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Abstrakt:

Tato práce si klade za ćıl prezentovat metody dráhového integrálu a následně je

využ́ıt ke studiu rozličných problému kvantové a statistické fyziky, či dokonce obohatit

stávaj́ıćı obecnou teorii. Po stručném přehledu historických souvislost́ı a výsledk̊u jsou

diskutována čtyři témata, z nichž každé je zastoupeno odpov́ıdaj́ıćı publikaćı. Nejprve

za pomoci dráhového integrálu elegantně odvod́ıme vysokoteplotńı Wigner-Kirkwood̊uv

rozvoj, který je použ́ıván v kvantové statistické fyzice. Dále zavedeme lokálněčasový

dráhový integrál coby alternat́ıvu k Feynmanovu dráhovému integrálu a prozkoumáme

vliv frakčńıch derivaćı na distribučńı funkce difuzńıch proces̊u. Nakonec se budeme

zabývat o něco exotičtěǰśım tématem a to kvantovými procházkami s abelovskými a ne-

abelovskými anyonovými částicemi v rovnoměrném i neuspořádaném prostřed́ı za použit́ı

diskrétńıho dráhového integrálu, jenž zahrnuje netriviálńı topologické efekty.

Abstract:

This thesis aims to introduce the techniques of path integration and apply them to

various problems in quantum and statistical physics, or even refine the general theory.

After a concise overview of the historical development and its main results, four topics,

each represented by a published article, are presented. First, we rederive the high-

temperature Wigner-Kirkwood expansion of quantum statistical mechanics to illustrate

the efficiency of the path integral formalism. We follow by establishing the local-time

path integral as an alternative to the Feynman path integral, and study the effect of frac-

tional derivatives on the distribution functions of diffusion processes. Finally, we consider

a more exotic problem of quantum walks with Abelian and non-Abelian anyonic parti-

cles in both uniform and random environments, using a discrete path-integral-inspired

approach that incorporates nontrivial topological effects.





Contents

1 Opening remarks 6

2 Introduction to path integrals 7

2.1 Phase space path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Path-integral approach to the Wigner-Kirkwood expansion 15

4 Local-time representation of path integrals 17

4.1 Path integrals in quantum field theory . . . . . . . . . . . . . . . . . . . . 17

4.2 Local times of path integrals . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Fractional diffusion 25

5.1 Origin of fractional powers in strongly interacting many-body systems . . 27

6 Quantum walks with anyons 29

6.1 Classical random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Quantum walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Anderson localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.5 Anyonic quantum walks in random topological environments . . . . . . . 33

7 Conclusions 37

Bibliography 39

A Full article:

Path-integral approach to the Wigner-Kirkwood expansion 43

B Full article:

Local-time representation of path integrals 64

C Full article:

Green function of the double-fractional Fokker-Planck equation: Path

integral and stochastic differential equations 87

D Full article: Transport properties of anyons in random topological en-

vironments 103

5



1 Opening remarks

This doctoral thesis provides a comprehensive introduction into the concept of path

integration, and gathers several latest results in the field, which the author, his doctoral

advisor, and other collaborators obtained between the years 2011 and 2016.

In the following chapter, the key ideas upon which the path integral (PI) has been

successfully developed, are presented, starting from the mathematical theory of stochas-

tic processes. The exposition is brief but self-contained, so that it allows to study more

specialized chapters 3, 4, 5 and 6.1 Each of these chapters focuses on an original research

topic that is introduced to the reader in a compact form to facilitate his/her study of

the corresponding articles [13, 14, 15, 16]. The articles are enclosed in their full length

in the appendix of this thesis, where a note about collaborators, and about the scope of

the thesis author’s own contribution is added.2

The four topics contribute primarily to the field of statistical quantum physics. They

include “Path-integral approach to the Wigner-Kirkwood expansion”, “Local-time rep-

resentation of path integrals”, “Green function of the double-fractional Fokker-Planck

equation”, and “Transport properties of anyons in random topological environments”.

While the first three items should be easily accessible even to non-experts in the re-

spective fields, who are only reasonably phrased with the basics of path integration, the

last topic is more exotic, and hence it requires and deserves a longer preparation, and

introduction of the concepts employed.

In the concluding chapter 7, I summarize the results of this doctoral thesis, and

discuss their significance for the field of path integrals, or, more broadly, the role they

play in the context of statistical and quantum physics.

1There exist indeed many applications of PIs in quantum and statistical physics, as well as outside of

physics, e.g., in biochemistry or economics. An interested reader is encouraged to consult the monographs

[1, 2, 3, 4, 5, 6, 7]. Apart from these, there are chapters with introduction or applications of PIs

included in almost every modern textbook on quantum mechanics and quantum field theory (see, e.g.,

[8, 9, 10, 11, 12]).
2The manuscripts in the appendix may slightly differ from the corresponding published articles due

to some minor changes implemented by the editorial offices.
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2 Introduction to path integrals

At a first glance, path integration can be viewed simply as a method to tackle partial

differential equations of the parabolic type. These are so ubiquitous in physics, and

other scientific disciplines, that, no wonder, PI finds applications in fields that look,

by the common sense, rather unrelated: e.g., quantum mechanics vs. financial markets

vs. polymers [2]. The fact that one method can be used for many different purposes

hints that the idea behind that method is powerful, and can be fruitful in potential

applications.

In short, PI is a sum over histories weighted by appropriate factors, be it histories of

a pollen grain in the water, an electron drifting through a double slit, or the evolution

of the price of an asset at the stock market.3 To start intuitively, consider a particle (a

pollen grain in the water, or a dust particle in the air) which exhibits random motion.

In the simplest case, this motion can be described as a sequence of jumps with their

lengths distributed normally, i.e., according to the law

√
(∆x)2 ∼

(
M

2π∆t

)D/2
e−

M(∆x)2

2∆t , (1)

where D is the dimensionality of space, ∆t is the time interval between jumps, and M

is a constant that measures the typical size of the jumps.

Assuming that the jumps are independent events, we can compose them in a straight-

forward way via convolution [17] to obtain the conditional probability

Pfree(x, t; x0, t0) =

(
M

2π(t− t0)

)D/2
e
−M(x−x0)2

2(t−t0) , (2)

that a particle located at position x0 at time t0 will be found at time t > t0 at position

x. It is understood that for times t < t0, Pfree = 0 identically. (The subscript “free” is

used to distinguish this transition probability from a more general case that includes an

external potential, which will be discussed below.)

The distribution function Pfree obeys the following parabolic partial differential equa-

tion:
∂

∂t
Pfree =

1

2M
∆xPfree , Pfree(x, t0; x0, t0) = δ(D)(x− x0), (3)

3Note that each of these examples is fundamentally different in nature: first describes a material

entity whose trajectory can be directly contemplated; second features a wave-particle quantum whose

trajectories are not independent alternative events, but rather happen all at the same time to construct

an interference pattern; whereas the last entity is virtual, a number on the computer screen, which we

attempt to predict using the PI method.
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where ∆x ≡ ∂2

∂x2
1

+ . . . ∂2

∂x2
D

is the Laplace operator. This equation is the simplest form of

the diffusion, or Fokker-Planck, equation, which describes diffusion of particles through

a medium. It can also be found under the name heat equation as it governs the heat flow

in an environment with generic temperature distribution. Owing to the specific initial

condition, the solution of Eq. (3) is in fact the Green function (or the fundamental

solution) of the operator ∂
∂t − 1

2M∆.

With quantum-mechanical applications in mind, we will consider a more general form

of Eq. (3), namely
∂

∂t
P = −ĤxP, (4)

where

Ĥx = − 1

2M
∆x + V (x) (5)

is the Hamiltonian operator. For a generic potential function V (x), the latter equation

does not possess an explicit solution, such as Formula (2). One can only formally write

(in the Dirac bra-ket notation)

P (x, t; x0, t0) = e−(t−t0)Ĥxδ(D)(x− x0) ≡ 〈x| e−(t−t0)Ĥ |x0〉 . (6)

At this stage, the PI representation enters via the Suzuki-Trotter formula, which

states, suppressing technical details, that the exponential of a sum of two operators can

be written as a limit

eA+B = lim
N→∞

(
eA/NeB/N

)N
. (7)

This includes the trivial commutative case ea+b = eaeb. Hence, the transition probability

P may be cast in the form

P (x, t; x0, t0) = lim
N→∞

〈x|
(
e−

t−t0
N
−∆
2M e−

t−t0
N

V
)N
|x0〉

= lim
N→∞

∫
dDx1 . . . d

DxN−1

N∏

k=1

〈xk| e−ε
−∆
2M e−εV |xk−1〉 , (8)

where we have introduced resolutions of unity in the position representation,

1 =

∫

RD
dDx |x〉 〈x| , (9)

and, for brevity, denoted x ≡ xN and ε ≡ (t− t0)/N .

While the potential part can be immediately rearranged,

e−εV (x̂) |xk−1〉 = |xk−1〉 e−εV (xk−1), (10)
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the remaining kinetic part is elucidated through the formula

〈xk| e−ε
−∆
2M |xk−1〉 = Pfree(xk, ε; xk−1, 0) =

(
M

2πε

)D/2
e−

M(xk−xk−1)2

2ε . (11)

The latter is a straightforward application of Eq. (2), which, in fact, can be derived from

Eq. (3) via Fourier transform in the variable x.

The transition probability P now reads

P (x, t; x0, t0) = lim
N→∞

∫

RD
dDx1 . . . d

DxN−1

(
M

2πε

)ND/2
e
−ε
∑N
k=1

[
M
2

(
xk−xk−1

ε

)2
+V (xk−1)

]
,

(12)

which is customarily denoted by

∫ x(t)=x

x(t0)=x0

Dx(t′)e
−
∫ t
t0
dt′[M2 ẋ2+V (x)]. (13)

This is the path integral (PI), a sum over all trajectories (particle’s histories) that orig-

inate from position x0 at time t0 and terminate at x at time t, weighted by certain

exponential factors.

The integration over a space of functions (fluctuating trajectories) was originally

introduced by Wiener [18] to describe the Brownian motion, and since then it forms the

basis of the theory of stochastic processes. There, the expression (13) would be regarded

as a mean value of the functional

exp

[
−
∫ t

t0

dt′V (x)

]
(14)

with respect to the Wiener probability measure

∼ exp

[
−
∫ t

t0

dt′
M

2
ẋ2

]
(15)

(the ∼-sign captures the prefactor in front of the exponential in Eq. (12)), taken over

the space of trajectories with specified endpoints.

Let us stress that Formula (13) for P (x, t; x0, t0) does not solve Eq. (4). It serves

merely as a representation for transition amplitudes which can be resolved in particular

simple cases to produce a closed formula, or at least used to derive general approximation

schemes (e.g., the saddle-point approximation). In any case, the PI representation (13)

views certain parabolic differential equations from a different angle and provides one

with a valuable intuition about the problem in hand.
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In non-relativistic quantum mechanics, the central equation is the Schrödinger equa-

tion
~
i

∂

∂t
ψ(x, t) = −Ĥxψ(x, t), (16)

with the Hamiltonian operator

Ĥx = − ~2

2M
∆x + V (x). (17)

It differs from the diffusion equation (4) only in the introduction of the Planck constant

~, and, more importantly, in the appearance of the imaginary unit i. The latter implies

that the wave function ψ is complex-valued in general.

With the initial condition

ψ(x, t0) = δ(D)(x− x0), (18)

Eq. (16) can be again formally solved,

K(x, t; x0, t0) ≡ ψ(x, t) = 〈x| e− i
~ (t−t0)Ĥ |x0〉 , (19)

to yield the transition amplitudes K, that is, the matrix elements of the evolution

operator e−
i
~ (t−t0)Ĥ in the position basis.

The same sequence of steps that led to the PI representation (13) can now be applied

to treat Eq. (19), and yield the PI representation of the transition amplitudes

K(x, t; x0, t0) =

∫ x(t)=x

x(t0)=x0

Dx(t′)e
i
~
∫ t
t0
dt′[M2 ẋ2−V (x)], (20)

named Feynman PI after Richard Feynman who was the first to use PI in quantum

physics [19, 20].4 The right-hand-side is again a shorthand notation for the infinite-fold

integration, Eq. (12), where the substitutions M → M/~2 and ε → iε/~ have been

performed (the so-called Wick rotation). Note that due to the imaginary unit in the

exponent of Eq. (20), the integrals fail to converge absolutely, which causes troubles

when one tries to apply rigorously the results of the mathematical measure theory. Yet,

integrals of the form ∫

R
eix

2
dx (21)

(cf. Fresnel integrals) do converge non-absolutely, resulting in
√
iπ.

4Feynman was the first physicist who used PI to formulate quantum mechanics and developed the

complete method (see [1]), although the basic idea is present already in the work of Dirac [21], who

appreciated the role of Lagrangian in short-time evolution of the wave function, and even suggested the

time-slicing procedure for finite, i.e., non-infinitesimal, times analogous to Formula (12).
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The weights of the paths x(t′) in Formula (20) are complex units eiA[x]/~, the phase

of which is identified with the classical action, i.e., the time integral of the Lagrangian

A[x] =

∫ t

t0

dt′L(x, ẋ), (22)

divided by ~. PI allows to formulate quantum physics in terms of Lagrangians instead of

Hamiltonians, which proves to be very helpful in the development of the quantum field

theory [10].

2.1 Phase space path integral

The Feynman PI (20) is formulated in terms of configuration-space trajectories and

the Lagrangian. On the contrary, the canonical approach to quantum mechanics starts

from the phase space of the positions and momenta, where the central role is played

by the Hamiltonian of the system. To make contact between the two approaches, it is

illuminating to consider the phase space PI, i.e., an equivalent PI formulated in terms

of the phase-space trajectories.

Let us start with the quantum-mechanical propagator (19), written in the form

K(x, t; x0, t0) = 〈x|
(
e−

i
~ εĤ
)N
|x0〉 , (23)

where εN = t − t0, and Ĥ = H(x̂, p̂) is a generic Hamiltonian operator. Utilizing the

x-space resolutions of unity as in Eq. (8), and the p-space resolutions of unity

1 =

∫

RD
dDp |p〉 〈p| , (24)

where

〈x|p〉 =
e
i
~p·x

(2π~)D/2
, (25)

the propagator may be cast as

K =

∫
dDx1 . . . d

DxN−1

N∏

k=1

〈xk| e−
i
~ εĤ |xk−1〉

=

∫
dDx1 . . . d

DxN−1

∫
dDp1

(2π~)D/2
. . .

dDpN

(2π~)D/2

N∏

k=1

〈xk| e−
i
~ εĤ |pk〉 e−

i
~pk·xk−1 . (26)
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For large N , ε becomes infinitesimal, and so we can approximate5

〈xk| e−
i
~ εĤ |pk〉≈〈xk| (1−

i

~
εĤ) |pk〉=

e
i
~pk·xk

(2π~)D/2
[
1− i

~
εH(xk,pk)

]
≈ e

i
~ [pk·xk−εH(xk,pk)]

(2π~)D/2
.

(27)

Hence, we obtain an expression for the propagator

K =

∫
dDx1 . . . d

DxN−1

∫
dDp1

(2π~)D
. . .

dDpN
(2π~)D

e
i
~ ε
∑N
k=1

[
pk·

xk−xk−1
ε

−H(xk,pk)
]
, (28)

which is customarily abbreviated

∫ x(t)=x

x(t0)=x0

Dx(t′)Dp(t′)e
i
~
∫ t
t0
dt′[p·ẋ−H(x,p)]

. (29)

This is the phase space PI. Note that while the x-trajectories start and end up at

prescribed fixed points, there is no such constraint on the p-trajectories.

The phase space PI representation (29) is more general than the Feynman PI (20),

as it holds, at least formally, for a generic Hamiltonian. If we take, in particular,

H =
p2

2M
+ V (x), (30)

and integrate out the momenta in Eq. (28), we recover, indeed, the Feynman represen-

tation, Formula (20).

Let us also remark that the PI (29) is a good starting point to exploit the path-integral

representation in the Hamiltonian-constraint-based relativistic quantum mechanics. Al-

though the following considerations are somewhat formal, it is instructive to follow them

in order to observe the heuristic power of PIs.

First of all, we note that Formula (26) holds true even if we change the equidistant

“ε”-time slicing to an arbitrary variable time slicing, ε → tk − tk−1, where tN ≡ t. Av-

eraging over all time slicings amounts to integrating over t1, . . . , tN−1, which introduces

in Eq. (28) an “irrelevant” infinite constant.6 Using, in addition, a trivial identity

e−
i
~ εH(xk,pk) =

∫
dEke

i
~ εEkδ

(
Ek +H(xk,pk)

)
, (31)

we obtain the PI expression

K ∝
∫ (t,x)

(t0,x0)
DxDtDpDEe

i
~
∫ (t,x)
(t0,x0)

[Edt+p·dx]
δ[E +H(x,p)], (32)

5We tacitly assume that H does not involve products of x and p. Such product have to be treated

more carefully, as their translation to the PI action depends on the choice of operator ordering.
6Irrelevant in the sense that it does not contain any structure relevant for the problem.
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where the δ-functional is defined by its discretized form

δ[E +H(x,p)] ∼
N∏

k=1

δ
(
Ek +H(xk,pk)

)
. (33)

The path integration is performed over all spacetime trajectories that connect the points

(t0,x0) and (t,x), and over all four-momentum trajectories. Parametrization of the

trajectories plays no role, as neither the action nor the δ-functional depends on it.

Let us denote the spacetime points by x = (t,x), the four-momentum by p = (E,p),

and introduce the relativistic Hamiltonian

Hrel(x, p) = E +H(x,p). (34)

With these definitions, and regarded as a function of x, the right-hand side of Eq. (32)

assumes the form

ψ̃(x) ≡
∫ x

x0

DxDpe
i
~
∫ x
x0
p·dx

δ[Hrel]. (35)

This PI has been introduced in [22] under the name “timeless PI”.7 It has an intuitive

geometric interpretation as a sum over all (x, p)-trajectories (with fixed x-space endpoints

x0 and x) that are weighted by a universal factor

e
i
~
∫ x
x0
p·dx

, (36)

and fulfill at all instances the Hamiltonian constraint

Hrel(x, p) = 0. (37)

The PI (35) makes sense, at least formally, for generic functions Hrel of x and p.

For example, a free relativistic particle with mass M is described by the relativistic

Hamiltonian

Hrel =
E2

c2
− p2 −M2c2. (38)

The relativistic formulation of mechanics (both relativistic and non-relativistic) based

on the Hamiltonian constraint is explained in detail in Chapter 3 of monograph [23]. A

great advantage of this formulation is that it can be extended to the field theory in

a rather straightforward and smooth manner. The ensuing formalism for field theo-

ries based on the Hamiltonian constraint is elegant and compact, and it raises exciting

questions about both classical and quantum field theory [24, 25].8

7The word “timeless” refers to the fact that the paths are not parametrized. Time is, however, still

present as the first component of x.
8These articles also developed during my doctoral studies, but their topic is too remote to be included

as a part of this thesis.
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At the end of this section, let us derive a partial differential equation fulfilled by the

wave function ψ̃(x) represented by the PI (35). In a discretized form,

ψ̃(x) ∼
∫ N−1∏

k=1

dD+1xk

∫ N∏

k=1

dD+1pk
(2π~)D+1

e
i
~
∑N
k=1 pk·(xk−xk−1)

N∏

k=1

δ
(
Hrel(xk, pk)

)
. (39)

Observe that

−i~∂xN e
i
~pN ·(xN−xN−1) = pNe

i
~pN ·(xN−xN−1), (40)

i.e., the appearance of pN inside the PI can be traded for operating by −i~∂xN outside

the PI. Hence, the right-hand side reads (recall that xN ≡ x)

δ
(
Hrel(x,−i~∂x)

)∫ N−2∏

k=1

dD+1xk

∫ N−1∏

k=1

dD+1pk
(2π~)D+1

e
i
~
∑N−1
k=1 pk·(xk−xk−1)

N−1∏

k=1

δ
(
Hrel(xk, pk)

)
,

(41)

where integrations over pN and xN−1 have been performed. The latter identified xN−1

with x. In the limit N →∞, we find

ψ̃(x) = δ
(
Hrel(x,−i~∂x)

) ∫ x

x0

DxDp e
i
~
∫ x
x0
p·dx

δ[Hrel] = δ
(
Hrel(x,−i~∂x)

)
ψ̃(x). (42)

Applying the relativistic Hamiltonian operator on both sides of this equation, and

taking into account the identity

α δ(α) = 0 (43)

extended to operator-valued α, we arrive at the partial differential equation

Hrel(x,−i~∂x)ψ̃(x) = 0. (44)

This equation can be viewed as a generalization of the Schrödinger equation to the

relativistic formalism. For Hrel given by Eq. (34), which describes non-relativistic sys-

tems, we recover the standard Schrödinger equation

[−i~∂t +H(x,−i~∂x)] ψ̃(t,x) = 0, (45)

while in the case of a free relativistic particle, Eq. (38), we obtain the Klein-Gordon

equation [
−~2

c2
∂2
t + ~2∂2

x −M2c2

]
ψ̃(t,x) = 0. (46)

Let us remark that the operator δ
(
Hrel(x,−i~∂x)

)
serves as a projector on the

space of solutions of Eq. (44). Indeed, for any wave function φ(x), the wave function

δ(Ĥrel)φ(x) satisfies

Ĥrel

(
δ(Ĥrel)φ(x)

)
= 0, (47)

due to the identity (43).
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3 Path-integral approach to the Wigner-Kirkwood expan-

sion

Path integrals that contain only real quantities, such as in Eq. (13), occur naturally in

statistical quantum mechanics, where the central role is played by the Gibbs operator

e−βĤ . (48)

Here, β = 1/(kBT ) is the inverse temperature, and kB the Boltzmann constant. For a

fixed number of particles, the partition function is obtained by taking the trace of the

Gibbs operator,

Z(β) = Tr e−βĤ , (49)

whence the equilibrium density matrix is just a normalized version of the Gibbs operator,

e−βĤ

Z(β)
. (50)

PI representation of the matrix elements of the Gibbs operator (sometimes called the

Feynman-Kac formula) follows from Eqs. (6) and (13) by setting t − t0 = β, t′ = τ/~,

and M →M/~2:

ρ(xa,xb, β) ≡ 〈xb| e−βĤ |xa〉 =

∫ x(β~)=xb

x(0)=xa

Dx(τ)e−
1
~
∫ β~
0 dτ [M2 ẋ2+V (x)]. (51)

(We rescaled the parameter t′ to comply with the form that is usual in the literature – see

Ref. [2].) Note that the integrand in the exponent of this PI is the classical Hamiltonian

(the energy of the system), expressed in terms of the position variable x and the velocity

ẋ.

In the article of Appendix A, Ref. [13], we develop the Wigner-Kirkwood expansion

[26, 27], which approximates the PI (51) in the regime of small β, i.e., high temperatures.

In fact, we consider a slightly more general situation, in which the kinetic term in the

PI (51) assumes the form
∑D

j=1
Mj

2 ẋ
2
j , to allow for various particle species.

It is illuminating to introduce dimensionless time and space variables, s and ξ, by

x = xa + Λξ,

τ = β~s, (52)

where Λ = diag(λ1, . . . , λD) is a diagonal matrix with the entries

λj =

√
β~2

Mj
, (53)
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which are identified as the thermal de Broglie wavelengths. The PI representation of

ρ(xa,xa, β) (we have set xb = xa for simplicity) now reads

ρ(xa,xb, β) =
1

det Λ

∫ ξ(1)=0

ξ(0)=0
Dξ(s)e−

∫ 1
0 ds[

1
2
ξ̇2+βV (xa+Λξ)]. (54)

For small β, it is legitimate to expand the potential into a Taylor series around the

point xa, and, moreover, expand in β the potential part of the PI weight factors. The

result is a power series in β and ~, multiplied by the classical (i.e., ~-independent) factor

e−βV (xa). This series features derivatives of the potential V , and model-independent

coefficients Q (see Eqs. (14–16) in the article of Appendix A).

In the one-dimensional case, the Q coefficients can be given a more explicit form of

Eq. (26) in App. A. This expression is simple enough to be implemented on a computer.

Hence, using the Mathematica software, we managed to drive the Wigner-Kirkwood

expansion up to the 18th order in β, with first eight orders shown explicitly in Table I

of the article in App. A.

As an example, we considered the one-dimensional anharmonic oscillator, and cal-

culated high-temperature expansions of certain thermodynamic quantities. We also

commented on the possibility to generalize our results to off-diagonal matrix elements

(xb 6= xa). This can be done in principle, but the complexity of calculations proved to

be beyond the scope of the paper.
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4 Local-time representation of path integrals

Before introducing the concept of local times, let us first talk about the role of PI’s in

the quantum field theory.

4.1 Path integrals in quantum field theory

Quantum field theory, in its modern formulation, is also based on the concept of inte-

gration over a space of functions [9, 10]. Here, however, the fluctuating trajectories x(t)

(where t is a one-dimensional parameter) are replaced by fluctuating fields φ(xµ), where

xµ ≡ x is a space-time point, and φ may be a real or complex, or even Lie-algebra or

Grassmann-valued quantity.

One way to introduce field-theoretic PI is to start with a generic self-adjoint operator

A(xµ, ∂/∂xµ) with spectral lower bound, that acts on a space of real-valued functions

(for simplicity), and consider its Green function G, i.e., a function, which satisfies the

equation

A(x, ∂/∂x)G(x, x0) = δ(x− x0). (55)

(Here, the δ-function is, of course, multidimensional.)

To draw analogy with finite-dimensional matrices, we can rewrite the left-hand side

as

A(x, ∂/∂x)G(x, x0) =

∫
dx′δ(x− x′)A(x′, ∂/∂x′)G(x′, x0), (56)

which is now interpreted as a continuous matrix multiplication of two continuous matri-

ces, δ(x− x′)A(x′, ∂/∂x′) and G(x′, x0), over the index x′.

All discrete-matrix formulas can now be, at least on the formal level, extended to

the continuous case. Of particular utility is the identity

− 1

2

∫
dxφ(x)A(x, ∂/∂x)φ(x) +

∫
dx J(x)φ(x) =

=− 1

2

∫
dx

[
φ(x)−

∫
dx′G(x, x′)J(x′)

]
A(x, ∂/∂x)

[
φ(x)−

∫
dx′′G(x, x′′)J(x′′)

]

+
1

2

∫
dx dx′ J(x)G(x, x′)J(x′), (57)

which can be used to calculate the continuous infinite-dimensional Gaussian integral:

W0[J ] ≡ N0

∫
Dφ(x) exp

[
−1

2

∫
dxφ(x)A(x, ∂/∂x)φ(x) +

∫
dx J(x)φ(x)

]
=

= exp

[
1

2

∫
dx dx′ J(x)G(x, x′)J(x′)

]
, (58)
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where the normalization N0 is determined from the requirement W0[0] = 1. The infinite-

dimensional integral, taken over all field configurations φ(x), is the field-theoretic PI.9

The quantity W0 is a functional of the source J(x), which is an arbitrary function of x.

In quantum field theory, the term quadratic in φ in Eq. (58) is identified with a

classical free-field action

A0[φ] =
1

2

∫
dxφ(x)A(x, ∂/∂x)φ(x). (59)

Interactions are then introduced into the action as higher-order terms, e.g.,
∫
dxφ4(x).

With a total classical actionA0[φ]+Aint[φ] in hand, the quantum field theory is developed

from the generating functional

W [J ] ≡ N
∫
Dφ(x) exp

[
−A0[φ]−Aint[φ] +

∫
dx J(x)φ(x)

]
, (60)

where the normalization N is again such that W [0] = 1. For non-interacting theory,

Aint[φ] = 0, and W [J ] reduces to W0[J ].

The real form of the exponent in Eq. (60) is characteristic for the Euclidean field-

theoretic PI, which finds applications in statistical quantum (but also classical) physics.

In elementary particle physics, natural definition of the generating functional contains

an additional imaginary factor i, and the ensuing PI is named Minkowski PI. The two

are related by the Wick rotation, much like PI’s (13) and (20) (see Ref. [10] for details).

The generating functional is used to generate the correlation (or n-point) functions

of the quantum field theory via functional differentiation:

N
∫
Dφφ(x1) . . . φ(xn) e−A0[φ]−Aint[φ] =

δ

δJ(xn)
. . .

δ

δJ(x1)
W [J ]|J=0. (61)

For non-interacting theories, the generating functional is given explicitly by Eq. (58),

and so the right-hand side of Eq. (61) is calculable in closed form as an expression

constructed from the Green function G(x, x′) (cf. the Wick theorem). The correlation

functions (or Fourier transforms of these) are pictorially represented by the Feynman

diagrams to facilitate their assembly.

For interacting theories, however, an explicit formula for the generating functional

is, in most cases, not known. The standard way to tackle the problem is then to employ

9Some author use the term functional integral for the field-theoretic PI. On the other hand, some other

authors refer to quantum-mechanical PI as functional integral. In the absence of a universal agreement

about the nomenclature, we find it more safe to use the term path integral with an appropriate adjective

in front.
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again functional derivatives to pull the interaction part of the action outside the PI, i.e.,

to cast

W [J ] =
N
N0

e−Aint[δ/δJ ]W0[J ]. (62)

After expanding the variational differential operator e−Aint[δ/δJ ] in series, the n-point

functions of the interacting theory can be expressed in terms of the m-point functions

(m ≥ n) of the corresponding free-field theory. There exist rather sophisticated tech-

niques to organize and manipulate the ensuing perturbation series (see, e.g., Ref. [28]),

which, however, we will not discuss in this thesis.

In fact, we will not be concerned with the quantum field theory on its own. For our

studies of the local times, it will suffice to consider the field-theoretic PI representation

of the Green function from Eq. (55), i.e., of the free-field two-point function,

G(x, x0) =
δ

δJ(x)

δ

δJ(x0)
W0[J ]|J=0

=

∫
Dφ(x′)φ(x)φ(x0) exp

[
−1

2

∫
dx′φ(x′)A(x′, ∂/∂x′)φ(x′)

]
∫
Dφ(x′) exp

[
−1

2

∫
dx′φ(x′)A(x′, ∂/∂x′)φ(x′)

] , (63)

where the normalization N0 has been now written out explicitly.

4.2 Local times of path integrals

Throughout this section, we shall consider the spatial dimensionality D = 1. Drawing

our attention back to PI (13), one can ask the following question: Given a point X in

R, what portion of time do the trajectories x(t′) spend, on average, in the vicinity of X?

(The situation is depicted in Fig. 1.) Formally, we look for the mean value

∫ x(t)=x

x(t0)=x0

Dx(t′)L(X) e
−
∫ t
t0
dt′[M2 ẋ

2+V (x)] (64)

of the local time functional

L[x(t′)](X) ≡
∫ t

t0

dt′δ(X − x(t′)), (65)

evaluated over all trajectories connecting the points (t0, x0) and (t, x).

Averages of the products L(X1) . . . L(XN ), where N is arbitrarily large, are the N -

point functions of a new stochastic process indexed by the variable X — the local time

process [29]. The trajectories L(x) of this process are continuous functions, which are

positive, and compactly supported.

Our aim is to rewrite the PI (13) as an integral over the local-time profiles L(x) with

appropriate weight factors. This goal has been achieved in the article of Appendix B,
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Figure 1: Generic trajectories x(s), in a rescaled time variable s = t′/t, and their

corresponding local-time profiles L(x), for x0 = x ≡ xa.

Ref. [14]. Our primary motivation there originated in statistical quantum mechanics.

We have seen in Sec. 3, how matrix elements of the Gibbs operator, Eq. (51), can be

approximated at high temperatures. In this regime, quantum fluctuations of the PI

trajectories x(s) are small (the red dashed representative curve in Fig. 1), and they are

constrained in the vicinity of the endpoint xa (if we consider, for simplicity, xb = xa). As

temperature decreases, the inverse temperature β grows, and this makes the quantum

fluctuations more and more significant (the green solid curve at Fig. 1). The PI weight

factors are then being dominated by the potential part of the action, as is most easily

visible from the rescaled representation Eq. (54).

To successfully approximate the PI (51) at low temperatures, it is therefore essential

to have a good information about the time that the PI trajectories spend in the vicinity

of a given point X. When X is the minimum of the potential function V (x), and the

trajectory x(τ) stays in its neighborhood for a long time, then the weight factor

exp

[
−1

~

∫ β~

0
dτ V (x(τ))

]
(66)

is relatively large, compare to the trajectories that stay further away from the potential

minimum.

Let us be more precise, and rewrite the potential part of the action as

∫ β~

0
dτ V (x(τ)) =

∫

R
dX L(X)V (X), (67)
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where L(X) is given by Eq. (65) with t0 = 0, t = β~, and t′ ≡ τ . The PI representation

of the matrix elements of the Gibbs operator, Eq. (51), now reads

ρ(xa, xb, β) =

∫ x(β~)=xb

x(0)=xa

Dx(τ)e−
1
~
∫ β~
0 dτ M

2
ẋ2
e−

1
~
∫
R dX L(X)V (X). (68)

This is still a Feynman PI, i.e., a PI over trajectories x(τ). Our task is now to rewrite

it as a PI over the local-time profiles L(x),

ρ(xa, xb, β) =

∫
DL(x)W̃[L;β, xa, xb]e

− 1
~
∫
R dX L(X)V (X), (69)

where the trajectories L(x) are positive and compactly supported, and their weights W̃
are expected to depend on xa, xb, and β. In fact, due to the normalization of the local

time, ∫

R
dxL(x) = β~, (70)

we may assume the form

W̃[L;β, xa, xb] = δ

(∫

R
dxL(x)− β~

)
W[L;β, xa, xb]. (71)

To find an explicit expression for the weight factors, we adopt an indirect approach via

a differential equation, and the field-theoretic PI representation, guided by the fact that

the trajectories in the desired local-time PI representation have x as their independent

variable.

Let us outline the main steps of the derivation. Details can be found in Sec. IV of

the article in Appendix B.

First, observe that the quantity ρ(x0, x, β) = 〈x| e−βĤ |x0〉 satisfies the differential

equation (the diffusion, or heat equation)

(∂β + Ĥx)ρ(x0, x, β) = 0, (72)

with the initial condition

ρ(x0, x, 0+) = δ(x− x0). (73)

In the Laplace picture, defined by

ρ̃(x0, x, E) =

∫ ∞

0
dβ e−βEρ(x0, x, β), (74)

we have the equation

(E + Ĥx)ρ̃(x0, x, E) = δ(x− x0). (75)

21



Recalling Eq. (55), we identify ρ̃ with the Green function of the differential operator

E + Ĥx, and hence we can represent it via Eq. (63) as

ρ̃(x0, x, E) =

∫
Dφ(x′)φ(x)φ(x0) exp

[
−1

2

∫
dx′φ(x′)(E + Ĥx′)φ(x′)

]

∫
Dφ(x′) exp

[
−1

2

∫
dx′φ(x′)(E + Ĥx′)φ(x′)

] . (76)

The E in the denominator makes a serious obstacle to the inversion of the Laplace

transform. To circumvent this obstacle, we employ the replica trick

a

b
= lim

D→0
abD−1, (77)

which allows us to rewrite the right-hand side of Eq. (76) as a single field-theoretic PI

over a D-component field (see Eq. (13) in the article of App. B).10

Further steps are detailed in App. B. Due to the form of the Hamiltonian,

Ĥx = − ~2

2M

d2

dx2
+ V (x), (78)

we may take advantage of the radial symmetry in the replica space, and reduce the PI

trajectories to their radial part η(x).

The final formula for the local-time PI representation of the matrix elements of the

Gibbs operator reads (denoting xa ≡ x0, xb ≡ x)

ρ(xa, xb, β) = lim
X±→±∞

lim
D→0

lim
η±→0

η(X+)=η+∫

η(X−)=η−

Dη(x) δ

(∫ X+

X−
η2dx− β

)
W[η] e

−
∫X+
X− V (x)η2dx

,

(79)

where the weight factors are given by

W[η;xa, xb, β] =
2

D
(η−η+)

1−D
2 η(xa)η(xb) exp

{
−
∫ X+

X−
dx

[
~2

2M
η′2 +

M

~2

∆(x)

8η2

]}
. (80)

(Cf. Formula (28) in App. B.) The limit D → 0 originates from the replica trick, while

η± and X± are merely suitable regulators on the η and x-axes, respectively. At each

x-slice, the integral over η(x) runs from 0 to +∞, and η itself is related to the local time

L via

η2(x) =
L(x)

~
. (81)

10We emphasize that D refers to the number of components of the replica field, and not to the number

of spatial dimensions, which has been set to one.
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Finally, ∆ is a piecewise constant function

∆(x) =




−1 for x ∈ [min(xa, xb),max(xa, xb)]

(D − 1)(D − 3) otherwise.
(82)

We have therefore obtained the form of the local-time PI anticipated on heuristic

grounds in Eq. (69), with the local-time profiles expressed naturally in terms of the

quantity η, i.e., the square root of L. Looking closely at the weight factors (80), we

conclude that η follows the Bessel stochastic process, confirming previous results [30].

For the physics community, it may be enlightening to identify the total exponent in PI

(79), including the weight factor, with the action for the radial harmonic oscillator with

variable frequency V (x) (see Ref. [31] or Sec. IV.C in App. B).

In our article, we also discussed the connection of the local-time PI with the Sturm-

Liouville theory (Sec. IV.D in App. B), and incorporated arbitrary functionals of the

local time into our PI representation (Sec. V).

Finally, let us concentrate on the behaviour of the Gibbs operator at low tempera-

tures, which was the original motivation for taking the adventure of deriving the local-

time PI. For T → 0 (i.e., β →∞), the spectral decomposition demonstrates that11

ρ(xa, xb, β) =
∑

n

e−βEnψn(xa)ψn(xb)
β→∞∼ e−βEgsψgs(xa)ψgs(xb), (83)

where ψgs is the ground state, and Egs the ground state energy.

It is not at all obvious how this result could be derived from the Feynman PI (51),

but, and this is a great advantage of our approach, it can be obtained from the local-time

PI (79). On the heuristic level, relegating the details to Sec. VI of the article in App. B,

we observe that the total action in PI (79), i.e., the expression in the exponent, reads

∫ X+

X−
dx

[
β~2

2M
η′2 + βV (x)η2 +

M

β~2

∆(x)

8η2

]
, (84)

where we have rescaled η by a factor of
√
β. In the large-β limit, the last term is

negligible, and the PI in (79) is dominated (cf. the saddle-point method) by the trajectory

that minimizes the functional

∫ X+

X−
dx

[
~2

2M
η′2 + V (x)η2

]
= 〈η| Ĥ |η〉 , (85)

11It is useful to remind that in one-dimensional quantum mechanics, all bound states ψn can be chosen

real [32].
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under the normalization constraint

∫ X+

X−
η2dx = 〈η|η〉 = 1. (86)

But such η is, according to the Rayleigh-Ritz variational principle, exactly the ground-

state wave function ψgs.
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5 Fractional diffusion

At the beginning of Sec. 2, we formed the heat equation (4), and derived for its Green

function the PI representation (13). In Sec. 2.1, we introduced the phase space PI (29),

and demonstrated that it can serve as a representation for the Green function of a more

general differential equation (44). In addition, according to Sec. 4.1, the latter Green

function can be represented also by means of the field-theoretic PI (63).

In fact, there exists still one more (widely-used) PI representation applicable to

Eq. (44), which we shall now derive. In abstract notation, Eq. (44) reads

Ĥrel|ψ̃〉 = 0, (87)

where Ĥrel = Hrel(x̂, p̂), x ≡ (t,x), and p ≡ (E,p). Its Green function Ĝ satisfies, by

definition,

Ĥrel Ĝ = 1, (88)

that is,

Ĝ = Ĥ−1
rel . (89)

Now, an inverse can be handled with the Schwinger parametrization trick,

Ĥ−1
rel =

∫ ∞

0
ds e−sĤrel , (90)

and therefore we find, in the position space,

G(x, x0) =

∫ ∞

0
ds 〈x| e−sĤrel |x0〉 . (91)

Regarding s as a time parameter, and x as a collection of all position variables, the

transition amplitudes on the right-hand side can be readily represented by the familiar

phase-space PI (29), where we set t0 = 0, t = −i~s, and make the replacements x→ x,

p→ p. Namely,

〈x| e−sĤrel |x0〉 =

∫ x(s)=x

x(0)=x0

Dx(s′)Dp(s′) e
∫ s
0 ds

′[ i~p·ẋ−Hrel(x,p)]. (92)

Eqs. (91) and (92) provide once more a PI representation of the Green function G(x, x0).

In the rest of this section, will be concerned with the operator

Hrel(p̂) = (iÊ)1−γ +Dλ(p̂2)λ/2, (93)

where Dλ is a constant, and with the corresponding differential equation
[
∂1−γ
t +Dλ(−∆)λ/2

]
P (t,x) = δ(t)δ(D)(x), (94)
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where ∆ ≡ ∂2
x is the Laplace operator (we have set ~ = 1). The parameters γ and λ

are in general real numbers, and so the operators on the left-hand side are fractional

differential operators [35], which we define in the Fourier space via

∂1−γ
t eiEt = (iE)1−γeiEt

(−∆)λ/2eip·x = (p2)λ/2eip·x. (95)

Equation (94) is called fractional Fokker-Planck equation, or double fractional Fokker-

Planck equation to emphasize the presence of both, temporal and spatial, fractional

derivatives. For γ = 0 and λ = 2, it reduces to the standard diffusion equation, Eq. (3).

The function P (t,x) is the probability distribution of a fractional (or anomalous)

diffusion process (see monograph [36]) starting at time t = 0 at the spatial origin. Since

Ĥrel, as given by Eq. (93), is x-independent, the knowledge of P is equivalent to the

knowledge of the Green function G,

G(x, x0) = G(x− x0, 0) = P (x− x0). (96)

Making use of the Schwinger representation (91), the distribution function P can be

cast

P (t,x) =

∫ ∞

0
ds e−s[∂

1−γ
t +Dλ(−∆)λ/2]δ(t)δ(D)(x). (97)

The temporal and spatial differential operators certainly commute. Therefore, the ex-

ponential factorizes,

e−s[∂
1−γ
t +Dλ(−∆)λ/2] = e−s ∂

1−γ
t e−sDλ(−∆)λ/2 , (98)

and we obtain

P (t,x) =

∫ ∞

0
dsPT (t, s)PX(x, s), (99)

where

PT (t, s) = e−s ∂
1−γ
t δ(t) =

∫ ∞

−∞

dE

2π
e−s (iE)1−γ

eiEt, (100)

and

PX(x, s) = e−sDλ(−∆)λ/2δ(D)(x) =

∫

RD

dDp

(2π)D
e−sDλ(p2)λ/2eip·x. (101)

The functions PT and PX , with s treated as a parameter, are known as Lévy stable

distribution functions [33]. They occur naturally as attractors in the generalized central

limit theorem [34].12

12By the classical central limit theorem, the properly normed sum of a set of random variables, each

with finite variance, will tend towards a normal distribution as the number of variables increases. If the

assumption on finite variance is relaxed, the limiting distribution may be a stable distribution.
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The word “stable” refers to the following property of these distributions: A sum

of two Lévy-distributed random variables is again Lévy-distributed. The emblematic

feature of the Lévy stable distributions is that they favour rare event, i.e., large values

of the random variable, when compared with the Gaussian distribution. Whereas the

“tails” of the Gaussian distribution drop-off exponentially, the tails of a generic Lévy

distribution are “heavy” — they follow an inverse power law.

In the article of Appendix C, Ref. [15], we investigate various properties of the

distribution function P (t,x), and of its constituents PT (t, s) and PX(x, s), and visualise

them with a number of plots. We note that the representation (99) can be viewed as

a weighted superposition of the single-fractional distributions PX , with the pseudotime

parameter s smeared according to the distribution PT . The double-fractional diffusion

process is therefore not Markovian with respect to the physical time t, but possesses

a memory quantified by the smearing kernel PT . This fact can be traced back to the

appearance of the fractional time derivative, which is, in fact, an integral operator

∂1−γ
t f(t) =

∫ ∞

−∞
dt′
∫ ∞

−∞

dE

2π
(iE)1−γeiE(t−t′)f(t′) =

∫ t

−∞
dt′

(t− t′)γ−2

Γ(γ − 1)
f(t′). (102)

(We have used Formula 3.382.7 from Ref. [37], but have not discussed subtle regulariza-

tion issues.)

Other possibility to cast the distribution function P is by means of the Fox H special

function, which is conveniently defined by a contour integral (details can be found in

Sec. II.B of App. C).

Also, the PI (92) can be used to represent the function P . However, for an x-

independent operator Ĥrel, such PI is rather redundant, and would only be useful if we

wanted to introduce a potential term of some form.

5.1 Origin of fractional powers in strongly interacting many-body sys-

tems

We should explain the physical origin of the fractional powers of the space and time

derivatives in Equation (94) above. Such powers occur naturally in many-particle sys-

tems if the interaction strength or the range becomes very large.

Many-particle systems are described by a second-quantized field theory with a free-

particle action

A0 =

∫
d4xφ†(t,x)

[
i~∂t +

~2

2M
∆− V (x)

]
φ(t,x), (103)
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and an interaction of the type

Aint =
g

4!

∫
d4x (φ†φ)2. (104)

Introducing the generating functional of connected correlation functions [10],

Z[J ] = − lnW [J ], (105)

where W is given by Eq. (60), the field expectation values are obtained by functional

differentiation,

Φ(x) ≡ 〈φ(x)〉 =
δZ[J ]

δJ(x)
. (106)

The effective action of the field theory is defined via the functional Legendre transform

Γ[Φ] = Z[J ]−
∫
d4xJ(x)Φ(x). (107)

As long as the interaction strength g is small, the initial action A = A0 + Aint is

a good approximation to the effective action (cf. the mean-field approximation). By

extremizing A[Φ], we obtain the Gross-Pitaevski equation

[
i~∂t +

~2

2M
∆− V (x)− gΦ†Φ

]
Φ(t,x) = 0 (108)

In general, the perturbation expansion leads to an effective action in the form of

a power series in gΦ†Φ. This series is divergent and must be resummed. For large

interaction strength g, this produces anomalous power behaviours in the field strength

as well as in the momenta [28]. Therefore, by extremizing the resummed effective action,

we arrive at the fractional Gross-Pitaevski equation [38, 39]

[
(i∂t)

1−γ +Dλ(−∆)1−η/2 − V (x)− δ + 1

4
gc|Φ|δ−1

]
Φ(t,x) = 0, (109)

where gc is the renormalized coupling constant.

The free-field part of this field equation is of the fractional Fokker-Planck type,

Eq. (94), in which momentum and energy appear with powers different from λ = 2 and

γ = 0, respectively.

In real physical systems, the large interparticle interaction strength can be achieved

by tuning the external magnetic field to hit the Feshbach resonance [40].
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6 Quantum walks with anyons

In this last chapter, we will study a discrete quantum process — the quantum walk. It can

be described by a sum over the walker’s histories, i.e., by a discrete type of path integral.

The particles that will take part in this walk will have exotic statistical properties,

generalizing those of bosons and fermions. They will be referred to as anyons. We will

investigate the influence of this exotic exchange statistics, and of a certain disorder in

the surrounding environment on the properties of the quantum walk.

There are several concepts that need to be introduced. We will start from a classical

random walk to define the quantum walk by analogy. Then we will talk about a disorder-

induced phenomenon of Anderson localization, and conclude the preliminary discussion

by introducing anyons, and their basic properties. Finally, we will combine everything

together in the investigation of “transport properties of anyons in random topological

environment”, which is the title of the article in Appendix D, Ref. [16].

6.1 Classical random walk

The diffusion equation (3) is used to describe a continuous-time motion of a particle (or

rather a statistical ensemble of particles) through a continuous medium. The discrete

analogue of this process is commonly referred to as the random walk, or, colloquially,

the drunken sailor problem. In the discrete setting, the walker makes jumps, one at a

time, on a spatial lattice, and there is a certain probability distribution ascribed to the

directions of subsequent jumps.

Let us assume, for simplicity, that the lattice is one-dimensional (the set of integers),

and that the walker hops onto a neighboring site with probability 1/2 in both directions.

Starting at time t0 = 0 at position x0 = 0, the probability to find the walker at time

t ∈ Z+ at site x ∈ Z is given by the binomial distribution

pRW(x, t) =
1

2t

(
t
t+x

2

)
. (110)

This result can be derived either from the recurrence relation

pRW(x, t) =
1

2
pRW (x+ 1, t− 1) +

1

2
pRW (x− 1, t− 1) (111)

supplemented by the initial condition pRW(x, 0) = δx,0, or directly by counting the

number of paths that reach the point x in t steps, each path being weighted by the

factor (1/2)t.

Note that the first method is a discrete analogue of the diffusion equation (3), while

the latter method resembles path integration. Indeed, in the limit of infinitesimal time
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steps and lattice spacing, the random walk process goes over to the Brownian motion,

the binomial distribution (110) converges to the normal distribution, Eq. (2), and the

difference equation (111) turns into the differential equation (3) [41].

The spreading rate of a random walk is commonly quantified by the variance as a

function of time,

σ2(t) ≡
∑

x∈Z
p(x, t)

(
x−

∑

x′∈Z
p(x′, t)x′

)2

. (112)

In particular, for the probability distribution p = pRW, the second term in the brackets

vanishes due to the symmetry x→ −x of Formula (110). Hence, we find the recurrence

relation

σ2
RW(t) = σ2

RW(t− 1) + 1, (113)

with the initial condition σ2
RW(0) =

∑
x δx,0x

2 = 0. This is solved by

σ2
RW(t) = t, (114)

yielding a linear increase of the random-walk variance in time.

6.2 Quantum walk

Quantum walk is a quantum-mechanical analogue of the classical random walk [42].

In the quantum setting, lattice points are represented by vectors in a discrete-position

Hilbert space

Hspace = {|x〉}x∈Z, (115)

and the hopping of the walker is generated by a unitary coin operator U , which acts in

a two-dimensional Hilbert space

Hcoin = {|0〉 , |1〉}. (116)

For definiteness, we take the Hadamard coin, represented in the {|0〉 , |1〉} basis by the

matrix

U =
1√
2

(
1 1

1 −1

)
. (117)

The state of the walker is described by a wave-function

|ψ(t)〉 ∈ Hspace ⊗Hcoin, (118)

which evolves in discrete time steps according to

|ψ(t)〉 = (T0U)t |ψ(0)〉 . (119)
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Here, T0 is the conditional shift operator,

T0 ≡
∑

x∈Z
(|x− 1〉 〈x| ⊗ |0〉 〈0|+ |x+ 1〉 〈x| ⊗ |1〉 〈1|) , (120)

which propagates |0〉-coin modes “to the left”, and |1〉-coin modes “to the right”. (See

Fig. 2 below.)

Let us assume the initial state to be localized,

|ψ(0)〉 = |0〉 〈0|space ⊗ |0〉 〈0|coin . (121)

In order to obtain the walker’s position distribution after t steps, we form the reduced

spatial density matrix

ρspace(t) = Trcoin |ψ(t)〉 〈ψ(t)| , (122)

where the coin degree of freedom has been traced out, and consider its diagonal ele-

ments13

pQW(x, t) ≡ 〈x| ρspace(t) |x〉 . (123)

Enumerating all possible walker’s histories, which follow the instructions imple-

mented by operators T0 and U , we can derive the following path-integral-like repre-

sentation of the position distribution:

pQW(x, t) =
∑

(~a,~a′) x

(−1)z(~a,~a
′)

2t
, (124)

where (~a,~a′)  x denotes all pairs of paths that lead from the origin to the site x in t

steps, and the phase factors z are given, for the Hadamard coin, Eq. (117), by

z(~a,~a′) =

t−1∑

k=1

(akak+1 + a′ka
′
k+1). (125)

Formula (124) certainly resembles a PI. It is a sum over histories weighted by appropriate

phase factors. In fact, the sum is finite and it runs over pairs of paths, as we are

representing the density matrix (122), and not the state |ψ(t)〉 itself. The quantum

nature of the problem is reflected in the fact that the weights (−1)z can be both positive

and negative, which results in complicated interference effects.

13Note that

〈x| ρspace |x〉 = Trspace (|x〉 〈x| ρspace) ,

i.e., diagonal elements are the expectation values of the position operator |x〉 〈x| in the quantum state

ρspace.
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Although an explicit form of pQW is not known, computer simulations and approxi-

mation methods show that quantum walker behaves quite differently from the classical

one [43]. In particular, the variance of the quantum walk distribution exhibits a quadratic

growth in time,

σ2
QW(t) ∼ t2, (126)

which should be compared with the linear behaviour of the classical random walk,

Eq. (114). Such speed-up effects are ubiquitous in the quantum information science

[44], which aims to build a quantum computer that would be orders of magnitude faster

than its classical counterpart we use today.

6.3 Anderson localization

In general, the transition amplitudes of a quantum particle are obtained from the Feyn-

man PI, Eq. (20). In the case when the potential V (x) is disordered, the phase factors

corresponding to different paths sum up in such a way that they cause destructive in-

terference effect. If the disorder is strong enough, the destructive interference can even

stop the particle from propagating.

This phenomenon is rather general, and applies not only to quantum waves, but

also, e.g., to electromagnetic and acoustic classical waves [45]. It was proposed by P. W.

Anderson in [46], hence the name Anderson localization.

When the quantum particle is localized, its wave function assumes a characteristic

exponential shape

|ψ(t,x)|2 ∝ e−|x|/ξloc , (127)

where ξloc is the localization length. The form of the right-hand side not only peaks the

particle around the origin, but, more importantly, does not change in time, i.e., the peak

does not broaden.

In Section 6.5, we propose an unusual mechanism that introduces random phases on

top of the quantum walk protocol, Eq. (119), and analyze under what circumstances this

mechanism leads to the localization of the walker. (Detailed analysis is carried out in

the article of Appendix D.) But first of all, we need to say a few words about anyons.

6.4 Anyons

Anyons were introduced as hypothetical particles in two-dimensional spaces [47] with

exchange statistics that generalizes that of bosons and fermions. What makes 2D systems

extraordinary is a rich structure of the fundamental group of the n-particle configuration

manifold (see also [48]).
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Although purely theoretical in the beginning, anyons gained physical significance

after it was realized that effective quasi-particles in the fractional quantum Hall effect

carry fractional charge, and obey an exotic exchange statistics [49, 50].

The defining property of anyons is that the wave function which represents a system

of identical particles acquires a generic phase factor when two particles are exchanged.

The phase factors form a unitary representation of the braid group, which can be either

Abelian (complex units eiφ), or non-Abelian (unitary matrices). Accordingly, anyons

are divided into two classes: Abelian, and non-Abelian. The first class has been studied

in the context of statistical physics and thermodynamics [51], while the second class has

been argued to play an essential role in the quest for building a (topological) quantum

computer [52].

6.5 Anyonic quantum walks in random topological environments

The anyonic statistics is capable of generating additional phases in our quantum walk of

Sec. 6.2. For this purpose, we place static anyons onto the links between neighbouring

sites, and envisage the walker to be a distinguished anyon of the same kind (see Figure 2).

We demand, for simplicity, that the walker moves in a counter-clockwise sense around

x

x−1 x

x+1

x+1

x−1

Figure 2: Walking anyon braids around islands populated by static anyons.

thus formed islands populated by the static anyons. Our model is quasi-one-dimensional

in the sense that although the admissible positions of the walker lie in a line, the second

dimension is needed to perform the counter-clockwise braiding.

The conditional shift operator T0, defined in Eq. (120), is now extended to a condi-

tional shifting and braiding operator

T ≡
∑

x∈Z
(|x− 1〉 〈x| ⊗ |0〉 〈0| ⊗ bx−1 + |x+ 1〉 〈x| ⊗ |1〉 〈1| ⊗ bx) , (128)

where {bx}x∈Z are the braid matrices that form a unitary representation of the braid

group, which may be either Abelian, for Abelian anyons, or non-Abelian, for non-Abelian

anyons. The braid matrices act on an additional Hilbert space, the fusion space Hfusion,
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which implements the anyonic exchange statistics.14

The walker’s wave functions is a vectors in the total Hilbert space

Hspace ⊗Hcoin ⊗Hfusion, (129)

whose time evolution is determined by

|ψ(t)〉 = (TU)t |ψ(0)〉 , (130)

where U is the Hadamard matrix (117).

The spatial distribution of the anyonic walker after t steps is given by

pAQW(x, t) = 〈x| ρspace(t) |x〉 , (131)

where

ρspace(t) = TrfusionTrcoin |ψ(t)〉 〈ψ(t)| (132)

is the reduced density matrix, where the coin and the fusion degrees of freedom have

been traced out.

To elucidate the right-hand side of Eq. (131), we rewrite it in a sum-over-histories

representation analogous to Eq. (124),

pAQW(x, t) =
∑

(~a,~a′) x

(−1)z(~a,~a
′)

2t
TrY(~a,~a′). (133)

The pairs of trajectories (~a,~a′) entangle with the worldlines of the static anyons (see

Fig. 2 in App. D). When their endpoints are glued together, the ensuing knots and

links, and their topological invariants (namely, the Jones polynomial), produce the extra

factors TrY(~a,~a′). These arise from the trace over the fusion space, and therefore depend

on the type of anyons one considers.

In the article in Appendix D, Ref. [16], we study quantum walks with both, Abelian

and non-Abelian, types of anyons. In the Abelian case, we consider various exchange

phases eiφ. In the non-Abelian case, we analyze a specific model, the so-called Ising

anyons. Further distinction is made with respect to the regularity of the background

of the static anyons. We consider two cases. First, the uniform density case, where

the particles are placed one per island, and second, the disordered case, where the

occupations of the islands are random. In the latter case, we can expect some Anderson

14Detailed exposition and analysis of the fusion spaces is rather involved and goes well beyond the

scope of this introductory chapter. We refer an interested reader to Refs. [52, 53, 54].
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localization effects, since the walker picks up random phases when passing around the

randomly populated islands.

The results of our analysis are summarized in Fig. 3, where we plot, for these various

cases, time dependency of the variance of the walker’s position distribution (131).
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Figure 3: Time dependency of the variance of the walker’s position distribution is

shown for various settings: (UA) uniform density, Abelian anyons; (RA) random density,

Abelian anyons ; (UnA) uniform density, non-Abelian anyons; (RnA) random density,

non-Abelian anyons. For random background densities, the plot shows average values,

and standard deviation bars.

In the case of Abelian anyons and regular background (UA), the anyonic quantum

walk reduces to the ordinary quantum walk of Sec. 6.2, since every trajectory picks up

the same overall statistical phase. The variance grows like in Eq. (126),

σ2
UA(t) = σ2

QW(t) ∼ t2, (134)

i.e., the walker’s spreading is ballistic. In the disordered Abelian case (RA), the variance

saturates around a constant asymptotic value,

σ2
RA(t) ∼ const, (135)

and so we observe the Anderson localization taking place.
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For (Ising) non-Abelian anyons in a uniform background (UnA), we find a diffusive

behaviour (qualitatively the same as for the classical random walk, Eq. (114)),

σ2
UnA(t) ∼ t, (136)

which persists even for random background densities (RnA),

σ2
RnA(t) ∼ t, (137)

only the slope becomes more gentle.15

The classical spreading of the non-Abelian anyonic walker is attributed to the entan-

glement in the exponentially growing fusion space of non-Abelian anyons.

15In the latter case, the specific value of the slope is probably a result of the specific way, in which we

introduce randomness, and is not expected to be universal.

36



7 Conclusions

Path integrals have been around in physics for more than 70 years, and over the time

they have become a standard mathematical tool widely used in the quantum theory.

In quantum mechanics, the Feynman PI provides a valuable insight into the structure

of the theory, and helps to build physical intuition, although for most calculations the

Schrödinger’s formulation proves to be more efficient. In quantum field theory, however,

the PI formulation overshadows the canonical approach on both, the pedagogical and

computational, sides.

Many applications of PI’s in and also outside of physics have been found and discussed

over the past decades. It might thus seem that the field has been explored so exhaustively

that finding new applications would be quite hard. Yet, in this thesis, I have tried to

persuade the reader that PI techniques are worth to keep in mind when approaching a

physical problem, as they can provide surprising shortcuts on the route to the solution.

This is due to the intuition and insights gained by the PI point of view.

In this respect, let me recall the first of my research topics, the Wigner-Kirkwood

high-temperature expansion (Sec. 3 and Appendix A). Although this expansion has

been known for a long time [26, 27], the Feynman PI representation (54) of the relevant

quantity makes its derivation very clear and intuitive as it supplies one immediately

with an idea to expand in β, and provides also a PI representation of the expansion

coefficients, which can be later on simplified, and explicitly calculated. The resulting

formulas are so simple that even computer can evaluate them. Therefore, we can drive

the expansion in β to relatively high 18th order (in the case of a one-dimensional system).

Nowadays, the majority of theoretical physicists is more or less familiar with the

PI methods, and do not hesitate to use them to formulate their theories, or carry out

everyday calculations. On the other hand, not so many physicists study the PI on its

own. This task is usually relegated to mathematicians, who analyze the corresponding

stochastic integrals. The problem with this practice is that the language of mathe-

maticians is more precise, and therefore far more complicated, than the often heuristic

language used by physicists. In the end, many valuable results remain unappreciated

and unknown to the physics community.

The original motivation for my second research topic, the local times of path integrals

(Sec. 4 and Appendix B), was to tackle the low-temperature limit in quantum statistical

mechanics. The resulting method, however, is a general substitute for the Feynman

PI that will hopefully find concrete applications in the future. It is a practical tool

accessible to physicists, and it provides an interesting interpretation of the field-theoretic
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PI representation (63) in the framework of quantum mechanics, making a link between

the first and the second quantization. In mathematics, the local times of stochastic

processes have been studied for a long time. Let us quote, in particular, the works of

Ray [55] and Knight [56] who investigated stochastic process that describes the local

time of the Brownian motion. We rederived some of their results using the methods of

theoretical physics, hence providing a more intuitive understanding of the problem.

The third of my research topics concentrated on fractional diffusion processes, and

resulting Lévy stable distributions (Sec. 5 and Appendix C). In the literature, one

can find many ways how to represent the solutions of the single as well as the double

fractional Fokker-Planck equation [57]. Yet, I believe that our derivation that employs

the Schwinger trick is particularly instructive and compact, as it allows to systematically

reduce a doubly fractional problem to two single fractional ones. From our article it is

also clear how a potential potential term can be treated using the fractional phase-space

PI representation, Eq. (92).

A particular discrete quantum process was the object of study in the fourth research

project, the quantum walks with anyons (Sec. 6 and Appendix D). Quantum walks can

also be approached from the PI perspective, namely, the walker’s spatial distribution

can be represented by a sum over histories, with the weights depending on the protocol

that is used to define the walk. Our modification of standard, and well-investigated,

quantum walk scenarios consists in introducing anyons, particles with exotic exchange

statistics, which leads to the occurrence of complicated additional phase factors (even

non-local in the case of non-Abelian anyons). In turn, through the anyonic quantum

walk, we can study transport properties of anyons of different kinds in various environ-

ments. We showed that Abelian anyons propagate ballistically in a uniform environment,

whereas they localize if the environment is disordered. On the other hand, non-Abelian

(Ising-type) anyons exhibit a classical diffusive behaviour, whether the density of the

surrounding anyons is uniform or random. This classification could become relevant for

identification of the anyonic species in real transport experiments.

One more topic was briefly discussed in Sec. 2.1 of this thesis — the phase-space

PI (35) for the relativistic formulation of quantum mechanics based on the Hamiltonian

constraint. This could serve as an alternative to the standard Schwinger-representation-

based relativistic PI (92).
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We study the high-temperature behavior of quantum-mechanical path integrals. Starting from
the Feynman–Kac formula, we derive a new functional representation of the Wigner–Kirkwood
perturbation expansion for quantum Boltzmann densities. As shown by its applications to different
potentials, the presented expansion turns out to be quite efficient in generating analytic form of the
higher-order expansion coefficients. To put some flesh on the bare bones we apply the expansion
to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further
salient issues, such as generalization to the Bloch density matrix and comparison with the more
customary world-line formulation are discussed. The paper is accompanied by Mathematica code
that generates higher order expansion terms for an arbitrary smooth local potential.

I. INTRODUCTION

The Wigner–Kirkwood (WK) expansion was originally presented in two seminal papers [1, 2]
and since its very inception it has had two important implications. On the one hand, it has been
used for studying the equilibrium statistical mechanics of a nearly classical system of particles
obeying Maxwell–Boltzmann statistics. WK expansion is in its essence an expansion of the
quantum Boltzmann density in powers of Planck’s constant ~, or equivalently of the thermal de
Broglie wavelength λ = ~

√
β/M , where β is the inverse temperature and M is the mass of a

particle. On the other hand, it has paved a way for new alternative mathematical techniques and
practical calculational schemes that are pertinent to the high-temperature regime in quantum
systems.

In this paper, we pursue the study of the WK perturbation method by means of the path
integral (PI) calculus. The relevance of the PI treatment in a high-temperature context is due to
several reasons: PI’s allow to connect evolutionary equations (Bloch equation or Fokker–Planck
equation) with the underlying stochastic analysis [3, 4], they are tailor-made for obtaining quasi-
classical asymptotics [5, 6], they allow to utilize some powerful transformation techniques to
simplify the original stochastic process [5, 7], etc. Besides, PI’s also provide an excellent tool
for direct numerical simulations of the underlying stochastic dynamics including many-body
systems [8, 9]. One of the key advantages of the PI approach is, however, the fact that the
techniques and methodologies used can efficiently bypass the explicit knowledge of the exact
energy spectrum — the point that hindered earlier attempts to go beyond few leading orders

∗Electronic address: p.jizba@fjfi.cvut.cz
†Electronic address: v.zatloukal@fu-berlin.de
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in the expansion (see, e.g., Refs. [10–14]). In particular, one can progress without relying on
the explicit use of approximate expressions or interpolation formulas for the energy eigenvalues
which are often difficult to judge due to lack of reliability in their error estimates.

The idea to use PI’s as a means of producing various WK-type expansions and related ther-
modynamic functions is clearly not new. Indeed, the first systematic discussions and analyzes
of these issues emerged already during the early 1970’s. Among these belong the early attempts
of PI treatments of the high-temperature behavior of partition functions for anharmonic oscilla-
tors [15–17] and gradient expansions of free energy [5]. These approaches belong in the class of
the so-called analytic perturbation schemes which account for an explicit analytic expressions of
the coefficient functions. For many practical purposes it is desirable to have explicit analytical
expressions for coefficients in the WK perturbation expansion. This is so, for instance, when the
symmetry (Lorentz, gauge, global) is supposed to be broken by quantum or thermal fluctuations.
Though these issues are more pressing in quantum field theories, they have in recent two decades
entered also in the realm of a few-body finite-temperature quantum mechanics. The catalyst
has been theoretical investigations and ensuing state-of-the-arts experiments in condensed Bose
gases, degenerate Fermi gases, quantum clusters or strongly coupled Coulomb systems. It is not
only the zero-temperature regime that is of interest in these systems. Many issues revolve also
around finite-temperature or “high”-temperature questions. These include, thermal and ther-
moelectric transport of ultra-cold atomic gases [18, 19], hydrogen, helium, and hydrogen/helium
mixtures and their astrophysical implications [20, 21], Lennard–Jones 3He and 4He gases [22],
etc.

Apart from the aforementioned group of PI methods there are also various non-analytic meth-
ods among which the most prominent are computational methods, such as PI Monte Carlo and
molecular dynamics simulations [23, 24], accompanied by a host of PI reweighted techniques [25].
Another important type of non-analytic method are the approximative schemes, to which be-
long variational approaches [5, 26, 27] and ergodic approximations [28]. Nice summaries of both
analytic and non-analytic PI approaches can be found, e.g., in Refs. [5, 9].

A serious weakness of existent analytic WK expansions and their various disguises (be they
based on PI’s or not), resides in their inability to progress very far with the expansion order.
This makes it difficult to address thermodynamically relevant intermediate-temperature regions
that is particularly pertinent in molecular and condensed matter chemistry (binding energies,
self-dissociation phenomena, order-disorder transitions, etc.). The best analytic expansions are
presently available within the framework of the world-line path integral method (known also
as the string inspired method) [29]. In this approach the expansion coefficients are available
up to order O(β12), subject to the actual interaction potential (cf. Refs. [29–31]). Other more
conventional approaches, such as the recursive or non-recursive heat-kernel calculations [32, 33]
or higher derivative expansions by Feynman diagrams [34–36], achieve at best the order O(β7).
The key problem is a rapid escalation in the complexity of higher-order terms which is difficult
to handle without some type of resummation. In the present paper we derive a new resummation
formula that provides a rather simple and systematic way of deriving the coefficient functions.
Its main advantages rely on both an analytic control of the high-temperature behavior, and on
an accurate description over a wide temperature range via numerical calculations that can be
simply carried out at the level of an undergraduate exercise.

The structure of the paper is as follows. To set the stage we recall in the next section some
fundamentals of PI formulations of the Bloch density matrix and the ensuing partition function
and Boltzmann density. With the help of the space-time transformation that transforms the
Wiener-process sample paths to the Brownian-bridge sample paths we obtain the PI that repre-
sents a useful alternative to the original Feynman–Kac representation. Consequently we arrive
at a new functional representation of the Boltzmann density which is more suitable for tackling
the high-temperature regime than the genuine Wigner–Kirkwood formulation (see Sections II A,
II B and III). While the method resembles in principle the Wentzel–Brillouin–Kramers (WKB)
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solution for the transition amplitude, its details are quite different. In two associated subsections
we examine some salient technical issues related to the low-order high-temperature expansion in
one dimension. To illustrate the potency of our approach we consider in Section III the high-
temperature expansion of the one-dimensional anharmonic oscillator. In particular, we perform
the Boltzmann density and ensuing partition function expansions and compute the related ther-
modynamic quantities. The expansions obtained improve over the classic results of Schwarz [14]
and Padé-approximation-based expansion of Gibson [37]. In Section IV we proceed by extending
our expansion to the whole Bloch density matrix. The expansion thus obtained is compared with
the more conventional Wick’s theorem based perturbation expansion based on the Onofri–Zuk
Green’s functions. There we show that our prescription comprises substantially less (in fact, ex-
ponentially less) terms contributing to higher perturbation orders. Also the algebraic complexity
of the coefficient functions involved is substantially lower in our approach. Various remarks and
generalizations are proposed in the concluding section. For the reader’s convenience the paper is
supplemented with two appendices which clarify some finer technical details. The paper is also
accompanied by Mathematica code that generates the higher-order expansion terms for arbitrary
smooth local potentials up to 18th order in β.

Let us add a final note. Most of the presented mathematical derivations are of a heuristic
nature — as it should be expected from the mathematical analysis based on the path-integral
calculus. For example, it is assumed throughout that the expansions such as (7) or (14) have
meaning and represent, at least asymptotically, convergent series. Further, in a number of places,
we assume that integration and summation may be interchanged. The basic purpose of this paper
is to find explicit formulas for the coefficient functions Q(m1, . . . ,mn), and in doing so to reveal
the elaborate algebraic and combinatorial structure present in these functions. A more rigorous
treatment of the aforementioned mathematical aspects is possible, but would involve different
language and techniques than are employed in this paper.

II. WIGNER–KIRKWOOD EXPANSION

In this section we derive the Wigner–Kirkwood expansion by means of path-integral techniques.
To this end we consider a D-dimensional non-relativistic quantum mechanical system described
with the Hamiltonian

Ĥ =

D∑

j=1

p̂2j
2Mj

+ V (x̂) , (1)

where V (x) is a generic smooth potential, and p̂j = −i~ ∂
∂xj

. We define the Gibbs operator

e−βĤ , where β = 1/(kBT ) is the inverse temperature, and kB the Boltzmann constant. The
partition function Z(β) is defined as the trace of the Bloch (or canonical) density matrix, i.e., in
the position representation we have the formula

Z(β) =

∫

RD
dx 〈x| e−βĤ |x〉 =

∫

RD
dx %(x, β) . (2)

For brevity, we use here and throughout the convention dx ≡ dDx. The un-normalized proba-
bility density %(x, β) is also known as the Boltzmann density.

Matrix elements of the Bloch density matrix can be represented by the path integral as [5, 38]

〈xb| e−βĤ |xa〉 =

∫ x(β~)=xb

x(0)=xa

Dx(τ) exp



−

1

~

∫ β~

0

dτ



D∑

j=1

Mj

2
ẋ2j (τ) + V (x(τ))





 . (3)
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which can be viewed as the Wick-rotated quantum-mechanical transition amplitude. Indeed, if
one changes the time τ in iτ , one recovers the usual transition amplitude 〈xb, τb|xa, τa〉 satisfying

the Schödinger equation with the Hamiltonian Ĥ (cf. e.g. Refs. [5, 6]). In the literature on
stochastic processed is the path-integral representation of the Bloch density matrix also know as
the Feynman–Kac formula [39].

For the purpose of the density matrix computation, we shall primarily consider here only
diagonal matrix elements, i.e., case when xb = xa. We shall briefly return to the off-diagonal
matrix elements in Section IV. To proceed we perform a change of space and time variables, x→
xa + Λξ, τ → β~s, where Λ is a diagonal matrix diag(λ1, . . . , λD) with entries λj =

√
β~2/Mj

(corresponding to the thermal de Broglie wavelength of the jth degree of freedom). The ensuing
path integral

〈xa| e−βĤ |xa〉 =
1

detΛ

∫ ξ(1)=0

ξ(0)=0

Dξ(s) exp

{
−
∫ 1

0

ds

[
1

2
ξ̇2(s) + βV (xa + Λξ(s))

]}
, (4)

is formulated in terms of dimesionless time s and position ξ. Note that the size of quantum
fluctuations is now controlled by the parameters λj , i.e., the only place (apart from the overall
PI normalization factor) where the measure of quantum fluctuations — ~ is present. Since β and
~2 appear in (4) on the same footing, the small regime allows to treat in an unified manner both
the semiclassical (small ~) and/or high-temperature (small β) approximations. By assuming
small Λ the potential term can be Taylor-expanded as

V (xa + Λξ(s)) = V (xa) +
∑

m6=0

V (m)(xa)

m!
(Λξ(s))m , (5)

where the D-dimensional index m = (m1, . . . ,mD) runs through all choices of mj ’s ∈ {0, . . . ,∞}
except for (m1, . . . ,mD) = (0, . . . , 0). The multi-derivative (m) is defined through the identity

V (m)(xa) =
∂|m|V (x)

∂xm

∣∣∣∣
x=xa

≡ ∂m
1+...+mDV (x)

∂xm
1

1 . . . ∂xm
D

D

∣∣∣∣∣
x=xa

, (6)

with |m| = m1 + . . . + mD. Finally, the multi-factorial m! ≡ m1! . . .mD!, and the multi-power

of a D-dimensional vector v is defined componentwise as vm ≡ vm
1

1 . . . vm
D

D . Expanding the
exponential, followed by some rearrangement, allows to cast (4) in the form

〈xa| e−βĤ |xa〉 =
e−βV (xa)

detΛ

∞∑

n=0

(−β)n
∑

m1,...,mn 6=0

D∏

j=1

λ
mj1+...+m

j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . .mn!
Q̄ . (7)

At this point, we have introduced the dimensionless quantity

Q̄(m1, . . . ,mn) =
1

n!

∫ 1

0

ds1 . . . dsn

∫ ξ(1)=0

ξ(0)=0

Dξ(s)ξm1(s1) . . . ξmn(sn) exp

[
−
∫ 1

0

ds
1

2
ξ̇2(s)

]
,

=
1

n!

∫ 1

0

ds1 . . . dsn 〈ξm1(s1) . . . ξmn(sn)〉 , (8)

that does not depend on physical constants or parameters of the system. Q̄ is also manifestly
symmetric under any permutation of its arguments. Let us stress that the n = 0 term in the
expansion (7) equals 1.
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In (8) we have denoted with 〈· · · 〉 the (|m1| + . . . + |mn|)-point correlation function. It can
be evaluated using diagrammatic approach based on the so-called Onofri–Zuk (or “world-line”)
Green’s function [6, 29, 40, 41]

∆ij(t, u) = −1

2
δij [|t− u| − (t+ u− 2tu)] . (9)

We shall briefly sketch this approach in Sec. IV in connection with the off-diagonal density matrix
elements. At any rate, procedure based on Green’s function (9) proves rather impractical when
higher-order terms are to be calculated. Inasmuch as we shall follow a different route. To this
end we rewrite expression (8) as a sum of n! integrals over time-ordered sets s1 < . . . < sn, slice
the path integral at corresponding time instances, and replace the free-particle path integrals by
more compact braket notation by virtue of (3). We obtain

Q̄(m1, . . . ,mn) =
1

n!

∑

σ∈Sn
Q(mσ(1), . . . ,mσ(n)) , (10)

where the sum runs over all permutations of n indices, and

Q(m1, . . . ,mn) =

∫

0<s1<...<sn<1

ds1 . . . dsn

∫

RD
dy1 . . . dyn

n∏

ν=0

〈yν+1| exp

[
−(sν+1 − sν)

q̂2

2

]
|yν〉ymν

ν .

(11)
In the preceding we have defined m0 = 0, s0 = 0, sn+1 = 1, y0 = yn+1 = 0, and the momentum
q̂ = (q̂1, . . . , q̂D), conjugated to the (dimensionless) position operator ŷ = (ŷ1, . . . , ŷD). Here and
throughout we use the standard convention: q̂j = −i ∂

∂yj
and 〈y|q〉 = eiqy/(2π)D/2.

Combinatorial complexity can be reduced significantly by observing that for any function
F (m1, . . . ,mn) the following identity holds:

∑

m1,...,mn 6=0

1

n!

∑

σ∈Sn
F (mσ(1), . . . ,mσ(n)) =

∑

m1,...,mn 6=0

F (m1, . . . ,mn) . (12)

This statement is not trivial, since F is not supposed to be invariant under permutations of the
m’s. When applied to (7) for

F (mσ(1), . . . ,mσ(n)) =
D∏

j=1

λ
mj1+...+m

j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . .mn!
Q(mσ(1), . . . ,mσ(n)) , (13)

the expansion can be then reduced to

〈xa| e−βĤ |xa〉 =
e−βV (xa)

detΛ

∞∑

n=0

(−β)n
∑

m1,...,mn 6=0

D∏

j=1

λ
mj1+...+m

j
n

j

V (m1)(xa) . . . V (mn)(xa)

m1! . . .mn!
Q .

(14)
This result is new. In addition, in Appendix we derive a new explicit expression for the

coefficients Q which proves to be very useful in the determination of the higher-order terms. In
particular, there we show that

Q(m1, . . . ,mn) = K

∫

RD

dq

(2π)D

(
i|mn|

1 + q2

2

∂|mn|

∂qmn

)
. . .

(
i|m1|

1 + q2

2

∂|m1|

∂qm1

)
1

1 + q2

2

, (15)

where the multiplicative constant has the form

K =
1

Γ
(
n+ 1− D

2 + |m1|+...+|mn|
2

) . (16)



6

From Appendix B we can observe that the integral (15) suffers the infrared divergencies precisely
in those instances when the Γ-function in K has pole. Consequently, in practical applications
one should appropriately regularize (e.g., via dimensional regularization) both K and integral in
(15) in order to resolve the indeterminate form of the product.

In passing we may note that because Q is real, it must be equal to zero when |m1|+ . . .+ |mn|
together with all partial sums mj

1 + ...+mj
n (j = 1, . . . , D) is an even number (cf. also Section IV

and Appendix B). So the expansion of the density matrix (14) can be reorganized as an expansion
in ~2. This is emblematic of the Wigner–Kirkwood expansion [1] for systems with differentiable
potentials. In the case of the non-differentiable potentials (cavities, billiards, etc.) the generalized
derivative of Schwartz must be used instead [42].

Result (14) might be used for calculating higher-order terms beyond ~2-correction (terms up
to order ~6 have been already determined in the literature [44]). Moreover, the structure of
(14) clearly emphasizes that expansion is appropriate only when the involved thermal de Broglie
wavelengths are much smaller than the typical length of variation of the potential.

A. Calculation of low-order terms in D dimensions

In order to get further insight into structure of (14) we will now calculate first few terms in
the expansion. To this end, we notice that a typical term in (15) has the generic structure

∫

RD

dq

(2π)D
q2r11 . . . q2rDD(

1 + q2

2

)s =

∫ ∞

0

dσ
σs−1

(s− 1)!
e−σ

∫

RD

dq

(2π)D
q2r11 . . . q2rDD e−σ

q2

2

=
Γ(s− D

2 − |r|)
(s− 1)!(2π)D/22|r|

D∏

j=1

(2rj)!

rj !
, (17)

where r1, . . . , rD, s ∈ N. If the power of any qj is odd, the above integral obviously vanishes. For
the sake of simplicity, the discussion here will be restricted to the orders in O(β3), but it can be
naturally extended to higher orders (cf. next section). At this level, we need to know (15) for
n = 1 and n = 2.

Case n = 1: Here the lowest-order non-trivial contribution comes from |m1| = 2, with mi
1 =

δij + δik. After differentiating

∂2

∂qj∂qk

1

1 + q2

2

= − δjk(
1 + q2

2

)2 +
2qjqk(

1 + q2

2

)3 , (18)

we can use the formulas (15) and (17) to find

Q(m1) =
1

(2π)D/2
δjk
6
. (19)

Case n = 2: Here the lowest-order non-trivial contribution comes from |m1| = |m2| = 1, with
mi

1 = δij , m
i
2 = δik. Consequently, we need to estimate

∂

∂qk

(
1

1 + q2

2

∂

∂qj

1

1 + q2

2

)
= − δjk(

1 + q2

2

)3 +
3qjqk(

1 + q2

2

)4 , (20)
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which gives

Q(m1,m2) =
1

(2π)D/2
δjk
24

. (21)

By gathering the results (19) and (21) together we can write the expansion (14) in the n = 2
approximation as

〈xa| e−βĤ |xa〉 ∼
e−βV (xa)

(2π)D/2detΛ


1− β

12

D∑

j=1

λ2j
∂2V (xa)

∂x2j
+
β2

24

D∑

j,k=1

λjλk
∂V (xa)

∂xj

∂V (xa)

∂xk


 .

(22)
This agrees, for λj = λ (i.e., for equal-mass particles), with the usual low-order Wigner–Kirkwood
expansion (see, e.g., Refs. [5, 45]).

B. Expansion for D = 1

Here we show that the form of the coefficients Q(m1, . . . ,mn) can be substantially simplified
in 1-dimension (D = 1). It is rather interesting that the simplification basically involves only
arithmetic operations. To see what is involved we denote

I(m1, . . . ,mn|r, s) =

∫

R

dq

2π

(
imn

1 + q2

2

∂mn

∂qmn

)
. . .

(
im1

1 + q2

2

∂m1

∂qm1

)(
1

(1 + i√
2
q)r

1

(1− i√
2
q)s

)
,

(23)

so that (cf. Eq. (15)): Q(m1, . . . ,mn) = K(m1, . . . ,mn)I(m1, . . . ,mn|1, 1). By the m1-fold
differentiation of the last bracket we obtain the recurrence relation

I(m1, . . . ,mn|r, s) =
(−1)m1

2m1/2
m1!

m1∑

k1=0

(−1)k1
(
r − 1 + k1
r − 1

)(
s− 1 +m1 − k1

s− 1

)

× I(m2, . . . ,mn|r + 1 + k1, s+ 1 +m1 − k1) , (24)

with the initial condition

I(∅|r, s) =

∫

R

dq

2π

1

(1 + i√
2
q)r

1

(1− i√
2
q)s

=
23/2

2r+s

(
r + s− 2

r − 1

)
. (25)

The latter identity is a straightforward consequence of Cauchy’s integral theorem where the
contour integration is taken at either the pole i

√
2 or −i

√
2. Repeated use of (24), with (25) as

the last step, leads to an explicit form for Q(m1, . . . ,mn), namely

Q =
(m1+...+mn

2 + n)!√
2π2(m1+...+mn)/2

m1∑

`1=0

. . .

mn∑

`n=0

n∏

k=1

(−1)`k
(
mk
`k

)

(`1+. . .+`k+k)(m1−`1+. . .+mk−`k+k)
. (26)

In deriving we have used the duplication formula [46]:
√
π21−2zΓ(2z) = Γ(z)Γ(z+1/2). Resulting

one-dimensional expansion takes the form

〈xa| e−βĤ |xa〉 =
e−βV (xa)

λ

∞∑

n=0

(−β)n
∞∑

m1,...,mn=1

λm1+...+mn
V (m1)(xa) . . . V (mn)(xa)

m1! . . .mn!
Q . (27)
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Apart from the initial constant term β0~0, the latter expansion contains terms proporional to
βi(~2)j , where i, j ∈ N and i/3 ≤ j ≤ i− 1 (or, equivalently, j + 1 ≤ i ≤ 3j).

For the first few orders the coefficients of the expansion can be found rather straightforwardly.

In Table I we list the coefficients of the series eβV (x)
√

2πλ 〈x| e−βĤ |x〉. To order β8 these can be
obtained without any excessive hardship (for further comments see [47]). The higher orders in
fixed β can now be simply obtained by grouping terms with equal order of β and performing a
number of multi-differentiations for V (xa) which can be easily done with Maple or Mathematica.
To this end we supplement the paper with Mathematica code that allows to generate the higher-
order expansion terms (up to 18th order) for arbitrary smooth local potentials.

III. EXAMPLE: ANHARMONIC OSCILLATOR IN D = 1

In the previous section, we have seen in some detail how the coefficients functions in the
Wigner–Kirkwood expansion can be resolved in an explicit form. The basic results there were
the formulas (14)–(16). The expressions found are quite general, valid for any smooth potential
and in D = 1 are analytically accessible up to order β18. Nevertheless, for consistency reasons it
is useful to examine a problem possessing an exact solution in which it is possible to find closed
expressions for the expansion coefficients. The D = 1 harmonic oscillator provides us with just
such an exactly solvable example. Rather than starting directly with a simple harmonic oscillator,
it is instructive to start with an anharmonic oscillator first and then regain the harmonic oscillator
solution in the limit of vanishing coupling constant (i.e., zero anharmonicity limit). In addition,
the anharmonic oscillator, which can be regarded as a field theory in one dimension, has long
served as a testing ground for new ideas for solving field theories and hence is bolstered by a large
body of literature. In this respect it is a natural model which any new approximation scheme
should address. For a definiteness we start with the anharmonic potential

V (x) =
M

2
ω2x2 +

g

4!
x4, (28)

for which the high-temperature expansion (27) yields

〈x| e−βĤ |x〉 =
exp

[
−β
(
M
2 ω

2x2 + g
4!x

4
)]

√
2πλ

[
1 − β2~2

(
gx2 + 2Mω2

)

24M

+
β3
(

5Mx2~2
(
gx2 + 6Mω2

)2 − 18g~4
)

4320M2

+
β4~4

(
17g2x4 + 84gMx2ω2 + 36M2ω4

)

5760M2
+ O

(
β5
)
]
. (29)

The higher-order corrections can be explicitly obtained with the help of Table I (up to order β8)
or with the enclosed Mathematica code quoted in [47] (up to order β18).

In the case of zero anharmonicity (g = 0), we can check our results against the exact solution
of the harmonic oscillator problem. The expansion (29) reduces to

〈x| e−βĤ |x〉g=0 =
exp

(
−βM2 ω2x2

)
√

2πλ

[
1− 1

12
β2ω2~2 +

1

24
β3Mx2ω4~2 +

1

160
β4ω4~4 +O

(
β5
)
]
,

(30)
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TABLE I: Coefficients of the series eβV (x)
√

2πλ 〈x| e−βĤ |x〉, at terms βi(~2)j , calculated according to
formulas (26) and (27). Here 0 ≤ i ≤ 8 and 0 ≤ j ≤ 7, which allows to determine the series up to the
8th order in β. Coefficients of terms (~2)j , which are polynomials in β, can be read off completely only
for j ≤ 2. (For instance, the ~6-term is lacking a contribution from β9.)

~0 ~2 ~4 ~6 ~8 ~10

β0 1 0 0 0 0 0

β1 0 0 0 0 0 0

β2 0 −V ′′(x)
12M

0 0 0 0

β3 0 V ′(x)2

24M
−V (4)(x)

240M2 0 0 0

β4 0 0
V ′′(x)2

160M2

+V ′(x)V (3)(x)

120M2

− V (6)(x)

6720M3 0 0

β5 0 0 − 11V ′(x)2V ′′(x)
1440M2

23V (3)(x)2

40320M3

+ 19V ′′(x)V (4)(x)

20160M3

+V ′(x)V (5)(x)

2240M3

− V (8)(x)

241920M4 0

β6 0 0 V ′(x)4

1152M2

− 61V ′′(x)3

120960M3

− 43V ′(x)V (3)(x)V ′′(x)
20160M3

− 5V ′(x)2V (4)(x)

8064M3

23V (4)(x)2

483840M4

+ 19V (3)(x)V (5)(x)

241920M4

+ 11V ′′(x)V (6)(x)

241920M4

+V ′(x)V (7)(x)

60480M4

− V (10)(x)

10644480M5

~6 ~8 ~10 ~12 ~14

β7
V (3)(x)V ′(x)3

2016M3

+ 83V ′′(x)2V ′(x)2

80640M3

−V (6)(x)V ′(x)2

32256M4

−V (3)(x)V (4)(x)V ′(x)
4480M4

−V ′′(x)V (5)(x)V ′(x)
6720M4

− 31V ′′(x)V (3)(x)2

161280M4

− 5V ′′(x)2V (4)(x)

32256M4

71V (5)(x)2

21288960M5

+ 61V (4)(x)V (6)(x)

10644480M5

+ 19V (3)(x)V (7)(x)

5322240M5

+ 17V ′′(x)V (8)(x)

10644480M5

+V ′(x)V (9)(x)

2128896M5

− V (12)(x)

553512960M6 0

β8 − 17V ′(x)4V ′′(x)
69120M3

1261V ′′(x)4

29030400M4

+ 227V ′(x)V (3)(x)V ′′(x)2

604800M4

+ 527V ′(x)2V (4)(x)V ′′(x)
2419200M4

+ 659V ′(x)2V (3)(x)2

4838400M4

+ 17V ′(x)3V (5)(x)

483840M4

− 71V (8)(x)V ′(x)2

63866880M5

− 3067V (4)(x)V (5)(x)V ′(x)
159667200M5

− 13V (3)(x)V (6)(x)V ′(x)
950400M5

− 109V ′′(x)V (7)(x)V ′(x)
15966720M5

− 6353V ′′(x)V (4)(x)2

319334400M5

− 7939V (3)(x)2V (4)(x)

319334400M5

− 13V ′′(x)V (3)(x)V (5)(x)

394240M5

− 3001V ′′(x)2V (6)(x)

319334400M5

3433V (6)(x)2

16605388800M6

+ 1501V (5)(x)V (7)(x)

4151347200M6

+ 2003V (4)(x)V (8)(x)

8302694400M6

+ 5V (3)(x)V (9)(x)

41513472M6

+ 73V ′′(x)V (10)(x)

1660538880M6

+V ′(x)V (11)(x)

92252160M6

− V (14)(x)

33210777600M7

which, indeed, coincides with the corresponding expansion of the well-known analytic form of
the Bloch density matrix for harmonic oscillator (see, e.g., Refs. [5, 6])

〈x| e−βĤ |x〉g=0 =
exp

(
−βM2 ω2x2

)
√

2πλ

√
βω~

sinh(βω~)
exp

[
−Mx2ω

~

(
tanh

βω~
2
− βω~

2

)]
. (31)

In passing we may note that the expansion of the single-particle partition function Z(β) asso-
ciated with (29) can be phrased in terms of the parabolic cylindric function and its derivatives
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which, after re-expansion, give

Z(β) =
1√
2πλ

4

√
3

2βg


Γ

(
1

4

)
+

√
3
2

√
βMω2Γ

(
− 1

4

)

2
√
g

+
3βM2ω4Γ

(
5
4

)

g

− β3/2
(
Γ
(
3
4

) (
g2~2 + 18M4ω6

))

4
(√

6g3/2M
)

− β2
(
Γ
(
− 3

4

) (
2g2ω2~2 + 45M4ω8

))

128g2
+ O

(
β5/2

)]
. (32)

This, when combined with appropriate thermodynamic formulas, yields the following expressions
for entropy S, the heat capacity CV and internal energy U :

S

kB
= − 1

kB

(
∂F

∂T

)

V

= logZ(β)− β

Z(β)

(
∂Z(β)

∂β

)

V

=
3

4
+ log

(
2Γ
(
5
4

)

λ
4

√
6

π2βg

)
−

√
3
2

√
βMω2Γ

(
3
4

)
√
gΓ
(
1
4

)

+
β3/2

(
πg2~2Γ

(
5
4

)
+ 3
√

2M4ω6Γ
(
3
4

)3)

√
3g3/2MΓ

(
1
4

)3 + O
(
β2
)
,

CV
kB

=
T

kB

(
∂S

∂T

)

V

= − β

kB

(
∂S

∂β

)

V

=
3

4
+

√
3
2

√
βMω2Γ

(
3
4

)

2
√
gΓ
(
1
4

)

−
β3/2

(√
3πg2~2Γ

(
5
4

)
+ 3
√

6M4ω6Γ
(
3
4

)3)

2g3/2MΓ
(
1
4

)3 + O
(
β2
)
,

U = −T 2

(
∂F/T

∂T

)

V

=

(
∂Fβ

∂β

)

V

=
3

4β
+

√
3
2Mω2Γ

(
3
4

)
√
β
√
gΓ
(
1
4

) −
3M2ω4

(
Γ
(
1
4

)2 − 4Γ
(
3
4

)2)

4gΓ
(
1
4

)2

+

√
β
(

2
√

3πg2~2Γ
(
9
4

)
+ 15
√

6M4ω6Γ
(
3
4

)3)

320g3/2MΓ
(
5
4

)3 + O (β) . (33)

[F = −kBT logZ(β) is the Helmholtz free energy]. These expansions are not only in excellent
agreement with the classic (spectral-theorem based) expansions of Schwarz [14] and Gibson [37]
but they also go beyond these expansions by providing explicit forms for higher-order terms not
present in Refs. [14, 37].
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Unfortunately when M in (28) is negative (i.e., we would have a double-well potential) the
WK approach would fail. Indeed the WK expansion cannot accommodate non-perturbation
effect such as multi-instanton contribution and ensuing tunneling, as by its very construction it
is basically a perturbation expansion around a free solution. From this point of view a tunneling
in a double well potential seems to be beyond reach in our expansion. Of course, tunneling
could be included by considering some sort of a hybrid approach in which the “phase part”
of the transition probability would be calculated via WKB (possibly including multi-istanton
contribution), while the fluctuating factor would be evaluated perturbatively via WK method.
One of the potential bonuses would be the fact that one could bypass the notorious problems
with the Van Vleck determinant on caustics. Such a hybrid approach would, however, clearly go
beyond the simple WK approach that is used in our paper. In our future investigation we will
touch more upon this issue.

IV. OFF-DIAGONAL BLOCH DENSITY MATRIX ELEMENTS

So far, we have almost exclusively been dealing with the diagonal elements of the Bloch density
matrix — Boltzmann density. This was well justified by expected applications in statistical
physics, where typically only the partition function is required and hence only diagonal elements
of the density matrix are relevant (of course, only as long as the Maxwell-Boltzmann statistics
is considered). This is also the linchpin of the original Wigner–Kirkwood work.

Expansion and the formula for the Bloch density matrix (14) can be straightforwardly gen-
eralized beyond the original Wigner–Kirkwood analysis by considering the off-diagonal form of
the density matrix (also called the heat kernel or euclidean Feynman amplitude). This would
be particularly pertinent in cases, when one would like to incorporate the exchange effects that
are a consequence of fermion or boson statistics or when the linear response theory would be in
question. By following the same train of thought as in Sec. II we can phrase the path-integral
representation of the full Bloch density matrix in terms sum over the Brownian bridge sam-
ple paths. The path transformation that transforms the Wiener process ΩW = {x(·)} to the
Brownian bridge process ΩBB = {ξ(·)} is

x(τ) = xa(1− s) + xbs+ Λξ(s) . (34)

Let us recall that the “Euclidean time” variable τ is connected with s via the relation τ = β~s.
The Brownian bridge sample paths fulfill the Dirichlet boundary conditions ξ(0) = ξ(1) = 0.

With this the Feynman–Kac formula for the Bloch density matrix (3) acquires the form

〈xb| e−βĤ |xa〉 =
exp

{
− 1

2 [Λ−1(xb − xa)]2
}

detΛ

×
∫ ξ(1)=0

ξ(0)=0

Dξ(s) exp

{
−
∫ 1

0

ds

[
1

2
ξ̇2(s) + βV (xa(1− s) + xbs+ Λξ(s))

]}
, (35)

where the surface term in the action got canceled due to boundary conditions of the Brownian
bridge. We can expand the potential V (. . .) around the free-particle classical solution as

V (xa(1−s)+xbs+Λξ(s)) = V (xa(1−s)+xbs)+
∑

m 6=0

V (m)(xa(1− s) + xbs)

m!
(Λξ(s))m , (36)
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and write the density matrix in the form

〈xb| e−βĤ |xa〉 =
exp

{
− 1

2 [Λ−1(xb − xa)]2 − βṼ (xb,xa)
}

detΛ

×
∞∑

n=0

(−β)n
∑

m1,...,mn 6=0

D∏

j=1

λ
mj1+...+m

j
n

j

(Ṽ
(m1)
s1 (xb,xa) . . . Ṽ

(mn)
sn (xb,xa) ∗ Q̄s1···sn)(t = 1)

m1! . . .mn!
. (37)

In the previous we have introduced the abbreviations

Ṽ (xb,xa) =

∫ 1

0

ds V (xa(1− s) + xbs) ,

Ṽ (mk)
si (xb,xa) = V (mk)(xb − si(xb − xa)) . (38)

The multi-dimensional convolution appearing in (37) is a straightforward extension of the one-
dimensional convolution

(X(si) ∗ Y (si))(t) = (Y (si) ∗X(si))(t) =

∫ t

0

dsiX(t− si)Y (si) . (39)

It is the above definition of the convolution which dictates the (seemingly strangely appearing)
form of the right-hand-side of (38). Sub-indices si appearing in Q̄ in (37) just indicate the
integration variables in the convolution. We see again, that the key object is the coefficient
function Q̄ (cf. Eq. (8)) or better the ensuing (|m1|+ . . .+ |mn|)-point correlator Q̄s1···sn

∫ ξ(1)=0

ξ(0)=0

Dξ(s) ξm1(s1) . . . ξmn(sn) exp

[
−
∫ 1

0

ds
1

2
ξ̇2(s)

]

=
δ|m1|+...+|mn|

δj(s1)m1 . . . δj(sn)mn

∫ ξ(1)=0

ξ(0)=0

Dξ(s) exp

[
−
∫ 1

0

ds
1

2
ξ̇2(s) +

∫ 1

0

ds j(s) · ξ(s)

]∣∣∣∣∣
j=0

= N δ|m1|+...+|mn|

δj(s1)m1 . . . δj(sn)mn
exp

[
1

2

∫ 1

0

dsdu ji(s)∆ij(s, u)jj(u)

]∣∣∣∣
j=0

. (40)

The normalization constant N denotes the path integral for a simple Brownian bridge. The
summation convention is automatically utilized in the argument of the exponent on the last line.
The Green function ∆ij(s, u) is chosen so that it satisfies the equations

∂2

∂t2
∆ij(t, u) = −δijδ(t− u) ,

∆ij(0, u) = ∆ij(1, u) = 0 . (41)

The solution is the world-line Green function of Onofri and Zuk [40, 41]

∆ij(s, u) = −1

2
δij [|t− u| − (t+ u− 2tu)] . (42)

As a result, we can write Q̄(m1, . . . ,mn) in the form

Q̄ =
N
n!

∫ 1

0

ds1 . . . dsn
δ|m1|+...+|mn|

δj(s1)m1 . . . δj(sn)mn
exp

[
1

2

∫ 1

0

dtdu ji(t)∆ij(t, u)jj(u)

]∣∣∣∣
j=0

. (43)
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The former can be further simplified with the help of Coleman’s identity:

F (−i∂/∂x)G(x) = G(−i∂/∂y)F (y)eiy·x
∣∣
y=0

, (44)

which is valid for any (sufficiently smooth) functions F and G. After some additional algebra
one verifies that

Q̄ =
N i|m1|+...+|mn|

n!
exp

[
−1

2

∫ 1

0

dtdu
δ

δzi(t)
∆ij(t, u)

δ

δzj(u)

]

×
∫ 1

0

ds1 . . . dsn z(s1)m1 . . . z(sn)mn

∣∣∣∣
z=0

. (45)

For similar reasons as in ordinary quantum field theory, i.e., namely for the Wick theorem
application, it might be convenient to formulate the Q̄-function in the Fourier picture. In this
case the Fourier transform is discrete due to the Dirichlet boundary conditions for ξ. In addition,
when we periodically extend the shape of the potential V from the interval s ∈ [0, 1] to the whole
R and take the Fourier transform the calculations of (37) will substantially simplify due to the
convolution theorem [42].

Form (45) indicates that Q can be calculated via Wick’s theorem with world-line Green’s
functions (42), cf. also Refs [5, 29, 48, 49]. In fact, it is not difficult to list the corresponding
Feynman-like diagrammatic rules for Q̄(m1, . . . ,mn). On the other hand, the number of terms
involved in evaluating Q̄ via (45) grows as (2m−1)!! = (2m)!/2mm! where m = (|m1|+. . .+|mn|)
(see, for instance, Ref. [60]). This should be contrasted with (15) where the number of terms
grows as (see Appendix B)

D∏

j=1

[
(mj

1 + . . .+mj
n)/2 + 1

]
. (46)

Our prescription comprises substantially less terms and this is even more pronounced at high
values of mj ’s (i.e., at high derivative orders). In Appendix B we prove that the inequality

(2m− 1)!! ≥
D∏

j=1

[
(mj

1 + . . .+mj
n)/2 + 1

]
, (47)

always holds whenever m ≥ 2. There we also show that the number of terms is in our case
exponentially lower than in Wick’s theorem based approaches.

Note, also that the number of s-integrations in (45) matches the perturbation order, i.e.,
n, while the number of integrations in our formula (15) equals to the dimension of particles
configuration space. In this respect, is the presented method less complex with the increasing
perturbation order than other methods in use. As a matter of fact, with the method based on
the world-line Green function, a complete calculation of all coefficients was achieved to order
O(β12), see Ref. [50]. Closely related gradient expansion calculations (with the same order of
precision) were performed in Ref. [51]

Finally, note that Q̄ from (45) is non-zero only when |m1| + . . . + |mn| together with all

partial sums mj
1 + ... + mj

n (j = 1, . . . , D) is even. In fact, also all partial sums mj
1 + ... + mj

n

(j = 1, . . . , D) must be zero. This fact was already pointed out in Sect. II in connection with
the coefficient Q. Again, the evenness is true only for smooth potentials. In the general case
the space derivatives must be substituted with the generalized derivative of Schwartz [42] which
can bring about also odd terms, i.e. odd powers of ~. Also other non-analytical behaviour can
emerge — e.g., it was shown in [43] that exchange contributions to the free energy of the jellium
vanish exponentially fast with ~ as a consequence of the Coulomb repulsion between identical
charges which diverges at zero separation.
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V. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a novel PI-based high-temperature expansions of the Boltz-
mann’s density %(x, β) and partition function Z(β). Ensuing generalizations to the full Bloch
density matrix were also discussed and explicitly compared with the Onofri–Zuk world-line ap-
proach. It was found that our prescription comprises substantially less terms contributing to
higher perturbation orders than the more conventional Wick’s theorem based perturbation ex-
pansions. Also the algebraic complexity of the coefficient functions involved is markedly lower
in our approach.

The expansions obtained are valid for arbitrary number of particles and provide an analytic
control of the high-temperature behavior. In addition, the implementation is sufficiently general
for any system described by smooth potential energy functions. Because of its analytic form,
the presented high-temperature expansion can be further conveniently used, e.g., to analyze the
breakdown of symmetry, generate a gradient expansion for the free energy for a wide class of
potentials, calculate ground-state energies, set up the extended Thomas–Fermi approximations
or serve as the starting point for a numerical evaluation of various thermodynamical quantities
(e.g., virial coefficients, specific heat or entropy). As a demonstration, we have briefly discussed
the high-temperature thermodynamics of the anharmonic oscillator.

We would like to remark that the compactness of our form for the coefficient function Q
might be deceptive with regard to applications requiring the use of non-local potentials. In the
genuine Wigner–Kirkwood method, the single-particle density is expressed as functional of the
one-body potential V (x). Though our treatment can accommodate also few-body potentials it
is intrinsically formulated only for local potentials. Since non-local potentials are an integral
part of statistical quantum theory, e.g. in cases when the exchange part of the Hartree–Fock
self-consistent potential is considered, the corresponding generalization of Eqs. (15) and (37) to
non-local potentials would be desirable. Situation is simple only for two-particle systems with
potentials of the form V (x1,x2) = V (x1 − x2). There the transformation to the center of mass
frame allows to reduce the problem to a single-particle in an external potential V (x). For other
cases, the formula (15) for the coefficient functions Q could be derived in the same spirit as in
Section II but the appealing simplicity of Q would be clearly lost.

The versatility of the method developed in this paper together with a renewed interest in
the study of the high-temperature asymptotic expansions of the Bloch density matrix suggest
several extensions of this work. A pertinent extension could address spin-dependent potentials,
like the spin-orbit interaction whose interest in nuclear physics is well known. Also the case
of momentum dependent terms which are relevant in charged particle systems interacting with
electromagnetic field or in Brueckner’s theory used in nuclear physics, would be desirable to
include. Important limitation of our method lies in the fact that our discussion was confined
only to cases where Hamiltonians did not include fermionic degrees of freedom. Similarly as
the original WK method also our approach is inherently formulated within the framework of
Boltzmann statistics and so it does not incorporate the exchange effects (which are relevant,
e.g., in a hot Fermionic plasma). There exist various generalizations of the WK formalism to
include the effects of magnetic field [52], or exchange corrections (see, e.g., Refs. [53, 54]) and
the corresponding extension of our approach in this direction would be also worth of pursuing
particularly in view a naturalness with which PI’s handle fermionic particle systems [5]. All these
aforementioned issues are currently under active investigation.

It appears worthwhile to stressed that the WK expansion is not the WKB expansion. For
instance, the leading asymptotic behaviors are different; while the WK expansion starts with
exp(−βV (x)), the WKB starts with exp(−βS[xcl, x]) (here the action functional S is evaluated
along the classical solutions xcl with the boundary conditions x(0) = x(~β) = x). Even start-
ing points for both these expansions were historically different. WK started with the Wigner
transform approach to statistical physics [1, 2] while WKB (in PI’s) started with the expansion
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(in terms of moments of Gaussian fluctuations) around classical trajectory [5, 6]. It is also clear
that in the WK one does not organize the expansion in terms of orders of fluctuations around
classical solution (as the WKB does). Naturally, both approaches share many common features
and there is a bulk of the literature comparing both methods and their respective pros and cons.
The interested reader can see, e.g., Refs. [55, 56].

Let us finally make a few comments concerning the low-temperature regime. It is clear that
when the temperature decreases, the de Broglie wavelength increases, and the Wigner–Kirkwood
perturbation expansion becomes unwarranted. This happens whenever the involved thermal de
Broglie wavelength is comparable with a typical length over which the potential varies. So
the low temperature expansion is normally beyond reach of the WK method. Nevertheless,
with the high-temperature expansion at one’s disposal one can tackle also the low-temperature
expansion (at least numerically) provided the sufficient number of the coefficient functions in
the high-temperature series is available. To this end, one is free to employ some of the existent
duality approaches. Among these, a particularly powerful is a nonperturbative approximation
scheme called variational or optimized perturbation theory [5, 57–59]. There the basic idea is to
combine the renormalization-group concept known as the principle of minimal sensitivity [59]
with the techniques of perturbation theory and the variational principle to convert the divergent
weak-coupling power series into a convergent strong-coupling power series (and vice versa).

Last but not least, recently Paulin et al. [28] employed the concept of the occupation time for
Wiener processes to formulate the so-called ergodic local-time approximation to PI’s. The ergodic
approximation is particularly well suited for the low-temperature regime. In high-temperature
domain it performs less satisfactory since the non-trivial correlations between occupation times
must be taken into account [28]. Finding the dictionary that would allow a simple passage
between our and Paulin et al. approach in the high and intermediate-temperature regimes would
be particularly desirable in light of a similar mathematical structure (namely Eq. (4) that both
approaches share. Work along these lines is presently in progress.
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Appendix A: Simplification of coefficients Q(m1, . . . ,mn)

Here we employ a convenient trick that will allow us to can carry out the s-integrations in
(11) explicitly. We first formally promote the upper limit of the s-integrations (i.e., 1) to a new
variable sn+1, and Laplace-transform Q with respect to sn+1, i.e.

Q̃(E) =

∫ ∞

0

dsn+1e
−Esn+1

∫

0<s1<...<sn<sn+1

ds1 . . . dsn

∫

RD
dy1 . . . dyn

×
n∏

ν=0

〈yν+1| exp

[
−(sν+1 − sν)

q̂2

2

]
|yν〉ymν

ν . (A1)

Change of variables s′ν = sν+1 − sν , ν = 0, . . . , n, then leads to

Q̃(E) =

∫ ∞

0

ds′0 . . . ds
′
n

∫

RD
dy1 . . . dyn

n∏

ν=0

〈yν+1| exp

[
−s′ν

(
E +

q̂2

2

)]
|yν〉ymν

ν . (A2)
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The s-integrations can now be done easily,

Q̃(E) =

∫

RD
dy1 . . . dyn

n∏

ν=0

〈yν+1|
1

E + q̂2

2

|yν〉ymν
ν . (A3)

In order to further simplify (A3) we perform the re-scaling yν → yν/
√
E, and use the fact

that

〈
yν+1√
E

∣∣∣∣
1

E + q̂2

2

∣∣∣∣
yν√
E

〉
=

∫

RD

dq

(2π)D

exp
(
iq yν+1−yν√

E

)

E + q̂2

2

q→
√
Eq

= ED/2−1 〈yν+1|
1

1 + q̂2

2

|yν〉 . (A4)

This explicitly decouples E, giving rise to

Q̃(E) = ED/2−n−1−(|m1|+...+|mn|)/2
∫

RD
dy1 . . . dyn

n∏

ν=0

〈yν+1|
1

1 + q̂2

2

|yν〉ymν
ν . (A5)

Now the inverse Laplace transform can be performed and evaluated at sn+1 = 1. With the help
of the formula

∫∞
0
ds sνe−sE = Γ(ν + 1)E−ν−1, we obtain

Q = K

∫

RD
dy1 . . . dyn

n∏

ν=0

〈yν+1|
1

1 + q̂2

2

|yν〉ymν
ν , (A6)

where the multiplicative factor

K =
1

Γ
(
n+ 1− D

2 + |m1|+...+|mn|
2

) . (A7)

In the second step we invoke a resolutions of unity
∫
RD dyν |yν〉 〈yν | = I, which brings Q to

the form

Q = K 〈yn+1|
1

1 + q̂2

2

ŷmn
1

1 + q̂2

2

ŷmn−1 . . .
1

1 + q̂2

2

ŷm1
1

1 + q̂2

2

|y0〉 . (A8)

With the use of the algebraic identity

[ŷj , F (q̂)] = i
∂F (q)

∂qj

∣∣∣∣
q=q̂

, (A9)

and the fact that ŷj |y0〉 = 0, (j = 1, . . . , D) we can bring (A8) to the form (recall the definition
y0 = yn+1 = 0)

Q = K 〈yn+1|G(q̂) |y0〉 = K

∫

RD

dq

(2π)D
G(q) , (A10)

with G(q) defined as

G(q) =

(
i|mn|

1 + q2

2

∂|mn|

∂qmn

)
. . .

(
i|m1|

1 + q2

2

∂|m1|

∂qm1

)
1

1 + q2

2

. (A11)
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Note that we could arrive at the same conclusion by employing in (A6) the spectral expansion
of the position operator (or better, its power) in both position and momentum representations,
i.e.

ŷm =

∫

RD
dyν |yν〉ymν 〈yν | =

∫

RD
dqν |qν〉i|m|

∂|m|

∂qmν
〈qν | . (A12)

Ensuing lack of one δ-function then causes the residual q-integration in (A10).

Appendix B: Structure of Q(m1, . . . ,mn)

In this appendix we show that the number of terms involved in evaluating Q(m1, . . . ,mn) via
(15) grows as (46). We start by observing that the function G(q) in (A11) can be written as a
sum

G(q) =
∑

r,s

ar,s
qr(

1 + q2

2

)s , (B1)

with combinatorial factors ar,s whose explicit form is not not relevant for the arguments to

follow. The components of multi-index r satisfy 0 ≤ rj ≤ mj
1 + . . . + mj

n for all j = 1, . . . , D
since each differentiation ∂/∂qj can produce at most one power of qj .

The summation index s in (B1) is not independent variable but it is fully specified once r is
known. To see this, consider an elementary differentiation step

∂

∂qj
qr(

1 + q2

2

)s =
rjqr−ej(
1 + q2

2

)s −
sqr+ej

(
1 + q2

2

)s+1 , (B2)

where eij = δij , and define ∆ to be the difference between the degree of the polynomial in the
denominator and the numerator. The derivative shifts ∆ from 2s− |r| to 2s− |r|+ 1, and this
is common to both terms on the right hand side. Hence, the nonzero terms in sum (B1) must
satisfy the condition 2s−|r| = |m1|+ . . .+ |mn|+2n+2. This is also evident on the dimensional
ground.

We also note that due to (B2) rj in (B1) has, for all j, the same even parity as the total

degree of differentiation mj
1 + . . . + mj

n because otherwise the integral in (A10) would vanish.
Altogether, we see that there are only

∑

r,s

1 =
D∏

j=1

mj1+...+m
j
n∑

rj=0

1 =
D∏

j=1

[
(mj

1 + . . .+mj
n)/2 + 1

]
, (B3)

non-trivially contributing terms in (B1).
Let us close this appendix by proving the inequality (47). To this end we observe that one can

write

(2m− 1)!! =
2m!

2mm!
=

1√
π

Γ
[
1/2 +

∑D
j=1(mj

1 + . . .+mj
n)
] D∏

j=1

2m
j
1+...+m

j
n

≥
D∏

j=1

2m
j
1+...+m

j
n ≥

D∏

j=1

[
1 + (mj

1 + . . .+mj
n)/2

]
. (B4)
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On the first line we have used the duplication formula [46]: Γ(z)Γ(z + 1/2) =
√
π Γ(2z)21−2z.

On the second line the use was made of the inequality Γ(1/2 + z) ≥ √π (valid for z ≥ 2) and
the convexity inequality 2z − 1 ≥ z log 2 > z/2 (valid for z ≥ 0).
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Abstract

We derive a local-time path-integral representation for a generic one-dimensional time-independent
system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as
a path integral over x-dependent local-time profiles. The latter quantify the time that the sample
paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization
of the local-time representation that includes arbitrary functionals of the local time is also provided.
We argue that the results obtained represent a powerful alternative to the traditional Feynman–Kac
formula, particularly in the high and low temperature regimes. To illustrate this point, we apply
our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low
temperatures. Further salient issues, such as connections with the Sturm–Liouville theory and the
Rayleigh–Ritz variational principle are also discussed.

I. INTRODUCTION

The path integral (PI) has been used in quantum physics since the revolutionary work of
Feynman [1], although the basic observation goes back to Dirac [2, 3] who appreciated the rôle
of the Lagrangian in short-time evolution of the wave function, and even suggested the time-
slicing procedure for finite, i.e., non-infinitesimal, time lags. Since then the PI approach yielded
invaluable insights into the structure of quantum theory [4] and provided a viable alternative
to the traditional operator-formalism-based canonical quantization. During the second half of
the 20th century, the PI became a standard tool in quantum field theory [5] and statistical
physics [6], often providing the easiest route to derivation of perturbative expansions and serving
as an excellent framework for (both numerical and analytical) non-perturbative analysis [7].

Feynman PI has its counterpart in pure mathematics, namely, in the theory of continuous-time
stochastic processes [8]. There the concept of integration over a space of continuous functions (so-
called fluctuating paths or sample paths) had been introduced by Wiener [9] already in 1920’s
in order to represent and quantify the Brownian motion. Interestingly enough, this so-called

∗Electronic address: p.jizba@fjfi.cvut.cz
†Electronic address: zatlovac@fjfi.cvut.cz
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Wiener integral (or integral with respect to Wiener measure) was formulated 2 years before the
discovery of the Schrödinger equation and 25 years before Feynman’s PI formulation.

The local time for a Brownian particle (in some literature also called sojourn time) has been of
interest to physicists and mathematicians, since the seminal work of Paul Lévy in 1930’s [11]. In
its essence, the local time characterizes the time that a sample trajectory x(t) of a given stochastic
process spends in the vicinity of an arbitrary point X. This in turn defines a sample trajectory
LX of a new stochastic process. A rich theory has been developed for local-time processes that
stem from diffusion processes (see, e.g., Ref. [12] and citations therein). For later convenience,
we should particularly highlight the Ray–Knight theorem which states that the local time of the
Wiener process can be expressed in terms of the squared Bessel process [13–15]. In contrast to
mathematics, the concept of the local time is not uniquely settled in physics literature. Various
authors define essentially the same quantity under different names (local time, occupation time,
traversal time, etc.), and with different applications in mind. For example, in Ref. [16] the
traversal time is used to study quantum scattering and tunneling processes, in [17] the small-
temperature behavior of the equilibrium density matrix is analyzed with a help of the occupation
time, while in Ref. [18] the large-time behavior of path integrals that contain functionals of the
local time is discussed.

The aim of this paper is to derive a local-time PI representation of the Bloch density matrix,

i.e., the matrix elements 〈xb| e−βĤ |xa〉 of the Gibbs operator. This can serve not only as a
viable alternative to the commonly used Feynman–Kac representation but also as a powerful tool
for extracting both large and small-temperature behavior. Apart from the general theoretical
outline, our primary focus here will be on the low-temperature behavior which is technically
more challenging than the large-temperature regime. In fact, the large-temperature expansion
was already treated in some detail in our previous paper [21]. Last but not least, we also wish
to promote the concept of the local time which is not yet sufficiently well known among the
path-integral practitioners.

The structure of the paper is as follows. To set the stage we recall in the next section some
fundamentals from the Feynman PI which will be needed in later sections. In Section III we
provide motivation for the introduction of a local time, and construct a heuristic version of the
local-time representation of PI’s. The key technical part of the article is contained in Section IV,
where we derive by means of the replica trick the local-time representation of the Bloch density
matrix. Relation to the Sturm–Liouville theory is also highlighted in this context. A local-time
analog of the Feynman–Matthews–Salam formula [19, 20] is presented in Section V and its usage
is illustrated with a computation of the one-point distribution of the local time. Since a natural
arena for local-time PI’s is in thermally extremal regimes, we confine our attention in Section VI
on large- and small-β asymptotic behavior of the Bloch density matrix. There we also derive
an explicit leading-order behavior in large-β (i.e., low-temperature) expansion. The analysis is
substantially streamlined by using the Laplace asymptotic formula and the Rayleigh–Ritz vari-
ational principle. Finally, Section VII summarizes our results and discusses possible extensions,
applications, and future developments of the present work. For the reader’s convenience the
paper is supplemented with two appendices which clarify some finer technical details.

II. PATH-INTEGRAL REPRESENTATION OF THE BLOCH DENSITY MATRIX

Consider a non-relativistic one-dimensional quantum-mechanical system described by a time-

independent Hamiltonian Ĥ = p̂2

2M + V (x̂) where p̂ |x〉 = −i~∂x |x〉. Throughout this paper we
will study the matrix elements

ρ(xa, xb, β) ≡ 〈xb| e−βĤ |xa〉 , (1)



3

of the Gibbs operator e−βĤ , where β = 1/(kBT ) is the inverse temperature and kB is the
Boltzmann constant. The matrix ρ(xa, xb, β), known also as the Bloch density matrix, is a

fundamental object in quantum statistical physics, as the expectation value of an operator Ô at
the temperature T can be written in the form

〈Ô〉 =
1

Z

∫

R

∫

R
dxadxb ρ(xa, xb, β) 〈xb|Ô|xa〉 , (2)

where Z =
∫
R dx ρ(x, x, β) is the partition function of the system. In case of need, ensuing

quantum mechanical transition amplitudes can be obtained from (1) via a Wick rotation which

formally amounts to the substitution β → it/~, converting thus the Gibbs operator e−βĤ to the

quantum evolution operator e−itĤ/~.
The matrix elements in Eq.(1) can be represented via the path integral as [4, 7]

ρ(xa, xb, β) =

∫ x(β~)=xb

x(0)=xa

Dx(τ) exp

{
−1

~

∫ β~

0

dτ

[
M

2
ẋ2 + V (x)

]}
. (3)

This represents a “sum” over all continuous trajectories x(τ), τ ∈ [0, β~], connecting the ini-
tial point x(0) = xa with the final point x(β~) = xb. It should be noted that the inte-

gral
∫ β~

0
dτ
[
M
2 ẋ

2 + V (x)
]

is the classical Euclidean action integral along the path x(τ) with
0 < τ ≤ β~. In the following we will denote the Euclidean action as A. The integrand in A,
i.e., (M/2)ẋ2(τ) + V (x(τ)), can be identified with the classical Hamiltonian function, in which
the momentum p is substituted for Mẋ. One can also regard (3) as an expectation value of

the functional exp[−
∫ β~

0
dτ V (x(τ))/~] over the (driftless) Brownian motion with the diffusion

coefficient M/2~, and duration β~, that starts at point xa, and terminates at xb. The latter
stochastic process is also known as Brownian bridge.

III. LOCAL-TIME REPRESENTATION OF PATH INTEGRALS: HEURISTIC
APPROACH

The purpose of this section is twofold. Firstly, we would like to motivate a need for reformu-
lation of PI’s in the language of local-time stochastic process. In particular, we point out when
such a reformulation can be more pertinent than the conventional “sum over histories” prescrip-
tion. Secondly, we wish to outline a heuristic construction of the local-time representation of
PI’s. More rigorous and explicit (but less intuitive) formulation of PI’s over ensemble of local
times will be presented in the subsequent Section.

To provide a physically sound motivation for the local-time representation of PI’s we follow
exposition of Paulin et al. in Ref. [17]. To this end we first consider the diagonal elements of
the Bloch density matrix, i.e., ρ(xa, xa, β) (often referred to as the Boltzmann density). Upon

shifting x → x + xa, and setting x = λξ, τ = sβ~ (λ ≡
√
β~2/M is the thermal de Broglie

wavelength), the PI (3) can be reformulated in terms of dimensionless quantities s and ξ(s) as

ρ(xa, xa, β) =
1

λ

∫ x(1)=0

x(0)=0

Dξ(s) exp

{
−
∫ 1

0

ds

[
1

2
ξ̇2 + βV (xa + λξ)

]}
. (4)

Note in particular, that in contrast to Dx(τ) the measure Dξ(s) does not explicitly depend on β,
and thus β-dependent parts in the PI are under better control. Such a rescaled representation
is particularly useful when discussing large- and/or small-β behavior of the path integral in
question. Path fluctuations in the potential are controlled by λ ∝ √β, and the factor β quantifies
the significance of the potential V with respect to the kinetic term.



4

V
(x
) x

s

xa

10

x

L

X

X+dX

x

FIG. 1: In the middle, two typical paths x(sβ~) = xa+λξ(s) are plotted as functions of the dimensionless
time s. The solid green path, representing a typical trajectory with a high value of β, exhibits large
fluctuations, whereas the dashed red path, corresponding to small β, stays in the vicinity of the initial
and final point xa. On the right, two local-time profiles L(x) are shown. The broad one (solid green)
arises from the violently fluctuating path x(sβ~), whereas the narrow one (dashed red) corresponds to
the path with small fluctuations. On the left, we depict a generic potential V (x).

For small β (i.e., high temperature), typical paths x(sβ~) = xa + λξ(s) stay in the vicinity of
the point xa, as depicted in Fig. 1, and therefore a systematic Wigner–Kirkwood expansion can
be readily developed by Taylor-expanding the potential part of the action [21].

When β is large (i.e., low temperature), the trajectories x(sβ~) fluctuate heavily around the
value xa, and the potential term V dominates over the kinetic one. From the statistical physics
point of view, the most important contribution to the low temperature behavior of the path
integral (4) should come from those paths that spend a sizable amount of time near the global
minimum of the potential V (x). For this reason, it is important to be able to keep track of the
time which a given path spends in an infinitesimal neighborhood of an arbitrary point x.

Let us define, for each Wiener trajectory x(τ) present in the Feynman path integral (3) the
ensuing local time as

LX(τ) =

∫ τ

0

dτ ′ δ(X − x(τ ′)) . (5)

Since the local time LX(τ) is a functional of the random trajectory x(τ ′) for 0 < τ ′ < τ , it
represents a random variable. From the definition (5) we can immediately see that LX ≥ 0
for all X ∈ R,

∫
R dX LX(τ) = τ and that LX has a compact support. In addition, it can be

proved [8, 12] that local-time trajectories LX are, with probability one, continuous curves which
(similarly as trajectories in the underlying Wiener process) are nowhere differentiable. In Fig. 1
we depict two examples of representative local-time trajectories. An extensive mathematical
discussion of properties of the local time can be found, e.g. in Refs. [12, 13].

With the definition (5) the potential part of the Euclidean action can be recast into form∫
R dX LX(β~)V (X). A local-time representation of the Bloch density matrix ρ(xa, xb, β) is then
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given by

ρ(xa, xb, β) =

∫
DLxW[L;β, xa, xb] δ

(∫

R
dX LX − β~

)
exp

[
−1

~

∫

R
dX LXV (X)

]
, (6)

where the PI “sum” is taken over all local-time trajectories Lx, with x being the independent
variable (not to be mistaken with the Wiener trajectory x(τ)). The δ-function enforces the
normalization constraint mentioned above. Basically, transition to the local-time description
represents a change (or a functional substitution) of stochastic variables x(τ) → Lx(β~). The
weight factor W appearing in (6) can be formally written in the form

W[L;β, xa, xb] = exp

[
−1

~

∫ β~

0

dτ
M

2
ẋ2

]
det

(
δLx(β~)

δx(τ)

)−1

. (7)

It is a function of xa, xb (which are implicitly present in Lx(β~)) and β, and a functional of the
local time Lx. Of course, these cavalier manipulations do not have more than a heuristic nature,
and it is, indeed, a non-trivial task to determine W directly from (7). For this reason, we will in
the following Section tackle this problem indirectly.

IV. LOCAL-TIME REPRESENTATION OF PATH INTEGRALS: DERIVATION

In this Section, we present a derivation of the local-time representation of the Bloch density
matrix (1). Initially, we limit ourselves to considering the case of the diagonal part, xb = xa,
and arrive at the key result (16), which expresses the matrix elements in the ensuing Laplace
picture with respect to β. This intermediate outcome is shown to agree with the Sturm–Liouville
theory. In the next step, we generalize the latter result to the off-diagonal elements (xb 6= xa).
The inverse Laplace transform will then yield the sought local-time representation of PI [cf.
Eq. (28)].

A. Field-theoretic representation

It follows from the definition (1) that the function ρ(xa, xb, β) satisfies the heat equation
[
∂

∂β
− ~2

2M

∂2

∂x2
b

+ V (xb)

]
ρ(xa, xb, β) = 0 , (8)

with the initial condition ρ(xa, xb, 0+) = δ(xa − xb). This is merely a Wick-rotated (t→ −i~β)
analogue of the Schrödinger equation. The Feynman–Kac formula [1, 10, 34] then ensures that
the PI (3) can be calculated by solving corresponding parabolic differential equation (8).

In the Laplace picture Eq. (8) takes the form
[
E − ~2

2M

∂2

∂x2
b

+ V (xb)

]
ρ̃(xa, xb, E) = δ(xa − xb) , (9)

with ρ̃(xa, xb, E) =
∫∞

0
dβe−βEρ(xa, xb, β). Eq. (9) implies that ρ̃ is nothing but the Green

function of the operator E + Ĥ. With the benefit of hindsight, we represent the Green function
ρ̃ as a path integral over fluctuating fields — so-called functional integral [5]. This is rather
standard strategy in Quantum Field Theory [6, 20], and in our case it yields

ρ̃(xa, xb, E) =

∫ ψ(X+)=0

ψ(X−)=0
Dψ(x)ψ(xa)ψ(xb) e

− 1
2AE [ψ]

∫ ψ(X+)=0

ψ(X−)=0
Dψ(x) e−

1
2AE [ψ]

, (10)
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where

AE [ψ] ≡
∫ X+

X−

dxψ(x)

[
− ~2

2M

d2

dx2
+ V (x) + E

]
ψ(x)

=

∫ X+

X−

dx

[
~2

2M
ψ′(x)2 + (V (x) + E)ψ(x)2

]
, (11)

is the Euclidean action functional of the field-theoretic path integral. The super-index “E” in A
indicates the shift in the potential V (x) by the amount E. Here, we have confined our quantum-
mechanical system within a finite box [X−, X+], withX− � min{xa, xb} andX+ � max{xa, xb}.
A real scalar field ψ(x) satisfies Dirichlet boundary conditions ψ(X−) = ψ(X+) = 0 so as to
ensure the validity of the operations being performed.

B. Replica trick

Since we will ultimately want to invert the Laplace transform to regain from ρ̃(xa, xb, E)
the original Bloch density matrix ρ(xa, xb, β), we cannot treat the denominator in (10) as an
irrelevant normalization constant (which is the usual practice in Quantum Field Theory) but we
have to take care of its E-dependence. To this end we take advantage of the formula

a

b
= lim

D→0
abD−1 , (12)

which is a simple version of the so-called replica trick. [The usual replica-trick formula (cf. e.g.,
Ref. [35]) can be obtained from (12) by integrating both sides with respect to b and subsequently
dividing by a.] With the help of (12) we can rewrite (10) as a multidimensional functional integral

ρ̃(xa, xb, E) = lim
D→0

2

D

∫ ψ(X+)=0

ψ(X−)=0

Dψ(x)ψ(xa) ·ψ(xb) e
−∑D

σ=1AE [ψσ] , (13)

where the multiplet ψ = (ψ1, . . . , ψD) is a D-component “replica” field in 1 + 0 dimensions,

ψ(xa) · ψ(xb) denotes the scalar product
∑D
σ=1 ψσ(xa)ψσ(xb), and we have rescaled the fields

by a factor of
√

2 in passing. The factor 1/D results from a PI generalization of the well know
mean-value identity 〈xi yi〉 = 〈x · y〉/D valid for any two vectors in D-dimensional statistically
isotropic environments.

As a side remark, note that we may now invert the Laplace transform, using the trivial identity

∫ ∞

0

dβ e−βEδ(β − c) = e−cE for c > 0 , (14)

to obtain the representation

ρ(xa, xb, β) = lim
D→0

2

D

∫ ψ(X+)=0

ψ(X−)=0

Dψψ(xa)·ψ(xb) δ

(∫ X+

X−

ψ(x)2dx− β
)
e−

∑D
σ=1AE=0[ψσ] . (15)

Upon scaling ψ → √βψ, this agrees with the formula (2.9) in Ref. [18]. Though the result
(15) generalizes to arbitrary number of dimensions of the x-space, i.e., x ∈ Rd, our further
development will be illustrated (for simplicity’s sake) only on the one-dimensional case.
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C. Connection with radial harmonic oscillator

In order to derive the weight factor W (cf. Eq. (7)) we have arrived at the representation
(15) with D replica fields. This form is still not very transparent, and a further simplification
step is needed to get rid of an explicit dependence of the measure on D. To this end, we

note that
∑D
σ=1AE [ψ] is in fact the action of a D-dimensional harmonic oscillator with the

“time” variable x, “position” variable ψ, mass ~2/M , and time-dependent “frequency” V (x)+E.
Considering for a moment only diagonal matrix elements, xb = xa, spherical symmetry in the
replica field space allows to reduce the path integral (13) to its radial part. Due to the boundary
conditions, ψ(X−) = ψ(X+) = 0, only the zero-angular-momentum (s-wave) contribution is
non-vanishing (generally a weighted sum over radial PI’s with different angular momenta would
be required). This will be rigorously justified at the end of this Section. The corresponding
radial PI representation for (13) reads [6, 7, 24]

ρ̃(xa, xa, E) = lim
D→0

2

DΩ(D)
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη(x) η2(xa) e−A
E
D[η] . (16)

Here, the radial part η ≡
√
ψ2 of the D-dimensional replica field ψ is always non-negative, i.e.,

η(x) ≥ 0; the area of a unit sphere in D dimensions, Ω(D) = 2πD/2/Γ(D/2), may be replaced
by its small-D asymptotic form Ω(D) ∼ D; and η± have been introduced to regularize the origin
of the ψ-space. The new action functional

AED[η] ≡ AE [η] +

∫ X+

X−

dx
M

~2

(D−1)(D−3)

8η2(x)
, (17)

is the Euclidean action functional of the radial harmonic oscillator [7, 24, 36]. It contains
an additional centrifugal potential term (Edwards–Gulyaev or Langer term [7, 25, 37]), which
emerges from Bessel function ID/2−1 present in the finite sliced form of the radial PI (16). At
this point we should stress that in contrast to the quantum-mechanical radial PI, one can use
safely the asymptotic expansion for the Bessel function ID/2−1 (see, e.g. Ref. [33]):

Iµ(yj) ∼
1√
2πyj

eyj−(µ2−1/4)/2yj , (|yj | � 1, Re[yj ] > 0) ,

yj = (M/ε~)rjrj−1 , (18)

in the Euclidean PI sliced form. Here the infinitesimal “time” slice ε is related to the number
of slices N via the relation ε = ~β/N . In quantum mechanic this is a problematic step because
(18) requires Re[yj ] > 0 while there Re[yj ] = Re[(M/iε~)rjrj−1] = 0.

Fortunately, the PI for radial harmonic oscillator is exactly solvable even in the case of x-
dependent oscillator frequency. The solution reads [24]

(η2x2|η1x1)D ≡
∫ η(x2)=η2

η(x1)=η1

Dη(x) exp

{
−
∫ x2

x1

dx

[
~2

2M
η′2 + (V (x) + E)η2 +

M

~2

(D−1)(D−3)

8η2

]}

=
~2

M

√
η1η2

G(x1)
ID/2−1

(
~2

M

η1η2

G(x1)

)
exp

[
− ~2

2M

(
F ′(x2)

F (x2)
η2

2 −
G′(x1)

G(x1)
η2

1

)]
. (19)

The functions F (x) and G(x) are two independent solutions of the differential equation

[
Ĥ + E

]
y(x) =

[
− ~2

2M

d2

dx2
+ V (x) + E

]
y(x) = 0 , (20)
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with the initial conditions F (x1) = 0 and F ′(x1) = 1, and G(x2) = 0 and G′(x2) = −1. In
addition, the Wronskian W (F,G) ≡ F (x)G′(x) − F ′(x)G(x) is independent of x, as can be
proved by differentiation and by using the fact that F and G both satisfy Eq. (20). By equating
the values of W (F,G) at points x1 and x2, and taking into account the initial conditions for F
and G, we find a useful identity F (x2) = G(x1).

Now, the PI in (16) can be sliced at point xa, and expressed as

ρ̃(xa, xa, E) =

∫ ∞

0

dηa (η+X+|ηaxa)D η
2
a (ηaxa|η−X−)D . (21)

The limits in Eq. (16) are readily carried out with the help of the asymptotic formulas
ID/2−1(z) ∼ (z/2)D/2−1/Γ(D/2), and Γ(z) ∼ 1/z, valid for z → 0+. Subsequent integration
over ηa brings (16) to form

ρ̃(xa, xa, E) = −2M

~2

F1(xa)G2(xa)

F1(xa)G′2(xa)− F ′1(xa)G2(xa)
, (22)

where F1(x) solves Eq. (20) with initial conditions F1(X−) = 0 and F ′1(X−) = 1, and G2(x)
solves the same equation with G2(X+) = 0 and G′2(X+) = −1. The denominator in (22) is the
Wronskian W (F1, G2). The full derivation is given in Appendix A.

Although rather explicit, Eq. (22) is not well suited for the Laplace transform inversion, since
functions F (x) and G(x) contain E in a non-trivial way, which, in addition, significantly hinges
on the actual form of V (x). For formal manipulations it is still better the employ the PI repre-
sentation (16). For instance, using Eq. (14) we can easily invert the Laplace transform to return
from E back to the β-variable, namely

ρ(xa, xa, β) = lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη(x) η2(xa) δ

(∫ X+

X−

η2dx− β
)
e−A

E=0
D [η] . (23)

Note that we have utilized the asymptotic form Ω(D) ∼ D which holds for D � 1. We shall
see shortly that (23) can be straightforwardly related to the local-time PI representation of the
Boltzmann density matrix.

Let us finally comment on the higher-angular-momentum terms which, as claimed, should not
contribute to the expression (16). For arbitrary angular momentum ` ≥ 0, we employ formula
(19) with a slight modification D → D + 2`. Now, for example, in the limit η− → 0, this goes

like (ηaxa|η−X−)D+2` ∝ η
`+D/2−1/2
− , which, multiplied by the prefactor η

1/2−D/2
− , implies the

behavior ∼ η`−. That is, only the (` = 0)-term can give a non-vanishing contribution.

D. Connection with the Sturm–Liouville problem

Consider again Eq. (9) and a finite interval x ∈ [X−, X+]. The corresponding Green function

of the operator Ĥ +E can be easily constructed (at least formally) with the help of the Sturm–
Liouville theory [22, 23]. An immediate consequence of the latter is that for xa < xb the Green
function has the form

ρ̃(xa, xb, E) = −2M

~2

F (xa)G(xb)

W (F,G)
, (24)

where the functions F (x) and G(x) satisfy Eq. (20) with the initial conditions F (X−) = 0 and
F ′(X−) = 1, and G(X+) = 0 and G′(X+) = −1, respectively. In addition, the above Green

function should be symmetric due to the Hermitian nature of Ĥ.
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The Sturm–Liouville theory ensures that the solution to the second-order differential equation
(20) is unique, when specifying the values of y(x0) and y′(x0) at some point x0. Therefore,
the functions F and G must coincide with F1 and G2 of Eq. (22), and the diagonal part of
(24), i.e., ρ̃(xa, xa, E), reduces to expression (22). This is an important consistency check of our
representation (16).

E. Extension to off-diagonal matrix elements

Let us now generalize the PI representation (16) to the full Bloch density matrix, i.e., we
wish to include also the off-diagonal matrix elements, xb 6= xa. If we go back to the replica
representation (13), we realize that the requirement xb 6= xa spoils rotational symmetry in
the replica field space, and thus precludes straightforward reduction to a radial path integral.
Instead of refining the reduction procedure, we simply make a guess, which, as we prove in
Appendix A, coincides with the well-established Sturm–Liouville formula (24). Our guess is
based on mathematical results presented in [13]. In particular, we claim that the extension of
the representation (16) to off-diagonal matrix elements should read

ρ̃(xa, xb, E) = lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη(x) η(xa)η(xb) e
−AE∆[η] , (25)

with the action functional

AE∆[η] ≡ AE [η] +

∫ X+

X−

dx
M

~2

∆(x)

8η2(x)
, (26)

where AE [η] is defined in Eq. (11), and ∆(x) is a piecewise constant function

∆(x) =

{
−1 for x ∈ [xa, xb]

(D − 1)(D − 3) otherwise.
(27)

At this point we can invert the Laplace transform with the help of Eq. (14). As a result, we
obtain the sought local-time PI representation of the Bloch density matrix (1), namely

ρ(xa, xb, β) = lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη η(xa)η(xb) δ

(∫ X+

X−

η2dx− β
)
e−A

E=0
∆ [η] .

(28)
Here, integrations over η(x) run from 0 to +∞, i.e., the paths η(x) are non-negative. Com-
paring this result with the anticipated heuristic form (6), we can identify η2(x) = LX(β~)/~.
Representation (28) allows us to identify the weight factor (7) with

WD[η;β, xa, xb] =
2

D2
(η−η+)

1−D
2 η(xa)η(xb) exp

{
−
∫ X+

X−

dx

[
~2

2M
η′

2
+
M

~2

∆(x)

8η2

]}
. (29)

Contrary to expectation, the right-hand-side of this expression does not depend on β. Sub-index
D inWD indicates that the weight factor must be regularized when we pull it out of the PI (28).
By analogy with quantum mechanics one can represent (28) in the discretized time-sliced form.
In such a case the weightWD would be a product of terms involving the Bessel functions ID/2−1,
if ∆(x) = (D − 1)(D − 3), or I0, if ∆(x) = −1 (see Ref. [24]).

Last but not least, expressions (28)-(29) indicate that the square root of LX is (at least from
a physicist’s point of view) more convenient variable to describe local-time trajectories than LX

alone. From a mathematical standpoint, the local-time representation of the density matrix (28)
can be regarded as a PI variant of the Ray–Knight theorem [13–15] which plays a prominent rôle
in the theory of stochastic processes.
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V. FUNCTIONALS OF THE LOCAL TIME

Formula (28) provides a way of rewriting the PI (3) in terms of the local time. In this Section,
we consider more general scenario, in which the initial path integral is of the form

F̄ (xa, xb, β) ≡
∫ x(β~)=xb

x(0)=xa

Dx(τ)F [L] exp

{
−1

~

∫ β~

0

dτ

[
M

2
ẋ2 + V (x)

]}
, (30)

where F is an arbitrary functional of the local time LX(β~), which itself is (as seen in Section III)
a functional of the paths x(τ). Relation (30) represents a local-time analog of the Feynman–
Matthews–Salam formula [19, 20].

To bring it into more manageable form, we may observe that for any X, the action of LX

in the PI (30) can be taken over by the functional derivative −~δ/δV (X), acting on the ex-

ponential. This becomes transparent after rewriting the potential part as
∫ β~

0
dτ V (x(τ)) =∫

R dX V (X)L(X). The entire functional F [L] can be therefore pulled out of the path integral,
which then allows to write

F̄ (xa, xb, β) = F

[
−~ δ

δV

]
ρ(xa, xb, β) . (31)

When we employ the local-time representation of PI for ρ(xa, xb, β) (cf. Eq. (28)), each functional
derivative −~δ/δV (x) will produce the term ~η2(x). In such a way F̄ can be written as

F̄ (xa, xb, β)

= lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη η(xa)η(xb) δ

(∫ X+

X−

η2dx− β
)
F [~η2]e−A

E=0
∆ [η] , (32)

where, strictly speaking, the functional F [· · · ] is regularized in such a way that it depends on
LX only for X ∈ [X−, X+], and X± are sent to ±∞ only at the end of the calculation.

First, let us make the simple observation that the formula (32) reduces to (28) for the choice
F [L] = 1. One of the most important mean values of a local-time functional, as evaluated with
Eq. (32), is the mean of exp(−

∫
R dXL

Xj(X)) which gives the moment-generating functional.
The local-time moment structure is particularly pertinent in various perturbative expansions,
including low- and high-temperature expansions (see Section VI). Another important example,
namely the case of a one-point distribution function will be discussed in the following subsection.

In passing we should note, that should we have started from (15) and repeated the above proce-
dure, an analog of Eq. (32) for higher-dimensional spaces, x ∈ Rd, could be easily obtained. This
would include the D-dimensional replica field ψ in the d-dimensional Euclidean configuration
space.

A. Example: One-point distribution function at the origin

Simple, though quite important consequence of Eq. (32) is that it readily provides the N -point

distribution functions of the local time. This is achieved when we set F [L] =
∏N
n=1 δ(L

Xn −Ln).
In order to see what is involved let us now illustrate the calculation for N = 1 (with L1 ≡ L).
Our discussion will be greatly simplified by considering only a free particle (i.e., V (x) = 0) that
starts and ends at the origin, i.e., xa = xb = 0. This corresponds to a stochastic process known
as Brownian bridge. Our goal is to derive the one-point distribution function, denoted p(L;β),
of the local time at X = 0. We define p(L;β) by Eq. (30) with F [L] = δ(L0 − L), and calculate
it from the representation (32) as follows.
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In the Laplace picture, p̃(L;E) =
∫∞

0
dβe−βEp(L;β), the path integral (32) can be sliced at

xa = xb = 0 so that

p̃(L;E) = lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ ∞

0

dη0 η
2
0 δ(~η2

0 − L)(η+X+|η0 0)D(η0 0|η−X−)D . (33)

The η0-integration can be done easily by realizing that δ(~η2
0 − L) = δ(η0 −

√
L/~)/2

√
~L.

Furthermore, the limits in η± and D can be carried out with the help of formulas (A2) and (A3)
from Appendix A. Consequently, we obtain

p̃(L;E) = exp

[
−L~

2

2M

(
F ′1(0)

F1(0)
− G′3(0)

G3(0)

)]
, (34)

where, for the free-particle case, F1(x) = sinh[
√

2ME/~2(x − X−)]/
√

2ME/~2, and G3(x) =

sinh[
√

2ME/~2(X+ − x)]/
√

2ME/~2, as one can straightforwardly verify. In the limit X± →
±∞, Eq. (34) reduces to

p̃(L;E) = e−
√

2~2E/ML, (35)

and its inverse-Laplace transform yields

p(L;β) =
L exp

(
−L2~2

2βM

)

√
2πMβ3/~2

. (36)

We stress that p(L;β) thus obtained is, in fact, the (unnormalized ) joint probability density for
stochastic events “x(0) = 0 x(β~) = 0” and “L0 = L”. By Bayes’ theorem of the probability
calculus, the desired conditional probability density p[L0 =L|x(0) = 0 x(β~) = 0] is obtained
from (36) by dividing p(L;β) by the Brownian-bridge probability density p[x(0)=0 x(β~)=0],
which is (omitting again normalization) (2πβ~2/M)−1/2 (see, e.g., Ref. [4]). Normalization
factors mutually cancel in the fraction and we arrive at

p[L0 =L|x(0)=0 x(β~)=0] =
~2L exp

(
−L2~2

2βM

)

βM
, (37)

which is clearly normalized to 1. One can proceed along the same lines also in more complicated
higher-dimensional (N > 1) cases. Our result agrees with the one found through other means in
Ref. [13].

VI. ASYMPTOTIC BEHAVIOR OF THE BLOCH DENSITY MATRIX

A compelling feature of the local-time representation (28) is that it naturally captures both
small- and large-β asymptotic regimes. This should be compared with the Feynman–Kac PI
representation (3), which is typically suitable only for the small-β (i.e., large-temperature) anal-
ysis. The latter is epitomized either by WKB approximation [6, 7] or Wigner–Kirkwood ex-
pansion [21]. In the large-β (small-temperature) limit, the spectral representation of the Gibbs

operator, e−βĤ =
∑
n e
−βEn |φn〉 〈φn|, reduces the Bloch density matrix to the ground-state

contribution

ρ(xa, xb, β)
β→∞∼ e−βE0 ψ∗gs(xa)ψgs(xb) , (38)
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that is not evident from the Feynman–Kac PI representation [27]. In connection with Eq. (38)
it is useful to remind that in d = 1 the discrete bound states can all be chosen to be real [29], so
that the Bloch density matrix is real and symmetric and can be written in the form

ρ(xa, xb, β) =
∑

n=0

e−βEnψn(xa)ψn(xb)
β→∞∼ e−βE0 ψgs(xa)ψgs(xb) . (39)

Let us first comment on the small-β regime of the local-time representation, assuming xb = xa
for simplicity. This case was discussed in detail in our previous article [21]. There one should
first Taylor-expand the potential V (x) around the point xa, and then expand the exponential
part containing the structure

∫
η2(x)O(x− xa)dx, where

O(x− xa) = β
∑

m 6=0

V (m)(xa)

m!
[λ(x− xa)]m . (40)

After the term e−βV (xa)/λ is factored out of the integral, the individual summands of the ensuing
series are of the form (32) with the potential V (x) = 0, and functional F [L] ∝ ∏n L

xn/~. The
latter can be related to the power expansion in β presented in [21] through the equality of
representations (30) and (32). The whole Bloch density matrix (containing also off-diagonal
elements) can be treated similarly in a full analogy with Ref. [21].

Let us now turn to the second and more interesting situation, namely to the large-β regime. In
doing so, we will also highlight some pertinent technical issues related to the radial PI involved.
The large-β expansion of Eq. (28) can be conveniently studied after rescaling η → √βη, in which
case we can write

ρ(xa, xb, β) = lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2

∫ η(X+)=η+

η(X−)=η−

Dη(x) η(xa)η(xb)

× δ

(∫ X+

X−

η2dx− 1

)
exp

{
−
∫ X+

X−

dx

[
β~2

2M
η′

2
+ βV (x)η2 +

M

β~2

∆(x)

8η2

]}

= lim
D→0

2

D2
lim
η±→0

(η−η+)
1−D

2
βδ2

δJ(xa)δJ(xb)

∫ c+i∞

c−i∞

dκ

2πi

∫ η(X+)=η+

η(X−)=η−

Dη(x)

× exp

{
−β
[∫ X+

X−

dx

(
~2

2M
η′

2
+ V (x)η2 − κη2

)
+ κ

]}

× exp

{
−
∫ X+

X−

dx

[
M

β~2

∆(x)

8η2
+ Jη

]}∣∣∣∣∣
J=0

, (41)

where c is an arbitrary real number. With the method of images [7, 24, 38] we can rewrite the
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radial PI involved as a superposition of two genuine one-dimensional PI’s [36]

∫ η(X+)=η+

η(X−)=η−

DRη(x) exp
{
−β
[
〈η|Ĥ|η〉 − κ (〈η|η〉 − 1)

]
− 〈J |η〉

}
exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]

R

=

∫ η(X+)=η+

η(X−)=η−

Dη(x) exp
{
−β
[
〈η|Ĥ|η〉 − κ (〈η|η〉 − 1)

]
− 〈J ||η|〉

}

× exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]

+ sin(πD/2)

∫ η(X+)=η+

η(X−)=−η−
Dη(x) exp

{
−β
[
〈η|Ĥ|η〉 − κ (〈η|η〉 − 1)

]
− 〈J ||η|〉

}

× exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]
, (42)

where Dirac’s notation was employed [47]. A few comments are in order about the right-hand-
side of the above relation. First, it should be noticed the presence of the parity-even terms
〈J ||η|〉 in PI’s. Second, PI’s differ by their respective Dirichlet boundary conditions. Third,
the super-script “R” was used to stress the restricted nature of the fluctuations in the radial PI
measure while the measure without “R” represents a usual one-dimensional PI measure, i.e.

DRη(x) =̇ lim
N→∞

(
β~2

2πεM

)N/2 N−1∏

k=1

∫ ∞

0

dηk, Dη(x) =̇ lim
N→∞

(
β~2

2πεM

)N/2 N−1∏

k=1

∫ ∞

−∞
dηk . (43)

Here “=̇” denotes De Witt’s “equivalence” symbol [39]. Finally, the correct time-sliced form of
the exponential with the centrifugal potential is (cf. e.g., Refs. [7, 36])

exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]

R

=̇ lim
N→∞

N∏

k=1

√
2π
β~2

M

ηkηk−1

ε
∆̃k exp

(
−β~

2

M

ηkηk−1

ε
∆̃k

)

× ID−2
2

(
β~2

M

ηkηk−1

ε
∆̃k

)
,

exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]
=̇ lim

N→∞

N∏

k=1

ψD−2
2

(
−β~

2

M

ηkηk−1

ε
∆̃k

)
, (44)

with

∆̃k ≡ ∆̃(xk) =

{
−(D − 1)(D − 3) for xk ∈ [xa, xb]

1 otherwise,
(45)

and (see, e.g., Refs. [36, 42])

ψp(−x) = e−x
√
πx

2
[I−p(x) + Ip(x)] ,

ψp(x) =
ex

sin(πp)

√
πx

2
[I−p(x)− Ip(x)] = ex

√
2x

π
Kp(x) . (46)
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[Ip and Kp are the modified Bessel functions of the first and the second kind, respectively.] In
cases when x� 1 meaning that |ηkηk−1| � ε (e.g., “typical situation” for very fine time slicings)
the asymptotic form of ψp(±x) ∼ 1∓ (1− 4p2)/8x+O(1/x2) holds. With help of the preceding
asymptotic behavior one obtains

N∏

k=1

ψD−2
2

(
−β~

2

M

ηkηk−1

ε
∆̃k

)
∼

N∏

k=1

[
1− M

β~2

(D − 3)(D − 1)

8ηkηk−1∆̃k

ε+O(ε2)

]

∼
N∏

k=1

exp

[
− M

β~2

∆k

8ηkηk−1
ε+O(ε2)

]

∼ exp

[
−
∫ X+

X−

dx
M

β~2

∆(x)

8η2

]
. (47)

Potential singularities of the integral at η = 0 can be regularized, e.g., by a principal value
prescription. Unfortunately, the formula (47) cannot be directly used in our case because the
boundary values η− and η+ are arbitrarily close to zero, and hence the assumed asymptotic
behavior for ψp is not fulfilled. This situation can be rectified by factorizing out the problematic
boundary points as

N∏

k=1

ψD−2
2

(
−β~

2

M

ηkηk−1

ε
∆̃k

)

∼ sin2(πD/2)

π

(
β~2

2Mε

)D−1 [
(η−η1)(η+ηN−1

)
](D−1)/2

N−1∏

k=2

exp

[
− M

β~2

∆k

8ηkηk−1
ε+O(ε2)

]
.

(48)

Here we have utilized the asymptotic form ψp(−x) ∼ −(x/2)p+1/2 sin(πp)/(
√
π Γ(−p)) +

O(xp+3/2) valid for 0 < x � 1 and p < 0 (p /∈ Z−). For the second PI in (42) — which
has negative lower Dirichlet boundary condition (namely η− 7→ −η−), we need to employ the
asymptotic expansion ψp(x) ∼ (x/2)p+1/2 Γ(−p)/√π + O(xp+3/2) (again 0 < x � 1) instead.
This implies that in the second PI we get in contrast to (48) only “ sin(πD/2)” rather than
“ sin2(πD/2)”.

The passage from the radial PI (41) to the ordinary (1-dimensional) PI brings about an im-
portant advantage, namely, one can perform the WKB approximation. In particular, one can
use Laplace’s formula of the asymptotic calculus [40, 41]

∫ ∞

−∞
dt f(t, β) exp [−βg(t)] =

√
2π

βg′′(t0)
f(t0, β) exp [−βg(t0)] + O

(
exp [−βg(t0)]

β3/2

)
, (49)

with t0 being a solution of g′(t) = 0 (provided g(t) has a smooth absolute minimum at the interior
point t = t0 (6= ±∞)). The function f(t, β) is assumed to be bounded as β → ∞. In case of
need, the full asymptotic expansion can be systematically generated via conventional Laplace’s
method, see e.g. Ref. [41]. In Appendix B we show that

√
2π

βg′′(t0)
7→
(

~2

2πM

) {
det′

[
− d2

dx2
+

2M

~2
(V (x)− E0)

]}−1/2

. (50)

Here E0 is the ground state energy and the prime in det′[· · · ] indicates that the zero mode is
factored out from the determinant. In fact, there is a quick way to compute det′ [· · · ], by using
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either the Wronski construction [44, 45] or the contour integration method [46]. In both these
approaches one arrives at the result

det′
[
− d2

dx2
+

2M

~2
(V (x)− E0)

]
= − 1

η̇0(X+)η̇0(X−)

= − ε2

[η+ − (η0)
N−1

][(η0)
1
− η−]

∼ ε2

(η0)
N−1

(η0)
1

. (51)

Here η0 is the (normalized) ground-state wavefunction of the Hamiltonian Ĥ [or equivalently

the zero-mode eigenvector of (Ĥ − E0)] with the Dirichlet conditions η0(X−) = η− ∼ 0 and
η0(X+) = η+ ∼ 0. A similar result would hold also in the second PI in (42) where η− 7→ −η−.
The only difference in this case would be the presence of a minus sign in front of the last three
expressions in (51).

To complete the WKB approximation, we substitute for f(t0, β) in (49) the functional expres-
sion

β exp

[
−〈J ||η0|〉 −

∫ X+

X−

dx
M

β~2

∆(x)

8η2
0

]
, (52)

in its explicit time-sliced form (48). Note that such f(t0, β) is bounded for β → ∞ as required
by Laplace’s formula. In (52) we have denoted the WKB solution that minimizes the functional

〈η|Ĥ|η〉 − κ (〈η|η〉 − 1) as η0, i.e., with the same symbol as in (51). This is because according
to the Rayleigh–Ritz variation principle (see, e.g., Refs. [29, 31]), such a WKB function η(x)

is the ground-state wavefunction of the Hamiltonian Ĥ, i.e., η0(x) = ψgs(x) with κ0 = E0.
Notice also that the stationary point in κ is real but the integration contour in κ is parallel to
the imaginary axis. Both reality and positivity of η(x) pose no restriction in the Rayleigh–Ritz
principle, because the ground state can always be chosen real and positive [32]. By substituting

for g(t0) the expression 〈η0|Ĥ|η0〉 − κ0 (〈η0|η0〉 − 1) = E0 and using the Laplace asymptotic
formula (49), it is easy to see that for the first PI in (42) we get (cf. also Appendix B)

sin2(πD/2)

π2
(η−η+)

D−1
2 exp (−〈J |η0〉 − βE0) , (53)

while for the second PI we have

sin(πD/2)

π2
(η−η+)

D−1
2 exp (−〈J |η0〉 − βE0) . (54)

By plugging this into (41) and performing the η± → 0 and D → 0 limits, respectively, we get
the leading large-β behavior of the Bloch density matrix in the form

ρ(xa, xb, β) = e−βE0 ψgs(xa)ψgs(xb) , (55)

as expected from the spectral expansion, cf. also Eq. (39).
We conclude the discussion of the low-temperature expansion by noting that the Rayleigh–

Ritz variation principle states that all eigenvalues and (normalized) eigenvectors of Ĥ come from

stationary solutions of 〈η|Ĥ|η〉 − κ (〈η|η〉 − 1), and conversely [29]. In the spirit of the WKB
approximation one should sum over all path integrals evaluated about all stationary solutions. It
is, however, only the ground state configuration {ψgs(x), E0} that acquires the global minimum
and which gives the largest contribution to the WKB approximation. This fact was implicitly
used in our preceding reasonings. Should we have included also other stationary solutions we
would recover higher-order terms in the spectral expansion of the Bloch density matrix (39).
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So what we have just demonstrated is that the WKB expansion of the local-time PI (in
contrast to the Feynman–Kac PI) representation picks up the correct asymptotic behavior known
from spectral theory. As mentioned in Section III, this should be expected because the most
important contribution to the low-temperature behavior of ρ(xa, xa, β) stems from those paths
that spend a sizable amount of time near the global minimum, and the WKB expansion of
local-time PI’s is organized precisely in terms of the local time of a stationary configuration and
ensuing fluctuations. Of course, the usefulness of the local-time PI approach lies in the situations
where neither energy spectrum nor associated eigenvalues are explicitly known and various direct
PI techniques can be conveniently employed to probe the low-temperature regime.

VII. CONCLUSION AND OUTLOOK

In this paper, we have derived the local-time PI representation of the Bloch density matrix.
We have shown that the result obtained, apart from being of interest in pure mathematics
(stochastic theory, Sturm–Liouville theory, etc), can serve as a useful alternative to the traditional
Feynman–Kac PI representation of Green functions of Fokker–Planck equations. Furthermore,
by analytically continuing the result back to the real time via the inverse Wick rotation, β → it/~,
one obtains the local-time PI representation of quantum-mechanical transition amplitudes, i.e.,

matrix elements of the evolution operator e−itĤ/~. From a physics point of view, perhaps the
most important application of local-time PI’s lies in statistical physics, and namely in the low
and high temperature treatments of the Bloch density matrix. This is because in conventional
PI’s only a very tiny subset of paths gives a relevant contribution in these asymptotic regimes. In
particular, the high-temperature regime of the Boltzmann density function ρ(x, x, β) is dominated
by paths that spend a sizable amount of time in the vicinity of the point x. Similarly, the low-
temperature regime is controlled by paths with a large local time near the global minimum of the
potential. Here we have exemplified the conceptual convenience of the local-time formulation by
providing a generic analysis of the low-temperature behavior of the Bloch density matrix. Our
formulation proved to be particularly instrumental in obtaining the correct asymptotic behavior
(known from the spectral theory) which is otherwise notoriously difficult to obtain within the
Feynman–Kac PI framework [4, 17]. As a byproduct we have uncovered an interesting connection
between a low-temperature PI expansion, the Laplace asymptotic formula and the Rayleigh–Ritz
variational principle.

In order to further reinforce our analysis, we formulated a local-time analog of the Feynman–
Matthews–Salam formula which is (similarly as its QFT counterpart) expedient in number of
statistical-physics contexts. The prescription obtained was substantiated by an explicit calcula-
tion of a one-point distribution function of the local time. In addition, the obtained relationship
between the local-time representation of PI and the radial PI provides a practical illustration of
the Ray–Knight theorem of the stochastic calculus.

It appears worthwhile to stress that our local-time representation (with its build-in replica
field trick) is in its present form applicable only to one-dimensional quantum mechanical systems.
With a hindsight we reflected this fact already in our choice of the incipient PI (3) where we
assumed τ ∈ R and x ∈ R. Though one may easily proceed up to Eq. (15) without any restriction
on the value of d (in fact, Eq. (15) is valid for any x ∈ Rd with d ≥ 1), a further progress in
this direction is hindered by the fact that the replica fields depend on a d-dimensional argument
x, and thus the PI in (15) can no longer be regarded as a quantum mechanical PI (i.e., PI over
fluctuating paths). In effect, we cannot use existing mathematical techniques of the PI calculus
(e.g., transformation of PI’s to polar coordinates), that we have employed to get the radial
PI (16). The issue of the extension of our local-time PI representation to higher-dimensional
configuration space is currently under active investigation.
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Appendix A: Off-diagonal matrix elements

In this appendix we show that the representation (25) reduces to the well established result
(24) of the Sturm–Liouville theory. Since ρ̃(xa, xb, E) is symmetric in xa and xb, we will assume,
without loss of generality, that xa < xb.

The path integral in (25) can be expressed via Eq. (19) as

∫ ∞

0

dηadηb (η+X+|ηbxb)Dηb(ηbxb|ηaxa)2ηa(ηaxa|η−X−)D . (A1)

The limits in Eq. (25) can be carried with the help of the asymptotic formulas
ID/2−1(z) ≈ (z/2)D/2−1/Γ(D/2), and Γ(z) ≈ 1/z, valid for z → 0. We obtain

1

D
η

1−D
2
− (ηaxa|η−X−)D

η−→0−−−−→
(

~2ηa
2MF1(xa)

)D/2 exp
(
− ~2

2M
F ′1(xa)
F1(xa)η

2
a

)

D
2 Γ(D2 )

√
ηa

D→0−−−→ 1√
ηa

exp

(
− ~2

2M

F ′1(xa)

F1(xa)
η2
a

)
, (A2)

where F1(x) satisfies Eq. (20) with initial conditions F1(X−) = 0 and F ′1(X−) = 1, and similarly,
we find

1

D
η

1−D
2

+ (η+X+|ηbxb)D
η+→0,D→0−−−−−−−−→ 1√

ηb
exp

(
~2

2M

G′3(xb)

G3(xb)
η2
b

)
, (A3)

where G3(x) satisfies Eq. (20) with initial conditions G3(X+) = 0 and G′3(X+) = −1. Formula
(25) then reduces to

ρ̃(xa, xb, E) =
2~2

M

∫ ∞

0

dηadηb
ηaηb
G2(xa)

I0

(
~2

M

ηaηb
G2(xa)

)

× exp

[
− ~2

2M

(
W (G2, F1)η2

a

F1(xa)G2(xa)
+
W (G3, F2)η2

b

F2(xb)G3(xb)

)]
, (A4)

where F2(x) and G2(x) satisfy Eq. (20) with initial conditions F2(xa) = 0 and F ′2(xa) = 1, and
G2(xb) = 0 and G′2(xb) = −1, respectively. The Wronskian W (F,G) ≡ F (x)G′(x)− F ′(x)G(x)
is independent of x, as discussed in Section IV C, and antisymmetric, i.e., W (F,G) = −W (G,F ).

Wronskians W (G2, F1) and W (G3, F2) assume a particularly simple form when evaluated
at points xb and xa, respectively, due to the initial conditions satisfied by G2 and F2. We
find W (G2, F1) = F1(xb) and W (G3, F2) = G3(xa). Rescaling ηa →

√
G2(xa)M/~2ηa, ηb →√

F2(xb)M/~2ηb, and using the relation F2(xb) = G2(xa) we obtain

ρ̃(xa, xb, E) =
2M

~2
G2(xa)

∫ ∞

0

dηadηb ηaηb I0(ηaηb) exp

(
− F1(xb)

2F1(xa)
η2
a −

G3(xa)

2G3(xb)
η2
b

)
. (A5)
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The integrations are readily performed using the formula [33]

∫ ∞

0

dz I0(bz) exp
(
−a

2
z2
)

=
1

a
exp

(
b2

2a

)
, (A6)

yielding

ρ̃(xa, xb, E) =
2M

~2

F1(xa)G3(xb)G2(xa)

F1(xb)G3(xa)− F1(xa)G3(xb)
. (A7)

To prove equality with (24), we only have to show that

F1(xa)G3(xb)− F1(xb)G3(xa) = G2(xa)W (F1, G3) . (A8)

This is done by realizing that G2(x), being a solution of the second-order linear differential
equation (20), can be uniquely composed as a linear combination of two other solutions F1(x)
and G3(x),

G2(x) =
F1(x)G3(xb)− F1(xb)G3(x)

W (F1, G3)
. (A9)

Indeed, thus defined G2 satisfies the initial conditions G2(xb) = 0 and G′2(xb) = −1.
We conclude that

ρ̃(xa, xb, E) = −2M

~2

F1(xa)G3(xb)

W (F1, G3)
, (A10)

which coincides with the Sturm–Liouville result (24).

Appendix B: Proof of identity (50)

In this appendix we derive the identity (B6). According to Laplace’s formula (49) we may
assume that the dominant contribution to the PI (42) comes from the extremization of

g(t) 7→ 〈η|Ĥ|η〉 − κ (〈η|η〉 − 1) ≡ s[η, κ] , (B1)

while the role of f(t, β) is played by the functional expression

exp

[
−〈J ||η|〉 −

∫ X+

X−

dx
M

β~2

∆(x)

8η2

]
. (B2)

Let η0 and k0 are corresponding extremizers of s[η, κ] and let δη and δκ describe fluctuations
around η0 and k0. Then the expansion of s[η, κ] reads as

s[η, κ] = s[η0, κ0] + 〈δη|Ĥ − κ0|δη〉 − δκ (〈δη|η0〉 + 〈η0|δη〉) + · · · , (B3)

(recall that the linear terms are absent due to the extremalization condition δs = 0). Notice
that according to the Rayleigh–Ritz variation principle (see, e.g., Refs. [29, 31]), η0 and κ0 must

correspond to the (normalized) ground-state wavefunction of the Hamiltonian Ĥ and to the
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ground-state energy E0, respectively. For the case at hand the leading WKB approximation (i.e.,
if we include only quadratic terms in the expansion (B3)) becomes, cf. Laplace’s formula (49)

∫ η(X+)

η(X−)

Dη exp {−βs[η, κ]} exp

[
−〈J ||η|〉 −

∫ X+

X−

dx
M

β~2

∆(x)

8η2

]

= exp[−βE0] exp

[
−〈J ||η0|〉 −

∫ X+

X−

dx
M

β~2

∆(x)

8η2
0

]

× 1

2π

∫ ∞

−∞
dδκ

∫ δη(X+)=0

δη(X−)=0

Dδη exp

[
−β(〈δη|, δκ)

∥∥∥∥
Ĥ − E0, i|η0〉
i〈η0|, 0

∥∥∥∥
(
|δη〉
δκ

)]

= exp[−βE0] exp

[
−〈J ||η0|〉 −

∫ X+

X−

dx
M

β~2

∆(x)

8η2
0

]{
det Ĥ−1

0 det

∥∥∥∥
Ĥ − E0, iη0

iηᵀ0 , 0

∥∥∥∥
}−1/2

.

(B4)

Here we have used that s[η0, κ0] = E0. We have also set c = E0 in the κ-integration and
subsequently rotated the integration contour so that the δκ-integration would run along the real
axis. The (formal) expression inside of curly parentheses is a customary short-hand notation for
the correct time-sliced form

{· · · } = (2π)2 det

∥∥∥∥∥
−ε2∇∇+ ε22M(V (x)− E0)/~2, i2Mη0ε

2/~2

i2Mηᵀ0 ε
2/~2, 0

∥∥∥∥∥ , (B5)

where the difference operators (lattice derivatives) ∇ and ∇ are defined as [7]

∇η(x) =
1

ε
[η(x+ ε) − η(x)] , ∇η(x) =

1

ε
[η(x) − η(x− ε)] , (B6)

with ∇∇ = ∇∇ being the Hermitian operator on the space of “time-sliced” functions with
vanishing end points, i.e., η(xN ) = η(x0) = 0. Eq. (B5) can be further simplified by using
the Schur complement technique for calculation of determinants of partitioned matrices [43]. In
particular, we have

{· · · } =

(
2πMε2

~2

)2

det

[
−ε2∇∇+ ε2 2M

~2
(V (x)− E0)

]
ηᵀ0
∥∥−ε2∇∇+ ε2 2M

~2 (V (x)− E0)
∥∥−1

η0,

(B7)

In order to find a finite expression for the indeterminate form 0/0 (caused by the presence of
the zero mode) we must properly regularize the numerator and denominator in (B7). This can
be done by introducing a small parameter k2 which moves the zero mode away from zero. In
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this way we can write

{· · · } = lim
k→0

ε

(
2πM

~2

)2 det
[
−ε2∇∇+ ε2 2M

~2 (V (x)− E0) + ε2k2
]

k2

= lim
k→0

ε

(
2πM

~2

)2 det
[
−ε2∇∇+ ε2 2M

~2 (V (x)− E0) + ε2k2
]

k2 det
[
−ε2∇∇

] det
[
−ε2∇∇

]

= ε

(
2πM

~2

)2 det′
[
−d2/dx2 + 2M

~2 (V (x)− E0)
]

det [−d2/dx2]
det
[
−ε2∇∇

]

=

(
2πM

~2

)2

det′
[
− d2

dx2
+

2M

~2
(V (x)− E0)

]
. (B8)

The prime in det′ [· · · ] indicates that the zero mode is divided out from the determinant. On the
first line of (B8) we have used the fact that in the continuum limit

ηᵀ0
∥∥−ε2∇∇+ ε2 2M

~2 (V (x)− E0) + ε2k2
∥∥−1

η0 ∼
1

ε3

∫

R2

dxdy η0(x)Gk(x, y)η0(y) =
1

ε3k2
,(B9)

where Gk(x, y) is the Green’s function satisfying the equation

[
− d2

dx2
+

2M

~2
(V (x)− E0) + k2

]
Gk(x, y) = δ(x− y) . (B10)

On the last line of (B8) we have employed the well-known formulas [7, 45]:

det
[
−ε2∇∇

]
= N = (X+ −X−)/ε ,

det
[
−d2/dx2

]
= X+ −X− . (B11)

Comparison of (B4) and (B8) with (49) yields the result (50).
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The statistics of rare events, the so-called Black-Swan Events, is goverened by non-Gaussian
distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-
Planck equations and solve the related stochastic differential equations. We also discuss the subject
in the framework of path integration.

I. INTRODUCTION

Gaussian random walks prove to be a natural and rather universal starting point for many
stochastic processes. In fact, the famous central-limit theorem shows that many independent
random movements of finite variance σ2 = 〈x2〉 always pile up to display a Gaussian distribution
[1]. In particular, Gaussian random walks constitute the basis of the most important tool in
the theory of financial markets, the Black-Scholes option price theory [2] (Nobel Prize 1997), by
which a portfolio of assets is hoped to remain steadily growing through hedging [3].

However, since the last stock market crash and the still ongoing financial crisis it has become
clear that distributions which describe realistically the behaviour of financial markets belong to
a more general universality class, the so-called Lévy stable distribution [5–7]. They result from a
sum of random movements of infinite variance [8], and account for the fact that rare events, the
so-called Black-Swan Events [9], which initiate crashes, are much more frequent than in Gaussian
distributions. These are events in the so-called Lévy tails ∝ 1/|x|1+λ of the distributions, whose
description is based on a generalized Hamiltonian [10]:

H(p) = const (p2)λ/2. (1)

Such tail-events are present in many physical situations, e.g., in velocity distributions of many
body systems with long-range forces [11], in the self-similar distribution of matter in the universe
[12–14], and in the distributions of windgusts [15] and earthquakes [16], with often catastrophic
consequences.

Distributions with Lévy tails are a consequence of rather general maximal entropy assumptions
[17]. In the limit λ→ 2, the Lévy distributions reduce to Gaussian distributions.

The simplest Lévy-type random walk is described by the stochastic differetial equation of the
Langevin type

d

ds
x(s) ≡ ẋ(s) = η(s), (2)

∗Electronic address: h.k@fu-berlin.de
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where η(s) is a noise variable as a function of a pseudotime s with zero expectation value and a
probability distribution characterized by a parameter λ [18]:

P [η]≡e−
∫
dsH̃(η) =

∫
Dp exp

{∫
ds
[
ipη − (p2)λ/2

]}
. (3)

Using this we may solve the stochastic differential equation (2) in which the noise η(s) has
nonzero correlation functions for even n = 2, 4, 6, . . . :

〈η(s1) . . . η(sn)〉 ≡
∫
Dη η(s1) . . . η(sn)P [η]. (4)

For λ = 2, the distribution is Gaussian and η(s) is a standard white noise variable. If we solve
(2) in D dimensions with an initial condition x(0) = 0, the variable x(s) has a distribution

PG(x, s) = (4πs)−D/2e−x
2/4s. (5)

This distribution is the Green function of the Fokker-Planck equation

(∂s + p̂2)PG(x, s) = δ(s)δ(D)(x), (6)

where p̂ ≡ i∂x ≡ i∇. For λ 6= 2, the distribution is non-Gaussian and it solves the fractional
Fokker-Planck equation

[∂s + (p̂2)λ/2]P (x, s) = δ(s)δ(D)(x). (7)

A solution of this equation that evolves from the δ-function is

P (x, s) = e−s(p̂
2)λ/2δ(D)(x), (8)

and for s = 1 it coincides with the noise probability,

P (x, 1)|x=η = P (η) =

∫
dDp

(2π)D
eipη−(p2)λ/2 . (9)

Applications of the fractional Fokker-Planck equation are numerous in non-Brownian diffusion
processes. These are observed in chaotic systems and in the fluid dynamics of rheology and
biology. See [19, 20] for an overview. The mathematics of Eq. (7) with variable diffusion
coefficient is in [21].

The fractional Fokker-Planck equation (7) can be generalized further to the double fractional
Fokker-Planck equation

[p̂1−γ
4 +Dλ(p̂2)λ/2]P (x, t) = δ(t)δ(D)(x), (10)

where p̂4 ≡ ∂t, p̂ ≡ i∂x ≡ i∇ and a parameter has been allowed for that is the analogue of the
diffusion constant D in the ordinary diffusion process [22].

We should explain the physical origin of the fractional powers in the space and time derivatives
of the above equation. Such powers occur naturally in many-particle systems if the interaction
strength or the range becomes very large. As long as the interaction strength is small and the
range is short, such systems are described by a second-quantized field theory with a free-particle
action

A0 =

∫
dtd3xψ†(x, t)(i∂t+~2∇2/2m−V (x))ψ(x, t), (11)
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and an interaction of the type

Aint =
g

4!

∫
dtd3x(ψ†ψ)2 . (12)

The partition function can be calculated from the functional integral

Z =

∮
DψDψ†ei(A0+Aint)/~. (13)

A perturbation expansion leads to an effective action in the form of a power series of gΨ†Ψ,
where Ψ = 〈ψ〉 are the expectation values of the field. This series is divergent and must be
resummed. For large interaction strength g, this produces anomalous power behaviors in the
field strength as well as in the momenta [23, 24]. The free-field part of the effective action leads
to a field equation of the fractional Fokker-Planck or Schrödinger type, in which momentum and
energy appear with powers different from λ = 2 and γ = 0, respectively.

In addition, equations of the type (10) are known to govern various different phenomena. In
chaotic systems, for example, they describe anomalous diffusion processes with memory (time
non-locality) [25, 26]. In fact, the fractional time derivatives also arise as the infinitesimal
generators of coarse grained time evolutions [27], or they can be derived from a random walk
model when the mean waiting time of the walker diverges [28].

It is the purpose of this note to calculate the Green functions of general fractional Fokker-
Planck equation (10) and specify the path integrals solved by them [4, 29].

II. DOUBLE FRACTIONAL FOKKER-PLANCK EQUATION

A convenient definition of the fractional derivatives uses the same formula as in the dimensional
continuation of Feynman diagrams [30, 31],

(p̂2)λ/2 = Γ[−λ/2]−1

∫
dσσ−λ/2−1eσp̂

2

. (14)

The solution of (10) can be written formally as

P (x, t) = [(p̂4 + ε)1−γ +Dλ(p̂2)λ/2]−1δ(t)δ(D)(x), (15)

where infinitesimal ε > 0 ensures forward-in-time nature of the Green function, and its explicit

appearance will be suppressed from now on. Using the representation δ(t) =
∫ +∞
−∞

dE
2π e
−iEt, we

arrive at

P (x, t) =

∫
dE

2π

e−iEt

(−iE)1−γ +Dλ(p̂2)λ/2
δ(D)(x). (16)

Now we expand the fraction into a geometric series, and integrate term by term using the formula
[32]

∫ +∞

−∞

dE

2π

e−iEt

(−iE + ε)(1−γ)(n+1)
=

θ(t)tn(1−γ)−γ

Γ[(1− γ)(n+ 1)]
, (17)

where θ(t) is the Heaviside step function. The result can be cast as

P (x, t) = θ(t)t−γE1−γ,1−γ [−t1−γDλ(p̂2)λ/2]δ(D)(x), (18)
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Figure 1: (Color online) The function Uγ(t) for Ĥ = 1, and various values of γ. Dotted (blue) curve:
γ = 0, standard exponential function; Dashed (red) curve: γ = 0.1; Solid (yellow) curve: γ = 0.5.

where Eα,β(z) =
∑∞
n=0

zn

Γ(αn+β) is the Mittag-Leffler function [33, 34]. This can be interpreted

by writing

P (x, t) = 〈x| Ûγ(t) |0〉 , (19)

with the γ-deformed evolution Ûγ defined by

Ûγ(t) = θ(t)t−γE1−γ,1−γ(−t1−γĤ), (20)

with Ĥ ≡ Dλ(p̂2)λ/2 [35] (See Fig. 1.). The occurrence of the Mittag-Leffler function in solutions
of the time-fractional Fokker-Planck equation has been noted previously, for example, in the
review article [22].

For γ = 0, the equation (10) reduces to a single (space) fractional Fokker-Planck equation

[p̂4 +Dλ(p̂2)λ/2]P (x, t) = δ(D)(x)δ(t), (21)

the Mittag-Leffler function reduces to E1,1(z) = exp(z), and the evolution operator recovers its

standard form Û0(t) = θ(t) exp(−tĤ). The solution, which we shall denote by PX(x, t) for a
more specific reference, is the multivariate Lévy stable distribution [36]:

PX(x, t) =

∫
dDp

(2π)D
e−tDλ(p2)λ/2e−ipx. (22)

For λ = 2, it reduces to the standard quantum mechanical Gaussian expression (5). For λ = 1,
the result is

PX(x, t) =
[Γ(D/2 + 1/2)/π(D+1)/2]Dλt

[(Dλt)2 + |x|2]D/2+1/2
, (23)

which is the Cauchy-Lorentz distribution function. In Fig. 2, we plot PX in D = 1 dimension
for λ = 1, 1.5, 2.

In the Appendix we provide various useful representations of PX(x, t). At this place it is worth
mentioning that this probability can be written as a superposition of Gaussian distributions

PG(σ,x) = (4πσ)−D/2e−x
2/4σ to be specified in Eq. (55).
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Figure 2: (Color online) Dotted (blue) curve: λ = 2, standard Gaussian distribution; Dashed (red) curve:

λ = 1.5; Solid (yellow) curve: λ = 1, Cauchy-Lorenz distribution. The length scale is `s = 2(Dλs)
1/λ.

A. Smeared-time representation, and relation between physical time t and pseudotime s

If we use in (16) the Schwinger’s formula 1/A =
∫∞

0
ds e−sA, we can express P (x, t) as an

integral

P (x, t) =

∫ ∞

0

dsPX(x, s)PT (t, s), (24)

where PX solves the space-fractional diffusion equation (21), with t ≡ s, and PT solves the
time-fractional equation

[∂s + p̂1−γ
4 ]PT (t, s) = δ(t)δ(s), (25)

which encodes the relation between the pseudotime s and the physical time t. The factorized
ansatz (24) has been used previously in [37] to solve the time-fractional Fokker-Planck equation.

For γ = 0, PT (t, s) = δ(t− s), and (24) reduces to P (x, t) = PX(x, t).
For γ > 0, we obtain an asymmetric Lévy stable distribution [38]

PT (t, s) =

∫ ∞

−∞

dE

2π
e−s(−iE)1−γe−iEt. (26)

An important feature is that PT (t, s) vanishes for t < 0. This can be seen by placing the branch
cut of a multivalued function z1−γ along the negative real axis, and calculating (26) as a complex
integral with contour that follows the real axis, and closes in the upper half-plane. See Fig. 3
(a) where PT is plotted as a function of t for the case γ = 0.03, and various values of s.

It is illustrative to view formula (24) as a smearing of the distribution PX(x, s) around the
time position t, defined by the probability density function PT (t, s). For this purpose we plot in
Fig. 3 (b) PT (t, s) as a function of s, with parameter t describing the position of the peak in the
probability distribution.

The two plots in Fig. (3) are related through the formula

PT (t, s) = (C/t)PT (C,C1−γtγ−1s), (27)

which can be deduced from (26) by a simple change of the integration variable E → (C/t)E.
Here C is an arbitrary constant. The function PT (t, s) as a function of two variables is shown in
Figure (4).
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Figure 3: (Color online) (a) PT (t, s) as a distribution of t with increasing values of the pseudotime
s = 0.5, 1, 1.5. (b) PT (t, s) as a distribution of s with increasing values of the real time t = 0.5, 1, 1.5. In
both cases γ = 0.03.
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Figure 4: (Color online) PT (t, s) as a function of both t and s. Here γ = 0.1.

When γ = 0, PT (t, s) = δ(t − s) is concentrated at the point t, i.e., there is no smearing.
For increasing γ the peak around t broadens, which can be accounted for by derivatives of the
δ-function. The action of PT on a test function f(s) is

∫ ∞

0

ds PT (t, s)f(s) =
∞∑

n=0

f (n)(t)

n!

∫ ∞

0

ds PT (t, s)(s− t)n. (28)

We represent f (n)(t) = (−1)n
∫
dτδ(n)(τ − t)f(τ), and calculate

∫ ∞

0

dsPT (t, s)sk=

∫
dE

2π

e−iEtk!

(−iE)(1−γ)(k+1)
=
k!θ(t)t(1−γ)k−γ

Γ[(1−γ)(k+1)]
(29)



7

to find that

PT (t, s) =

∞∑

n=0

tn

n!
cn(t)δ(n)(s− t), (30)

where

cn(t) =
n∑

k=0

(
n

k

)
(−1)k

k!θ(t)t−γ(k+1)

Γ[(1− γ)(k + 1)]
. (31)

In view of these relations, the equation (24) translates into

P (x, t) =
∞∑

n=0

(−t)n
n!

cn(t)∂nt PX(x, t). (32)

One can easily verify that for γ = 0, cn = δn0, and P (x, t) = PX(x, t).

B. Fox H-function representation of the Green function

Solution of the double fractional equation (10) has been obtained previously in terms of the
Fox H-function [39]. We derive the same result starting from formula (24), where we consider the
representation (58) of PX(x, s). Integration over the pseudotime s can be performed, followed
by the E integration, that yields

P (x, t) =
t−γ

πD/2|x|DH
2,1
2,3

([ |x|
`t

]λ ∣∣∣∣
(1,1);(1−γ,1−γ)

(1,1),(D/2,λ/2);(1,λ/2)

)
. (33)

Here `t ≡ 2(Dλt
1−γ)1/λ is a t-dependent length scale, and H2,1

2,3 is the Fox H-function [40, 41],
defined by the contour integral

P (x, t)|x|D
t−γπ−D/2

=

∫

C

dz

2πi

Γ(1 + z)Γ(D2 + λ
2 z)Γ(−z)

Γ(−λ2 z)Γ(1−γ + (1−γ)z)

[ |x|λ
`λt

]−z
, (34)

where the contour C runs from −i∞ to +i∞. In Fig. 5 we show how values of γ > 0 modify the
Gaussian distribution (for which λ = 2, γ = 0).

The large-|x| asymptotics of (33) is governed by the pole of the integrand at z = 1:

tγ |x|DP (x, t)
|x|→∞≈ `λt

|x|λ
−Γ(D+λ

2 )

πD/2Γ(2− 2γ)Γ(−λ2 )
. (35)

Analysis of the small-|x| behavior is more subtle due to a richer pole structure of the integrand
in (34) (see [42]). If we assume only simple poles, we can extract the leading behavior

tγP (x, t)
|x|→0≈

{
A(t) +B(t)|x|2λ−D, 2λ−D < 2
A(t) +O[|x|2](t), 2λ−D > 2

, (36)

with

A(t) =
π1−D/2`−Dt 2/λ

sin(πDλ )Γ(D2 )Γ[ (1−γ)(λ−D)
λ ]

, (37)

B(t) = − π
−D/2Γ(D2 − λ)

Γ(λ)Γ(γ − 1)`2λt
. (38)

In particular, for 2λ < D the value of P (x, t) tends to either +∞ or −∞ as |x| → 0. See Fig. 6.



8

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

t�`Dt P (x, t)

|x|/`t

1

Figure 5: (Color online) In all cases λ = 2. Dotted (blue) curve: γ = 0, standard Gaussian distribution;
Dashed (red) curve: γ = 0.03; Solid (yellow) curve: γ = 0.1.
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Figure 6: (Color online) Dotted (blue) curve: γ = 0, λ = 1, Cauchy-Lorentz distribution; Dashed (red)
curve: γ = 0.1, λ = 1; Solid (yellow) curve: γ = −0.1, λ = 1, assumes negative values. Here D=3.

III. PATH-INTEGRAL FORMULATION

We note that the probability (15) may be calculated from the doubly fractional canonical path
integral over fluctuating orbits t(s),x(s) p4(s),p(s) viewed as functions of some pseudotime s
[43]:

{xbtbsb|xatssa} =

∫
DxDtDpDp4e

A, (39)

with A being the euclidean action of the paths t(s),x(s):

A =

∫
ds[i(px′ − ip4t

′)−H(p, p4)]. (40)

Here t′(s) ≡ dt(s)/ds, x′(s) ≡ dx(s)/ds, and H(p, p4) = p1−γ
4 + Dλ(p̂2)λ/2. At each s, the

integrals over the components of p(s) run from −∞ to ∞, whereas those over p4(s) run from
−i∞ to i∞. To obtain the distribution P (x, t), we finally form the integral

P (x, t) =

∫ ∞

0

ds{x t s|0 0 0}. (41)
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This is analogous to prescription (24) which links solutions of the space- and time-fractional
diffusion equations (21) and (25).

If γ = 0, the path integral over p4(s) yields the functional δ[t′(s) − 1], which ensures that dt
and ds increments are equal. This brings (39) to the canonical path integral

(xbtb|xata) =

∫
DxDpeA′ , (42)

with

A′ =

∫
dτ [ipẋ−Dλ(p̂2)λ/2]. (43)

Now P (x, t) = (xt|0 0) satisfies the ordinary fractional Fokker-Planck equation

[p̂4 +Dλ(p̂2)λ/2]P (x, t) = δ(t)δ(D)(x), (44)

which has been discussed at length in recent literature [44].

IV. LANGEVIN EQUATIONS AND COMPUTER SIMULATIONS

In the past, many nontrivial Schrödinger equations (for instance that of the 1/r-potential) have
been solved with path integral methods by re-formulating them on the pseudotime axis s, that
is related to the time t via a space-dependent differential equation t′(s) = f(x(t)). This method
was invented by Duru and Kleinert [45] to solve the path integral of the hydrogen atom, and has
recently been applied successfully to various Fokker-Planck equations [46, 47]. The stochastic
differential equation (47), that connects pseudotime s and the physical time t, may be seen as a
stochastic version of the Duru-Kleinert transformation that promises to be a useful tool to study
non-Markovian systems.

Certainly, the solutions of Eq. (44) can also be obtained from a stochastic differential equation

ẋ = η, (45)

whose noise is distributed with a fractional probability

P [η] =

∫
DDpe

∫
dt(ip·η−Dλ(p2)λ/2). (46)

Simulating this stochastic differential equation on a computer, we confirm the analytic form (22)
of PX(x, s) = P (x, t) for γ = 0. See Fig. 7 (a).

Analogously, the solution of Eq. (25) can also be obtained from a SDE

t′(s) = ηT (s), (47)

with noise distribution

P [ηT ] =

∫
Dp4e

∫
ds(p4ηT−(p4)1−γ), (48)

and compared with the result (26) for PT (t, s). See Fig. 7 (b).
Solution of the double fractional Fokker-Planck equation (10) can be obtained, in view of the

relation (41) (or (24)), by simulating (45) for t ≡ s and (47), and letting the final value of the
pseudotime s be random. This yields a probability distribution P (x, t). In Fig. 8 we compare
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Figure 7: (Color online) Comparison of analytic (solid red curve) and numerical (blue circles) results for
the distribution function PX(x, s=1) in D = 1 dimension (a), and PT (t, s=1) for γ = 0.3 (b). In each
case an average has been taken over 5000 representative trajectories of stochastic differential equations
(45) and (47), with 10 time steps ∆s = 0.1.
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Figure 8: (Color online) Comparison of computer simulation and the renormalized exact solution P (x, t)
for t=0.2,1.

the results of a computer simulation with the analytic form (34) by plotting P (x, t) as a function
of x for various values of time t. Since the distribution P (x, t) itself is not normalized, but rather

∫
dDxP (x, t) =

∫ ∞

0

dsPT (t, s) =
θ(t)t−γ

Γ(1− γ)
, (49)

we define a renormalized version P (x, t) = P (x, t)/
∫
dDxP (x, t).

V. SUMMARY

Summarizing, we have seen that a many-body system with strong couplings between the con-
stituents satisfies a more general form of the Schrödinger equation, in which the momentum and
the energy appear with a power different from λ = 2 and γ = 0, respectively. We have calcu-
lated the associated Green functions and discussed their properties and their representations.
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We pointed out that these Green functions can be written as path integrals over fluctuating
time and space orbits that are functions of some pseudotime s. This is a Markovian object, but
non-Markovian in the physical time t. The non-Markovian character is caused by the fact that
function t(s) follows a stochastic differential equation of the Langevin type.

The particle distributions can also be obtained by solving a Langevin type of equation in which
the noise has correlation functions whose probability distribution is specified by an equation like
(46).

The Green functions whose theory was presented here will play an important role in the
development of an interacting theory of fields whose worldlines contain non-Gaussian random
walks displaying extremely large deviations from their avarages.

Acknowledgment: We are grateful to P. Jizba, and A. Pelster for useful comments. One of the
authors (V.Z.) is grateful for the financial support from the Deutsche Forschungsgemeinschaft,
Grant KL 256/54-1, and the Czech Science Foundation (GAČR), Grant No. P402/12/J077.

Appendix 1: Fractional differential operators that enter the general fractional Fokker-Planck

equation (7) are defined through formula (14). Using e−σp̂
2

δ(x) = (4πσ)−D/2e−x
2/(4σ), and

e−σp̂4δ(t) = δ(t− σ), we derive the following relations,

|x|λ =
πD/2Γ(λ+D

2 )

2−λ−DΓ(−λ2 )
(p̂2)−(λ+D)/2δ(D)(x), (50)

θ(t)tα = Γ(α+ 1)(p̂4)−α−1δ(t), (51)

which we can substitute into (33), (34) in order to verify that these satisfy the equation (10).
We first obtain

P (x, t) =

∫

C

dz

2πi
Γ(1 + z)Γ(−z)Dz

λ(p̂2)λz/2

×(p̂4)(γ−1)(z+1)δ(D)(x)δ(t), (52)

which can be pole-expanded to yield

∞∑

n=0

(−Dλ)n(p̂2)λn/2(p̂4)(γ−1)(n+1)δ(D)(x)δ(t). (53)

Summing up this geometric series, we arrive at

P (x, t) = [p̂1−γ
4 +Dλ(p̂2)λ/2]−1δ(D)(x)δ(t). (54)

Appendix 2: We derive several expressions for the solution PX(x, s) of (21), starting from
the representation (22).

On expanding the exponential, and representing the powers as (p2)λn/2 =

Γ[−λn/2]−1
∫∞

0
dσ
σ σ
−λn/2e−σp

2

, the momentum integration yields the superposition of
Gaussian expression

PX(x, s) =

∫ ∞

0

dσ

σ
fλ(σ)PG(x, D

2/λ
λ s2/λσ), (55)

with weight

fλ(σ) =
∞∑

n=0

(−1)nσ−λn/2

n!Γ(−λn/2)
. (56)
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To prove this, we perform the σ-integration term by term, using the formula
∫∞

0
dσ
σ σ
−νe−a/σ =

Γ(ν)/aν , and obtain the large-|x| expansion

PX(x, s) =
1

πD/2|x|D
∞∑

n=0

(−1)nΓ(λn+D
2 )

n!Γ(−λn/2)

[
`λs
|x|λ

]n
, (57)

where `s = 2(Dλs)
1/λ. The series can also be viewed as a pole expansion of the contour integral,

and hence

PX(x, s) =
1

πD/2|x|D
∫

C

dz

2πi

Γ(λz+D2 )Γ(−z)
Γ(−λz/2)

[ |x|λ
`λs

]−z
, (58)

with the contour C running from −i∞ to +i∞. From this, the expansion (57) arises by enclosing
the right complex half-plane and calculating the residua of the integrand, using Res(Γ(az +
b),−(n+b)/a) = (−1)n/(n!a). A small-|x| expansion of (58) is obtained by closing the integration
contour in the left half-plane, leading to

PX(x, s) =

∞∑

n=0

(−1)n2/λ

πD/2`Ds

Γ( 2n+D
λ )

n!Γ(D2 + n)

[ |x|2
`2s

]n
. (59)

The series (57) and (59) are convergent, or asymptotic, or even trivially zero, depending on the
parameter λ.
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The quasi one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence
of a random topological background. In particular, we consider the quantum walk of an anyon that
braids around islands of randomly filled static anyons of the same type. Two distinct behaviours
are identified. We analytically demonstrate that all types of Abelian anyons localise purely due to
the statistical phases induced by their random anyonic environment. In contrast, we numerically
show that non-Abelian Ising anyons do not localise. This is due to their entanglement with the
anyonic environment that effectively induces dephasing. Our study demonstrates that localisation
properties strongly depend on non-local topological interactions and it provides a clear distinction
in the transport properties of Abelian and non-Abelian anyons.

I. INTRODUCTION

In systems with physics constrained to two dimensions, point-like particles named anyons can
occur which have more general statistics than bosons or fermions [1]. Beyond mere possible
existence they were found to be a good description for low lying quasi-particle excitations of
fractional quantum Hall (FQH) systems, Majorana edge modes of nanowires, and they exactly
describe excitations in various strongly correlated two dimensional spin lattice models [2]. Re-
cently there has been experimental progress in preparation and control of systems capable of
exhibiting topological order with the goal to observe anyonic statistics [3, 4]. This is further mo-
tivated by the discovery that braiding some types of non-Abelian anyons provides for naturally
fault tolerant quantum computing [2, 5]. As we are not yet able to manipulate anyons individ-
ually, it would be beneficial to reveal their exotic braiding properties on macroscopic scale. In
particular, we are interested in the transport properties of anyons and their possible localisation,
that can have direct observable consequences.

Transport properties of anyons in uniform backgrounds were studied in [6] using a discrete-time
quantum walk. The dispersion of the walker was found to be quadratic for Abelian anyons, as in
the usual quantum walk [7], while for non-Abelian anyons it has been shown to be asymptotically
linear [8, 9] just like classical random walks. The essential reason being that entanglement result-
ing from braiding non-Abelian anyons is sufficient to suppress quantum correlations responsible
for the quadratic speed-up.

In this work, we investigate the role of disorder on the propagation of both, Abelian and non-
Abelian, anyons. It has been known for more than five decades that randomised local potentials
can suppress diffusion of quantum particles — a phenomenon known as Anderson localisation
[10]. This mechanism is based on randomisation of phases that correspond to individual parti-
cle histories and consequent destructive interference. Here we consider a discrete-time anyonic
quantum walk in a disordered topological background. In particular, we consider a walker that
braids around islands canonically arranged on a line, where the number of static anyons at a
given island assumes a random value. For the Abelian anyons this causes the walker acquiring
random discrete phases which, as we demonstrate, leads to localisation. For the non-Abelian
ones the Hilbert space grows exponentially with the number of anyons and hence, the length of
the walk. As this makes long time exact numerics prohibitive we introduce an anyonic Hubbard
model and use an anyonic matrix product state evolution to efficiently model continuous time
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FIG. 1: The quasi one-dimensional quantum walk of an anyon braiding counterclockwise around islands
filled with a random number of static anyons of the same type. The islands, denoted with dashed circles,
are canonically arranged on the line. The possible positions of the walker are denoted by dotted circles
placed in between the islands.

transport. The result is that Ising non-Abelian anyons do not localise. These generic behaviours
provide a very clear distinction in the transport properties of Abelian and non-Abelian anyons.

II. THE DISCRETE-TIME MODEL

Our setup consists of n “islands” canonically ordered on the surface and labeled by index s, as
shown in Fig. 1. The s-th island is occupied by ms static anyons (ms ≥ 0) and the configuration,
represented by vector ~m = (m1, . . . ,mn), is supposed to be fixed during the course of the walk.
Anyons are labeled within an island from left to right by an index is = 1, . . . ,ms. The mobile
walker anyon hops between neighbouring sites winding counterclockwise around the islands.
Hence our system is quasi one-dimensional. We denote possible walker’s spatial positions also
by s, with the convention that position s lies between islands s − 1 and s, as shown in Fig. 1.
The distance between sites is set to unity, though for purely topological interactions the distance
scale is irrelevant. Hopping direction is controlled by the coin state: |0〉 moves the walker to
the left, |1〉 to the right. The total Hilbert space decomposes as H = Hspace ⊗Hcoin ⊗ Hfusion,
where Hspace = spanC{|s〉}ns=1, Hcoin = spanC{|0〉 , |1〉}, and Hfusion enumerates all distinct
measurement outcomes of topological charge when pairs of anyons are fused together [5].

One step of the walk is defined as a composition of two unitary operations, W = TU , where
U = 1√

2

(
1 1
1 −1

)
acts in the coin space, and T is a conditional braiding operator which moves the

walker left or right depending on the coin state:

T =

n∑

s=1

|s− 1〉 〈s| ⊗ |0〉 〈0| ⊗ b̂s−1 + |s+ 1〉 〈s| ⊗ |1〉 〈1| ⊗ b̌s , (1)

where b̂s = bs,1 · · · bs,ms , b̌s = bs,ms · · · bs,1, and b̂s = b̌s = 1 if ms = 0. The operators {bs,is},
acting on the fusion space Hfusion, form a unitary representation of the r-strand braid group,
r = 1 +

∑n
s=1ms, which reflects the type of anyons we choose. To make T unitary, we assume

periodic boundary conditions (|0〉space = |n〉space) but will be concerned with walks satisfying

t < n/2, where t is the number of steps, so that winding around the surface is not an issue.
Note that this model is chiral, because only counterclockwise braids are considered. This is in
close analogy to edge states in Fractional Quantum Hall (FQH) liquids where the breaking of
time-reversal symmetry in the bulk results in a net current in one direction at the edge. Below
we also consider a continuous-time model where braiding is allowed in both directions. The
qualitative behaviour of the variance in this model is similar to the chiral discrete-time model.

Let the system’s initial state be |Ψ(0)〉 = |s0〉 |c0〉 |Φ0〉, where s0 = dn/2e is the initial position
of the walker, c0 = 0 denotes the initial state of the coin, and Φ0 depends on the initial state of
the anyons. After t iterations of the one step operator W , the state becomes |Ψ(t)〉 = W t |Ψ(0)〉
— a superposition over all coin histories ~a ∈ {0, 1}⊗t, weighted by appropriate phase factors.
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FIG. 2: Worldline of the mobile anyon constructed from a pair of paths (~a,~a′)  s. Together with the
worldlines of the static anyons, they give rise to the link L~a~a′ via the Markov closure of the braid word
B†~a′B~a, which identifies the corresponding endpoints. (All the particle worldlines are assumed to have a
common orientation.) Linking numbers `s(~a,~a

′) as defined in Fig. 3 are easily read off from the figure:
e.g., `s = −1, `s+1 = 0, etc.

The reduced state of the spatial degree of freedom of the walker is

ρspace(t) = trcointrfusion |Ψ(t)〉 〈Ψ(t)|
=
∑

~a,~a′

trU~a~a′trY~a~a′ |s~a〉 〈s~a′ | , (2)

where s~a = s0 +
∑t
k=1(2ak − 1) is the walker’s final position corresponding to the coin history

~a = (a1, . . . , at); trU~a~a′ = 1
2t (−1)z(~a,~a

′), with z(~a,~a′) ≡∑t−1
k=1(akak+1 +a′ka

′
k+1), is a partial trace

over the coin degree of freedom (DOF); and Y~a~a′ = B~a |Φ0〉 〈Φ0|B†~a′ acts in the fusion space.
The braid word B~a can be constructed recursively from a given coin history ~a:

B~a(k+1) =

{
b̂s
~a(k)
−1B~a(k) if ak+1 = 0

b̌s
~a(k)

B~a(k) if ak+1 = 1
, (3)

where ~a(k) = (a1, . . . , ak) is a truncation of ~a, s~a(0) = s0, and B~a(0) = 1.
The spatial distribution of the walker after t steps is given by diagonal elements of the reduced

density matrix,

p~m(s, t) ≡ 〈s| ρspace(t) |s〉 =
1

2t

∑

(~a,~a′) s
(−1)z(~a,~a

′)trY~a~a′ , (4)

where “(~a,~a′)  s” denotes the set of pairs of paths (~a,~a′) satisfying at = a′t and s~a = s~a′ = s
(see Figure 2). The subscript ~m indicates a fixed island occupation configuration. Variance of
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FIG. 3: (a) The linking number between the walker’s component (thin blue) and the worldline of an
island s (thick red), that collects all components of the island’s static anyons, is determined by the

relative number of four types of crossings `s =
−#b̂s−#b̌s+#b̂†s+#b̌†s

2
. (b) The writhe of a link is the

difference of the number of positive crossings and negative crossings: w(L) = `+ − `−.

the probability distribution p~m(s, t) is defined in the usual way:

σ2
~m(t) =

∑

s

p~m(s, t)s2 −
(∑

s

p~m(s, t)s

)2

. (5)

In the studies of transport phenomena in disordered environments, one is interested in quan-
tities that result from averaging over all random background configurations. We shall assume
that the island occupation numbers ms are independent and identically distributed random
variables with distribution W (ms). The probability of occurrence of a configuration ~m is
then simply W~m =

∏n
s=1W (ms), and we denote configuration average of a quantity Q~m by

〈〈Q〉〉 ≡∑~mW~mQ~m. The average position distribution after a t-step walk is given by

〈〈p(s, t)〉〉 =
1

2t

∑

(~a,~a′) s
(−1)z(~a,~a

′)〈〈trY~a~a′〉〉 . (6)

The topological quantity 〈〈trY~a~a′〉〉, that depends on particle statistics, governs the transport of
an anyonic walker in random background.

III. ABELIAN ANYONS

For Abelian anyons the braid generators {bs,is} are all equal to eiφ. We assume the anyonic
exchange angle to be φ = ± π

N , N ∈ N. The fusion space is one-dimensional, Hfusion ' C, and
we can choose |Φ0〉 arbitrarily. Upon introducing the linking numbers

`s(~a,~a
′) =

−#(b̂s and b̌s in B~a) + #(b̂†s and b̌†s in B†~a′)

2
, (7)

that count the number of times the walker’s trajectory (~a,~a′) winds around an island s (see Fig.

2 and 3a), trY~a~a′ reduces to
∏n
s=1 e

∓i2 πNms`s(~a,~a′).
For simplicity we consider uniform occupation distribution: W (m) = 1/N for 0 ≤ m ≤ N − 1.

Then the average position distribution of the walker after t steps, 〈〈p(± π
N )(s, t)〉〉, is given by (6)

with

〈〈trY(± π
N )

~a~a′ 〉〉 =

n∏

s=1

δ0,`s(~a,~a′) mod N , (8)

where δi,j is the Kronecker symbol.



5

Localization of the distribution can be proven analytically by mapping the model to a variation
of the one-dimensional multiple scattering model presented in [11], Section 2. (We base corre-
spondence between the two on physical intuition rather than mathematical rigor.) In that work,
scatterers are arranged in line with continuous random distances between neighbours. Incoming
light undergoes a series of scattering events and eventually localises due to the randomness in
phases that individual trajectories accumulate during their passage between consecutive scatter-
ers. In our variation the braiding phases, accumulated when traversing each island populated
with random numbers of anyons, take values in the discrete set {πmN , 0 ≤ m ≤ N − 1}, and
reflection and transmission coefficients of the scatterers are identified with the entries of the coin
operator.

The scattering model is described by Fig. 4. A monochromatic wave incident from the
left scatters on a series of scatterers characterized by “from left / from right” reflection and
transmission coefficients rj , tj/r

′
j , t
′
j . The distance between two successive scatterers j and j + 1

is random, such that the phase that the wave acquires when traveling between j and j+1 is eiθj .

tj

1 j j+1 n-1 neiθj

rj
rj'

tj'
. . . . . . t1,n

FIG. 4: In the multiple scattering model, the wave approaches (from the left) a series of n scatterers,
and is transmitted with the amplitude t1,n. The scatterers are arranged in line with random distances
between neighbours. Hence, the phases eiθj that the wave acquires during travelling from a scatterer j to
j+1 are also random. The complex quantities rj , tj/r

′
j , t
′
j are the reflection and transmission amplitudes

for the wave impinging from the left / right.

Denote by t1,n the block amplitude of transmission from the “left of scatterer 1” to the “right
of scatterer n”; and by r′1,n the reflection amplitude from the block “1 to n” when approaching
from the right. t1,n can be expressed by the series

t1,n = t1,n−1e
iθn−1

∞∑

k=0

(
rne

iθn−1r′1,n−1e
iθn−1

)k
tn

=
t1,n−1e

iθn−1tn
1− rnr′1,n−1e

i2θn−1
. (9)

The corresponding transmission probability and its logarithm are given by

|t1,n|2 =
|t1,n−1|2|tn|2

|1− rnr′1,n−1e
i2θn−1 |2 , (10)

ln |t1,n|2 = ln |t1,n−1|2 + ln |tn|2 − ln |1− rnr′1,n−1e
i2θn−1 |2 . (11)

The reflection and transmission amplitudes t1,n, r′1,n are random variables that depend on the
configuration of scatterers 1, . . . , n, i.e. on the angles θ1, . . . , θn−1. We assume that θj ’s are
identically distributed independent random variables with a uniform distribution over the discrete
set { πNm | m = 0, . . . , N − 1} ( πN will be identified with the anyonic exchange angle φ) [32]. We

shall denote by 〈〈
(
. . .
)
〉〉 the statistical average over the angles θ1, . . . , θn−1, i.e.

〈〈
(
. . .
)
〉〉 ≡

N−1∑

m1=0

1

N
. . .

N−1∑

mn−1=0

1

N

(
. . .
)
. (12)
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Averaging of (11) leads to

〈〈ln |t1,n|2〉〉 = 〈〈ln |t1,n−1|2〉〉+ ln |tn|2 − 〈〈ln |1− rnr′1,n−1e
i2θn−1 |2〉〉 . (13)

We shall now assume that tj = t, rj = r for all j. On the level of the Abelian anyonic quantum
walk, this corresponds to a spatially independent coin. Bounds on the value of 〈〈ln |t1,n|2〉〉 are
computed in Appendix A 1 (see Eq. (A7)). Exponentiating the resulting bounds results in

exp〈〈ln |t1,n|2〉〉 ≤ (1− |r|N )
2
N e
−n

[
ln(1−|r|N )

2
N −ln |t|2

]
,

exp〈〈ln |t1,n|2〉〉 ≥ (1 + |r|N )
2
N e
−n

[
ln(1+|r|N )

2
N −ln |t|2

]
. (14)

Estimates of the localization length ξloc follow:

1

ln(1 + |r|N )
2
N − ln |t|2

≤ ξloc ≤
1

ln(1− |r|N )
2
N − ln |t|2

, (15)

where the anyonic statistical angle φ = π
N . For N →∞ we have ξloc → − 1

ln |t|2 .

For the upper bound in (15) to make sense, − ln |t|2 + 1
N ln(1 − |r|N )2 has to be a positive

number. This leads to the condition

|t|2 < (1− |r|N )
2
N , i.e. |t|N + |r|N < 1 . (16)

Since |t|2 + |r|2 = 1 (with |t|, |r| < 1), the latter is satisfied for N > 2.
The case N = 1 corresponds to fermions which are known not to localize (their exchange

statistics does not induce any interference effects). The marginal case N = 2 corresponds to
semions (φ = π/2), but we are unable to decide about their localization within this method.
However, numerics for an analogous model involving continuous time hopping of semions on a
ladder support localisation [13].

To establish a connection between this scattering model and the Abelian anyonic quantum
walk with the coin U = 1√

2

(
1 1
1 −1

)
, we define

t = − 1√
2
, t′ =

1√
2
, r =

1√
2
, r′ =

1√
2
. (17)

The localization length estimate for N = 8 (π8 -anyons) is

1.412 ≤ ξloc ≤ 1.477 . (18)

Let us stress that we investigated stationary state of a wave after infinitely many scattering
events. This corresponds to the infinite-time asymptotic behavior of the anyonic quantum walk.

The result (15) works for any N > 2, thus extending prior work which assumed a continuum of
values in the scattering length, i.e. N →∞ [14, 15], or rationally independent values [16]. Fig. 5
shows numerical results for the case N = 8. This case describes statistics for Abelian excitations
in the U(1)8 theory for the ν = 1/2 fractional quantum Hall state where charge 2e electron pairs
form an effective ν = 1/8 bosonic Laughlin state [17] and it is also relevant to the non-Abelian
case described below. The variance approaches a constant value and the asymptotic position

distribution assumes a characteristic exponential shape, 〈〈p(± π
N )(s, t → ∞)〉〉 ∼ e

− |s−s0|ξloc , with
the localization length ξloc

.
= 1.44. This is a clear manifestation of the Anderson localization of

Abelian anyons.
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FIG. 5: Numerical results for localisation of Abelian anyons. The exchange statistics is φ = π
8

and the
statistics is averaged over a random background of island occupations where the distribution in each is
uniform over ms ∈ {0, . . . , 7}. (a) Average variance as a function of time t for up to 600 time steps. The
averages are taken over at least 500 charge configurations. (For clarity, only every 10th step is plotted.)
(b) Average of the logarithm of probability distribution at time step t = 1000, taken over 10000 charge
configurations. Red lines correspond to bounds for the localisation length given in Eq. (18). In both (a)
and (b), the error bars are given by standard deviation.

IV. ISING NON-ABELIAN ANYONS

We consider the Ising model of non-Abelian anyons. There are three kinds of particles in this
model: vacuum, fermion, and non-Abelian anyon. In analogy with [8], the initial fusion state |Φ0〉
describes the vacuum configuration of pairs of anyons with half the members braided to the right.
Here, they randomly populate islands (except for the walker) to form a disordered background
configuration ~m. The braid generators {bs,is} are now unitary matrices, the dimension of which

grows like d|~m|, where |~m| ≡ ∑n
s=1ms, and d =

√
2 is the quantum dimension of Ising anyons.

This exponential increase in the Hilbert space dimension as well as the non-local character of
the total braiding makes the evolution distinct from other quasi 1D systems.

The trace over the fusion degree of freedom can be related to the Kauffman bracket polynomial
〈L~a~a′〉 [18] of a link L~a~a′ (see Figure 2 above), which arises from the Markov closure of the braid

word B†~a′B~a [6, 8, 19]. This link corresponds to the world lines (strands) of all the anyons.
Moreover, 〈L~a~a′〉 can be expressed in terms of the Jones polynomial VL~a~a′ (q) [20]. Altogether,

trY~a~a′ =
〈L~a~a′〉(q−1/4)

d|~m|
=

(
−q−3/4

)w(L~a~a′ ) VL~a~a′ (q)

d|~m|
, (19)

where the writhe w(L~a~a′) = 2
∑n
s=1ms`s(~a,~a

′) is the difference between the number of positive
and negative crossings of the anyonic worldlines (see Fig. 3b). For Ising model anyons, which
correspond to spin-1/2 irreps of the quantum group SU(2)2 we have specifically q = i. Note
there are some differences in the braid matrices for the Ising model and SU(2)2 models but it
does not affect the results herein as we comment at the end of this section.

The Jones polynomial VL~a~a′ (i) for the links relevant to the quantum walk can be further
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simplified in terms of simple topological characteristics, the arf invariant, through [21]

VL~a~a′ (i) =
√

2
|~m|

(−1)arf(L~a~a′ )
n∏

s=1
ms>0

˜̀
s , (20)

where ˜̀s ≡ δ0,`s mod 2. The product in the last expression is equal to 1 only if the link L~a~a′ is
proper, i.e. the sum of the pairwise linking numbers is even. Furthermore, when the link is totally
proper, i.e. all pairs of components have an even linking number, and there is no self-linking,
then [22]

arf(L~a~a′) =
n∑

s=1

msc2(s) +
∑

1≤s′<s′′≤n
ms′ms′′τ(s′, s′′) , (21)

where c2(s) is the cubic coefficient in the Conway polynomial of the two-component sublink of
L~a~a′ consisting of strands corresponding to the walker and island s; and τ(s′, s′′) is the Milnor
triple invariant, which counts the number of Borromean rings (three braided loops that disen-
tangle if just one is removed) between the walker strand and the strands s′ and s′′. Note there
is no self-linking because the links represent world lines of the anyons which move forward in
time only. In Ref. [8] it was shown that for a uniformly filled background, for all the links that
contribute to the spatial probability distribution, properness implies total properness. For non-
uniform filling the same is true for the simple reason that paths that had even linking between
the walker and one island anyon will then have multiple pairwise linking when the island has
multiple occupancy.

Inserting (20) and (21) into the expression (19) for the fusion space trace we obtain

trY~a~a′ = (−i− 3
4 )w(L~a~a′ )(−1)arf(L~a~a′ )

n∏

s=1
ms>0

˜̀
s

= (−1)
∑
s′<s′′ ms′ms′′τ(s′,s′′)

n∏

s=1
ms>0

˜̀
s(i)

`s
2 ms(−1)msc2(s) . (22)

For islands s such that ms > 0 and ˜̀s = 1, i.e. `s
2 ∈ Z, we can use a result of [8], and simplify

c2(s) =
`s
6

(`2s − 1) =
`s
2

1

3

[
4

(
`s
2

)2

− 1

]
mod 2

=
`s
2
. (23)

Hence, our final result for trY~a~a′ reads

trY~a~a′ =
n∏

s=1
ms>0

˜̀
s(−i)

`s
2 ms

∏

1≤s′<s′′≤n
(−1)ms′ms′′τ(s′,s′′) . (24)

For uniform background configuration we recover the case studied in [8].
To illustrate the role of disorder in a non-Abelian anyonic quantum walk, we choose uniform

island occupation probabilities. As (24) is for ms > 0 4-periodic in ms we take W (m) = 1/4
for 1 ≤ m ≤ 4 and W (m) = 0 otherwise [23]. The average trace over the fusion space for Ising
model anyons is calculated as

〈〈trY~a~a′〉〉 =
∑

~m∈{1,...,4}n

1

4n

n∏

s=1

˜̀
s(−i)

`s
2 ms

∏

1≤s′<s′′≤n
(−1)ms′ms′′τ(s′,s′′) . (25)
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We observe the following:

〈〈trY~a~a′〉〉 =

[
n∏

s=1

˜̀
s

]
1

4n−1

∑

~m∈{1,...,4}n−1

n−1∏

s=1

(−i) `s2 ms
∏

1≤s′<s′′≤n−1

(−1)ms′ms′′τ(s′,s′′)

× 1

4

4∑

mn=1

[
(−i) `n2

]mn
[
n−1∏

s′=1

(−1)ms′τ(s′,n)

]mn

= . . .×
{

1 if (−i) `n2 (−1)
∑n−1

s′=1
ms′τ(s′,n) = 1

0 otherwise
(26)

Hence, 〈〈trY~a~a′〉〉 = 0 whenever `n 6= 0 mod 4 (i.e. when (−i) `n2 is not a real number).
Furthermore, if `n = 4 mod 8, then τ(s′, n) = 0 for all r = 1, . . . , n − 1 [24], and therefore

(−1)
`n
4 (−1)

∑n−1

s′=1
ms′τ(s′,n) = −1. Hence, 〈〈trY~a~a′〉〉 = 0 whenever `n 6= 0 mod 8. By the same

reasoning, analogous holds for any island s = 1, . . . , n.

Let us define
˜̀̃
s ≡ δ0,`s mod 8. We have

〈〈trY~a~a′〉〉 =
n∏

s=1

˜̀̃
s

∑

~m∈{1,...4}n

(−1)
∑

1≤s′<s′′≤nms′ms′′τ(s′,s′′)

4n
(27)

The expression (−1)ms′ms′′τ(s′,s′′) is invariant under shifting ms′ → ms′ + 2 or ms′′ → ms′′ + 2.
Therefore, the sum over ~m ∈ {1, . . . , 4}n contains 2n classes of 2n equivalent configurations.
Also, mj = 0 is equivalent with mj = 2. We conclude that the average position distribution of

the Ising quantum walk after t steps, 〈〈p(Ising)(s, t)〉〉, is given by (6) with average fusion space
trace

〈〈trY(Ising)
~a~a′ 〉〉 =

[
n∏

s=1

˜̀̃
s

]
T~a~a′ . (28)

Here

T~a~a′ =
1

2n

∑

~m∈{0,1}n

∏

1≤s′<s′′≤n
(−1)mrmsτ(s′,s′′). (29)

which can be interpreted as an arithmetic mean of the quantity (−1)arf(L∗
~a~a′ ) taken over all

sublinks L∗~a~a′ of a link L~a~a′ .
Comment: while the Ising model anyons correspond to spin−1/2 irreps of the quantum group

SU(2)2 the braid generators for the two models are not identical. The primary difference relevant
to our studies is the R 1

2
1
2

matrix for braiding of two spin1/2 irreps that fuse into spin-0 or spin-1

irreps. For Ising model anyons,

R
1
2 ,

1
2

Ising = e−i
π
8

(
1 0
0 i

)
and R

1
2 ,

1
2

SU(2)2
= iR

∗ 1
2 ,

1
2

Ising . (30)

This implies the relevant braid generators for these models are equivalent up to a phase i and
complex conjugation. In disordered walks, the distribution of stationary anyons is non-uniform
and the walker may thus pick up non-trivial phases from bra- and ket-evolution. The difference
between these phases is given by the writhe w, which is the difference between positive and

negative crossings in the link diagram. The total phase difference is then iw = i2
∑N
s=1ms`s . But

in view of (20), the trace is zero unless `s is a multiple of 2, so that iw = 1, and all the results
herein hold equivalently for Ising and SU(2)2 anyons.
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A. Numerical calculations of non-Abelian anyons

We calculated the evolution numerically using two methods. First, the probability distribution
was calculated exactly using Eqs. (4) and (24) up to 23 time steps, and the average variance
〈〈σ2(Ising)(t)〉〉 over at least 100 charge configurations ms ∈ {1, . . . , 4} was obtained (see Fig.
6(a)). The average variance is approximately a straight line with slope 0.456 from 10 to 23 time
steps, but the error bars of the variance, obtained by the standard deviation, overlap with the
error bars of the Abelian case, so we cannot distinguish between Abelian and non-Abelian anyons
on this short time scale. Considering occupations ms ∈ {0, . . . , 4} (vacuum charges included),
the variance is slightly larger, i.e. the wave packet is diffusing faster (not shown).

To obtain results for longer times, we turn to the continuous-time picture where the time
evolution is generated by a Hubbard-type Hamiltonian H and the propagator e−iHδt implements
an infinitesimal time evolution. The total Hamiltonian is given by the sum of the shift and coin
flip terms H = Hshift +Hflip, where [25]

Hshift = J
∑

s

(T−s+1b̂sP1 + T+
s b̌sP2) + h.c. (31)

Hflip =
∑

s

(κ |2〉s 〈1|+ κ∗ |1〉s 〈2|) (32)

with J ∈ R, κ ∈ C and T±s = (|1〉s±1 s 〈1|+|2〉s±1 s 〈2|)⊗Ifusion are translation operators between

sites s and s± 1, b̂s are braid generators as defined above for braiding the mobile anyon around
anyons in the island between s and s+1 (acting on fusion space only) and Pc =

∑
s |c〉s 〈c|⊗Ifusion

are projectors to the coin states. Here |c〉s corresponds to occupation of state c at site s, i.e.
|c = 0〉s corresponds to no mobile anyon at site s, |c = 1〉s (|c = 2〉s) is a mobile anyon with coin
state |0〉 (|1〉) at site s. Here we consider only the case where coins are identical on every site.

The above Hamiltonian is the generator of continuous-time evolution for total time T . Running
the continuous-time walk for time T simulates the discrete-time quantum walk in a stroboscopic
manner, such that the walker makes T/δt steps of infinitesimal length δt: e−iHT = (e−iHδt)T/δt.
In the first order of Suzuki-Trotter expansion, the propagator decomposes to e−iHshiftδte−iHflipδt,
similarly as the single step operator in the discrete-time quantum walk model.

We perform numerics on an n = 100 sized lattice with open (reflecting) boundaries using the
“Time-Evolving Block Decimation” (TEBD) [26] algorithm that is based on Matrix Product
States (MPS) using J = κ = 1 to mimic the discrete coin flip. Our implementation of the
TEBD algorithm explicitly preserves anyonic charge and also particle number [27] corresponding
to the presence of a single walker. Full details of the numerical simulation are given in Ref.
[25]. Thus, while the position of the walker and the fusion degrees of freedom of the anyons are
entangled during the time evolution, the algorithm preserves distinction between them. This in
turn allowed for specification of total anyonic charge and particle number, here we considered
the total vacuum sector with one walker. Fig. 6 shows that for non-Abelian anyons the variance
grows linearly as a function of time, indicating no signature of localisation.

B. Correlations in time

The absence of localization in the non-Abelian case can be understood heuristically as a deco-
herence effect. The fusion Hilbert space Hfusion of the non-Abelian anyons acts as a non-local and
highly non-Markovian environment whose dimension grows exponentially as d|~m|. The entangle-
ment between the quantum walk DOFs and fusion DOFs is known to erase the quantum effects
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FIG. 6: Numerical results for transport of Abelian and non-Abelian anyons. (a) Exact results for the
discrete time quantum walk with anyons over an n = 46 sized lattice. Here are plotted the variances for
Abelian anyons with π

8
exchange statistics around a uniform background of islands singly occupied by

Abelian anyons (Uniform Abelian=UA), Ising model anyons around a uniform background ms = 1∀s
(Uniform non-Abelian=UnA), Abelian anyons with occupation probability uniform over ms ∈ {0, . . . , 7}
(Random Abelian=RA; averaging over at least 100 configurations), and Ising anyons withms ∈ {1, . . . , 4}
(Random non-Abelian=RnA; 50 configurations). (b) Variance of anyons in a Hubbard model on a ladder
realising a continuous time anyonic quantum walk over an n = 100 sized lattice. Here space and time
axes are scaled so that a continuous time classical diffusion would have diffusion coefficient providing
σ2(t) = t. For the random non-Abelian model, island occupations are with ms ∈ {0, . . . , 4} averaged
over 50 configurations. The asymptotic slope for the case RnA is 0.54 and it remains positive and less
than one within one sigma variance. Numerics are obtained using an approximate method employing
real time evolution of an anyonic MPS with bond dimension equal to 100.

in the case of uniform filling [8]. Furthermore, on comparing (28) to the Abelian expression (8)
for N = 8, they are identical except for the prefactor T~a~a′ . The key distinguishing feature is
decoherence introduced by this factor. Considering Eq. (8) as the coherent expression where
the quantum interference of probability amplitudes causes localisation, we argue that the T~a~a′
coefficient can be viewed as a noise term due to the dependence on the link invariant τ which
fluctuates as the length of braids increases.

As shown in Ref. [28], the quantum walk is diffusive in the presence of both temporal and
spatial disorder, in other words localization does not occur in a spatially disordered system if
temporal randomness is also present. The effect of T~a~a′ is that it multiplies the contribution

from each path by the configuration average over (−1)
∑

1≤s′<s′′≤nms′ms′′τ(s′,s′′). While this term
preserves memory of the whole history of the particle’s trajectory, we argue that at short time
scales it fluctuates in a disordered manner. The value of τ changes when a new Borromean ring is
formed, which requires at least 4 time steps. Also, the formation of a Borromean ring requires a
very specific pattern in the particle’s trajectory which is in no way periodic. In addition, because
of the condition on the last coin outcomes at = a′t, there are new path patterns up to t− 1 time
steps introduced on every time step which were not allowed for the previous time step, so these
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paths are not correlated to previous evolution at all.
The time correlations of the τ invariant can be tracked by defining the correlator

C(t, t′) =

〈
(−1)τt(−1)τt−t′

〉
−
〈
(−1)τt

〉〈
(−1)τt−t′

〉

1−
〈
(−1)τt〉2 (33)

where τt =
∑

1≤s′<s′′≤n τ(s′, s′′) is the sum of three-component invariants for all sublinks for a

path up to t time steps and
〈
·
〉

(~a,~a′) s0 is the expectation value over all paths leading to the

initial site s0 (the subindex has been suppressed above for clarity). The term in the denominator
is a normalization factor, which is defined to be the value of the term in the numerator in the
perfectly correlated case t′ = 0. For simplicity, the correlator is calculated only for the uniform
filling (ms = 1 ∀s) using the same method as described in [8]. The time correlations can be
analysed by keeping the final time t fixed and calculating the correlator for increasing values of
t′. The intermediate time value τt−t′ is calculated by erasing the t′ last braid generators from the
total braid word, such that braiding is switched off after t− t′ time steps. For some braid words,
the quantity τ(s′, s′′) is not well defined in our method, in which case we set τ(s′, s′′) = 0. The
correlator for t = 18 is plotted in Fig. 7, which shows that the correlations fall off exponentially
after one step, indicating that effectively the τ invariant maintains memory only for a short period
of time, and the environment is Markovian at long time scales. Note that because of the condition
at = a′t, the braiding at the last time step can always be trivially undone, therefore the last two
time steps are perfectly correlated. The correlator can also be calculated for other sites s 6= s0.
In these cases, the rapid falloff is observed for the central region s0 − t/

√
2 ≤ s ≤ s0 + t/

√
2,

and outside this region the falloff becomes linear at the furthest edge sites. The edge behaviour
is however irrelevant, as the behaviour of the quantum walk is determined by the central region
only.

The fundamental reason for the classical-like behaviour of the walker is the strong entanglement
between the quantum walk states and the fusion states, and the highly mixing nature of the fusion
space environment. The walker states stay entangled with the fusion states for long time periods,
and recurrences where these states become uncoupled happen very rarely.

We have also investigated the effect of temporally random phases introduced to the spatially
random Abelian walk. In this model the wave function is multiplied by a random −1 phase with
some probability pphase if the walker crosses a site belonging to the temporally fluctuating region
of sites. The calculations with different values of pphase and different sizes of the region up to
500 time steps showed that the behaviour becomes diffusive in all these cases.

V. CONCLUSIONS

An experimental demonstration of the disordered anyonic quantum walk could be realized with
a chain of quantum double point contacts in FQH liquids, as discussed in some detail in Ref.
[29]. There the walker particle is a mobile edge excitation of the 2D FQH liquid, coin mixing
is achieved by (weak) tunneling between two edges, and island populations can be changed by
creating bulk excitations via top gates. The conductivity between the injection point and the
measurement point is proportional to the probability to reach the absorbing boundary when the
walker starts localized at the injection point. Experimental control of such double point contact
devices and observation of interference between fractional charges was reported in Refs. [30, 31].

Our study provides a new paradigm of disorder that has the ability to override the localisation
properties of quasiparticles with anyonic statistics. In a real system with random potentials
Abelian anyons that do not localise due to the potentials can be localised just by the presence
of a random anyonic environment. On the other hand, non-Abelian SU(2)2 anyons that would
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FIG. 7: Correlator C(t, t′) as a function of t′ with total number of time steps t = 18. The line shows the

best exponential fit C(18, t′) = 1.77 e−0.58 t′ . The value C(18, t′ = 18) ∼ 10−16

localise due to some random potential can be delocalised if a random background of non-Abelian
anyons is present.

We expect delocalisation to occur even for more general SU(2)k non-Abelian anyons due to
the entanglement of the walker with the environment. Indeed, it has been demonstrated that
the entanglement of the walker with its uniform environment for any k > 1 is strong enough to
cause the walk to decohere obtaining eventually a classical diffusive behaviour [9].
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Appendix A: Localization lengths

1. Bounding the localisation length

Here we compute the bounds on the localization length for Abelian anyons with exchange
statistics π/N . This is done by computing 〈〈ln |t1,n|2〉〉, which is the statistical average of the
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logarithm of the transition probability amplitude taken over the angles θ1, θ2, . . . , θn−1 which are
valued in the discrete set { πNm | m = 0, . . . , N − 1}. To proceed, we carry out the θn−1-average
in the last term of (13),

N−1∑

mn−1=0

1

N
ln |1− rnr′1,n−1e

i 2πN mn−1 |2 =
1

N
ln

∣∣∣∣∣∣

N−1∏

mn−1=0

(1− rnr′1,n−1e
i 2πN mn−1)

∣∣∣∣∣∣

2

=
1

N
ln |1− (rnr

′
1,n−1)N |2 (A1)

In the latter equality we used the fact that

N−1∏

m=0

(1− Cei 2πN m) = 1− CN , (A2)

which can be proven by using the Newton’s identities between elementary symmetric polynomials
and power sums [12].

The θ1, . . . , θn−2-average of (A1) becomes trivial once we estimate (|r′1,n−1| ≤ 1)

ln(1− (|rn||r′1,n−1|)N )2 ≤ ln |1− (rnr
′
1,n−1)N |2

≤ ln(1 + (|rn||r′1,n−1|)N )2, (A3)

ln(1− |rn|N )2 ≤ ln |1− (rnr
′
1,n−1)N |2

≤ ln(1 + |rn|N )2 . (A4)

The upper and lower bounds of relation (13) read

〈〈ln |t1,n|2〉〉 ≤ 〈〈ln |t1,n−1|2〉〉+ ln |tn|2 −
1

N
ln(1− |rn|N )2 (A5)

and

〈〈ln |t1,n|2〉〉 ≥ 〈〈ln |t1,n−1|2〉〉+ ln |tn|2 −
1

N
ln(1 + |rn|N )2 (A6)

respectively. When applied repeatedly, these recurrences yield (t1,1 ≡ t1)

〈〈ln |t1,n|2〉〉 ≤
n∑

j=1

ln |tj |2 −
1

N

n∑

j=2

ln(1− |rj |N )2 ,

〈〈ln |t1,n|2〉〉 ≥
n∑

j=1

ln |tj |2 −
1

N

n∑

j=2

ln(1 + |rj |N )2 , (A7)

where we have omitted the lower index of the averaging brackets 〈〈. . .〉〉.

2. Island distributions including N anyons each with exchange statistics π
N

The argument in the main text assumed anyon occupancies mj in each of the islands were
identically distributed independent random variables drawn from a uniform distribution over the
set {m = 0, . . . , N − 1}. If instead we expand the set to {m = 0, . . . , N} so that we can include
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populations having cummulative fermionic exchange phases with the walker, then the results do
not change much. By a similar analysis one finds that the localization length satisfies the bounds:

ξLBloc (N) ≤ ξloc ≤ ξUBloc (N) (A8)

where

ξUBloc (N) = 1

ln[(1−|r|2)(1−|r|N )]
2

N+1−ln |t|2
,

ξLBloc (N) =





1

ln[(1+|r|2)2(|r|2N+2|r|N+1)]
1

N+1−ln |t|2
N odd

1

ln[(1+|r|2+2|r| cos π
N )(|r|2N+2|r|N+1)]

1
N+1−ln |t|2

N even
.

(A9)

Again these bounds are valid only for N > 2. Choosing, as before,

t = − 1√
2
, t′ =

1√
2
, r =

1√
2
, r′ =

1√
2
. (A10)

the localization length estimate for N = 8 (π8 -anyons) now has looser bounds

1.218 ≤ ξloc ≤ 1.906 . (A11)

Of course, in the limit N →∞, we have ξloc → − 1
ln |t|2 .
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