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1 Lie groupoids

Let us start this lecture by an example.

Example 1.1. Let M be smooth manifold and let G be a Lie group. Let us consider

G := M ×G×M. (1)

We have two canonical maps s : G → M and t : G → M defined by

s(m, g,m′) := m′, t(m, g,m′) := m. (2)

Both are smooth surjective submersions. In particular, one can consider their fibered product

G ∗ G := {((m, g,m′), (n, h, n′)) ∈ G × G | s(m, g,m′) = t(n, h, n′)}
= {((m, g,m′), (m′, h, n′)) ∈ G × G | m,m′, n′ ∈ M g, h ∈ G}.

(3)

We can define a partial multiplication map µ : G ∗ G → G by the formula

µ((m, g,m′), (m′, h, n′)) ≡ (m, g,m′) · (m′, h, n) := (m, gh, n′). (4)

This map is obviously smooth. Finally, for each m ∈ M , we have the element 1m = (m, e,m),
where e ∈ G is the group unit. It follows that

1m · (m, g,m′) = (m, g,m′), (m, g,m′) · 1m′ = (m, g,m′), (5)

and to every (m, g,m′) ∈ G, there is a unique element (m, g,m′)−1 := (m′, g−1,m), such that

(m, g,m′) · (m, g,m′)−1 = 1m, (m, g,m′)−1 ◦ (m, g,m) = 1m′ . (6)

Note that the assignment m 7→ 1m can be viewed as a smooth map 1 : M → G.

This simple example gives the intuition to understand the following definition:

Definition 1.2. Let us consider the following data:

(i) a pair of smooth manifolds G and M ;

(ii) a pair of smooth surjective submersions s, t : G → M, where s is called the source map
and t is called the target map;
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(iii) a smooth map µ : G ∗ G → G, where G ∗ G is the fibered product over a pair of maps (s, t).

Then (G,M, s, t, µ) is called a Lie groupoid G over the base M , if it satisfies the following
axioms. We assume that each identity holds for all elements of G, such that everything is well
defined. One also uses the short-hand notation g · h := µ(g, h).

(i) One has s(g · h) = s(h) and t(g · h) = t(g).

(ii) µ is associative, that is g · (h · k) = (g · h) · k.

(iii) For each m ∈ M , there exists an element 1m ∈ G, such that s(1m) = t(1m) = m and

g · 1s(g) = g, 1t(h) · h = h. (7)

Moreover, the formula 1(m) := 1m has to define a smooth map 1 : M → G.

(iv) For each g ∈ G, there exists g−1 ∈ G with s(g−1) = t(g) and t(g−1) = s(g), such that

g · g−1 = 1t(g), g−1 · g = 1s(g). (8)

One usually writes G ⇒ M . The set G is called the arrows of G ⇒ M . µ is called the partial
multiplication, 1 is the object inclusion map, g−1 is called the inverse arrow of g.

Exercise 1.3. Note that neither 1 : M → G and i : G → G defined as i(g) := g−1 are not part
of the data (G,M, s, t, µ). This is because if they exist, they are unique. Prove this.

Example 1.4. The structure in Example 1.1 is called a trivial Lie groupoid. It contains two
special cases:

(a) If G = {e}, we have G ∼= M ×M and M ×M ⇒ M is called the product Lie groupoid.

(b) If M = {∗}, we have G ∼= G and G ⇒ {∗} is just a Lie group.

Remark 1.5. Lie groupoid can be viewed as a small category whose set of objects is M , its set
of arrows if G. Axioms (i)− (iii) are just a reformulation of category axioms. The axiom (iv) is
equivalent to it being a groupoid, that is a category with invertible arrows.

Definition 1.6. For each m,n ∈ M , we define the following subsets of G:

(i) The s-fiber over m is a set Gm := {g ∈ G | s(g) = m};

(ii) The t-fiber over n is a set Gn := {g ∈ G | t(g) = n};

(iii) Gn
m := Gm ∩ Gn. In particular, Gm

m is called the isotropy group at m.

All of those subsets are actually closed embedded submanifolds of G. For Gn
m, the statement is

non-trivial and it will be proved later.

They are some immediate consequences of the definition.

Proposition 1.7. Let G ⇒ M be a Lie groupoid. Then the following facts can be deduced:

(i) The object inclusion map 1 : M → G is a closed embedding. In particular 1(M) ⊆ G is a
closed embedded submanifold diffeomorphic to M .

2



(ii) The inversion map i : G → G is a diffeomorphism.

Exercise 1.8. Prove the preceding proposition. Here are some hints

(i) Use the fact that t ◦ i = 1M to argue that i is an injective immersion. Then prove that it
is is a closed map. Every closed injective immersion is a closed embedding.

(ii) Define a smooth map θ : G ∗ G → G ×t G as θ(g, h) = (g, g · h). Find its inverse to prove
that θ is a bijection. Use a global rank theorem to prove that θ is a diffeomorphism.

Then observe that
i = π2 ◦ θ−1 ◦ (1G , 1 ◦ t) (9)

Finally, show that i−1 = i to finish the proof.

Let us continue with more examples:

Example 1.9. Let θ : G×M → M be a left action of G on M . Let G := G×M .

(i) The source map is s(g,m) := m. This is a smooth surjective submersion.

(ii) The target map is t(g,m) := g ·m, that is t := θ. It is surjective as θ(e,m) = m. It is a
submersion as its restriction to a fiber {g} ×M is a diffeomorphism.

(iii) Note that ((g,m), (h, n)) ∈ G ∗ G, if m = h · n. We define the partial multiplication as

(g,m) · (h, n) := (gh, n) (10)

It is smooth as it just a restriction of a smooth map to the submanifold G ∗ G. Then

s((g,m) · (h, n)) = s(gh, n) = n = s(h, n), (11)

t((g,m) · (h, n)) = t(gh, n) = (gh) · n = g · (h · n) = g ·m = t(g,m). (12)

The associativity follows from the one of G.

(iv) The object inclusion map is 1(m) = (e,m) and the inverse is (g,m)−1 = (g−1, g ·m).

One writes G = G⋖M and calls G⋖M ⇒ M the action Lie groupoid corresponding to the
action θ.

Example 1.10. Let π : P → M be a principal G-bundle with the right action R : P ×G → P .

There is an induced action on P × P , namely set (p, q) · g := (p · g, q · g). This action is free
an proper. Consequently, there is unique topology and smooth structure on the quotient

G :=
P × P

G
, (13)

making the canonical quotient map ♮ : P × P → G into a surjective submersion. Let us write
[p, q] := ♮(p, q). By design, we thus have [p · g, q · g] = [p, g].

(i) Let s([p, q]) := π(q) an t([p, q]) := π(p). They are obviously well-defined and surjective.
Since s ◦ ♮ = π ◦ π2 and t ◦ ♮ = π ◦ π1, they are smooth surjective submersions.
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(ii) Define a map δ : P ×π P → P to satisfy the formula δ(p · g, p) := g. Such a map is unique
and it is smooth. Since for ([p, q], [p′, q′]) ∈ G ∗ G, one has (q, p′) ∈ P ×π P , one can define

[p, q] · [p′, q′] := [p, q′ · δ(q, p′)]. (14)

Now, one has

s([p, q′ · δ(q, p′)]) = π(q′ · δ(q, p′)) = π(a′) = s([p′, q′]), (15)

t([p, q′ · δ(q, p′)]) = π(p) = t([p, q]). (16)

Note that the associativity is non-trivial, it boils down to the fact that

δ(p · h, q) = δ(p, q) · h, (17)

for all (p, q) ∈ P ×π P and h ∈ G. We leave the smoothness of µ as an excercise.

(iii) For each m ∈ M , fix and arbitrary p ∈ π−1(M). We declare 1m := [p, p]. It is easy to see
that this is well-defined. Observe that for each [p′, q′] ∈ Gm, one

1m · [p′, q′] = [p′, p′] · [p′, q′] = [p′, q′ · δ(p′, p′)] = [p′, q′ · e] = [p′, q′]. (18)

The proof that for any [p, q] ∈ Gm, onhe has [p, q] · 1m = [p, q] is analogous.

(iv) The inverse is easily seen to be [p, q]−1 = [q, p].

Lie algebroid P×P
G ⇒ M is called the gauge groupoid corresponding to π : P → M .

Exercise 1.11. (i) Prove that the action on P × P is proper.

Recall that the right action θ : N ×G → N is proper, if the maps (n, g) 7→ (n, θ(n, g)) is a
proper map. This is equivalent to the following statement: Suppose we are given sequences
{nk}∞k=1 and {gk}∞k=1 in N and G, respectively. Then if both {nk}∞k=1 and {nk · gk}∞k=1

converge in N , some subsequence of {gk}∞k=1 must converge in G.

Finally, observe that if {pk}∞k=1 converges to p ∈ P , for large enough k, the terms of the
sequence end up in π−1(U) for some open subset of U containing π(p), such that P ∼= U×G.
But since G acts along the fibers, the same is true for {pk · gk}∞k=1. Modify this argument
for P × P and work locally to prove that the action is proper.

(ii) Prove that δ : P ×π P → G is smooth.

(iii) Prove that µ : G ∗ G → G is smooth. Hint: prove that a smooth map ♮ × ♮ restricts to a
surjective submersion

♮× ♮ : P × (P ×π P )× P → G ∗ G (19)

The partial multiplication µ : G ∗ G then fits into the commutative diagram

P × (P ×π P )× P P × P

G ∗ G G

♮×♮

µ̂

♮

µ

, (20)

where µ̂(p, q, p′, q′) = (p, q′ · δ(q, p′)) is obviously smooth.
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(iv) Prove that 1 : M → G is smooth. Hint: observe that 1 fits into the commutative diagram

P P × P

M G

π

∆

♮

1

(21)

Example 1.12. Let M be an arbitrary manifold. Let I = [0, 1] and let G := Π(M) be a set of
homotopy classes of continuous curves γ : I → M .

(i) One sets s([γ]) := γ(0) and t([γ]) = γ(1).

(ii) The partial multiplication is just the usual concatenation of curves, that is [γ]·[γ′] = [γ∗γ′],
where γ ∗ γ′ is defined as γ′ on [0, 1

2 ] followed by γ on [ 12 , 1]. It is a well-known fact that it
has all the properties required of the partial multiplication.

(iii) One has 1m := [em], where em : I → M is a constant curve valued at m. Again, it is a
standard argument to see that 1m works as a unit element at m.

(iv) Finally, one has [γ]−1 = [γ−1], where γ−1(t) := γ(1− t).

Π(M) ⇒ M is called the fundamental groupoid of M .

One has to introduce a topology and a smooth structure on Π(M). This can be done in a
rather interesting indirect way. Suppose M is connected.

1) There exists a universal covering space π : M̃ → M . Fix m0 ∈ M . Then M̃ is defined as a

set of all homotopy classes of all continuous curves starting from m0. For each [γ] ∈ M̃ , one

has π[γ] := γ(1). There is a topology and a smooth structure on M̃ making π into a smooth
covering.

2) The fundamental group π1(M,m0) is at most countable, it thus forms a discrete Lie group.

There is a canonical right action of π1(M,m0) on M̃ , namely [γ] · [ω] := [γ ∗ ω].

One can show that this makes π : M̃ → M into a principal π1(M,m0)-bundle.

3) There is a canonical bijection Ψ : Π(M) → M̃×M̃
π1(M,m0)

. Let [γ] ∈ Π(M). Let x := γ(0) and

y := γ(1). Since M is connected, there exist a curve γ0 : I → M connecting m0 and x. Then
γ ∗ γ0 connects m0 and y. One defines

Ψ([γ]) := [[γ ∗ γ0], [γ0], ]. (22)

With some work, one can show that Ψ is both injective and surjective, it intertwines both
the source and target maps, and it is compatible with both partial multiplications.

We can thus use Ψ to declare the topology and a smooth structure on Π(M), making it into
a Lie groupoid.

2 Morphisms, local triviality

Definition 2.1. Let (G,M, s, t, µ) and (H, N, s′, t′, µ′) be a pair of Lie groupoids. A morphism
of Lie groupids is a pair of smooth maps (F, f), where F : G → H and f : M → N , such that
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(i) s′ ◦ F = f ◦ s and t′ ◦ F = f ◦ t;

(ii) F (g) ·F (h) = F (g ·h) for all (g, h) ∈ G ∗G; Note that (i) ensures that (F (g), F (h)) ∈ H∗H.

We say that F : G → H is a LG morphism over f . If M = N and f = 1M , we say that F is
a LG morphism over M .

Exercise 2.2. Let F : G → H be a LG morphism over f .

(i) For each m ∈ M , one has F (1m) = 1f(m).

(ii) One has F (g−1) = F (g)−1 for each g ∈ G.

(iii) f is in fact completely determined by F , since it fits into the diagram

G H

M N

F

1

f

1′ . (23)

In fact, if F is smooth, f is automatically smooth.

(iv) Lie groupoids and their morphisms form a category.

Example 2.3. Let G ⇒ M be any groupoid. Let χ : G → M ×M be defined as

χ(g) := (t(g), s(g)). (24)

Then χ is a morphism of G and the pair groupoid M ×M called the anchor of G.

Example 2.4. Let q : E → M be a vector bundle over M . For each m,n ∈ M , let

Φn
m(E) := Iso(Em, En) (25)

Let Φ(E) =
⊔

m,n Φ
n
m(E). For each φ ∈ Φn

m(E), define s(φ) = m and t(φ) = n.

The partial multiplication is simply a composition of maps, 1m = 1Em
and i(φ) = φ−1.

One only has to define a topology and a smooth structure on Φ(E). This is done as follows.
For all open subsets U, V ⊆ M , let ΦV

U (E) := s−1(U) ∩ t−1(V ). Let {(Uα, ϕα)}α∈I be a local
trivialization for E. Without the loss of generality, we may assume that we also have an atlas
{(Uα, να)}α∈I for M , that is να : Uα → Ûα ⊆ Rn.

For each α, β ∈ I, one produces a bijection

Ψαβ : Φ
Uβ

Uα
(E) → Ûβ ×GL(k,R)× Ûα (26)

as follows. For any φ ∈ Φ
Uβ

Uα
(E), let

Ψαβ(φ) :=
(
νβ(t(φ)), ϕ

−1
β,t(φ) ◦ φ ◦ ϕα,s(φ), να(s(φ))

)
. (27)

It is not difficult to find its inverse, since one finds.

Φ−1
αβ(y,A, x) = ϕβ,ν−1

β (y) ◦A ◦ ϕ−1

α,ν−1
α (x)

∈ Iso(Eν−1
β (y), Eν−1

α (x)). (28)

{ΦUβ

Uα
(E)}α,β∈I is an cover of Φ(E). Since GL(k,R) ⊆ Rk×k is an open subset, we can now define

a topology and a smooth structure on Φ by declaring {(ΦUβ

Uα
,Ψαβ}α,β∈I into a smooth atlas.

It is then not difficult to prove that Φ(E) ⇒ M forms a Lie groupoid called the frame
groupoid of E.
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Exercise 2.5. Finish some technical details in the above example.

(i) Calculate the transition maps of the above atlas and prove that they are smooth

(ii) Prove that s, t and µ all have the required properties. Hint: locally, everything boils down
to the trivial Lie groupoid.

Example 2.6. The frame groupoid Φ(E) is in fact isomorphic to a gauge groupoid of the frame
bundle π : Fr(E) → M .

Let us only construct a mapping from Φ(E) to the gauge groupoid. For any φ ∈ Φ(E), let
us pick an arbitrary basis q = (qµ)

k
µ=1 of Es(φ). Then p := (φ(qµ))

k
µ=1 is a basis of Et(φ). Let

F (φ) := [p, q] ∈ Φ. (29)

It is easy to see that F is well-defined, since if q′ := q ·A is any other basis, then the induced
basis of Et(φ) is p′ = p · A, so [p′, q′] = [p, q]. Since s′(F (φ)) = s(φ) and t′(F (φ)) = t(φ), the
underlying map is 1M . We proof of the smoothness of F is a straighforward exercise.

Definition 2.7. One says that a Lie groupoid G ⇒ M is transitive, if the anchor map χ : G →
M ×M is surjective.

It turns out that the set of arrows of any transitive Lie groupoid is necessarily bijective to
the one of a trivial Lie groupoid.

Lemma 2.8. For any p ∈ M , the set G is bijective to M × Gp
p ×M .

Proof. Pick any reference point p ∈ M . It follows that the restriction tp : Gp → M remains
surjective. There is thus a map σ : M → Gp, such that tp ◦ σ = 1M .

Now, define F : M × Gp
p ×M → G as

F (n, g,m) := σ(n) · g · σ(m)−1. (30)

This defines a bijection. Indeed, for any g ∈ G, define

F−1(g) :=
(
t(g), σ(t(g))−1 · g · σ(s(g)), s(g)

)
. (31)

Note that the middle term is indeed in Gp
p , since σ(s(g)) ∈ Gs(g)

p and σ(t(g))−1 ∈ Gp
t(g), so the

multiplication is well-defined and the results in Gp
p . The prove that inverse of F is easy. ■

Note that if σ is smooth, F is also smooth and defines a LG isomorphism of G andM×Gp
p×M .

However, in general case, such a global smooth σ may not exist. We cannot ensure this globally.
However, there is a notion suitable for smooth setting.

Definition 2.9. One says that a Lie groupoid G ⇒ M is locally trivial, if its anchor χ : G →
M ×M is a smooth surjective submersion.

Example 2.10. Most of Lie groupoids we have already met are (at least in some cases) locally
trivial.

(i) A trivial Lie groupoid is locally trivial.
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(ii) An action Lie groupoid G ⋖M is locally trivial, iff θ : G ×M → M is transitive. Indeed,
one has χ(g,m) = (θ(g,m),m). This map is surjective, iff θ is a transitive action. It is easy
to see that this is always a submersion.

(iii) For any principal G-bundle π : P → M , the corresponding gauge groupoid is locally trivial.
This is because the anchor fits into the commutative diagram

P × P

P×P
G M ×M

♮
π×π

χ

. (32)

Since π × π is a surjective submersion, so is χ. In particular, Π(M) and Φ(E) are locally
trivial.

Let us justify the name ”locally trivial”. Observe that for any open subset U ⊆ M , the subset
GU
U = s−1(U) ∩ t−1(U) is open in G. It follows that all structure maps of a Lie groupoid can be

restricted and one obtain a restricted Lie groupoid GU
U ⇒ U . First, let us make a following

important observation.

Proposition 2.11. Let G ⇒ M be a locally trivial Lie groupoid.

Then for each p ∈ M , Gp
p is a closed embedded submanifold of G and with respect to the

restriction of µ to Gp
p , it forms a Lie group.

Proof. Observe that Gp
p = χ−1(p). Since χ is a surjective submersion, Gp

p is a closed embedded
submanifold. Moreover, notice that Gp

p × Gp
p ⊆ G ∗ G is also a closed embedded submanifold,

so µ restricts to a smooth map µp : Gp
p × Gp

p → Gp
p . The fact that (Gp

p , µp) forms a group is
straightforward. ■

Proposition 2.12. Let G ⇒ M be a locally trivial Lie groupoid.

Then for every p ∈ M , there is an open neighborhood U of p, such that a restricted Lie
groupoid GU

U is isomorphic to the trivial Lie groupoid U × Gp
p × U over U .

Proof. Let p ∈ M be an arbitrary but fixed point. Let us argue that tp : Gp → M is also a
surjective submersion. To do so, observe that σp : M → M ×M defined by σp(n) = (n, p) is a
closed embedding. Let jp : Gp → G be the embedding. Then tp fits into the pullback diagram

Gp M

G M ×M

jp

tp

σp

χ

. (33)

This means that Gp is precisely the inverse image submanifold of σp(M) under χ. It is an easy
exercise to check that χ being a surjective submersion implies that tp is also.

Now, for any surjective submersion, there exists an open subset U ⊆ M containing p and a
smooth map σ : U → Gp, such that tp ◦ σ = 1U . One can now use the same tactic as in Lemma
2.8 to construct a Lie groupoid isomorphism F : U × Gp

p × U → GU
U . ■
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Example 2.13. Let G be a Lie group with a Lie algebra g. We will now make T ∗G into a Lie
groupoid over g∗.

For any ξ ∈ T ∗
gG, let us define t(ξ) := R∗

g(ξ) and s(ξ) := L∗
g(ξ).

Suppose ξ ∈ T ∗
g G and η ∈ T ∗

hG satisfy s(ξ) = t(η), that is L∗
g(ξ) = R∗

h(η). We propose that
ξ • η ∈ T ∗

ghG. We must ensure that

t(ξ • η) = t(ξ), t(ξ • η) = s(η). (34)

This forces R∗
k(ξ • η) = R∗

g(ξ) and L∗
k(ξ • η) = L∗

h(η). This determines ξ • η uniquely as

ξ • η = R∗
h−1(ξ) = Lg−1(η). (35)

For each α ∈ g∗, the unit element 1α is α viewed as an element of T ∗
e G. Then

1t(η) • η = Le−1(η) = η, ξ • 1s(ξ) = R∗
e−1(ξ) = ξ. (36)

Finally, for any ξ ∈ T ∗
g G, one has ξ−1 = I∗g−1(ξ). The check of all the required properties is left

as an exercise.

Exercise 2.14. Work out the technical details.

Hint: observe that one has a diffeomorphism F : T ∗G → G × g∗ taking ξ ∈ T ∗
gG to F (ξ) =

(g, L∗
g−1(ξ)). Show that F defines a Lie groupoid isomorphism with the action Lie groupoid

G⋖ g∗ with respect to the coadjoint action Ad∗g of G on g∗.

3 Bisections

Recall that for a Lie group G, we have a class of diffeomorphisms forming a subgroup of Diff(G)
isomorphic to G, namely left translations {Lg}g∈G.

For a Lie groupoid G ⇒ M and each g ∈ G, the corresponding left translation Lg(h) := g ·h
is defined only for h ∈ G with t(h) = s(g). Since t(g · h) = t(g), we see that Lg can be viewed as
a smooth map

Lg : Gs(g) → Gt(g). (37)

In fact, since Lg−1 is its inverse, we see that it defines a diffeomorphism.

Now, since G =
⊔

m∈M Gm, we may try to choose a collection {gm}m∈M of elements of G,
each satisfying s(gm) = m, and define the resulting diffeomorphism by the whole family of left
translation. Since Lgm(Gm) = Gt(gm) and we much reach every t-fiber of G, we see that the map
m 7→ t(gm) must be a bijection. Note that the resulting diffeomorphism preserves sources. This
leads us to the following concept - we will consider diffeomorphisms of G which arise in this way:

Definition 3.1. Let G ⇒ M be a Lie groupoid. A left translation of G is a pair of diffeomor-
phisms (φ,φ◦), where φ : G → G and φ◦ : M → M , such that

1. t ◦ φ = φ◦ ◦ t, s ◦ φ = s;

2. for each m ∈ M , the restriction φm : Gm → Gφ◦(m) is of the form Lgm for some gm ∈ G.

Now, the assignment m 7→ gm with s(gm) = m can be viewed as a map σ : M → G satisfying
s ◦ σ = 1M . As already noted, the composition t ◦ σ : M → M must be a bijection. This leads
to the following definition.
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Definition 3.2. Let G ⇒ M be a Lie groupoid. A bisection of G is a smooth map σ : M → G,
such that s ◦ σ = 1M and t ◦ σ : M → M is a diffeomorphism. The set of bijections of G is
denoted as B(G).

In fact, left translations and bisections are in one-to-one correspondence.

Proposition 3.3. To each bisection σ of G, there is an associated left translation Lσ : G → G.
Every left translation of G is of this form for a unique bisection σ.

Proof. Let σ ∈ B(G). We have to construct a pair of diffeomorphisms φ : G → G and φ◦ : M →
M .

Obviously, let φ◦ := t ◦ σ. This is a diffeomorphism by definition. For each h ∈ G, define

φ(h) := σ(t(h)) · h. (38)

This is well-defined and obviously smooth. The facts that t◦φ = φ◦ ◦ t and s◦φ = s are obvious.
Its inverse is a smooth map

φ−1(k) := σ(φ−1
◦ (t(k)))−1 · k, (39)

To check that this is well-defined, the target of σ(φ−1
◦ (t(k))) must be t(k). But this is checked

easily using the definition of φ◦. The proof that this is indeed an inverse to φ is straightforward
and we leave it as an exercise. Finally, one has φm = Lσ(m). Hence (φ,φ0) is a left translation
on G, henceforth denoted as Lσ.

Conversely, let (φ,φ0) be a left translation. Define σ := φ ◦ 1. This is a smooth map. One
has immediately obtains the required properties, since

s ◦ σ = s ◦ φ ◦ 1 = s ◦ 1 = 1M , (40)

t ◦ σ = t ◦ φ ◦ 1 = φ0 ◦ t ◦ 1 = φ0 ◦ 1M = φ0, (41)

and one uses the fact that φ0 is a diffeomorphism. Hence σ ∈ B(G). To see that φ = Lσ, note
that necessarily φm = Lσ(m) for each m ∈ M .

Indeed, we know that φm = Lgm for some gm ∈ G. But since 1m ∈ Gm, one can write

gm = Lgm(1m) = φm(1m) ≡ (φ ◦ 1)(m) = σ(m). (42)

For an arbitrary h ∈ G, one has h ∈ Gt(h), so one can now write

φ(h) = φt(h)(h) = Lσ(t(h))(h) = σ(t(h)) · h ≡ Lσ(h). (43)

Also note that σ was uniquely determined by φ. This finishes the proof. ■

Proposition 3.4. Left translations form a subgroup of Diff(G). Consequently, there is a unique
group structure induced on B(G).

Proof. The first claim is easy to check.

Let σ, σ′ ∈ B(G). Their product on B(G) is defined by requirement

Lσ⋆σ′ = Lσ ◦ Lσ′ . (44)

By the above proof, one can write σ ⋆ σ′ = (Lσ ◦ Lσ′) ◦ 1. By plugging into the formulas for Lσ

and Lσ′ , one immediately obtains the expression

(σ ⋆ σ′)(m) = Lσ(Lσ′(1m)) = Lσ(σ
′(m)) = σ(t(σ′(m))) · σ′(m). (45)

10



The group unit is obviously precisely the object inclusion map 1 : M → G and the group inverse
is a bisection σ−1 defined by

σ−1(m) := σ((t ◦ σ)−1(m))−1. (46)

We can thus write (Lσ)
−1 = σ−1. This finishes the proof. ■

Example 3.5. Let us examine B(G) for the trivial Lie groupoid G = M ×G×M .

It is easy to see that the most general σ ∈ B(G) takes the form σ(m) = (φ◦(m),g(m),m),
where φ◦ : M → M is a diffeomorphism and g : M → G is a smooth map. If σ′(m) =
(φ′

0(m),g′(m),m), their product has the form

(σ ⋆ σ′)(m) = σ(t(σ′(m))) · σ′(m) = σ(φ′
◦(m)) · σ′(m)

= (φ0(φ
′
0(m)),g(φ′

0(m)), φ′
0(m)) · (φ′

0(m),g′(m),m)

= ((φ ◦ φ′)(m),g(φ′
0(m)) · g(m),m).

(47)

This shows that B(G) ∼= Diff(M)×C∞(M,G) with the multiplication given by (φ,g)⋆(φ′,g′) =
(φ ◦ φ′, (g ◦ φ′

◦) · g). The group unit is (1M , e), where e(m) := e for all m ∈ M .

Example 3.6. Let Φ(E) be the frame groupoid. Let us examine the group B(Φ(E)). We claim
that it corresponds to the group of all vector bundle automorphisms of E.

First, suppose σ : M → Φ(E) be a bisection. We shall define a corresponding vector bundle
map σ : E → E as follows. Recall that q : E → M . For each e ∈ E, let

σ(e) := [σ(q(e))](e) (48)

Let φ◦ : M → M be the diffeomorphism defined by σ, that is φ◦ = t ◦ σ. Then

q(σ(e)) = q([σ(q(e))](e)) = t([σ(q(e))]) = φ0(q(e)), (49)

that is σ satisfies q ◦ σ = φ0 ◦ q. For each m ∈ M , its restriction to the fiber Em is a linear
isomorphism σ(m) ∈ Iso(Em, Eφ◦(m)). One only has to argue that it is smooth. We leave that
as an exercise.

Conversely, F : E → E is a smooth vector bundle automorphism over φ◦ : M → M . For each
m ∈ M , we will produce an element σ(m) ∈ Φ(E) satisfying s(σ(m)) = m and t(σ(m)) = φ◦(m).
Obviously, set σ(m) := Fm ∈ Iso(Em, Eφ0(m)). One only has to show that σ so defined is smooth.
Again, this is given as an exercise.

It is easy to see that these assignments are inverse to each other and that the group product
⋆ on B(Φ(E)) corresponds to the composition of vector bundle automorphisms.

Exercise 3.7. Prove the smoothness claims of the previous example. Hint: use suitable local
trivialization charts for E.

Example 3.8. Let G = G⋖M be the action algebroid corresponding to θ : G×M → M . Every
bisection is thus of the form σ(m) = (g(m),m), where g : M → G is smooth.

By definition, t ◦ σ : M → M must be a difeomorphism. But this means that the map
m 7→ g(m) ·m must be a diffeomorphism of M . We see that

B(G ⋖M) ∼= {g ∈ C∞(M,G) | m 7→ g(m) ·m is a diffeomorphism} (50)
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It is straightforward to see that the product on B(G ⋖M) can be identified with

(g ⋆ g′)(m) = g(g′(m) ·m) · g′(m). (51)

Observe that for every g ∈ G, the constant map g(m) ≡ g has the required property, since
m 7→ g · m is indeed a diffeomorphism. In other words, G can be viewed as a subgroup of
B(G ⋖M).

Example 3.9. Let π : P → M be a principal G-bundle. We claim (without proof) that the
following diagram is actually a pullback:

P × P P×P
G

P M

π2

♮

s

π

(52)

Now, suppose σ : M → P×P
G is a bisection. In particular, one has s ◦ σ = 1M and φ◦ := t ◦ σ is

a diffeomorphism.

Now the pair of maps σ ◦ π : P → P×P
G and 1P : P → P fits into the pullback diagram

P

P × P P×P
G .

P M

σ

σ◦π

1P
π2

♮

s

π

(53)

There is thus a unique map σ : P → P × P , such that π2 ◦ σ = 1P and ♮ ◦ σ = σ ◦ π. The first
condition foces σ(p) = (φ(p), p) for some smooth map φ : P → P . The second condition shows
that necessarily

[φ(p), p] = σ(π(p)). (54)

For the above equation to hold, one must have [φ(p · g), p · g] = [φ(p), p] for every p ∈ P and
g ∈ G. But this is equivalent to φ(p · g) = φ(p) · g, that is φ : P → P is a G-equivariant map.

Finally, observe that

φ◦(π(p)) = t(σ(π(p)) = t([φ(p), p]) = π(φ(p)), (55)

that is φ fits into the commutative diagram

P P

M M

π

φ

π

φ◦

, (56)

that is (φ,φ◦) is an endomorphism of the principal bundle π : P → G. In fact, since φ◦
is a diffeomorphism, φ is automatically a diffeomorphism (prove that!) and thus (φ,φ◦) is a
principal bundle automorphism of π : P → M .

Conversely, for any principal bundle automorphism (φ,φ◦), we can use the formula (54) to
define a map σ : M → P×P

G which is well defined since φ is G-equivariant and smooth since π is
a surjective submersion. It is easy to check that σ is a bisection, such that t ◦ σ = φ◦. It follows
that B(P×P

G ) is canonically isomorphic to the group of principal G-bundle automorphisms of
π : P → M .

12



We have the following related definitions.

Definition 3.10. Let G ⇒ M be a Lie groupoid and let σ ∈ B(G).

(i) A right translation by σ is defined by Rσ(g) := g · σ((t ◦ σ)−1(s(g))), for all g ∈ G.

(ii) A conjugation by σ is defined by Iσ(g) := σ(t(g)) · g · σ(s(g))−1, for all g ∈ G.

Both maps are diffeomorphism of G.

There is another equivalent, more intrinsic definition of a bisection, symmetric with respect
to the target and source maps.

Proposition 3.11. Let σ ∈ B(G). Then its image S := σ(M) ⊆ G is a closed embedded
submanifold, such that both s|S : S → M and t|S : S → M are diffeomorphisms.

Conversely, any such submanifold S ⊆ G is obtained in this way from a unique bisection.

Proof. Since s◦σ = 1M , it is easy to see that σ is an injective immersion. Similarly to Proposition
1.7, one proves that it is a closed map, hence a closed embedding. Hence S := σ(M) ⊆ G is a
closed embedded submanifold and σ : M → S defines a diffeomorphism. Then s|S : M → S is
its inverse and t|S : S → M is a diffeomorphism since t ◦ σ : M → M is a diffeomorphism.

Conversely, suppose S ⊆ G be a closed embedded submanifold having those properties. Let
ι : S → G be the inclusion. Since s|S : S → M is a diffeomorphism, we can define σ := ι◦(s|S)−1 :
M → G. But then s ◦ σ = (s ◦ ι) ◦ (s|S)−1 = s|S ◦ (s|S)−1 = 1M and t ◦ σ = (t ◦ ι) ◦ (s|S)−1 =
t|S ◦ (s|S)−1 : M → M is a diffeomorphism. ■

There is no guarantee that the group B(G) contains anything else then its unit 1 : M → G.
Similarly to the space of sections of a fiber bundle, it is often convenient to consider local
bisections only.

Definition 3.12. Let G ⇒ M be a Lie groupoid. Let U ⊆ M be an open subset.

A local bisection over U is a smooth map σ : U → M , such that s ◦ σ = 1U and
φ◦ := t ◦σ : U → φ◦(U) is a diffeomorphism of U and an open subset φ◦(U) ⊆ M . A set of local
bisections of G over U is denoted as BU (G).

The local left translation induced by σ is a diffeomorphism Lσ : GU → Gφ◦(U) defined by
the same formula as for U = M .

It turns out that for every point of a Lie groupoid, there is always a local bisection

Proposition 3.13. For each g ∈ G, there exists U ⊆ M and a local section σ ∈ BU (G), such
that g = σ(s(g)).

Proof. Let g ∈ G be a given point. Let m := s(g) and n := t(g). One can always find a linear
subspace I ⊆ TgG, such that

TgG = Tg(Gm)⊕ I ≡ ker(Tgs)⊕ I,

TgG = Tg(Gn)⊕ I ≡ ker(Tgt)⊕ I.
(57)

Since s : G → M is a surjective submersion, there is an open neighborhood U ofm and σ : U → G,
such that s ◦ σ = 1U , and σ(m) = g and (Tmσ)(TmM) = I. But then Tm(t ◦ σ) : TmM → TnM
is a linear isomorphism. This means that it is a local diffeomorphism and the claim follows. ■
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Exercise 3.14. Prove the technical details. Hint: use local coordinates adapted to a submersion.

Corollary 3.15. For each m ∈ M , the restriction tm : Gm → M has a constant rank.

Proof. Suppose g, h ∈ Gm. We must argue that Tg(tm) and Th(tm) have the same rank. Let
k := g · h−1. By the above proposition, there exists σ ∈ BU (G) with t(h) ∈ U and σ(t(h)) = k.
The corresponding left translation is a diffeomorphism Lσ : GU → GV , where V = (t◦σ)(U). By
construction, one has Lσ(h) = σ(t(h)) · h = k · h = g.

Since s ◦Lσ = s, it restricts to a diffeomorphism Lσ : GU
m → GV

m, and t ◦Lσ = (t ◦ σ) ◦ t gives

tm ◦ Lσ = (t ◦ σ) ◦ tm. (58)

Evaluating the tangent maps thus gives Tg(tm) ◦ Th(Lσ) = Tt(h)(t ◦ σ) ◦ Th(tm). Since both
Th(Lσ) and Tt(h)(t ◦ σ) are linear isomorphisms, this proves the claim. ■

Corollary 3.16. For each m,n ∈ M , Gn
m ⊆ G is a closed embedded submanifold. In particular,

Gm
m ⊆ G is a Lie group for any m ∈ M .

Proof. For a given m ∈ M , tm : Gm → M has a constant rank. Consequently, the level set
Gn
m := t−1

m (n) is a closed embedded submanifold of Gm, hence of G, see Theorem 5.12 in [1].
If Gm

m is a closed embedded submanifold of G, it follows that Gm
m × Gm

m is a closed embedded
submanifold of G ∗ G and the restriction of µ gives the smooth multiplication on Gm

m . ■

4 Actions

Lie groups often arise through their actions on manifolds. Similarly, Lie groupoids act on the
fibered spaces over the base M . Imagine f : N → M is a fiber bundle. For each m ∈ M , we can
“act” on the elements of the fiber Nm := f−1(m) by arrows g ∈ G, which “start at” m, that is
s(g) = m. We obtain an element g ▷ n at the fiber over the end of g, that is f(g ▷ n) = t(g). This
leads to the following definition:

Definition 4.1. Let G ⇒ M be a Lie groupoid, and let f : N → M be a smooth map. Since
s : G → M is a surjective submersion, the fibered product

G ∗N := {(g, n) ∈ G ×N | s(g) = f(n)} (59)

is a closed embedded submanifold. An action of G on f : N → M is a smooth map θ : G∗N → N
satisfying the following axiom. We write g ▷ n := θ(g, n).

(i) f(g ▷ n) = t(g).

(ii) g ▷ (h ▷ n) = (g · h) ▷ n for all (g, h) ∈ G ∗ G and n ∈ N , such that (h, n) ∈ G ∗N .

(iii) 1f(n) ▷ n = n for all n ∈ N . Note that (1f(n), n) ∈ G ∗N since s(1f(n)) = f(n).

For a given n ∈ N , we have (g, n) ∈ G ∗N whenever s(g) = f(n), that is g ∈ Gf(n). The orbit
of the point n ∈ N is then defined as a subset

G[n] := {g ▷ n | g ∈ Gf(n)} ⊆ N. (60)

Exercise 4.2. Prove the claim about G ∗N . Hint: learn about the transversality.
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Proposition 4.3. Suppose f : N → M in the above definition is a surjective submersion.

Then for every m,m′ ∈ M , for every g ∈ Gm′

m , the map θg : Nm → Nm′ is a diffeomorphism.

Proof. One needs the assumption to ensure that the fibers Nm are closed embedded submanifolds
of N . The rest is clear. ■

Definition 4.4. Let G ⇒ M be a Lie groupoid and let θ1 : G ∗N1 → N1 and θ2 : G ∗N2 → N2

be actions of G over f1 : N → M and f2 : N → M , respectively. A smooth map φ : N1 → N2 is
G-equivariant with respect to θ1 and θ2, if f2 ◦ φ = f1 and

φ(g ▷1 n) = g ▷2 φ(n), (61)

for all (g, n) ∈ G ∗N1.

Example 4.5. Let π1 : M ×K → M be the projection with an arbitrary manifold K. Observe
that the fiber product of G and this space gives

G ∗ (M ×K) = {(g, (s(g), k)) (g, k) ∈ G ×K} ∼= G ×K. (62)

The trivial action of G over π1 is now defined as θ(g, (s(g), k)) := (t(g), k), for all (g, k) ∈ G×F .
For any g ∈ G, the induced map θg : F → F is just the identity.

For each (m, k) ∈ M ×K, the corresponding orbit is

G[(m, k)] = {g ▷ (m, k) | g ∈ Gm = {(t(g), k) | g ∈ Gm} = t(Gm)× {k}. (63)

Before the formulation of the next example, we will need the following structure:

Proposition 4.6. Let π : P → M be a principal G-bundle.

Let θ : G×N → N be a Lie group action of G on a manifold N . Define a right action of G
on P ×N as (p, n) · g := (p · g, g−1 · n) for all (p, n) ∈ P ×N and g ∈ G.

Then there is a unique fiber bundle structure ϖ : P×N
G → N making the quotient map

♮ : P ×N → P×N
G into a surjective submersion. Moreover, the diagram

P ×N P×N
G

P M

π1

♮

ϖ

π

(64)

is a pullback in the category of smooth manifolds. P ×θN := P×N
G is called the associated fibre

bundle to P and the action θ.

Proof. Let ⟨p, n⟩ ∈ P ×θ N denote the equivalence class of (p, n). To make (64) commutative,
we must set

ϖ(⟨p, n⟩) := π(p). (65)

The topology and a smooth structure on the total space P ×θ N is induced by the local trivi-
alization. Let {(Uα, ϕα)}α∈I be a G-equivariant local trivialization for P . We have to produce
bijections µα : Uα ×N → ϖ−1(Uα). Let

µα(m,n) := ⟨ϕα(m, e), n⟩. (66)
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It is easy to see that φ ◦µα = π1. Conversely, recall that for each α ∈ I, there is a G-equivariant
smooth map gα : π−1(Uα) → G defined by gα := π2 ◦ ϕ−1

α . For each ⟨p, n⟩ ∈ ϖ−1(Uα), let

µ−1
α ⟨p, n⟩ := (π(p),gα(p) · n). (67)

This well-defined, since gα(p·g) = gα(p)·g. It is easy to check that µα and µ−1
α are inverse to each

other. One only has to verify that the transition maps are smooth. Recall that the transition
maps of P are given by smooth maps gαβ : Uαβ → G, such that (π2◦ϕ−1

α ◦ϕβ)(m, g) = gαβ(m) ·g.
It is then a straightforward calculation that

[hαβ(m)](n) := (π2 ◦ µ−1
α ◦ µβ)(m,n) = gαβ(m) · n. (68)

One thus has hαβ(m) = θgαβ(m) ∈ Diff(N) and for each n ∈ N , the map m 7→ [hαβ(m)](n) is
smooth from Uαβ to N . This gives us a topology and a smooth structure on P ×θ N making ϖ :
P ×θ N → M into a fiber bundle with a typical fiber N and a local trivialization {(Uα, µα)}α∈I .

Let us argue that ♮ : P ×N → P ×θ N becomes a smooth surjective submersion. This also
fixes the topology and a smooth structure uniquely. Since ♮(π−1(Uα) ⊆ ϖ−1(Uα), we can form
the composition

µ−1
α ◦ ♮ ◦ (ϕα × 1N ) : (Uα ×G)×N → Uα ×N. (69)

It suffices to prove that this is a smooth surjective submersion for each α ∈ I. But one finds

[µ−1
α ◦ ♮ ◦ (ϕα × 1N )]((m, g), n) = (m, g · n). (70)

The claim follows from the fact that θ : G×M → M is a smooth surjective submersion.

It remains to prove that the diagram is in fact a pullback. Let Q be any manifold together
with a pair of maps χ : Q → P ×θ N and χ′ : Q → P , satisfying ϖ ◦ χ = π ◦ χ′. We must
construct a unique map φ : Q → P ×N fitting into the commutative diagram

Q

P ×N P×N
G

P M

χ

φ

χ′
π1

♮

ϖ

π

(71)

The commutativity of the bottom-left triangle forces φ(q) = (χ′(q), φ′(q)) for some smooth map
φ′ : Q → N . The other triangle forces ⟨χ′(q), φ′(q)⟩ = χ(q) for all q ∈ Q. But an element
representing a given class χ(q) is uniquely determined once we fix the element χ′(q). This shows
that for each q ∈ Q, there is a unique element φ′(q) ∈ N with this property, whence φ′ exists
and its uniquely determined.

We only have to prove the smoothness. Let us consider the open subset Vα := χ−1(ϖ−1(Uα)).
For each q ∈ Vα, one can write χ(q) = µα(π(χ

′(q)), χ̂α(q)), where χ̂α : Vα → N is smooth.
Similarly, one has χ′(Vα) ⊆ π−1(Uα), so χ′(q) = ϕα(π(χ

′(q)), ĝα(q)) for a smooth ĝα : Vα → G.

We claim that necessarily

φ(q) = (ϕα(π(χ
′(q)), ĝα(q)), ĝ

−1
α (q) · χ̂α(q)), (72)

for each q ∈ Vα. By applying ♮ on both sides, one obtains

♮(φ(q)) = µα

(
π(q), ĝα(q) · (ĝ−1

α (q) · χ̂α(q))
)
= µα(π(q), χ̂α(q)) = χ(q), (73)
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But the formula (72) shows that the restriction of φ to Vα is smooth. In fact, one has φ′(q) =
ĝ−1
α (q) · χ̂α(q) for all q ∈ Vα. Since {Vα}α∈I covers Q, this proves the claim. ■

Exercise 4.7. (i) Show that sections of P ×θ N are in one-to-one correspondence with G-
equivariant smooth maps φ : P → N .

(ii) Use the new knowledge to argue that (52) is a pullback.

Example 4.8. Let π : P → M be a principal bundle and let φ : P ×θ N → M be the fiber
bundle associated to the left action θ. Write G := P×P

G and E := P ×θ N .

Elements of G ∗ E are pairs ([p, q], ⟨r, n⟩) ∈ G × E with s([p, q]) = φ(⟨r, n⟩). But this means
that π(q) = π(r). One can thus arrange those so that r = q and define

[p, q] ▷ ⟨q, n⟩ := ⟨p, n⟩. (74)

To prove that this action is smooth, let ♮ : P × P → G and ♮′ : P ×N → E denote the quotient
maps. Then observe that the corresponding map Θ : G ∗ E → E fits into

P × (P ×ρ P )×N P ×N

G ∗ E E

♮×♮′

Θ̂

♮′

Θ

, (75)

where Θ̂(p, q, r, n) := (p, δ(q, r)−1 · n) is smooth. Checking the action axioms is easy, since

(i) ϖ([p, q] ▷ ⟨q, n⟩) = π(p) = t([p, q]),

(ii) [p, q] ▷ ([q, r] ▷ ⟨r, n⟩) = [p, q] ▷ ⟨q, n⟩ = ⟨p, n⟩ = [p, r] ▷ ⟨r, n⟩ = ([p, q] · [q, r]) ▷ ⟨r, n⟩.

(iii) 1ϖ(⟨p,n⟩) ▷ ⟨p, n⟩ = 1π(p) ▷ ⟨p, n⟩ = [p, p] ▷ ⟨p, n⟩ = ⟨p, n⟩.

Now, to any Lie groupoid action, there is also an associated Lie groupoid.

Proposition 4.9. Let θ : G ∗N → N be a Lie groupoid action of G ⇒ M over f : N → M .

Then there is a canonical Lie groupoid with the base N on G ∗N , defined as follows:

(i) The source map is s′(g, n) = n; The target map is t′(g, n) := g ▷ n.

(ii) The multiplication is (g, h ▷ n) · (h, n) := (g, n).

(iii) The object inclusion map is 1′
n := (1f(n), n).

The resulting Lie groupoid is denoted as G⋖N and called the action Lie groupoid associated
to the action θ of G on f : N → M .

Proof. Recall that fiber product G ∗N is a pullback, fitting into the commutative square

G ∗N N

G M

π′
2

π′
1

f

s

, (76)
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where π′
1,2 are just the restrictions of the respective projections. Now, note that in fact s′ ≡ π′

2.
It is a general fact that whenever s is a surjective submersion, then so is π′

2.

Next, note that t′ = θ. To prove that θ is a surjective submersion, let us consider the groupoid
inverse i : G → G and observe that we have a smooth map (i ◦ π′

1, θ) : G ∗N → G ∗N . Indeed,
it maps each (g, n) ∈ G ∗ N to (g−1, θ(g, n)), which satisfies f(θ(g, n)) = t(g) = s(g−1), so it is
indeed in G ∗N . This map is in fact a diffeomorphism, since it is its own inverse.

The action axioms imply the commutativity of the diagram

G ∗N G ∗N

N
π′
2

(i◦π′
1,θ)

θ (77)

Since π′
2 is a surjective submersion and the horizontal map is a diffeomorphism, θ must be a

surjective submersion. Finally, it follows that the multiplication µ′ : (G ∗N) ∗ (G ∗N) → (G ∗N)
fits into the diagram

(G ∗N) ∗ (G ∗N) G ∗N

(G ∗N)× (G ∗N) G ×N

µ′

π′
1×π′

2

, (78)

where the vertical maps are embeddings of the respective fiber products. Finally, the object
inclusion map 1′ : N → G ∗N fits into the commutative diagram

G ∗N

N G ×N

1′

(1◦π,1N )

(79)

That the described operations make G ⋖N into a Lie groupoid is now easy to check. ■

Example 4.10. Let G ⇒ M be a Lie groupoid. Its multiplication µ : G ∗ G → G can be viewed
as a left action of G on t : G → M .

The corresponding action Lie groupoid G ⋖ G is given by s′(g, h) = h, s′(g, h) = g · h and
(g, h · ℓ) · (h, ℓ) = (g, ℓ).
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