Lie Groupoids and Algebroids

Jindřich Ptáčník

March 4, 2024

1 Lie groupoids

Let us start this lecture by an example.

Example 1.1. Let M be smooth manifold and let G be a Lie group. Let us consider

$$\mathcal{G} := M \times G \times M. \tag{1}$$

We have two canonical maps $s : \mathcal{G} \to M$ and $t : \mathcal{G} \to M$ defined by

$$s(m, g, m') := m', \ t(m, g, m') := m.$$
 (2)

Both are smooth surjective submersions. In particular, one can consider their fibered product

$$\mathcal{G} * \mathcal{G} := \{ ((m, g, m'), (n, h, n')) \in \mathcal{G} \times \mathcal{G} \mid \mathsf{s}(m, g, m') = \mathsf{t}(n, h, n') \} \\
= \{ ((m, g, m'), (m', h, n')) \in \mathcal{G} \times \mathcal{G} \mid m, m', n' \in M \ g, h \in G \}.$$
(3)

We can define a *partial multiplication map* $\mu: \mathcal{G} * \mathcal{G} \to \mathcal{G}$ by the formula

$$\mu((m, g, m'), (m', h, n')) \equiv (m, g, m') \cdot (m', h, n) := (m, gh, n').$$
(4)

This map is obviously smooth. Finally, for each $m \in M$, we have the element $\mathbf{1}_m = (m, e, m)$, where $e \in G$ is the group unit. It follows that

$$\mathbf{1}_{m} \cdot (m, g, m') = (m, g, m'), \ (m, g, m') \cdot \mathbf{1}_{m'} = (m, g, m'),$$
(5)

and to every $(m, g, m') \in \mathcal{G}$, there is a unique element $(m, g, m')^{-1} := (m', g^{-1}, m)$, such that

$$(m,g,m') \cdot (m,g,m')^{-1} = \mathbf{1}_m, \ (m,g,m')^{-1} \circ (m,g,m) = \mathbf{1}_{m'}.$$
 (6)

Note that the assignment $m \mapsto \mathbf{1}_m$ can be viewed as a smooth map $\mathbf{1}: M \to \mathcal{G}$.

This simple example gives the intuition to understand the following definition:

Definition 1.2. Let us consider the following data:

- (i) a pair of smooth manifolds \mathcal{G} and M;
- (ii) a pair of smooth surjective submersions $s, t : \mathcal{G} \to \mathcal{M}$, where s is called the **source map** and t is called the **target map**;

(iii) a smooth map $\mu: \mathcal{G} * \mathcal{G} \to \mathcal{G}$, where $\mathcal{G} * \mathcal{G}$ is the fibered product over a pair of maps (s, t).

Then $(\mathcal{G}, M, \mathsf{s}, \mathsf{t}, \mu)$ is called a **Lie groupoid** \mathcal{G} over the base M, if it satisfies the following axioms. We assume that each identity holds for all elements of \mathcal{G} , such that everything is well defined. One also uses the short-hand notation $g \cdot h := \mu(g, h)$.

- (i) One has $s(g \cdot h) = s(h)$ and $t(g \cdot h) = t(g)$.
- (ii) μ is associative, that is $g \cdot (h \cdot k) = (g \cdot h) \cdot k$.
- (iii) For each $m \in M$, there exists an element $\mathbf{1}_m \in \mathcal{G}$, such that $s(\mathbf{1}_m) = t(\mathbf{1}_m) = m$ and

$$g \cdot \mathbf{1}_{\mathsf{s}(g)} = g, \ \mathbf{1}_{\mathsf{t}(h)} \cdot h = h.$$

$$\tag{7}$$

Moreover, the formula $1(m) := 1_m$ has to define a smooth map $1: M \to \mathcal{G}$.

(iv) For each $g \in \mathcal{G}$, there exists $g^{-1} \in \mathcal{G}$ with $s(g^{-1}) = t(g)$ and $t(g^{-1}) = s(g)$, such that

$$g \cdot g^{-1} = \mathbf{1}_{\mathsf{t}(g)}, \ g^{-1} \cdot g = \mathbf{1}_{\mathsf{s}(g)}.$$
 (8)

One usually writes $\mathcal{G} \rightrightarrows M$. The set \mathcal{G} is called the **arrows** of $\mathcal{G} \rightrightarrows M$. μ is called the **partial** multiplication, 1 is the object inclusion map, g^{-1} is called the inverse arrow of g.

Exercise 1.3. Note that neither $1: M \to \mathcal{G}$ and $i: \mathcal{G} \to \mathcal{G}$ defined as $i(g) := g^{-1}$ are not part of the data $(\mathcal{G}, \mathcal{M}, \mathsf{s}, \mathsf{t}, \mu)$. This is because if they exist, they are unique. Prove this.

Example 1.4. The structure in Example 1.1 is called a **trivial Lie groupoid**. It contains two special cases:

- (a) If $G = \{e\}$, we have $\mathcal{G} \cong M \times M$ and $M \times M \rightrightarrows M$ is called the **product Lie groupoid**.
- (b) If $M = \{*\}$, we have $\mathcal{G} \cong G$ and $G \rightrightarrows \{*\}$ is just a Lie group.

Remark 1.5. Lie groupoid can be viewed as a small category whose set of objects is M, its set of arrows if \mathcal{G} . Axioms (i) - (iii) are just a reformulation of category axioms. The axiom (iv) is equivalent to it being a groupoid, that is a category with invertible arrows.

Definition 1.6. For each $m, n \in M$, we define the following subsets of \mathcal{G} :

- (i) The s-fiber over m is a set $\mathcal{G}_m := \{g \in \mathcal{G} \mid \mathsf{s}(g) = m\};$
- (ii) The **t-fiber over** n is a set $\mathcal{G}^n := \{g \in \mathcal{G} \mid \mathsf{t}(g) = n\};$
- (iii) $\mathcal{G}_m^n := \mathcal{G}_m \cap \mathcal{G}^n$. In particular, \mathcal{G}_m^m is called the **isotropy group at** m.

All of those subsets are actually closed embedded submanifolds of \mathcal{G} . For \mathcal{G}_m^n , the statement is non-trivial and it will be proved later.

They are some immediate consequences of the definition.

Proposition 1.7. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid. Then the following facts can be deduced:

(i) The object inclusion map $1: M \to \mathcal{G}$ is a closed embedding. In particular $1(M) \subseteq \mathcal{G}$ is a closed embedded submanifold diffeomorphic to M.

(ii) The inversion map $i: \mathcal{G} \to \mathcal{G}$ is a diffeomorphism.

Exercise 1.8. Prove the preceding proposition. Here are some hints

- (i) Use the fact that $t \circ i = \mathbb{1}_M$ to argue that i is an injective immersion. Then prove that it is a closed map. Every closed injective immersion is a closed embedding.
- (ii) Define a smooth map $\theta : \mathcal{G} * \mathcal{G} \to \mathcal{G} \times_{t} \mathcal{G}$ as $\theta(g, h) = (g, g \cdot h)$. Find its inverse to prove that θ is a bijection. Use a global rank theorem to prove that θ is a diffeomorphism. Then observe that

$$\mathbf{i} = \pi_2 \circ \theta^{-1} \circ (\mathbb{1}_{\mathcal{G}}, \mathbf{1} \circ \mathbf{t}) \tag{9}$$

Finally, show that $i^{-1} = i$ to finish the proof.

Let us continue with more examples:

Example 1.9. Let $\theta : G \times M \to M$ be a left action of G on M. Let $\mathcal{G} := G \times M$.

- (i) The source map is s(g, m) := m. This is a smooth surjective submersion.
- (ii) The target map is $t(g,m) := g \cdot m$, that is $t := \theta$. It is surjective as $\theta(e,m) = m$. It is a submersion as its restriction to a fiber $\{g\} \times M$ is a diffeomorphism.
- (iii) Note that $((g,m),(h,n)) \in \mathcal{G} * \mathcal{G}$, if $m = h \cdot n$. We define the partial multiplication as

$$(g,m) \cdot (h,n) := (gh,n)$$
 (10)

It is smooth as it just a restriction of a smooth map to the submanifold $\mathcal{G} * \mathcal{G}$. Then

$$\mathsf{s}((g,m)\cdot(h,n)) = \mathsf{s}(gh,n) = n = \mathsf{s}(h,n),\tag{11}$$

$$\mathsf{t}((g,m)\cdot(h,n)) = \mathsf{t}(gh,n) = (gh)\cdot n = g\cdot(h\cdot n) = g\cdot m = \mathsf{t}(g,m). \tag{12}$$

The associativity follows from the one of G.

(iv) The object inclusion map is $\mathbf{1}(m) = (e, m)$ and the inverse is $(g, m)^{-1} = (g^{-1}, g \cdot m)$.

One writes $\mathcal{G} = G \lt M$ and calls $G \lt M \rightrightarrows M$ the **action Lie groupoid** corresponding to the action θ .

Example 1.10. Let $\pi: P \to M$ be a principal *G*-bundle with the right action $R: P \times G \to P$.

There is an induced action on $P \times P$, namely set $(p,q) \cdot g := (p \cdot g, q \cdot g)$. This action is free an proper. Consequently, there is unique topology and smooth structure on the quotient

$$\mathcal{G} := \frac{P \times P}{G},\tag{13}$$

making the canonical quotient map $\natural : P \times P \to \mathcal{G}$ into a surjective submersion. Let us write $[p,q] := \natural(p,q)$. By design, we thus have $[p \cdot g, q \cdot g] = [p,g]$.

(i) Let $s([p,q]) := \pi(q)$ an $t([p,q]) := \pi(p)$. They are obviously well-defined and surjective. Since $s \circ \natural = \pi \circ \pi_2$ and $t \circ \natural = \pi \circ \pi_1$, they are smooth surjective submersions. (ii) Define a map $\delta: P \times_{\pi} P \to P$ to satisfy the formula $\delta(p \cdot g, p) := g$. Such a map is unique and it is smooth. Since for $([p,q], [p',q']) \in \mathcal{G} * \mathcal{G}$, one has $(q,p') \in P \times_{\pi} P$, one can define

$$[p,q] \cdot [p',q'] := [p,q' \cdot \delta(q,p')].$$
(14)

Now, one has

$$\mathsf{s}([p,q' \cdot \delta(q,p')]) = \pi(q' \cdot \delta(q,p')) = \pi(a') = \mathsf{s}([p',q']), \tag{15}$$

$$t([p,q' \cdot \delta(q,p')]) = \pi(p) = t([p,q]).$$
(16)

Note that the associativity is non-trivial, it boils down to the fact that

$$\delta(p \cdot h, q) = \delta(p, q) \cdot h, \tag{17}$$

for all $(p,q) \in P \times_{\pi} P$ and $h \in G$. We leave the smoothness of μ as an excercise.

(iii) For each $m \in M$, fix and arbitrary $p \in \pi^{-1}(M)$. We declare $\mathbf{1}_m := [p, p]$. It is easy to see that this is well-defined. Observe that for each $[p', q'] \in \mathcal{G}^m$, one

$$\mathbf{1}_m \cdot [p',q'] = [p',p'] \cdot [p',q'] = [p',q' \cdot \delta(p',p')] = [p',q' \cdot e] = [p',q'].$$
(18)

The proof that for any $[p,q] \in \mathcal{G}_m$, only has $[p,q] \cdot \mathbf{1}_m = [p,q]$ is analogous.

(iv) The inverse is easily seen to be $[p,q]^{-1} = [q,p]$.

Lie algebroid $\frac{P \times P}{G} \rightrightarrows M$ is called the gauge groupoid corresponding to $\pi : P \to M$.

Exercise 1.11. (i) Prove that the action on $P \times P$ is proper.

Recall that the right action $\theta : N \times G \to N$ is proper, if the maps $(n, g) \mapsto (n, \theta(n, g))$ is a proper map. This is equivalent to the following statement: Suppose we are given sequences $\{n_k\}_{k=1}^{\infty}$ and $\{g_k\}_{k=1}^{\infty}$ in N and G, respectively. Then if both $\{n_k\}_{k=1}^{\infty}$ and $\{n_k \cdot g_k\}_{k=1}^{\infty}$ converge in N, some subsequence of $\{g_k\}_{k=1}^{\infty}$ must converge in G.

Finally, observe that if $\{p_k\}_{k=1}^{\infty}$ converges to $p \in P$, for large enough k, the terms of the sequence end up in $\pi^{-1}(U)$ for some open subset of U containing $\pi(p)$, such that $P \cong U \times G$. But since G acts along the fibers, the same is true for $\{p_k \cdot g_k\}_{k=1}^{\infty}$. Modify this argument for $P \times P$ and work locally to prove that the action is proper.

- (ii) Prove that $\delta: P \times_{\pi} P \to G$ is smooth.
- (iii) Prove that $\mu : \mathcal{G} * \mathcal{G} \to \mathcal{G}$ is smooth. Hint: prove that a smooth map $\natural \times \natural$ restricts to a surjective submersion

$$\natural \times \natural : P \times (P \times_{\pi} P) \times P \to \mathcal{G} * \mathcal{G}$$
⁽¹⁹⁾

The partial multiplication $\mu : \mathcal{G} * \mathcal{G}$ then fits into the commutative diagram

where $\hat{\mu}(p, q, p', q') = (p, q' \cdot \delta(q, p'))$ is obviously smooth.

(iv) Prove that $1: M \to \mathcal{G}$ is smooth. Hint: observe that 1 fits into the commutative diagram

Example 1.12. Let M be an arbitrary manifold. Let I = [0, 1] and let $\mathcal{G} := \Pi(M)$ be a set of homotopy classes of continuous curves $\gamma : I \to M$.

- (i) One sets $s([\gamma]) := \gamma(0)$ and $t([\gamma]) = \gamma(1)$.
- (ii) The partial multiplication is just the usual concatenation of curves, that is $[\gamma] \cdot [\gamma'] = [\gamma * \gamma']$, where $\gamma * \gamma'$ is defined as γ' on $[0, \frac{1}{2}]$ followed by γ on $[\frac{1}{2}, 1]$. It is a well-known fact that it has all the properties required of the partial multiplication.
- (iii) One has $\mathbf{1}_m := [e_m]$, where $e_m : I \to M$ is a constant curve valued at m. Again, it is a standard argument to see that $\mathbf{1}_m$ works as a unit element at m.
- (iv) Finally, one has $[\gamma]^{-1} = [\gamma^{-1}]$, where $\gamma^{-1}(t) := \gamma(1-t)$.

 $\Pi(M) \rightrightarrows M$ is called the **fundamental groupoid of** M.

One has to introduce a topology and a smooth structure on $\Pi(M)$. This can be done in a rather interesting indirect way. Suppose M is connected.

- 1) There exists a universal covering space $\pi : \widetilde{M} \to M$. Fix $m_0 \in M$. Then \widetilde{M} is defined as a set of all homotopy classes of all continuous curves starting from m_0 . For each $[\gamma] \in \widetilde{M}$, one has $\pi[\gamma] := \gamma(1)$. There is a topology and a smooth structure on \widetilde{M} making π into a smooth covering.
- 2) The fundamental group $\pi_1(M, m_0)$ is at most countable, it thus forms a discrete Lie group. There is a canonical right action of $\pi_1(M, m_0)$ on \widetilde{M} , namely $[\gamma] \cdot [\omega] := [\gamma * \omega]$.

One can show that this makes $\pi : \widetilde{M} \to M$ into a principal $\pi_1(M, m_0)$ -bundle.

3) There is a canonical bijection $\Psi : \Pi(M) \to \frac{\widetilde{M} \times \widetilde{M}}{\pi_1(M,m_0)}$. Let $[\gamma] \in \Pi(M)$. Let $x := \gamma(0)$ and $y := \gamma(1)$. Since M is connected, there exist a curve $\gamma_0 : I \to M$ connecting m_0 and x. Then $\gamma * \gamma_0$ connects m_0 and y. One defines

$$\Psi([\gamma]) := [[\gamma * \gamma_0], [\gamma_0],].$$
(22)

With some work, one can show that Ψ is both injective and surjective, it intertwines both the source and target maps, and it is compatible with both partial multiplications.

We can thus use Ψ to *declare* the topology and a smooth structure on $\Pi(M)$, making it into a Lie groupoid.

2 Morphisms, local triviality

Definition 2.1. Let $(\mathcal{G}, M, \mathsf{s}, \mathsf{t}, \mu)$ and $(\mathcal{H}, N, \mathsf{s}', \mathsf{t}', \mu')$ be a pair of Lie groupoids. A morphism of Lie groupids is a pair of smooth maps (F, f), where $F : \mathcal{G} \to \mathcal{H}$ and $f : M \to N$, such that

- (i) $\mathbf{s}' \circ F = f \circ \mathbf{s}$ and $\mathbf{t}' \circ F = f \circ \mathbf{t}$;
- (ii) $F(g) \cdot F(h) = F(g \cdot h)$ for all $(g, h) \in \mathcal{G} * \mathcal{G}$; Note that (i) ensures that $(F(g), F(h)) \in \mathcal{H} * \mathcal{H}$.

We say that $F : \mathcal{G} \to \mathcal{H}$ is a **LG morphism over** f. If M = N and $f = \mathbb{1}_M$, we say that F is a **LG morphism over** M.

Exercise 2.2. Let $F : \mathcal{G} \to \mathcal{H}$ be a LG morphism over f.

- (i) For each $m \in M$, one has $F(1_m) = 1_{f(m)}$.
- (ii) One has $F(g^{-1}) = F(g)^{-1}$ for each $g \in \mathcal{G}$.
- (iii) f is in fact completely determined by F, since it fits into the diagram

In fact, if F is smooth, f is automatically smooth.

(iv) Lie groupoids and their morphisms form a category.

Example 2.3. Let $\mathcal{G} \rightrightarrows M$ be any groupoid. Let $\chi : \mathcal{G} \rightarrow M \times M$ be defined as

$$\chi(g) := (\mathsf{t}(g), \mathsf{s}(g)). \tag{24}$$

Then χ is a morphism of \mathcal{G} and the pair groupoid $M \times M$ called the **anchor of** \mathcal{G} .

Example 2.4. Let $q: E \to M$ be a vector bundle over M. For each $m, n \in M$, let

$$\Phi_m^n(E) := \operatorname{Iso}(E_m, E_n) \tag{25}$$

Let $\Phi(E) = \bigsqcup_{m,n} \Phi_m^n(E)$. For each $\varphi \in \Phi_m^n(E)$, define $\mathsf{s}(\varphi) = m$ and $\mathsf{t}(\varphi) = n$.

The partial multiplication is simply a composition of maps, $\mathbf{1}_m = \mathbf{1}_{E_m}$ and $i(\varphi) = \varphi^{-1}$.

One only has to define a topology and a smooth structure on $\Phi(E)$. This is done as follows. For all open subsets $U, V \subseteq M$, let $\Phi_U^V(E) := \mathbf{s}^{-1}(U) \cap \mathbf{t}^{-1}(V)$. Let $\{(U_\alpha, \phi_\alpha)\}_{\alpha \in I}$ be a local trivialization for E. Without the loss of generality, we may assume that we also have an atlas $\{(U_\alpha, \nu_\alpha)\}_{\alpha \in I}$ for M, that is $\nu_\alpha : U_\alpha \to \hat{U}_\alpha \subseteq \mathbb{R}^n$.

For each $\alpha, \beta \in I$, one produces a bijection

$$\Psi_{\alpha\beta}: \Phi_{U_{\alpha}}^{U_{\beta}}(E) \to \hat{U}_{\beta} \times \operatorname{GL}(k, \mathbb{R}) \times \hat{U}_{\alpha}$$
(26)

as follows. For any $\varphi \in \Phi_{U_{\alpha}}^{U_{\beta}}(E)$, let

$$\Psi_{\alpha\beta}(\varphi) := \left(\nu_{\beta}(\mathsf{t}(\varphi)), \phi_{\beta,\mathsf{t}(\varphi)}^{-1} \circ \varphi \circ \phi_{\alpha,\mathsf{s}(\varphi)}, \nu_{\alpha}(\mathsf{s}(\varphi))\right).$$
(27)

It is not difficult to find its inverse, since one finds.

$$\Phi_{\alpha\beta}^{-1}(y,\mathbf{A},x) = \phi_{\beta,\nu_{\beta}^{-1}(y)} \circ \mathbf{A} \circ \phi_{\alpha,\nu_{\alpha}^{-1}(x)}^{-1} \in \mathrm{Iso}(E_{\nu_{\beta}^{-1}(y)}, E_{\nu_{\alpha}^{-1}(x)}).$$
(28)

 $\{\Phi_{U_{\alpha}}^{U_{\beta}}(E)\}_{\alpha,\beta\in I}$ is an cover of $\Phi(E)$. Since $\operatorname{GL}(k,\mathbb{R})\subseteq\mathbb{R}^{k\times k}$ is an open subset, we can now define a topology and a smooth structure on Φ by declaring $\{(\Phi_{U_{\alpha}}^{U_{\beta}},\Psi_{\alpha\beta}\}_{\alpha,\beta\in I}$ into a smooth atlas.

It is then not difficult to prove that $\Phi(E) \rightrightarrows M$ forms a Lie groupoid called the **frame** groupoid of E.

Exercise 2.5. Finish some technical details in the above example.

- (i) Calculate the transition maps of the above atlas and prove that they are smooth
- (ii) Prove that s, t and μ all have the required properties. Hint: locally, everything boils down to the trivial Lie groupoid.

Example 2.6. The frame groupoid $\Phi(E)$ is in fact isomorphic to a gauge groupoid of the frame bundle $\pi : Fr(E) \to M$.

Let us only construct a mapping from $\Phi(E)$ to the gauge groupoid. For any $\varphi \in \Phi(E)$, let us pick an arbitrary basis $q = (q_{\mu})_{\mu=1}^{k}$ of $E_{\mathsf{s}(\varphi)}$. Then $p := (\varphi(q_{\mu}))_{\mu=1}^{k}$ is a basis of $E_{\mathsf{t}(\varphi)}$. Let

$$F(\varphi) := [p,q] \in \Phi.$$
⁽²⁹⁾

It is easy to see that F is well-defined, since if $q' := q \cdot \mathbf{A}$ is any other basis, then the induced basis of $E_{\mathsf{t}(\varphi)}$ is $p' = p \cdot \mathbf{A}$, so [p', q'] = [p, q]. Since $\mathsf{s}'(F(\varphi)) = \mathsf{s}(\varphi)$ and $\mathsf{t}'(F(\varphi)) = \mathsf{t}(\varphi)$, the underlying map is $\mathbb{1}_M$. We proof of the smoothness of F is a straightforward exercise.

Definition 2.7. One says that a Lie groupoid $\mathcal{G} \rightrightarrows M$ is **transitive**, if the anchor map $\chi : \mathcal{G} \rightarrow M \times M$ is surjective.

It turns out that the set of arrows of any transitive Lie groupoid is necessarily bijective to the one of a trivial Lie groupoid.

Lemma 2.8. For any $p \in M$, the set \mathcal{G} is bijective to $M \times \mathcal{G}_p^p \times M$.

Proof. Pick any reference point $p \in M$. It follows that the restriction $t_p : \mathcal{G}_p \to M$ remains surjective. There is thus a map $\sigma : M \to \mathcal{G}_p$, such that $t_p \circ \sigma = \mathbb{1}_M$.

Now, define $F: M \times \mathcal{G}_p^p \times M \to \mathcal{G}$ as

$$F(n, g, m) := \sigma(n) \cdot g \cdot \sigma(m)^{-1}.$$
(30)

This defines a bijection. Indeed, for any $g \in \mathcal{G}$, define

$$F^{-1}(g) := \left(\mathsf{t}(g), \sigma(\mathsf{t}(g))^{-1} \cdot g \cdot \sigma(\mathsf{s}(g)), \mathsf{s}(g)\right).$$
(31)

Note that the middle term is indeed in \mathcal{G}_p^p , since $\sigma(\mathbf{s}(g)) \in \mathcal{G}_p^{\mathbf{s}(g)}$ and $\sigma(\mathbf{t}(g))^{-1} \in \mathcal{G}_{\mathbf{t}(g)}^p$, so the multiplication is well-defined and the results in \mathcal{G}_p^p . The prove that inverse of F is easy.

Note that if σ is smooth, F is also smooth and defines a LG isomorphism of \mathcal{G} and $M \times \mathcal{G}_p^p \times M$. However, in general case, such a global smooth σ may not exist. We cannot ensure this globally. However, there is a notion suitable for smooth setting.

Definition 2.9. One says that a Lie groupoid $\mathcal{G} \rightrightarrows M$ is **locally trivial**, if its anchor $\chi : \mathcal{G} \rightarrow M \times M$ is a smooth surjective submersion.

Example 2.10. Most of Lie groupoids we have already met are (at least in some cases) locally trivial.

(i) A trivial Lie groupoid is locally trivial.

- (ii) An action Lie groupoid $G \leq M$ is locally trivial, iff $\theta : G \times M \to M$ is transitive. Indeed, one has $\chi(g,m) = (\theta(g,m),m)$. This map is surjective, iff θ is a transitive action. It is easy to see that this is always a submersion.
- (iii) For any principal G-bundle $\pi: P \to M$, the corresponding gauge groupoid is locally trivial. This is because the anchor fits into the commutative diagram

Since $\pi \times \pi$ is a surjective submersion, so is χ . In particular, $\Pi(M)$ and $\Phi(E)$ are locally trivial.

Let us justify the name "locally trivial". Observe that for any open subset $U \subseteq M$, the subset $\mathcal{G}_U^U = s^{-1}(U) \cap t^{-1}(U)$ is open in \mathcal{G} . It follows that all structure maps of a Lie groupoid can be restricted and one obtain a **restricted Lie groupoid** $\mathcal{G}_U^U \rightrightarrows U$. First, let us make a following important observation.

Proposition 2.11. Let $\mathcal{G} \rightrightarrows M$ be a locally trivial Lie groupoid.

Then for each $p \in M$, \mathcal{G}_p^p is a closed embedded submanifold of \mathcal{G} and with respect to the restriction of μ to \mathcal{G}_p^p , it forms a Lie group.

Proof. Observe that $\mathcal{G}_p^p = \chi^{-1}(p)$. Since χ is a surjective submersion, \mathcal{G}_p^p is a closed embedded submanifold. Moreover, notice that $\mathcal{G}_p^p \times \mathcal{G}_p^p \subseteq \mathcal{G} * \mathcal{G}$ is also a closed embedded submanifold, so μ restricts to a smooth map $\mu_p : \mathcal{G}_p^p \times \mathcal{G}_p^p \to \mathcal{G}_p^p$. The fact that (\mathcal{G}_p^p, μ_p) forms a group is straightforward.

Proposition 2.12. Let $\mathcal{G} \rightrightarrows M$ be a locally trivial Lie groupoid.

Then for every $p \in M$, there is an open neighborhood U of p, such that a restricted Lie groupoid \mathcal{G}_{U}^{U} is isomorphic to the trivial Lie groupoid $U \times \mathcal{G}_{p}^{p} \times U$ over U.

Proof. Let $p \in M$ be an arbitrary but fixed point. Let us argue that $t_p : \mathcal{G}_p \to M$ is also a surjective submersion. To do so, observe that $\sigma_p : M \to M \times M$ defined by $\sigma_p(n) = (n, p)$ is a closed embedding. Let $j_p : \mathcal{G}_p \to \mathcal{G}$ be the embedding. Then t_p fits into the pullback diagram

This means that \mathcal{G}_p is precisely the inverse image submanifold of $\sigma_p(M)$ under χ . It is an easy exercise to check that χ being a surjective submersion implies that t_p is also.

Now, for any surjective submersion, there exists an open subset $U \subseteq M$ containing p and a smooth map $\sigma: U \to \mathcal{G}_p$, such that $\mathbf{t}_p \circ \sigma = \mathbb{1}_U$. One can now use the same tactic as in Lemma 2.8 to construct a Lie groupoid isomorphism $F: U \times \mathcal{G}_p^p \times U \to \mathcal{G}_U^U$.

Example 2.13. Let G be a Lie group with a Lie algebra \mathfrak{g} . We will now make T^*G into a Lie groupoid over \mathfrak{g}^* .

For any $\xi \in T_q^*G$, let us define $t(\xi) := R_q^*(\xi)$ and $s(\xi) := L_q^*(\xi)$.

Suppose $\xi \in T_g^*\mathcal{G}$ and $\eta \in T_h^*\mathcal{G}$ satisfy $s(\xi) = t(\eta)$, that is $L_g^*(\xi) = R_h^*(\eta)$. We propose that $\xi \bullet \eta \in T_{gh}^*\mathcal{G}$. We must ensure that

$$\mathbf{t}(\boldsymbol{\xi} \bullet \boldsymbol{\eta}) = \mathbf{t}(\boldsymbol{\xi}), \ \mathbf{t}(\boldsymbol{\xi} \bullet \boldsymbol{\eta}) = \mathbf{s}(\boldsymbol{\eta}). \tag{34}$$

This forces $R_k^*(\xi \bullet \eta) = R_q^*(\xi)$ and $L_k^*(\xi \bullet \eta) = L_h^*(\eta)$. This determines $\xi \bullet \eta$ uniquely as

$$\xi \bullet \eta = R_{h^{-1}}^*(\xi) = L_{q^{-1}}(\eta). \tag{35}$$

For each $\alpha \in \mathfrak{g}^*$, the unit element $\mathbf{1}_{\alpha}$ is α viewed as an element of $T_e^*\mathcal{G}$. Then

$$\mathbf{1}_{\mathsf{t}(\eta)} \bullet \eta = L_{e^{-1}}(\eta) = \eta, \ \xi \bullet \mathbf{1}_{\mathsf{s}(\xi)} = R_{e^{-1}}^*(\xi) = \xi.$$
(36)

Finally, for any $\xi \in T_g^* \mathcal{G}$, one has $\xi^{-1} = I_{g^{-1}}^*(\xi)$. The check of all the required properties is left as an exercise.

Exercise 2.14. Work out the technical details.

Hint: observe that one has a diffeomorphism $F: T^*G \to G \times \mathfrak{g}^*$ taking $\xi \in T^*_g G$ to $F(\xi) = (g, L^*_{g^{-1}}(\xi))$. Show that F defines a Lie groupoid isomorphism with the action Lie groupoid $G \leq \mathfrak{g}^*$ with respect to the coadjoint action Ad^*_g of G on \mathfrak{g}^* .

3 Bisections

Recall that for a Lie group G, we have a class of diffeomorphisms forming a subgroup of Diff(G) isomorphic to G, namely left translations $\{L_g\}_{g\in G}$.

For a Lie groupoid $\mathcal{G} \rightrightarrows M$ and each $g \in \mathcal{G}$, the corresponding **left translation** $L_g(h) := g \cdot h$ is defined only for $h \in \mathcal{G}$ with t(h) = s(g). Since $t(g \cdot h) = t(g)$, we see that L_g can be viewed as a smooth map

$$L_q: \mathcal{G}^{\mathsf{s}(g)} \to \mathcal{G}^{\mathsf{t}(g)}.$$
 (37)

In fact, since $L_{q^{-1}}$ is its inverse, we see that it defines a diffeomorphism.

Now, since $\mathcal{G} = \bigsqcup_{m \in M} \mathcal{G}^m$, we may try to choose a collection $\{g_m\}_{m \in M}$ of elements of \mathcal{G} , each satisfying $\mathbf{s}(g_m) = m$, and define the resulting diffeomorphism by the whole family of left translation. Since $L_{g_m}(\mathcal{G}^m) = \mathcal{G}^{\mathsf{t}(g_m)}$ and we much reach every t-fiber of \mathcal{G} , we see that the map $m \mapsto \mathsf{t}(g_m)$ must be a bijection. Note that the resulting diffeomorphism preserves sources. This leads us to the following concept - we will consider diffeomorphisms of \mathcal{G} which arise in this way:

Definition 3.1. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid. A **left translation of** \mathcal{G} is a pair of diffeomorphisms $(\varphi, \varphi_{\circ})$, where $\varphi : \mathcal{G} \rightarrow \mathcal{G}$ and $\varphi_{\circ} : M \rightarrow M$, such that

- 1. $\mathbf{t} \circ \varphi = \varphi_{\circ} \circ \mathbf{t}, \, \mathbf{s} \circ \varphi = \mathbf{s};$
- 2. for each $m \in M$, the restriction $\varphi^m : \mathcal{G}^m \to \mathcal{G}^{\varphi_0(m)}$ is of the form L_{g_m} for some $g_m \in \mathcal{G}$.

Now, the assignment $m \mapsto g_m$ with $\mathfrak{s}(g_m) = m$ can be viewed as a map $\sigma : M \to \mathcal{G}$ satisfying $\mathfrak{s} \circ \sigma = \mathbb{1}_M$. As already noted, the composition $\mathfrak{t} \circ \sigma : M \to M$ must be a bijection. This leads to the following definition.

Definition 3.2. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid. A **bisection of** \mathcal{G} is a smooth map $\sigma : M \to \mathcal{G}$, such that $\mathbf{s} \circ \sigma = \mathbb{1}_M$ and $\mathbf{t} \circ \sigma : M \to M$ is a diffeomorphism. The set of bijections of \mathcal{G} is denoted as $\mathscr{B}(\mathcal{G})$.

In fact, left translations and bisections are in one-to-one correspondence.

Proposition 3.3. To each bisection σ of \mathcal{G} , there is an associated left translation $L_{\sigma} : \mathcal{G} \to G$. Every left translation of \mathcal{G} is of this form for a unique bisection σ .

Proof. Let $\sigma \in \mathscr{B}(G)$. We have to construct a pair of diffeomorphisms $\varphi : \mathcal{G} \to \mathcal{G}$ and $\varphi_{\circ} : M \to M$.

Obviously, let $\varphi_{\circ} := \mathbf{t} \circ \sigma$. This is a diffeomorphism by definition. For each $h \in \mathcal{G}$, define

$$\varphi(h) := \sigma(\mathsf{t}(h)) \cdot h. \tag{38}$$

This is well-defined and obviously smooth. The facts that $t \circ \varphi = \varphi_{\circ} \circ t$ and $s \circ \varphi = s$ are obvious. Its inverse is a smooth map

$$\varphi^{-1}(k) := \sigma(\varphi_{\circ}^{-1}(\mathbf{t}(k)))^{-1} \cdot k, \tag{39}$$

To check that this is well-defined, the target of $\sigma(\varphi_{\circ}^{-1}(t(k)))$ must be t(k). But this is checked easily using the definition of φ_{\circ} . The proof that this is indeed an inverse to φ is straightforward and we leave it as an exercise. Finally, one has $\varphi^m = L_{\sigma(m)}$. Hence (φ, φ_0) is a left translation on \mathcal{G} , henceforth denoted as L_{σ} .

Conversely, let (φ, φ_0) be a left translation. Define $\sigma := \varphi \circ 1$. This is a smooth map. One has immediately obtains the required properties, since

$$\mathbf{s} \circ \boldsymbol{\sigma} = \mathbf{s} \circ \boldsymbol{\varphi} \circ \mathbf{1} = \mathbf{s} \circ \mathbf{1} = \mathbb{1}_M,\tag{40}$$

$$\mathbf{t} \circ \boldsymbol{\sigma} = \mathbf{t} \circ \boldsymbol{\varphi} \circ \mathbf{1} = \boldsymbol{\varphi}_0 \circ \mathbf{t} \circ \mathbf{1} = \boldsymbol{\varphi}_0 \circ \mathbb{1}_M = \boldsymbol{\varphi}_0, \tag{41}$$

and one uses the fact that φ_0 is a diffeomorphism. Hence $\sigma \in \mathscr{B}(G)$. To see that $\varphi = L_{\sigma}$, note that necessarily $\varphi^m = L_{\sigma(m)}$ for each $m \in M$.

Indeed, we know that $\varphi^m = L_{g_m}$ for some $g_m \in \mathcal{G}$. But since $\mathbf{1}_m \in \mathcal{G}^m$, one can write

$$g_m = L_{g_m}(\mathbf{1}_m) = \varphi^m(\mathbf{1}_m) \equiv (\varphi \circ \mathbf{1})(m) = \sigma(m).$$
(42)

For an arbitrary $h \in \mathcal{G}$, one has $h \in \mathcal{G}^{t(h)}$, so one can now write

$$\varphi(h) = \varphi^{\mathsf{t}(h)}(h) = L_{\sigma(\mathsf{t}(h))}(h) = \sigma(\mathsf{t}(h)) \cdot h \equiv L_{\sigma}(h).$$
(43)

Also note that σ was uniquely determined by φ . This finishes the proof.

Proposition 3.4. Left translations form a subgroup of $\text{Diff}(\mathcal{G})$. Consequently, there is a unique group structure induced on $\mathscr{B}(\mathcal{G})$.

Proof. The first claim is easy to check.

Let $\sigma, \sigma' \in \mathscr{B}(\mathcal{G})$. Their product on $\mathscr{B}(\mathcal{G})$ is defined by requirement

$$L_{\sigma\star\sigma'} = L_{\sigma} \circ L_{\sigma'}.\tag{44}$$

By the above proof, one can write $\sigma \star \sigma' = (L_{\sigma} \circ L_{\sigma'}) \circ 1$. By plugging into the formulas for L_{σ} and $L_{\sigma'}$, one immediately obtains the expression

$$(\sigma \star \sigma')(m) = L_{\sigma}(L_{\sigma'}(1_m)) = L_{\sigma}(\sigma'(m)) = \sigma(\mathsf{t}(\sigma'(m))) \cdot \sigma'(m).$$
(45)

The group unit is obviously precisely the object inclusion map $1: M \to \mathcal{G}$ and the group inverse is a bisection σ^{-1} defined by

$$\sigma^{-1}(m) := \sigma((\mathbf{t} \circ \sigma)^{-1}(m))^{-1}.$$
(46)

We can thus write $(L_{\sigma})^{-1} = \sigma^{-1}$. This finishes the proof.

Example 3.5. Let us examine $\mathcal{B}(\mathcal{G})$ for the trivial Lie groupoid $\mathcal{G} = M \times G \times M$.

It is easy to see that the most general $\sigma \in \mathscr{B}(G)$ takes the form $\sigma(m) = (\varphi_{\circ}(m), \mathbf{g}(m), m)$, where $\varphi_{\circ} : M \to M$ is a diffeomorphism and $\mathbf{g} : M \to G$ is a smooth map. If $\sigma'(m) = (\varphi'_0(m), \mathbf{g}'(m), m)$, their product has the form

$$(\sigma \star \sigma')(m) = \sigma(\mathbf{t}(\sigma'(m))) \cdot \sigma'(m) = \sigma(\varphi'_{\circ}(m)) \cdot \sigma'(m)$$

= $(\varphi_0(\varphi'_0(m)), \mathbf{g}(\varphi'_0(m)), \varphi'_0(m)) \cdot (\varphi'_0(m), \mathbf{g}'(m), m)$
= $((\varphi \circ \varphi')(m), \mathbf{g}(\varphi'_0(m)) \cdot \mathbf{g}(m), m).$ (47)

This shows that $\mathscr{B}(\mathcal{G}) \cong \operatorname{Diff}(M) \times C^{\infty}(M, G)$ with the multiplication given by $(\varphi, \mathbf{g}) \star (\varphi', \mathbf{g}') = (\varphi \circ \varphi', (\mathbf{g} \circ \varphi'_{\circ}) \cdot \mathbf{g})$. The group unit is $(\mathbb{1}_M, \mathbf{e})$, where $\mathbf{e}(m) := e$ for all $m \in M$.

Example 3.6. Let $\Phi(E)$ be the frame groupoid. Let us examine the group $\mathscr{B}(\Phi(E))$. We claim that it corresponds to the group of all vector bundle automorphisms of E.

First, suppose $\sigma: M \to \Phi(E)$ be a bisection. We shall define a corresponding vector bundle map $\overline{\sigma}: E \to E$ as follows. Recall that $q: E \to M$. For each $e \in E$, let

$$\overline{\sigma}(e) := [\sigma(q(e))](e) \tag{48}$$

Let $\varphi_{\circ}: M \to M$ be the diffeomorphism defined by σ , that is $\varphi_{\circ} = \mathfrak{t} \circ \sigma$. Then

$$q(\overline{\sigma}(e)) = q([\sigma(q(e))](e)) = \mathsf{t}([\sigma(q(e))]) = \varphi_0(q(e)), \tag{49}$$

that is $\overline{\sigma}$ satisfies $q \circ \overline{\sigma} = \varphi_0 \circ q$. For each $m \in M$, its restriction to the fiber E_m is a linear isomorphism $\sigma(m) \in \text{Iso}(E_m, E_{\varphi_0(m)})$. One only has to argue that it is smooth. We leave that as an exercise.

Conversely, $F: E \to E$ is a smooth vector bundle automorphism over $\varphi_{\circ}: M \to M$. For each $m \in M$, we will produce an element $\sigma(m) \in \Phi(E)$ satisfying $\mathfrak{s}(\sigma(m)) = m$ and $\mathfrak{t}(\sigma(m)) = \varphi_{\circ}(m)$. Obviously, set $\sigma(m) := F_m \in \operatorname{Iso}(E_m, E_{\varphi_0(m)})$. One only has to show that σ so defined is smooth. Again, this is given as an exercise.

It is easy to see that these assignments are inverse to each other and that the group product \star on $\mathscr{B}(\Phi(E))$ corresponds to the composition of vector bundle automorphisms.

Exercise 3.7. Prove the smoothness claims of the previous example. Hint: use suitable local trivialization charts for E.

Example 3.8. Let $\mathcal{G} = G \lt M$ be the action algebroid corresponding to $\theta : G \times M \to M$. Every bisection is thus of the form $\sigma(m) = (\mathbf{g}(m), m)$, where $\mathbf{g} : M \to G$ is smooth.

By definition, $\mathbf{t} \circ \sigma : M \to M$ must be a diffeomorphism. But this means that the map $m \mapsto \mathbf{g}(m) \cdot m$ must be a diffeomorphism of M. We see that

$$\mathscr{B}(\mathcal{G} \leqslant M) \cong \{ \mathbf{g} \in \mathcal{C}^{\infty}(M, G) \mid m \mapsto \mathbf{g}(m) \cdot m \text{ is a diffeomorphism} \}$$
(50)

It is straightforward to see that the product on $\mathscr{B}(\mathcal{G} \leq M)$ can be identified with

$$(\mathbf{g} \star \mathbf{g}')(m) = \mathbf{g}(\mathbf{g}'(m) \cdot m) \cdot \mathbf{g}'(m).$$
(51)

Observe that for every $g \in G$, the constant map $\mathbf{g}(m) \equiv g$ has the required property, since $m \mapsto g \cdot m$ is indeed a diffeomorphism. In other words, G can be viewed as a subgroup of $\mathscr{B}(\mathcal{G} \leq M)$.

Example 3.9. Let $\pi : P \to M$ be a principal *G*-bundle. We claim (without proof) that the following diagram is actually a pullback:

$$P \times P \xrightarrow{\natural} \frac{P \times P}{G}$$

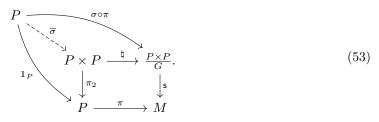
$$\downarrow^{\pi_2} \qquad \qquad \downarrow^{\mathsf{s}}$$

$$P \xrightarrow{\pi} M$$

$$(52)$$

Now, suppose $\sigma: M \to \frac{P \times P}{G}$ is a bisection. In particular, one has $\mathbf{s} \circ \sigma = \mathbb{1}_M$ and $\varphi_\circ := \mathbf{t} \circ \sigma$ is a diffeomorphism.

Now the pair of maps $\sigma \circ \pi : P \to \frac{P \times P}{G}$ and $\mathbb{1}_P : P \to P$ fits into the pullback diagram



There is thus a unique map $\overline{\sigma}: P \to P \times P$, such that $\pi_2 \circ \overline{\sigma} = \mathbb{1}_P$ and $\natural \circ \sigma = \sigma \circ \pi$. The first condition foces $\overline{\sigma}(p) = (\varphi(p), p)$ for some smooth map $\varphi: P \to P$. The second condition shows that necessarily

$$[\varphi(p), p] = \sigma(\pi(p)). \tag{54}$$

For the above equation to hold, one must have $[\varphi(p \cdot g), p \cdot g] = [\varphi(p), p]$ for every $p \in P$ and $g \in G$. But this is equivalent to $\varphi(p \cdot g) = \varphi(p) \cdot g$, that is $\varphi : P \to P$ is a *G*-equivariant map.

Finally, observe that

$$\varphi_{\circ}(\pi(p)) = \mathsf{t}(\sigma(\pi(p))) = \mathsf{t}([\varphi(p), p]) = \pi(\varphi(p)), \tag{55}$$

that is φ fits into the commutative diagram

$$\begin{array}{cccc}
P & \stackrel{\varphi}{\longrightarrow} & P \\
\downarrow_{\pi} & & \downarrow_{\pi} , \\
M & \stackrel{\varphi_{\circ}}{\longrightarrow} & M
\end{array}$$
(56)

that is $(\varphi, \varphi_{\circ})$ is an endomorphism of the principal bundle $\pi : P \to G$. In fact, since φ_{\circ} is a diffeomorphism, φ is automatically a diffeomorphism (prove that!) and thus $(\varphi, \varphi_{\circ})$ is a **principal bundle automorphism** of $\pi : P \to M$.

Conversely, for any principal bundle automorphism $(\varphi, \varphi_{\circ})$, we can use the formula (54) to define a map $\sigma : M \to \frac{P \times P}{G}$ which is well defined since φ is *G*-equivariant and smooth since π is a surjective submersion. It is easy to check that σ is a bisection, such that $\mathfrak{t} \circ \sigma = \varphi_{\circ}$. It follows that $\mathscr{B}(\frac{P \times P}{G})$ is canonically isomorphic to the group of principal *G*-bundle automorphisms of $\pi : P \to M$.

We have the following related definitions.

Definition 3.10. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and let $\sigma \in \mathscr{B}(\mathcal{G})$.

- (i) A right translation by σ is defined by $R_{\sigma}(g) := g \cdot \sigma((\mathfrak{t} \circ \sigma)^{-1}(\mathfrak{s}(g)))$, for all $g \in \mathcal{G}$.
- (ii) A conjugation by σ is defined by $I_{\sigma}(g) := \sigma(\mathsf{t}(g)) \cdot g \cdot \sigma(\mathsf{s}(g))^{-1}$, for all $g \in \mathcal{G}$.

Both maps are diffeomorphism of \mathcal{G} .

There is another equivalent, more intrinsic definition of a bisection, symmetric with respect to the target and source maps.

Proposition 3.11. Let $\sigma \in \mathscr{B}(\mathcal{G})$. Then its image $S := \sigma(M) \subseteq \mathcal{G}$ is a closed embedded submanifold, such that both $s|_S : S \to M$ and $t|_S : S \to M$ are diffeomorphisms.

Conversely, any such submanifold $S \subseteq \mathcal{G}$ is obtained in this way from a unique bisection.

Proof. Since $\mathfrak{s} \circ \sigma = \mathbb{1}_M$, it is easy to see that σ is an injective immersion. Similarly to Proposition 1.7, one proves that it is a closed map, hence a closed embedding. Hence $S := \sigma(M) \subseteq \mathcal{G}$ is a closed embedded submanifold and $\sigma : M \to S$ defines a diffeomorphism. Then $\mathfrak{s}|_S : M \to S$ is its inverse and $\mathfrak{t}|_S : S \to M$ is a diffeomorphism since $\mathfrak{t} \circ \sigma : M \to M$ is a diffeomorphism.

Conversely, suppose $S \subseteq \mathcal{G}$ be a closed embedded submanifold having those properties. Let $\iota: S \to \mathcal{G}$ be the inclusion. Since $\mathbf{s}|_S: S \to M$ is a diffeomorphism, we can define $\sigma := \iota \circ (\mathbf{s}|_S)^{-1} : M \to \mathcal{G}$. But then $\mathbf{s} \circ \sigma = (\mathbf{s} \circ \iota) \circ (\mathbf{s}|_S)^{-1} = \mathbf{s}|_S \circ (\mathbf{s}|_S)^{-1} = \mathbb{1}_M$ and $\mathbf{t} \circ \sigma = (\mathbf{t} \circ \iota) \circ (\mathbf{s}|_S)^{-1} = \mathbf{t}|_S \circ (\mathbf{s}|_S)^{-1} : M \to M$ is a diffeomorphism.

There is no guarantee that the group $\mathscr{B}(\mathcal{G})$ contains anything else then its unit $\mathbf{1}: M \to \mathcal{G}$. Similarly to the space of sections of a fiber bundle, it is often convenient to consider local bisections only.

Definition 3.12. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid. Let $U \subseteq M$ be an open subset.

A local bisection over U is a smooth map $\sigma : U \to M$, such that $\mathbf{s} \circ \sigma = \mathbb{1}_U$ and $\varphi_\circ := \mathbf{t} \circ \sigma : U \to \varphi_\circ(U)$ is a diffeomorphism of U and an open subset $\varphi_\circ(U) \subseteq M$. A set of local bisections of \mathcal{G} over U is denoted as $\mathscr{B}_U(\mathcal{G})$.

The local left translation induced by σ is a diffeomorphism $L_{\sigma} : \mathcal{G}^U \to \mathcal{G}^{\varphi_{\circ}(U)}$ defined by the same formula as for U = M.

It turns out that for every point of a Lie groupoid, there is always a local bisection

Proposition 3.13. For each $g \in \mathcal{G}$, there exists $U \subseteq M$ and a local section $\sigma \in \mathscr{B}_U(\mathcal{G})$, such that $g = \sigma(\mathsf{s}(g))$.

Proof. Let $g \in \mathcal{G}$ be a given point. Let $m := \mathsf{s}(g)$ and $n := \mathsf{t}(g)$. One can always find a linear subspace $I \subseteq T_g \mathcal{G}$, such that

$$T_g \mathcal{G} = T_g(\mathcal{G}_m) \oplus I \equiv \ker(T_g \mathbf{s}) \oplus I,$$

$$T_g \mathcal{G} = T_g(\mathcal{G}^n) \oplus I \equiv \ker(T_g \mathbf{t}) \oplus I.$$
(57)

Since $\mathbf{s} : \mathcal{G} \to M$ is a surjective submersion, there is an open neighborhood U of m and $\sigma : U \to \mathcal{G}$, such that $\mathbf{s} \circ \sigma = \mathbb{1}_U$, and $\sigma(m) = g$ and $(T_m \sigma)(T_m M) = I$. But then $T_m(\mathbf{t} \circ \sigma) : T_m M \to T_n M$ is a linear isomorphism. This means that it is a local diffeomorphism and the claim follows. Exercise 3.14. Prove the technical details. Hint: use local coordinates adapted to a submersion.

Corollary 3.15. For each $m \in M$, the restriction $t_m : \mathcal{G}_m \to M$ has a constant rank.

Proof. Suppose $g, h \in \mathcal{G}_m$. We must argue that $T_g(\mathfrak{t}_m)$ and $T_h(\mathfrak{t}_m)$ have the same rank. Let $k := g \cdot h^{-1}$. By the above proposition, there exists $\sigma \in \mathscr{B}_U(\mathcal{G})$ with $\mathfrak{t}(h) \in U$ and $\sigma(\mathfrak{t}(h)) = k$. The corresponding left translation is a diffeomorphism $L_\sigma : \mathcal{G}^U \to \mathcal{G}^V$, where $V = (\mathfrak{t} \circ \sigma)(U)$. By construction, one has $L_\sigma(h) = \sigma(\mathfrak{t}(h)) \cdot h = k \cdot h = g$.

Since $\mathbf{s} \circ L_{\sigma} = \mathbf{s}$, it restricts to a diffeomorphism $L_{\sigma} : \mathcal{G}_m^U \to \mathcal{G}_m^V$, and $\mathbf{t} \circ L_{\sigma} = (\mathbf{t} \circ \sigma) \circ \mathbf{t}$ gives

$$\mathbf{t}_m \circ L_\sigma = (\mathbf{t} \circ \sigma) \circ t_m. \tag{58}$$

Evaluating the tangent maps thus gives $T_g(t_m) \circ T_h(L_{\sigma}) = T_{t(h)}(t \circ \sigma) \circ T_h(t_m)$. Since both $T_h(L_{\sigma})$ and $T_{t(h)}(t \circ \sigma)$ are linear isomorphisms, this proves the claim.

Corollary 3.16. For each $m, n \in M$, $\mathcal{G}_m^n \subseteq \mathcal{G}$ is a closed embedded submanifold. In particular, $\mathcal{G}_m^m \subseteq \mathcal{G}$ is a Lie group for any $m \in M$.

Proof. For a given $m \in M$, $t_m : \mathcal{G}_m \to M$ has a constant rank. Consequently, the level set $\mathcal{G}_m^n := t_m^{-1}(n)$ is a closed embedded submanifold of \mathcal{G}_m , hence of \mathcal{G} , see Theorem 5.12 in [1]. If \mathcal{G}_m^m is a closed embedded submanifold of \mathcal{G} , it follows that $\mathcal{G}_m^m \times \mathcal{G}_m^m$ is a closed embedded submanifold of \mathcal{G} .

4 Actions

Lie groups often arise through their actions on manifolds. Similarly, Lie groupoids act on the fibered spaces over the base M. Imagine $f: N \to M$ is a fiber bundle. For each $m \in M$, we can "act" on the elements of the fiber $N_m := f^{-1}(m)$ by arrows $g \in \mathcal{G}$, which "start at" m, that is s(g) = m. We obtain an element $g \triangleright n$ at the fiber over the end of g, that is $f(g \triangleright n) = t(g)$. This leads to the following definition:

Definition 4.1. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid, and let $f : N \to M$ be a smooth map. Since $s : \mathcal{G} \to M$ is a surjective submersion, the fibered product

$$\mathcal{G} * N := \{ (g, n) \in \mathcal{G} \times N \mid \mathsf{s}(g) = f(n) \}$$
(59)

is a closed embedded submanifold. An **action of** \mathcal{G} **on** $f: N \to M$ is a smooth map $\theta: \mathcal{G}*N \to N$ satisfying the following axiom. We write $g \triangleright n := \theta(g, n)$.

- (i) $f(g \triangleright n) = \mathsf{t}(g)$.
- (ii) $g \triangleright (h \triangleright n) = (g \cdot h) \triangleright n$ for all $(g, h) \in \mathcal{G} * \mathcal{G}$ and $n \in N$, such that $(h, n) \in \mathcal{G} * N$.
- (iii) $\mathbf{1}_{f(n)} \triangleright n = n$ for all $n \in N$. Note that $(\mathbf{1}_{f(n)}, n) \in \mathcal{G} * N$ since $s(\mathbf{1}_{f(n)}) = f(n)$.

For a given $n \in N$, we have $(g, n) \in \mathcal{G} * N$ whenever s(g) = f(n), that is $g \in \mathcal{G}_{f(n)}$. The orbit of the point $n \in N$ is then defined as a subset

$$\mathcal{G}[n] := \{g \triangleright n \mid g \in \mathcal{G}_{f(n)}\} \subseteq N.$$
(60)

Exercise 4.2. Prove the claim about $\mathcal{G} * N$. Hint: learn about the transversality.

Proposition 4.3. Suppose $f : N \to M$ in the above definition is a surjective submersion.

Then for every $m, m' \in M$, for every $g \in \mathcal{G}_m^{m'}$, the map $\theta_g : N_m \to N_{m'}$ is a diffeomorphism.

Proof. One needs the assumption to ensure that the fibers N_m are closed embedded submanifolds of N. The rest is clear.

Definition 4.4. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and let $\theta_1 : \mathcal{G} * N_1 \rightarrow N_1$ and $\theta_2 : \mathcal{G} * N_2 \rightarrow N_2$ be actions of \mathcal{G} over $f_1 : N \rightarrow M$ and $f_2 : N \rightarrow M$, respectively. A smooth map $\varphi : N_1 \rightarrow N_2$ is \mathcal{G} -equivariant with respect to θ_1 and θ_2 , if $f_2 \circ \varphi = f_1$ and

$$\varphi(g \triangleright_1 n) = g \triangleright_2 \varphi(n), \tag{61}$$

for all $(g, n) \in \mathcal{G} * N_1$.

Example 4.5. Let $\pi_1 : M \times K \to M$ be the projection with an arbitrary manifold K. Observe that the fiber product of \mathcal{G} and this space gives

$$\mathcal{G} * (M \times K) = \{ (g, (\mathbf{s}(g), k)) \ (g, k) \in \mathcal{G} \times K \} \cong \mathcal{G} \times K.$$
(62)

The **trivial action** of \mathcal{G} over π_1 is now defined as $\theta(g, (\mathbf{s}(g), k)) := (\mathbf{t}(g), k)$, for all $(g, k) \in \mathcal{G} \times F$. For any $g \in \mathcal{G}$, the induced map $\theta_g : F \to F$ is just the identity.

For each $(m,k) \in M \times K$, the corresponding orbit is

$$\mathcal{G}[(m,k)] = \{g \triangleright (m,k) \mid g \in \mathcal{G}_m = \{(\mathsf{t}(g),k) \mid g \in \mathcal{G}_m\} = \mathsf{t}(\mathcal{G}_m) \times \{k\}.$$
(63)

Before the formulation of the next example, we will need the following structure:

Proposition 4.6. Let $\pi : P \to M$ be a principal *G*-bundle.

Let $\theta: G \times N \to N$ be a Lie group action of G on a manifold N. Define a right action of G on $P \times N$ as $(p, n) \cdot g := (p \cdot g, g^{-1} \cdot n)$ for all $(p, n) \in P \times N$ and $g \in G$.

Then there is a unique fiber bundle structure $\varpi : \frac{P \times N}{G} \to N$ making the quotient map $\natural : P \times N \to \frac{P \times N}{G}$ into a surjective submersion. Moreover, the diagram

$$P \times N \xrightarrow{\natural} \frac{P \times N}{G}$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\varpi}$$

$$P \xrightarrow{\pi} M$$
(64)

is a pullback in the category of smooth manifolds. $P \times_{\theta} N := \frac{P \times N}{G}$ is called the **associated fibre** bundle to P and the action θ .

Proof. Let $\langle p,n \rangle \in P \times_{\theta} N$ denote the equivalence class of (p,n). To make (64) commutative, we must set

$$\varpi(\langle p, n \rangle) := \pi(p). \tag{65}$$

The topology and a smooth structure on the total space $P \times_{\theta} N$ is induced by the local trivialization. Let $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in I}$ be a *G*-equivariant local trivialization for *P*. We have to produce bijections $\mu_{\alpha} : U_{\alpha} \times N \to \overline{\omega}^{-1}(U_{\alpha})$. Let

$$\mu_{\alpha}(m,n) := \langle \phi_{\alpha}(m,e), n \rangle.$$
(66)

It is easy to see that $\varphi \circ \mu_{\alpha} = \pi_1$. Conversely, recall that for each $\alpha \in I$, there is a *G*-equivariant smooth map $\mathbf{g}_{\alpha} : \pi^{-1}(U_{\alpha}) \to G$ defined by $\mathbf{g}_{\alpha} := \pi_2 \circ \phi_{\alpha}^{-1}$. For each $\langle p, n \rangle \in \varpi^{-1}(U_{\alpha})$, let

$$\mu_{\alpha}^{-1}\langle p,n\rangle := (\pi(p), \mathbf{g}_{\alpha}(p) \cdot n).$$
(67)

This well-defined, since $\mathbf{g}_{\alpha}(p \cdot g) = \mathbf{g}_{\alpha}(p) \cdot g$. It is easy to check that μ_{α} and μ_{α}^{-1} are inverse to each other. One only has to verify that the transition maps are smooth. Recall that the transition maps of P are given by smooth maps $g_{\alpha\beta} : U_{\alpha\beta} \to G$, such that $(\pi_2 \circ \phi_{\alpha}^{-1} \circ \phi_{\beta})(m,g) = g_{\alpha\beta}(m) \cdot g$. It is then a straightforward calculation that

$$[h_{\alpha\beta}(m)](n) := (\pi_2 \circ \mu_{\alpha}^{-1} \circ \mu_{\beta})(m, n) = g_{\alpha\beta}(m) \cdot n.$$
(68)

One thus has $h_{\alpha\beta}(m) = \theta_{g_{\alpha\beta}(m)} \in \text{Diff}(N)$ and for each $n \in N$, the map $m \mapsto [h_{\alpha\beta}(m)](n)$ is smooth from $U_{\alpha\beta}$ to N. This gives us a topology and a smooth structure on $P \times_{\theta} N$ making $\varpi : P \times_{\theta} N \to M$ into a fiber bundle with a typical fiber N and a local trivialization $\{(U_{\alpha}, \mu_{\alpha})\}_{\alpha \in I}$.

Let us argue that $\natural : P \times N \to P \times_{\theta} N$ becomes a smooth surjective submersion. This also fixes the topology and a smooth structure uniquely. Since $\natural(\pi^{-1}(U_{\alpha}) \subseteq \varpi^{-1}(U_{\alpha}))$, we can form the composition

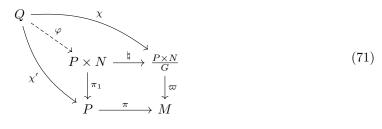
$$\mu_{\alpha}^{-1} \circ \natural \circ (\phi_{\alpha} \times \mathbb{1}_{N}) : (U_{\alpha} \times G) \times N \to U_{\alpha} \times N.$$
(69)

It suffices to prove that this is a smooth surjective submersion for each $\alpha \in I$. But one finds

$$[\mu_{\alpha}^{-1} \circ \natural \circ (\phi_{\alpha} \times \mathbb{1}_{N})]((m,g),n) = (m,g \cdot n).$$
(70)

The claim follows from the fact that $\theta: G \times M \to M$ is a smooth surjective submersion.

It remains to prove that the diagram is in fact a pullback. Let Q be any manifold together with a pair of maps $\chi : Q \to P \times_{\theta} N$ and $\chi' : Q \to P$, satisfying $\varpi \circ \chi = \pi \circ \chi'$. We must construct a unique map $\varphi : Q \to P \times N$ fitting into the commutative diagram



The commutativity of the bottom-left triangle forces $\varphi(q) = (\chi'(q), \varphi'(q))$ for some smooth map $\varphi' : Q \to N$. The other triangle forces $\langle \chi'(q), \varphi'(q) \rangle = \chi(q)$ for all $q \in Q$. But an element representing a given class $\chi(q)$ is uniquely determined once we fix the element $\chi'(q)$. This shows that for each $q \in Q$, there is a unique element $\varphi'(q) \in N$ with this property, whence φ' exists and its uniquely determined.

We only have to prove the smoothness. Let us consider the open subset $V_{\alpha} := \chi^{-1}(\varpi^{-1}(U_{\alpha}))$. For each $q \in V_{\alpha}$, one can write $\chi(q) = \mu_{\alpha}(\pi(\chi'(q)), \hat{\chi}_{\alpha}(q))$, where $\hat{\chi}_{\alpha} : V_{\alpha} \to N$ is smooth. Similarly, one has $\chi'(V_{\alpha}) \subseteq \pi^{-1}(U_{\alpha})$, so $\chi'(q) = \phi_{\alpha}(\pi(\chi'(q)), \hat{\mathbf{g}}_{\alpha}(q))$ for a smooth $\hat{\mathbf{g}}_{\alpha} : V_{\alpha} \to G$.

We claim that necessarily

$$\varphi(q) = (\phi_{\alpha}(\pi(\chi'(q)), \hat{\mathbf{g}}_{\alpha}(q)), \hat{\mathbf{g}}_{\alpha}^{-1}(q) \cdot \hat{\chi}_{\alpha}(q)),$$
(72)

for each $q \in V_{\alpha}$. By applying \natural on both sides, one obtains

$$\natural(\varphi(q)) = \mu_{\alpha} \big(\pi(q), \hat{\mathbf{g}}_{\alpha}(q) \cdot (\hat{\mathbf{g}}_{\alpha}^{-1}(q) \cdot \hat{\chi}_{\alpha}(q)) \big) = \mu_{\alpha}(\pi(q), \hat{\chi}_{\alpha}(q)) = \chi(q), \tag{73}$$

But the formula (72) shows that the restriction of φ to V_{α} is smooth. In fact, one has $\varphi'(q) = \hat{\mathbf{g}}_{\alpha}^{-1}(q) \cdot \hat{\chi}_{\alpha}(q)$ for all $q \in V_{\alpha}$. Since $\{V_{\alpha}\}_{\alpha \in I}$ covers Q, this proves the claim.

Exercise 4.7. (i) Show that sections of $P \times_{\theta} N$ are in one-to-one correspondence with *G*-equivariant smooth maps $\varphi : P \to N$.

(ii) Use the new knowledge to argue that (52) is a pullback.

Example 4.8. Let $\pi : P \to M$ be a principal bundle and let $\varphi : P \times_{\theta} N \to M$ be the fiber bundle associated to the left action θ . Write $\mathcal{G} := \frac{P \times P}{G}$ and $E := P \times_{\theta} N$.

Elements of $\mathcal{G} * E$ are pairs $([p,q], \langle r,n \rangle) \in \mathcal{G} \times E$ with $s([p,q]) = \varphi(\langle r,n \rangle)$. But this means that $\pi(q) = \pi(r)$. One can thus arrange those so that r = q and define

$$[p,q] \triangleright \langle q,n \rangle := \langle p,n \rangle. \tag{74}$$

To prove that this action is smooth, let $\natural : P \times P \to \mathcal{G}$ and $\natural' : P \times N \to E$ denote the quotient maps. Then observe that the corresponding map $\Theta : \mathcal{G} * E \to E$ fits into

where $\hat{\Theta}(p,q,r,n) := (p, \delta(q,r)^{-1} \cdot n)$ is smooth. Checking the action axioms is easy, since

- (i) $\varpi([p,q] \triangleright \langle q,n \rangle) = \pi(p) = t([p,q]),$
- (ii) $[p,q] \triangleright ([q,r] \triangleright \langle r,n \rangle) = [p,q] \triangleright \langle q,n \rangle = \langle p,n \rangle = [p,r] \triangleright \langle r,n \rangle = ([p,q] \cdot [q,r]) \triangleright \langle r,n \rangle.$
- (iii) $1_{\varpi(\langle p,n\rangle)} \triangleright \langle p,n\rangle = 1_{\pi(p)} \triangleright \langle p,n\rangle = [p,p] \triangleright \langle p,n\rangle = \langle p,n\rangle.$

Now, to any Lie groupoid action, there is also an associated Lie groupoid.

Proposition 4.9. Let $\theta : \mathcal{G} * N \to N$ be a Lie groupoid action of $\mathcal{G} \rightrightarrows M$ over $f : N \to M$. Then there is a canonical Lie groupoid with the base N on $\mathcal{G} * N$, defined as follows:

- (i) The source map is s'(g,n) = n; The target map is $t'(g,n) := g \triangleright n$.
- (ii) The multiplication is $(g, h \triangleright n) \cdot (h, n) := (g, n)$.
- (iii) The object inclusion map is $\mathbf{1}'_n := (\mathbf{1}_{f(n)}, n)$.

The resulting Lie groupoid is denoted as $\mathcal{G} \leq N$ and called the **action Lie groupoid associated** to the action θ of \mathcal{G} on $f: N \to M$.

Proof. Recall that fiber product $\mathcal{G} * N$ is a pullback, fitting into the commutative square

where $\pi'_{1,2}$ are just the restrictions of the respective projections. Now, note that in fact $s' \equiv \pi'_2$. It is a general fact that whenever s is a surjective submersion, then so is π'_2 .

Next, note that $t' = \theta$. To prove that θ is a surjective submersion, let us consider the groupoid inverse $i : \mathcal{G} \to G$ and observe that we have a smooth map $(i \circ \pi'_1, \theta) : \mathcal{G} * N \to \mathcal{G} * N$. Indeed, it maps each $(g, n) \in \mathcal{G} * N$ to $(g^{-1}, \theta(g, n))$, which satisfies $f(\theta(g, n)) = t(g) = s(g^{-1})$, so it is indeed in $\mathcal{G} * N$. This map is in fact a diffeomorphism, since it is its own inverse.

The action axioms imply the commutativity of the diagram

Since π'_2 is a surjective submersion and the horizontal map is a diffeomorphism, θ must be a surjective submersion. Finally, it follows that the multiplication $\mu' : (\mathcal{G} * N) * (\mathcal{G} * N) \to (\mathcal{G} * N)$ fits into the diagram

$$(\mathcal{G} * N) * (\mathcal{G} * N) \xrightarrow{\mu'} \mathcal{G} * N$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad, \qquad (78)$$

$$(\mathcal{G} * N) \times (\mathcal{G} * N) \xrightarrow{\pi'_1 \times \pi'_2} \mathcal{G} \times N$$

where the vertical maps are embeddings of the respective fiber products. Finally, the object inclusion map $\mathbf{1}': N \to \mathcal{G} * N$ fits into the commutative diagram

$$\begin{array}{cccc}
\mathcal{G} * N \\
\stackrel{1'}{\longrightarrow} & \downarrow \\
N \xrightarrow[(1\circ\pi,\mathbb{I}_N)]{} \mathcal{G} \times N
\end{array}$$
(79)

That the described operations make $\mathcal{G} \leq N$ into a Lie groupoid is now easy to check.

Example 4.10. Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid. Its multiplication $\mu : \mathcal{G} * \mathcal{G} \rightarrow \mathcal{G}$ can be viewed as a left action of \mathcal{G} on $t : \mathcal{G} \rightarrow M$.

The corresponding action Lie groupoid $\mathcal{G} < \mathcal{G}$ is given by s'(g,h) = h, $s'(g,h) = g \cdot h$ and $(g,h \cdot \ell) \cdot (h,\ell) = (g,\ell)$.

References

[1] J. Lee, Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, 2012.