Cartan-Dieudonné theorem

Jan Vysoký

April 2, 2020

Theorem 0.1 (Cartan-Dieudonné). Let (V, g) be a n-dimensional real vector space equipped with symmetric bilinear form g. Then every orthogonal endomorphism $A \in \mathrm{O}(V, g)$ can be written as a composition of k reflections, where $k \leq n$ and $\operatorname{det}(A)=(-1)^{k}$.

The proof is done in several stages. Let $A \in \mathrm{O}(V, g)$. Let $\hat{A}:=A-1_{V}$ and let $L(A):=\operatorname{ker}(\hat{A})$. This is in fact precisely the +1 eigenspace of A.

Lemma 0.2. $L(A)$ is an orthogonal complement to $\operatorname{im}(\hat{A})$, that is $L(A)=\operatorname{im}(\hat{A})^{\perp}$.
Proof. Let $v \in L(A)$, and let $w \in V$. Then

$$
\begin{equation*}
g(v, \hat{A}(w))=g(v, A(w)-w)=g(v, A(w))-g(v, w)=g(A(v), A(w))-g(v, w)=0 \tag{1}
\end{equation*}
$$

We have used the fact that $A(v)=v$ and $A \in \mathrm{O}(V, g)$. Hence $v \in \operatorname{im}(\hat{A})^{\perp}$. Conversely, suppose $v \in \operatorname{im}(\hat{A})^{\perp}$. Then for any $w \in V$, one has

$$
\begin{equation*}
g(A(v)-v, A(w))=g(A(v), A(w))-g(v, A(w))=g(v, w)-g(v, A(w))=-g(v, \hat{A}(w))=0 \tag{2}
\end{equation*}
$$

As g is non-degenerate and A invertible, this implies $A(v)-v=0$, hence $v \in L(A)$.
Corollary 0.3. The above observation has the following consequences:
(i) $L(A)^{\perp}=\operatorname{im}(\hat{A})$;
(ii) $\operatorname{im}(\hat{A})$ is an isotropic subspace, iff $\hat{A}^{2}=0$.

Proof. The first of the two statements follows immediately from the previous lemma. For the second one, $\operatorname{im}(\hat{A})$ is isotropic, $\operatorname{iff} \operatorname{im}(\hat{A}) \subseteq \operatorname{im}(\hat{A})^{\perp}=\operatorname{ker}(\hat{A})$. This is equivalent to $\hat{A}^{2}=0$.

Lemma 0.4. For any vector $w \in V, \hat{A}(w)$ is isotropic, iff $g(w, \hat{A}(w))=0$.
Proof. This is a straightforward verification using the definition of \hat{A} and the fact that $A \in \mathrm{O}(V, g)$. In fact, one can prove the identity valid for all $w \in V$:

$$
\begin{equation*}
g(\hat{A}(w), \hat{A}(w))=-2 g(\hat{A}(w), w) \tag{3}
\end{equation*}
$$

It clearly implies the statement of the lemma.
The proof itself now relies on the following technical lemma:
Lemma 0.5. Suppose $\hat{A}^{2} \neq 0$. Then
(i) There exists an anisotropic non-zero vector $w \in V$, such that $z=\hat{A}(w)$ is also anisotropic, or it is zero, $z=0$.
(ii) If $z \neq 0$, and $A_{1}=R_{z} \circ A$, then $w \in L\left(A_{1}\right) . R_{z}$ denotes the reflection along the hyperplane orthogonal to z, that is for all $v \in V$, one has

$$
\begin{equation*}
R_{z}(v)=v-\frac{2 g(v, z)}{g(z, z)} z \tag{4}
\end{equation*}
$$

Before we actually prove it, let us argue why it is any useful in the proof.
Proof of Theorem 0.1. The proof is done by induction on $n=\operatorname{dim}(V)$. For $n=1$, the statement is trivial. Hence assume $n>1$ and suppose the theorem holds for any vector space (V^{\prime}, g^{\prime}) with $\operatorname{dim}\left(V^{\prime}\right)<n$. Suppose $A \in \mathrm{O}(V, g)$ cannot be written as a composition of at most n reflections. We claim that then necessary $\hat{A}^{2}=0$. Indeed, if $\hat{A}^{2} \neq 0$, there exists a non-zero $w \in V$ given to us by Lemma 0.5, and two things can happen:
(1) The element $z=\hat{A}(w)$ is zero. Hence $A(w)=w$. As w is anisotropic, we have a decomposition $V=\mathbb{R}\{w\} \oplus \mathbb{R}\{w\}^{\perp}$. Let $V^{\prime}=\mathbb{R}\{w\}^{\perp}$, let g^{\prime} be the restriction of g onto V^{\prime}. By construction g^{\prime} is non-degenerate and it is easy to see that $A\left(V^{\prime}\right) \subseteq V^{\prime}$. It follows that the restriction of A onto W^{\prime} can be by induction hypothesis written as a composition of at most $n-1$ reflections in V^{\prime}. Those can be extended by identity on $\mathbb{R}\{w\}$, such that A is a composition of at most $n-1$ reflections in V. This is a contraction.
(2) The element $z=\hat{A}(w)$ is anisotropic and thus also non-zero. By (ii) of Lemma 0.5, we have $A_{1}=R_{z} \circ A$ with $w \in L\left(A_{1}\right)$. But this means that $A_{1}(w)=w$, and by part (1), A_{1} is a composition of at most $n-1$ reflections in V. Hence $A=R_{z} \circ A_{1}$ is a product of at most n reflections. This is a contradiction.

This analysis shows that A which is not a product of at most n reflections has to satisfy $\hat{A}^{2}=0$, that is $\operatorname{im}(\hat{A}) \subseteq \operatorname{ker}(\hat{A})$. On the other hand $\operatorname{ker}(\hat{A}) \equiv L(\sigma)$ must be isotropic. Otherwise there would be anisotropic w such that $A(w)=w$ and we can prove by repeating the arguments of (1) above, that A is a product of at most $n-1$ reflections. Hence

$$
\begin{equation*}
\operatorname{ker}(\hat{A}) \subseteq \operatorname{ker}(\hat{A})^{\perp}=\operatorname{im}(\hat{A}) \tag{5}
\end{equation*}
$$

The both subspaces thus must be equal, $\operatorname{ker}(\hat{A})=\operatorname{im}(\hat{A})$. This implies $n=2 \operatorname{dim}(L(A))$, as the orthogonal complement always has a complementary dimension. In particular, the dimension n must be even. Moreover, A acts by identity on the subspace $L(V)$. It also induces a linear endomorphism A^{\prime} of the quotient space $V / L(V)$. But as $A(v)=v+(A(v)-v)$, it follows that A^{\prime} is the identity on $V / L(V)$. There is always a non-canonical isomorphism of the vector space V with $L(V) \oplus V / L(V)$. It follows that with respect to this isomorphism, A has the block form

$$
A=\left(\begin{array}{cc}
1 & A^{\circ} \tag{6}\\
0 & 1,
\end{array}\right)
$$

where $A^{\circ}: V / L(V) \rightarrow L(V)$ is some linear map. This implies that $\operatorname{det}(A)=1$, and thus necessarily $A \in \mathrm{SO}(V, g)$. Now, suppose R is any reflection of V. Then $R \circ A \notin \mathrm{SO}(V, g)$ and it thus cannot be used as a counterexample! Thus $R \circ A$ must be a product of at most n reflections and consequently, A is a product of at most $n+1$ reflections. It cannot be a composition of exactly $n+1$ reflections, as then $\operatorname{det}(A)=(-1)^{n+1}=-1$ as n was proved to be even. Then A would have to be a product of at most n reflections, which is the final contradiction.

We have now justified the existence of the lemma. To prove it, we will need one general result for symmetric bilinear forms:

Lemma 0.6. Let y be a non-zero isotropic vector in V, where $\operatorname{dim}(V)>1$. Then there exists a 2-dimensional subspace $H \subseteq V$ containing y, such that g restricted to H is non-degenerate. Any such H is called the hyperbolic plane.

Proof. The space $U=\mathbb{R}\{y\} \subseteq V$ is one-dimensional. There must be a non-zero $z \in V$, such that $g(y, z) \neq 0$. Equivalently, $U^{\perp} \neq V$, which is clear, otherwise $U=V^{\perp}=\{0\}$. It follows that the vectors y and z are linearly independent and $H=\mathbb{R}\{y, z\}$ is a 2-dimensional subspace of V. Moreover, the matrix of $\left.g\right|_{H}$ in the basis (y, z) is

$$
\left.g\right|_{H}=\left(\begin{array}{cc}
0 & g(y, z) \tag{7}\\
g(y, z) & g(z, z)
\end{array}\right)
$$

which is non-singular as $g(y, z) \neq 0$. This finishes the proof.
Proof of Lemma 0.5. Suppose (i) of the statement is false. Hence suppose that for every anisotropic non-zero vectors $w \neq 0$, the vector $\hat{A}(w)$ is non-zero and isotropic. By Lemma 0.4, we have $g(w, \hat{A}(w))=0$. We claim that w and $\hat{A}(w)$ are linearly independent. Indeed, suppose

$$
\begin{equation*}
\lambda w+\lambda^{\prime} \hat{A}(w)=0 \tag{8}
\end{equation*}
$$

Hence $0=\lambda g(w, w)+\lambda^{\prime} g(w, \hat{A}(w))=\lambda g(w, w)$. As $g(w, w) \neq 0$, this implies $\lambda=0$. Moreover, as $\hat{A}(w) \neq 0$, we find $\lambda^{\prime}=0$. It follows that the subspace $S=\mathbb{R}\{w, \hat{A}(w)\}$ is 2-dimensional. The restriction of g onto S is degenerate as $\hat{A}(w)$ generates its kernel. In particular, S has to be a proper subspace of V and thus $\operatorname{dim}(V) \geq 3$. We claim that

$$
\begin{equation*}
g(\hat{A}(y), y)=0, \text { for all } y \in V \tag{9}
\end{equation*}
$$

For $y=0$, the statement is trivial. We have already argued that it holds for any non-zero anisotrpic y. Hence suppose y is non-zero and isotropic. By Lemma 0.6 , there is a hyperplane H containing y. One can thus write $V=H \oplus H^{\perp}$ and as $\operatorname{dim}(V) \geq 3$, there is a non-zero anisotropic vector $w \in H^{\perp}$. In particular, $g(y, w)=0$. Let $u=y+\epsilon w$, where $\epsilon \in \mathbb{R}-\{0\}$. Then

$$
\begin{equation*}
g(u, u)=g(y+\epsilon w, y+\epsilon w)=\epsilon^{2} g(w, w) \neq 0 \tag{10}
\end{equation*}
$$

It follows that u is non-zero (y and w are linearly independent) and anisotropic. Consequently, by our original assumption $\hat{A}(u)$ is non-zero and isotropic. Equivalently $g(\hat{A}(u), u)=0$. Hence

$$
\begin{equation*}
0=g(\hat{A}(y+\epsilon w), y+\epsilon w)=g(\hat{A}(y), y)+\epsilon(g(\hat{A}(w), y)+g(\hat{A}(y), w))+\epsilon^{2} g(\hat{A}(w), w) \tag{11}
\end{equation*}
$$

Note that the last term also vanishes. As $\epsilon \in \mathbb{R}-\{0\}$ is arbitrary, this implies $g(\hat{A}(y), y)=0$. This proves that (9) holds for any $y \in V$. By Lemma 0.4 , this proves that $\operatorname{im}(\hat{A}) \subseteq V$ is an isotropic subspace. By Corollary 0.3 , this implies $\hat{A}^{2}=0$. This contradicts the assumption of the lemma we are trying to prove. Hence (i) of Lemma 0.5 must hold. It remains to prove (ii). Suppose $z=\hat{A}(w)$ is a non-zero anisotropic vector. We have to prove that $R_{z}(A(w))=w$. This is a straightforward verification, or there is a nice geometrical touch to it:

As $A \in \mathrm{O}(V, g), w$ and $A(w)$ form the vertices of an isosceles triangle. Then $z=A(w)-w$ is vector connecting those two vertices. Then R_{z} is the reflection along the hyperplane z^{\perp} orthogonal to it. It then obviously maps $A(w)$ to w and vice versa.

