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1 Presheaves and sheaves

These notes are based on my reinterpretation of excellent lecture notes [2]. Let X be given topo-
logical spaces. By Op(X), we denote the category of open subsets of X. Its objects are open
subsets of X and morphisms are inclusions. Let U ⊆ V ⊆ X be two open subsets. The unique
inclusion morphism is denoted as iVU : U → V .

Definition 1.1. Let C be any category. By a presheaf on X with values in C, we mean a
contravariant functor F : Op(X) → C. In other words, to each U ∈ Op(X), we have an object
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F(U) ∈ C and for each inclusion iVU : U → V we have a restriction morphism ρVU = F(iVU ) ∈
C(F(V ),F(U)) satisfying the usual composition relations

ρWU = ρVU ◦ ρWV , ρUU = 1F(U), (1)

where ◦ is the composition rule in C and 1F(U) the identity morphism at F(U) ∈ C.

As presheaves are just a special case of contravariant functors, there is an obvious way to define
their morphisms.

Definition 1.2. Let F and G be two presheaves on X with values in C. Then by presheaf map
(or morphism) ϕ : F → G, we mean a natural transormation of the two functors. In other words,
for every U ∈ Op(X), we have a morphism ϕU ∈ C(F(U),G(U)), such that for every U ⊆ V , the
following diagram of morphisms commutes:

F(V ) G(V )

F(U) G(U)

F(iVU )

ϕV

G(iVU )

ϕU

(2)

Usually C is taken to be some category where it makes sense to talk about the elements of a
given object F(U), that is there is some underlying set Γ(U,F). An element s ∈ Γ(U,F) is called
a section of F above U . Elements of Γ(X,F) are called global sections of F . Examples of
such categories are Abelian groups Ab, Groups Grp, sets Set, topological spaces Top, R-modules
R-Mod, where R is some fixed commutative ring.

Example 1.3. (i) For any category C, fix an object G ∈ C. The constant presheaf GX on
X with values in G ∈ C is defined as F(U) = G for all U ∈ Op(X) with ρVU = 1G for all
U ⊆ V . Although it may seem stupid, it will play an important role in the following.

(ii) For any topological space Y ∈ Top, one can define a presheaf C0
Y ) of continuous Y -valued

functions on X. For general Y , one has C0
Y (X) : Op(X)→ Set. Set

C0
Y (U) = C0(U, Y ) ≡ {f : U → Y | f is continous}. (3)

For U ⊆ V , the restriction morphism ρVU : C0(V, Y ) → C0(U, Y ) is an actual restriction of
the maps. By imposing further conditions on Y , one can replace Set by a more convenient
category.

(iii) If X is a smooth manifold, one can define a presheaf C∞ of smooth R-valued functions as
C∞(U) = C∞(U,R), and restrictions again just restrictions. One can view C∞ as a functor
on X valued in the commutative rings CRing.

The presheaf is by its definition very inbalanced, that is we can always go just ”more local”.
One can be sometimes interested in deducing some global properties from the local one. This leads
to the following notion:

Definition 1.4. Let F : Op(X)→ C be a presheaf on X with values in a concrete category C. In
particular, the objects of C form actual sets and the notion of local sections makes sense. We say
that F is a sheaf on X with values in C, if for any U ∈ Op(X) and any open cover U = {Ui}i∈I
of U , that is Ui ⊆ U and U = ∪i∈IUi, we have
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(A) Gluing axiom: Suppose we have a collection {si}i∈I of local sections, where si ∈ Γ(Ui,F),
such that they coincide on the overlaps, that is

ρUiUij (si) = ρ
Uj
Uij

(sj) (4)

for all i, j ∈ I, where Uij = Ui ∩ Uj . Note that this does include also the case Ui ∩ Uj = ∅.
Then there exists some section s ∈ Γ(U,F) such that si = ρXUi(s).

(B) Monopresheaf axiom: Suppose s, t ∈ Γ(U,F) are two local sections above U , such that
ρUUi(s) = ρUUi(t) for all i ∈ I. Then s = t.

For any s ∈ Γ(U,G), one often writes s|Ui for ρUUi(s).

There are several remarks in order.

Remark 1.5. (i) For any sheaf F : Op(X) → C, we have a special open subset ∅ ⊆ X. There
is thus a particular object F(∅) ∈ C. Now, let s ∈ Γ(∅,F). Moreover, an empty set has one
distinguished open cover - namely the one containing no sets at all (that is we have I = ∅).
Let s, t ∈ Γ(∅,F) be two local sections above ∅. The requirement in monopresheaf axiom
concerns all i ∈ ∅ and is thus always true. Hence s = t for any two local sections. It follows
that F(∅) = {∗} is a singleton in C. This is terminal object in every concrete category.

(ii) For sheaves valued in R-Mod or CRing, where each object has a unique zero element 0 and
addition and subtraction makes sense, one can replace the condition (B) with the following:

Suppose s ∈ Γ(F , U) satisfies s|Ui = 0 for all i ∈ I. Then s = 0.

(iii) Again, suppose F is valued in R-Mod or CRing. Then both axioms (A) and (B) can be
stated as follows. Suppose U ⊆ X is a non-empty subset, and let U = ∪i∈IUi. Define a pair
of morphisms ϕ : F(U)→ Πi∈IF(Ui) and ψ : Πi∈IF(Ui)→ Πi,j∈IF(Uij) as

ϕ(s) = (ρUUi(s))i∈I , (5)

ψ((si)i∈I) = (ρUiUij (si)− ρ
Uj
Uij

(sj))i,j∈I . (6)

Then (A) and (B) are true if and only if the sequence

0 F(U) Πi∈IF(Ui) Πi,j∈IF(Uij)
ϕ ψ

(7)

is exact. Indeed, the injectivity of ϕ is precisely the axiom (B). The gluing axiom (A) is
exactly the exactness in the in the second term.

Example 1.6. (1) Let us start with the most important example. Suppose π : E → X be a
surjective continous map. The sheaf Γ[E, π] on X is defined as

Γ[E, π](U) = {s : U → E | π ◦ s = 1U , s is continuous}. (8)

The restriction morphism is just the restriction. It is easy to see that Γ[E, π] is a sheaf of
sections of E. Its importance lies in the fact that every sheaf F on X is isomorphic to this
example for a certain π : E → X.

(2) Suppose E = X × Y , and let π : X × Y → X be the canonical projection. Every section
s ∈ Γ[E, π](U) thus must take the form s(x) = (x, f(x)), where f : U → Y is continous. The
assignment s 7→ f defines a morphism ϕU : Γ[E, π](U) → C0

Y (U). It is easy to see that ϕU is
natural in U and thus Γ[E, π] is a presheaf isomorphic to C0

Y . In particular, C0
Y is a sheaf.
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(3) Suppose E = X × Y , and let π : X × Y → Y be the canonical projection. This time, Y is an
arbitrary set which we can equip with a discrete topology. Again, every section s ∈ Γ[E, π](U)
must be of the form s(x) = (x, f(x)) for some function f : U → Y . It must be continuous
with respect to the discrete topology on Y . Let x0 ∈ U , and y0 = f(x0). Then {y0} is an
open subset of Y and thus V = f−1(y0) ⊆ U must be open. Every point x0 thus has an open
neighborhood V , such that f(V ) = {f(x0)}. These are called locally constant functions
on U .

We can thus form a sheaf ỸX of locally constant functions on X with values in Y :

ỸX(U) = {f : U → Y | f is locally constant}, (9)

where restrictions morphisms are just restrictions. To confuse everybody, ỸX is usually called
a constant sheaf on X with values in Y .

Beware! the constant sheaf ỸX is not the constant presheaf YX ! In fact, the presheaf YX is
not a sheaf unless Y = {∗}. This follows from Remark 1.5-(i), as YX(∅) must be the singleton
and at the same time YX(∅) = Y .

Definition 1.7. Let F : Op(X) → C be a presheaf (sheaf). Then for any open set U ⊆ X, one
may define a restricted presheaf (sheaf) F|U by simply restricting the functor F to the full
subcategory Op(U) ⊆ Op(X).

2 Directed limits

Definition 2.1. Let I be a set with a preorder ≤ (any transitive and reflexive binary relation).
We say I is a directed set, if for every i, j ∈ I, there exists k ∈ I, such that i ≤ k and j ≤ k.

We say that the subset J ⊆ I is cofinal in I, if for every i ∈ I, there exists some j ∈ J , such
that i ≤ j. Note that J is automatically a directed set. Indeed, let i, j ∈ J . As I is directed, there
must be k ∈ I, such that i, j ≤ k. But as J is cofinal, there must be some l ∈ J , such that k ≤ l.
Whence i, j ≤ l for some j ∈ J and J is directed.

Remark 2.2. It is useful to view I as a category I whose objects are elements of I and for each
i, j ∈ I, the morphism set I(i, j) consists of a single arrow if i ≤ j and is empty otherwise. Identity
arrow in I(i, i) exists due to the reflexivity of ≤ and arrows can be composed due to the transitivity
of ≤.

This viewpoint on the directed sets is useful in the following definition:

Definition 2.3. A direct mapping family indexed by I is a covariant functor F : I→ C, where
I is the category corresponding to the directed set I and C is an arbitrary category.

Equivalently, a direct mapping family is a collection {Fi}i∈I of objects in C and of morphisms
{ρij}i≤j , where ρij ∈ C(Fi, Fj), such that ρii = 1Fi for all i ∈ I and ρik = ρjk ◦ ρij for all i, j, k ∈ I
such that i ≤ j ≤ k. Clearly Fi = F (i) for all i ∈ I and ρij is the functor F evaluated on the
unique morphism in I(i, j) for i ≤ j.

Example 2.4. Let X be a topological space and let x ∈ X. Let Opx(X) denote the full subcate-
gory of open sets containing x. Take I = (Opx(X))op. For any two open sets U, V ⊆ X containing
x, the morphism set I(U, V ) consists of single arrow whenever V ⊆ U .

The directed set I corresponding to I is thus a set of all open subsets containing x with a
preorder U ≺ V whenever V ⊆ U .
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Now, let F : Op(X) → C be any presheaf on X with values in the category C. One can
restrict it to a contravariant functor Fx : Opx(X) → C, and thus define the covariant functor
Fx : (Opx(X))op → C. This defines a direct mapping family indexed by I.

Definition 2.5. Let F : I → C be a direct mapping family. We assume that C is some well-
behaved category like R-Mod or CRing or Set, so that the following operations make sense. A
direct limit lim−→i∈I Fi is an object in C defined by formula

lim−→
i∈I

Fi =
⊔
i∈I

Fi/ ∼, (10)

where
⊔

denotes the disjoint union of the (sets) Fi and the relation ∼ is defined as follows. Suppose
fi ∈ Fi and fj ∈ Fj . Then fi ∼ fj if and only if there exists k ∈ I, such that i ≤ k and j ≤ k,

such that ρik(fi) = ρjk(fj).

The relation ∼ is clearly reflexive and symmetric, one only has to think a bit about transitivity.
If fi ∼ fj and fj ∼ fk, there are thus m, l ∈ I such that i, j ≤ m and j, k ≤ l. But as I is directed,
there is also r ∈ I, such that m, l ≤ r. We will show that ρir(fi) = ρkr (fk), which would prove the
desired claim fi ∼ fk. But one has

ρir(fi) = ρmr (ρim(fi)) = ρmr (ρjm(fj)) = ρjr(fj) = ρnr (ρjn(fj)) = ρnr (ρkn(fk)) = ρkr (fk). (11)

This proves the transitivity. Let εi : Fi →
⊔
i∈I Fi be the canonical inclusion, and let πi : Fi →

lim−→i∈I Fi be its composition with the quotient map. Suppose i ≤ j. We claim that the diagram

Fi Fj

lim−→i∈I Fi

ρij

πi πj
(12)

commutes. This amounts to showing ρij(fi) ∼ fi for all fi ∈ Fi. But this is obvious. If we would
draw this diagram for all i ∈ I and connected everything with appropriate arrows, the resulting
picture is called a colimiting cone, and lim−→i∈I Fi is in fact a colimit of the functor F : I→ C.

We have not shown that lim−→i∈I Fi is actually an object in C. This is true for certain categories.

Let us demonstrate that this is true for C = R-Mod. Let [fi] and [fj ] be two elements of lim−→i∈I Fi.

As I is directed, there is k ∈ I, such that i, j ≤ k. Then ρik(fi), ρ
j
k(fj) ∈ Fk and we may define

[fi] + [fj ] = [ρik(fi) + ρjk(fj)] (13)

Using the same trick as for the above proof of transitivity, one shows that this is well-defined. Zero
element is [0i] for any i ∈ I. This makes sense as [0Y ourlocationi] = [0j ] for any i, j ∈ I. Finally,
−[fi] = [−fi]. This gives us a structure of Abelian group on lim−→i∈I Fi. The R-multiplication is

defined as r · [fi] = [r · fi] for all r ∈ R. Similar proof works for C ∈ {CRing,Grp,Ab}, etc.
However, the most important property of the direct limit is its characteristic universal property,
stated as a proposition:

Proposition 2.6 (Universality property). Suppose we have an object G ∈ C and a collection
of morphisms θi ∈ C(Fi, G) for each i ∈ I, such that for every i ≤ j, the diagram

Fi Fj

G

ρij

θi θj (14)
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commutes. Then there is a unique morphism ϕ ∈ C(lim−→i∈I Fi, G), such that ϕ ◦ πi = θi for all

i ∈ I. In other words, the following diagram is commutative for every i ≤ j:

Fi Fj

lim−→i∈I Fi

G

ρij

πi

θi

πj

θj

ϕ

. (15)

In particular, lim−→i∈I Fi is the unique colimit of the functor F , up to an isomorphism.

Proof. Suppose G ∈ C and {θi}i∈I satisfy the above properties. Define ϕ([fi]) = θi(fi). This is
the only ϕ satisfying ϕ ◦ πi = θi. We only have to show that it is well-defined. Suppose fi ∼ fj .

Then there exists k ∈ I, such that i, j ≤ k, and ρik(fi) = ρjk(fj). Then

θi(fi) = θk(ρik(fi)) = θk(ρjk(fj)) = θj(fj). (16)

For the uniqueness of a colimit - if G and a collection of θi : Fi → G would have the same uni-
versality property, then we can first construct a unique map ϕ : lim−→i∈I Fi → G by the universality

proved in this proposition, but also a map ψ : G → lim−→i∈I Fi by the universality of G. But the

uniqueness then also forces ϕ ◦ ψ = 1 = ψ ◦ ϕ. �

To show that something is (isomorphic to) the direct limit, one only has to prove the universal
property. We obtain the following useful criterion:

Proposition 2.7. Let F : I → C be a direct mapping family in a suitable category C. Suppose
G ∈ C and there is a family {θi}i∈I of morphisms θi : Fi → G, such that θi = θj ◦ ρij whenever
i ≤ j. Suppose the following two properties hold:

(i) For any g ∈ G, there is some i ∈ I and some fi ∈ Fi, such that g = θi(fi);

(ii) For all i, j ∈ I and for any fi ∈ Fi and any fj ∈ Fj, we have

θi(fi) = θj(fj), iff there exists k ∈ I, such that i, j ≤ k and ρik(fi) = ρjk(fj). (17)

Then G is (isomorphic) to the direct limit of the direct mapping family F .

Proof. We only have to prove the universal property. Whence suppose, there is an object H ∈ C
together with the family of morphisms {ηi}i∈I , such that ηi ∈ C(Fi, H) and ηi = ηj ◦ ρij whenever
i ≤ j. We must construct a unique map ϕ : G→ H satisfying ηi = ϕ ◦ θi for all i ∈ I.

By property (i) above, to any g ∈ G, there is some i ∈ I and fi ∈ Fi, such that g = θi(fi). The
only way (this proves its uniqueness) to define ϕ is ϕ(g) = (ϕ ◦ θi)(fi) := ηi(fi). Only has to show
that it is well-defined. If there are i, j ∈ I, such that g = θi(fi) = θj(fj), we can use (ii) to find

k ∈ I, such that i, j ≤ k and ρik(fi) = ρjk(fj). But then

ηi(fi) = ηk(ρik(fi)) = ηk(ρjk(fj)) = ηj(fj). (18)

Note that ”if” part of (ii) does not have to be checked - it works for any G and θi satisfying
θi = θj ◦ ρij whenever i ≤ j. �
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Example 2.8. Suppose C = R-Mod. There is another common way to obtain the direct limit.
First, construct a direct sum H =

⊕
i∈I Fi. This can be viewed as a space of formal finite sums

of elements from the R-modules Fi. One than constructs the ideal I (with respect to the Abelian
group structure on H), generated by the set

S = {fi − ρij(fi) | fi ∈ Fi, i ≤ j} (19)

Fefine G = H/I. For each i ∈ I, let θi : Fi → G denote the composition of the canonical inclusion
νi : Fi → H with the canonical quotient map H → H/I.

First, let us show that for i ≤ j, one has θi = ρij ◦ θj . For any fi ∈ Fi, one has, from its

definition, νi(fi)− νj(ρij(fi)) ∈ I. But this means that θi(fi)− θj(ρij(fi)) = 0. Now, let us prove
the universal property of G together with the collection θi : Fi → G.

Let K ∈ R-Mod and let ηi : Fi → K be the morphisms, such that ηi = ρij ◦ ηj whenever i ≤ j.
We must prove the existence of a unique R-module morphism ϕ : G → K. Let us define a map
ϕ̂ : H → K by a requirement ϕ̂ ◦ νi = ηi for all i ∈ I. As the direct sum is in fact a coproduct
in the category R-Mod, this defines a unique R-module morphism ϕ̂ : H → K. Now, note that
I ⊆ ker(ϕ̂). It suffices to show that S ⊆ ker(ϕ̂). But that is clear, as for every fi ∈ Fi and i ≤ j:

ϕ̂(fi − ρij(fi)) ≡ ϕ̂(νi(fi)− νj(ρij(fi)) = ηi(fi)− ηj(ρij(fi)) = 0. (20)

It follows that ϕ̂ induces a unique R-module morphism ϕ : G ≡ H/I → K fitting into the diagram

H

G K

ϕ̂

ϕ

. (21)

In particular, it follows that ϕ ◦ θi = ηi and ϕ is a unique such morphism.

Note that one can easily construct the explicit form of the isomorphism ϕ : lim−→i∈I Fi → G, we

simply map the class [fi] ∈
⊔
i∈I Fi/ ∼ onto the class fi + I ∈

⊕
i∈I Fi/I. Conversely, each class

in
⊕

i∈I Fi/I is represented by a formal finite sum of fi1 + · · · + fiN , where fiµ ∈ Fik for every
µ ∈ {1, . . . , N}. Its image under the inverse ϕ−1 : G→ lim−→i∈I Fi is the finite sum [fi1 ]+ · · ·+[fiN ].

The construction works for every category where direct sum and quotients by ideals make sense,
in particular in Ab or CRing or Vect.

To finish this section, we need to study what happens with direct limits with respect to the
natural transformations of the involved functors.

Definition 2.9. Let I and J be two directed sets, viewed as categories I and J. An order
preserving map τ : I → J is an object function of a functor τ : I → J. Let F : I → C and
G : J→ C be two direct mapping families indexed by I and J , respectively.

By morphism of direct mapping families, we mean a pair (ϕ, τ), where τ is an order
preserving map and ϕ is a natural transformation from the functor F to the functor G ◦ τ .

Let us decipher this rather compact definition. An order preserving map satisfies τ(i) ≤ τ(j)
whenever i ≤ j. This corresponds to the fact that i ≤ j iff there is an arrow in I(i, j) and τ as a
functor must map it to the (unique) arrow in J(τ(i), τ(j)). Now, a natural transformation ϕ from
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F to G ◦ τ consists of a morphism ϕi : Fi → (G ◦ τ)i = Gτ(i) for each i ∈ I, such that the following
diagram commutes for any i ≤ j:

Fi Gτ(i)

Fj Gτ(j).

(ρF )ij

ϕi

(ρG)
τ(i)

τ(j)

ϕj

(22)

We expect that the direct limit construction somehow reflects this. And it does.

Proposition 2.10. Let (ϕ, τ) be a morphism of direct mapping families F : I→ C and G : J→ C.
Then there is a unique morphism Φ : lim−→i∈I Fi → lim−→j∈J Gj, such that the diagram

Fi Gτ(i)

lim−→i∈I Fi lim−→j∈J Gj

ϕi

πFi πGτ(i)

Φ

(23)

commutes for all i ∈ I. The vertical arrows are the inclusions from the definition of lim−→. We say
that Φ is a direct limit of the family {ϕi}i∈I and write Φ = lim−→i∈I ϕi.

Proof. We will use the universality property or lim−→i∈I Fi to construct (the unique) Φ. Let θi =

πGτ(i) ◦ ϕi. We only have to show that whenever i ≤ j, one has θi = θj ◦ (ρF )ij . Then

θj ◦ (ρF )ij = πGτ(j) ◦ ϕj ◦ (ρF )ij = πGτ(j) ◦ (ρG)
τ(i)
τ(j) ◦ ϕi = πGτ(i) ◦ ϕi = θi. (24)

The rest of the proof is just the universality - there must exist a unique Φ : lim−→i∈I Fi → lim−→j∈J Gj

satisfying Φ ◦ πFi = θi = πGτ(i) ◦ ϕi. This is the commutativity of (23). �

We will now prove one very useful tool for a calculation of limits. We will prove it in a slightly
more general setting. Note that we modify a definition of final functor so that it will fit into the
framework of cofinal sets, calling it a filtered functor. The original statement and definition of a
final functor are different, see e.g. [3]. We have replaced a requirement of non-empty and connected
comma category by filtered.

Definition 2.11. Let L : J→ I be a functor. One says that L is a filtered functor, if the comma
category (i ↓ L) is filtered for every object i ∈ I. Let us unfold this definition:

(i) For any i ∈ I, there must exist an object j ∈ J together with an arrow u ∈ C(i, L(j)). This
correspond to the fact that the filtered category (i ↓ L) must be non-empty.

(ii) Suppose (j, u) and (j′, u′) be two such pairs. There must exist an object k ∈ J and an arrow
m ∈ I(i, L(k)) together with a pair of morphisms h ∈ J(j, k) and h′ ∈ J(j′, k) such that the
following diagram commutes:

i i i

L(j) L(k) L(j′).

1i

u m

1i

u′

L(h) L(h′)

(25)

This is precisely the filtration property - pairs (j, u) and (j′, u′) are objects in (i ↓ L). There
must exist a third object (k,m) together with a pair of morphisms (j, u) → (k,m) and
(j′, u′)→ (k,m). But in (i ↓ L), those are exactly h and h′ fitting into the above diagram.
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(iii) Suppose (j, u) and (j′, u′) be two such pairs, and let h, h′ ∈ J(j, j′) be two morphisms both
satisfying L(h) ◦ u = u′ and L(h′) ◦ u = u′. Then there is an object k ∈ J together with
morphisms m : i→ L(k) and n : L(j′)→ L(k), such that L(n) ◦ u′ = m and n ◦ h = n ◦ h′.
This corresponds to the fact that to any objects (j, u) and (j′, u′) any pair of parallel arrows
between them (corresponding to h and h′ and their interplay with u and u′), there is an
object (k,m) together with a morphism from (j′, u′) to (k,m), such that it coequalizes the
parallel arrows.

Example 2.12. Suppose I is preodered subset, and let J be a directed subset inheriting the
preorder. We can view them as two categories I and J together with the inclusion functor L : J→ I.
Then L is a filtered functor if and only if J is a cofinal subset of I.

Indeed, the property (i) corresponds to the fact that to any i ∈ I, there exists j ∈ J , such that
i ≤ L(j). This forces J to be cofinal in I. The property (ii) says that if we find another such
j′ ∈ J , there must be some k ∈ J , which also satisfies i ≤ L(k) and moreover j ≤ k and j′ ≤ k. For
this we use the fact that J is directed and k is a common upper bound for j and j′. Then certainly
L(j) ≤ L(k) and L(j′) ≤ L(k) as L is the functor and from transitivity of ≤ also i ≤ L(k).

The property (iii) is in this case trivial, as by construction every two parallel arrows in J(j, j′)
are already equal. It thus suffices to choose k = j′ and n = 1j′ .

Theorem 2.13. Suppose L : J → I is a filtered functor, and let F : I → C be any functor. Let
FL = F ◦ L be the composed functor FL : J→ C and suppose there exists c = colim(FL) ∈ C.

Then there exists also colim(F ) and as an object of C it equal to c.

Proof. Recall that a colimit c = colim(FL) is an object together with a coliming cone πj : FL(j)→ c
for all j ∈ J , such that π : FL → ∆(c) is a natural transformation from FL to a constant functor
∆(c), together with a universal property.

For every i ∈ I, there must by assumption on L exist an object j ∈ J together with an arrow
u ∈ I(i, L(j)). We thus have an arrow F (u) ∈ C(F (i), FL(j)). By composing it with a cone map
πj : FL(j)→ c, we obtain a morphism θi = πj ◦F (u) ∈ C(F (i), c). We claim that θ is a colimiting
cone for F : I→ C.

First, we have to argue that θi is well-defined. Let j′ ∈ J and u′ ∈ I(i, L(j′)) be another such
combination. We have to show that πj ◦ F (u) = πj′ ◦ F (u′). By property (ii), there is an object
k ∈ J together with an arrow m ∈ I(i, L(k)), and a pair of morphisms h ∈ J(j, k) and J(j′, k) such
that m = L(h) ◦ u = L(h′) ◦ u′.

As π : FL → ∆(c) is a limiting cone, its naturality implies πj = πk ◦ FL(h). We thus have

πj ◦ F (u) = πk ◦ FL(h) ◦ F (u) = πk ◦ F (L(h) ◦ u) = πk ◦ F (m) = · · · = πj′ ◦ F (u′). (26)

This proves that the definition of θi does not depend on the choice of j. We must prove that
θ : F → ∆(c) is a natural transformation. Suppose q ∈ I(i, i′). We must show that θi = θi′ ◦F (q).
Find j′ ∈ J and u′ ∈ I(i′, L(j′)) by property (i) for the object i′ ∈ I. It follows that the object
j′ ∈ J and u′ ◦ q ∈ I(i, L(j′)) is also fine for the definition of θi. Then

θi = πj′ ◦ F (u′ ◦ q) = (πj′ ◦ F (u′)) ◦ F (q) = θi′ ◦ F (q). (27)

Whence θ : F → ∆(c) is a natural transformation and thus a cone for F . It suffices to prove its
universality. Let η : F → ∆(d) be any cone over d ∈ C with the base F . In other words, we have
natural maps ηi : F (i)→ d. As L is a functor, we may define another cone χj = ηL(j) : FL(j)→ d,
which is by construction natural in j. By universality of π : FL → ∆(c), there is a unique arrow
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k ∈ C(c, d), such that k ◦ πj = χj for all j ∈ J. Now, for any i ∈ I, there is j ∈ J together with an
arrow u ∈ I(i, L(j)). Then

k ◦ θi = k ◦ (πj ◦ F (u)) = (k ◦ πj) ◦ F (u) = χj ◦ F (u) = ηL(j) ◦ F (u) = ηi. (28)

Whence k ◦ θi = ηi. Now, k obtained in this way is unique. Indeed, if this property hold for any
i ∈ I, it must hold for i = L(j) and any j ∈ J. But θL(j) = πj and ηL(j) = χj . A different k would
then contradict the uniqueness of k in the equation k ◦ πj = χj . Hence, there is a unique arrow
k ∈ C(c, d), such that k ◦ θi = ηi for all i ∈ I. This proves the universal property and we conclude
that c = colim(F ). �

Remark 2.14. Note that we have not used the property (iii) of a filtered functor. The assumptions
on L can be taken to be just (i) and (ii).

Corollary 2.15. Let I be any collection with a preorder ≤ which is directed. Note that I does
not have to be a set, which is important. Let J ⊆ I be a cofinal subset of I. Let I and J be the
corresponding categories, and let F : I → C be a functor valued in some suitable category (e.g.
R-Mod, CRing or Grp). Then there exists a directed limit lim−→i∈I Fi and can be taken equal to

the direct limit lim−→j∈J Fj taken over the subset J ⊆ I.

Moreover, the coliming cone πi : Fi → lim−→j∈J Fj can be constructed as follows. As J is cofinal,

there exists j ∈ J , such that i ≤ j. There is thus a map

πJ
j : Fj → lim−→

j∈J
Fj , (29)

and a map ρij : Fi → Fj. Then πi = πJ
j ◦ ρij. This expression is independent of j used. The rest is

a trivial application of the above theorem.

Proof. Recall that a directed limit lim−→i∈I Fi in the case when I is not a set is just some object

G ∈ C together with a bunch of maps πi : Fi → G, together with the universal property. We
cannot define G by the formulas above as e.g. the disjoint union over a proper class I would not
define a set. However, if J ⊆ I is cofinal in I, the inclusion functor L : J → I is filtered, as we
have discussed in Example 2.12. �

3 Open covers of a topological space

Let us first talk a little bit about open covers of topological spaces. By open cover U of a topological
space X, we mean a collection {Uα}α∈A, such that X =

⋃
α∈A Uα. It is useful to thing of open

covers as maps A→ τ(X) ⊆ 2X , where τ(X) is the topology of X viewed as a subset of the power
set 2X of all subsets of X. The collection {Uα}α∈A ⊆ τ(X) is then just an image of this map.

Definition 3.1. Let U = {Uα}α∈A and V = {Vβ}β∈B be two open covers. We say that V is a
refinement of U , if there is a map τ : B → A, such that Vβ ⊆ Uτ(β) for all β ∈ B. We will use
the notation U ≺ V.

Proposition 3.2. The relation ≺ is reflexive and transitive. For any open covers U and V, there
is an upper bound W, that is an open cover such that U ,V ≺ W.

Proof. The reflexivity and transitivity are obvious. Let U = {Uα}α∈A and V = {Vβ}β∈B . Define
their common refinement as W = {W(α,β)}(α,β)∈A×B , where W(α,β) = Uα ∩ Vβ . Let πA :
A × B → A and πB : A × B → B be the two projections. Certainly W(α,β) ⊆ UπA(α,β) and
W(α,β) ⊆ VπB(α,β). This proves that U ,V ≺ W. �
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Remark 3.3. The common refinement can be constructed for any (including infinite) set of open
covers. Indeed, suppose S is any set and we have a collection {Uσ}σ∈S of open covers. We have
Uσ = {Uσασ}ασ∈Aσ for some indexing sets Aσ. One can define A =

∏
σ∈S Aσ. A consists of

sequences (ασ)σ∈S . Define V(ασ) =
⋂
σ∈S U

σ
ασ and form an open cover W = {V(ασ)}(ασ)∈A. For

each σ ∈ S, there is a projection πσ : A → Aσ and V(ασ′ )
⊆ Uπσ((ασ′ ))

for every σ ∈ S. In orther
words, Uσ ≺ W for all σ ∈ S.

As for any preorder, we may induce an equivalence relation: U � V, iff U ≺ V and V ≺ U .
Note that is not true that if U � V, then the collections {Uα}α∈A and {Vβ}β∈B coincide as subsets
of τ(X). Indeed, any two open covers containing the whole space X are equivalent, but otherwise
they can consist of different open sets. However, the converse is clearly true.

There is a certain set-theoretic problem with open covers we have just defined. Indeed, let
OpC(X) be the collection of all open covers of X. We claim that it is not a set. In fact, we
may use the preorder ≺ to make it into a category (hence the bold letters). We may then define
a contravariant functor S : OpC(X) → Set which assigns to each open cover {Uα}α∈A the
corresponding indexing set, that is S(U) = A. For U ≺ V there is a unique arrow from U to V, to
which S assigns a map τ : S(V)→ S(U) from the definition of refinement.

If OpC(X) would be a set, then the image S(OpC(X)) must be a set. The map S is surjective,
as to any A ∈ Set, we may assign an open cover Uα = X for all α ∈ A. Thus S(OpC(X)) = Set,
which is not a set. It follows that OpC(X) must be a proper class.

We find that one cannot just take the direct limit of a direct mapping family F : OpC(X)→ C
because it is not a set. There is a workaround, where we consider only a certain subset of OpC(X).
This is an idea of Serre from [4].

Proposition 3.4 (Serre). Every open cover U is equivalent to some open cover whose indexing
set is some subset of 2X . Let OpCS(X) ⊆ OpC(X) denote this subset.

Proof. Let U = {Uα}α∈I be any open cover. Let N = {U ∈ τ(X) | U = Uα for some α ∈ I}. Then
N ⊆ τ(X) ⊆ 2X . Then define a collection V = {VU}U∈N , where VU = U (this is stupid, i know).
Let us show that U � V.

First, for every U ∈ N , there is some αU ∈ I, such that U = UαU . If we define τ : N → I
as τ(U) = αU , we have VU = U = Uτ(U). This proves U ≺ V. Conversely, define τ ′ : I → N as
τ ′(α) = Uα ∈ N . Then, obviously Uα = Vτ ′(α). This proves V ≺ U and thus U � V. �

Note that in particular, the set OpCS(X) is cofinal in OpC(X). We can thus use Corollary
2.15 and calculate all direct limits of functors F : OpC(X)→ C by calculating the direct limit of
its restriction to OpCS(X).

However, for a nice topological spaces, there are even more useful cofinal subsets. For example,
if X is so called Lindelöf space, every open cover has a countable subcover. Although it seems
strange under the usual perception of refinement, every subcover is a refinement of the original
cover. To see this, it suffices to properly state what is a subcover.

Definition 3.5. Let U = {Uα}α∈A be an open cover of X. By a subcover V of U , we mean a
choice of a subset K ⊆ A, such that V = {Uα}α∈K is still an open cover of X. One sometimes
writes just V ⊆ U as it makes sense when viewing U and V as subsets of τ(X).

Nor, let τ : K → A be the inclusion of the subset K into A. Then for any α ∈ K, one has
Uα = Uτ(α). In other words, V is a refinement of U and U ≺ V.

Proposition 3.6. If V ⊆ U , then U ≺ V.
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Proposition 3.7. Let X be a Lindelöf space. Then the set OpCN(X) of countable covers is cofinal
in OpC(X). In particular, the direct limit of any functor F : OpC(X)→ C can be calculated over
the subset of countable covers.

Proof. In a Lindelöf space, every open cover U has a countable subcover V ⊆ U . Whence U ≺ V
by previous proposition. The rest is Corollary 2.15. �

Let A be any indexing set. One can always assume that there is a well total order ≤ on A. This
is a consequence of the famous well-ordering theorem. Just for the sake of fun, let us recall the
definitions and its proof here.

Definition 3.8. Let A be any set. A binary relation ≤ is said to be a well total order on A, if

(i) ≤ is a total order, that is it has the following properties:

• antisymmetry: if α ≤ β and β ≤ α, then α = β;

• transitivity: if α ≤ β and β ≤ γ, then α ≤ γ;

• connex property: either α ≤ β or β ≤ α.

(ii) ≤ is a well order, every non-empty subset K ⊆ A has a least element, that is there is κ ∈ K,
such that κ ≤ α for all α ∈ K.

Note that a least element in any non-empty subset K is unique. Indeed, if there is some other
least element κ′ ∈ K, we have either κ ≤ κ′ or κ′ ≤ κ be the connex property. But as both κ
and κ′ are least elements, we have both κ ≤ κ′ and κ′ ≤ κ, whence κ′ = κ from the antisymmetry
property of the relation ≤. Moreover, each element α has a unique ”larger neighbor” β, that α ≤ β
and whenever α ≤ γ for some γ, then β ≤ γ. Indeed, simply take K = {γ ∈ A | α ≤ γ} and take
β to be its unique least element.

Theorem 3.9 (Well-ordering theorem). On every set A, there exists a well order ≤.

Proof. This is an application of Zorn’s lemma. Let A be a given set. Set A be the set of pairs
(K,≤K), where K ⊆ A and ≤K is a well order on K. Then A is non-empty as one-point set {α}
can be trivially well-ordered.

Moreover, there is a partial order � on A. We say that (K,≤K) � (L,≤L) iff K ⊆ L, ≤K
coincides with ≤L on K and K is an initial segment of L, that is whenever α ∈ K and β ≤L α,
then β ∈ K. Clearly, it is reflexive. Suppose (K,≤K) � (L,≤L) and (L,≤L) � (M,≤M ). The
transitivity of the set inclusion relation shows that K ⊆M and obviously, ≤K coincides with ≤M
on K. Let α ∈ K and let β ∈ M satisfy β ≤ α. As K ⊆ L, we have α ∈ L and as L is an initial
segment of (M,≤M ), we have β ∈ L. As K is an initial sgment of (L,≤L), we have β ∈ K. This
shows that K is an initial segment of (M,≤M ) and thus (K,≤K) � (M,≤M ).

Now, let Z ⊆ A be a chain in A. Let R = ∪K∈ZK be the union of the sets in Z. For all
α, β ∈ R, we say that α ≤R β if there is K ∈ Z, such that α, β ∈ K and α ≤K β. First, we claim
that ≤R is a total order on R.

• Antisymmetry: let α ≤R β and β ≤R α. There are thus K,L ∈ Z, such that α, β ∈ K and
α, β ∈ K and α ≤K β and α, β ∈ L and β ≤L α. As Z is a chain, either K ⊆ L or L ⊆ K.
Without the loss of generality, suppose K ⊆ L. Then α ≤K β coincides with ≤L on K and
thus also α ≤L β. By antisymmetry of the total order ≤L, we have α = β.
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• Transitivity: let α ≤R β and β ≤R γ. There are thus K,L ∈ Z, such that α, β ∈ K and
β, γ ∈ L, such that α ≤K β and β ≤L γ. Using the same reasoning as above, either K ⊆ L
or L ⊆ K. Again, suppose the first case is true, whence α ≤K β implies α ≤L β and the
transitivity of ≤L implies α ≤L γ. We have thus found L ∈ Z, such that α, γ ∈ L and
α ≤L γ. Hence α ≤R γ.

• Connex property: Let α, β ∈ R. As R is a union of the sets in Z, we have α ∈ K and β ∈ L
for some K,L ∈ Z. Again, either K ⊆ L or L ⊆ K. Suppose K ⊆ L. But then α, β ∈ L
and as ≤L is a total order, either α ≤L β or β ≤L α. But this means that either α ≤R β or
β ≤R α. The option L ⊆ K is analogous.

Whence (R,≤R) is a total order. We have to show that it is well-ordered. Let S ⊆ R be a non-
empty subset. There is thus some K ∈ Z, such that S ∩K 6= ∅. As S ∩K ⊆ K is a non-empty
subset of the well order (K,≤K), there is some element α0 ∈ S ∩ K, such that α0 ≤K β for all
β ∈ S ∩K. Now, let β ∈ S be an arbitrary element.

There is thus some L ∈ Z, such that β ∈ S ∩ L. Either K ⊆ L or L ⊆ K. If L ⊆ K, then
β ∈ S ∩K and thus α0 ≤K β and consequently α0 ≤R β. When K ⊆ L, we can compare α0 with
β in L. If α0 ≤L β, we are finished, as then α0 ≤R β. Suppose β ≤L α0. But as K is an initial
segment of L and α0 ∈ K, one has β ∈ K. As α0 is the least element in S ∩K, we have α0 ≤K β.
In fact, this proves that α0 = β from the antisymmetry of ≤K .

This proves that (R,≤R) is a well total ordered subset of A, that is (R,≤R) ∈ A.

Moreover, we claim that (K,≤K) � (R,≤R) for all K ∈ Z. Clearly K ⊆ R and both orderings
coincide on K. We only have to prove that K is an initial segment of R. Let α ∈ K and let β ≤R α
for some β ∈ R. There is thus some L ∈ Z, such that α, β ∈ L and β ≤L α. If L ⊆ K, we have
β ∈ K, as was to be proved. If K ⊆ L, we use the fact that K is an initial segment of L and thus,
again, β ∈ K.

We have just prove that every chain Z has an upper bound (R,≤R) ∈ A. From Zorn’s lemma,
there is thus some maximal element (B,≤B) ∈ A. We claim that B = A. Suppose there is x ∈ A,
such that x /∈ B. Let K = B ∪ {x}, and declare b ≤K x for all b ∈ B, and x ≤K x. It is easy
to see that (K,≤K) is a well totally ordered subset of A, such that (B,≤B) � (K,≤K). But this
contradicts the maximality of B, whence B = A and (B,≤B) is the required well total ordering
on A. The proof is finished. �

4 Čech cohomology

In this section, assume that C = R-Mod, where R is a fixed unital commutative unital ring. Let
F : Op(X)→ R-Mod be any presheaf.

To avoid some unpleasant difficulties, we always assume that F(∅) = 0. In fact, for these
reasons, one redefines the constant presheaf GX to give GX(U) = G for all non-empty U ∈ Op(X)
and GX(∅) = 0, where the restriction maps ρU∅ are trivial maps from G to 0.

Now, let U = {Uα}α∈A be a given open cover. We write

Uα0...αp := Uα0
∩ · · · ∩ Uαp , (30)

for any (p+ 1)-tuple (α0, . . . , αp) ∈ Ap+1. We allow for repeated indices. Next, one writes

Uα0...α̂j ...αp = Uα0 ∩ · · · ∩ Ûαj ∩ · · · ∩ Uαp , (31)
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where the hat denotes the omission of the j-th set from the intersection. As a convention, we
declare the intersection of ”no sets” to be X, that is for example Uα̂0

= X for any α0 ∈ A.

Now, for any (α0, . . . , αp) ∈ Ap+1, there is a (p+ 1)-tuple of inclusion maps

δpj : Uα0...αp → Uα0...α̂j ...αp , j ∈ {0, . . . , p}. (32)

In particular, for p = 0, there is a single map δ0
0 : Uα0

→ X. For p = 1, there are two maps:

δ1
0 : Uα0α1

→ Uα1
, δ1

1 : Uα0α1
→ Uα0

. (33)

Definition 4.1. Let X be a topological space together with its open cover U = {Uα}α∈A. Let
F : Op(X) → R-Mod be a presheaf. The R-module Cp(U ,F) of Čech p-cochains with values
in the presheaf F corresponding to the open cover U is defined as

Cp(U ,F) =
∏

(α0,...,αp)∈Ap+1

F(Uα0...αp). (34)

Every element ω ∈ Cp(U ,F) is thus a sequence (ωα0...αp)(α0,...,α0)∈Ap+1 .

As F is a presheaf, to each inclusion map δpj : Uα0...αp → Uα0...α̂j ...αp , there is a restriction

morphism F(δpj ) : F(Uα0...α̂j ...αp)→ F(Uα0...αp). Let us write ρjα0...αp ≡ F(δpj ). We can use those

map to define the coboundary operators δpF : Cp(U ,F)→ Cp+1(U ,F) as

(δpF (ω))α0...αp+1
=

p+1∑
j=0

(−1)jρjα0...αp+1
(ωα0...α̂j ...αp), (35)

for every ω ∈ Cp(U ,F). It is an easy combinatorics to show that δp+1
F ◦ δpF = 0. Note that the

explicit writting of the restriction maps is sometimes omitted. However, note that this practice
can be dangerous as it certainly does happen that Uα0...αp = ∅, and consequently F(Uα0...αp) = 0.

We have thus obtain the Čech cochain complex (C•(U ,F), δ•F ).

Definition 4.2. Given a topological space X and an open cover U = {Uα}α∈A. The p-th Čech co-
homology group Ȟ

p
(U ,F) with values in the presheaf F is the cohomology group corresponding

to the Čech cochain complex, that is

Ȟ
p
(U ,F) = Zp(U ,F)/Bp(U ,F), (36)

where Zp(U ,F) = ker(δpF ) and Bp(U ,F) = im(δp−1
F ). Let G ∈ R-Mod be a fixed R-module.

Classical Čech cohomology groups Ȟ
p
(U , G) are defined as Čech cohomology of the constant

presheaf GX , where we assume GX(∅) = 0.

Let us examine a little bit the 0-th Czech cohomology Ȟ
0
(U ,F). Recall that one has

C0(U ,F) =
∏
α∈A
F(Uα), (37)

and δ0
F : C0(U ,F)→ C1(U ,F) is defined for ω ∈ C0(U ,F) as

(δ0
F (ω))αβ = ρ0

αβ(ωβ)− ρ1
αβ(ωα) ≡ ρUβUαβ (ωβ)− ρUαUαβ (ωβ). (38)
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By definition, one has Ȟ
0
(U ,F) = Z0(U ,F). We have just shown that every ω ∈ Ȟ

0
(U ,F) consists

of a {ωα}α∈A, where ωα ∈ Γ(Uα,F) are local sections of F above Uα, such that ωα and ωβ coincide
when restricted to the intersection Uα ∩ Uβ for any α, β ∈ A. Recall that we have a sequence

0 Γ(X,F) C0(U ,F) C1(U ,F),r δ0F (39)

where r : Γ(X,F) → C0(U ,F) is the restriction map included by inclusions δ0
0 : Uα0 → X. We

have already argued that if F forms a sheaf, this sequence is exact.

Proposition 4.3. If F is a sheaf, then r : Γ(X,F) → C0(U ,F) defines an isomorphism of

Γ(X,F) with Ȟ
0
(U ,F). In particular, the 0-th Čech cohomology Ȟ

0
(U ,F) does not depend on the

open cover U .

Note that presented definition of Čech cochains has some significant inconvenience. One as-
sumes arbitrary p-tuples (α0, . . . , αp) with possible repetition. The space of cochains thus grows
significantly. In particular, even in the trivial case X =

⊔
α∈A Uα, with empty two-fold intersec-

tions, we still have non-zero Cp(U ,F) for any p. For this reason it is useful to consider a certain
subcomplex.

Definition 4.4. We say that ω ∈ Cp(U ,F) is an alternating cochain if ωα0...αp = 0 whenever
two of the indices are equal, and one has ωα0...αp = sgn(σ) · ωασ(0)...ασ(p) for any permutation σ
of the set {0, . . . , p}. Note that sgn(σ) has sense as R is assumed unital and thus contains an
additive inverse −1 of the multiplicative unit 1. The submodule of alternating cochains is denoted
as C ′p(U ,F).

It is readily checked that δpF maps alternating cochains into alternating cochains, whence

(C ′•(U ,F), δ•F ) forms a subcomplex whose cohomology is denoted as Ȟ
′p

(U ,F). It would be great
if one could calculate the full Čech cohomology groups in this way. Lucky enough, this is true.
Before proving so, let us reformulate some definitions here slightly differently. We have to devote
a full section to its proof.

5 Abstract simplicial homology

Let K be any set. By a simplicial complex with vertices K, we mean a collection S ⊆ 2K of
finite subsets of K, called simplices, such that

(i) For every vertex v ∈ K, one has {v} ∈ S. In other words, every vertex is a simplex.

(ii) For every simplex s ∈ S, every its non-empty subset s′ ⊆ s is also in S. Subsets s′ are called
faces of s.

Every simplex is uniquely determined by its vertices. If it is formed out of (q+1)-vertices, it is called
a q-simpled. As K sits inside S as 0-simplices, every simplicial complex is uniquely determined by
a set of its simplices. We will often write just K.

(a) Let K be any set. Then the set of all non-empty finite subsets of K forms a simplicial complex.

(b) For any simplex s ∈ K, the set of all its faces (including s itself) forms a simplicial complex
denoted as s̄.
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(c) Let K1 and K2 be two simplicial complexes. We define their join K1 ∗K2 as a collection

K1 tK2 t {s1 t s2 | s1 ∈ K1, s2 ∈ K2}. (40)

The most common join is K1 ∗ {w}, where {w} is viewed as a simplicial complex with a single
0-simplex. As an example, let K1 = {{v0}, {v1}, {v0, v1}} consist of two 0-simplices and one
1-simplex. Then K1 ∗ {w} is the collection

K1 ∗ {w} = {{v0}, {v1}, {w}, {v0, v1}, {v0, w}, {v1, w}, {v0, v1, w}}. (41)

In particular, 0-simplices of K1 ∗K2 are formed out of the disjoint union of 0-simplices of K1

and K2.

(d) A simplicial map is a map ϕ : K → L on the sets of vertices, such that whenever s ∈ K is
a simplex, its image ϕ(s) ∈ L is a simplex in L. The identity map 1K : K → K is simplicial
and composition of simplicial maps is simplicial. In other words, we got ourselves a category
of simplicial complexes denoted as Simp.

(e) We say that L ⊆ K is a simplicial subcomplex, if L itself is a simplicial complex. We thus
choose some simplices in K and ensure that all their faces are also in L. L is called a full
simplicial subcomplex, if any simplex in K which has all vertices in L has to be already in
L. In other words, a full simplicial subcomplex is completely specified by giving a subset of
the vertices of K.

(f) For each simplicial complex K, one can define a category denoted as Simp(K) which corre-
sponds to the partially ordered set of all subcomplexes of K.

Now, suppose K is a given simplicial complexe. An ordered q-simplex is a sequence (v0, . . . , vq)
of vertices in K which belong to some simplex. Note that the repetition is allowed. An ordered
chain complex (∆•(K), ∂•) is defined as follows. For each q ≥ 0, define ∆q(K) to be the free
R-module generated by ordered q-simplices of K. In other words, each element of ∆q(K) is a
formal R-linear combination of finitely many ordered q-simplices of K. We formally

The boundary operator ∂q : ∆q(K)→ ∆q−1(K) is defined for every q > 0 on the generators by

∂q(v0, . . . , vq) =

q∑
j=0

(−1)j(v0, . . . , v̂j , . . . , vq). (42)

It is easy to see that ∂q ◦ ∂q+1 = 0 for all q > 0. A sequence Hq(K) of the homology groups is
called the ordered homology of K.

In fact, if K is non-empty, one can define an augmentation map ε : ∆0(K) → R. For every
ordered 0-simplex (v) ∈ ∆0(K), define ε((v)) := 1. This makes sense as R is assumed to be a
unital ring. This map is surjective and ε ◦ ∂1 = 0. A cochain complex equipped with such map is
called augmented.

Equivalently, define another chain complex (∆ε
•(K), ∂ε•) where we set ∆ε

−1(K) = R and ∆ε
q(K) =

∆q(K) for all q ≥ 0. The differential is defined as ∂ε0 = ε and ∂εq = ∂q for q ≥ 0. The ho-

mology groups corresponding to this complex are usually denoted as H̃q(K) and called the re-

duced ordered homology of K. Note that as ε is surjective, one has H̃−1(K) = 0. Obviously

H̃q(K) = Hq(K) for all q > 0. We thus only have to understand H̃0(K). As ε ◦ ∂1 = 0, there is an
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induced epimorphism ε∗ : H0(K)→ R. Its kernel is precisely H̃0(K). We thus have a short exact
sequence of R-modules

0 H̃0(K) H0(K) R 0
ε∗ (43)

This proves that there is an isomorphism H0(K) ∼= H̃0(K) ⊕ R. Explicitly, define a splitting
σ : R → H0(K) of the sequence. Fix some vertex v ∈ K and define σ(1) = [(v)], where [(v)]
denotes the class represented by (v) ∈ ∆0(K). Any class in H0(K) is represented by a finite
linear combination ω0 :=

∑
k rk · (vk), where vk ∈ K are some vertices of K. Let r be an element

of R defined by r = ε(ω0) =
∑
k rk. Then ω0 − r · (v) ∈ ker(ε) and it thus represents a class

[ω0 − r · (v)] ∈ H̃0(K). The class [ω0] is thus mapped onto the pair ([ω0 − r · (v)], r) ∈ H̃0(K)⊕R.

Remark 5.1. There exists a slightly different approach to augmented chain complexes, see e.g.
[5]. If (C•, ∂•) is any chain complex and ε : C0 → R is an augmentation map, then define a

chain complex (C̃•, ∂̃•) by setting C̃0 = ker(ε) ⊆ C0 and C̃q = Cq for q > 0. The corresponding

cohomology H0(C̃•) is the same as the one defined in the above diagram.

Let ChR denote the category of chain complexes, where q-chains are R-modules. For every
simplicial map ϕ : K → L, define an induced map ∆q(ϕ) : ∆q(K)→ ∆q(L) as

∆q(ϕ)((v0, . . . , vq)) = (ϕ(v0), . . . , ϕ(vq)). (44)

This makes sense as if v0, . . . , vq belong to some simplex s ∈ K, then ϕ(v0), . . . , ϕ(vq) belong to
a simplex ϕ(s) ∈ L. It is clear that ∆q(ψ ◦ ϕ) = ∆q(ψ) ◦∆q(ϕ) and ∆q(1K) = 1∆q(K) for every
K ∈ Simp.

Definition 5.2. A chain complex in ChR is called free, it its R-module of q-chains is a free
R-module for every q ∈ Z. A functor ∆ : C → ChR from any category C is called free, if every
∆(c) ∈ ChR is a free chain complex for every c ∈ C.

Proposition 5.3. The map K 7→ ∆(K) defines a free functor ∆ : Simp→ ChR.

Definition 5.4. Let (C•, ∂•) ∈ ChR be a chain complex. We say that that it is acyclic if
H•(C) = 0. A chain complex is called chain contractible, if the identity chain map is chain
homotopic to the trivial one.

Those two definitions are closely related. Actually, in the case of a free chain complex, they
are equivalent.

Proposition 5.5. Every chain contractible chain complex in ChR is acyclic. Every free acyclic
chain complex in ChR, where R is a principal ideal domain, is contractible.

Proof. Let (C•, ∂•) ∈ ChR be chain contractible. The identity chain map 1 : C• → C• and the
trivial map 0 : C• → C• are chain homotopic. But then the induced maps 1∗ and 0∗ on homology
groups must coincide. This is possible only if H•(C) = 0.

Conversely, suppose H•(C) = 0. We will explicitly construct the chain homotopy k : C• → C•.
Every map ∂q : Cq → Bq−1(C) is an epimorphism. But Bq−1(C) = Zq−1(C). We assume that
C• is free and R is a principal ideal domain. This ensures that Zq−1(C) is a free R-module. This
allows one to construct a right inverse sq−1 : Zq−1(C) → Cq to ∂q. The map 1q − sq−1 ◦ ∂q then
maps Cq into Zq(C). It thus makes sense to define kq : Cq → Cq+1 as

kq = sq ◦ (1q − sq−1 ◦ ∂q). (45)
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One only has to check that this is the chain homotopy of the identity 1 : C• → C• and the trivial
map 0 : C• → C•. One has

∂q+1 ◦ kq + kq−1 ◦ ∂q = (∂q+1 ◦ sq) ◦ (1q − sq−1 ◦ ∂q) + sq−1 ◦ (1q−1 − sq−2 ◦ ∂q−1) ◦ ∂q = 1q. (46)

This proves the point. �

Remark 5.6. Note that in [5] they consider only chain complexes in the category of Abelian groups.
Every Abelian group is a Z-module and Z is a principal ideal domain (and unital ring).

The above statement does not hold for non-free chain complexes, there is a nice counterexample
in the same reference.

Definition 5.7. Let C be any category and let M be some set of the objects in C. Suppose
F : C → R-Mod is a functor. One says that the collection {gj ∈ F (mj)}j∈J , where mj ∈ M,
is a basis for F , if for every c ∈ C, the collection {F (h)(gj)}j∈J,h∈C(mj ,c) forms a basis for the
R-module F (x).

If a functor F has a basis, we say that F is free functor on C with models M. A functor
∆ : C→ ChR is caled a free functor on C with models M if ∆q : C→ R-Mod is free on C
with models M for every q ∈ Z.

Example 5.8. Let K be simplicial complex. Let Simp(K) be the category of its subcomplexes.
Let us define the subset of models M as

M = {s̄ | s ∈ K is a simplex} (47)

We claim that the functor ∆ : Simp(K)→ ChR assigning to each subcomplex L ⊆ K the ordered
chain complex (∆•(L), ∂•) is free on Simp(K) with modelsM. This requires some work. We have
to find the basis for the functor ∆q : Simp(K)→ R-Mod.

For each simplex s ∈ K, pick the following elements of ∆q(s̄). If s is a p-simplex, it has vertices
{w0, . . . , wp}. Then collect all ordered q-simplices (v0, . . . , vq) ∈ ∆q(s̄), such that they contain
all vertices of s, that is {v0, . . . , vq} = {w0, . . . , wp}. We claim that this collection forms a basis
for ∆q. Let L ⊆ K be an object in Simp(K). Then there is a unique arrow i : s̄ → L if and
only if the simplex s is in L. Then for any generator (v0, . . . , vq) ∈ ∆q(L) the set {v0, . . . , vp}
determines a unique p-simplex s = {w0, . . . , wp} and (v0, . . . , vq) = ∆q(i)(v0, . . . , vq), where the
ordered q-simplex on the right-hand side is in ∆q(s̄). This shows that the above collection indeed
forms a basis. Let us demonstrate this on an example. Let K be a simplicial complex consisting
of three vertices and all edges among them:

K = {{w0}, {w1}, {w2}, {w0, w1}, {w0, w2}, {w1, w2}}. (48)

We will now show how the generators of ∆1(K) look like. Every generator (v0, v1) has its corre-
sponding simplex obtained as a set {v0, v1}. We thus have the following table:

simplex s {w0} {w1} {w2} {w0, w1} {w0, w2} {w1, w2}
generator of ∆1(K) (w0, w0) (w1, w1) (w2, w2) (w0, w1) (w0, w2) (w1, w2)

(w1, w0) (w2, w0) (w2, w1)

We can thus summarize that the basis for the free functors ∆q with models M is a collection⋃
s∈K
{(v0, . . . , vq) ∈ ∆q(s̄) | {v0, . . . , vq} = s} (49)

Note that in general s, the collection {(v0, . . . , vq) ∈ ∆q(s̄) | {v0, . . . , vq} = s} does not form a
basis of ∆q(s̄). This concludes this important example.
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One says the functor ∆ : C→ ChR is non-negative if ∆q(c) = 0 for all q < 0 and all c ∈ C.
Suppose ∆ : C → ChR is a functor from the category C with models M. One says that ∆ is
M-acyclic in positive dimensions if Hq(∆(m)) = 0 for all m ∈ M and q > 0. We will now
state the most important theorem of this section:

Theorem 5.9. Let ∆ : C → ChR and ∆′ : C → ChR be a pair of functors, where ∆ is non-
negative and free on C with models M and ∆′ is M-acyclic in positive dimensions. Then

(i) any natural transformation of the composed functors η : H0(∆)→ H0(∆′) is induced by some
natural transformation τ : ∆→ ∆′;

(ii) any two natural transformations τ, τ ′ : ∆ → ∆′ inducing the same natural transformation
τ∗ : H0(∆)→ H0(∆′) are naturally chain homotopic.

Proof. For any object c ∈ C, we have to define a chain map τ(c) : ∆(c)→ ∆′(c), such that for any
h ∈ C(c, d), the following diagram commutes:

∆(c) ∆′(c)

∆(d) ∆′(d)

∆(h)

τ(c)

∆′(h)

τ(d)

. (50)

For every q ≥ 0, let {gj ∈ ∆q(mj)}j∈J be the basis for the functor ∆q on C with models
M. One only has to specify τ(mj)(gj). Indeed, for a general object c ∈ C, one has a basis
{∆(h)(gj)}j∈J,h∈C(mj ,c) of the group ∆(c), and the naturality forces

τ(c)(∆(h)(gj)) = ∆′(h)(τ(mj)(gj)), (51)

which specifies τc uniquely. Such defined τc will be automatically natural in c. We will now
inductively define τq(c) for each q ≥ 0.

Now, let η : H0(∆)→ H0(∆′) be a natural transformation. For every j ∈ J , let τ0(mj)(gj) be
any representative of the class η(mj)[gj ], that is [τ0(mj)(gj)]

′ = η(mj)[gj ]. Then define τ0(c) using
the naturality as described above. This finishes a zeroth induction step. It is easy to see that the
construction also ensures the equality

[τ0(c)(g)]′ = η(c)[g], (52)

for all c ∈ C and g ∈ ∆0(c). In particular, η is indeed induced by τ .

Note that gj are different for each induction step q, we just use the same symbol to denote
them - they form a basis for the functor ∆q for a specific q. Next, we need to take care of the step
q = 1. For every j ∈ J , we have to define τ1(mj)(gj), such that

(∂′1 ◦ τ1(mj)(gj) = (τ0(mj) ◦ ∂1)(gj) (53)

The equation (52) shows that [τ0(mj)(∂1gj)]
′ = η(mj)[∂1gj ] = [0]′. This proves that τ0(mj)(∂1g1) ∈

B0(∆′(mj)) and it is thus a boundary of some element. We set τ1(mj)(gj) to be this element. Using
(51), we define τ1(c) for every c ∈ C and the induction step q = 1 is finished.

Now, suppose q > 1 and we have a collection τr(c) : ∆r(c)→ ∆r(c
′) for every 0 ≤ r < q, such

that ∂′r ◦τr(c) = τr−1(c)◦∂r. We will now define τq(mj) on gj ∈ ∆q(mj). We will define τq(mj)(gj)
so that

(∂′q ◦ τq(mj))(gj) = (τq−1(mj) ◦ ∂q)(gj). (54)
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First, note that the right-hand side is in Zq−1(∆′(mj)). Indeed, one has

∂′q−1 ◦ (τq−1(mj) ◦ ∂q) = τq−2(mj) ◦ (∂q−1 ◦ ∂q) = 0. (55)

As q > 1, we have Hq−1(∆′(mj)) = 0 and the right-hand side is thus in Bq−1(∆′(mj)). It is thus
a boundary of some element in ∆′q(mj) which we set equal to τq(mj)(gj). Extending it to τq(c)
for any c ∈ C using (51) finishes the induction step. This finishes the proof of part (i).

We use a similar approach to construct the chain homotopy kq(c) : ∆q(c)→ ∆′q+1(c) for every
q ≥ 0 and natural in c. For each q ≥ 0, it must satisfy the condition

τ ′q(c)− τq(c) = ∂′q+1 ◦ kq(c) + kq−1(c) ◦ ∂q (56)

Note that by convention k−1(c) = 0. We do it in a completely analogous manner as before, that
is by induction on q. For q = 0, let us first define k0(mj)(gj), where gj ∈ ∆0(mj). We want it to
satisfy the equation

(τ ′0(mj)− τ0(mj))(gj) = (∂′1 ◦ k0(mj))(gj). (57)

By assumption, one has τ ′0∗ = τ0∗. This implies

[(τ ′0(mj)− τ0(mj))(gj)]
′ = (τ ′0∗(mj)− τ0∗(mj))[gj ] = [0]′ (58)

The left-hand side of the above exaction is thus in B0(∆′(mj), whence it is a boundary of some
element in ∆′1(mj) which we declare to be k0(mj)(gj). We can extend it to k0(c) : ∆0(c)→ ∆′(c)
in the same way as in (51) making it natural in c and satisfying the cochain homotopy equation.
This finishes the zeroth induction step.

Now, suppose q > 0 and we have a family of natural maps kr(c) : ∆r(c)→ ∆r+1(c), such that

τ ′r(c)− τr(c) = ∂′r+1 ◦ kr(c) + kr−1(c) ◦ ∂r (59)

for every r < q. Let {gj}j∈J be the basis for the functor ∆q. We will define kq(mj) on gj to satisfy
the condition

(∂′q+1 ◦ kq(mj))(gj) = (τ ′q(mj)− τq(mj)− kq−1(mj) ◦ ∂q)(gj). (60)

Using the induction hypothesis, it is easy to see that the right-hand side is in Zq(∆
′(mj)). As

q > 0, it is by assumption on Hq(∆
′) in Bq(∆

′(mj)) and it is thus a boundary of some element in
∆′q+1(mj). We declare kq(mj)(gj) to be this element. One can now extend kq to all c ∈ C by the
analogue of (51). This finishes the proof. �

Definition 5.10. Let (C•, ∂•) and (C ′•, ∂
′
•) be two chain complexes in ChR. Let τ : C• → C ′• be

a chain map. It’s mapping cone Cτ• is a chain complex, where Cτq = Cq−1 ⊕C ′q, and one defines

∂τq (c, c′) = (−∂q−1(c), τq−1(c) + ∂′q(c
′)). (61)

It is easy to verify that ∂τq−1 ◦ ∂τq = 0. One can encode certain properties for the map τ into
its mapping cone. Indeed, behold the following proposition:

Proposition 5.11. The chain map τ is a chain equivalence, if and only if its mapping cone Cτ•
is chain contractible.

Proof. Let τ : C• → C ′• be a chain equivalence. By assumption, there is a chain map τ ′ : C ′• → C•
together with a pair of chain homotopies k : C• → C• and k′ : C ′• → C ′•, such that τ ′ ◦ τ ∼k 1C
and τ ◦ τ ′ ∼k′ 1C′ . We have to define a chain homotopy ` : Cτ• → Cτ• , such that 1Cτ ∼` 0.
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`q : Cτq → Cτq+1 is given by a rather complicated formula. For these reasons we stop writing the
degree of each map at this moment. We have

`(c, c′) = (`1(c, c′), `2(c, c′)), (62)

where the component functions `1 and `2 are given by

`1(c, c′) = k(c) + τ ′k′τ(c)− τ ′τk(c) + τ ′(c′), (63)

`2(c, c′) = k′τk(c)− k′k′τ(c)− k′(c′). (64)

Recall that we have ∂τ (c, c′) = (−∂(c), τ(c) + ∂′(c′)), and also the equations

τ ′τ − 1 = ∂k + k∂, (65)

ττ ′ − 1 = ∂′k′ + k′∂′. (66)

We have to verify the equation
1 = ∂τ ◦ `+ ` ◦ ∂τ (67)

The first component of this equation applied onto (c, 0) boils down to the equation

1 = −∂(k + τ ′k′τ − τ ′τk)− (k + τ ′k′τ − τ ′τk)∂ + τ ′τ (68)

By rearranging the right-hand side and using the chain map property for τ and τ ′, one finds

1 = τ ′τ − ∂k − k∂ − τ ′(∂′k′ + k′∂′)τ + τ ′τ(k∂ + ∂k). (69)

Now, this can be rewritten using the definition of k and k′ as

1 = 1− τ ′(ττ ′ − 1)τ + τ ′τ(τ ′τ − 1) (70)

One can already see that this is indeed true. The first component applied on (0, c′) gives

0 = −∂τ ′ + τ ′∂′. (71)

This is precisely the chain map property for τ ′. For the second component applied on (c, 0):

0 = τ(k + τ ′k′τ − τ ′τk) + ∂′(k′τk − k′k′τ)− (k′τk − k′k′τ)∂ − k′τ (72)

This can be reordered to give the equation

0 = (1− ττ ′ + ∂′k′)τk − (1− ττ ′ + ∂′k′)k′τ + k′k′τ∂ − k′τk∂. (73)

Using the chain homotopy equation for k′ now gives

0 = − k′∂′τk + k′∂′k′τ + k′k′τ∂ − k′τk∂ = k′(−∂′τk + ∂′k′τ + k′τ∂ − τk∂)

= k′{(∂′k′ + k′∂′)τ − τ(k∂ + ∂k)}
= k′{(ττ ′ − 1)τ − τ(τ ′τ − 1)}.

(74)

We already see that this is true. The second component applied on (0, c′) leads to

1 = ττ ′ − ∂′k′ − k′∂′. (75)

This is certainly true, and we conclude the only if part. For the if part, suppose ` : Cτ• → Cτ• is a
chain contraction. For every q ≥ 0, define τ ′, k and k′ via the equations

`q(0, c
′) = (τ ′q(c

′),−k′q(c′)), (76)

`q+1(c, 0) = (kq(c), . . . ), (77)
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for all c ∈ Cq and c′ ∈ C ′q. One finds

(∂τq+1 ◦ `q)(0, c′) = (−∂q−1(τ ′q(c
′)), τq(τ

′
q(c
′))− ∂′q+1(k′q(c

′))) (78)

(`q−1 ◦ ∂τq )(0, c′) = (τ ′q−1(∂′q(c
′)),−k′q−1(∂′q(c

′))). (79)

As ` is a chain contraction, the sum of these two terms has to be equal to (0, c′). This proves that
τ ′ defines a chain map and k′ is a chain homotopy from τ ◦ τ ′ to the identity on C ′. �

Now, let us turn our attention to augmented chain complexes. In order to save some space, we
make the following definition:

Definition 5.12. By category of augmented chain complexes ChεR, we mean a category
whose objects are non-negative chain complexes C• with augmentation ε, and morphisms are
chain maps τ : C• → C ′• compatible with the augmentation, that is

C0 R

C ′0 R

τ0

ε

1

ε′

(80)

commutes. Note that a single chain complex with two different augmentations are considered as
two different objects in ChεR.

Note that for any augmented chain complex, one has H0(C•) = H̃0(C•) ⊕ R, whence an
augmented chain complex is never acyclic. Let C• be an augmented chain complex. By Cε•, we
will denote the induced chain complex with added term Cε−1 := R, that is

0 R C0 C1 · · ·ε ∂1 ∂2 (81)

Finally, the augmentation map ε may be viewed as a chain map from C• to the chain complex R
consiting of R in the zero degree and 0 otherwise, that is

0 C0 C1 · · ·

0 R 0 · · ·

ε

∂1 ∂2

(82)

commutes. Some properties can be restated in terms of ε.

Proposition 5.13. Let (C•, ∂•) ∈ ChεR. Then Cε• is chain contractible, if and only if the chain
map ε : C• → R is a chain equivalence.

Proof. We will use the mapping cone complex C̄• for the chain map ε. We have C̄0 = 0 ⊕ R and
C̄q = Cq−1 ⊕ 0 for q > 0. Now, by Proposition 5.11, the chain map ε is a chain equivalence, if and
only if there is a chain contraction ` : C̄• → C̄•. Parametrize it as

`0(0, r) = (k−1(r), 0), `q(cq−1, 0) = (−kq−1(cq−1), 0), for q > 0. (83)

Now, let us rewrite the condition 1̄q = ∂̄q+1 ◦ `q + `q−1 ◦ ∂̄q. For q = 0, this gives

(0, r) = 1̄0(0, r) = ∂̄1(k−1(r), 0) = (0, (ε ◦ k−1)(r)). (84)
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For q = 1, one obtains the condition

(c0, 0) = 1̄1(c0, 0) = ∂̄2(−k0(c0), 0) + `0(0, ε(c0))

=((∂1 ◦ k0 + k−1 ◦ ε)(c0), 0).
(85)

Finally, for q > 1, we find the equation

(cq−1, 0) = 1̄q(cq−1, 0) = ∂̄q+1(−kq−1(cq−1), 0) + `q−1(−∂q−1(cq−1), 0)

= ((∂q ◦ kq−1 + kq−2 ◦ ∂q−1)(cq−1), 0).
(86)

We have just proved that ` is a chain contraction if and only if k is a chain contraction. �

Now, suppose ∆ : C→ ChεR is a functor from the category C with models M to the category
of augmented chain complexes. We say that ∆ isM-acyclic, if the corresponding induced functor,
∆ε : C→ ChR, is M-acyclic. Note that in particular, ∆ is M-acyclic in positive dimensions, but
the zeroth cohomology is additionally forced to be R onM. One can now formulate the following
version of Theorem 5.9:

Theorem 5.14. Suppose ∆,∆′ : C→ ChεR are two functors,such that ∆ is free on C with models
M and ∆′ is M-acyclic. Then there exists a natural transformation τ : ∆→ ∆′ and any two such
natural transformations are chain homotopic.

Proof. The key is to prove that there is a unique natural transformation η : H0(∆) → H0(∆′)
commuting with augmentation maps, that is fitting into the diagram

R H0(∆(c))

R H0(∆′(c))

1

ε(c)∗

η(c)

ε′(c)∗

. (87)

First, by assumption H̃0(∆′(m)) = 0 for all models m ∈M. Recall that in general, there is a short
exact sequence of R-modules, for every c ∈ C having the form

0 H̃0(∆′(c)) H0(∆′(c)) R 0
ε′(c)∗

(88)

For c = m ∈ M, the map ε′(m)∗ : H0(∆′(m)) → R is an isomorphism. Let gj ∈ ∆0(mj) be the
basis for the functor ∆0. We have ε(mj)∗[gj ] = ε(mj)(gj) = rj ∈ R for every j ∈ J . By the above
assumption, for each j ∈ J , there is a unique class [zj ]

′ ∈ H0(∆′0(mj)), such that ε′(mj)∗[zj ]
′ = rj .

To satisfy (87), we thus have to set η(mj)[gj ] = [zj ]
′ for every j ∈ J .

Next, let c ∈ C. By definition, {∆0(h)(gj)}j∈J,h∈C(gj ,c) forms a basis of the R-module ∆0(c).
The naturality of η then forces the equation

η(c)[∆(h)(gj)] = (η(c) ◦∆(h)∗)[gj ] = (∆′(h)∗ ◦ η(mj))[gj ]

= ∆′(h)∗[zj ]
′.

(89)

This uniquely determines η(c) for all c ∈ C. It is easy to see that it is natural in c. We have thus
constructed a natural transformation η : H0(∆)→ H0(∆′).

Finally, as ∆ is non-negative and free on C with models M and ∆′ is M-acyclic in positive
dimensions, the rest of the theorem statement follows from Theorem 5.9. �
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Corollary 5.15. Let ∆,∆′ : C → ChεR be pair of two functors valued in augmented chain com-
plexes. Suppose both are free on C with models M and M-acyclic. Then ∆ and ∆′ are naturally
chain equivalent. In fact, any natural chain map τ : ∆ → ∆′ commuting with augmentations is a
chain equivalence.

Proof. By the above theorem, there exist chain maps τ : ∆→ ∆′ and τ ′ : ∆′ → ∆ commuting with
augmentations. Then τ ′ ◦ τ : ∆→ ∆ and 1∆ are both natural and commute with augmentations,
whence, by the above theorem, they are chain homotopic, τ ′ ◦ τ ∼ 1∆. Similarly, τ ◦ τ ′ ∼ 1∆′ .
The last statement follows from the fact that we have not used any special property of τ and any
natural chain map commuting with augmentations will do. �

Recall that we have already constructed a functor ∆ : Simp(K) → ChεR which was free on
Simp(K) with models M. We will now define another such functor, let us denote it as ∆a.
Suppose the set of vertices of K is totally ordered.

An oriented q-simplex is a q-tuple [v0, . . . , vq], where {v0, . . . , vq} is a set of vertices of a
simplex in K, and v0 < · · · < vq. We then define ∆′q(K) to be the free R-module generated by
oriented q-simplices. For technical purposes, one defines [v0, . . . , vq] for any combination of vertices
belonging to a simplex in K, where we define

[v0, . . . , vq] = 0, (90)

if any of the vertices repeat, and if they do not repeat, we set

[v0, . . . , vq] = sgn(σ) · [vσ(0), . . . , vσ(q)], (91)

where σ ∈ Sq+1 is a permutation ordering the vertices, that is vσ(0) < · · · < vσ(q). We define a
differential ∂′q : ∆′q(K)→ ∆′q−1(K) using a similar formula as for the oriented case, that is

∂′q[v0, . . . , vq] =

0∑
j=1

(−1)j [v0, . . . , v̂j , . . . , vq]. (92)

Clearly ∂′q◦∂′q+1 = 0. A sequence H ′q(K) of the homology groups is called the oriented homology
of K.

For any simplicial map ϕ : K → L, one can define ∆′q(ϕ) : ∆′q(K)→ ∆′q(L) by

∆′q(ϕ)[v0, . . . , vq] = [ϕ(v0), . . . , ϕ(vq)]. (93)

Note that we had to introduce an above convention to deal with the case when ϕ is not injective
and order-preserving. We thus got ourselves a functor ∆′ : Simp → ChεR. In fact, we may again
view it as a functor from the category Simp(K) with models M. The subset M is defined as in
Example 5.8, and ∆′ is free on Simp(K) with models M.

We will now observe the main property of the both functors ∆,∆′ : Simp(K) → ChεR. Note
that we need a total ordering on the set of vertices of a komplex K in order to define oriented
q-simplices. For these reason, one should think about a total ordering on the set K tL of vertices
of the join K ∗ L. We simply declare all vertices of K strictly smaller then those of L.

Proposition 5.16. Let K be any simplicial complex, and let w be a simplicial complex consisting
of a single vertex. Then ∆ε

•(K ∗ w) and ∆′ε• (K ∗ w) are chain contractible.
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Proof. The proof relies on the Proposition 5.13. As both cases are analogous, we will prove only the
∆ case. It suffices to prove that the augmentation map ε : ∆•(K ∗w)→ R is a chain equivalence.
We define the inverse τ : R→ ∆•(K ∗ w) as

τ0(r) = r · (w), (94)

for all r ∈ R, and τq = 0 for q > 0. Obviously it is a chain map and ε ◦ τ = 1R. We only have
to prove that 1∆•(K∗w) ∼k τ ◦ ε for some chain homotopy k : ∆•(K ∗ w) → ∆•(K ∗ w). For any
generator (v0, . . . , vq) ∈ ∆q(K ∗ w), set

kq(v0, . . . , vq) = (w, v0, . . . , vq). (95)

For q = 0, one has (∂1 ◦ k0)(v0) = ∂1(w, v0) = (v0)− (w) = (1∆0(K∗w)− τ0 ◦ ε)(v0) . For q > 0, one
has (τ ◦ ε)q = 0. For every (v0, . . . , vq) ∈ ∆q(K ∗ w), one has

(∂q+1 ◦ kq)(v0, . . . , vq) = ∂q+1(w, v0, . . . , vq)

= (v0, . . . , vq)−
q∑
j=0

(−1)j(w, v0, . . . , v̂j , . . . , vq)

= (v0, . . . , vq)−
q∑
j=0

(−1)jkq−1(v0, . . . , v̂j , . . . vq)

= (v0, . . . , vq)− (kq−1 ◦ ∂q)(v0, . . . , vq).

(96)

This proves that k is the chain homotopy and the proof is finished. �

Corollary 5.17. The chain complexes ∆ε
•(K ∗ w) and ∆′ε• (K ∗ w) are acyclic.

Corollary 5.18. For any simplex s ∈ K, the chain complexes ∆ε
•(s̄) and ∆′ε• (s̄) are acyclic. In

particular, the functors ∆,∆′ : Simp(K)→ ChεR are M-acyclic.

Proof. Let s be a q-simplex given by a set of vertices {v0, . . . , vq}, where we assume v0 < · · · < vq.
Let s0 be its face consisting of vertices {v0, . . . , vq−1}. Then we can write s̄ = s̄0 ∗ vq, including
the total ordering on the set of vertices. The rest follows from the previous proposition. �

We assume that K is non-empty so that we have augmented simplicial complexes. First, define
the map µ(K) : ∆•(K)→ ∆′•(K) as

µq(K)(v0, . . . , vq) := [v0, . . . , vq]. (97)

This map is natural in K, and it commutes with augmentations. One can define the map τ(K) :
∆′•(K)→ ∆•(K) the other way round, which is defined by

τq(K)[v0, . . . , vq] := (v0, . . . , vq), (98)

where v0 < · · · < vq. Again, it is a chain map natural in K, commuting with augmentations. One
can easily see that µ(K)◦ τ(K) = 1∆′•(K). In fact, from Corollary 5.15, it immediately follows that
µ and τ are chain-inverse to each other, that is τ(K) ◦ µ(K) ∼ 1∆•(K).

Let ν(K) : ∆•(K)→ ∆•(K) denote the composition τ(K) ◦ µ(K). Explicitly, one has

νq(K)(v0, . . . , vq) = 0, (99)

25



whenever any two vertices repeat. If they are distinct, one has

νq(K)(v0, . . . , vq) = sgn(σ) · (vσ(0), . . . , vσ(q)), (100)

where σ ∈ Sq+1 is a permutation so that vσ(0) < · · · < vσ(q). By above theorems, we know that
there is a chain homotopy m(K) : ∆•(K)→ ∆•(K), such that ν(K) ∼m(K) 1∆•(K).

Definition 5.19. Let m : ∆q(K) → ∆r(K) be any R-module homomorphism. We say that m
preserves simplices, if for any (v0, . . . , vq) ∈ ∆q(K), one has

m(v0, . . . , vq) =
∑
α=1

rα · (wα0 , . . . , wαr ), (101)

where (wα0 , . . . , w
α
r ) ∈ ∆r(K) satisfy {wα0 , . . . , wαr } ⊆ {v0, . . . , vq}. Equivalently, if s = {v0, . . . , vq}

is the simplex in K whose vertices form the generator (v0, . . . , vq), the map m stays in the sub-
complex generated by s̄, that is m(v0, . . . , vq) ∈ ∆r(s̄) ⊆ ∆r(K).

We will now trace back the proofs of the theorems to show that for each q ≥ 0 and L ⊆ K,
the map mq(L) : ∆q(L) → ∆q+1(L) preserves simplices. This will be important for the main
application of this section.

First, let s ∈ K be a given p-simplex consisting of vertices {w0, . . . , wp}. We will now explicitly
construct the chain homotopy h : ∆ε

•(s̄) → ∆ε
•(s̄). Then we will repeat the proof of Theorem 5.9

finding the chain homotopy ν(K). Suppose there is an order on K and w0 < · · · < wp.

For any ordered q-simplex (v0, . . . , vq), the map kq is defined as

kq(v0, . . . , vq) = (wp, v0, . . . , vq). (102)

Note that vi ∈ {w0, . . . , wp} for all i ∈ {0, . . . , q}. We have ε ◦ τ = 1R and 1∆•(s̄) ∼k τ ◦ ε.
We then have to use k to construct a chain homotopy ` : C̄• → C̄• is a mapping cone of

ε : ∆•(s̄)→ R as in the proof of Proposition 5.11. Finally, the proof of Proposition 5.13 will give
us the chain contraction h : ∆ε

•(s̄)→ ∆ε
•(s̄).

Recall that C̄0 = 0 ⊕ R and C̄q = ∆q−1(s̄) ⊕ 0 for q > 0. The map ` is actually very simple,
one finds the expressions

`0(0, r) = (τ0(r), 0), `q((v0, . . . , vq−1), 0) = (−kq−1(v0, . . . , vq−1), 0). (103)

It is then easy to read out the chain contraction h : ∆ε
•(s̄) → ∆ε

•(s̄), see the proof of Proposition
5.13. One finds the expressions

h−1(r) = τ0(r) = r · (wp), hq(v0, . . . , vq) = kq(v0, . . . , vq) = (wp, v0, . . . , vq) for q ≥ 0. (104)

We can explicitly verify that this is a chain contraction. Indeed, one has

(ε ◦ h−1)(r) = ε(r · (wp)) = r. (105)

In the next degree, one finds

(∂1 ◦ h0 + h−1 ◦ ε)(v0) = ∂1(wp, v0) + h−1(1) = (v0)− (wp) + (wp) = (v0). (106)

For q > 0, one has the expression

∂q+1 ◦ hq + hq−1 ◦ ∂q = ∂q+1 ◦ kq + kq−1 ◦ ∂q = 1q, (107)
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where we have used the fact that (τ ◦ ε)q = 0 for q > 0. We have thus found an explicit form of
the chain contraction h : ∆ε

•(s̄)→ ∆ε
•(s̄).

Now, we will track the proof of Theorem 5.9 part (ii). We have an identical natural trans-
formation 1∆ : ∆• → ∆• and a natural transformation ν : ∆• → ∆•. For any L ⊆ K and any
(v0) ∈ ∆0(L), we have ν0(L)(v0) = 10(v0) = (v0), that is both chain maps induce the same natural
transformation H0(∆)→ H0(∆). We will now prove by induction on q that there exists a natural
chain homotopy mq(L) : ∆q(L)→ ∆q+1(L) which preserves simplices.

We are thus looking for a sequence of maps mq(L) satisfying the relation

1q − νq(L) = ∂q+1 ◦mq(L) +mq−1(L) ◦ ∂q (108)

for every q ≥ 0, where we declare m−q(L) = 0. As ν0(L) = 10, the good choice for m0(L) natural
in L is obvious, namely m0(L) = 0. Moreover, m0(L) clearly preserves simplices. This finishes the
zeroth induction step.

Suppose q > 0 and that for every 0 ≤ r < q, one has a map mr(L) : ∆r(L) → ∆r+1(L) which
is natural in L and preserves simplices. We have to define mq(L) satisfying the relation

∂q+1 ◦mq(L) = 1q − νq(L)−mq−1(L) ◦ ∂q (109)

First, one defines mq(s̄), where s = {w0, . . . , wp} is some p-simplex in K, and w0 < · · · < wp with
respect to some given total order on K. The basis elements for ∆q in ∆q(s̄) are the generators
(v0, . . . , vq) satisfying the property {v0, . . . , vq} = {w0, . . . , wp}. It follows from the induction
hypothesis that 1q−νq(s̄)−mq−1(s̄)◦∂q maps ∆q(s̄) into the q-cochains Zq(∆•(s̄)) and it preserves
simplices.

Now, recall that we have a chain contraction hq : ∆ε
q(s̄) → ∆ε

q+1(s̄), constructed above. As
q > 0, it is a map hq : ∆q(s̄)→ ∆q+1(s̄) satisfying the condition

1q = ∂q+1 ◦ hq + hq−1 ◦ ∂q. (110)

It follows that hq restricted onto Zq(∆•(s̄)) is the right inverse to the boundary map ∂q+1. In
other words, we find that mq(s̄) must fit into the relation

∂q+1 ◦mq(s̄) = ∂q+1 ◦ {hq ◦ (1q − νq(s̄)−mq−1(s̄) ◦ ∂q)}. (111)

In other words, we may define mq(s̄) using the formula

mq(s̄) = hq ◦ (1q − νq(s̄)−mq−1(s̄) ◦ ∂q). (112)

The right-hand side is a R-module homomorphism which preserves simplices. Indeed, νq(s̄), 1q and
∂q preserve simplices by definition, mq−1(s̄) by induction hypothesis and hq does so by formula
(104). The composition of maps which preserve indices preserves simplices. This proves that mq(s̄)
preserves simplices. If s ∈ L is a p-simplex contained in L, there is a unique morphism i : s̄ → L
and the induced map ∆q(s̄) → ∆q(L) is just the canonical inclusion. It follows that mq(L) is
defined on each generator (v0, . . . , vq), where {v0, . . . , vq} = s, as

mq(L)(v0, . . . , vq) = mq(L)(∆q(i)(v0, . . . , vq)) = ∆q+1(i){mq(s̄)(v0, . . . , vq)}, (113)

where in the leftmost term, (v0, . . . , vq) is viewed as a generator in ∆q(L), whereas in the rest of
the terms as the generator of ∆q(s̄). Clearly mq(L) preserves simplices.

Proposition 5.20. Let ν : ∆• → ∆• be the natural transformation of the fuctor ∆• : Simp(K)→
ChR defined above. Then for each L ∈ Simp(K), there exists a natural chain homotopy m(L) :
∆•(L)→ ∆•(L) from the identity to ν(L), which preserves simplices.
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Example 5.21. Consider the simplicial complex K from Example 5.8, that is

K = {{w0}, {w1}, {w2}, {w0, w1}, {w0, w2}, {w1, w2}}. (114)

We will now explicitly construct the map m(K) in lowest degrees. Observe that we can always
choose m0(K) = 0. In the next step, we use the naturality and the map

m1(s̄) = h1 ◦ (11 − ν1(s̄)). (115)

We are to define m1(K) on the generators of ∆1(K). They are subdivided into their respective
simplices according to the table already derived in Example 5.8:

simplex s {w0} {w1} {w2} {w0, w1} {w0, w2} {w1, w2}
generator of ∆1(K) (w0, w0) (w1, w1) (w2, w2) (w0, w1) (w0, w2) (w1, w2)

(w1, w0) (w2, w0) (w2, w1)

We assume the total ordering w0 < w1 < w2 of the vertices of K. As an example, we have for
s = {w0, w1} the expression

m1(s̄)(w1, w0) = h1((w1, w0) + (w0, w1)) = (w1, w1, w0) + (w1, w0, w0) (116)

Here (w1, w0) is viewed as the generator of ∆1(s̄). Clearly, the map m1(K) applied on (w1, w0)
viewed as a generator in ∆1(K) has completely the same form as above, that is

m1(K)(w1, w0) = (w1, w1, w0) + (w1, w0, w0). (117)

We can now write down the values on all generators, the results are written down in the table:

generator the value of m1(K)
(w0, w0) (w0, w0, w0)
(w1, w1) (w1, w1, w1)
(w2, w2) (w2, w2, w2)
(w0, w1) 0
(w1, w0) (w1, w0, w1) + (w1, w1, w0)
(w1, w2) 0
(w2, w1) (w2, w1, w2) + (w2, w2, w1)
(w0, w2) 0
(w2, w0) (w2, w0, w2) + (w2, w2, w0)

In particular, we see that m1(K) indeed preserves simplices, as the value of m1(K) in the second
column contains the vertices of the generator to its left. Finally, as an example, let us calculate
m2(K) on the single generator (w2, w2, w0). One has

m2(s̄)(w2, w2, w0) = h2 ◦ (12 − ν2(s̄)−m1(s̄) ◦ ∂2)(w2, w2, w0)

= h2((w2, w2, w0)− 0−m1(s̄){(w2, w0)− (w2, w0) + (w2, w2)})
= h2((w2, w2, w0)− (w2, w2, w2))

= (w2, w2, w2, w0)− (w2, w2, w2, w2).

(118)

One can now explicitly test the chain homotopy condition on this particular generator. We have

(∂3 ◦m2(K) +m1(K) ◦ ∂2)(w2, w2, w0) = ∂3{(w2, w2, w2, w0)− (w2, w2, w2, w2)}
+m1(K){(w2, w0)− (w2, w0) + (w2, w2)}

= (w2, w2, w0)− (w2, w2, w0)

+ (w2, w2, w0)− (w2, w2, w2)

+ (w2, w2, w2)

= (w2, w2, w0) = (12 − ν2(s̄))(w2, w2, w0).

(119)
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We see that everything works as it should.

6 Back to Čech

Now, let us return to the Čech cohomology. Let U = {Uα}α∈A be an open cover of a topological
space X. Let KA denote the simplicial complex consisting of all non-empty finite subsets of
the indexing (assumed totally ordered) set A. Now, let τ : ∆q(KA) → ∆r(KA) be a R-module
homomorphism which preserves simplices. In other words, we have

τ(α0, . . . , αq) =
∑
j

rj · (αj0, . . . , αjr), (120)

where for each j, one has {αj0, . . . , αjr} ⊆ {α0, . . . , αq}. But this ensures that there exists an

inclusion map i
(αj0,...,α

j
r)

(α0,...,αq)
: Uα0,...,αq → Uαj0,...,α

j
r
, and the corresponding restriction map

ρ
(αj0,...,α

j
r)

(α0,...,αq)
: F(Uαj0,...,α

j
r
)→ F(Uα0,...,αq ) (121)

We can thus use τ to induce an R-module homomorphism τ∗ : Cr(U ,F)→ Cq(U ,F) defined by

(τ∗(ω))α0,...,αq =
∑
j

rj · ρ
(αj0,...,α

j
r)

(α0,...,αq)
(ωαj0,...,αkr

). (122)

It is not difficult to see that if τ ′ : ∆p(KA) → ∆q(KA) is another R-module morphism which
preserves simplices, then τ ◦ τ ′ also preserves simplices and

(τ ◦ τ ′)∗ = τ ′∗ ◦ τ∗, 1∗ = 1. (123)

There are two examples of such induced maps.

Example 6.1. Let F : Op(X) → R-Mod be a presheaf. Let U = {Uα}α∈A be an open cover.
Then the Čech differential δpF : Cp(U ,F) → Cp+1(U ,F) can be written as δpF = ∂∗p+1, where
∂p+1 : ∆p+1(KA)→ ∆p(KA) is the boundary operator. Indeed, let ω ∈ Cp(U ,F). Recall that:

∂p+1(α0, . . . , αp+1) =

p+1∑
i=0

(−1)i(α0, . . . , α̂i, . . . , αp+1). (124)

We have denoted the restriction morphisms from Uα0...α̂i...αp+1 to Uα0...αp+1 as ρiα0...αp+1
. Hence

(∂∗p+1(ω))α0...αp+1 =

p+1∑
i=0

(−1)iρiα0...αp+1
(ωα0...α̂i...αp+1). (125)

But this is precisely the formula defining the Čech differential δpF . In particular, one may prove

the property δp+1
F ◦ δpF = 0 using the property ∂p−1 ◦ ∂p = 0 and (123).

Example 6.2. Now, consider another map, namely the chain map νq(KA) : ∆q(KA)→ ∆q(KA).
We now assume that A is totally ordered. Write νq ≡ νq(KA). We have

νq(α0, . . . , αq) = 0, (126)
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whenever some indices repeat. If they do not repeat, we have νq(α0, . . . , αq) = sgn(σ)·(ασ(0), . . . , ασ(q)),
where σ ∈ Sq+1 is the permutation such that ασ(0) < · · · < ασ(q). For any ω ∈ Cp(U ,F), we then
have, for the induced map ν∗p : Cp(U ,F)→ Cp(U ,F):

(ν∗p(ω))α0...αp = 0, (127)

whenever any of the two indices repeat. If they do not repeat, one has

(ν∗p(ω))α0...αp = sgn(σ) · ωασ(0)...ασ(p) , (128)

where σ ∈ Sp+1 is the permutation, such that ασ(0) < · · · < ασ(p).

Now, recall that we have a subcomplex C ′p(U ,F) ⊆ Cp(U ,F) of alternating cochains. Let
ip : C ′p(U ,F) → Cp(U ,F) denote the inclusion. Moreover, there is also a canonical (up to an
ordering on the indexing set A of U) projection πp : Cp(U ,F)→ C ′p(U ,F) defined as

(πp(ω))α0...αp = 0, (129)

if any two indices repeat. If they not, one sets (πp(ω))α0...αp = sgn(σ) · ωασ(0)...ασ(p) , where σ is a
permutation such that ασ(0) < · · · < ασ(p). One has

πp ◦ ip = 1p, ip ◦ πp = ν∗p , (130)

where ν∗p : Cp(U ,F) → Cp(U ,F) is the map constructed in the previous example. We can now
formulate the main proposition of this section.

Theorem 6.3. The map ip : C ′p(U ,F) → Cp(U ,F) induces an R-module isomorphism ip∗ :

Ȟ
′p

(U ,F)→ Ȟ
p
(U ,F). Its inverse is πp∗ induced by πp : Cp(U ,F)→ C ′p(U ,F).

Proof. Clearly πp∗ ◦ ip∗ = 1p. We only have to prove the second equation, that is (ν∗p)∗ = 1p. Recall
that in Proposition, we have constructed a chain homotopy m(K) : ∆•(K) → ∆•(K). Write
mp = mp(K). The R-module morphism mp : ∆p(K) → ∆p+1(K) preserves simplices. Moreover,
it fits into the equation

∂p+1 ◦mp +mp−1 ◦ ∂p = 1p − νp (131)

This equation works for every p ≥ 0 and we assume m−1 = 0. It follows from (123) that

m∗p ◦ ∂∗p+1 + ∂∗p ◦m∗p−1 = 1p − ν∗p . (132)

Recall that by Example 6.1, one has ∂∗p+1 = δpF , whence we get

m∗p ◦ δ
p
F + δp−1

F ◦m∗p−1 = 1p − ν∗p (133)

If we write hp+1 := m∗p for every p ≥ 0, we find the cochain homotopy relation

δp−1
F ◦ hp + hp+1 ◦ δpF = 1p − ν∗p (134)

But this proves that the induced maps of cohomology groups on both sides vanish, that is 0 =
1p − (ν∗p)∗. This proves the claim. �

This theorem shows that one can use the subcomplex of alternating cochains to calculate the
Čech cohomology valued in the presheaf F corresponding to the open cover U . However, we will
stick to the ”ordered” case in order to discuss the behavior of the Čech cochains with respect to
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the refinements. Let U ≺ V. Suppose U = {Uα}α∈A and V = {Vβ}β∈B , and let φ : B → A be
the map from the definition of the refinement, that is Vβ ⊆ Uφ(β) for all β ∈ B. Note that in the
definition of the relation ≺, one assumes that there exists some map φ.

Now, let us construct an R-module morphism φp : Cp(U ,F) → Cp(V,F) as follows. For any
ω ∈ Cp(U ,F), define

(φp(ω))β0...βp = ρ
Uφ(β0)...φ(βp)

Vβ0...βp
(ωφ(β0)...φ(βp)). (135)

This makes sense as Vβ0...βp ⊆ Uφ(β0)...φ(βp). Moreover, it is easy to see that it commutes with

the Čech differential and thus defines a cochain map. From the functoriality of the presheaf F , it
follows that if V ≺ W is another refinement using some map φ′ : C → B, where W = {Wγ}γ∈C ,
then φ′p ◦φp = (φ′ ◦φ)p. This suggests that the assignment U 7→ Cp(U ,F) might define a covariant
functor from OpC(X) to R-Mod. However, this is not true. When U ≺ V, there may be another
map ψ : B → A such that Vβ ⊆ Uψ(β) for all β ∈ B. In general φp 6= ψp. On the level of
cohomology though, the statement is true.

Proposition 6.4. Let U ≺ V be two open covers , where U = {Uα}α∈A and V = {Vβ}β∈B, and
suppose φ, ψ : B → A are two maps from the definition of refinement.

Let φp∗, ψ
p
∗ : Ȟ

p
(U ,F) → Ȟ

p
(V,F) be R-module morphisms induced by the chain maps defined

above. Then φp∗ = ψp∗. In other words, the assignment U 7→ Ȟ
p
(U ,F) defines a covariant functor

from OpC(X) to R-Mod. In particular, if U � V, one has an isomorphism Ȟ
p
(U ,F) ∼= Ȟ

p
(V,F).

Proof. The key idea is, as usual, to construct a cochain homotopy of φp∗ and ψp∗ . Define

(kp(ω))β0...βp−1
=

p−1∑
r=0

(−1)rρ(r)(ωφ(β0)...φ(βr)ψ(βr)...ψ(βp−1)), (136)

for all ω ∈ Cp(U ,F). Here ρ(r) denotes the restriction induced by the inclusion

Vβ0...βp−1
⊆ Uφ(β0),...,φ(βr),ψ(βr),...,ψ(βp−1). (137)

We claim that kp : Cp(U ,F)→ Cp−1(V,F) fits into the equation

ψp − φp = δp−1
F ◦ kp + kp+1 ◦ δpF . (138)

To show this, let us drop an explicit writing of the restrictions, as everything is functorial and we
do not have to take care of compositions. For any ω ∈ Cp(U ,F), one has

((δp−1
F ◦ kp)(ω))β0...βp =

p∑
j=0

(−1)j(kp(ω))β0...β̂j ...βp

=
∑

0≤r<j≤p

(−1)j+rωφ(β0)...φ(βr)ψ(βr)...ψ(β̂j)...ψ(βp)

+
∑

0≤j<r≤p

(−1)j+r+1ωφ(β0)...φ(β̂j)...φ(βr)ψ(βr)...ψ(βp)

(139)
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For the other term, one has

((kp+1 ◦ δpF )(ω))β0...βp =

p∑
r=0

(−1)r(δpF (ω))φ(β0)...φ(βr)ψ(βr)...ψ(βp)

=
∑

0≤j<r≤p

(−1)jωφ(β0)...φ(β̂j)...φ(βr)ψ(βr)...ψ(βp)

+

p∑
r=0

ωφ(β0)...φ(βr−1)ψ(βr)...ψ(βp)

−
p∑
r=0

ωφ(β0)...φ(βr)ψ(βr+1)...ψ(βp)

+
∑

0≤r<j≤p

(−1)j+1ωφ(β0)...φ(βr)ψ(βr)...ψ(β̂j)...ψ(βp)

(140)

If we sum the two expressions, the double sums cancel each other. In the sum of two single sums
over r, all terms cancel except for the case r = 0 in the first sum and r = p in the second sum.
These remaining two terms are

ωψ(β0)...ψ(βp) − ωφ(β0)...φ(βp) = ((ψp − φp)(ω))β0...βp . (141)

This finishes the proof as every two chochain homotopic chain maps induce the same maps on
cohomology. The rest of statements is obvious. �

We have thus constructed a direct mapping family Ȟ
p
(·,F) : OpC(X) → R-Mod for each

p ≥ 0. If U ≺ V, denote by ρUV : Ȟ
•
(U ,F) → Ȟ

•
(V,F) the graded R-module homomorphism

induced for each p ≥ 0 by the chain map φp : Cp(U ,F) → Cp(V,F), as discussed in the previous
paragraphs. We know that although OpC(X) usually forms a large category, the directed limit of
any direct mapping family exists and can be calculated over any cofinal subset. We can consider
either the subset OpCS(X) of open covers indexed by subsets of 2X , or countable OpCN(X). For
compact X, we may even consider the subset of finite open covers. The following definition thus
makes sense:

Definition 6.5. Let X be a topological space and F a presheaf of R-modules on X. Then Čech
cohomology groups Ȟ

p
(X,F) with values in F are defined by

Ȟ
p
(X,F) = lim−→

U
Ȟ
p
(U ,F). (142)

The classical Čech cohomology groups Ȟ
p
(X,G) are the groups Ȟ

p
(X,GX), where GX is the

constant presheaf with value G ∈ R-Mod.

Remark 6.6. Recall that for a given G ∈ R-Mod, there is also a constant sheaf, denoted as G̃X ,
consisting of locally constant functions on X with values in G, that is

G̃X(U) = {f : U → G | f is locally constant} (143)

The classical cohomology groups are sometimes (see e.g. [1]) defined to be the Čech cohomology

groups with values in the sheaf G̃X . One can show that if X is paracompact, both definitions are
equivalent in a sense that Ȟ

p
(X,GX) ∼= Ȟ

p
(X, G̃X). However, the actual proof requires a huge

amount of work which is far beoynd the scope of these little nots.
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7 Stalks and the sheafification of a presheaf

To a given presheaf F : Op(X)→ C on a topological space X with values in C and a given point
x ∈ X, one may assign a particular object in C. It is constructed as a direct limit, we thus have
to assume that colimits exists in C. This will be the case e.g. for Grp, Set, R-Mod, Ab etc. For
simplicity, assume implicitly that C = R-Mod.

For each x ∈ X, one may consider the subset Opx(X) = {U ∈ Op(X) | x ∈ X}. Define
a partial order v on Opx(X) as follows. We say that U v V if U ⊇ V . It is thus opposite
to the partial order given by inclusion. Then (Opx(X),v) is a directed set. Indeed, for any
U, V ∈ Opx(X), we have U ∩ V ∈ Opx(X) and U, V ⊇ U ∩ V , whence U, V v U ∩ V .

One can view (Opx(X),v) as a category, obtained as a opposite to the subcategory of Op(X)
with inclusion ⊆. In the following, by Opx(X) we will always denote this category, that is there
is a unique arrow from U to V , if U v V . Let F(x) : Opx(X)→ C be the restriction of F to this
category. In particular, F(x) is a covariant functor. As Opx(X) is a directed set, it follows that
F(x) defines a direct mapping family.

Definition 7.1. Let F : Op(X) → R-Mod be a presheaf on X. Then a stalk of F at x is
defined as the direct limit

Fx := lim−→
U∈Opx(X)

F(x). (144)

In particular, for every U ∈ Opx(X), there is a R-module morphism ρU,x : F(U) → Fx. For a
given local section f ∈ F(U), the element fx := ρU,x(f) ∈ Fx is called the germ of f at x.

Example 7.2. Let F = C0 be the sheaf of continous functions, that is F(U) = C0(U). Recall the
construction of the direct limit. We have

Fx =
⊔
U3x

C0(U)/ ∼, (145)

where the locally defined functions f ∈ C∞(U) and g ∈ C∞(V ) are declared equivalent, if there
exists an open neighborhood W of x, such that W ⊆ U ∩ V and f |W = g|W .

This example is in fact quite general. Every element of the stalk Fx is represented by some
local section s ∈ Γ(U,F) of F over U 3 x. If t ∈ Γ(V,F) over V 3 x represents the same element,
that is sx = fx, then s ∼ t and there is thus some W ⊆ U ∩ V , such that s|W = t|W .

So far there was nothing special about the sheaves and their stalks. We fix this in the following
proposition:

Proposition 7.3. Suppose F is a presheaf satisfying the monopresheaf axiom (B) of Definition
1.4. Then for any open subset U ⊆ X, and any local sections s, t ∈ Γ(U,F), one has s = t if and
only if sx = tx for all x ∈ U .

Proof. Let ∼x denote the equivalence relation in the definition of Fx. If s = t then clearly s ∼x t
and thus sx = tx for all x ∈ U . Conversely, suppose sx = tx for all x ∈ U . For every x ∈ U ,
we thus have s ∼x t. There thus exists an open neighborhood Wx 3 x, such that Wx ⊆ U and
s|Wx = t|Wx . But then U = {Wx}x∈U forms an open cover of U . By monopresheaf axiom, we have
s = t. This finishes the proof. �

Now, suppose ϕ : F → G is a map of two presheaves. In other words, ϕ is a natural transfor-
mation of the two functors. For each x ∈ X, the universality of colimits induces a unique map
ϕx : Fx → Gx of the corresponding stalks. This is a general statement, which we can formulate as
a lemma.
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Lemma 7.4. Suppose J is a directed set and F,G : J → C two direct mapping families (two
covariant functors). Suppose C has colimits.

Let η : F → G be a natural transfomation. Then there exists a unique map η′ : lim−→j∈J Fj →
lim−→j∈JGj fitting into the commutative diagram

Fj Gj

lim−→j∈J Fj lim−→j∈JGj

ηj

πj θj

η′

(146)

for each j ∈ J, where πj and θj are the maps from the definition of a direct limit. Moreover,
if H : J → C is another functor and ν : G → H an another natural transformation, one has
(ν ◦ η)′ = ν′ ◦ η′ and the identity natural transformation induces an identity on direct limits.

Proof. This is a simple consequence of universal property. Indeed, consider a collection of maps
χj = θj ◦ ηj from Fj to lim−→j∈JGj . The naturality of η ensures that for every h ∈ J(j, j′), one has

χj = χj′ ◦ F (h). Indeed, we can write

χj′ ◦ F (h) = (θj′ ◦ ηj′) ◦ F (h) = θj′ ◦G(h) ◦ ηj = θj ◦ ηj = χj . (147)

But the universality then ensures that there is a unique η′ : lim−→j∈J Fj → lim−→j∈JGj making the

above diagram commutative. The rest of the statements follows immediately from the uniqueness.
�

Corollary 7.5. For every map of sheaves ϕ : F → G and every x ∈ X, there is a unique stalk
map ϕx : Fx → Gx, such that for every local section s ∈ Γ(U,F), one has ϕx(sx) = {ϕU (s)}x.

Proof. For each x ∈ X, the map of sheaves ϕ : F → G defines a natural transformation ϕ(x) :
F(x) → G(x). The rest follows from the lemma, and the property ϕx(sx) = {ϕU (s)}x is precisely
the commutativity of (146). �

Again, for sheaves, we expect something more to be said about stalk maps.

Proposition 7.6. Suppose F and G are two presheaves on X, and let ϕ,ψ : F → G be two maps
of presheaves. Suppose G satisfies a monopreshaf axiom (B) of Definition 1.4. Then ϕ = ψ if and
only if ϕx = ψx for all x ∈ X.

Proof. One direction is obvious. Conversely, let ϕx = ψx for all x ∈ X. We have to show that
ϕU = ψU for all U ∈ Op(X). For any section s ∈ Γ(U,F), one has {ϕU (s)}x = ϕx(sx) = ψx(sx) =
{ψU (s)}x for every x ∈ U . As G satisfies the monopresheaf axiom, it follows from Proposition 7.3
that ϕU (s) = ψU (s). This concludes the proof. �

Next, we will now follow on the remark in Example 1.6. To each presheaf F , we will now assign
a sheaf F̃ of sections of certain topological space, which will be isomorphic to F in the case it is a
sheaf. First, let us construct a topological space SF as a disjoint union of stalks:

SF =
⊔
x∈X
Fx. (148)
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Let p : SF → X be a surjective projection map which assigns x to each element of Fx. To each
local section s ∈ F(U), we may assign an actual section of the above projection, that is a map
s̃ : U → SF satisfying p ◦ s̃ = 1U . Set s̃(x) := sx for all x ∈ U . We define topology on SF to make
the functions s̃ continuous for all s ∈ F(U) and U ∈ Op(X). Equivalently, the subset Ω is open,
if for every U ⊆ X and every s ∈ Γ(U,F), the set {x ∈ U | sx ∈ Ω} is open in X.

Definition 7.7. The space SF defined by (148), together with the described topology, is called
the stalk space of the presheaf F .

Let us examine a little bit more the topology on SF . It is useful to find some its basis.

Proposition 7.8. The sets s̃(U) are open in SF . Moreover, the collection of such sets over all
U ∈ Op(X) and s ∈ Γ(U,F) forms a basis B for the topology on SF .

Proof. Let Ω = s̃(U). Let V ⊆ X and t ∈ Γ(V,F) be arbitrary section. We have to check that

t̃−1(Ω) = {x ∈ V | tx ∈ Ω} (149)

is an open subset. If it is empty, the statement is trivial. Hence suppose it is not empty. Let
x ∈ t̃−1(Ω). This implies x ∈ U ∩ V and tx = sx. There is thus an open set W 3 x, such that
W ⊆ U ∩V and t|W = s|W . In particular, sy = ty for all y ∈W . Whence W ⊆ t̃−1(Ω) and t̃−1(Ω)
is open. As V and t were arbitrary, we have proved that Ω is open.

To check that B forms the basis of the topology, we have to show that any open set Ω can be
written as a union of sets in B. Let e ∈ Ω be a given point. By definition e = sx for some x ∈ X
and s ∈ Γ(V,F) where U 3 x. We know that the set V = s̃−1(Ω) ⊆ U ⊆ X is open. Let t = s|V .
We claim that t̃(V ) ⊆ Ω. Every element in t̃(V ) is of the form ty for some y ∈ V . By construction
ty = sy. But V was defined as a set of y ∈ U , such that sy ∈ Ω. For each e ∈ Ω, we have found its
neighborhood in B fully contained in Ω. This proves the claim.

Finally, for Ω,Ω′ ∈ B, and every x ∈ Ω ∩ Ω′, there must be Ω0 ∈ B, such that x ∈ Ω0 and
Ω0 ⊆ Ω ∩ Ω′. Let Ω = s̃(U) and Ω′ = t̃(V ). If they have a non-empty intersection, there must be
x ∈ U ∩ V such that sx = tx. But then there is an open set W ⊆ U ∩ V , such that r = s|W = t|W .
It follows that Ω0 = r̃(W ) satisfies the claim. �

Finally, we may prove the main statement about the projection map:

Proposition 7.9. The map p : SF → X is a continuous map. In fact, it is a local homeomorphism.

Proof. To show that p is continuous, we will show that for any U ⊆ X, one has

p−1(U) =
⋃
V⊆U

⋃
s∈F(V )

s̃(V ), (150)

where all V in the first union are open. The inclusion ⊇ is obvious. For the converse statement,
let e ∈ p−1(U). By definition, there is W ⊆ X and t ∈ F(W ), such that e = tx, where x = p(e).
By assumption x ∈ U and one can set V = U ∩W and s = t|V . We can then write e = tx = sx,
whence e ∈ s̃(V ). This shows the above claim and p is continuous by previous proposition.

In fact, p restricted onto an open subset s̃(U) is a homeomorphism onto U with continuous
inverse s̃ : U → s̃(U). This proves the second claim. �

Having the stalk space SF equipped with a topology, one can define F̃ := Γ[SF , p] to be
the the sheaf of sections of the projection p : SF → X. Let us now construct a certain natural
transformation of the two functors.
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Proposition 7.10. There exists a canonical natural transformation η : F → F̃ , that is a presheaf
map from F to F̃ . For every U ∈ Op(X) and every s ∈ Γ(U,F), define

ηU (s) := s̃. (151)

Recall that s̃ : U → SF is defined by s̃(x) = sx.

Proof. Let V ⊆ U . Let ρUV : F(U) → F(V ) denote the restriction morphism. We have to check
that for any x ∈ V and any s ∈ Γ(U,F), one has {ρUV (s)}x = {s}x. But this follows from the
definition of a stalk. This makes η into a natural transformation. �

Now, we will show that the ”sheaf properties” of F can be encoded into the properties of η.

Proposition 7.11. F satisfies the monopresheaf axiom, if and only if η is injective.

Proof. First, suppose F satisfies the axiom (B) of Definition 1.4. Let U ∈ Op(X) and let s, t ∈
Γ(U,F) be two sections, such that ηU (s) = ηU (t). This implies that sx = tx for all x ∈ U . From
Proposition 7.3 it follows that s = t. Hence ηU is injective.

Conversely, let U ∈ Op(X), let U = {Ui}i∈I be any open cover of U . Let s, t ∈ Γ(U,F)
be two local sections, such that ρUUi(s) = ρUUi(t). We have to show that s = t. To prove this,
it suffices to argue why ηU (s) = ηU (t). Let x ∈ U be arbitrary. There is thus i ∈ I, such
that x ∈ Ui. By assumption ρUUi(s) = ρUUi(t). But this already implies that sx = tx, and thus
(ηU (t))(x) = (ηU (s))(x). This holds for any x, whence ηU (t) = ηU (s). �

Proposition 7.12. Suppose F satisfies the monopresheaf axiom. Then F satisfies the gluing
axiom if and only if η : F → F̃ is surjective.

Proof. First, suppose that F satisfies the axiom (A) of Definition 1.4. Let σ ∈ F̃(U) be any section.

Let x ∈ U be arbitrary. We have σ(x) ∈ Fx. There is thus some open neighborhood Ux ⊆ U
of x together with a section s(x) ∈ F(Ux), such that (s(x))x = σ(x). Let s̃(x) : Ux → SF be the
induced local section. Now, we will use the following lemma:

Lemma 7.13. Suppose σ, τ : U → SF are two local sections on U . Then the set

W = {x ∈ U | σ(x) = τ(x)} (152)

is open in U .

Proof. We may assume that W is non-empty. Let x ∈ W . Then σ(x) = τ(x) = sx for some local
section s ∈ F(Z), where Z 3 x is an open neighborhood of x in U . We know that s̃(Z) is open in
SF . Consider the set V = σ−1(s̃(Z))∩ τ−1(s̃(Z)). By assumption, V is an non-empty open subset
of U . It follows that τ(V ), σ(V ) ⊆ s̃(Z). For any v ∈ V , we have (p ◦ σ)(v) = v. Thus

σ(v) = (s̃ ◦ p)(σ(v)) = s̃((p ◦ σ)(v)) = s̃(v) = · · · = τ(v). (153)

We have used the fact that s̃ ◦ p is identity on s̃(Z) and σ(v) ∈ s̃(Z) by construction, and · · ·
repeats the arguments using τ .

We have thus found a neighborhood of V of each point x ∈W , such that V ⊆W . We conclude
that W is open. �
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Let us go back to the proof. We have two sections s̃(x) and σ|Ux on Ux. As they coincide at x,
the set Wx = {y ∈ Ux | σ(y) = s̃(x)(y)} is non-empty and open by the above Lemma. Note that the
assignment s(x) 7→ s̃(x) is natural, hence we may restrict s to Wx and the natural restriction of s̃
corresponds to this restriction. We may thus conclude that to a given local section σ : U → SF , to
a given point x ∈ U , there exists an open subset Wx ∈ Opx(U) and a local section s(x) ∈ F(Wx),
such that (s(x))y = σ(y) for all y ∈Wx.

In particular, for every z ∈ Z := Wx ∩Wy and any two points x, y ∈ U , we have (s(x))z =
σ(z) = (s(y))z. This can be translated as the equation

ηZ(ρWx

Z (s(x))) = ηZ(ρ
Wy

Z (s(y))). (154)

As ηZ is assumed injective, this imples ρWx

Z (s(x)) = ρ
Wy

Z (s(y)). Using the gluing axiom for F , there
exists a (unique by monopresheaf axiom) section s ∈ F(U), such that s(x) = ρUWx

(s). In particular,

one has s̃(x) = sx = (s(x))x = σ(x), and we have proved ηU surjective.

Conversely, suppose that η is surjective (and thus bijective). Suppose U ∈ Op(X) and let
U = {Ui}i∈I be any open cover. Suppose we are given a collection {si}i∈I of local sections, where

si ∈ F(Ui) and ρUiUij (si) = ρ
Uj
Uij

(sj). They are maped by η to the respective sections s̃i ∈ Γ(Ui, F̃).

The naturality of η ensures the condition ρ̃UiUij (s̃i) = ρ̃
Uj
Uij

(s̃j). But F̃ is a sheaf, which implies there

exists a unique section σ ∈ Γ(U, F̃), such that s̃i = ρ̃UUi(σ). Now, as ηU is assumed surjective, there
exists (a unique, as it is also injective) section s ∈ F(U), such that σ = s̃. Then

ηUi(ρ
U
Ui(s)) = ρ̃UUi(s̃) = s̃i = ηUi(si). (155)

Now, as ηUi is injective, this proves that ρUUi(s) = si. This is the gluing axiom. �

Definition 7.14. The sheaf F̃ assigned to a presheaf F is called the sheafification of F .

Corollary 7.15. Let F be a presheaf. Then η : F → F̃ is a sheaf isomorphism.

We will examine some properties of this map in the following section.

8 Stalk spaces

In the previous section, starting from a given presheaf F , we have constructed the topological space
SF together with a local difeomorphism p : SF → X. Then, starting from such a pair (E, p), one
constructs a sheaf Γ(E, p). It will be useful to view F 7→ SF and (E, p) 7→ Γ(E, p) as functors
between certain categories. In this section, we assume that all sheaves all valued in the category
Set. The more interesting cases are briefly mentioned at its end.

Definition 8.1. Let X be a given topological space. A pair (E, p) of topological space and a
surjective local homeomorphism p : E → X is called the stalk space over X. A morphism of
stalk spaces (E1, p1) and (E2, p2) over X is a continuous map ϕ : E1 → E2 such that the diagram

E1 E2

X

ϕ

p1 p2 (156)

commutes. Stalk spaces over X form a category StalkS(X).

37



Both presheaves and sheaves over a given topological space X form a category, where morphisms
are natural transformations of the respective functors. Let us denote those categories as PSh(X)
and Sh(X). We suppose that the target category C is fixed all the time. Note that PSh(X) is by

definition just a functor category C(Op(X))op . Moreover, Sh(X) can be viewed as a full subcategory
of PSh(X). First, let us talk about the functor Γ.

Proposition 8.2. Define the covariant functor Γ : StalkS(X)→ Sh(X) by declaring

Γ(E, p)(U) = {σ : U → E | σ is continuous and p ◦ σ = 1U} ≡ ΓU (E) (157)

for every U ∈ Op(X). To every stalk space morphism ϕ : E1 → E2, the corresponding natural
map Γ(ϕ) : Γ(E1, p1) → Γ(E2, p2) is defined by composition. More exactly, if U ∈ Op(X) and
σ ∈ ΓU (E), we set Γ(ϕ)U (σ) = ϕ ◦ σ.

Proof. Everything is kind of clear, except one has to prove that ϕ ◦σ ∈ ΓU (E2). This follows from
the assumption (156) made on ϕ. It is obvious that Γ(1E)U = 1ΓU (E) and Γ(ϕ◦ψ) = Γ(ϕ)◦Γ(ψ). �

Before an examination of the functor S : PSh(X) → StalkS(X), we will study some general
properties of the stalk spaces following from their definition.

Proposition 8.3. Let (E, p) be the stalk space. Then the following facts are true:

(a) The map p is open.

(b) For any U ∈ Op(X) and any σ ∈ ΓU (E), the subset σ(U) is open in E. Such open subsets
form a basis for the topology of E.

(c) Let ϕ : E1 → E2 be any map making the diagram

E1 E2

X

ϕ

p1 p2 (158)

commutative. Suppose (E1, ϕ1) and (E2, ϕ2) are stalk spaces. Then the map ϕ is continuous
iff it is an open map iff it is a local homeomorphism.

Proof. Ad (a): Let U ⊆ E be open and non-empty. We have to show that p(U) is open. Let
x ∈ p(U) and let e ∈ E be any point such that p(e) = x. On the other hand, p is a local
homeomorphism. There is thus some open subset W ⊆ E containing x, such that p(W ) ⊆ X is
open and p : W → p(W ) is a homeomorphism. Let Z = p−1(W ) ∩ U . This is na open subset of
W , whence p(Z) is open in p(W ) and thus also in X. By construction p(Z) ⊆ p(U) and x ∈ p(Z).
This proves that p(U) is open. As U was arbitrary non-empty, we conclude that p is open.

Ad (b): Let U ⊆ X be open, and let σ ∈ ΓU (E). Let e ∈ σ(U) and write x := p(e). As p
is a local homeomorphism, there is an open neighborhood W of e, such that p : W → p(W ) is a
homeomorphism and p(W ) ⊆ X is open.

Next, one can consider the set σ−1(W ) ⊆ U . It is non-empty as σ(x) = e ∈ W . Finally,
consider the intersection V = p(W ) ∩ σ−1(W ). It is open and non-empty as p(e) = x and both
open sets thus contain x.

Now, set Z = p−1(V ). As V ⊆ p(W ), we have Z ⊆ W . We claim that for every z ∈ Z, one
has z = σ(p(z)). Since p(z) ∈ U , this would prove the inclusion Z ⊆ σ(U). By definition, we have
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p(z) ∈ V = p(W )∩σ−1(W ). In particular, σ(p(z)) ∈W . As p is injective on W , it sufices to verify
that p(z) = p(σ(p(z)). But this is clear. Hence Z is an open neighborhood of x inside σ(U). Thus
σ(U) is open, as was to be proved.

To finish this part, we must prove B = {σ(U) | U ∈ Op(X), σ ∈ ΓU (E)} forms the basis
of the topology on E. Let V ⊆ E be any open set. Let e ∈ V be arbitrary. As p is a local
homeomorphism, there exists an open neighborhood W of e, such that p(W ) ⊆ X is open and
p : W → U is a homeomorphism. The set U = p(V ∩W ) is open in X. Let σ : U → E be the
inverse of p restricted onto U and then composed with the inclusion W ↪→ E. This is clearly a
continuous local section of E and σ(U) = V ∩W ⊆ V . This shows that every open subset V ⊆ E
can be written as a union of some sets in B.

Next, let σ ∈ ΓU (E) and σ′ ∈ ΓU ′(E) for some open sets U,U ′ ∈ Op(X). Suppose there exists
a point e ∈ σ(U) ∩ σ′(U ′). We have to find an open subset V ⊆ X and a section τ ∈ ΓV (E), such
that τ(V ) ⊆ σ(U) ∩ σ′(U ′). To prove this, we can in fact repeat the proof of Lemma 7.13 to find
the similar statement for the general stalk space:

Lemma 8.4. Let (E, p) be a stalk space. Suppose σ, τ ∈ ΓU (E) are two its local sections. Then

Z = {x ∈ U | σ(x) = τ(x)} (159)

is open in U (and thus also in X).

Proof. Without the loss of generality, we may assume that Z is non-empty. Let x ∈ Z. Let
e = σ(x) = τ(x). As p is a local homeomorphism, there exists an open neighborhood W of e,
such that p : W → p(W ) is a homeomorphism. Let V = σ−1(W ) ∩ τ−1(W ). This set is non-
empty as x ∈ V . Moreover, clearly V ⊆ p(W ). We claim that V ⊆ Z. For every v ∈ V , one has
σ(v), τ(v) ∈W . As p is injective on W , the equation (p◦σ)(v) = v = (p◦τ)(v) implies σ(v) = τ(v).
Whence v ∈ Z. V is thus an open neighborhood of a given x ∈ Z, such that V ⊆ Z. Whence Z is
open in U , as was to be proved. �

Now, we can finally finish the proof of part (b). Let Z ⊆ U ∩ U ′ be the open (by the previous
lemma) subset where σ and σ′ coincide. It is non-empty as p(e) ∈ Z. Moreover, find an open
neighborhood W of e, such that p : W → p(W ) is a homeomorphism. Let V = Z ∩ p(W ), and
define τ : V → E to be the inverse of p restricted onto V , composed with the inclusion W ↪→ E.
Now, for any e′ ∈ τ(V ), one has e′ = σ(p(e′)) = σ′(p(e′)). As τ(V ) ⊆ W and p is injective on W ,
this is clear. Hence τ(V ) ⊆ σ(U)∩ σ′(U ′) and e ∈ τ(V ). We conclude that B indeed forms a basis
for the toplogy on E.

Ad (c): This part contains three equivalent claims, namely

(i) ϕ is continuous;

(ii) ϕ is open;

(iii) ϕ is a local homeomorphism.

We will prove a usual chain of implications.

First for (i) ⇒ (ii): Suppose ϕ is continuous. To prove that it is open, it suffices to show that
an image of every element in the basis B1 for the topology of E1 is open in E2. We have already
shown that the basis is formed by images of continous local sections. Hence suppose U ∈ Op(X)
and σ ∈ ΓU (E). We have ϕ(σ(U)) = (ϕ ◦ σ)(U). But ϕ is continous and thus ϕ ◦ σ ∈ ΓU (E2).
Consequently, (ϕ ◦ σ)(U) ∈ B2. In particular, it is open. Thus ϕ is open.
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Next, for (ii) ⇒ (iii): Suppose ϕ is open. Let e1 ∈ E1 be an arbitrary point. Let x = p1(e1).
There is an open set U ∈ Opx(X) and σ ∈ ΓU (E1) be such e1 ∈ σ(U). By assumption, the set
(ϕ ◦ σ)(U) is open in E2. We will show that ϕ : σ(U)→ (ϕ ◦ σ)(U) is a homeomorphism. As it is
an open map, it suffices to show that (the restriction of) ϕ is a continuous bijection.

Obviously, it is surjective. Every f1 ∈ σ(U) can be written as f1 = σ(y1) for a unique y1 ∈ U .
If (ϕ ◦ σ)(y1) = (ϕ ◦ σ)(y′1), one can apply p2 and use (158) to show y′1 = y1. Hence ϕ restricted
on σ(U) is injective. It remains to prove that it is continuous.

It suffices to consider the open sets in the form τ(W ), where W ⊆ U and τ ∈ ΓW (E2) satisfy
τ(W ) ⊆ (ϕ ◦ σ)(U). Such sets form the basis of the subspace topology on (ϕ ◦ σ)(U). We have
to argue that the set ϕ−1(τ(W )) ∩ σ(U) is open in σ(U). Let f1 ∈ ϕ−1(τ(W )) ∩ σ(U) be a given
point, and let y = p1(f1). As ϕ(f1) ∈ τ(W ), it folows from (158) that y ∈ W . We will now argue
that σ(W ) is an open neighborhood of f1, such that σ(W ) ⊆ ϕ−1(τ(W )) ∩ σ(U). It suffices to
show that σ(W ) ⊆ ϕ−1(τ(W )).

Let f ′1 ∈ σ(W ). There is thus a unique y′ ∈ W , such that f ′1 = σ(y′). Moreover, by definition
τ(y′) ∈ (ϕ ◦ σ)(U). There is thus a unique x′ ∈ U , such that τ(y′) = (ϕ ◦ σ)(x′). Applying p2 it
follows that in fact y′ = x′. Whence ϕ(f ′1) = ϕ(σ(y′)) = τ(y′). This shows that f ′1 ∈ ϕ−1(τ(W )).
Thus σ(W ) ⊆ ϕ−1(τ(W )). We conclude that ϕ is continuous.

The implication (iii) ⇒ (i) is trivial. �

Now, we may examine the stalks of the sheaf Γ(E, p). It turns out that they can be canonically
identified (as sets) with the fibers of the fibration p : E → X.

Proposition 8.5. Let (E, p) be any stalk space and let Γ(E, p) be the sheaf of its continuous
sections. Let Ex = p−1(x) be the fiber over x. Then Ex has discrete topology.

Moreover, for each x ∈ X, there exists a canonical isomorphism of Ex and the stalk Γ(E, p)x.

Proof. We have to argue that every one-point set {e} ⊆ Ex is open in the subspace topology.
There exists some U ∈ Opx(X) and σ ∈ ΓU (E), such that e ∈ σ(U). In particular, we must have
e = σ(x). But every other point e′ ∈ Ex ∩ σ(U) must be e′ = σ(x). Hence {e} = Ex ∩ σ(U). This
proves that {e} is open in the subspace topology.

Stalk at x is defined as a direct limit (hence a colimit) over the category Opx(X). We may
thus use the universality. For each U ∈ Opx(X), one may consider a map evU,x : ΓU (E) → Ex
which simply evaluates the section σ ∈ ΓU (E) at the point x. We claim that σ(x) ≡ evU,x(σ) is
the germ of σ at x. First, note that if V ⊆ U and ρUV : ΓU (E)→ ΓV (E) is the (sheaf) restriction,
the diagram

ΓU (E) ΓV (E)

Ex

evU,x

ρUV

evV,x
(160)

commutes. We have to show that whenever we find a collection of maps {τU,x}U∈Opx(X) and a set
S, such that τU,x : ΓU (E)→ S and we have the same commutative triangle for every V ⊆ U , that
is τU,x = τV,x ◦ ρUV , there must exist a unique map k : Ex → S, such that τU,x = k ◦ eU,x for all
U ∈ Opx(X).

To define k, let e ∈ Ex. As (E, p) is a stalk space, we have e = σ(x) = evV,x(σ) for some
V ∈ Opx(X) and σ ∈ ΓV (E). We must set k(e) := k(evV,x(σ)) = τV,x(σ). We will now argue that
this definition depends only on e, not on σ ”extending it”.
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Hence, suppose that there is W ∈ Opx(X) and τ ∈ ΓW (E), such that τ(x) = σ(x) = e. It
follows from Lemma 8.4 that there is a non-empty open set Z ⊆ V ∩W , such that σ and τ coincide
on this set. In terms of restriction maps, this means that ρVZ (σ) = ρWZ (τ). Thus, by assumption

τV,x(σ) = τZ,x(ρVZ (σ)) = τZ,x(ρWZ (τ)) = τW,x(τ). (161)

This shows that k is well-defined. Clearly, it is a unique such map. �

Now, we can finally examine the map S : PSh(X)→ StalkS(X) in more detail.

Proposition 8.6. The map S : PSh(X)→ StalkS(X) which assigns to each presheaf F the stalk
space (SF , p) defines a covariant functor.

Proof. We only have to show that to any natural transformation ϕ : F → G of two presheaves over
X, there exists a morphism S(ϕ) : SF → SG of the respective stalk spaces. Recall that to any
map of presheaves and any x ∈ X, there is a unique map ϕx : Fx → Gx of the respective stalks,
see Corollary 7.5. As each fiber (SF)x is precisely the stalk Fx, we define S(ϕ) ”fiber-wise” using
ϕx. Clearly, it then fits into the commutative diagram

SF SG

X

S(ϕ)

p1 p2
. (162)

According to Proposition 8.3 - (c), it suffices to prove that S(ϕ) is an open map. The basis B of the
topology on SF is formed by sets s̃(U), where s ∈ F(U) is a local section of F over U ∈ Op(X).

We will now argue that S(ϕ)(s̃(U)) = ϕ̃U (s)(U). This is an open set. Every point s̃(U) can be
uniquely written as sx for a unique x ∈ U . Then S(ϕ)(sx) = ϕx(sx) = (ϕU (s))x. This proves the
inclusion ⊆. The other one is also obvious - kind of from definition. This proves that S(ϕ) maps
every element of the topology basis to the open set in SG, whence it is open.

It is easy to see that S(ϕ◦ψ) = S(ϕ)◦S(ψ) and S(1F ) = 1SF and we conclude that S is indeed
a functor from PSh to StalkS. �

Now, note that we have a natural transformation η : F → ΓSF , hence a presheaf morphism.
It thus induces a morphism of the corresponding stalks. But note that according to Proposition
8.5, we can identify Γ(SF)x with the fiber (SF)x and thus with Fx.

Proposition 8.7. For each x ∈ X, the map of stalks ηx : Fx → F̃x ≡ Γ(SF)x is the identity.

Proof. The stalk map is defined as a unique map ηx : Fx → F̃x = Fx which for every U ∈ Op(X)
and s ∈ F(U) satisfies the relation

ηx(sx) = (ηU (s))x = evU,x(ηU (s)) = evU,x(s̃) = s̃(x) = sx. (163)

This is, quite obviously, the identity. �

We have already argued that there exists a canonical natural isomorphism ηF : F → ΓSF
for every sheaf F . It can be easily seen that it is in fact natural in F , whence defines a natural
isomorphism η from the identity functor 1 : Sh(X)→ Sh(X) to the functor ΓS.

Proposition 8.8. There exists a canonical natural isomorphism ε from the identity functor 1 on
StalkS(X) to the functor SΓ.
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Proof. Let (E, p) ∈ StalkS(X). We have to define a stalk space map εE : (E, p) → S(Γ(E, p)).
First, it must fit into the commutative diagram

E S(Γ(E, p))

X

εE

p π
, (164)

where π is the canonical projection from the definition of the functor S. Let e ∈ Ex. Then
εE(e) must be in the stalk Γ(E, p)x = Ex (see Proposition 8.5). The obvious choice is εE(e) = e.
According to Proposition 8.3, it suffices to check that εE is open. A topology basis B for E can be
chosen to consist of sets σ(U), where U ∈ Op(X) and σ ∈ ΓU (E).

But σ is a local section of the sheaf Γ(E, p) and we may assign to it a section σ̃ : U → S(Γ(E, p))
of the other stalk space. By Proposition 8.3, the set σ̃(U) is open in S(Γ(E, p)). We claim that
εE(σ(U)) = σ̃(U). Recall that the section σ̃ assigns to each x ∈ U the germ of the section σ at x,
that is, in this case, σ̃(x) = evU,x(σ) ≡ σ(x). We thus have

εE(σ(x)) = σ(x) = σ̃(x). (165)

This proves that claim. Consequently, the map ηE is open and thus continuous. In fact, it has to
be an isomorphism of the two stalk spaces. A local homeomorphism is a homeomorphism iff it is a
bijection. But it clearly is a bijection. Finally, we must prove that it is natural in E, that is fitting
into the diagram

E1 S(Γ(E1, p1))

E2 S(Γ(E2, p2))

ϕ

εE1

SΓ(ϕ)

εE2

(166)

for every morphism of stalk spaces ϕ : (E1, p1) → (E2, p2). Let e1 ∈ (E1)x. Then εE1(ex) = e1.
The map S(Γ(ϕ)) then simply applies the stalk map Γ(ϕ)x on e1. This stalk map is determined
uniquely by the diagram

ΓU (E1) ΓU (E2)

(E1)x (E2)x.

evU,x

Γ(ϕ)U

evU,x

Γ(ϕ)x

(167)

Obviously, the only reasonable (and correct) choice is Γ(ϕ)x(e1) = ϕ(e1). The ”clockwise” branch
of the above diagram thus sends e1 ∈ (E1)x to ϕ(e2) ∈ S(Γ(E2, p2))x = (E2)x. But this is exactly
what the ”counter-clockwise” branch does. �

Corollary 8.9. The categories Sh(X) and StalkS(X) are equivalent.

Proof. We have constructed functors S : Sh(X)→ StalkS(X) and Γ : StalkS(X)→ Sh(X), such
that 1 ∼= SΓ and 1 ∼= ΓS, where ∼= denote the natural isomorphisms of the functors. This is a
definition of the equivalence of categories. �

Recall that for any presheaf F , we have constructed a certain sheaf F̃ together with a natural
transformation ηF : F → F̃ . But what if there is an another sheaf G together with a natural map
τ : F → G? The claim is that it has to ”factor through” F̃ anyway. This can be viewed as the
universality of the sheafification process.
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Proposition 8.10. Let F ∈ PSh(X) be an arbitrary presheaf. Suppose τ : F → G is a natural
transformation from F to a sheaf G ∈ Sh(X). Then there is a unique natural transformation

τ̃ : F̃ → G, such that the following diagram commutes:

F F̃

G

ηF

τ
τ̃

(168)

Proof. First, let prove the uniqueness of τ̃ . For every x ∈ X, we have the corresponding stalk
maps, that is τx = τ̃x ◦ηF,x. We have already argued that ηF,x : Fx → F̃x ≡ Fx is just an identity,

whence τ̃x is uniquely determined. By Proposition 7.6, the map τ̃ : F̃ → G of (pre)sheaves, where
G is a sheaf, is uniquely determined (if it exists) by its stalk map. Hence it is unique.

To prove its existence, one may define τ̃ to complete the following diagram:

F F̃

G G̃

τ

ηF

SΓ(τ)τ̃

ηG

. (169)

This is possible as G̃ is a sheaf and by Corollary 7.15, ηG is a natural isomorphism. �

9 Stalk spaces of R-modules and commutative rings

So far we have considered only the presheaves valued in Set and all statements were discussed only
on the set level. However, we would like to have something more suited for two important classes
of sheaves, namely those valued R-Mod and CRing.

Definition 9.1. A stalk space of R-modules over X is a pair (E, p), where p : E → X is a
surjective local homeomorphism, such that

(i) Every fiber Ex = p−1(x) is an R-module.

(ii) For every λ ∈ R, the map e 7→ λ · e on E is continuous.

(iii) The additive inverse −E : E → E, defined fiberwise, is continuous.

(iv) Let E ×X E be a fibered product over X, that is

E ×X E = {(e1, e2) ∈ E × E | p(e1) = p(e2)} (170)

We can then define a map +E : E ×X E → E, using the R-module structure of the fibers of
E. This map must be continuous.

Lef F : X → R-Mod be a presheaf. We will now prove that the stalk space p : SF → X,
constructed in Section 7, is a stalk space of R-modules. This should not be too difficult as we
already know things or two about the topology of SF . Before doing so, let us prove a very useful
general statement:
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Proposition 9.2. Let (E1, p1) and (E2, p2) be two stalk spaces over X. Then E = E1 ×X E2

together with a canonical projection π : E → X and equipped with a canonical topology (subspace
topology of the product topology) is a stalk space again.

Proof. We have π(e1, e2) := p1(e1) = p2(e2). It is surjective as for any x ∈ X, there are e1 ∈
p−1

1 (x) and e2 ∈ p−1
2 (x). Hence π(e1, e2) = x. It is continuous as to any U ∈ Op(X), one has

π−1(U) = E ∩ (p−1
1 (U)× p−1

2 (U)) which is an open subset of E. To prove that it is a stalk space,
recall that we have a special topology bases for E1 and E2, respectively:

B1 = {σ1(U) | σ1 ∈ ΓU (E1)}, (171)

B2 = {σ2(U) | σ2 ∈ ΓU (E2)}. (172)

By definition, the basis B for the topology of E has the form

B = {E ∩ (V1 × V2) | V1 ∈ B1, V2 ∈ B2}. (173)

Now, let (e1, e2) ∈ E. Let x = π(e1, e2). There are thus U1, U2 ∈ Opx(X) and two local sections
σ1 ∈ ΓU1

(E1) and σ2 ∈ ΓU2
(E2), such that e1 = σ1(x) and e2 = σ2(x), respectively. Let W =

E ∩ (σ1(U1) × σ2(U2)). We claim that π : W → π(W ) is a homeomorphism. Let us examine the
set W a little bit. Let (f1, f2) ∈ W . We have (f1, f2) = (σ1(x1), σ2(x2)) for some x1 ∈ U1 and
x2 ∈ U2. But then also x1 = p1(f1) = p2(f2) = x2. It follows that W = (σ1, σ2)(U1 ∩ U2). In
particular, we find π(W ) = U1 ∩ U2, which is open in X. Moreover, the restriction of π to W is
clearly bijective. To prove that π is a homeomorphism of W and U1 ∩ U2, it suffices to show that
it is open. This can be shown on the elements of the basis BW of W . As W ⊆ E is open, we may
consider the basis

BW = {V ∈ B | V ⊆W} (174)

Let V ∈ BW . There are thus two open subsets Z1, Z2 ∈ Op(X) and τ1 ∈ ΓZ1
(E1) and τ2 ∈

ΓZ2
(E2), such that V = (τ1, τ2)(Z1 ∩Z2). In particular, Z1 ∩Z2 ⊆ U1 ∩U2. and π(V ) = Z1 ∩Z2 ⊆

U1 ∩ U2 ≡ π(W ) is open. Whence π : W → π(W ) is an bijective continuous open map, hence a
homeomorphism. �

Now, we may prove the first of the two main statements of this section.

Proposition 9.3. Let F : X → R-Mod be a presheaf on X valued in the category of R-modules.
Then the stalk space p : SF → X, with the topology described in the previous section, is a stalk
space of R-modules.

Proof. Write E = SF . By definition Ex = Fx, which is an R-module by construction. One only
has to check the continuity properties (ii) - (iv). By Proposition 8.3, for maps from E to E, it
suffices to check they are open to prove they are continuous.

Ad (ii): Let λ ∈ R. Let λE : E → E denote the corresponding fiberwise multiplication. Recall
that the topology of E has the basis B consisting of the sets s̃(U), where s ∈ F(U) is a local section
of F over U and s̃(x) = sx for all x ∈ U . It suffices to prove that λE(s̃(U)) is open. As F(U) is
an R-module, we have also a section λ · s ∈ F(U) and

λE(s̃(U)) = (̃λ · s)(U), (175)

which will prove the claim. Let e ∈ s̃(U). Thus e = sx for x = p(e). The germ map s 7→ sx is an
R-module morphism, and thus

λE(e) = λ · sx = (λ · s)x = (̃λ · s)(x). (176)
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This proves the inclusion ⊆. The other one is just reading the above equation backwards.

Ad (iii): This one is completely analogous, one shows that −E(s̃(U)) = (̃−s)(U).

Ad (iv): By Proposition 9.2, the space π : E ×X E → X is again a stalk space. Now, the map
+E : E×X E → E becomes a map of stalks. To prove that it is continuous, it suffices to show that
it is open. We may do it again on the topology basis W = (s̃, s̃′)(U ∩ U ′), where s ∈ F(U) and
s′ ∈ F(U ′) for some U,U ′ ∈ Op(X). See the Proof of Proposition 9.2 to see that this is indeed a
basis of topology for E ×M E. Let t ∈ F(U ∩ U ′) be the section defined as

t = ρUU∩U ′(s) + ρU
′

U∩U ′(s
′) (177)

We will now argue that +E(W ) = t̃(U ∩ U ′). Indeed, let (e, e′) ∈ W . There is thus x ∈ U ∩ U ′,
such that (e, e′) = (sx, s

′
x). Then

+E (e, e′) = sx + s′x = (ρUU∩U ′(s) + ρU
′

U∩U ′(s
′))x = t̃(x), (178)

where the second equality is the definition of the R-module structure of the stalk space Fx. This
proves the inclusion ⊆. To prove the other one, simply read the equations backwards. �

Now, for the converse. Suppose (E, p) is a stalk space of R-modules. We would like to show
that the corresponding sheaf Γ(E, p) is a sheaf of R-modules. First, let us note the following simple
lemma:

Lemma 9.4. Let (E, p) be a stalk space over X, and let U ∈ Op(X). Then EU := p−1(U) together
with a restriction of p is a stalk space over U , called the restriction of E to U .

Proof. Clearly, p : EU → U is a surjective continuous map. Only has to argue that it is a local
homeomorphism. Let e ∈ EU . There is thus an open subset W ∈ Ope(E), such that p : W → p(W )
is a homeomorphism. Then p(W ∩ EU ) = p(W ) ∩ U . We have thus found W ∩ EU ∈ Ope(EU ),
such that p(W ∩ EU ) ∈ Ope(U). Clearly, the restriction of p to an open subset W ∩ EU of W
defines the homeomorphism of W ∩ EU and its image p(W ) ∩ U . �

Proposition 9.5. Let (E, p) be a stalk space of R-modules. Then its sheaf Γ(E, p) of sections is
a sheaf of R-modules. The R-module structure is the unique one making the canonical bijection
Ex → (Γ(E, p))x into a R-module isomorphism.

Proof. Let x ∈ X and let U ∈ Opx(X) be any its open neighborhood. Let σ, τ ∈ ΓU (E). The
canonical map Ex → (Γ(E, p))x is a R-module isomorphism if the the ring structure on ΓU (E)
makes the evaluation map evU,x : ΓU (E) → Ex into a R-module morphism. In other words, se
must necessarily set

(σ + τ)(x) = evU,x(σ + τ) := σ(x) + τ(x), (179)

and similarly for the additive inverse and R multiplication, that is

(−σ)(x)) := −σ(x), (λ · σ)(x) := λ · (σ(x)). (180)

All the right-hand sides use the assumed R-module structure of the fiber Ex. One only has to
check that point-wise defined operations on sections make them into a continous sections of E
again. Now, define a map ϕ : U → E×X E as ϕ(x) = (σ(x), τ(x)). Let π : (E×X E)U → U define
a restricted stalk space as given by Lemma 9.4. Then ϕ fits into the diagram

U (E ×X E)U

U U

1U

ϕ

π

1U

. (181)
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Indeed, one has π(ϕ(x)) = π(σ(x), τ(x)) = x. We can view 1U : U → U as a stalk space over U .
By Proposition 8.3, the map ϕ is then continuous if and only if it is open. But for any V ∈ Op(U),
we have ϕ(V ) = (σ, τ)(V ). Such sets form a basis of (E ×X E)U and, naturally, they are open.

Thus ϕ is continuous as a map from U to (E ×X E)U and thus also as a map to E ×X E.
Now, finally, we may view the section σ + τ as a composition of two continuous maps, namely
σ + τ = +E ◦ ϕ. Hence σ + τ ∈ ΓU (E).

The other two operations are much simpler, as we have −σ = −E ◦ σ and λ · σ = λE ◦ σ, where
λE is the fiber-wise left multiplication by λ ∈ R. This finishes the proof. �

Naturally, there is also a version of stalk space maps suitable for the category R-Mod. It is
not difficult to guess what the right definition might be.

Definition 9.6. Let (E1, p1) and (E2, p2) be two stalk spaces of R-modules. The map ϕ : E1 → E2

is a map of stalk spaces of R-modules, if it is a map of stalk spaces and furthermore, the induced
map ϕ(x) : (E1)x → (E2)x is an R-module morphism.

One can now reprove all statements in the previous section, valid for the category of (pre)sheaves
valued in R-Mod and the category of stalk spaces of R-modules with the above defined morphisms.

To conclude this section, we briefly mention the modification of the above definition to work
for presheaves valued in the commutative rings category CRing.

Definition 9.7. A stalk space of commutative rings over X is a pair (E, p), where p : E → X
is a surjective local homeomorphism, such that

(i) Every fiber Ex = p−1(x) is a commutative ring.

(ii) One can define a map −E : E → E which to each e ∈ E assigns its additive inverse (using
the ring structure of the fiber). This map must be continuous.

(iii) Let E ×X E be a fibered product over X, that is

E ×X E = {(e1, e2) ∈ E × E | p(e1) = p(e2)} (182)

We can then define maps +E : E ×X E → E and ·E : E ×X E → E, using the commutative
ring structure of the fibers of E. These maps must be continuous.

It is easy to prove the analogues of propositions 9.3 and 9.5 suitable for the category of CRing.

To conclude this section, let us prove the following interesting observation. In general, there
may not exist any section of a given stalk space p : E → X. However, for stalk spaces of R-modules
(or commutative rings), there is a particular element in every fiber Ex, namely the zero element
which we denote as 0x. One can thus define a zero section, which we denote as 0E , defined by
0E(x) = 0x. Is the map 0E : X → E continuous?

Proposition 9.8. For each stalk space of R-modules (or commutative rings), there exists a canon-
ical global zero section 0E ∈ ΓX(E).

Proof. To prove that 0E is continuous, it suffices to show that for each x ∈ X, there exists
U ∈ Opx(X), such that the restriction 0E |U : U → E is continuous. Now, certainly, there is some
U ∈ Opx(X) together with a continous local section σ : U → E.

Recall that E is a stalk space of R-modules and the fiber-wise multiplication map λE : E →
E is continuous for every λ ∈ R. In particular, choose λ = 0R, that is an additive zero of
the commutative ring R. Then we can write 0E |U = λR ◦ σ. Indeed, for any x ∈ U , one has
(λR ◦ σ)(x) = 0R · σ(x) = 0x, where we use the general R-module property 0R · Ex = 0x. But the
composition λR ◦ σ is continuous and thus so is 0E |U . The proof for CRing is analogous. �
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10 Morphisms of presheaves and sheaves

We will now consider presheaves and sheaves valued in the categories R-Mod or CRing. Suppose
ϕ ∈ R-Mod(A,B) for two R-modules A and B. We can then define the following notions:

1. The kernel ker(ϕ) of ϕ defined as a set

ker(ϕ) = {a ∈ A | ϕ(a) = 0}. (183)

Since ϕ is R-linear and additive, it follows that ker(ϕ) is a R-submodule of A. The map ϕ is
injective, if and only if ker(ϕ) = 0.

2. The image im(ϕ) of ϕ is a subset of B given by

im(ϕ) = {b ∈ B | there exists a ∈ A such that b = ϕ(a)}. (184)

Again, properties of ϕ imply that im(ϕ) is a R-submodule of B.

3. The cokernel coker(ϕ) of ϕ is the quotient R-module B/ im(ϕ). The map ϕ is surjective, if
and only if coker(ϕ) = 0.

4. The coimage coim(ϕ) of ϕ is the quotient R-module A/ ker(ϕ). There always exists a
canonical map from coim(ϕ) to im(ϕ) which happens to be a R-module isomorphism. Indeed,
there exists a map ϕ̂ defined to fit into the commutative diagram

A im(ϕ)

A/ ker(ϕ)

\

ϕ

ϕ̂
, (185)

where \ : A → A/ ker(ϕ) is the canonical quotient map. It is easy to check that ϕ̂ is a
well-defined bijective R-module morphism, hence an isomorphism.

The idea is to generalize this notions to a morphism ϕ : F → G of two (pre)sheaves. On the level
of presheaves, everything works as expected. However, for sheaves, the ”image presheaf” of a sheaf
is in general not a sheaf. In this section, we shall address these issues.

Proposition 10.1. Let ϕ : F → G be a morphism of two presheaves on X. Then the kernel
presheaf ker(ϕ) corresponding to ϕ is for every U ∈ Op(X) defined by

(ker(ϕ))U := ker(ϕU ). (186)

The restriction morphisms are obtained by restricting those of F . If F is a sheaf and G satisfies
the monopresheaf axiom, ker(ϕ) forms a sheaf.

Proof. For every V ⊆ U , we have a commutative diagram

F(U) G(U)

F(V ) G(V )

ρUV

ϕU

ρ̃UV

ϕV

. (187)
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For every s ∈ ker(ϕU ), we thus have ϕV (ρUV (s)) = ρ̃UV (ϕU (s)) = ρ̃UV (0) = 0. This means that
ρUV (ker(ϕU )) ⊆ ker(ϕV ) and the restriction morphisms of F induce those of ker(ϕ). This makes
ker(ϕ) into a presheaf.

Now, let us assume that F is a sheaf and G satisfies the monopresheaf axiom. Let U ∈ Op(X)
and let U = {Ui}i∈I be its open cover.

First, suppose we are given a collection {si}i∈I , where si ∈ ker(ϕUi) and ρUiUij (si) = ρ
Uj
Uij

(sj) for

all i, j ∈ I. As ker(ϕUi) ⊆ F(Ui), we may use the fact that F is a sheaf. There is thus a unique
section s ∈ F(U), such that si = ρUUi(s). We have to argue that s ∈ ker(ϕU ). We have

ρ̃UUi(ϕU (s)) = ϕUi(ρ
U
Ui(s)) = ϕUi(si) = 0. (188)

We thus have ρ̃UUi(ϕU (s)) = ρ̃UUi(0) = 0, and by the monopresheaf axiom for G, we find ϕU (s) = 0.
This proves the gluing axiom for ker(ϕ).

Now, let s, t ∈ ker(ϕU ), such that ρUUi(s) = ρUUi(t). This means that s = t as elements of F(U),
hence also as elements of ker(ϕU ). This is a monopresheaf axiom for ker(ϕ). �

In fact, in the category of R-modules, and thus also in the category of presheaves valued in
R-modules, injective R-module morphisms are the monic morphisms (which are defined in every
category).

Definition 10.2. Let ϕ ∈ R-Mod(A,B) for A,B ∈ R-Mod. We say that ϕ is a monic mor-
phism, if for any K ∈ R-Mod and any pair of R-module morphisms κ, κ′ ∈ R-Mod(K,A), the
equation ϕ ◦ κ = ϕ ◦ κ′ implies κ = κ′.

The same definition defines a monic presheaf morphism in the category PSh(X) of presheaves
on X valued in the category R-Mod.

Before proving the main proposition about kernels, let us note that kernel of a R-module ho-
momorphism (and thus also of a kernel presheaf of a presheaf morphism) has a certain universality
property.

Proposition 10.3. Suppose one has K,A,B ∈ R-Mod and a pair of morphisms κ ∈ R-Mod(K,A)
and ϕ ∈ R-Mod(A,B), such that ϕ ◦ κ = 0. Then there exists a unique R-module morphism
κ̂ : K → ker(ϕ) making the following diagram commutative:

K A

ker(ϕ)

κ̂

κ

I (189)

I : ker(ϕ)→ A is the inclusion. The same statement holds in the category of PSh(X) of presheaves
on X valued in the category R-Mod.

Proof. By definition im(κ) ⊆ ker(ϕ). Whence κ̂ is just κ viewed as a map from K to ker(ϕ). �

We can now formulate the usual relation of kernels and injectivity. If F is a sheaf, it can be
slightly reformulated in terms of the corresponding stalk maps.

Proposition 10.4. Let ϕ : F → G be a map of presheaves. Then the following statements are
equivalent:
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(i) ker(ϕ) = 0 (the trivial sheaf);

(ii) For every U ∈ Op(X), the map ϕU is injective;

(iii) ϕ is a monic morphism in the cateogory PSh(X) of presheaves valued in R-Mod.

(iv) (only for F satisfying the monopresheaf axiom) The induced stalk map ϕx : Fx → Gx is
injective for all x ∈ X.

Proof. The equivalence of (i) and (ii) is the property of the R-module morphism ϕU for each
U ∈ Op(X).

Next, suppose (i) holds. We are to prove (iii). Let H be any presheaf together with a pair
κ, κ′ : H → F of presheaf morphisms, such that ϕ ◦ κ = ϕ ◦ κ′. We thus have ϕ ◦ (κ − κ′) = 0.
By Proposition 10.3, there is a unique presheaf map µ : H → ker(ρ), such that I ◦ µ = (κ − κ′),
where I : ker(ϕ)→ F is the inclusion. But ker(ρ) = 0, whence I ◦ µ = 0 and consequently, κ′ = κ.
Hence (i) implies (iii). Conversely, suppose (iii) holds. Consider H = ker(ϕ) and let κ = I (the
inclusion), κ′ = 0 (the zero map). Then ϕ ◦κ = ϕ ◦κ′. As ϕ is a monic morphism, we have κ = κ′,
that is I = 0. But this can only happen if ker(ϕ) = 0. Thus (i) holds.

Suppose (ii) holds. Let sx ∈ Fx be a germ at x, such that ϕx(sx) = 0, where s ∈ F(U) and
U ∈ Opx(X). This implies that (ϕU (s))x = 0. There is thus an open subset V ⊆ U , such that
ρ̃UV (ϕU (s))x = 0. This implies ϕV (ρUV (s)) = 0. As ϕV is injective, one finds ρUV (s) = 0. But this
implies that sx = 0, whence ϕx is injective. Thus (iv) holds.

Conversely, suppose ϕx is injective for all x ∈ X. Let U ∈ Op(X) be an open set and suppose
ϕU (s) = 0 for some s ∈ F(U). This implies that ϕx(sx) = (ϕU (s))x = 0. Hence sx = 0. There
is thus some open neighborhood Vx ∈ Opx(U), such that ρUVx(s) = 0. As V = {Vx}x∈U forms

an open cover, and we have ρUVx(s) = ρUVx(0), the monopresheaf axiom for F implies s = 0. This
concludes the proof of (iv)⇒ (ii). �

Definition 10.5. We say that ϕ : F → G is injective, if any of the above properties hold.

Note that we have just prove that for any presheaf F , the assumption ker(ϕ) = 0 implies
ker(ϕx) = 0 for every x ∈ X, whereas the inverse holds (in particular for) presheaves. As the
trivial presheaf obviously has a trivial stalk, this suggests that ker(ϕx) may be somehow related
to the stalk space of a presheaf ker(ϕ). This is discussed in the following proposition.

Proposition 10.6. For any presheaf F and any presheaf map ϕ : F → G, one can, for every
x ∈ X, identify ker(ϕ)x = ker(ϕx).

Proof. Let I : ker(ρ) → F be the inclusion of the kernel presheaf into F , that is IU : ker(ϕU ) →
F(U) is the inclusion of R-modules for every U ∈ Op(X). This is a presheaf map inducing a unique
stalk map Ix : (ker(ϕ))x → Fx for every x ∈ X. We have shown that the implication (i) ⇒ (iv)
of Proposition 10.4 holds for every presheaf. Hence Ix is injective and we may identify (ker(ϕ))x
with im(Ix). The statement of proposition is thus understood as the equality im(Ix) = ker(ϕx).

Let t ∈ im(Ix). Equivalently, t = sx for some s ∈ ker(ϕU ) and some U ∈ Opx(X). Equivalently,
t = sx for some s ∈ F(U) and some U ∈ Op(X), such that ϕU (s) = 0. Equivalently, t satisfies
ϕx(t) = 0. Finally, this is equivalent to t ∈ ker(ϕx).

In fact, one may directly identify the germ maps ρ′U,x : ker(ϕU ) → ker(ϕx) - they are simple
the restriction of ρU,x : F(U)→ Fx to the submodule ker(ϕU ) (that is a composition with IU ). �

49



Now, recall that we have functors S : PSh(X) → StalkS(X) and Γ : StalkS(X) → Sh(X),
where both stalk spaces and (pre)sheaves are assumed to work in the category R-Mod or CRing.
The injectivity of a presheaf map ϕ : F → G thus somehow reflect on the map S(ϕ) : SF → SG, and
conversely, any stalk space map η : (E, p) → (E′, p′) should give some significant sheaf morphism
Γ(η) : Γ(E, p)→ Γ(E′, p′).

Proposition 10.7. Let ϕ : F → G be a presheaf map. Then if ϕ is injective, then S(ϕ) is injective.
The converse is true only for F satisfying the monopresheaf axiom. Let η : (E, p) → (E′, p′) be a
morphism of stalk spaces. Then Γ(η) is injective, if and only if η : E → E′ is injective.

Proof. A map S(ϕ) of stalk spaces SF and SG is injective, if and only if its restriction to each
fiber (SF)x = Fx is injective. But this restriction is the stalk map ϕx : Fx → Gx. S(ϕ) is thus
injective if and only if for all x ∈ X, the map ϕx is injective. If ϕ is injective, then so is ϕx for any
x ∈ X. This holds for any presheaf F . The converse holds only for F satisfying the monopresheaf
axiom. See (the proof of) Proposition 10.4.

Let η : (E, p) → (E′, p′) be a morphism of stalk spaces. For every U ∈ Op(X), the map
Γ(η)U : ΓU (E)→ ΓU (E′) composes a section σ ∈ ΓU (E) with η, that is Γ(η)U (σ) = η ◦ σ.

First, suppose that η is injective. Fix U ∈ Op(X). We have to show that Γ(η)U is injective.
Suppose there is σ ∈ ΓU (E), such that η◦σ is a zero section in ΓU (E′). This implies η(x)(σ(x)) = 0′x,
where 0′x is the zero element of the R-module E′x and η(x) : Ex → E′x is an R-module morphism
obtained from η by restriction. The injectivity of η implies the one of η(x), hence σ(x) = 0 for all
x ∈ U . Thus σ = 0.

Conversely, suppose that Γ(η) is injective. Let e1, e2 ∈ E be two elements, such that η(e1) =
η(e2). As η is a stalk space map, we find p(e1) = p(e2) ≡ x. As E is a stalk space, there is
U ∈ Op(X), and two sections σ1, σ2 ∈ ΓU (E), such that e1 = σ1(x) and e2 = σ2(x). The sections
η ◦ σ1 and η ◦ σ2 in ΓU (E′) thus coincide at x. Using Lemma 8.4, they must coincide on some
open neighborhood V ∈ Opx(U). But then Γ(η)V (σ1|V ) = Γ(η)V (σ2|V ). By assumption, Γ(η)V
is injective, whence σ1|V = σ2|V . In particular, we find that e1 = σ1(x) = σ2(x) = e2 and we
conclude that η is injective. �

Remark 10.8. Note that the stalk space map ϕ : (E, p)→ (E′, p′) is injective, if and only if it is a
homeomorphism onto an open subset of E′.

Definition 10.9. Let F and G be a two (pre)sheaves on X. We say that F is a sub(pre)sheaf of
G, if for every U ∈ Op(X), F(U) is a R-submodule (or subring) of G(U), such that the collection
{IU}U∈Op(X) of inclusions IU : F(U) ↪→ G(U) forms a (pre)sheaf morphism.

Let (E1, p1) and (E2, p2) be two stalk spaces. We say that (E1, p1) is a substalk space, if
E1 ∈ Op(E2), p1 is a restriction of p2 to E1 and the fiber (E1)x is an R-submodule (or subring)
of (E2)x for all x ∈ X.

We will now prove the useful criterion for comparing two subsheaves.

Proposition 10.10. Suppose F ,F ′ are two subsheaves of a sheaf G. Then F = F ′ if and only if
Fx = F ′x for all x ∈ X, where we view Fx and F ′x as R-submodules of Gx.

Proof. First, note that if F is a subsheaf of G, there is the injective presheaf morphism I : F → G
induced for each U ∈ Op(X) by the inclusion IU : F(U) ↪→ G(U). For each x ∈ X, there is thus
Ix : Fx → Gx, which is injective by Proposition 10.4. We can (and will) thus identify Fx with its
image im(Ix) ⊆ Gx.

The only if part is trivial.
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To show the if statement, we will now demonstrate that whenever Fx ⊆ F ′x for all x ∈ X, then
F is a subsheaf of F ′. Let ρUV and ρ′UV denote the restriction maps of F and F ′, whereas λUV the
ones of G. Suppose s ∈ F(U) is a local section of F over U . Its germ sx is thus also an element
of F ′x. There is thus an open set Ux ∈ Opx(U) together with a section t(x) ∈ F ′(Ux), such that
IUx(ρUUx(s)) = I′Ux(t(x)). For any x, y ∈ U , let Uxy = Ux ∩ Uy. Then

I′Uxy (ρ′UxUxy (t(x))) = λUxUxy (I′x(t(x))) = λUxUxy (IUx(ρUUx(s)))

= λUUxy (IU (s)) = · · · = I′Uxy (ρ
′Uy
Uxy

(t(y))).
(190)

We have used the naturality of I : F → G and I′ : F ′ → G several times. As I′Uxy is injective, we
obtain the relation

ρ′UxUxy (t(x)) = ρ
′Uy
Uxy

(t(y)). (191)

At this moment, we use the fact that F ′ is a sheaf. We have an open cover U = {Ux}x∈U of U
and a collections {t(x)}x∈U of sections on this open cover, which agree on overlaps. There is thus
a unique section t ∈ F ′(U), such that t(x) = ρ′UUx(t). Define the map ϕU : F(U) → F ′(U) as
ϕU (s) = t. It takes some work to see that this is, in fact, a canonical map.

Indeed, suppose we have found a different collection {u(x)}x∈U of local sections, defined on a
different open cover U ′ = {Vx}x∈U , and use them to define a section v ∈ F ′(U). We have to argue
why t = v. To this, we must use the fact that F ′ is a sheaf, so we can compare both sections
locally. Let W = {Ux ∩ Vx}x∈U . This is again an open cover. Write Wx = Ux ∩ Vx. Then

I′Wx
(ρ′UWx

(t)) = I′Wx
{ρ′UxWx

(ρ′UUx(t))} = λUxWx
{I′Ux(t(x))} = λUWx

(IU (s)) = · · · = I′Wx
(ρ′UWx

(v)). (192)

We have just use the naturality of I and I’. As I′Wx
is injective, we find that ρ′UWx

(t) = ρ′UWx
(v) for

all x ∈ U . The monopresheaf axiom for F ′ now implies t = v.

Now, in particular, if U = {Ux}x∈U and t(x) ∈ F ′(Ux) satisfy the required condition, we may
always pass to a collection V = {Vx}x∈U , where Vx ⊆ Ux and v(x) = ρ′UxVx (t(x)). Indeed:

I′Vx(v(x)) = I′Vx{ρ
′Ux
Vx

(t(x))} = λUxVx {I
′
Ux(t(x))} = λUxVx {IUx(ρUUx(s))} = IVx(ρUVx(s)). (193)

We can now prove that ϕU : F(U)→ F ′(U) is an R-module morphism. Let s1, s2 ∈ F(U). By the

above discussion, we may find an open cover U = {Ux}x∈U together with a collections {t(x)
1 }x∈U

and {t(x)
2 }x∈U of local sections fitting into the appropriate relations for s1 and s2, respectively.

The additivity of all maps implies that t
(x)
1 + t

(x)
2 fits into the appropriate relation for s1 + s2. The

uniqueness of the construction implies that ϕU (s1 + s2) must be the global section of F ′(U) which

restricts onto t
(x)
1 + t

(x)
2 on Ux. But this is clearly t1 + t2 = ϕU (s1) + ϕU (s2). The R-linearity is

an (easier) similar check.

Next, one must prove the naturality of ϕU , that is whenever V ⊆ U , we must verify that
ρ′UV (ϕU (s)) = ϕV (ρUV (s)) for every s ∈ F(U). Let U = {Ux}x∈U and t(x) ∈ F ′(Ux) be the
collection used to define ϕU (s). For every x ∈ V , define Vx = Ux ∩ V and v(x) = ρ′UxVx (t(x)). Using
the similar tricks as above, we find

I′Vx(v(x)) = IVx(ρVVx(ρUV (s))), (194)

for every x ∈ V . This implies that ϕV (ρUV (s)) = v, where v is the unique section satisfying
ρ′VVx(v) = v(x). But it is an easy check that this equation is satisfied by v = ρ′UV (ϕU (s)).

One only has to check that ϕ : F → F ′ is the inclusion. This is equivalently stated as I′ ◦ϕ = I.
Using Proposition 7.6 and the fact that G is a sheaf, it suffices to compare their stalk maps, that
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is we have to prove I′x ◦ ϕx = Ix for all x ∈ X. Let sx ∈ Fx for some s ∈ F(U) and U ∈ Opx(X).
Then we can write

I′x(ϕx(sx)) = I′x((ϕU (s))x) = (I′U (ϕU (s)))x = (λUUx{I
′
U (ϕU (s))})x

= (I′Ux{ρ
′U
Ux(ϕU (s))})x = (I′Ux{t

(x)})x = (IUx{ρUUx(s)})x
= (λUUx{IU (s)})x = (IU (s))x = Ix(sx).

(195)

This concludes this lengthy and cumbersome proof of a quite useful property of sheaves. �

Now, the kernel (pre)sheaf measures the injectivity of a given (pre)sheaf morphism. What about
the surjectivity? For R-modules or commutative rings, surjectivity is measured by vanishing of the
cokernels.

Proposition 10.11. Let ϕ : F → G be a morphism of two presheaves on X. Then we get the
presheaf cokernel Pcoker(ϕ) corresponding to ϕ is for every U ∈ Op(X) defined by

(Pcoker(ϕ))U := coker(ϕU ) ≡ G(U)/ im(ϕU ), (196)

where its restriction morphisms ρ̄UV : coker(ϕU )→ coker(ϕV ) are induced by those of G. Moreover,
the collection of canonical quotient maps pcokerU : G(U) → G(U)/ im(ϕU ) defines a presheaf
morphism pcoker : G → Pcoker(ϕ).

Moreover, one has the following universal property. Suppose H is another presheaf on X,
together with a presheaf morphism κ : G → H, such that κ ◦ ϕ = 0. Then there exists a unique
presheaf morphism κ̂ : Pcoker(ϕ)→ H making the following diagram commutative:

G H

Pcoker(ϕ)

κ

pcoker
κ̂

(197)

Proof. For any U, V ∈ Op(X) such that V ⊆ U , we have the usual commutative diagram

F(U) G(U)

F(V ) G(V )

ϕU

ρUV ρ̃UV

ϕV

(198)

We define the restriction maps ρ̄UV : coker(ϕU )→ coker(ϕV ) to complete the commutative square:

G(U) coker(ϕU )

G(V ) coker(ϕV )

pcokerU

ρ̃UV ρ̄UV

pcokerV

(199)

We only have to argue that ρ̃UV (im(ϕU )) ⊆ im(ϕV ). But this follows immediately from the preceding
diagram. It is easy to see that these restriction maps make Pcoker(ϕ) into a presheaf. Moreover,
we immediately see that the collection {pcokerU}U∈Op(X) defines a presheaf morphism pcoker. It
remains to prove the universal property.

For each U ∈ Op(X), there is a unique R-module morphism κ̂U : coker(ϕU ) → H satisfying
the condition κ̂U ◦ pcokerU = κU . This is because im(ϕU ) ⊆ ker(κU ). Only has to argue that
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{κ̂U}U∈Op(X) forms a morphism of presheaves. Let λUV : H(V ) → H(U) be the restriction mor-
phism of the presheaf H. The R-module morphism pcokerU is surjective, hence we only need to
verify the commutativity of the diagram

G(U) coker(ϕU ) H(U)

coker(ϕV ) H(V )

pcokerU κ̂U

ρ̄UV λUV

κ̂V

(200)

But here we use just definitions and the naturality of the collection {κU}U in U :

λUV ◦ κ̂U ◦ pcokerU = λUV ◦ κU = κV ◦ ρ̃UV = κ̂V ◦ pcokerV ◦ρ̃UV = κ̂V ◦ ρ̄UV ◦ pcokerU . (201)

This concludes the proof. �

The cokernel presheaf has similar properties to those of kernel presheaf. In particular, we know
how does its stalk space look like.

Proposition 10.12. For every x ∈ X, there is a canonical isomorphism of coker(ϕx) = Gx/ im(ϕx)
and the stalk space (P coker(ϕ))x.

Proof. There is a canonical presheaf morphism pcoker : G → Pcoker(ϕ). It thus induces a unique
stalk map pcokerx : Gx → Pcoker(ϕ)x. We will now argue that this map is surjective and its
kernel is precisely im(ϕx). Suppose µ ∈ Pcoker(ϕ)x. There is thus U ∈ Op(X) and a section
µ′ ∈ coker(ϕU ), such that µ = µ′x. On the other hand, there is a section t ∈ G(U), such that
µ′ = cokerU (t). Thus µ = (cokerU (t))x = pcokerx(tx).

Now, suppose ν ∈ im(ϕx). There is thus U ∈ Op(X) and s ∈ F(U), such that ν = (ϕU (s))x.
Hence pcokerx(ν) = (pcokerU (ϕU (s))x = 0. Thus ker(ϕx) ⊆ ker(pcokerx). Conversely, let ν ∈
ker(pcokerx). There is U ∈ Opx(X) and t ∈ G(U), such that ν = tx. By assumption pcokerx(ν) =
(pcokerU (t))x = 0. There is thus an open set V ⊆ U , such that ρ̄UV (pcokerU (t)) = 0. Hence

0 = ρ̄UV (pcokerU (t)) = pcokerV (ρ̃UV (t)). (202)

This implies that there is a section s ∈ F(V ), such that ρ̃UV (t) = ϕV (s). Consequently, one finds

ν = tx = (ρ̃UV (t))x = (ϕV (s))x = ϕx(sx). (203)

This proves that ν ∈ im(ϕx) and this proves the inclusion ker(pcokerx) ⊆ ker(ϕx). Finally, the
canonical isomorphism pcoker′x : coker(ϕx)→ (Pcoker(ϕ))x completes the commutative diagram

Gx (Pcoker)x

coker(ϕx) ≡ Gx/ im(ϕx)

\x

pcokerx

pcoker′x

, (204)

where \x : Gx → coker(ϕx) is the quotient map. This finishes the proof. �

Example 10.13. The presheaf cokernel is in general not a sheaf. Consider the topological space
X = C and a sheaf F = Cω of holomorphic functions. Set G = F and consider a presheaf map
ϕ := d

dz of complex differentiation. Then ϕ : F → G is a sheaf morphism. Now, consider the open
set U = C − {0} and a function f(z) = 1

z . Its primitive function is not defined on entire U . In
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other words, the map ϕU is not surjective, and thus coker(ϕU ) 6= 0. Consequently, the presheaf
Pcoker(ϕ) is non-trivial.

On the other hand, let z ∈ C. Choose any µ ∈ coker(ϕz). There is thus a holomorphic function
f ∈ Cω(U) for some U ∈ Opz(C), such that µ = \z(fz), where \z : Gz → coker(ϕz) is the quotient
map. But there is a neighborhood V ∈ Opz(U), where the function can be written as a power
series and thus integrated to a holomorphic function on V . In other words, we have

ρUV (f) = ϕV (

∫
V

ρUV (f)). (205)

But this implies that fz = ϕz{(
∫
V
ρUV (f))z} ∈ im(ϕz). Consequently µ = 0. Whence coker(ϕz) = 0

for every z ∈ C. By previous proposition, this shows that every stalk space (Pcoker(ϕ))z is trivial.

We have already proved that the presheaf cokernel is non-trivial. This situation cannot happen
for a sheaf. Indeed, if any sheaf F has a trivial stalk Fx for every x ∈ X, the trivial map 0 : F → F
and the identity map 1 : F → F would then induce the same map of stalks (namely the trivial
one). By Proposition 7.6, this would imply 1 = 0, which in turn can happen only for F = 0.

We will now try to fix this issue by considering the sheafification of the presheaf Pcoker(X).
This has some issues on its own, which we shall discuss in the following propositions.

Definition 10.14. Let ϕ : F → G be a morphism of any two presheaves. Then the sheaf cokernel
Scoker(ϕ) is defined as a sheafification of the presheaf cokernel Pcoker(ϕ).

Proposition 10.15. There is a canonical presheaf morphism scoker : G → Scoker(ϕ). The sheaf
Scoker(ϕ) has the following universal property. Suppose H is any sheaf together with any presheaf
morphism κ : G → H, such that κ◦ϕ = 0. Then there is a unique sheaf morphim κ̂ : Scoker(ϕ)→ H
filling the commutative diagram

G H

Scoker(ϕ)

κ

scoker
κ̂

. (206)

Moreover, there is a canonical R-module isomorphism scoker′x : coker(ϕx)→ (Scoker(ϕ))x.

Proof. Let η : Pcoker(ϕ) → Scoker(ϕ) be the canonical map from presheaf to its sheafification.
Set scoker := η ◦ pcoker. To prove the universal property, suppose κ : G → H be any presheaf
morphism such that κ ◦ ϕ = 0, where H is any sheaf. By the universal property for Pcoker(ϕ),
there is a unique presheaf morphism κ̃ : Pcoker(ϕ) → H, such that κ = κ̃ ◦ pcoker. As H is
assumed to be a sheaf, we may employ another universality rule, namely there is a unique sheaf
map κ̂ : Scoker(ϕ)→ H, such that κ̂ ◦ η = κ̃. We have found a sheaf map κ̂ : Scoker(ϕ)→ H, such
that

κ = κ̃ ◦ pcoker = (κ̂ ◦ η) ◦ pcoker = κ̂ ◦ scoker . (207)

We only have to argue that this two-step construction gives a unique such map. Suppose we find
some other map χ̂ : Scoker(ϕ)→ H, such that κ = χ̂ ◦ scoker. This implies

κ = (κ̂ ◦ η) ◦ pcoker = (χ̂ ◦ η) ◦ pcoker . (208)

The uniqueness statement in the universality property of Pcoker(ϕ) now implies κ̂ ◦ η = χ̂ ◦ η. For
each x ∈ X, we then obtain a relation of stalk maps, that is κ̂x ◦ ηx = χ̂x ◦ ηx. It follows from
Proposition 8.7 that this is equivalent to κ̂x = χ̂x. Finally, as H is a sheaf, we may use Proposition
7.6 to see that κ̂ = χ̂. This proves the uniqueness.
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For the final statement, we know from Proposition that there is a canonical isomorphism
pcoker′x : coker(ϕx)→ (Pcoker(ϕ))x. But there is also a canonical isomorphism ηx : (Pcoker(ϕ))x →
(Scoker(ϕ))x. A composition of these two maps clearly gives scoker′x �

Definition 10.16. Let ϕ : F → G be a presheaf morphism. We say that ϕ is an epic morphism
if for any other presheaf H and any pair of presehaf morphisms κ, κ′ : G → H, the equation
κ ◦ ϕ = κ′ ◦ ϕ implies κ = κ′.

Proposition 10.17. Let ϕ : F → G be a presheaf morphism. Then the following conditions are
equivalent

(i) Pcoker(ϕ) = 0 (trivial presheaf).

(ii) For each U ∈ Op(X), the R-module morphism ϕU is surjective.

(iii) ϕ is an epic morphism.

Proof. The equivalence of (i) with (ii) is obvious.

Let us now prove the equivalence of (i) with (iii). Assume that Pcoker(ϕ) = 0. Let κ, κ′ :
G → H be a pair of presheaf morphisms, such that κ ◦ ϕ = κ′ ◦ ϕ. Thus (κ− κ′) ◦ ϕ = 0. By the
universality of the presheaf cokernel, there is a unique presheaf map µ : Pcoker(ϕ)→ G, such that
κ− κ′ = µ ◦ pcoker. But as Pcoker(ϕ) = 0, the right-hand side must be zero, thus κ′ = κ.

Now, suppose that ϕ is epic. Choose H = Pcoker(ϕ), κ = pcoker and κ′ = 0. We have
0 = κ ◦ ϕ = κ′ ◦ ϕ. This implies κ′ = κ, which is possible only if Pcoker(ϕ) = 0. Hence the
implication (iii)⇒ (i) holds and the proof is finished. �

We may now modify this statement for the sheaf Scoker(ϕ).

Proposition 10.18. Suppose ϕ : F → G is a map of presheaves on X. Then the following
conditions are equivalent:

(i) Scoker(ϕ) = 0.

(ii) For every x ∈ X, coker(ϕx) = 0.

(iii) For every x ∈ X, ϕx is surjective.

(iv) For every U ∈ Op(X) and for every t ∈ G(U), there is some open cover U = {Ui}i∈I of U ,
and a family of sections {si}i∈I , where si ∈ F(Ui), such that ϕUi(si) = ρ̃UUi(t) for all i ∈ I.

(v) The morphism ϕ : F → G is epic in the category of sheaves.

Any of these conditions follows from those in Proposition 10.17.

Proof. First, let us prove the equivalence of (i) with (ii).

As Scoker(ϕ) is a sheaf, it is trivial if and only if (Scoker(ϕ))x = 0 for all x ∈ X. As there is a
natural isomorphism ηx : (Pcoker(ϕ))x ∼= (Scoker(ϕ))x, this is equivalent to (Pcoker(ϕ))x = 0. By
Proposition 10.12, this is equivalent to (ii).

The equivalence of (ii) and (iii) is the definition of R-module cokernel.

Now, suppose that (iii) holds. Let U ∈ Op(X) and t ∈ G(U). Now, for every x ∈ U , let us
consider the germ tx ∈ Gx. As ϕx is surjective, there is a local section s′(x) ∈ F(Ux) over some
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Vx ∈ Opx(X), such that ϕx((s′(x))x) = tx. Unfolding the left-hand side, we have (ϕVx(s′(x)))x = tx.
There is thus some Ux ⊆ Vx ∩ U , such that ρ̃VxUx(ϕVx(s′(x))) = ρ̃UUx(t). Defining s(x) := ρVxUx(s′(x)),

we obtain an open cover U = {Ux}x∈U of U together with a family of sections {s(x)}x∈U , where
s(x) ∈ F(Ux) and ϕUx(s(x)) = ρ̃UUx(t) for all x ∈ U . Hence (iv) holds.

To prove (iv) ⇒ (iii), let x ∈ X be a arbitrary and fix tx ∈ Gx, where t ∈ G(U) for some
U ∈ Opx(X). There is i ∈ I such that x ∈ Ui, and a section si ∈ F(Ui), such that ϕUi(si) = ρ̃UUi(t).
But this immediately implies ϕx((si)x) = tx and (iii) is true.

Now, let us prove the equivalence of (i) and (v). By epic in the category Sh(X), we mean that
for any sheaf H, and any pair of morphisms κ, κ′ : G → H, the equality κ ◦ ϕ = κ′ ◦ ϕ must imply
κ = κ′. Then one uses the universality property for Scoker(ϕ) from Proposition 10.15 just like in
the case of Pcoker(ϕ) in the proof of Proposition 10.17.

Finally, Pcoker(ϕ) = 0 clearly implies Scoker(ϕ) = 0 and any of the statements in Proposition
10.17 thus implies any of the equivalent statements of this one. �

Example 10.19. The codition Scoker(ϕ) = 0 is not enough to ensure the surjectivity of ϕU :
F(U) → G(U) for every U ∈ Op(X). We have already shown this in Example 10.13, as there
ker(ϕx) = 0. By Proposition 10.18, this is equivalent to Scoker(ϕ) = 0. On the other hand, we
have shown that Pcoker(ϕ) 6= 0.

Remark 10.20. The concept of monic and epic morphisms is a universal definition in every category
C. In the category PSh(X) of presheaves of R-modules on X, this has an expected counterpart -
maps of presheaves which for each U ∈ Op(X) define surjective R-module morphisms. However,
for the (full sub)category Sh(X) of sheaves of R-modules on X, this leads to a weaker definition -
not every morphism epic in a subcategory Sh(X) is thus epic in PSh(X).

Definition 10.21. We say that the presheaf map ϕ : F → G is surjective, if it is epic in the
category PSh(X). If ϕ : F → G is a map of sheaves, we say that it is surjective if it is epic in
the category Sh(X).

Luckily, if we combine both injectivity and surjectivity, the criterions become easy again for
sheaves.

Proposition 10.22. Let ϕ : F → G be a presheaf morphism, where F and G are presheaves on X
valued in the category R-Mod or CRing. Then the following conditions are equivalent:

(i) ϕ is an isomorphism in the category PSh(X).

(ii) For every U ∈ Op(X), the R-module morphism ϕU : F(U)→ G(U) is bijective.

(iii) (Assuming both F and G are sheaves) ϕx is bijective for all x ∈ X.

(iv) (Assuming both F and G are sheaves) ϕ is both monic and epic in the category Sh(X).

Proof. Note that ϕ is an isomorphism in the category PSh(X), if there exists a presheaf morphism
ψ : G → F , such that ψ ◦ ϕ = 1F and ϕ ◦ ψ = 1G . If (i) is true, for every U ∈ Op(X), we have
ψU ◦ ϕU = 1F(U) and ϕU ◦ ψU = 1G(U). But this clearly implies (ii). Conversely, if for each
ϕU : F(U)→ G(U) is bijective, define ψU := (ϕU )−1. It is a usual property of R-Mod and CRing
that ψU is an R-module morphism (or ring morphism). One only has to show that the collection
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{ψU}U∈Op(X) defines a natural transformation ψ : G → F , that is the diagram

G(U) F(U)

G(V ) F(V )

ψU

ρ̃UV ρUV

ψV

(209)

commutes for all U, V ∈ Op(X) such that V ⊆ U . But for any t ∈ G(U), we can write

ρUV (ψU (t)) = ψV ◦ (ϕV ◦ ρUV )(ψU (t)) = ψV ◦ (ρ̃UV ◦ ϕU )(ψU (t)) = ψV (ρ̃UV (t)). (210)

We have used the definitions and the naturality of ϕ. Hence (i) holds.

Next, the equivalence of (iii) and (iv) follows the equivalences (iv)⇔ (iii) of Proposition 10.4
and (iii)⇔ (v) of Proposition 10.18.

It only remains to prove the equivalence of (ii) and (iii) in the case when ϕ : F → G is a sheaf
morphism in PSh(X). The injectivity of ϕU for every U ∈ Op(X) is (in the case F is a sheaf) is
equivalent to the injectivity of ϕx for every x ∈ X. This is (ii)⇔ (iv) of Proposition (10.4). The
surjectivity of ϕU for every U ∈ Op(X) implies the surjectivity of ϕx for every x ∈ X. This is the
statement (iii) of Proposition 10.18 which is implied by (ii) of Proposition 10.17.

It thus remains to prove that if ϕx is bijective for every x ∈ X, then ϕU is surjective for any
U ∈ Op(X). Let U ∈ Op(X) and choose t ∈ G(U). From (iv) of Proposition 10.18 it follows that
there is an open cover U = {Ui}i∈I and a family of sections {si}i∈I , such that si ∈ F(Ui) and
ϕUi(si) = ρ̃UUi(t) for all i ∈ I. Now, apply ρ̃UiUij on both sides of this equation, where Uij = Ui ∩Uj .
This gives the equality

ϕUij (ρ
Ui
Uij

(si)) = ρ̃UiUij (ϕUi(si)) = ρ̃UiUij (ρ̃
U
Ui(t)) = ρ̃UUij (t) = · · · = ϕUij (ρ

Uj
Uij

(sj)). (211)

Now, one has to use the assumed injectivity of ϕUij to conclude that ρUiUij (si) = ρ
Uj
Uij

(sj). As F
satisfies the gluing axiom, there is a unique section s ∈ F(U), such that si = ρUUi(s). To finish the
proof, we shall prove that ϕU (s) = t. As G satisfies the monopresheaf axiom, it suffices to compare
the restrictions of both sections to Ui, for each i ∈ I. But

ρ̃UUi(ϕU (s)) = ϕUi(ρ
U
Ui(s)) = ϕUi(si) = ρ̃UUi(t). (212)

This finishes the proof. �

We will now argue why a sheaf cannot be isomorphic to a presheaf.

Proposition 10.23. Let ϕ : F → G be an isomorphism of presheaves over X. If F is a sheaf over
X, then so is G.

Proof. Let ψ : G → F denote the natural inverse to ϕ. Let U ∈ Op(X) be any open set and let
U = {Ui}i∈I be any its open cover. Let us prove the gluing axiom for G. Suppose we are given a
colection {ti}i∈I , where ti ∈ G(Ui), such that

ρ̃UiUij (ti) = ρ̃
Uj
Uij

(tj), (213)

for all i, j ∈ I, where one writes Uij = Ui ∩ Uj . Set si := ψUi(ti). Then

ρUiUij (si) = ψUij (ρ̃
Ui
Uij

(ti) = ψUij (ρ̃
Uj
Uij

(tj)) = ρ
Uj
Uij

(sj). (214)
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By the gluing axiom for F , there is a unique section s ∈ F(U), such that ρUUi(s) = si. Set
t = ϕU (s). Then

ρ̃UUi(t) = ρ̃UUi(ϕU (s)) = ϕUi(ρ
U
Ui(s)) = ϕUi(si) = ti. (215)

This proves the gluing axiom for G. Next, let t, t′ ∈ G(U), such that ρ̃UUi(t) = ρ̃UUi(t
′) for all i ∈ I.

We have to conlude that t = t′. Set s = ψU (t) and s′ = ψU (t′), respectively. Then

ρUUi(s) = ρUUi(ψU (t)) = ψUi(ρ̃
U
Ui(t)) = ψUi(ρ̃

U
Ui(t

′)) = · · · = ρUUi(s
′). (216)

By monopresheaf axiom for F , this proves that s = s′. As ΨU is a R-module isomorphism, we find
that t = t′. Hence G satisfies the monopresheaf axiom. And the proof is finished. �

Finally, to finish this section, let us briefly discuss the problem of kernels, images and quotients
for stalk spaces. Are they also somehow related to the kernels, images and quotients of the
corresponding section sheaf?

Suppose (E, p) and (E′, p′) are two stalk spaces of R-modules (or commutative rings) over X,
and let ϕ : E → E′ be the stalk space morphism. In particular, ϕ(x) : Ex → E′x is an R-module
morphism (or ring morphism). It thus makes sense to define the subset ker(ϕ)

ker(ϕ) = {e ∈ E | e ∈ ker(ϕ(p(e)))} =
⊔
x

ker(ϕ(x)). (217)

It is natural to ask - is this a substalk space? If so, we may identify its sheaf of sections with
certain subsheaf of Γ(E, p). By definition, this amounts to proving that ker(ϕ) is an open subset
of E. But this is surprisingly easy, as shows the following proposition.

Proposition 10.24. The set ker(ϕ) ⊆ E is open. It thus forms a substalk space (ker(ϕ), p)
of (E, p). Moreover, there is a canonical isomorphism Γ(ker(ϕ), p′) ∼= ker(Γ(ϕ)), where Γ(ϕ) :
Γ(E, p)→ Γ(E′, p′) is the sheaf morphism induced by ϕ.

Proof. Consider the zero (global) section 0E′ ∈ ΓX(E′), defined as 0E′(x) = 0′x ∈ E′x. This is
indeed a continous global section of E, see Proposition 9.8. The set 0E′(X) ⊆ E′ is open (in fact
homeomorphic to X). The subset ker(ϕ) can be then defined as an inverse image of this open set,
ker(ϕ) = ϕ−1(0E′(X)). Hence it is open.

Next, let i : ker(ϕ)→ E denote the inclusion of the subspace ker(ϕ) to E. This is an injective
stalk space map. By Proposition 10.7, the induced sheaf morphism Γ(i) : Γ(ker(ϕ), p) → Γ(E, p)
is also injective. We have to show that for each U ∈ Op(X), one has im(Γ(i)U ) = ker(Γ(ϕ)U ).

Let σ ∈ ΓU (ker(ϕ)). This is equivalent to ϕ(x)(σ(x)) = 0′x for all x ∈ U . In turn, this is
equivalent to (ϕ ◦ σ)(x) = 0′x for x ∈ U . This is is equivalent to Γ(ϕ)U (σ) = 0. Finally, this is
equivalent to σ ∈ ker(Γ(ϕ)U ). �

One can quite naturally construct a quotient of a stalk space (E, p) by its substalk space (F, p).
The result is a stalk space again. One can then construct an example for a special substalk space
and identify its sheaf of sections. We will work in the category of R-Mod, so we assume that
Fx ⊆ Ex is an R-submodule. It thus makes sense to define a space Q =

⊔
x∈X Ex/Fx. Define

q : Q→ X in an obvious way. We have also a canonical quotient map \ : E → Q, which is for each
x ∈ X defined by the quotient map \x : Ex → Ex/Fx =: Qx.

We would like to discuss the topology on Q. We declare V ⊆ Q open, if and only if \−1(V ) ⊆ E
is open. This is a usual quotient topology. We have to argue that it makes q : Q → X into the
stalk space of R-modules. To do so, note that σ ∈ ΓU (E) is a local section of E over U , then
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\ ◦ σ : U → Q is a local section of Q over U . It is continuous and q ◦ (\ ◦ σ) = p ◦ σ = 1U . We will
now argue that the basis of topology for Q can be taken to be

BQ = {\(σ(U)) | σ ∈ ΓU (E) for some U ∈ Op(X)} (218)

First, we will prove that \ : E → Q is in fact an open map. This happens if and only if \(σ(U))
is open in Q for every U ∈ Op(X) and σ ∈ ΓU (E). This is equivalent to W = \−1(\(σ(U)) being
open in E.

Now, let e ∈ W be any point, and let x = p(e). By definition \(e) ∈ \(σ(U)) and it follows
that \x(e) = \x(σ(x)). There is thus an element f ∈ Fx, such that e = σ(x) + f . Now, as F is a
substalk space, there is some section τ ∈ ΓZ(F ), such that τ(x) = f , for some Z ∈ Opx(X). It
can be viewed as a continuous section in ΓZ(E) which happens to take values in the submodule Fz
for each z ∈ Z. Furthermore, we may assume Z ⊆ U and define a section σ′ := ρUZ (σ) + τ . Then
σ′ ∈ ΓZ(E). We claim that σ′(Z) ∈ Ope(E) is contained in W . But we have

\(σ′(z)) = \z(σ(z) + τ(z)) = \z(σ(z)) = \(σ(z)) ∈ \(σ(U)), (219)

for all z ∈ Z. This proves the claim. Hence \ : E → Q is open. Next, we can use the following
general statement:

Proposition 10.25. Suppose \ : X → Y is a surjective map from the topological space X to the
set Y . Suppose Y is equipped with a quotient topology, that is V ⊆ Y is open if and only if \−1(V )
is open in X. Moreover, assume that \ becomes an open map. Let B be a basis of topology of X.

Then B\ = {\(B) | B ∈ B} is a basis for the topology on Y .

Proof. As \ is open, we have B\ ⊆ Op(Y ). To show that it is a basis, every open set V ⊆ Y has
to be written as a union of some elements from B\. For each y ∈ V , let x ∈ \−1(y) be arbitrary.
Such element exists as \ is surjective. As \−1(V ) is open, there exist some element B ∈ B, such
that x ∈ B ⊆ \−1(V ). But then \(B) ⊆ V . Stated differently, for every point y ∈ V of a given
open set V , there exists an element of B\ which contains y and forms a subset of V . In particular,
V can be written union of some elements of B\. �

This proposition shows that the family BQ indeed forms a basis for Q. We have to argue
that q : Q → X is a local homeomorphism. First, is it continuous? Let U ∈ Op(X). Then
q−1(U) = \(p−1(U)). As \ : E → Q is open and p is continous, we find that q−1(U) is open. Now,
we claim that \ is a homeomorphism when restricted to any element of the baisis BQ. Indeed, for
any σ ∈ ΓU (E), \ ◦ σ : U → \(σ(U)) provides a continuous inverse to the restricted projection
q : \(σ(U)) → U . We conclude that (Q, q) forms a stalk space, such that \ : (E, p) → (Q, q)
becomes a surjective stalk space map.

One only has to discuss the R-module compatibility. Clearly each fiber Qx = Ex/Fx has
a natural R-module structure. Two things are fairly simple. For example, let λ ∈ R and let
λQ : Q → Q be the fiber-wise multiplication map. By definition, it completes the commutative
diagram

E E

Q Q

λE

\ \

λQ

(220)

For any V ⊆ Q open, we have λ−1
Q (V ) = \((\ ◦ λE)−1(V )). Indeed, suppose µ ∈ λ−1

Q (V ). By
definition λQ(µ) ∈ V . On the other hand, we have µ = \(e) for some e ∈ E. But then

λQ(µ) = (λQ ◦ \)(e) = (\ ◦ λE)(e) (221)
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Thus e ∈ (\ ◦ λE)−1(U) and as µ = \(e), we find that µ ∈ \((\ ◦ λE)−1(U)). Repeating the steps
backwards proves the other inclusion. As \ ◦ λE is continuous and \ is open, we see that \−1

Q (U) is
open and thus λQ is continuous. The proof for the fiber-wise additive inverse −Q follows completely
the same lines.

For the addition operation +Q, note that the (continuous) map \× \ : E×E → Q×Q restricts
to a map of the fibered products \× \ : E×X E → Q×X Q. In fact, it defines the stalk map of the
two stalk spaces (see Proposition 9.2). In particular, it is an open map. Finally, it is not difficult
to see that +Q completes the commutative square

E ×X E E

Q×X Q Q

\×\

+E

\

+Q

. (222)

As the left vertical map is open, we may use the same argument as for λQ to prove that +Q is
continuous. We thus conclude this paragraph with a proposition.

Proposition 10.26. Let (F, p) ⊆ (E, p) be a substalk space of a stalk space of R-modules. Let
(Q, q) be the fiber-wise quotient space. Then the usual quotient topology on Q makes it into a stalk
space of R-modules.

Now, let η : (E, p) → (E′, p′) be a stalk space map. Let im(η) ⊆ E′ denote the image of this
map. As every stalk space map is open, it follows that (im(η), p′) is a substalk space of (E′, p′).
We can thus form its quotient q′ : E′/ im(η) → X. One can then examine its sheaf of sections
Γ(E′/ im(η), q′). Can something be said about it?

Proposition 10.27. There exists a canonical sheaf isomorphism ψ : Scoker(Γ(η))→ Γ(E′/ im(η), q′),
where Γ(η) : Γ(E, p)→ Γ(E′, p′) is the sheaf morphism induced by η : E → E′.

Proof. Let \′ : E′ → E′/ im(η) be the canonical quotient map. The induced sheaf morphism
Γ(\′) : Γ(E′)→ Γ(E′/ im(η)) satisfies Γ(\′)◦Γ(η) = 0. By the universality property of Scoker(Γ(η)),
see Proposition 10.15, there is a unique sheaf morphism ψ : Scoker(Γ(η)) → Γ(E′/ im(ϕ)), such
that Γ(\′) = ψ ◦ scoker, where scoker : Γ(E′)→ Scoker(Γ(η)) is the canonical sheaf map.

As both domain and codomain of ψ are sheaves, it suffices to prove, see Proposition 10.22,
that for each x ∈ X, the induced stalk map ψx : Scoker(Γ(η))x → Γ(E′/ im(ϕ))x is an R-module
isomorphism. To this account, we must prove that the stalk map Γ(\′)x : Γ(E′)x → Γ(E′/ im(ϕ))x
is surjective and its kernel is precisely the kernel of scokerx : Γ(E′)x → Scoker(Γ(η))x.

But this boils down to proving the surjectivity of \′x and the equality ker(\′x) = im(η(x)), for all
x ∈ X, which is trivial. �

This proposition shows that although the stalk space E′/ im(η) is well-defined, its sheaf of
sections is not the näıve guess Γ(E′)/Γ(im Γ(η)) but rather its sheafification.

11 Exact sequences of presheaves

To define what an exact sequence is in a category, we need to have the notion of both kernels and
images. With the category Sh(X) of sheaves (of R-modules or commutative rings), we immediately
hit the same problem as with cokernels. For a sheaf map ϕ : F → G, the näıve definition of the
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image im(ϕ) forms a subpresheaf of G, but usually not a sheaf. One can again reach for the help
of a sheafification. However, the new sheaf is not a subsheaf of G anymore. To avoid this issue,
one can resolve to the following trick:

Definition 11.1. Let ϕ : F → G be a presheaf morphism. We define presheaf image Pim(ϕ) as
the kernel of the canonical cokernel map pcoker(ϕ) : G → Pcoker(ϕ), that is

Pim(ϕ) = ker(pcoker(ϕ)) (223)

The sheaf image Sim(ϕ) is defined as the kernel of scoker(ϕ) : G → Scoker(ϕ), that is

Sim(ϕ) = ker(scoker(ϕ)) (224)

It is easy to check that Pim(ϕ) agrees with a näıve definition of the image presheaf. Let us
argue that if G is a sheaf, there is always a canonical sheaf isomorphism from the sheafification of
Pim(ϕ) to Sim(ϕ), which shows that two approaches to the definition of sheaf image are essentially
equivalent.

Proposition 11.2. Let ϕ : F → G be a presheaf morphism, where G is a sheaf. Then there is a
canonical sheaf isomorphism of the sheafification of Pim(ϕ) and the sheaf Sim(ϕ).

Proof. Let J : Pim(ϕ)→ G denote the canonical inclusion of the subpresheaf Pim(ϕ) into G. Write

H := P̃im(ϕ). (225)

By universality of a sheaffication, see Proposition 8.10, there is a unique sheaf map J̃ : H → G, such
that J = J̃◦η. Now, we claim that scoker(ϕ)◦J̃ = 0. This is a comparison of two sheaf maps. It thus
suffices to look at the induced stalk maps. This boils done to proving pcokerx(ϕ) ◦ Jx = 0 for all
x ∈ X. But this is obvious. Finally, using the universality of the kernels, see Proposition 10.3, there
is a unique map Ĵ : H → ker(scoker(ϕ)) ≡ Sim(ϕ), such that Ĵ = I ◦ J̃, where I : Sim(ϕ)→ G is the
inclusion. It only remains to prove that Ĵ is a sheaf isomorphism. Both its domain and codomain
are sheaves. By Proposition 10.22, it suffices to prove that the induced stalk map Ĵx is bijective
for all x ∈ X. But this agains boils down to the obvious comparison im(ϕx) = ker(coker(ϕx)). �

Now, there come some useful but rather simple observations.

Proposition 11.3. Suppose ϕ : F → G is a morphism of sheaves.

(i) If Pim(ϕ) happens to be a sheaf, then Pim(ϕ) = Sim(ϕ).

(ii) If ϕ is injective, then Pim(ϕ) = Sim(ϕ).

Proof. To prove (i), note that if Pim(ϕ) is a sheaf, we are comparing two subsheaves of the sheaf
G. By Proposition 10.10, it suffices to compare their stalk spaces. But

Pim(ϕ)x = ker(pcokerx(ϕ)) = ker(scokerx(ϕ)) = Sim(ϕ)x, (226)

for all x ∈ X. This proves Pim(ϕ) = Sim(ϕ). To prove (ii), note that if ϕ is injective, it can
be viewed as a presheaf isomorphism ϕ : F → Pim(ϕ). By Proposition 10.23, this implies that
Pim(ϕ) is a sheaf. The rest follows from (i). �
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Before proceeding further, let us again examine the concept of image on the level of stalk
spaces. Suppose η : (E, p)→ (E′, p′) is a map of stalk space (of R-modules or commutative rings).
With no problems, we may define a substalk space im(η) ⊆ E′. Is its sheaf of sections Γ(im(η), p)
somehow related to the sheaf image of the induced map Γ(η) : Γ(E, p) → Γ(E′, p′)? The answer
is, as expected, yes.

Proposition 11.4. There exists a canonical sheaf isomorphism χ : Γ(im(η), p′)→ Sim(Γ(η)).

Proof. Let j : im(η) → E′ be the inclusion. We claim that the induced sheaf morphism Γ(j) :
Γ(im(η), p′)→ Γ(E′, p′) satisfies the equation

scoker(Γ(η)) ◦ Γ(j) = 0 (227)

Recall that we have shown that there is a canonical sheaf isomorphism ψ : Scoker(Γ(η)) →
Γ(E′/ im(η), q′) such that ψ ◦ scoker(Γ(η)) = Γ(\′), where \′ : E′ → E′/ im(η) is the quotient
map. See the proof of Proposition 10.27. The above equation is thus equivalent to

Γ(\′) ◦ Γ(j) = 0, (228)

which holds as \′ ◦ j = 0. Finally, the universality of the kernels, see Proposition 10.3, implies the
existence of a unique sheaf homomorphism χ : Γ(im(η), p′)→ ker(scoker(Γ(η)) ≡ Sim(Γ(η)), such
that J′ ◦ χ = Γ(j), where J′ : Sim(Γ(η)) → Γ(E′, p′) is the inclusion of a subpresheaf. Finally,
one has to argue that χ is an isomorphism of sheaves. Again, by Proposition 10.22, it suffices
to prove that the induced stalk map χx : Γ(im(η), p′)x → Sim(Γ(η))x is the isomorphism for all
x ∈ X. Using the canonical identifications Γ(im(η), p′)x = im(η)x = im(η(x) and Sim(Γ(η))x =
im(Γ(η)x) = im(η(x), we find that χx is just the identity. �

We have now make sense of kernels and images in both the category PSh(X) and Sh(X),
targeted in R-Mod (or CRing). We can now define the concept of exact sequences in those
categories.

Definition 11.5. Consider the sequence of (pre)sheaf morphisms of (pre)sheaves

· · · F G H · · ·ϕ ψ
(229)

We say that it is exact at G in the category of presheaves, if Pim(ϕ) = ker(ψ). We say that
it is exact at G in the category of sheaves, if Sim(ϕ) = ker(ψ).

Moreover, we say that any sequence of (pre)sheaf morphisms of (pre)sheaves is exact in the
category of (pre)sheaves, if it is exact at each of its terms (in the category of (pre)sheaves).
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