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Theorem 0.1 (Cartan-Dieudonné). Let (V, g) be a n-dimensional real vector space equipped
with symmetric bilinear form g. Then every orthogonal endomorphism A ∈ O(V, g) can be written
as a composition of k reflections, where k ≤ n and det(A) = (−1)k.

The proof is done in several stages. Let A ∈ O(V, g). Let Â := A− 1V and let L(A) := ker(Â).
This is in fact precisely the +1 eigenspace of A.

Lemma 0.2. L(A) is an orthogonal complement to im(Â), that is L(A) = im(Â)⊥.

Proof. Let v ∈ L(A), and let w ∈ V . Then

g(v, Â(w)) = g(v,A(w)− w) = g(v,A(w))− g(v, w) = g(A(v), A(w))− g(v, w) = 0. (1)

We have used the fact that A(v) = v and A ∈ O(V, g). Hence v ∈ im(Â)⊥. Conversely, suppose
v ∈ im(Â)⊥. Then for any w ∈ V , one has

g(A(v)− v,A(w)) = g(A(v), A(w))− g(v,A(w)) = g(v, w)− g(v,A(w)) = −g(v, Â(w)) = 0. (2)

As g is non-degenerate and A invertible, this implies A(v)− v = 0, hence v ∈ L(A). �

Corollary 0.3. The above observation has the following consequences:

(i) L(A)⊥ = im(Â);

(ii) im(Â) is an isotropic subspace, iff Â2 = 0.

Proof. The first of the two statements follows immediately from the previous lemma. For the
second one, im(Â) is isotropic, iff im(Â) ⊆ im(Â)⊥ = ker(Â). This is equivalent to Â2 = 0. �

Lemma 0.4. For any vector w ∈ V , Â(w) is isotropic, iff g(w, Â(w)) = 0.

Proof. This is a straightforward verification using the definition of Â and the fact that A ∈ O(V, g).
In fact, one can prove the identity valid for all w ∈ V :

g(Â(w), Â(w)) = −2g(Â(w), w). (3)

It clearly implies the statement of the lemma. �

The proof itself now relies on the following technical lemma:

Lemma 0.5. Suppose Â2 6= 0. Then
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(i) There exists an anisotropic non-zero vector w ∈ V , such that z = Â(w) is also anisotropic,
or it is zero, z = 0.

(ii) If z 6= 0, and A1 = Rz ◦ A, then w ∈ L(A1). Rz denotes the reflection along the hyperplane
orthogonal to z, that is for all v ∈ V , one has

Rz(v) = v − 2g(v, z)

g(z, z)
z. (4)

Before we actually prove it, let us argue why it is any useful in the proof.

Proof of Theorem 0.1. The proof is done by induction on n = dim(V ). For n = 1, the statement
is trivial. Hence assume n > 1 and suppose the theorem holds for any vector space (V ′, g′) with
dim(V ′) < n. Suppose A ∈ O(V, g) cannot be written as a composition of at most n reflections.
We claim that then necessary Â2 = 0. Indeed, if Â2 6= 0, there exists a non-zero w ∈ V given to
us by Lemma 0.5, and two things can happen:

(1) The element z = Â(w) is zero. Hence A(w) = w. As w is anisotropic, we have a decomposition
V = R{w} ⊕R{w}⊥. Let V ′ = R{w}⊥, let g′ be the restriction of g onto V ′. By construction
g′ is non-degenerate and it is easy to see that A(V ′) ⊆ V ′. It follows that the restriction of A
onto W ′ can be by induction hypothesis written as a composition of at most n− 1 reflections
in V ′. Those can be extended by identity on R{w}, such that A is a composition of at most
n− 1 reflections in V . This is a contraction.

(2) The element z = Â(w) is anisotropic and thus also non-zero. By (ii) of Lemma 0.5, we have
A1 = Rz ◦ A with w ∈ L(A1). But this means that A1(w) = w, and by part (1), A1 is a
composition of at most n − 1 reflections in V . Hence A = Rz ◦ A1 is a product of at most n
reflections. This is a contradiction.

This analysis shows that A which is not a product of at most n reflections has to satisfy Â2 = 0,
that is im(Â) ⊆ ker(Â). On the other hand ker(Â) ≡ L(σ) must be isotropic. Otherwise there
would be anisotropic w such that A(w) = w and we can prove by repeating the arguments of (1)
above, that A is a product of at most n− 1 reflections. Hence

ker(Â) ⊆ ker(Â)⊥ = im(Â). (5)

The both subspaces thus must be equal, ker(Â) = im(Â). This implies n = 2 dim(L(A)), as
the orthogonal complement always has a complementary dimension. In particular, the dimension
n must be even. Moreover, A acts by identity on the subspace L(V ). It also induces a linear
endomorphism A′ of the quotient space V/L(V ). But as A(v) = v + (A(v) − v), it follows that
A′ is the identity on V/L(V ). There is always a non-canonical isomorphism of the vector space V
with L(V )⊕ V/L(V ). It follows that with respect to this isomorphism, A has the block form

A =

(
1 A◦

0 1,

)
, (6)

where A◦ : V/L(V )→ L(V ) is some linear map. This implies that det(A) = 1, and thus necessarily
A ∈ SO(V, g). Now, suppose R is any reflection of V . Then R◦A /∈ SO(V, g) and it thus cannot be
used as a counterexample! Thus R◦A must be a product of at most n reflections and consequently,
A is a product of at most n+ 1 reflections. It cannot be a composition of exactly n+ 1 reflections,
as then det(A) = (−1)n+1 = −1 as n was proved to be even. Then A would have to be a product
of at most n reflections, which is the final contradiction. �
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We have now justified the existence of the lemma. To prove it, we will need one general result
for symmetric bilinear forms:

Lemma 0.6. Let y be a non-zero isotropic vector in V , where dim(V ) > 1. Then there exists a
2-dimensional subspace H ⊆ V containing y, such that g restricted to H is non-degenerate. Any
such H is called the hyperbolic plane.

Proof. The space U = R{y} ⊆ V is one-dimensional. There must be a non-zero z ∈ V , such that
g(y, z) 6= 0. Equivalently, U⊥ 6= V , which is clear, otherwise U = V ⊥ = {0}. It follows that
the vectors y and z are linearly independent and H = R{y, z} is a 2-dimensional subspace of V .
Moreover, the matrix of g|H in the basis (y, z) is

g|H =

(
0 g(y, z)

g(y, z) g(z, z)

)
, (7)

which is non-singular as g(y, z) 6= 0. This finishes the proof. �

Proof of Lemma 0.5. Suppose (i) of the statement is false. Hence suppose that for every
anisotropic non-zero vectors w 6= 0, the vector Â(w) is non-zero and isotropic. By Lemma 0.4, we
have g(w, Â(w)) = 0. We claim that w and Â(w) are linearly independent. Indeed, suppose

λw + λ′Â(w) = 0. (8)

Hence 0 = λg(w,w) + λ′g(w, Â(w)) = λg(w,w). As g(w,w) 6= 0, this implies λ = 0. Moreover,
as Â(w) 6= 0, we find λ′ = 0. It follows that the subspace S = R{w, Â(w)} is 2-dimensional. The
restriction of g onto S is degenerate as Â(w) generates its kernel. In particular, S has to be a
proper subspace of V and thus dim(V ) ≥ 3. We claim that

g(Â(y), y) = 0, for all y ∈ V. (9)

For y = 0, the statement is trivial. We have already argued that it holds for any non-zero anisotrpic
y. Hence suppose y is non-zero and isotropic. By Lemma 0.6, there is a hyperplane H containing
y. One can thus write V = H ⊕ H⊥ and as dim(V ) ≥ 3, there is a non-zero anisotropic vector
w ∈ H⊥. In particular, g(y, w) = 0. Let u = y + εw, where ε ∈ R− {0}. Then

g(u, u) = g(y + εw, y + εw) = ε2g(w,w) 6= 0. (10)

It follows that u is non-zero (y and w are linearly independent) and anisotropic. Consequently, by
our original assumption Â(u) is non-zero and isotropic. Equivalently g(Â(u), u) = 0. Hence

0 = g(Â(y + εw), y + εw) = g(Â(y), y) + ε(g(Â(w), y) + g(Â(y), w)) + ε2g(Â(w), w). (11)

Note that the last term also vanishes. As ε ∈ R−{0} is arbitrary, this implies g(Â(y), y) = 0. This
proves that (9) holds for any y ∈ V . By Lemma 0.4, this proves that im(Â) ⊆ V is an isotropic
subspace. By Corollary 0.3, this implies Â2 = 0. This contradicts the assumption of the lemma we
are trying to prove. Hence (i) of Lemma 0.5 must hold. It remains to prove (ii). Suppose z = Â(w)
is a non-zero anisotropic vector. We have to prove that Rz(A(w)) = w. This is a straightforward
verification, or there is a nice geometrical touch to it:

3



As A ∈ O(V, g), w and A(w) form the vertices of an isosceles triangle. Then z = A(w)−w is vector
connecting those two vertices. Then Rz is the reflection along the hyperplane z⊥ orthogonal to it.
It then obviously maps A(w) to w and vice versa. �
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