each connected component
L0 of L is Hausdorff and second countable. The Hausdorff property is easy to see. If l ̸= l′ are
two distinct points of L, we find two privileged charts ψ and ψ′ around l and l′, respectively,
by the main assumption of this lemma. However, as l and l′ are distinct in the Hausdorff space
M , we can separate them in M . By intersecting the ranges of ψ and ψ′ with these separating
neighborhoods, we obtain two privileged charts ψ̄ and ψ̄′ with disjoint images around l and l′,
respectively. It follows that there are some ψ̄w ∈ Ψ and ψ̄′

w′ ∈ Ψ with disjoint images containing
l and l′, respectively.

But in fact, there is a beautiful little observation (obviously known to Štefan, who comments
on it in [2]), which we state here as a lemma:

Lemma 2.22. Every connected immersed submanifold of a second countable manifold is neces-
sarily second countable.

Proof. Let i : S → M be the smooth injective immersion. As M is assumed second countable,
there exists a Riemannian metric g on M . We can pullback g using i to form a Riemannian
metric h = i∗(g) on S. This makes S into a metrizable space, that is there is a topological metric
ρh : S × S → [0,∞) making (S, ρh) into the metric space, where the usual open ball topology

30



induced by ρh coincides with the original topology on S. Note that S is then also automatically
Hausdorff.

It is a well-known fact that metric spaces are paracompact, see e.g. [7]. On the other hand,
every connected locally Euclidean Hausdorff space is paracompact if and only if it is second
countable, see the remark under Theorem 1.15 in [8]. Whence S is second countable. ■

(D) L is a neat submanifold with the property TxL = L(x) for all x ∈ L. The latter statement
is clear and follows from the discussion below (80). Clearly, the maps ψ : V ×W → U form the
box charts for L, possibly after modification making V and W into open balls.

(E) L satisfies the property (ii). This follows from the fact that Ψ is the smooth atlas for L
and observations made in part (B) of the proof. ■

The proof of Theorem 2.16. Without the loss of generality, by Proposition 2.18, we may
assume that A is symmetric, homogeneous and A(x) = A0(x) for all x ∈M .

We may thus choose ai ∈ A, so that (ȧi0(x))
k
i=1 forms a basis of A(x). Let

Φ(t1, . . . , tk, y) = a1t1 ◦ a
2
t2 ◦ · · · ◦ a

k
tk
(y). (81)

We may possibly restrict the domain of this map to be of the form V ×W , where V is a connected
open neighborhood of the origin in Rk and W is an open neighborhood of x. By definition, Φ is
a smooth map. First, note the following two obvious properties:

(i) For every t ∈ V and y ∈W , one has Φ(t, y) ∼A y and Φ(0, y) = y.

(ii) (T(0,x)Φ)(ei) = ȧi0(x) for all i ∈ {1, . . . , k}.

Naturally, the property (ii) is not enough, we need the following:

(iii) For every t ∈ V and y ∈W , one has (T(t,y)Φ)(ei) ∈ A(Φ(t, y)).

But this in fact follows from the fact that A is homogeneous. Indeed, consider an example of
i = 2. One has (T(t,y)Φ)(e2) = (Tza

1
t1)(ȧ

2
t2(w)), where w = a3t3 ◦ · · · ◦ a

k
tk
(y) and z = a2t2(w) and

Φ(t, y) = a1t1(z). By definition, one has ȧ2t2(w) ∈ A(z) and thus (T(t,y)Φ)(e2) ∈ Ā(Φ(t, y)) =
A(Φ(t, y)). This proves the claim (iii).

Finally, let n = dim(M). Find an arbitrary (n− k)-dimensional (embedded) submanifold Q,
such that TxM = TxQ⊕ A(x). Find any local coordinate chart µ : W̄ → Q, such that µ(0) = x
and µ(W̄ ) ⊆ W . Finally, define ψ : V × W̄ → M as ψ(t, s) = Φ(t, f(s)) for all (t, s) ∈ V × W̄ .
Clearly, the tangent map to ψ at (0, 0) is a linear isomorphism, whence a local diffeomorphism.
By sufficiently shrinking V and W̄ we obtain a chart for M satisfying the conditions (a) – (d) of
Lemma 2.21 for L(x) = A(x) and L by arbitrary accessible set of A.

There is thus a unique structure of a neat submanifold on any accessible set L. One has to
prove that it is connected. But this is clear, as L is clearly path connected as a subset of M (by
paths made out arrow maps). Each of this paths has values in L and by property (ii) of smooth
structure on L constructed in Lemma 2.21 it is continuous as a map into L. Whence also L is
path connected.

Finally, we have to argue why F is a singular foliation, that is the collection of all accessible
sets is a tame submanifold of M , such that i(F) = M . Let ψ : V × W̄ → U be the box around
x ∈M constructed as above. As noted in Remark 2.8, the set A ⊆ W̄ in the definition of the tame
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submanifold is in this case entire W̄ . We thus have to prove that the map ψ′
s = ψ(·, s) : V →M

is smooth as a map into F for all s ∈ W̄ . However, it is clear from the construction of ψ, that
ψ′
s(V ) is contained in an accessible set L′ of A through the point ψ(0, s). Moreover, by the

property (iii) above, one has ψ′
s∗(TtV ) ⊆ A(ψ′

s(t)) for all t ∈ V . But L′ satisfies the property
(ii) in Lemma 2.21, which proves that ψ′

s : V → L′ is smooth. L′ being a connected component
of F , we have just proved the final statement. ■

Lemma 2.23. Let ∼ be an arbitrary equivalence relation on M and let A be the set of all arrows
which preserve ∼. Then A is symmetric and homogeneous and A(x) = A0(x) for every x ∈M .

Proof. In view of notation in Subsection 2.3, we already know that A ⊆ A#. We thus have to
argue that A# ⊆ A. By construction, any φ ∈ Ψ(A) preserves ∼. By Lemma 2.19 we have
Ψ(A#) = Ψ(A). This means that for any arrow a ∈ A# also preserves ∼. Whence A# ⊆ A.
Whence A = A# and A is symmetric.

Next, by Lemma 2.20, every φ ∈ Ψ(A∗) is a restriction of a map in Ψ(A). As all maps in
Ψ(A) preserve ∼, it follows that A∗ ⊆ A. Note that although in general A ⊊ A∗ as not every
arrow in A has a domain in the form of a Cartesian product. However, we have the equality
A∗(x) = Ā(x). This is enough, as we then have A(x) ⊆ Ā(x) = A∗(x) ⊆ A(x), where the
leftmost inclusion is trivial (by definition), the second one is Lemma 2.20 and the last one is the
consequence of A∗ ⊆ A. Whence A(x) = Ā(x) and A is homogeneous.

The last assertion follows from Lemma 2.19 as A0(x) = A#(x) = A(x). ■

We can proceed to the proof of the second of the Štefan’s theorem.

The proof of Theorem 2.17. Let φ be a local diffeomorphism which respects ∼. Let x ∈
Dom(φ). Let L be the accessible set of A through x, and let L′ be the accessible set of A
through φ(x). Let k = dim(L) and let a1, . . . , ak be the arrows of A such that

A(x) = R{ȧ10(x), . . . , ȧk0(x)}. (82)

By assumption, the arrows bi defined by bit = φ ◦ ait ◦ φ−1 are again in A. This is obvious. Let
Φ be the smooth map defined as in (81). Let Φx = Φ(·, x). This is a local diffeomorphism from
Rk to L. For all (t1, . . . , tk) ∈ Dom(Φx), we may write

φ(y) = (b1t1 ◦ · · · ◦ b
k
tk
)(φ(x)). (83)

We have thus found an open neighborhood of x in L, such that φ(U) ⊆ L′. As L′ is a leaf of a
foliation, whence a weakly embedded submanifold ofM , it follows that φ : U → L′ is smooth. ■

3 Gluing together Sussmann and Štefan

Clearly, the work done by Štefan is far more general, as it deals with the families of more general
arrows. Moreover, it provides much more detailed properties of the leaves forming the singular
foliation. For these reasons, we reformulate the Štefan’s definition of a singular foliation into
a more conventional language, which will exclude the nowadays uncommon notion of manifolds
with possibly uncountably many connected components.

Definition 3.1. Let M be a smooth n-dimensional manifold. We say that a collection F of
connected immersed submanifolds of M forms the singular foliation of M if
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(i) M can be written as a disjoint union of elements of F , that is every x ∈ M is contained
in exactly one connected immersed submanifold Fx ∈ F which is called the leaf of the
foliation F trough x.

(ii) For each x ∈M , there exists a coordinate chart (U,φ), where U is a neighborhood of x and
φ : U → V ×W , where V ⊆ Rk and W ⊆ Rn−k are open balls containing their respective
origins, such that φ(x) = (0, 0) and

(a) For each t ∈ W , the restriction ψt = φ−1|V×{t} defines a smooth map ψt : V → F ,
where F ∈ F is some leaf of the foliation F .

(b) For t = 0, the smooth map ψ0 : V → Fx is a diffeomorphism onto an open subset
ψ0(V ) ⊆ Fx. In particular, it defines a local coordinate chart for Fx around x.

Lemma 3.2. Štefan’s definition agrees with Definition 3.1.

Proof. Let i : F → M be the foliation according to Štefan, that is a tame submanifold, whose
underlying set i(F) =M . Connected components of F form a collection of connected immersed
submanifolds, such that M is their disjoint union. This proves (i) of the above definition.

Next, let ψ : E1 × F 1 → U be the box for M around x. As noted in Remark 2.8, the set A
parametrizing the intersection of F with U is now the entire open ball F 1. Clearly, it suffices
to take φ = ψ−1. By the definition of box, ψt : E1 → F is smooth. In particular, as E1 is
connected, it must take values in a single leaf F ∈ F . For similar reasons, ψ0 : V → Fx is a
diffeomorphism onto an open subset of Fx. The converse is shown by considering the collection
F as a single immersed submanifold of M with the property i(F) = M , and reversing all the
steps to show that it is a tame submanifold of M . ■

We can now specialize the theorem of Štefan and compare it to the theorem of Sussmann.
First, we will examine the special set of arrows.

Lemma 3.3. Let D ⊆ X̂(M) be an everywhere defined family of smooth vector fields. Then the
collection of maximal flows of D forms a symmetric collection of arrows denoted as AD. One
has AD(x) = (AD)0(x) = ∆D(x) for all x ∈ M , and the accessible sets of AD are precisely the
D-orbits. Moreover, AD is homogeneous if and only if the smooth distribution ∆D is D-invariant.

Proof. As already noted, if ϕX : DX →M is a maximal flow of a vector field X ∈ X̂(D), it is an
arrow. As (ϕXt )−1 = ϕX−t, it follows that AD is symmetric. Moreover, glancing at the definition

of the symmetric envelope A#
D in Lemma 2.19, we immediately obtain AD = A#

D thanks to the
composition rule for the flows. In particular (AD)0(x) = AD(x) for all x ∈M .

Next, AD(x) = (AD)0(x) is a linear vector space spanned by vectors in the form ϕ̇X0 (x) =
X(x), where X ∈ D(x) ≡ {Y ∈ D | x ∈ Dom(X)}. Whence

AD(x) = R{X(x) | X ∈ D(x)} = ∆D(x). (84)

Moreover, we have that AD is homogeneous if and only if (Txφ)(AD(x)) ⊆ AD(φ(x)) whenever
φ or φ−1 belong to θ(AD), for all x ∈ Dom(x). But this is translated as (Txϕ

X
t )(∆D(x)) ⊆

∆D(ϕ
X
t (x)) for any X ∈ D and (x, t) ∈ DX . In other words, AD is homogeneous if and only

if ∆D is D-invariant. Finally, it is clear from the definitions that the accessible sets of AD are
precisely the D-orbits. ■

Note that PD(x) = ĀD(x). We can now reformulate main Theorem 2.16 of Štefan:
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Theorem 3.4. Let D ⊆ X̂(M) be an everywhere defined family of vector fields. Let FD be a
partition of M into the D-orbits of M . Then FD is a singular foliation. For any leaf F ∈ F
and any x ∈ F , one has TxF = PD(x). In particular, any D-orbit is a leaf of FD, thus having a
unique topology and a smooth structure.

Conversely, we may start with M together with a given foliation F . We may ask whether it
comes from some smooth distribution via the theorem above.

Proposition 3.5. Let F be a smooth singular foliation of M . Then there is a unique smooth
distribution ∆F such that for any leaf F ∈ F and any x ∈ F , one has TxF = ∆F (x). Moreover,
∆F has the maximal integral manifolds property. ∆F is called the tangent distribution to F .

Proof. As for any x ∈M , there is a unique leaf F ∈ F through x, the definition ∆F (x) = TxF is
unambiguous and uniquely defines a distribution on M . One only has to prove that it is smooth.
By definition, for each x ∈M , there is a coordinate chart (U,φ) around x with the properties as
in (ii) of Definition 3.1. Write the corresponding local coordinates as (x1, . . . , xk, y1, . . . , yn−k).
Any v ∈ ∆F (x) is a unique linear combination v = αi ∂

∂xi (x). It follows from (ii) and (a) in

Definition 3.1 that V = αi ∂
∂xi is a vector field defined on U , such that V (y) ∈ ∆F (y) for all

y ∈ U and V (x) = v. Whence ∆F is smooth.

Finally, we will argue that leaves of F are precisely the maximal connected integral subman-
ifolds for ∆F . By construction, each F ∈ F is an integral submanifold for ∆F . It remains to
prove the maximality.

Suppose S is some connected integral submanifold of ∆F intersecting the leaf of F at x ∈M .
Whence S ∩ Fx ̸= ∅. We have to show that S ⊆ Fx and it is an open submanifold of Fx. Let
i : Fx →M and iS : S →M denote both inclusions.

If we show the first statement, we know that Fx is a weakly embedded submanifold, whence iS
factorizes uniquely as iS = i ◦i ′S , where i ′S : S → Fx is smooth. It follows that i ′S is an immersion.
Moreover, by assumption TsS = TsFx for all s ∈ S, whence it is a local diffeomorphism. But
local diffeomorphisms are open maps and S ≡ i ′S(S) ⊆ Fx is an open subset.

It thus remain to show that S ⊆ Fx. The strategy is to show that each s ∈ S has an
open neighborhood B ⊆ S which is entirely contained in a single leaf Fs ∈ F . Let (U,φ) be the
foliation chart for F centered at s. Let B = U∩S. By taking its connected component containing
s, we may assume that B is a connected open neighborhood of s in S. Let φ′ = π2 ◦ φ ◦ iS |B ,
where π2 : Rk × Rn−k → Rn−k is the projection. Calculating the differential at any t ∈ B, we
find the composition

Tt(φ
′) = Tt(π2 ◦ φ) ◦ Tt(iS). (85)

By assumption, Tt(iS) is precisely the subspace Tt(Ft). In particular, note that dim(Ft) =
dim(Fs) for all t ∈ B. Let φ(t) = (v, w). By assumption, ψw is a smooth map from V ⊆ Rk
into some leaf of F . As ψw(v) = t, this must be the leaf Ft. As already noted above Lemma
2.4, ψw is an injective immersion, and due to dim(Ft) = dim (V ) = k, it is an injective local
diffeomorphism, whence a diffeomorphism onto its image Z := ψw(V ) ⊆ Ft. Note that Z is
always an embedded submanifold of M open in Ft, diffeomorphic to the open ball V ⊆ Rk, and
Tt(Z) = Tt(Ft). It now follows easily that ker(Tt(π2 ◦ φ)) = Tt(Z), and finally, Tt(φ

′) = 0. As
φ′ : B → Rn−k is a smooth map defined on a connected set B and t ∈ B was arbitrary, we find
that φ′(t) = φ′(s) = 0 for all t ∈ B. We see that φ(B) ⊆ V × {0}. But V × {0} is the φ-image
of a connected component of the leaf Fs containing s. Whence B ⊆ Fs.

Finally, suppose x ∈ S ∩ Fx and consider arbitrary y ∈ S. As S is assumed connected, there
is a continuous path γ : [0, 1] → S connecting x to y. As shown in the previous paragraph, for
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each t ∈ [0, 1], there is a connected open neighborhood Bt ⊆ S of γ(t), such that Bt ⊆ Fγ(t).
By a usual compactness argument, we find a finite subdivision 0 = t0 < · · · < tq = 1, such that
γ(ti) and γ(ti+1) are in the same leaf of F for all i ∈ {0, . . . , q− 1}. From the transitivity of the
relation, we find that x = γ(0) and y = γ(1) are in the same leaf of F , whence y ∈ Fx. We have
just shown that S ⊆ Fx and Fx is a maximal integral submanifold for ∆F . ■

We can finally prove the main theorem of this section.

Theorem 3.6 (Global Štefan-Sussmann theorem). Let M be a smooth manifold. Then
there is a bijection between smooth singular distributions ∆ with the maximal integral property
and smooth singular foliations F of M .

Proof. Let ∆ be a smooth distribution with the maximal integral property. There is thus a
family D of smooth vector fields spanning ∆, and ∆ = PD by Theorem 1.13 (f). Its maximal
integral submanifolds are precisely the D-orbits. By theorem 3.4, they form a leaves of a singular
foliation FD. Maximal integral submanifolds are uniquely determined by ∆, hence we obtain
the same singular foliation for any everywhere defined family D spanning ∆ and one can write
simply F∆. Conversely, given any foliation F , we obtain its tangent distribution ∆F which has
a maximal integral property. Finally, we will argue that the maps ∆ 7→ F∆ and F 7→ ∆F are in
fact inverse to each other.

Let ∆ be a smooth distribution with the maximal integral property. Let D be any everywhere
defined family of smooth vector fields spanning ∆. Let x ∈ M be arbitrary and let F ∈ F∆ be
the leaf through x. F is a D-orbit containing x, and one has TxF = PD(x). By Theorem 1.13
(f), one has PD(x) = ∆(x). But by definition, we have ∆F∆(x) = TxF and thus ∆(x) = ∆F∆(x)
for all x ∈M . This finishes the discussion in one direction.

Conversely, let F be any smooth singular foliation. By Proposition 3.5, the tangent dis-
tribution ∆F is a smooth distribution with the maximal integral property, whose maximal
integral submanifolds are precisely the leaves of F . But maximal integral submanifolds are
uniquely determined by the distribution; in particular they are D-orbits of any everywhere de-
fined family of smooth vector fields D spanning ∆F , whence precisely the leaves of a distribution
FD = F∆F . Two smooth singular distribution with the same leaves are necessarily identical,
whence F = F∆F . This concludes the second direction. ■

Example 3.7. In fact, the construction in Section 2 provides an explicit way to construct the
coordinate chart required for the foliation. Let M = R2

Consider the family D consisting of a single vector field X = x · ∂y − y · ∂x. It is easy to find
its local flow, namely ϕXt (x, y) = (x cos(t)− y sin(t), y cos(t) + x sin(t)). The corresponding flow
domain DX is thus entire R2 × R.

Now, fix a point m0 := (x0, y0) ∈ R2. Assume m0 ̸= (0, 0). By definition, one has ∆(m0) =
R{X(m0)}. First, we are supposed to define a map Φ : R× R2 →M by Φ(t,m) = ϕXt (m). Let
Bqr(m) denote the open ball in Rq of radius r around the point m ∈M . We restrict the domain
of Φ to B1

r′(0)× B2
r(m0).

Next, we are supposed to choose a submanifold Q containing m0, such that Tm0
Q⊕∆(m0) =

Tm0
M . As m0 ̸= (0, 0), we take Q to be the line through the origin (0, 0) and m0, that is

Q = {λ · (x0, y0) | λ ∈ R}. (86)
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We can now consider the smooth map µ : B1
q(0) → Q be the map defined as µ(s) = (1+s)·(x0, y0).

Clearly µ(0) = m0. For small enough q > 0, one has µ(B1
q(0)) ⊆ B2

r(m0). We then define

ψ(t, s) = Φ(t, µ(s)) = ϕXt (µ(s)) = (1 + s) · (x0 cos(t)− y0 sin(t), y0 cos(t) + x0 sin(t)). (87)

This is a map smooth map from B1
r′(0)× B1

q(0) to R2, and we find

T(0,0)ψ =

(
−y0 x0
x0 y0

)
. (88)

This map is supposed to be a linear isomorphism and indeed, we have det(T(0,0)ψ) = −(x20 + y20)
which is non-zero as m0 ̸= (0, 0). It thus suffices to consider r′ > 0 and q > 0 small enough so
that ψ is a diffeomorphism onto an open subset in R2.
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