
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical

Engineering

Doctoral Thesis

Strongly Singular Operators with Interactions
Supported by Curves and Surfaces
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Abstrakt

V této dizertaci zkoumáme spektrálńı vlastnosti Schrödingerových operá-
tor̊u popisuj́ıćı δ′-interakci lokalizovanou na křivkách a plochách. Tyto operá-
tory jsou sdruženy s následuj́ıćı kvadratickou formou

hΓ
β(ψ) = (∇ψ,∇ψ)Rn + (β−1(ψ|Γ+ − ψ|Γ−), ψ|Γ+ − ψ|Γ−)Γ

kde je śıla vazby charakterizována funkćı β−1 a stopy funkce na hranici nosiče
singulárńı interakce znač́ıme ψ|Γ±.
Odvod́ıme asymptotické chováńı diskrétńıho spektra pro př́ıpad silné vazby,
tzn. β → 0−, pro uzavřené křivky a plochy. Rovněž pro tuto situaci
spočteme esenciálńı spektrum. Uvažujeme C4 křivky a plochy, kompaktńı
i nekonečné. Pro nekonečné křivky předpokládáme, že jsou asymptoticky
př́ımé a obdobně pro nekonečné plochy předpokládáme, že jsou asymptoticky
rovné. Pro tyto situace jsme schopni napsat prvńı dva členy asymptotického
rozvoje diskétńıch vlastńıch č́ısel, kde je druhý člen určen Schrödingerovým
operátorem s potenciálem závislým na křivosti nosiče singulárńı interakce.
Dále dokážeme, že pro př́ıpad slabé vazby, tzn. β → −∞, je diskrétńı spek-
trum prázdné pro každou kompaktńı neuzavřenou varietu. Pro neuzavřené
křivky odvod́ıme podmı́nku postačuj́ıćı na absenci diskrétńıho spektra v
závislosti na vazbové konstantě β a křivosti křivky.



Abstract

The thesis is devoted to studies of spectral properties of the Schrödinger
operators describing δ′-interaction supported on curves and surfaces. These
operators are associated with the quadratic form

hΓ
β(ψ) = (∇ψ,∇ψ)Rn + (β−1(ψ|Γ+ − ψ|Γ−), ψ|Γ+ − ψ|Γ−)Γ

where the constant β−1 characterizes the coupling strength and ψ|Γ± are
traces of the function at the boundaries of the interaction support.
We derive the asymptotic expression for the discrete spectrum in the strong
coupling limit, i.e. β → 0−, for closed curves and surfaces as well as for the
essential spectrum. We consider C4 curves and surfaces, either compact or
infinite. We assume that the infinite curves are asymptotically straight and
the infinite surfaces are asymptotically planar. In this setting we derive the
first two terms of the asymptotic expansion of the discrete spectrum where
the second term is determined by Schrödinger type operator with effective
potential expressed in the means of the interaction support curvatures.
We also prove that in the weak coupling limit, i.e. β → −∞, the discrete
spectrum is empty for the case of compact non-closed manifolds. For the large
class of non-closed curves we derive sufficient conditions for the absence of the
discrete spectrum with respect to their coupling constant and the curvature
of the curve.
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Introduction

In this work we study the Schrödinger operators describing δ′-interaction
supported by various hypersurfaces. We are interested in the dependence of
the spectrum on the geometry of the interaction support. The operators we
are working with are associated with the quadratic forms

hΓ
β(ψ) = (∇ψ,∇ψ)Rn + (β−1(ψ|Γ+ − ψ|Γ−), ψ|Γ+ − ψ|Γ−)Γ (1)

where β−1 characterizes the coupling strength and ψ|Γ± are traces of the
function at the boundaries of the interaction support.

In recent years the problem of quantum particles confined to curves,
graphs, tubes, surfaces, layers, and other geometrically nontrivial objects,
attracted a lot of attention. In physics they are used as models of various
nanostructures and at the same time they present many interesting problems
from a purely mathematical point of view. There are many ways how to treat
these systems. Models using singular interactions give answers to these prob-
lems for several decades now. Historically possibly the most influential paper
was [KP31], where the scattering of the electron on the crystal lattice was
done using δ-interactions located at Z on a line. The great advantage of
the models with singular interactions is that they are exactly solvable in the
sense that their resolvents can be written explicitly and as a consequence
we are able to derive their spectrum, eigenfunctions as well as to solve the
corresponding scattering problem.

One possibility how to describe a quantum particle confined to a set
of nontrivial geometry is to use models of quantum graphs. There is a
wealth of literature studying such systems. We can mention few of them
[BK13, H00, KS99] or the review [K08]. In this setting the configuration
space is a metric graph. The edges are equipped with differential operator
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with boundary conditions at each vertex connecting wave functions. They
arise as simplifications of various models in mathematics, physics and chem-
istry. We can mention the motion of a free-electron in polymer conjugated
molecules, thin waveguides, photonic crystals and many others. This ap-
proach has several drawbacks. The first is the presence of ad hoc parameters
in the boundary conditions. Another one is that the particle is strictly con-
fined to graph edges and as a result the model neglects quantum tunneling
effects which can be important in real situations when the edges are close
to each other. Furthermore these systems neglect practically all geometric
properties and take into account only the length of the edges.

These drawbacks can be treated using more realistic models of the so-
called leaky quantum structures. The idea behind these models is to pre-
serve the whole space for the motion of the particle and to keep the particle
localized in the vicinity of the structure by an attractive singular potential.
For an attractive δ-interaction it is described by a Hamiltonian which can be
formally written as

−∆ + αδ(· − Γ)

with α < 0 where Γ is the interaction support. An exhaustive review of these
models was presented in [E08]. The main advantage of this approach is that
there is no ambiguous parameters at the vertices and also that the tunneling
between parts of the structure is possible.

One can try to use different singular interactions than the δ-interaction. If
we consider manifolds of codimension one we can implement various singular
interactions in the direction perpendicular to the manifold because in dimen-
sion one we have a larger variety of singular interactions. A prominent role
among them is played by the δ′-interaction which is, in a sense, a counterpart
to δ-interaction. At first glance the δ′-interaction seems to be less “natural”,
however, it is not a mere mathematical construct because it can be estimated
by a “triple layer” potential as it was shown in [CS98], which gives also in-
teresting physical meaning to it. When δ′-interaction was used for the first
time, it was for the symmetric case of concentric spheres in [AGS87, S88].
An elegant and rigorous definition for a general closed manifold was given in
[BLL13] using operators associated with quadratic forms (1). Later based on
this approach it was shown how to introduce δ′-interaction on a non-closed
manifold in [JL16].
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This work is divided into three main parts. The first one is devoted to rig-
orous definition of operators and their basic properties. The second one is the
core of the thesis and contains a summary of published original results. We
present them with a reasonable completeness, leaving out just some purely
technical parts for which the reader is referred to the original papers included
in the appendix. The last chapter contains additional unpublished results.

In the Chapter 1 we summarize rigorous definitions and basic spectral
properties of the δ′-interaction in various settings. We are interested in the
δ′-interaction supported by curves in R2 and surfaces in R3. Locally δ′-
interaction behaves as a one dimensional δ′-interaction in the orthogonal
direction with respect to the interaction support. Due to this fact it is useful
to study also the one dimensional case. An extensive study of finite number
of δ′-interactions supported by points on a line was given in [AGHH05]. The
operator describing N δ′-interactions on a line acts as

HB,Y = −∆ ,

D(HB,Y ) = {ψ ∈ H2(R \ {Y }|ψ′(yi,−) = ψ′(yi,+) = β−1
i (ψ(yi,+)− ψ(yi,−))}

where the interactions are located at sites yi with coupling constants βi. At
this point we note that a small negative β corresponds to the strong attrac-
tive coupling and a large negative β to the weak one. In several cases we
also use a more general one dimensional setting than a straight line. For a
general setting we can introduce δ′-coupling on a quantum graph as it was
done in [E96].

For the description of δ′-interaction supported by a manifold we can use
two basic equivalent approaches. One of them is making self-adjoint exten-
sions by adding appropriate boundary conditions at the points with a singular
interaction in the direction perpendicular to the interaction support. These
conditions are locally equivalent to the conditions for the one dimensional
case. the alternative way is to introduce our operator as an operator asso-
ciated with correct semi-bounded, symmetric quadratic form (1). Both of
these definitions are interchangeable if the support is sufficiently regular. We
further split the case of δ′-interaction supported by hypersurface into two set-
tings namely for closed and non-closed interaction supports. The situations
for closed manifolds were studied in [BLL13]. The case of non-closed support
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is more complex because we have to treat the endpoints. In [JL16] it was
solved by taking the quadratic form corresponding to the interaction sup-
ported by a closed manifold and restricting the domain to functions which
are continuous at the point where we do not want the interaction. Alter-
native approach was derived in [MPS16] where it was solved via boundary
condition of a self-adjoint operator.

The main results of the thesis, presented in Chapter 2, were published
in the papers [EJ13, EJ14, J15] and [JL16]. The first three papers [EJ13,
EJ14, J15] describe spectral behavior of the operator associated with the
form (1) for a strong coupling limit, i.e. β → 0−, where the manifold Γ
is a closed curve or a surface. A similar problem was treated in [EY02]
where the authors derived the spectral asymptotics of strong δ-interaction
supported by Jordan C4 curve in R2. The spectral asymptotics of strong
δ-interaction supported by a C4 surface was treated in [EK03]. We assume
that the manifold is at least C4 with a neighborhood of finite thickness which
do not cross itself. Furthermore for the case of infinite manifold we need
to assume that the curves are asymptotically straight and that the surface
is asymptotically planar. This asymptotic condition is added because it
guarantees the existence of a discrete spectrum. For example the spectrum
of strong δ-interaction supported by a periodic curve has a band structure
without discrete eigenvalues as shown in [EY01]. The essential spectrum of
our system is either

σess(Hβ,Γ) = R+

for the case of a compact manifold which is true for any coupling strength or

σess(Hβ,Γ) = [ε(β),∞) , ε(β)→ − 4

β2

for infinite manifolds in the asymptotic limit which holds for the strong cou-
pling limit, i.e β → 0−. The limit infimum value of the essential spectrum
− 4
β2 corresponds to the one dimensional ground state of one δ′-interaction on

a line. We derive the first two terms of the asymptotic expansion of the dis-
crete spectrum. The first term is manifold independent diverging for β → 0−
and the second term encodes the geometry of the manifold. The discrete
eigenvalues admit an asymptotic expansion in the form

λi = − 4

β2
+ µj +O(β ln(|β|))
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where we added the error term and µj are the eigenvalues with multiplicity
taken into account of the following operators

S = −∂ss −
1

4
γ(s)2 for curves ,

S = −∆Γ −
1

4
(k1 − k2)2 for surfaces

where γ(s) is the signed curvature of the curve, ki are the principal curvatures
of the surface and −∆Γ is the Laplace-Bertrami operator of the surface. We
note that the technique used for the estimation of the eigenvalues could be in
principle with few modification used also for the estimation of eigenvalues of
δ′-interaction supported on non-closed manifolds. For the case of a compact
curve we also derive the number of discrete eigenvalues

−2L

πβ
+O(ln |β|) .

This asymptotic estimate is dominated by a natural Weyl-type term.

In the paper [JL16] we studied the behavior of δ′-interaction supported
on a non-closed curve in the weak coupling regime. It can be shown by a
variational approach, in the same way as in [BEL13], that the δ′-interaction
supported by a closed compact curve Γ has always at least one negative
eigenvalue estimated from above by L

βS
where L is a length of the curve

Γ and S is an area enclosed by that curve. However this is not true for
non-closed curves. We show that for a certain class of curves there are no
negative discrete eigenvalues for a sufficiently weak coupling, i.e. β negative
and large enough. This behavior of an attractive potential was previously
unknown in R2. It is a result of the fact that δ′-interaction is strongly sin-
gular and behaves differently from more regular potentials. Such behavior
is well known in the weak coupling regime for Schrödinger operators with
regular potentials in dimension d ≥ 3, but not for d = 1, 2 [S76]. This be-
havior is exhibited by δ-interaction supported by either arbitrary compact
hypersurfaces in R3 which was shown in [EF09] or for non-closed curves in
R3 as proved in [EK08]. However attractive δ-interaction supported by any
compact curve in R2 always has negative eigenvalues [ET04, KL16]. The
essential spectrum for δ′-interaction supported on compact non-closed curve
is

σess(Hβ,Γ) = R+ .
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For ”monotone” curves (in the sense made precise below) parametrized as
Γ(r) = (r sin(φ(r)), r cos(φ(r))), r ∈ (0, L), L ∈ R+ we can write the suf-
ficient condition for the absence of the discrete spectrum in the following
form

β(r) ≤ −2πr
√

1 + (rφ′(r))2 .

From this expression we see that bound states can arise from either bending
the curve or from making the coupling stronger. This behavior arises from
the fact that δ′-interaction on a loop of length d have a critical value for which
the system have no negative eigenvalues, explicitly −β < d. One can check
that for a sufficiently strong coupling our system has at least one negative
discrete eigenvalue. For a straight line of length L we can estimate a critical
value of β as

−2L

π
< β < 0 ,

which is a sufficient condition for the existence of the bound state for con-
stant β. The absence of the discrete spectrum in the weak coupling regime
is present also for the δ′-interaction supported by hypersurfaces in higher
dimensions.

The last chapter summarizes several unpublished results and work in
progress. The chapter presents four new results. The first one treats a prob-
lem of δ′-interaction supported on a sharp angle. A similar problem, namely
solving the spectrum for δ-interaction supported on sharp angle, was studied
in [DR14]. We show that for a sufficiently small angle θ we can estimate the
operator by a one-dimensional operator with Coulomb-like potential in the
form 1/(βθr). The approach for this problem is based on results derived for
two δ′-interactions on a loop.

The second result is an optimization of the lowest eigenvalue with respect
to the position of N δ′-interactions on a loop. We show that for the case of
even number of interactions, the optimal position with maximal lowest eigen-
value is for the totally symmetric case with the equal distance between the
interactions. Studying these easier models can be very useful because the
obtained results can be used quite often in treating more complicated prob-
lems in higher dimension.

The third result is a generalization of the result presented in [JL16]. The
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main theorem of [JL16] requires the interaction support to be a ”monotone”
curve, i.e. curve which ”moves” away from one endpoint. This result was
in the paper [JL16] generalized to a class of curves which are obtained by
a linear fractional maps from monotone curves. We can further enlarge the
class of curves for which the statement about the absence of negative eigen-
values for the weak coupling holds. We do not use linear fractional maps but
any conformal maps from the unit disc to a different subset of R2. The only
restriction is that our curve, before the transformation, has to connect the
center of the unit disc to the boundary and be monotone.

The fourth and last presented result follows an idea due to Monique Dauge
[D16]. It allows us to show that δ′-interaction supported by an arbitrary
compact non-closed manifold in an arbitrary dimension d ≥ 2 has no discrete
eigenvalues in the weak coupling regime. A drawback of this approach is that
it does not give an explicit lower bound for β.
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1. Theoretical Background

In this section we summarize definitions of δ′-interactions in various settings
as well as their basic properties. At the end of this chapter we give a short
summary of some properties of conformal maps which are needed for the
proofs of Theorems 2.4.4 and 3.3.1 in the chapters to follow.

1.1 δ′-Interaction in 1D

The δ′-interaction is by its nature a one-dimensional effect. In higher di-
mensions it is always introduced as an effect supported by a manifold of
codimension 1. That is the reason why we study the 1D situation first. An
extensive study of δ′-interactions on the line was given in [AGHH05]. The
approach used for δ′-interaction on the line is based on self-adjoint exten-
sions of an appropriate symmetric operator. A different approach based on
operators associated with quadratic forms is employed later for the case of
an interaction localized on closed and non-closed manifolds. However we can
use both definitions in any setting.

1.1.1 One δ′-Interaction on Line

We start by introducing a closed, nonnegative operator, which acts as

Hyψ(x) = −∆ψ(x)

with the domain D(Hy) = H2
0 (R \ {y}) where y ∈ R. The adjoint of this

operator can be easily shown to be

H∗yψ(x) = −∆ψ(x)

with the domain D(H∗y ) = H2(R \ {y}) where y ∈ R. A simple direct calcu-
lation shows that Hy has deficiency indices (2, 2). This implies that Hy has

16



a four-parameter family of self-adjoint extensions. It contains some subfam-
ilies of particular importance. One consists of the well-known δ-interaction
[AGHH05]. Another one, which is of importance for the present thesis, cor-
responds to δ′-interaction. The δ′-interaction is described by the following
operator

−∆y,βψ(x) = −∆ψ(x) (1.1)

with the domain D(−∆y,β) = {ψ ∈ H2(R \ {y})|ψ′(y−) = ψ′(y+), βψ′(y+) =
ψ(y+) − ψ(y−)}, where β is a fixed real number. A particular case is β = 0
which is understood as the absence of the interaction, i.e. −∆y,0 coincides
with the kinetic energy Hamiltonian on the line. The family of self-adjoint
extensions contain also the case which can be identified with β = ∞ and
which corresponds to the Neumann boundary condition at y decoupling the
line into two halflines.

The resolvent of −∆y,β can be expressed by means of Krein’s formula. Its
explicit form is given by the following theorem [AGHH05]:

Theorem 1.1.1. The resolvent of −∆y,β is given by

(−∆y,β − k2)−1 = Gk − 2βk2(2− iβk)−1(G̃k(· − y), ·̃)G̃k(· − y)

where k2 ∈ ρ(−∆y,β), =k > 0, −∞ < β ≤ ∞, y ∈ R. Furthermore,
Gk(x − x′) = i

2k
exp(ik|x − x′|) is the resolvent kernel of the free Laplacian

and

G̃k(x− y) =
i

2k
exp(ik(x− y)), x > y ,

G̃k(x− y) = − i

2k
exp(ik(y − x)), x > y , =k > 0 .

The spectral properties −∆y,β are summarized in the following theorem.

Theorem 1.1.2. Let −∞ < β ≤ ∞, y ∈ R. Then the essential spectrum of
−∆y,β is purely absolutely continuous and covers the nonnegative real axis

σess(−∆y,β) = σac(−∆y,β) = R+
0 , σsc(−∆y,β) = ∅ .

If −∞ < β < 0, −∆y,β has precisely one negative, simple eigenvalue

σp(−∆y,β) =

{
− 4

β2

}
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with the normalized eigenfunction

ψ(x) =

√
−β

8
exp

(
2

β
(x− y)

)
, x > y ,

ψ(x) = −
√
−β

8
exp

(
2

β
(y − x)

)
, x < y .

For β ≥ 0 or β =∞, −∆y,β has no eigenvalues

σp(−∆y,β) = ∅.

From the previous theorem we can conclude that β > 0 corresponds to
the repulsive interaction and β < 0 to the attractive one. Furthermore, the
strong coupling limit is β → 0−.

1.1.2 Finitely Many δ′-Interaction on Line

The concept from the previous section can be extended to finitely many δ′-
interactions on the real line. Proofs and a more detailed discussion can
be found in [AGHH05]. We start with the set of N ∈ N points Y =
{y1, . . . , yN} ⊂ RN . We again introduce the closed, nonnegative minimal
operator

HY ψ(x) = −∆ψ(x)

with the domain D(HY ) = H2
0 (R \ Y ). The adjoint of this operator is

H∗Y ψ(x) = −∆ψ(x)

with the domain D(H∗Y ) = H2(R \ Y ). A direct calculation shows that this
operator has deficiency indices (2N, 2N). This means that there is a 4N2-
parameter family of self-adjoint extensions. In particular, we are interested
in families with local boundary conditions, i.e. the boundary conditions that
couple the function values from left and right and the values of its derivatives
always at one point. There is an N parameter family corresponding to N
δ-interactions on the line and a different N parameter family corresponding
to N δ′-interactions. The family corresponding to N δ′-interaction is the
following

−∆Y,Bψ(x) = −∆ψ(x) (1.2)

with the domainD(−∆Y,B) = {ψ ∈ H2(R\Y )|ψ′(yj−) = ψ′(yj+), βjψ
′(yj+) =

ψ(yj+)−ψ(yj−)} where B = {β1, . . . , βN} is the parameter family which has
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the meaning of coupling parameters. The particular case of βj = 0 leads
to the absence of the interaction at the point yj. The case βj = ∞ leads
to Neumann boundary condition at yj decoupling the line into two halflines
with j − 1 and N − j δ′-interactions with Neumann boundary condition at
the endpoint.

The following theorems describe some basic properties of these operators,
namely their resolvents and spectra. The resolvent is obtained again by
Krein’s formula and has the following form [AGHH05]:

Theorem 1.1.3. Let βj 6= 0 for all j ∈ N̂ = {1, . . . , N}. Then the resolvent
of −∆Y,B can be written as

(−∆Y,B − k2)−1 = Gk −
∑

j,j′∈N̂

[ΓY,B(k)]−1
jj′(G̃k(· − yj′), ·̃)G̃k(· − yj)

where k2 ∈ ρ(−∆Y,B), =k > 0, −∞ < βj ≤ ∞, βj 6= 0, yj ∈ Y for all j ∈ N̂ .
Gk(x− x′) = i

2k
exp(ik|x− x′|) is the resolvent of free Laplacian on the line,

the matrix [ΓY,B(k)]jj′ can be written as

[ΓY,B(k)]jj′ = −(βjk
2)−1δjj′ +Gk(yj − yj′)

and the function G̃k(x− y) is

G̃k(x− y) =
i

2k
exp(ik(x− y)) , x > y ,

G̃k(x− y) = − i

2k
exp(ik(y − x)) , x < y , =k > 0 .

The next theorem describes the spectrum of the operator −∆Y,B. As in
the case of single interaction case, the discrete spectrum is associated with
the kernel of the matrix [ΓY,B(k)]:

Theorem 1.1.4. Let −∞ < βj ≤ ∞, yj ∈ Y for j ∈ N̂ . If at most
one parameter corresponds to separating boundary condition, i.e. βj0 = ∞,
then the point spectrum consists of at most N negative, simple eigenvalues.
If at least two parameters lead to separating boundary conditions, then the
point spectrum consists of at most N negative eigenvalues and infinitely many
eigenvalues embedded in [0,∞) accumulating at ∞. In particular

k2 ∈ σp(−∆Y,B) ∩ (−∞, 0) <=> det[ΓY,B(k)] = 0 , =k > 0 ,
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and the multiplicity of the eigenvalue k2 < 0 equals to multiplicity of the
eigenvalue 0 of the matrix [ΓY,B(k)]. For an eigenvalue E0 = k2

0 of the
operator −∆Y,B corresponding eigenfunctions are in the form

ψ0(x) =
N∑

j=1

cjG̃k0(x− yj) , =k0 > 0

where (c1, . . . , cN) is an eigenvector of the matrix [ΓY,B(k0)] corresponding to
the eigenvalue 0.
The remaining part of the spectrum is purely absolutely continuous and covers
the nonnegative real axis

σess(−∆Y,B) = σac(−∆Y,B) = R+
0 , σsc(−∆Y,B) = ∅ .

1.1.3 δ′-coupling on Graph

It is possible to introduce δ′-interaction in a more general setting than con-
necting the endpoints of two intervals. To introduce δ′-coupling on a graph
we need a metric graph equipped with a differential operator on its edges,
typically a multiple of the Laplacian, and appropriate boundary conditions
at the vertices. This setting is usually called ”quantum graph”. We work
only with connected graphs because the spectrum of two disjoint graphs is
union of the spectra for disjoint parts. We also limit ourselves for the sake
of simplicity to graphs with a finite number of edges.

We consider a graph G constructed from p vertices and q edges where
p, q ∈ N. The lengths of the edges are represented by the vector L = (li|i ∈ q̂)
where li ∈ R+∪{∞} because we allow finite and semi-finite edges. The space
L2(G) is composed of all square integrable functions on each edge, i.e. it is
possible to write them as orthogonal direct sum of L2((0, li)) spaces on edges

L2(G) =

q⊕

i=1

L2((0, li)) .

Our operator is constructed in an analogous way to the previous case from
an appropriate symmetric operator by finding its self-adjoint extensions. We
take the symmetric operator to act as

HGψi = −∆ψi , i ∈ q̂ .
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with the domain Ψ ∈ {ψi ∈ H2
0 ((0, li))|i ∈ q̂}. The adjoint operator to HG is

H∗Gψi = −∆ψi , i ∈ q̂ .
with the domain Ψ ∈ {ψi ∈ H2((0, li))|i ∈ q̂}. This operator has deficiency
indices (2m + k, 2m + k), where m is the number of finite edges and k is
the number of semi-infinite ones; in other words 2m + k is the number of
endpoints of all edges. To make it self-adjoint we need to choose a subset in
the domain of H∗G by imposing appropriate boundary conditions. According
to [GG91, H00, KS99] the general conditions can be written in the following
way

AΨ̃ +BΨ̃′ = 0

where Ψ̃ is a vector composed of function boundary values at the endpoints
of edges, Ψ̃′ is a vector composed of outgoing function derivatives at the
endpoints of edges, A,B ∈ C2m+k,2m+k and they fulfill

rank(A|B) = 2m+ k ,

AB+ is self-adjoint.

It can be easily shown that the choice of matrices A,B is not unique,
e.g. for any regular matrix C ∈ C2m+k,2m+k the matrix pairs (CA,CB) and
(A,B) generate the same boundary conditions. There is a nice way how to
get rid of this ambiguity. We can write matrices A,B as functions of one
unitary matrix U ∈ C2m+k,2m+k in the following way [KS00, H00]

A = U − I ,
B = i(U + I) .

(1.3)

This is a rather large class of possible boundary conditions even if we re-
strict ourselves to local boundary conditions at each vertex. By local bound-
ary conditions we mean conditions, which couple only boundary values of
functions from the endpoints of the edges located to the same vertex. For
such a case we obtain the matrix U in the block diagonal form. We are able to
write the conditions for each vertex in the form of (1.3) with a ”smaller” uni-
tary matrix U ∈ Cl,l, where l is number of edges connected to the concrete
vertex. We want to choose those generalizing δ′-interaction. The correct
conditions for branched vertices are the following [E96]

∑

i∈l̂

ψ′i(0+) = 0 ,

ψi(0+)− ψj(0+) +
β

2
(ψ′i(0+)− ψ′j(+)) = 0 , i, j ∈ l̂

(1.4)
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where the vertex in question has l edges. One can easily check that these
conditions coincide with conditions of δ′-interaction on a line for the case
l = 2. The operator describing δ′-interactions on the graph G is denoted by
−∆G,B. It acts as a free Laplacian on each edge

−∆G,Bψi = −ψ′′i
with the domain Ψ ∈ {ψi ∈ H2((0, li))|i ∈ q}, where Ψ satisfy conditions
(1.4) for each vertex and B = (β1, · · · , βn) denotes coupling parameters at
the vertices. The basic spectral properties of the operator −∆G,B are given
in [BEH08].

Theorem 1.1.5. Let −∆G,B be defined as above. If lengths of all edges are
finite li <∞ then σ(−∆G,B) is purely discrete. If at least one edge is infinite
lj =∞ then σess(−∆G,B) = R+.

There is also a similar boundary condition corresponding to symmetrized
version of δ′-interaction [E96]. This interaction has similar properties as
δ′-interaction. A simple example is one δ′s-interaction on the line, whose
conditions are

ψ′(0−) + ψ′(0+) = 0 ,

ψ(0+) + ψ(0−) = ςψ′(0+) , ς ∈ R .

This interaction has one eigenvalue − 4
ς2

for ς < 0 and has up to a sign
the same reflection and transmission amplitudes for a plane wave as the δ′-
interaction. The vertex conditions for δ′s coupling for general vertex are

ψ′i(0+) = ψ′j(0+) = 0 , i, j ∈ l̂
∑

i∈l̂

ψi(0+) = ςψ′j((0+) .

where the vertex in question has l edges.

1.2 δ′-interaction Supported on Manifold of

Codimension One

For the situations where the δ′-interaction is supported by non-trivial hy-
persurfaces in higher dimensions we use a different approach than for the
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case on the line. We define our operator via the first representation theo-
rem, i.e. as an operator associated with semi-bounded, symmetric, densely-
defined sesquilinear form. The case for closed manifolds was discussed to
a large extent in [BLL13]. The situation for non-closed curves was treated
in [JL16]. The procedure employed in [JL16] is applicable also for higher
dimensions. We note that the approach via boundary conditions is possible
as well [BLL13, MPS16].

1.2.1 δ′-interaction Supported by Closed Manifold

By a closed manifold we mean a manifold without a free boundary, i.e. either
a closed manifold or an infinite one. Before we introduce the needed quadratic
form we state several auxiliary results which were derived and proved in
[BEL13].

Theorem 1.2.1. Let Ω ⊂ Rn be a Lipschitz domain. Then for any ε > 0
there exists a constant C(ε) > 0 such that

‖ψ|∂Ω‖2
∂Ω ≤ ε‖∇ψ‖2

Ω + C(ε)‖ψ‖2
Ω

holds for ψ ∈ H1(Ω).

We assume that our manifold Γ separates Rn into two Lipschitz subsets
Ω+,Ω− ⊂ Rn and Γ = ∂Ω+ = ∂Ω−. We can write H1(Rn \ Γ) 3 ψ =
ψ+⊕ψ− ∈ H1(Ω+)⊕H1(Ω−). We introduce the notation [ψ]Γ = ψ|Γ+−ψ|Γ−,
where ψ|Γ+ and ψ|Γ− denotes traces of the functions at the boundary of Γ.
Now we can state the next auxiliary result.

Theorem 1.2.2. Let Ω± ⊂ Rn be a Lipschitz domain and Rn \ Ω+ = Ω−.
Then for any ε > 0 there exists a constant C(ε) > 0 such that

‖[ψ]Γ‖2
Γ ≤ ε‖∇ψ‖2

Rn + C(ε)‖ψ‖2
Rn

holds for ψ ∈ H1(Rn \ Γ).

We are ready to introduce the quadratic form which defines the operator
describing a δ′-interaction on the manifold Γ

hΓ
β(ψ) = ‖∇ψ‖2

Rn + (β−1[ψ]Γ, [ψ]Γ)Γ (1.5)

where β−1(x) ∈ L∞(Γ,R) with the domain H1(Rn \ Γ). Using the previous
theorem and employing properties of the form ‖∇ψ‖2

Rn we get that the form
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hΓ
β is semi-bounded, symmetric and densely-defined on H1(Rn\Γ). We define

the operator −∆Γ,β corresponding to the quadratic form hΓ
β(ψ) via the first

representation theorem. The operator −∆Γ,β acts as

−∆Γ,βψ(x) = −∆ψ(x) ,

D(−∆Γ,β) = {ψ ∈ H3/2
∆ (Rn \ Γ)|

∂Γ+ψ|Γ+ = −∂Γ−ψ|Γ−, β∂Γ+ψ|Γ+ = ψ|Γ+ − ψ|Γ−}

where ∂Γ±ψ|Γ± are normal derivatives with respect to Γ and H
3/2
∆ (Rn \ Γ) =

{ψ ∈ H3/2(Rn \ Γ)|∆ψ ∈ L2(Rn \ Γ)}. The authors in [BLL13] derived
that if we restrict the coupling function to Sobolev space of order one of
L∞(Γ,R) functions, i.e. β−1(x) ∈ W 1,∞(Γ) the domain of −∆Γ,β satisfies
D(−∆Γ,β) ⊂ H2(Rn \ Γ). The behavior of the spectrum was studied in
[BLL13].

Theorem 1.2.3. Let −∆Γ,β be defined as above and let the manifold Γ be
compact and closed. Then σess(−∆Γ,β) = R+. Furthermore if β < 0 then
σd(−∆Γ,β) 6= ∅.

1.2.2 δ′-interaction Supported by Non-closed Manifold

The approach which we use for δ′-interaction supported by a non-closed mani-
fold was introduced in [JL16], where it was applied to δ′-interaction supported
by a non-closed curve. An alternative definition of the operator was given
in [MPS16] using boundary conditions. We start with the same setting as
in the previous section. We take a connected but not necessarily bounded
subset Λ ⊂ Γ and introduce the linear space

FΛ := {ψ ∈ D(Ω+)⊕D(Ω−)|[ψ]Γ\Λ = 0}

where D(Ω) := {ψ|Ω|ψ ∈ D(Rn)}. It can be checked that FΛ is a subspace of
the Hilbert space H1(Ω+)⊕H1(Ω−). The closure of FΛ in H1(Ω+)⊕H1(Ω−)

H1(Rn \ Λ) := FΛ

is a Hilbert space. For the definition of the quadratic form we need the
following estimate, which can be derived in the same way as in [JL16].
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Theorem 1.2.4. Let Γ,Λ ⊂ Rn and Ω± ⊂ Rn be as above. Then the follow-
ing statements hold:
i) [ψ]Γ\Λ = 0 ∀ψ ∈ H1(Rn \ Λ)
ii) ∀ε > 0 ∃C(ε) > 0

‖[ψ]Λ‖2
Λ ≤ ε|∇ψ‖2

Rn + Cε‖ψ‖2
Rn

holds for ψ ∈ H1(Rn \ Λ).

Now we are ready to introduce the quadratic form

hΛ
β (ψ) = ‖∇ψ‖2

Rn + (β−1[ψ]Γ, [ψ]Γ)Λ (1.6)

where β−1(x) ∈ L∞(Λ,R) with the domain H1(Rn \Λ). The basic properties
of this form were proved in [JL16].

Theorem 1.2.5. Let Λ ⊂ Rn, β−1(x) ∈ L∞(Λ,R) and FΛ be as above.
Then the quadratic form hΛ

β is closed, densely defined, symmetric and lower-
semibounded in Hilbert space L2(Rn). Moreover, FΛ ⊂ domhΛ

β is a core for
this form.

By the first representation theorem we define the operator −∆Λ,β to the
quadratic form hΓ

β(ψ) which describes the δ′-interaction supported by a non-
closed manifold.

The alternative approach presented in [MPS16] is based on the self-adjoint
extension of a symmetric operator. We start by introducing the symmetric
operator corresponding to a free Laplacian on Rn with omitted closed sym-
metric hypersurface. Next we introduce trace operators at the outer and
inner boundary of the hypersurface. The domain of the self-adjoint opera-
tor is obtain by imposing proper boundary conditions. At the parts of the
boundary where we want to have the δ′-interaction we introduce conditions
corresponding to the δ′-interaction and at the other parts we impose condi-
tions leading to sufficient smoothness of the functions.

In [MPS16] the authors used this approach for a δ′-interaction supported
by an open subset Λ of a bounded closed manifold Γ which is the boundary
of a subset Ω− ⊂ Rn. The set Ω− is assumed to be of the class Ck,1, k ≥ 0,
i.e. local maps describing the manifold Γ are Lipschitz continuous together
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with their inverse up to the order k. For the definition of our operator we
need to introduce two auxiliary operators. The operators on Ω± act as

−∆max
Ω± = −∆|D(−∆max

Ω± ) ,

D(−∆max
Ω± ) := {ψ± ∈ L2(Ω±)| −∆ψ± ∈ L2(Ω±)} .

We denote one sided, zero-order, trace operators of co-normal derivative at
the boundary of Ω± by ∂Ω±ψ|∂Ω± and one sided, zero-order, trace opera-
tors at the boundary of Ω± by ψ|∂Ω± − ψ|∂Ω± . Furthermore we need a set

of functions Dβ,N,Λ = {φ ∈ {ψ ∈ H
1
2 (Γ)|suppψ ⊆ Λ}|((− 1

β
+ 1

2
(∂Ω+ψ|∂Ω+

+∂Ω−ψ|∂Ω−)DL)φ)|Λ ∈ H
1
2 (Λ)} where we use shorthand DL := DLλ0 with

λ0 > 0. The double layer operator DLz is defined as DLz : H−
1
2 (Γ) →

L2(Rn) and is related to −∆ as (DLzψ, θ)L2(Rn) := (ψ, γ1(−A + z)−1θ)− 1
2
, 1
2

with θ ∈ L2(Rn). The linear operator defined as

−∆Λ,β := (−∆max
Ω− ⊕−∆max

Ω+
)|D(−∆Λ,β) ,

D(−∆Λ,β) =

{
ψ ∈ H1(Rn \ Λ) ∩ (D(−∆max

Ω− )⊕D(−∆max
Ω+

))

∣∣∣∣
(ψ|∂Ω+ − ψ|∂Ω−) ∈ Dβ,N,Λ,(

β
1

2
(∂Ω+ψ|∂Ω+ + ∂Ω−ψ|∂Ω−)− (ψ|∂Ω+ − ψ|∂Ω−)

) ∣∣∣∣
Λ

= 0

}

describes a δ′-interaction localized on non-closed curve Λ.

1.3 Conformal Mappings

For a later use we define conformal mappings and state several useful prop-
erties. For a complete review we refer the reader to any good text-book on
complex variable e.g. [K99]. These transformations of the coordinates map
a subset S1 of the complex plane to a generally different subset S2. The
conformal mapping M : S1 → S2 acts as

xM = <(M(x+ iy)) , yM = =(M(x+ iy))

where i is the complex unit and M is the analytic complex bijective function.
The analyticity of the function M implies

∂xxM = ∂yyM ,

∂xyM = −∂yxM
(1.7)
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where we used shorthand ∂x = ∂
∂x

. These equalities are in fact Cauchy-
Riemann conditions. There is the famous Riemann mapping theorem which
we use later on.

Theorem 1.3.1. Let U be any simple connected open compact subset of C.
Then there exists such a conformal map M(z) : U → C that MU = D
where D is the open unit disc centered around 0 in C. Furthermore M is a
homeomorphic continuous bijection between U and D.

We also want to map the whole complex plane onto itself. We introduce
the notation for the extended complex plane Ĉ = C∪{∞}. The special class
of conformal maps defined on Ĉ is called linear fractional transformation.
These maps M : Ĉ→ Ĉ act as

M(z) =
az + b

cy + d
, ad− bc 6= 0 .

The next theorem summarizes basic properties of the linear fractional trans-
formations.

Theorem 1.3.2. Any linear fractional transformation M : Ĉ→ Ĉ is home-
omorphism with respect to the standard topology on Ĉ and its inverse M−1

is also a linear fractional transformation. The composition M1 ◦M2 of two
linear fractional transformations M1,M2 is also a linear fractional transfor-
mation.

Using equalities (1.7) we obtain the Jacobian JM of the mapping M as

JM = (∂xxM)2 + (∂yxM)2 = (∂xyM)2 + (∂yyM)2 .

Furthermore equalities (1.7) yield the following relation

(∇xM ,∇yM) = ∂xxM∂xyM + ∂yxM∂yyM = 0 ,

i.e. vectors ∇xM ,∇yM are orthogonal to each other. Now we state the
auxiliary lemma needed for the transformation of the quadratic forms corre-
sponding to the free Laplacian.

Lemma 1.3.1. Let M be an conformal map with the Jacobian JM . Then for
any x ∈ R2, x 6= M−1(∞) and any function u : dom(M) → C differentiable
at the point M(x)

|(∇v)(x)|2 = |(∇u)(M(x))|2JM(x)

holds with v = u ◦M .
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Proof. Using the expression for the Jacobian JM , along with the orthogonal-
ity of the vectors ∇xM ,∇yM and the chain rule for differentiation we obtain

|(∇v)(x)|2 = |(u′1 ◦M)∂xxM + (u′2 ◦M)∂xyM |2
+|(u′1 ◦M)∂yxM + (u′2 ◦M)∂yyM |2

=
(
|u′1 ◦M |2 + |u′2 ◦M |2

)
JM + 2< [(u′1u

′
2) ◦ (M) · (∇xM ,∇yM)]

=
(
|u′1 ◦M |2 + |u′2 ◦M |2

)
JM = |(∇u) ◦M |2JM

which completes the proof.
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2. Results

In this chapter we summarize the main results of the thesis. Most of them
were published in [EJ13, EJ14, J15, JL16]. Each paper is discussed in one
section. The first three papers describe spectral asymptotics of a strong
δ′-interaction localized on closed curves and closed surfaces. The approach
used in these works can be employed also for non-closed manifolds, but the
approximating operators for the longitudinal part would be more complex.
In [EJ13] we give the spectral asymptotics for the δ′-interaction localized
on a closed compact curve as well as the asymptotics of the number of the
negative eigenvalues. In [EJ14] we described spectral asymptotics for the δ′-
interaction localized on either an infinite surface or a closed compact one. In
[J15] we derived the spectral asymptotics for the δ′-interaction localized on
the infinite curve. The last paper [JL16] discusses the absence of the discrete
spectrum for the δ′-interaction localized on non-closed compact curves.

2.1 Spectral asymptotics of a strong δ′ inter-

action on a planar loop

In this section we discuss the spectrum of a δ′-interaction localized on a closed
compact curve in a plane. In the strong coupling regime β → 0− we pro-
vide the asymptotic expansion of the eigenvalues as well as the asymptotic
expression for the number of eigenvalues. The first two terms of the eigenval-
ues are a curve-independent term diverging as β → 0− and the appropriate
eigenvalues of a one-dimensional Schrödinger operator with effective poten-
tial depending on the geometry of the interaction support. The asymptotic
expression for the number of eigenvalues is dominated by a natural Weyl-type
term.
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2.1.1 Formulation of Problem

We take a C4 Jordan curve, i.e. closed and without self-intersections. We
parametrize it by its arc length as

Γ : [0, L]→ R2 , s→ (Γ1(s),Γ2(s))

where Γ1(s),Γ2(s) ∈ C4(R). The operator we are interested in is associated
with the quadratic form (1.5) which we rewrite in the following form

hΓ
β(ψ) = (∇ψ,∇ψ)2 + β−1

∫ L

0

[ψ]2Γds , D(hΓ
β(ψ)) = H2(R2 \ Γ)

where we used the natural parametrization for the curve Γ in the integral.
The operator associated with the form hΓ

β is explicitly

−∆Γ,β(ψ) = −∆ψ ,

D(−∆Γ,β) = {ψ ∈ H2(R2 \ Γ)|β∂|Γ+ψ(x)|Γ+ = −β|Γ−ψ(x)|Γ− = [ψ(x)]Γ} .
For the statement of our theorems we need to introduce an auxiliary operator

SΓ = − ∂2

∂s2
− γ(s)2

4
,

D(SΓ) = {ψ ∈ H2((0, L))|ψ(0+) = ψ(L−), ψ′(0+) = ψ′(L−)}
where γ is the signed curvature, i.e. γ(s) = (Γ′′1Γ′2 − Γ′′2Γ′1)(s). We denote
the eigenvalues of the operator SΓ by µj with the multiplicity of eigenvalues
taken into account. Now we are ready to state two main theorems of the
paper [EJ13]. We state each theorem in a separate subsection, where we also
include sketches of the proofs.

2.1.2 Asymptotics of Discrete Spectrum

Theorem 2.1.1. Let Γ be a C4 Jordan curve. For any n ∈ N there exists
βn < 0 such that

|σdisc(−∆Γ,β)| ≥ n holds for β ∈ (βn, 0) .

For any such β we denote by λj(β) the j-th eigenvalue of −∆Γ,β counted with
multiplicity taken into account. The asymptotic expansion for β → 0− is

λj(β) = − 4

β2
+ µj +O(β ln(|β|)) , j ∈ n̂ .
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The proof of this theorem is based on Dirichlet and Neumann bracketing.
We estimate our operator from above and from below by suitable operators.
To be able to do so, we need several auxiliary results. We start by introducing
curvilinear coordinates s, u in the vicinity of the curve as

(x, y) = (Γ1(s) + uΓ′2(s),Γ2(s)− uΓ′1(s)) . (2.1)

The regularity of the coordinates for small u is guaranteed by the fact that Γ
is a C4 Jordan curve; for the details we refer the reader to [EY02]. We choose
a strip neighborhood Ωa = {x ∈ R2|dist(x,Γ) < a}. The neighborhood is
chosen in such a way that the coordinates (2.1) are injective. We define
two approximating operators to −∆Γ,β with imposed Neumann boundary
condition and Dirichlet boundary condition at the boundary of Ωa

−∆N,a
Γ,β ≤ −∆Γ,β ≤ −∆D,a

Γ,β .

The operators −∆
D/N,a
Γ,β have the same differential expression as −∆Γ,β but

different domains D(−∆D,a
Γ,β ) = {ψ ∈ D(−∆Γ,β)|ψ(s, a) = ψ(s,−a) = 0}

and D(−∆N,a
Γ,β ) = {ψ ∈ H2(R2 \ (Γ ∪ ∂Ωa)|β∂uψ(s, 0+) = β∂uψ(s, 0−) =

[ψ(s, 0)]Γ, ∂uψ(s, a) = ∂uψ(s,−a) = 0} where we used curvilinear coordi-

nates. The operators −∆
D/N,a
Γ,β can be written as direct sums of operators

acting on parts of the plane separated by the boundary of Ωa. For the
study of the negative discrete spectrum we can neglect the parts acting on
R2 \ Ωa due to the positivity of free Laplacian on these subsets. The parts
corresponding to the strip neighborhood Ωa are associated with the following
quadratic forms

hΓ,a
β,D(ψ) = ‖∇ψ‖2

Ωa + β−1

∫ L

0

[ψ]2Γds ,

D(hΓ,a
β,D(ψ)) = {ψ ∈ H1(Ωa)|ψ(x)|∂Ωa = 0} ,

hΓ,a
β,N(ψ) = ‖∇ψ‖2

Ωa + β−1

∫ L

0

[ψ]2Γds ,

D(hΓ,a
β,N(ψ)) = H1(Ωa \ Γ) .

The next step is rewriting these forms by means of curvilinear coordinates
(2.1) which was done in [EJ13].
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Lemma 2.1.1. Quadratic forms hΓ,a
β,D and hΓ,a

β,N are unitarily equivalent to

quadratic forms qΓ,a
β,D and qΓ,a

β,N

qΓ,a
β,D(ψ) =

∥∥∥∥
∂sψ

g

∥∥∥∥
2

Ωa

+ ‖∂uψ‖2
Ωa + (ψ, V ψ)Ωa

+β−1

∫ L

0

[ψ]2Γds+
1

2

∫ L

0

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds ,

D(qΓ,a
β,D) = {ψ ∈ H1((0, L)× ((−a, a) \ {0}))|ψ(0, u) = ψ(L, u),

ψ(s, a) = ψ(s,−a) = 0} ,

qΓ,a
β,N(ψ) = qΓ,a

β,D(ψ)−
∫ L

0

γ(s)

2(1 + aγ(s))
|ψ(s, a)|2ds

+

∫ L

0

γ(s)

2(1 + aγ(s))
|ψ(s, a)|2ds ,

D(qΓ,a
β,N) = {ψ ∈ H1((0, L)× ((−a, a) \ {0}))|ψ(0, u) = ψ(L, u)}

where we use shorthands V (s, u) = uγ′′

2g3 − 5(uγ′)2

4g4 − γ2

4g2 and g(s, u) := 1+uγ(s).

The quadratic forms qΓ,a
β,D/N are not simple enough to be handled easily

so we replace the previous estimate by a cruder one. As an upper bound we
introduce the operator associated with the quadratic form qΓ,a

β,+

qΓ,a
β,+(ψ) =

‖∂sψ‖2
Ωa

(1− aγ+)2
+ ‖∂uψ‖2

Ωa + (ψ, V +ψ)Ωa

+β−1

∫ L

0

[ψ]2Γds+
1

2

∫ L

0

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds ,

D(qΓ,a
β,+) = D(qΓ,a

β,D)

where we used shorthands V +(s) = a(γ′′)+

2(1−aγ+)3 − γ2

4(1+aγ+)2 , f+ = maxx |f(x)|
and we omitted the non-positive term −5(uγ′)2

4g4 . The operator corresponding

to the form qΓ,a
β,+ can be written as

QΓ,a
β,+ = UΓ,a

+ ⊗ I +

∫ ⊕

(0,L)

T Γ,a
β,+(s)ds

where the operator T Γ,a
β,+(s) is associated with the form

[tΓ,aβ,+(s)](ψ) = ‖∂uψ‖2
(−a,a)+β

−1|ψ(0+)−ψ(0−)|2+
1

2
γ(s)(|ψ(0+)|2−|ψ(0−)|2) .
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The operator T Γ,a
β,+(s) itself acts as

T Γ,a
β,+(s)(ψ) = −ψ′′ ,

D(T Γ,a
β,+(s)) =

{
ψ ∈ H2((−a, a) \ {0})

∣∣∣ψ(a) = ψ(−a) = 0,

ψ′(0−) = ψ′(0+) = β−1(ψ(0+)− β(0−)) +
γ(s)

2
(ψ(0+) + β(0−))

}
.

We are interested only in the negative part of the spectrum, which is inde-
pendent of s [EJ13].

Lemma 2.1.2. Let a
β
> 2. Then the operator T Γ,a

β,+(s) has exactly one nega-

tive eigenvalue t+ = −κ2
+ independent of s where

κ+ = − 2

β
+

4

β
exp(4a/β) +O

(
exp(8a/β)

β

)
as β → 0− .

In a similar fashion we find a lower bound. We introduce the quadratic
form qΓ,a

β,− defined as

qΓ,a
β,−(ψ) =

‖∂sψ‖2
Ωa

(1 + aγ+)2
+ ‖∂uψ‖2

Ωa + (ψ, V −ψ)Ωa

+β−1

∫ L

0

[ψ]2Γds−
1

2

∫ L

0

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

−γ+

∫ L

0

(|ψ(s, a)|2 + |ψ(s,−a)|2)ds ,

D(qΓ,a
β,−) = {ψ ∈ H1((0, L)× ((−a, a) \ {0}))|ψ(0, u) = ψ(L, u)}

where V −(s) = − a(γ′′)+

2(1−aγ+)3 − 5(a(γ′)+)2

4(1−aγ+)4 − γ2

4(1−aγ+)2 . The operator QΓ,a
β,− asso-

ciated with the quadratic form qΓ,a
β,−(ψ) can be written in the same fashion

as

QΓ,a
β,− = UΓ,a

− ⊗ I +

∫ ⊕

(0,L)

T Γ,a
β,−(s)ds .

Again we need to estimate the negative part of the spectrum of the operator
T Γ,a
β,−(s) corresponding to the transversal part [EJ13].
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Lemma 2.1.3. Let 2
β
> γ+. Then for β → 0− the operator T Γ,a

β,−(s) has

exactly one negative eigenvalue t− = −κ2
− independent of s where

κ− = − 2

β
− 4

β

2 + βγ+

2− βγ+

exp(4a/β) +O
(

4

β

(
2 + βγ+

2− βγ+

)2

exp(8a/β)

)
.

The spectrum of the operators UΓ,a
± corresponding to the longitudinal

variable s can be approximated by the spectrum of the operator SΓ in the
same way as in [EJ13].

Lemma 2.1.4. There is a positive C independent of a and j such that

|µ±j (a)− µj| ≤ Caj2

holds for j ∈ N and 0 < a < 1
2γ+

, where µ±j (a) are the eigenvalues of the

operators UΓ,a
± , respectively, with the multiplicity taken into account.

Now we have all we need to prove the first theorem. We define a(β) =
3
4
|β| ln(|β|). We denote the eigenvalues of the operators T

Γ,a(β)
β,± (s) as t

Γ,a(β)
β,±,j

with the multiplicity taken into account. We already established that for β
small enough exactly one eigenvalue t

Γ,a(β)
β,±,j (s) is negative, i.e. the first one

t
Γ,a(β)
β,±,1 (s) = t± which is independent of s. The estimates we employed before

can be written together as

Q
Γ,a(β)
β,− ⊕−∆N

R2\Ωa ≤ −∆
N,a(β)
Γ,β ≤ −∆Γ,β ≤ −∆

D,a(β)
Γ,β ≤ Q

Γ,a(β)
β,+ ⊕−∆D

R2\Ωa
(2.2)

where ∆
D/N

R2\Ωa is Dirichlet or Neumann Laplacian on R2 \ Ωa, respectively.

The eigenvalues of Q
Γ,a(β)
β,± can be written as t

Γ,a(β)
β,±,j + µ±k (a(β)) with j, k ∈ N.

We can write the following estimate

t
Γ,a(β)
β,±,j + µ±k (a(β)) ≥ µ±1 (a(β)) = µ1 +O(β ln(|β|)) , j > 1 .

This estimate allows us to focus only on eigenvalues with j = 1. We denote

ωβ,±,k = t
Γ,a(β)
β,±,1 + µ±k (a(β)) .

Using the choice of a(β) we obtain

ωβ,±,k = − 4

β2
+ µk +O(βj2 ln(|β|)) for β → 0− .
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Combining the two previous expression we obtain that for each n ∈ N there
exists β(n) < 0 such that

ωβ,+,n ≤ 0 , ωβ,+,n < t
Γ,a(β)
β,+,j + µ+

k (a(β)) , ωβ,−,n < t
Γ,a(β)
β,−,j + µ−k (a(β))

holds for 0 > β > β(n), j > 1 and k ≥ 1. Thus the operators Q
Γ,a(β)
β,± have

the eigenvalues ωβ,±,k counting multiplicity for k ≤ n for β(n) < β < 0. We

denote the eigenvalues of −∆
D/N,a
Γ,β as ξβ,±,k respectively. From the min-max

principle and (2.2) we obtain

ωβ,−,k ≤ ξβ,−,k , ξβ,+,k ≤ ωβ,+,k

for k ∈ n̂ which also implies that ξβ,+,n < 0. Using the min-max principle
we can conclude that our operator −∆Γ,β has at least n eigenvalues in the
interval (−∞, ξβ,+,n) and for all k ∈ n̂

ξβ,−,k ≤ λk ≤ ξβ,+,k

holds which completes the proof.

2.1.3 Number of Eigenvalues with Respect to β

Theorem 2.1.2. Let Γ be a C4 Jordan curve. Then the counting function
β 7→ #|σdisc(−∆Γ,β)| of the operator −∆Γ,β admits asymptotic expansion in
the form

#|σdisc(−∆Γ,β)| = −2L

πβ
+O(|ln(|β|)|) as β → 0+

where L is the length of the curve Γ.

For the proof of this theorem we need two auxiliary results. First we
introduce two notations. For a self-adjoint operator A with inf σess(A) = 0
we denote the number of negative eigenvalues as N−(A) := #|σd(A) ∩ R−|.
We also introduce K±β = {k ∈ N|ωβ,+,k < 0}. The following estimate was
derived in [EJ13].

Lemma 2.1.5. Let the operators Q
Γ,a(β)
β,± be defined as above. Then for β →

0− we have

|K±β | =
2L

πβ
+O(| ln(|β|)|) .
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For the proof we need to estimate the second eigenvalue of the operator
T Γ,a
β,−(s) .

Lemma 2.1.6. Let T Γ,a
β,−(s) defined as above, let s ∈ [0, L) be fixed and let

0 < −β < 2a. Then there are no eigenvalues of the operator T Γ,a
β,−(s) in the

interval
[
0,min

{
γ+

2a
,
(
π
4a

)2
})

.

From (2.2) we can estimate the number of negative eigenvalues in the
following way

N−(Q
Γ,a(β)
β,− ) ≤ N−(−∆

N,a(β)
Γ,β ) ≤ N−(−∆Γ,β) ≤ N−(−∆

D,a(β)
Γ,β ) ≤ N−(Q

Γ,a(β)
β,+ ).

Using the results of Lemmata 2.1.4 and 2.1.5 we can obtain that for small
enough β we have K−β = N−(Q

Γ,a(β)
β,− ). This implies that

K+
β ≤ |σd(−∆Γ,β)| = N−(−∆Γ,β) ≤ N−(Q

Γ,a(β)
β,− ) = K−β

which completes the proof.

2.2 Spectral asymptotics of a strong δ′ inter-

action supported by a surface

In this section we describe the spectrum of δ′-interaction localized on a closed
surface in the strong coupling regime. We study two settings - a closed
compact surface and an infinite asymptotically planar surface. For both
situations we derive the asymptotic expansions of the discrete spectrum.
The second term of the discrete spectrum is determined by a Schrödinger
type operator with an effective potential dependent on the curvatures of the
interaction support. For an infinite surface we calculate the threshold of the
essential spectrum.

2.2.1 Formulation of Problem

The operator, which we are interested in, is associated with the quadratic
form (1.5), namely

hΓ
β(ψ) = ‖∇ψ‖2

R3 + β−1‖[ψ]Γ‖2
Γ .

Due to the nature of the proofs we need to employ some additional conditions
concerning the surface Γ. For the infinite one we assume the following:
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(a1) Γ is C4 smooth and allows a global normal parametrization with uni-
formly bounded elliptic tensor,

(a2) Γ can be enclosed in a symmetric layer neighborhood of a finite thick-
ness with no self-intersections,

(a3) Γ is asymptotically planar, i.e. curvatures of the surface vanishes as
the geodetic distance from one fixed point tends to the infinity and

(a4) Γ is not a plane.

By the last assumption we exclude the trivial case because it can be solved
exactly by separation of variables. The case of finite surfaces is simpler than
the case of infinite ones due to the compactness. For compact surfaces we
require the absence of a free boundary:

(b) Γ is a C4 smooth surface of finite genus.

For a closed finite surface we have no global parametrization. A finite surface
Γ can be described by an atlas of maps representing normal parameteriza-
tions with a uniformly bounded elliptic tensor.
Now we recall various needed facts about the geometry of the surface and its
neighborhoods. For a complete analysis we refer the reader to any good text-
book on differential geometry, e.g. [F11]. We start with the infinite surface.
We introduce normal coordinates on Γ by extending a local exponential map
γ : ToΓ → Uo with the origin o ∈ Γ to the neighborhood U0 of the point o.
These normal coordinates are given by

s = (s1, s2)→ expo

(∑

i

siei(o)

)
(2.3)

where we denoted the orthonormal basis of ToΓ as (e1(o), e2(o)). Using the
assumption (a1) we can find a point o ∈ Γ such that the map (2.3) can be
extended to a global parametrization of Γ from ToΓ ≡ R2 to Γ. In these
coordinates the metric tensor of the surface Γ can be expressed as gµν =
γ,µ · γ,ν . The inverse of the metric tensor is gµν = (gµν)

−1. The invariant
surface element is denoted by dΓ =

√
gds1ds2 = det(gµν)ds1ds2. The normal

vector n(s) can be calculated using the tangent vectors γ,µ as n(s) = γ,1×γ,2
|γ,1×γ,2| .

37



We denote the Weingarten tensor as hµν := −n,ν ·γ,σgσµ. The Gauss curvature
K and mean curvature M are calculated as

K = det(hνµ) = k1k2 ,

M =
1

2
Tr(hνµ) =

1

2
(k1 + k2) .

The eigenvalues of the Weingarten tensor k1,2 are called principal curva-
tures. By a direct calculation one can check the following identity K−M2 =
−1

4
(k1 − k2)2.

We need to parametrize the neighborhood of the surface Γ. Using the
parametrization (2.3) we define the following mapping of a layer neighbor-
hood Ωd of the surface Γ, where d > 0 is the halfwidth of the layer

L : Dd = {(s, u)|s ∈ R2, u ∈ (−d, d)} → γ(s) + un(s) . (2.4)

The assumption (a2) can be rephrased as

(a2) there is such d0 > 0 that the mapping (2.4) is injective for any 0 < d <
d0.

Using (a1) we can conclude that L is diffeomorphism. We can regard the
layer Ωd as a manifold with a boundary. In parametrization (2.4) the metric
tensor is expressed as

Gij =

(
Gµν 0

0 1

)

where Gµν = (δσµ − uhσµ)(δρσ − uhρσ)gρν . We use the convention that Latin
letters indices run through 1, 2, 3 corresponding to coordinates (s1, s2, u) and
Greek letters indices run through 1, 2 corresponding to the variables on the
surface. The volume element in the layer is dΩd =

√
Gds1ds2du with G =

det(Gij) = g[(1 − uk1)(1 − uk2)]2 = g(1 − 2Mu + Ku2)2. It is useful to
introduce the shorthand ξ(s, u) = 1 − 2M(s)u + K(s)u2. Using the notion
of curvatures we can express the assumption (a3) as

(a3) K,M → 0 for
√
s2

1 + s2
2 →∞ .

There are several useful estimates which are the corollaries of the conditions
(a1) − (a3) [DEK01]. We have uniformly bounded principal curvatures k1

and k2. We denote ρ = 1
max{‖k1‖∞,‖k2‖∞} . The critical halfwidth introduced
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in (a2) is always smaller than ρ > d0. For the values d < ρ the following
inequalities hold in the layer neighborhood Ωd of Γ

C−(d) ≤ ξ(s, u) ≤ C+(d) ,

C−(d)gµν ≤ Gµν ≤ C+(d)gµν
(2.5)

where C±(d) =
(

1± d
ρ

)2

. From the fact that the metric tensor is uniformly

elliptic we also have
c−δµν ≤ gµν ≤ c+δµν (2.6)

as a matrix inequality for some positive c±.

For closed finite surfaces we need to replace the global parametrization by
a finite atlas A of maps. In each map Mi we introduce normal coordinates
in the same way as done for the infinite case operator. The latter of each
part ran(Mi) is described by the map M̂i for given halfwidth of the layer
d > 0 as

M̂i : Di,d = {(s, u)|s ∈ dom(Mi), u ∈ (−d, d)} → γi(s) + un(s) .

Due to assumption (b) we have a critical value of d0 > 0 such that every
map M̂i : Di,d → Ωd from the atlas A is injective provided that d < d0 and

a diffeomorphism. Also M̂i(si, ui) = M̂j(sj, uj) implies Mi(si) = Mj(sj).
The estimates of the metric tensor remain the same also for the case of finite
surface Γ.

Similarly as for the case of the δ′-interaction supported by a closed curve
we need a comparison operator. The comparison operator can be written as

SΓ = −∆Γ −
1

4
(k1 − k2)2 = −∆Γ +K −M2

where ∆Γ is the Laplace-Bertrami operator on the surface Γ and k1,2 are
the principal curvatures of the surface Γ. For the case of a compact surface
Γ the spectrum of the operator SΓ is purely discrete. For the case of a
non-compact surface Γ with the potential vanishing at the infinity we have
σess(SΓ) = [0,∞). Unless the infinite surface Γ is a plane, which is excluded
by (a4), the discrete spectrum of SΓ is non-empty. We denote the eigenvalues
of the operator SΓ by µj in ascending order with the multiplicity taken into
account.
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2.2.2 Behavior of Essential Spectrum

First we calculate the essential spectrum. The case of the compact sur-
face Γ was treated in [BEL13]. For such a case the essential spectrum is
σess(−∆Γ,β) = [0,∞). The excluded case of Γ being a plane can be calcu-
lated by separation of variables. For such a case we obtain σess(−∆Γ,β) =[
− 4
β2 ,∞

)
. We show that under the assumption (a3) the essential spectrum

remains the same at least in the considered limit.

Theorem 2.2.1. Let an infinite surface Γ satisfy the assumptions (a1)-(a4).
Then the essential spectrum satisfies σess(−∆Γ,β) ⊆ [ε(β),∞), where ε(β) =

− 4
β2 +O

(
exp

(
c
β

))
holds as β → 0− for some constant c > 0.

The proof of this theorem is based on the Neumann bracketing. We intro-
duce the operator with added Neumann boundary condition at the boundary
of the layer Ωd. Such an operator can be written as a direct sum of two op-
erators

−∆N
R3\Ωd ⊕H

−,d
β,Γ ≤ −∆Γ,β

where −∆N
R3\Ωd is Neumann Laplacian on the set R3 \ Ωd and the operator

H−,dβ,Γ is associated with the following quadratic form

h−,dβ,Γ(ψ) = ‖∇ψ‖2
Ωd

+ β−1‖[ψ]Γ‖2
Γ

with the domain D(h−,dβ,Γ) = H1(Ωd \ Γ). Due to the fact, that the free
Laplacian is positive, all the information about the negative spectrum is
encoded in the operator H−,dβ,Γ . The inclusion σess(−∆Γ,β) ⊆ [ε(β),∞) is
equivalent to

inf σess(−∆Γ,β) ≥ ε(β) .

This inequality is satisfied if inf σess(H
−,d
β,Γ ) ≥ ε(β) for d < d0 < ρ. Next

we divide the surface Γ into two parts, namely Γintτ = {s ∈ Γ||s| < τ} and
Γextτ = Γ \ Γintτ . The corresponding layer neighborhoods of Ωd are Dint

d,τ =

{(s, u)|s ∈ Γintτ , u ∈ (−d, d)} and Dext
d,τ = Dd \ Dint

d,τ . The operators with

the Neumann boundary conditions on the boundary of the sets D
int/ext
d,τ are

denoted by H
−,d,int/ext
β,Γ,τ . These operators are associated with the forms

(ψ,H
−,d,int/ext
β,Γ,τ ψ)

D
int/ext
d,τ

= (∂iψ,G
ij∂jψ)

D
int/ext
d,τ

+
1

β
‖[ψ]Γ‖2

Γ
int/ext
τ
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with the domains H1(D
int/ext
d,τ \ Γ

int/ext
τ , dΩ), respectively. Neumann bracket-

ing yields the following

H−,dβ,Γ ≥ H−,d,intβ,Γ,τ ⊕H−,d,extβ,Γ,τ .

The set Dint
d is compact hence the spectrum of the operator H−,d,intβ,Γ,τ is purely

discrete. The min-max principle implies

inf σess(H
−,d
β,Γ ) ≥ inf σess(H

−,d,ext
β,Γ,τ ) .

Now it is sufficient to check that the expression inf σess(H
−,d,ext
β,Γ,τ ) can not be

smaller then ε(β). By neglecting some positive terms we have the following

(ψ,H−,d,extβ,Γ,τ ψ)Dextd,τ
≥
∫

Dextd,τ

|∂3ψ|2dΩ +
1

β

∫

Dextd,τ

|ψ(s1, s2, 0+)− ψ(s1, s2, 0−)|2dΓ

≥ m−τ,d

∫

Dextd,τ

|∂3ψ|2dΓdu+
1

β

∫

Dextd,τ

|ψ(s1, s2, 0+)− ψ(s1, s2, 0−)|2dΓ

≥ 1

β2m+
τ,dm

−
τ,d

[
−4− 16 exp

(
4d

β

)]
‖ψ‖2

Dextd,τ

where m+
τ,d = supDextd,τ

ξ and m−τ,d = infDextd,τ
ξ. To prove the last inequality one

has to use Lemma [EJ13, 3.3]. It implies, in particular,

∫ d

−d
|ψ′(u)|2du+

1

β
|ψ(0+)− ψ(0−)|2 ≥

(
− 4

β2
− 16

β2
exp

(
4d

β

))
‖ψ‖2

(−d,d)

which holds for sufficiently small β satisfying −β < 2d. The fact that τ can
be chosen arbitrarily large and limτ→∞m

±
τ,d = 1 imply

ε(β) ≥
(
− 4

β2
− 16

β2
exp

(
4d

β

))

which completes the proof.

2.2.3 Asymptotics of Discrete Spectrum

In this part we present two theorems describing the spectrum of the operator
−∆Γ,β. The first theorem corresponds to an infinite surface and the second
one to a compact surface. Both of them are proved in a similar fashion as it
was done for the asymptotics of the spectrum in [EJ13, EK03].
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Theorem 2.2.2. Let the infinite surface Γ satisfy the assumptions (a1)-(a4).
Then the operator −∆Γ,β has at least one isolated negative eigenvalue below
the threshold of the essential spectrum for all negative β with |β| small enough
and the j-th eigenvalue behaves in the limit β → 0− as

λj = − 4

β2
+ µj +O(β ln |β|) .

The proof is based on Dirichlet and Neumann bracketing. We estimate
our operator from above and below by operators with added either Dirichlet
or Neumann boundary condition at the boundary of Ωd. This can be written
as

−∆N
R3\Ωd ⊕H

−,d
β,Γ ≤ −∆Γ,β ≤ −∆D

R3\Ωd ⊕H
+,d
β,Γ

where −∆D
R3\Ωd is Dirichlet Laplacian on the set R3 \ Ωd and the operator

H+,d
β,Γ is associated with the following quadratic form

h+,d
β,Γ(ψ) = ‖∇ψ‖2

Ωd
+ β−1‖[ψ]Γ‖2

Γ

with the domain D(h+,d
β,Γ) = {ψ ∈ H1(Ωd \ Γ)|ψ(x)|∂Ωd = 0}. Due to the fact

that the Dirichlet and the Neumann Laplacian are positive, all the informa-
tion about the negative spectrum is encoded in the spectra of the operators
H±,dβ,Γ . The next step is to transform these operators into curvilinear coordi-
nates. First we use unitary transformation in the form

U [ψ(x, y)] = ψ(s1, s2, u) : L2(Ωd)→ L2(Dd, dΩ) .

The transformed operators UH±,dβ,ΓU
−1 are associated with the quadratic

forms

h̃±,dβ,Γ(ψ) = h±,dβ,Γ(U−1ψ) = (∂iψ,G
ij∂jψ)Dd,dΩ + β−1‖[ψ]Γ‖2

Γ

with the domains D(h̃−,dβ,Γ) = H1(Dd \ Γ, dΩ) and D(h̃+,d
β,Γ) = {ψ ∈ H1(Dd \

Γ, dΩ)|ψ(x)|∂Ωd = 0}. Next we switch from the metric dΩ to dΓdu. This can
be done by another unitary transformation [DEK01]

Ũψ =
√
ξψ(s1, s2, u) : L2(Dd, dΩ)→ L2((Dd, dΓdu)) .
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The transformed operators F±,dβ,Γ = ŨUH±,dβ,ΓU
−1Ũ−1 are associated with the

quadratic forms

ζ+,d
β,Γ (ψ) = (∂µψ,G

µν∂νψ)Dd,dΓdu + (ψ, (V1 + V2)ψ)Dd,dΓdu + ‖∂3ψ‖Dd,dΓdu

+
1

β
‖[ψ]Γ‖2

Γ −
∫

Γ

M(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)dΓ ,

ζ−,dβ,Γ (ψ) = ζ+,d
β,Γ (ψ) +

∫

Γ

ς(s, d)|ψ(s, d)|2dΓ−
∫

Γ

ς(s,−d)|ψ(s,−d)|2dΓ

where ς(s, u) = M−Ku
ξ

and curvature induced potentials are

V1 = g−
1
2 (g

1
2 gµνJ,µ),ν + J,µG

µνJ,ν ,

V2 =
K −M2

ξ2

with J = ln ξ
2

. The domains of the quadratic forms ζ±,dβ,Γ areD(ζ−,dβ,Γ ) = H1(Dd\
Γ, dΓdu) and D(ζ+,d

β,Γ ) = {ψ ∈ H1(Dd\Γ, dΓdu)|ψ(x)|∂Dd = 0}. The operators

F±,dβ,Γ are not yet suitable for our proof because they do not separate the
transverse and surface variables, hence we make a slightly cruder estimates.
We approximate the curvature induced potentials V1,2 using inequalities (2.5)
and (2.6) in the following way

c̃−d ≤ V1 ≤ c̃+d ,

K −M2

C2
−

≤ V2 ≤
K −M2

C2
+

where c̃± are appropriate constants, d < d0 < ρ, and C± are the same
constants as in (2.5). Now we are ready to introduce the cruder estimate
operators D±,dβ,Γ . Then the operators F±,dβ,Γ satisfy

U−,dβ,Γ ⊗ I +

∫ ⊕

Γ

T−,dβ,Γ (s)dΓ = D−,dβ,Γ ≤ F−,dβ,Γ ≤ −∆Γ,β

−∆Γ,β ≤ F+,d
β,Γ ≤ D+,d

β,Γ = U+,d
β,Γ ⊗ I +

∫ ⊕

Γ

T+,d
β,Γ (s)dΓ

(2.7)

where the operators T±,dβ,Γ (s) correspond to the transversal part and the op-

erators U±,dβ,Γ correspond to the motion on the surface Γ. The operators U±,dβ,Γ

act as

U±,dβ,Γψ = −C±∆Γψ +
K −M2

C±
+ c̃±d
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with the domains D(U±,dβ,Γ ) = L2(R2, dΓ). The operators T±,dβ,Γ (s) are explicitly

T±,dβ,Γ (s)ψ = −∆ψ

with the domains

D(T+,d
β,Γ (s)) =

{
f ∈ H2((−d, d) \ {0})

∣∣∣f(d) = f(−d) = 0,

f ′(0−) = f ′(0+) =
1

β
(f(0+)− f(0−)) +M(f(0+) + f(0−))

}

and

D(T−,dβ,Γ (s)) =
{
f ∈ H2((−d, d) \ {0})

∣∣∣∓ ‖M‖∞ + d‖K‖∞
C−

f(±d) = f ′(±d),

f ′(0−) = f ′(0+) =
1

β
(f(0+)− f(0−)) +M(f(0+) + f(0−))

}
.

The discrete spectrum of the operators U±,dβ,Γ was solved in [EK03] with the
following result.

Lemma 2.2.1. The eigenvalues µ±j (d) of the operators U±,dβ,Γ satisfy

µ±j (d) = µj + C±j d+O(d2) for d→ 0+ ,

where µj is the j-th eigenvalue of the operator SΓ and the constants C±j are
independent on d.

The spectrum of the operators T±,dβ,Γ (s) was discussed in [EJ13] and sum-
marized in Lemmata 2.1.2 and 2.1.3. We rephrase them to obtain the sym-
metric estimate from above and below.

Lemma 2.2.2. Let d
β
> 2 and β(‖M‖∞ + d‖K‖∞) < 1. Then the operators

T±,dβ,Γ (s) have exactly one negative eigenvalue denoted by t±(d, β) respectively.
For negative β with |β| small enough these eigenvalues satisfy

− 4

β2
− 16

β2
exp

(
4d

β

)
≤ t−(d, β) ≤ − 4

β2
≤ t+(d, β) ≤ − 4

β2
+

16

β2
exp

(
4d

β

)
.

Using the previous two Lemmata we are able to write down the discrete
spectrum of the operators D±,dβ,Γ as t±(d, β) +µ±j (d). Choosing d(β) = β ln |β|
we obtain the spectra of the operators D±,dβ,Γ explicitly as

t±(d(β), β) + µ±j (d(β)) = − 4

β2
+ µj +O(β ln |β|) .
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Using the min-max principle in combination with the inequalities (2.7) com-
pletes the proof of Theorem 2.2.2.

The next theorem describes the discrete spectrum for the situation of a
compact surface.

Theorem 2.2.3. Let the compact surface Γ satisfy the assumption (b). Then
the operator −∆Γ,β has at least one isolated negative eigenvalue below the
threshold of the essential spectrum for all β < 0 and the j-th eigenvalue
behaves in the limit β → 0− as

λj = − 4

β2
+ µj + (β ln |β|) .

The existence of the negative eigenvalue for all negative β can be done
by a variational argument as in [BEL13]. We take a test function ξΓ in the
form of the characteristic function of the volume enclosed in Γ. This gives
us an upper estimate of the ground state energy in the following form

λ0 ≤
hΓ
β(ξ)

‖ξΓ‖2
=

S

βV
< 0

where S is the area of the surface Γ, V is the enclosed volume by the surface
Γ and β is negative. The eigenvalue asymptotics is obtained in the same
fashion as for the infinite surface with only minor changes so we omit the
details.

2.3 Spectral asymptotics for δ′ interaction

supported by a infinite curve

In this section we describe the spectral asymptotics of the essential and dis-
crete spectrum for δ′ interaction supported by an infinite curve. We study
the strong coupling regime, where β → 0−. We show that for the situation of
asymptotically straight curves the essential spectrum remains at least asymp-
totically the same as for the case of the straight line. The first two terms
of the asymptotic expansion of the discrete spectrum in the strong coupling
limit are the following, the first one corresponds to δ′-interaction on the line
and the other one corresponds to the longitudinal variable around the curve.
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2.3.1 Formulation of Problem

The operator, which we are working with is associated with the quadratic
form (1.5), i.e.

hΓ
β(ψ) = ‖∇ψ‖2

R3 + β−1‖[ψ]Γ‖2
Γ .

The proof of the theorems requires to impose several additional conditions
onto the curve Γ:

(c1) Γ is C4 smooth,

(c2) Γ can be enclosed in a symmetric strip neighborhood of finite width
with no self-intersections,

(c3) Γ is asymptotically straight, i.e. curvature of the curve vanishes as the
distance from one fixed point tends to the infinity and

(c4) Γ is not a straight line.

The last assumption excludes the trivial case of a straight line because
its spectral problem can be solved exactly by separation of variables. We
parametrize the curve Γ by its arc length

Γ : R→ R2 : s→ (Γ1(s),Γ2(s)) .

We also need coordinates in the strip neighborhood Ωd = {x ∈ R2|dist(x,Γ) <
d}. We introduce curvelinear coordinates around the curve Γ as

(x, y) = (Γ1(s) + uΓ′2(s),Γ2(s)− uΓ′1(s)) .

Due to the conditions (c1) and (c2) there exists such a positive constant
ρ0 > 0 that the coordinates (s, u) are injective in the strip neighborhood of
thickness d < ρ0.

For the statement about the discrete spectrum we need an auxiliary op-
erator SΓ which acts as

SΓψ = −d
2ψ

ds2
− γ(s)2

4
ψ

with the domain D(SΓ) = H2(R) where γ(s) = (Γ′′1Γ′2 − Γ′1Γ′′2)(s) is a signed
curvature. We denote the eigenvalues of the operator SΓ by µj with the
multiplicity taken into the account. The main results of [J15] are presented
with sketches of the proofs in the following subsections. For complete proofs
we refer the reader to the mentioned paper.
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2.3.2 Behavior of Essential Spectrum

We start with the behavior of the essential spectrum.

Theorem 2.3.1. Let an infinite curve Γ satisfy conditions (c1)-(c3), then

σess(−∆Γ,β) = [ε(β),∞)

where ε(β)→ − 4
β2 holds for β → 0−.

The trivial case of a straight line can be solved by separation of variables.

We obtain that σess(−∆Γ,β) =
[
− 4
β2 ,∞

)
.

The proof for the non-trivial case is based on Neumann bracketing estimates
of the operator −∆Γ,β. The inclusion σess(−∆Γ,β) = [ε(β),∞) can be rewrit-
ten as

inf σess(−∆Γ,β) ≥ ε(β) .

We introduce the operator with added Neumann boundary condition at the
boundary of Ωd where d ≤ ρ. The new operator satisfies

−∆Γ,β ≥ −∆N
R2\Ωd ⊕H

N,d
β,Γ

where −∆N
R2\Ωd is the Neumann Laplacian on the set R2\Ωd and the operator

HN,d
β,Γ is associated with the form

hN,dβ,Γ (ψ) = ‖∇ψ‖2
Ωd

+ β−1‖[ψ]Γ‖2
Γ

with the domain D(hN,dβ,Γ ) = H1(Ωd \ Γ). The Neumann Laplacian is positive
and as a result all the information about the negative spectrum is encoded
in the operator HN,d

β,Γ . Using the previous inequality it is sufficient to check

inf σess(H
N,d
β,Γ ) ≥ ε(β). We rewrite the quadratic form hN,dβ,Γ to the unitarily

equivalent form in the curvilinear coordinates which can be done in the same
way as it was done in [EJ13]

Lemma 2.3.1. The quadratic form hN,dβ,Γ is unitarily equivalent to the quadratic
form

qN,dβ,Γ (ψ) =

∥∥∥∥
∂sψ

g

∥∥∥∥
2

Ωd

+ ‖∂uψ‖2
Ωd

+ (ψ, V ψ)Ωd

+β−1

∫

R
|ψ(s, 0+)− ψ(s, 0−)|2ds+

1

2

∫

R
γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

−
∫

R

γ(s)

2(1 + dγ(s))
|ψ(s, d)|2ds+

∫

R

γ(s)

2(1− dγ(s))
|ψ(s,−d)|2ds
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where the geometrically induced potential is

V (s, u) =
uγ′′

2g3
− 5(uγ′)2

4g4
− γ2

4g2

and g(s, u) = 1 + uγ(s) with the domain D(q−,dβ,Γ ) = H1(R× ((−d, d) \ {0})).

Next we divide the strip neighborhood into two parts. We take the curve
Γ and split it into two parts. We define them as Γintτ = {Γ(s)|S ≤ τ} and
Γextτ = Γ \Γintτ . The corresponding strip neighborhoods are Ωint

d,τ = {x(s, u) ∈
Ωd|s < τ} and Ωext

d,τ = Ωd \Ωint
d,τ . We introduce the operators Q

−,d,int/ext
β,Γ with

added Neumann boundary condition at the boundary of Ωint
d,τ and Ωext

d,τ . These
operators are associated with the following forms

q
N,d,int/ext
β,Γ,τ (ψ) =

∥∥∥∥
∂sψ

g

∥∥∥∥
2

Ω
int/ext
d,τ

+ ‖∂uψ‖2

Ω
int/ext
d,τ

+ (ψ, V ψ)
Ω
int/ext
d,τ

+β−1

∫

Γ
int/ext
τ

|ψ(s, 0+)− ψ(s, 0−)|2ds

+
1

2

∫

Γ
int/ext
τ

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

−
∫

Γ
int/ext
τ

γ(s)

2(1 + dγ(s))
|ψ(s, d)|2ds+

∫

Γ
int/ext
τ

γ(s)

2(1− dγ(s))
|ψ(s,−d)|2ds

with the domains D(q
N,d,int/ext
β,Γ,τ ) = H1(Ω

int/ext
d,τ ) respectively. Neumann brack-

eting implies
H−,dβ,Γ ≥ QN,d,int

β,Γ,τ ⊕QN,d,ext
β,Γ,τ .

The spectrum of the operator QN,d,int
β,Γ,τ is purely discrete. The min-max prin-

ciple implies that

inf σess(H
N,d
β,Γ ) ≥ inf σess(Q

N,d,ext
β,Γ,τ ) .

We denote the infimum of the potential as Vτ,d = inf |s|>τ,u∈(−d,d) V (s, u). The
assumption (c3) implies that

lim
τ→∞

Vτ,d = 0 .
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Now using the estimates derived in [EJ14] we can write

qN,d,extβ,Γ,τ (ψ) ≤ ‖∂uψ‖2
Ωextd,τ

+ Vτ,d ‖ψ‖2
Ωextd,τ

+β−1

∫

Γextτ

|ψ(s, 0+)− ψ(s, 0−)|2ds+
1

2

∫

Γextτ

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

−
∫

Γextτ

γ(s)

2(1 + dγ(s))
|ψ(s, d)|2ds+

∫

Γextτ

γ(s)

2(1− dγ(s))
|ψ(s,−d)|2ds

≤
(
Vτ,d −

4

β2
− 16

β2
exp

(
4d

β

))
‖ψ‖2

Ωextd,τ

where we omitted some positive terms in the first inequality. The fact that
we can choose τ arbitrarily large completes the proof.

2.3.3 Asymptotics of Discrete Spectrum

In this subsection we derive the behavior of the discrete spectrum for the
strong coupling limit.

Theorem 2.3.2. Let an infinite curve Γ satisfy assumptions (c1)-(c4), then
the operator −∆Γ,β has at least one isolated eigenvalue below the threshold
of the essential spectrum for all negative β with |β| small enough. The j-th
eigenvalue behaves in the strong coupling regime β → 0− as

λj = − 4

β2
+ µj +O(β ln |β|) .

The proof of this theorem is based on Dirichlet and Neumann bracketing.
We estimate our operator from above and from below in the following way

−∆N
R2\Ωd ⊕H

N,d
β,Γ ≤ −∆Γ,β ≤ ⊕−∆D

R2\Ωd ⊕H
D,d
β,Γ

where −∆D
R2\Ωd is Dirichlet Laplacian on the set R2 \ Ωd and the operator

HD,d
β,Γ is associated with the quadratic form

hD,dβ,Γ (ψ) = ‖∇ψ‖2
Ωd

+ β−1‖[ψ]Γ‖2
Γ

with the domain D(hD,dβ,Γ ) = {ψ ∈ H1(Ωd \ Γ)|ψ(x)|∂Ωd = 0}. All the in-

formation about the negative spectrum is encoded in the operators H
D/N,d
β,Γ

because Neumann and Dirichlet Laplacian are positive. The form hD,dβ,Γ can

be rewritten in the curvilinear coordinates similarly as the form hN,dβ,Γ .
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Lemma 2.3.2. The quadratic form hD,dβ,Γ is unitarily equivalent to the quad-
ratic form

qD,dβ,Γ (ψ) =

∥∥∥∥
∂sψ

g

∥∥∥∥
2

Ωd

+ ‖∂uψ‖2
Ωd

+ (ψ, V ψ)Ωd

+β−1

∫

R
|ψ(s, 0+)− ψ(s, 0−)|2ds+

1

2

∫

R
γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

where Ωd = R× {(−d, 0) ∪ (0, d)}, the geometrically induced potential is

V (s, u) =
uγ′′

2g3
− 5(uγ′)2

4g4
− γ2

4g2

and g(s, u) = 1 + uγ(s) with the domain D(q−,dβ,Γ ) = H1(Ωd \ Γ).

We also need cruder estimates. For this purpose we introduce the opera-
tors Q±,dβ,Γ which are associated with the forms q±,dβ,Γ and satisfy

Q−,dβ,Γ ≤ QN,d
β,Γ ≤ −∆Γ,β ≤ QD,d

β,Γ ≤ Q+,d
β,Γ .

These forms can be written as follows

q+,d
β,Γ (ψ) =

‖∂sψ‖2
Ωd

(1− dγ+)2
+ ‖∂uψ‖2

Ωd
+ (ψ, V +ψ)Ωd

+β−1

∫ L

0

|ψ(s, 0+)− ψ(s, 0−)|2ds+
1

2

∫ L

0

γ(d)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds ,

D(q+,d
β,Γ ) = D(qD,dβ,Γ )

where the estimating potential is V +(s) = d(γ′′)+

2(1−dγ+)3 − γ2

4(1+dγ+)2 with f+ =

maxx |f(x)| and

q−,dβ,Γ (ψ) =
‖∂sψ‖2

Ωd

(1 + dγ+)2
+ ‖∂uψ‖2

Ωd
+ (ψ, V −ψ)Ωd

+β−1

∫ L

0

|ψ(s, 0+)− ψ(s, 0−)|2ds− 1

2

∫ L

0

γ(s)(|ψ(s, 0+)|2 − |ψ(s, 0−)|2)ds

−γ+

∫ L

0

(|ψ(s, d)|2 + |ψ(s,−d)|2)ds ,

D(q−,dβ,Γ ) = H1(Ωd \ Γ)
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where V −(s) = − d(γ′′)+

2(1−dγ+)3 − 5(d(γ′)+)2

4(1−dγ+)4 − γ2

4(1−dγ+)2 . The operators Q±,dβ,Γ can be
rewritten as the sums of the operators in the following way

Q+,d
β,Γ = UΓ,d

+ ⊗ I +

∫ ⊕

R
T Γ,d
β,+(s)ds ,

Q−,dβ,Γ = UΓ,d
− ⊗ I +

∫ ⊕

R
T Γ,d
β,−(s)ds

(2.8)

where the operators corresponding to the transversal part are

T Γ,d
β,+(s)ψ(u) = −ψ′′(u) ,

D(T Γ,d
β,+(s)) =

{
ψ ∈ H2((−d, d) \ {0})

∣∣∣ψ(d) = ψ(−d) = 0,

ψ′(0−) = ψ′(0+) = β−1(ψ(0+)− β(0−)) +
γ(s)

2
(ψ(0+) + β(0−))

}
,

T Γ,a
β,−(s)ψ(u) = −ψ′′(u) ,

D(T Γ,d
β,−(s)) =

{
ψ ∈ H2((−d, d) \ {0})

∣∣∣∓ γ+ψ(±d) = ψ′(±d),

ψ′(0−) = ψ′(0+) = β−1(ψ(0+)− β(0−)) +
γ(s)

2
(ψ(0+) + β(0−))

}

and the operators describing the longitudinal part are

UΓ,d
+ ψ(s) = − ψ′′(s)

1− dγ+

+ V +(s)ψ(s) ,

D(UΓ,d
+ ) = H2(R) ,

UΓ,d
− ψ(s) = − ψ′′(s)

1 + dγ+

+ V −(s)ψ(s) ,

D(UΓ,d
− ) = H2(R) .

The spectrum of the operators T Γ,d
β,±(s) was already described in Lemma 2.2.2.

The spectrum of the operators UΓ,d
± can be derived step by step as done in

[EJ13].

Lemma 2.3.3. Let 0 < d < 1
2γ+

then there is a positive constant C indepen-
dent of d and j such that

|µ±j (d)− µj| ≤ Cdj2

holds for all j ∈ N where µ±j (d) are the eigenvalues of UΓ,d
± , respectively, with

the multiplicity taken into account.
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Now we put d(β) = 3
4
β ln(|β|). Using the explicit form of the opera-

tors Q
±,d(β)
β,Γ and previous Lemmata we obtain the discrete spectrum of the

operators Q
±,d(β)
β,Γ in the following form

λ±q,β = t±(d(β), β) + µ±j (d(β)) = − 4

β2
+ µj +O(β ln(|β|)) .

The proof is completed by using the inequality (2.8) and the min-max prin-
ciple.

2.4 On absence of bound states for weakly at-

tractive δ′-interactions supported on non-

closed curves in R2

In this section we study δ′-interaction supported by either a bound curve with
two free endpoints or an unbounded one with one free endpoint. We give the
description of the essential spectrum. We show that for a weak coupling, i.e.
β → −∞, there is no negative discrete eigenvalues below the threshold of
the essential spectrum. We also derive explicit sufficient condition on β for
the absence of the negative spectrum. The presented approach is applicable
also for a manifolds in higher dimensions. For the details of the reasoning in
this section including proofs we refer the reader to [JL16].

2.4.1 Formulation of Problem

We consider a piecewise-C1 curve Γ defined by the following injective map-
ping γ

γ(s) : I → R2 , γ(s) = (γ1(s), γ2(s)) , I = (0, L)

where L ∈ (0,∞] and γi are piecewise-C1. Moreover if |γ′(s)| = 1 for almost
all s, we say that γ is a natural parametrization of the curve Γ.

The operator −∆Γ,β, which we study, is associated with the quadratic
form (1.6), i.e.

hΓ
β(ψ) = ‖∇ψ‖2

R2 + (β−1[ψ]Γ, [ψ]Γ)Γ .
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where β−1 ∈ L∞(Γ) and [ψ]Γ = ψ|Γ+ − ψ|Γ− with ψ|Γ+ and ψ|Γ− denoting
traces of the functions at the boundary of Γ.

We also need to introduce the concept of monotone curves. We say that
the curve is monotone if it can be parametrized in the following way

γ(r) = x0 + (r cos(φ(r)), r sin(φ(r))) , x0 ∈ R2 , r ∈ (0, R) , R ∈ (0,∞]

where φ(r) is a piecewise-C1 mapping φ(r) : (0, R) → R. We can say that
these curves go away from the starting point.

2.4.2 Essential Spectrum

We define the quasi-conical domain in the standard way [G66]. We say that
a domain Ω ⊂ Rm is quasi-conical if for any n ∈ N there exists xn ∈ Rm such
that the disc Dn(xn) of radius n centered around xn is subset of Ω.

Theorem 2.4.1. Let the curve Γ be a non-closed and piecewise-C1 and let
R2 \ Γ be quasi-conical. Then the spectrum of the operator −∆Γ,β satisfies

σess(−∆Γ,β) ⊇ [0,∞) .

Theorem 2.4.2. Let the non-closed curve Γ be bounded. Then the spectrum
of the operator −∆Γ,β satisfies

σess(−∆Γ,β) = [0,∞) .

Proof of the first theorem can be done in the standard way using well
chosen series of the test functions in the same way as in [JL16]. The second
theorem is proved with the help of bracketing.

2.4.3 Positivity of Operator for Monotone Curves

We derive the sufficient condition under which the operator −∆Γ,β is positive.
The complete proof is presented in [JL16].

Theorem 2.4.3. Let a curve Γ ⊂ R2 be monotone piecewise-C1. Then

σ(−∆Γ,β) ⊆ R+ for β(r) ≤ −2πr
√

1 + (rφ′(r))2 , r ∈ (0, R) . (2.9)

Furthermore if R2 \ Γ is quasi-conical, then σ(−∆Γ,β) = R+.
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For the proof of this theorem we need to introduce the operator Td,β
describing one δ′-interaction with coupling constant β on a loop of length d.
This operator acts as free Laplacian on the interval

Td,β = −∆

with the domain D(Td,β) = {ψ ∈ H2((0, d))|ψ′(0+) = ψ′(d−), βψ′(0+) =
ψ(0+)− ψ(d−)}. The quadratic form corresponding to the operator Td,β is

td,β(ψ) = (∇ψ,∇, ψ) +
1

β
|ψ(0+)− ψ(d−)|2

with the domain D(td,β) = H1((0, d)). The next lemma is proved in [JL16]
and it gives the condition for the positivity of Td,β.

Lemma 2.4.1. Let β satisfy −1 ≤ d
β

. Then the operator Td,β and the
quadratic form td,β are non-negative.

With this result in mind we start rewriting and estimating the quadratic
form hΓ

β . We show that the form hΓ
β is positive for any function from its

core for β ≤ −2πr
√

1 + (rφ′(r))2. The gradient can be expressed in polar
coordinates as

|(∇u)(x, y)|2 = |(∂ru)(r, φ)|2 +
1

r2
|(∂φu)(r, φ)|2 .

The part of the form hΓ
β corresponding to the gradient can be estimated in

the following way

‖(∇u)(x, y)‖2
R2 =

∫

R+

∫

(0,2π)

|(∇u)(r, φ)|2r dr dφ

≥
∫

(0,R)

1

r

(∫

(0,2π)

|(∂φu)(r, φ)|2 dφ
)
dr

where we omitted positive term |(∂ru)(r, φ)|2 and R is the same as in (2.9).
Next using the estimate on β we rewrite the second term in the form hΓ

β as

(β−1[u]Γ, [u]Γ)Γ =

∫

Γ

β−1(s)|[u]Γ|2ds =
∫

(0,R)

β−1(r)|u+(r, φ(r))− u−(r, φ(r))|2
√

1 + (1 + rφ′(r))2dr

≤ −
∫

(0,R)

1

2πr
|u+(r, φ(r))− u−(r, φ(r))|2dr .
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We introduce the shorthand

S(r) =

∫

(0,2π)

|(∂φu)(r, φ)|2dφ− 1

2π
|u+(r, φ(r))− u−(r, φ(r))|2

where r ∈ (0, R). Due to the choice of u from the core of the form hΓ
β we

are able to identify the function u for fixed r with the piecewise-C1 function
ψr on the interval (0, 2π). Using this identity we obtain the relation S(r) =
t2π,−2π(ψr). Using Lemma 2.4.1 we obtain that S(r) ≥ 0 for all r ∈ (0, R).
Finally we arrive at

hΓ
β(u) ≥

∫

(0,R)

S(r)

r
dr ≥ 0

which completes the proof.

A direct consequence of the previous theorem for a constant coupling
parameter β is the following

Corollary 2.4.1. Let a monotone bounded piecewise-C1 curve Γ ⊂ R2 and
β∗(Γ) = infr∈(0,R)−2πr

√
1 + (rφ′(r))2. Then

σ(−∆Γ,β) = R+ for β ≤ β∗(Γ) .

2.4.4 Positivity of Operator-Generalization

Theorem 2.4.3 can be extended to curves, which can be obtain from monotone
curves via linear fractional transformations introduced in Section 1.3.

Theorem 2.4.4. Let Γ ⊂ R2 be a bounded piecewise-C1 curve. Suppose that
there exists a linear fractional transformation M such that M(∞),M−1(∞) /∈
Γ and curve M−1(Γ) is monotone. Then

σ(−∆Γ,β) = [0,∞)

for all β ≤ β∗(Γ) supz∈Γ

√
JM(z).

The proof is based on the transformation of the form hΓ
β via a linear frac-

tional transformation and careful analysis of the result. Next two Lemmata
were proved in [JL16]. They describe transformation of the form correspond-
ing to the operator −∆Γ,β.
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Lemma 2.4.2. Let Λ ⊂ R2 be a bounded Lipschitz curve, let the set Ω satisfy
Λ ⊂ Ω ⊂ R2 and let M be a conformal mapping with D(M) = Ω. Further-
more let the conformal mapping M satisfy M−1(∞) = ∅ or M−1(∞) /∈ Λ.
Then for any u ∈ H1(Ω \ Λ)

∫

Ω

|∇u|2dx =

∫

Ω

|∇v|2dx

holds with v = u ◦M .

Lemma 2.4.3. Let Λ ⊂ Ω ⊂ R2 be a bounded Lipschitz curve parametrized
by the mapping λ : (0, L) → R2 and let M be a conformal mapping with
D(M) = Ω. Furthermore let the conformal mapping M satisfy M−1(∞) = ∅
or M−1(∞) /∈ Λ and also β−1 ∈ L∞(Λ,R). Then for any u ∈ H1(Ω \ Λ)

(β−1[u]Λ, [u]Λ)Λ = (β̃−1[v]Γ, [v]Γ)Γ

holds with v = u ◦ M , Γ = M−1(Λ), γ = M−1 ◦ λ and β̃−1(γ(s)) =
β−1(λ(s))

√
JM(γ(s)), s ∈ (0, L).

Using Lemmata 2.4.2 and 2.4.3 we obtain

hΓ
β(ψ) = ‖∇u‖2

R2 + (β−1[u]Λ, [u]Λ)Λ = ‖∇v‖2
R2 + (β−1[u]Γ, [u]Γ)Γ

= ‖∇v‖2
DR

+ (β−1[u]Γ, [u]Γ)Γ + ‖∇v‖2
R2\DR ≥ ‖∇v‖

2
DR

+ (β−1[u]Γ, [u]Γ)Γ

where DR is a disc with the curve Γ starting at the center, ending at the
boundary and v = u ◦M . Using the same procedure as in the last part of
the proof for Theorem 2.4.3 gives us the desired result.

2.4.5 Examples

Let us present two examples given in [JL16]. The first one is an δ′-interaction
supported by a line segment and the second one by a circle arc.

Corollary 2.4.2. Let a curve Γ be a line segment of length L. Then the
operator −∆Γ,β has no negative eigenvalues if β ≤ −πL. Furthermore if
−2L

π
≤ β ≤ 0 then σd(−∆Γ,β) ∩ R− 6= ∅.

The absence of the negative spectrum for β ≤ −2πL is the direct result of
Theorem 2.4.3. This estimate can be improved in the following way. We write
the curve Γ as Γ = {(l, 0)|l ∈ (0, L)}. We take the operator −∆Γ,β and add
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Neumann boundary condition at the points on the circles centered around
the endpoints of the curve Γ with the diameter of L

2
. Adding Neumann

boundary condition splits the operator into 3 parts

−∆
N,DL

2
((0,0))

Γ,β ⊕−∆N
R2\[DL

2
((0,0))∪DL

2
((L,0))] ⊕−∆

N,DL
2

((L,0))

Γ,β .

The Neumann Laplacian −∆N
R2\[DL

2
((0,0))∪DL

2
((L,0))] is positive by definition.

It can be shown that the remaining two parts are positive in the same way
as it was done in the proof of Theorem 2.4.3. Using the Neumann bracketing
we obtain the desired result

−∆
N,DL

2
((0,0))

Γ,β ⊕−∆N
R2\[(DL

2
((0,0))∪DL

2
((L,0))] ⊕−∆

N,DL
2

((L,0))

Γ,β ≤ −∆Γ,β .

The existence of the negative spectrum can be done with help of Dirich-
let bracketing. We add Dirichlet boundary conditions at two lines L1 =
{(0, x)|x ∈ R} and L2 = {(L, x)|x ∈ R}. These lines split R2 into three sets

Ω1 = R− × R , Ω2 = (0, L)× R , Ω3 = (L,∞)× R .

The operator with added Dirichlet boundary can be written as an orthogonal
sum of three operators

−∆D
Ω1
⊕−∆D,Ω2

Γ,β ⊕−∆D
Ω3
.

Dirichlet Laplacians −∆D
Ω1

and −∆D
Ω3

are positive by definition and its spec-

tra are σ(−∆D
Ω1

) = σ(−∆D
Ω3

) = [0,∞). We show that the operator −∆D,Ω2

Γ,β

has at least one negative eigenvalue. We solve the spectral problem for the op-
erator −∆D,Ω2

Γ,β by separation of variables. It consists of two one-dimensional
operators. One is the Dirichlet Laplacian on the line segment of the length L
and the second one is a particle on the line with added δ′-interaction at the
point 0. In particular we obtain the lowest eigenvalue in the following form

λ1(−∆D,Ω2

Γ,β ) =
π2

L2
− 4

β2
.

The eigenvalue is negative for sufficiently small negative β, explicitly −2L
π
<

β < 0. Dirichlet bracketing completes the proof

−∆Γ,β ≤ −∆D
Ω1
⊕−∆D,Ω2

Γ,β ⊕−∆D
Ω3
.

The next example illustrates the use of the conformal maps for the situ-
ation of δ′-interaction supported by a circle arc.
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Corollary 2.4.3. Let a curve Γ be parametrized as

Γε{(R cosφ,R(1− sinφ))|φ ∈ (ε, 2π − ε)} , R ∈ R+.

Then the operator −∆Γε,β is positive if β ≤ − 8πR
tan ε

2
.

The proof of this corollary is based on Theorem 2.4.4. We consider linear
fractional transformation M(z) = 1

z
. One can check by direct calculation

that the transformed coordinates xM and yM and the Jacobian of the trans-
formation JM are

xM = <M(x+ iy) =
x

x2 + y2
,

yM = =M(x+ iy) = − y

x2 + y2
,

JM(x, y) =
1

(x2 + y2)2
.

The inverse of the mapping M is M−1 = 1
z
. By mapping the curve Γ we

obtain a line segment

Γ̃ = M−1(Γ) =

{(
x,− 1

2R

) ∣∣∣∣ |x| <
1

2R tan ε
2

}
.

The coupling parameter is transformed as β̃−1 = β−1
√
JM(x). Using The-

orem 2.4.4 we obtain that the operator −∆Γε,β has no negative eigenvalues
for

1

β
≤ −tan ε

2

8Rπ
.
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3. Unpublished Results

In this chapter we summarize various unpublished results. The first section
describes a toy model of two δ′-interaction on the line and on the circle.
The results from this toy model are used for the description of the spectral
asymptotics for δ′-interaction supported on a sharp angle. We also derive
the configuration with maximal ground state energy for 2n δ′-interactions
on a loop. The next section generalize the result of [JL16] using conformal
mapping from a unit disc to a different subset of C. In the last section we
prove that sufficiently weak δ′-interaction supported on non-closed compact
manifold has no negative discrete eigenvalues.

3.1 Spectrum of δ′-interaction on Sharp An-

gle

We are interested in the behavior of the spectrum for the system where the
δ′-interaction is supported by a line broken at a sharp angle. We study the
relation between the angle and the discrete spectrum. A similar problem
was studied for δ-interaction in [DR14], where the estimate on the number
of eigenvalues and eigenvalues itself were given with respect to the angle.
Cruder estimate on the number of eigenvalues for δ-interaction was also given
in [EN03].

3.1.1 Warmup: Two δ′ Interactions on Line

We start with the spectral asymptotics for the case of two merging δ′-
interactions on the line and we use these results later on. We consider the
operator

−∆β1,β2,dψ = −∆B,Y (3.1)
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where B = (β1, β2) and Y = (−d, d). The operator (3.1) is associated with
the quadratic form

qβ1,β2,d[ψ] = (∇ψ,∇ψ) + β−1
1 |ψ(−d+)− ψ(−d−)|2 + β−1

2 |ψ(d+)− ψ(d−)|2

with the domain H1(R\{−d, d}). We are interested in the spectral properties
for the limiting cases when d is either small or large. According to [AGHH05]
the essential spectrum of the operator (3.1) is σess(−∆β1,β2,d) = [0,∞) and
the discrete spectrum σdisc(−∆β1,β2,d) is composed from at most 2 negative
eigenvalues depending on the values of parameters β1, β2. The solution of
the eigenvalue equation

−∆β1,β2,dψ = −κ2ψ ,

where κ > 0, can be described by the secular equation in the form

∣∣∣∣
( 1

β1κ2 + 1
2κ

1
2κ

exp(−2κd)
1

2κ
exp(−2κd) 1

β2κ2 + 1
2κ

)∣∣∣∣ = 0 .

This is equivalent to the following equation

κ1,2 =
− 1
β1
− 1

β2
±
√(

1
β1

+ 1
β2

)2

− 4
β1β2

(1− exp(−4κd))

1− exp(−4κd)
.

For d→∞ we can simplify the previous expression by taking the first term
of the Taylor expansion with respect to exp(−4κd) as

κ1,2 = − 1

β1

− 1

β2

±
√(

1

β1

+
1

β2

)2

− 4

β1β2

=
1

β1

+
1

β2

±
∣∣∣∣

1

β1

+
1

β2

∣∣∣∣ . (3.2)

Depending on the sign of the parameters βi we obtain either two negative
eigenvalues, one negative eigenvalue or no negative eigenvalues due to the
fact, that the eigenvalues correspond to κ > 0. These solutions can be
written explicitly as

κ1,2 = − 2

β1,2

.

This corresponds to the ground state energy of one δ′ interaction on the line
with coupling constant βi. The situation for d → 0+ is more complicated.
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The right-hand side of equation (3.2) can be estimated by the first terms of
the Taylor expansion for small d as

κ1,2 =
A±
√
A2

4κd
+
A
√
A2 ± (A2 +B)

2
√
A2

+

(
A

3
±
√
A2

3
∓
√
A2B2

2A4

)
κd±

√
a2(A2B2 +B3)

A6
κ2d2

where we used the following shorthands A = − 1
β1
− 1

β2
and B = − 4

β1β2
. With-

out loss of generality we assume that β1 < β2. In general there are 4 possible
situations which are summarized in the following table:

Situation a) b) c) d)
A A > 0 A > 0 A < 0 A < 0
B B < 0 B > 0 B > 0 B < 0
β1 β1 < 0 β1 < 0 β1 < 0 β1 > 0
β2 β2 < 0 β2 > 0, |β1| < |β2| β2 > 0, |β1| > |β2| β2 > 0
|σdisc| 2 1 1 0

The eigenvalue asymptotics can be written for various situations as follows.

a) The spectrum for two attractive δ′-interactions consists of two discrete
eigenvalues:

E1 = − A
2d

+O(d−1/2) =
β1 + β2

2dβ1β2

+O(d−1/2) ,

E2 = − B2

4A2
+O(d) = − 4

(β1 + β2)2
+O(d) .

The first eigenvalue escapes to −∞ as d→ 0+ and the second one con-
verges to the eigenvalue of one attractive δ′ interaction with interaction
strength β1 + β2.

b) This situation corresponds to one attractive and one repulsive δ′-interaction
where attractive interaction is stronger in the sense of quadratic forms
1/|β1| > 1/|β2|. Such system has one eigenvalue

E = − A
2d

+O(d−1/2) =
β1 + β2

2dβ1β2

+O(d−1/2) .

The eigenvalue escapes to −∞ as d→ 0+ and disappears.
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c) This situation is again one attractive and one repulsive δ′ interaction but
now the repulsive one is stronger. This system has again one negative
eigenvalue which can be written as

E = − 4

(β1 + β2)2
+O(d) .

The eigenvalue − 4
(β1+β2)2 corresponds to eigenvalue of one attractive δ′

interaction β1 + β2.

d) For the case of two repulsive δ′-interactions there is no negative eigenval-
ues.

Next we show that by ”merging” two δ′-interactions with coupling con-
stants β1 and β2 we obtain one δ′-interaction with the coupling parameter
equal to β1 + β2. Furthermore we show that these operators converge in
the norm resolvent sense. The operator −∆0,β describing one δ′-interaction
localized at 0 was introduced by (1.1).

Theorem 3.1.1. The operator −∆β1,β2,d converges to −∆0,β1+β2 in the norm
resolvent sense for d→ 0+.

Proof. The form of the resolvents for the operators −∆β1,β2,d and −∆0,β1+β2

were given in Theorem 1.1.3. We need to show that the second term in the
resolvents converge to each other. This can be checked by direct calculation.
It is not hard to see that

lim
yj→0

G̃κ(x− yj) = G̃κ(x) .

From this follows that we need to calculate the following limit

lim
d→0

2∑

i,j=1

[Γβ1,β2,d(κ)]−1
i,j

and show that it is equal to 2(β1+β2)κ2

2+κ(β1+β2)
. Writing the inverse matrix explicitly

we get

[Γβ1,β2,d(κ)]−1
i,j =

1

det[Γβ1,β2,d(κ)]

(
[Γβ1,β2,d(κ)]2,2 −[Γβ1,β2,d(κ)]2,1
− [Γβ1,β2,d(κ)]1,2 [Γβ1,β2,d(κ)]1,1

)
=

1(
1

β1κ2 + 1
2κ

)(
1

β2κ2 + 1
2κ

)
− exp(−4κd)

4κ2

(
1

β2κ2 + 1
2κ
− exp(−2κd)

2κ

− exp(−2κd)
2κ

1
β1κ2 + 1

2κ

)
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Taking the limit d→ 0 we obtain

1(
1

β1κ2 + 1
2κ

)(
1

β2κ2 + 1
2κ

)
− 1

4κ2

( 1
β2κ2 + 1

2κ
− 1

2κ

− 1
2κ

1
β1κ2 + 1

2κ

)

=
1

1
β1κ2

1
β2κ2 + 1

2κ

(
1

β1κ2 + 1
β2κ2

)
( 1

β2κ2 + 1
2κ

− 1
2κ

− 1
2κ

1
β1κ2 + 1

2κ

)
.

And finally we sum the entries in the matrix and we obtain the desired
result.

3.1.2 Merging of 2 δ′-interactions on Loop

The study of two δ′-interaction gives us an idea how the merging of two inter-
actions work. As the next step we show that we encounter similar behavior
for two δ′-interactions on a loop. With the idea of attractive interaction on
an angle in mind we work only with two attractive δ′-interactions on a unit
circle. We note that the scaling of coupling parameter β can be rephrased
to the changing the length of the loop. We introduce the operator via a
quadratic form in the following way

cβ,θ = (∇ψ,∇ψ) + β|ψ(−θ+)− ψ(−θ−)|2 + β|ψ(θ+)− ψ(θ−)|2

with the domain H1((−π, π), ψ(−π) = ψ(π)). The operator associated with
this quadratic form can be written as

Cβ,θ = −∆ ,

D(Cβ,θ) = {ψ ∈ H2((−π, π) \ {θ, θ})|ψ(−π) = ψ(π), ψ′(−π) = ψ′(π),

ψ′(θ+) = ψ′(θ−) = β−1(ψ(θ+)− ψ(θ−)),

ψ′(−θ+) = ψ′(−θ−) = β−1(ψ(−θ+)− ψ(−θ−))} .
The next Lemma gives the estimate on the eigenvalues of the operator Cβ,θ.

Lemma 3.1.1. Let Cβ,θ be the operator describing two attractive δ′-inter-
actions on the unit circle and let −π < β < 0. Then the negative eigenvalues
can be in the limit θ → 0+ written as

λ1 =
1

θβ
,

λ2 = − 3(π + β)

θ3 + (π − θ)3
.
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Proof. The negative spectrum of the operator Cβ,θ is determined by the fol-
lowing secular equations

−κβ = coth(κ(π − θ)) + coth(κθ) , (3.3)

−κβ = tanh(κ(π − θ)) + tanh(κθ) . (3.4)

These equation are obtainable by a straightforward computation from bound-
ary conditions of δ′-interaction at either θ or −θ. For the later purposes we
need the limit cases for β → 0−,−∞ and θ → 0+. For both equations (3.3)
and (3.4) the situation corresponding to β → 0− leads in the limit to κ = − 2

β

as long as κθ � 1 which is equivalent to 2θ � −β. For equation (3.3) the
cases β → −∞ and θ → 0 can be treated simultaneously in the following
way due to the fact that β → −∞ corresponds to the weak coupling and as
a result we have 0 < κ� 1. For 0 < κθ � 1 we can estimate

−β =
coth(κ(π − θ)) + coth(κθ)

κ
≈ 1

θκ2
.

This can be rewritten as κ2 = − 1
θβ

. The condition for which the estimate

0 < κθ � 1 holds is
√
− θ
β
� 1.

The equation (3.4) has no solution for the case β → −∞ due to the fact
that

0 <
tanh(κ(π − θ)) + tanh(κθ)

κ
< π .

Also from the previous inequality we can see that our system has a second
negative eigenvalue only for −π < β < 0. For the case θ → 0+ we can
rewrite the expression (3.4) as

−βκ = tanh(κ(π − θ)) + tanh(κθ) ≈ κπ − (κθ)3

3
− (κ(π − θ))3

3
.

As a result we obtain κ2 = 3(π+β)
θ3+(π−θ)3 .

3.1.3 Spectral Asymptotics

We want to calculate the spectrum of the system where the δ′-interaction is
supported by a broken line Γ with the angle 2θ < π between the lines. The
operator can be defined by its quadratic form (1.5)

hβ,Γ(ψ) = (∇ψ,∇ψ)2
Rn + (β−1[ψ]Γ, [ψ]Γ)Γ
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with the domain H1(R2 \ Γ).

Theorem 3.1.2. Let Γ be a broken line with the angle 2θ < π. Then the
operator −∆Γ,β can be estimated from below by the operator −∆ +V (r) with
the domain H2(R+) where

V (r) =
1

4r2
+

1

rβθ
for r → 0+ ,

V (r) =
1

4r2
− 4

β2
for r →∞ .

Proof. Rewriting the quadratic form hβ,Γ in polar coordinates we obtain the
following

hβ,Γ(ψ) =

∫

R+×(−π,π)

r

(
|∂rψ|2 +

|∂ϕψ|2
r2

)
dr dϕ

+β−1
∑

φ=−θ,θ

∫

R+

|ψ(r, φ+)− ψ(r, φ−)|2 dr

with the domain H1(R× (−π, π), ψ(r,−π) = ψ(r, π), r dr dϕ). We transform
the quadratic form hβ,Γ using the unitary transformation ψ̃ = ψ√

r
as

h̃β,Γ(ψ) =

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

+
|∂ϕψ|2
r2

dr dϕ

+β−1
∑

φ=−θ,θ

∫

R+

1

r
|ψ(r, φ+)− ψ(r, φ−)|2 dr

with the domain H1(R× (−π, π), ψ(r,−π) = ψ(r, π), dr dϕ). This is equiva-
lent to the following form

h̃β,Γ(ψ) =

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

dr dϕ

+

∫

R+

1

r2

(∫ π

−π
|∂ϕψ|2 dϕ+ β−1

∑

φ=−θ,θ

∫

R+

1

r
|ψ(r, φ+)− ψ(r, φ−)|2

)
dr

=

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

dr dϕ+

∫

R+

1

r2
cβ
r
,θ(ψ) dr
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where cβ
r
,θ is a quadratic form describing 2 δ′-interactions localized on a unit

circle. We can estimate this quadratic form from below as

h̃β,Γ[ψ] ≥
∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

dr dϕ+

∫

R+

1

r2
inf
r
cβ
r
,θ(ψ) dr .

From the previous section we have that infr cβ
r
,θ(ψ) behaves for small r as r

βθ

and for the large r as −4r2

β2 . Using this we can estimate the spectrum using
an operator on the halfline with the potential

V (r) =
1

4r2
+

1

rβθ
for r → 0+ ,

V (r) =
1

4r2
− 4

β2
for r →∞ .

We note that the operator −∆ + 1
4r2 on the halfline is critical. Further-

more it can be checked by direct calculation that the essential spectrum for

the setting of δ′-interaction supported by a broken line is −∆Γ,β =
[
− 4
β
,∞
)

.

The operator by which we estimate acts as a free Laplacian with an added
Coulomb interaction. We can estimate the spectrum by the number of eigen-
values of such operator which are smaller than −4/β2.

3.2 Spectrum of δ′-interactions Supported by

Star Graph

We consider an operator describing δ′-interaction supported by a star graph.
We are interested in the setting with maximal infimum of the spectrum. For
this purpose we study a toy model of finite number of δ′-interactions on a
loop of the length d. We used this model later on for a special setting with
strength of δ′-interaction decaying as 1/r.

3.2.1 Even Number of δ′-interactions on Loop

We define an operator describing m δ′-interactions on the loop. We take
a metric graph composed of m edges connected by appropriate boundary
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conditions. At each edge our operator acts as a second derivative

Cd,βψk(x) = ψ′′k(x) for all x ∈ (0, dk), k ∈ m

where d = {dj}mj=1 are the lengths of the edges and ψk is the function on the
k-th edge. The domain of our operator is

D(Cd,β) = {ψ ∈
m⊕

j=1

H2((0, dj))|ψ′1(0+) = ψ′m(dm,−) =
1

β
ψ0(0+)− ψm(dm,−),

ψ′j(0+) = ψ′j−1(dj−1,−) =
1

β
ψj(0+)− ψj−1(dj−1,−) for (j − 1) ∈ m̂− 1} .

The boundary conditions can be rewritten in the matrix form as

AΓψ +BΓ′ψ = 0 ,

Γψ = {ψ1(0+), ψ1(d1,−), . . . , ψm(0+), ψm(dm,−)}T ,
Γ′ψ = {ψ′1(0+),−ψ′1(d1,−), . . . , ψ′m(0+),−ψ′m(dm,−)}T

where A,B are appropriate 2m × 2m matrices. The matrices A,B can be
expressed as

A =




1 0 . . . 0 −1

0 a 0
. . . 0

...
. . . . . . . . .

...

0
. . . 0 a 0

−1 0 . . . 0 1



,

B = −βI

where a =

(
1 −1
−1 1

)
and I is the identity matrix. According to [BL10] we

have Γ′ψκ = M(κ)Γψκ where ψκ is the eigenfunction of Cd,β corresponding
to the eigenvalue −κ2 and

M(κ) =




m1(κ) 0
. . .

0 mm(κ)


 ,

mi(κ) =
κ

sinh(κdi)

(
− cosh(κdi) 1

1 − cosh(κdi)

)
.
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Furthermore we have the following

−κ2 ∈ σp(Cd,β)⇔ 0 ∈ σ(A+M(κ)B) .

We denote X(d, κ) = A+M(κ)B. The ground state energy of the operator
Cd,β corresponds to the highest eigenvalue of the matrix Cd,β. In the following
lemma we treat the situation for even number of edges. We note that the
situation with odd number of edges is more complicated because the lowest
eigenvalue of the matrix X(d, κ) has no symmetry. This lack of symmetry
makes the proof used here inapplicable.

Lemma 3.2.1. Let Cd,β be an operator defined above with 2n edges and∑2n
i=1 di = L. The maximal value of the ground state energy of this operator

is obtained for the situation di = d = L/2n.

Proof. First we show that the eigenvector C0 = (−1,−1, 1, 1, ...,−1,−1, 1, 1)T

corresponds to the highest eigenvalue of the matrix X(d, κ) for the symmet-
ric case, i.e. all the edges with the same length d = di = dj. It is easy to
check by direct calculation that it is an eigenvector. We know the following

CT
0 X(d, κ)C0 = 4n+ 2

n∑

i=1

κβ coth(κdi) + 2
n∑

i=1

κβ sinh−1(κdi) .

We are interested in the value κ for which CT
0 X(d, κ)C0 = 0, i.e. 2 +

κβ coth(κd) − κβ sinh−1(κd) = 0. Now we calculate CTX(d, κ)C for a gen-
eral vector C and show that it is always nonpositive which implies that the
vector C0 corresponds to the highest eigenvalue of the matrix X(d, κ). Direct
calculation shows

CTX(d, κ)C = |c1 − c2n|2 +
n−1∑

i=1

|c2i − c2i+1|2

+
n∑

i=1

[−κβ coth(κd)(|c2
2i|+ |c2i−1|2)

−κβ sinh−1(κd)(|c2i + c2i−1|2 − |c2i|2 − |c2i−1|2)] .

We substitute −2 + κβ
sinh(κd)

= −κβ coth(κd) into the previous expression and

68



we obtain

CTX(d, κ)C = |c1 − c2n|2 +
n−1∑

i=1

|c2i − c2i+1|2

−2
2n∑

i=1

|ci|2 +
n∑

i=1

[−κβ sinh−1(κd)(|c2i + c2i−1|2 − 2|c2i|2 − 2|c2i−1|2)] .

One can check that |a + b|2 ≤ 2|a|2 + 2|b|2 for arbitrary a, b and as a direct
result we obtain CTX(d, κ)C ≤ 0.
Now we will show that CT

0 X(d, κ)C0 ≤ CT
0 X(d′, κ)C0 for any positive vectors

d′ and that the equality holds only for d = d′. We take CT
0 X(d, κ)C0 as a

function of di and we find the minimum with the help of Lagrange multipliers
with the condition

∑n
i=1 di = L. We obtain the following equations for the

di

∂di

(
CT

0 X(d, κ)C0 − λ
(

2n∑

i=1

di − L
))

= 0,
2n∑

i=1

di − L = 0 .

These equations are equivalent to

λ = −2κ2β
1− cosh(κdi)

sinh2(κdi)
,

2n∑

i=1

di − L = 0 .

The functions 1−cosh(κdi)

sinh2(κdi)
are monotonous with respect to di which along with

the latter implies that the minimum is obtained for di = L
2n

.

3.2.2 Optimal Geometry for Maximum of Spectrum

For the special situation of a star graph with even number of edges with de-
caying δ′-interaction we are able to show that the maximum of the spectrum
is obtained for the symmetric case.

Theorem 3.2.1. Let Γ be a star graph with 2n edges and let the β(r) = −C
r

with C ∈ R+ and r being the distance from the center of the star graph Γ.
Let θi denote the angle between the edge i-th and i + 1-th of the star graph
Γ. Then the maximum of the discrete spectrum maxθi

{
inf
[
σd
(
−∆Γ,β(r)

)]}

is obtained for θi = π
n

for all i ∈ 2̂n.
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Proof. We start by rewriting the form (1.5) in polar coordinates in the same
way as in the previous section

h̃Γ
β(ψ) =

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

+
|∂ϕψ|2
r2

dr dϕ

+
∑

φ=θi

∫

R+

1

β(r)r
|ψ(r, φi,+)− ψ(r, φi,−)|2 dr

with the domain H1(R× (−π, π), ψ(r,−π) = ψ(r, π), dr dϕ). This is equiva-
lent to the following form

h̃β,Γ(ψ) =

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

dr dϕ

+

∫

R+

1

r2

(∫ π

−π
|∂ϕψ|2 dϕ+

∑

φ=θi

∫

R+

1

C
|ψ(r, φi,+)− ψ(r, φi,−)|2

)
dr

=

∫

R+×(−π,π)

|∂rψ|2 +
|ψ|2
4r2

dr dϕ+

∫

R+

1

r2
cθ,β(ψ) dr

where we used shorthand cθ,β with θ = {θi|i ∈ 2̂n} for the quadratic form
corresponding to the operator Cθ,β. Using Lemma 3.2.1 we obtain that the

effective potential in the form h̃β,Γ has a maximum for θi = π
n

for all i ∈ 2̂n
which completes the proof.

3.3 Conformal Maps of Unit Disc

In this section we present one possible generalization of the result presented
in [JL16]. We are able to generalize Theorem 2.4.4 using conformal maps
from the unit disc to a general subset of C. In this way we are able to cover
a much larger set of curves because limiting oneself to linear fractional trans-
formations is quite restrictive. Using Riemann mapping theorem we are able
to map the unit disc to any subset of C. The only question which remains
to solve is how precisely the interior of the disc is mapped.

We consider curves Γ satisfying the following conditions:

(cm1) Γ is a compact piecewise C1 smooth curve,
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(cm2) Γ is obtainable by a conformal mapping M from a curve Γ̃. The
conformal map M transforms the unit disc D to a different subset of
C. Furthermore the preimage Γ̃ of the curve Γ is a monotone curve
parametrized as

Γ̃(r) = (r cosφ(r), r sinφ(r)) for r ∈ (0, 1)

with the endpoints at the boundary of the unit disc D and the center
of the disc D.

Theorem 3.3.1. Let the curve Γ ⊂ R2 satisfy (cm1) and (cm2). Then

σ(−∆Γ,β) = [0,∞)

for all β(z) ≤ −2πr
√

1 + (rφ′(r))2
√
JM(z) where r is related to Γ̃.

Proof. We start with the operator defined on the unit disc D as

−∆Γ̃,β̃,D = −∆ ,

D(−∆Γ̃,β̃,D) = {ψ ∈ H2(D \ Γ̃)|
∂Γ+ψ|Γ+ = −∂Γ−ψ|Γ−, β̃∂Γ+ψ|Γ+ = ψ|Γ+ − ψ|Γ−} .

Using the same technique as in the proof of Theorem 2.4.3 we obtain that
there is no negative eigenvalues of the operator −∆Γ̃,β̃,D as long as β̃(r) ≤
−2πr

√
1 + (rφ′(r))2. Now using the conformal mapping M we rewrite the

the quadratic form hΓ̃,β̃,D associated with the operator −∆Γ̃,β̃,D as

hΓ̃,β̃,D(ψ) = (∇u,∇u)2
D + (β̃−1[u]Γ̃, [u]Γ̃)Γ̃ ,

hΓ,β,M(D)(ψ) = (∇v,∇v)2
M(D) + (β−1[u]Γ, [u]Γ)Γ

where β̃−1 = β−1
√
JM(z). We denote the operator associated with the

quadratic form hΓ,β,M(D) as −∆Γ,β,M(D). We introduce a new operator de-
fined as a direct sum of the operator −∆Γ,β,M(D) and Neumann Laplacian
−∆N

R2\M(D) on a set R2 \M(D). Both of these operators are positive and
its sum corresponds to the operator −∆Γ,β with added Neumann boundary
condition at the boundary of M(D). Using Neumann bracketing

0 ≤ −∆Γ,β,M(D) ⊕−∆N
R2\M(D) ≤ −∆Γ,β

we complete the proof.
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3.4 Absence of Negative Eigenvalues for Non-

closed Hypersurface

In this section we prove that for a sufficiently small coupling δ′-interaction
supported by a non-closed compact manifold has no negative discrete eigen-
values. The result is similar to one presented in Theorem 3.3.1 and 2.4.4,
where it was proved for a certain class of curves with the estimate on the cou-
pling strength. The advantage of the following theorem is, that it works for
any non-closed compact manifold; the price we pay is that we do not obtain
a quantitative estimate. The idea of the proof was suggested by Monique
Dauge [D16].

We consider the operator −∆Λ,β associated with the quadratic form (1.6),
i.e.

hΛ
β (ψ) = (∇ψ,∇ψ)2

Rn +
(
β−1[ψ]Λ, [ψ]Λ

)
Λ

where β−1(x) ∈ L∞(Λ,R) with the domain H1(Rn \ Λ).

Theorem 3.4.1. Let Λ be a non-closed compact Lipschitz manifold of the
codimension 1. Then there exists β0 such that the operator −∆Λ,β is positive
as long as β < β0. Furthermore the spectrum is σ(−∆Λ,β) = σess(−∆Λ,β) =
R+.

Proof. The proof of the fact σess(−∆Λ,β) ⊂ R+ can be done in the same way
as in [JL16]. We show that the operator −∆Λ,β is non-negative. First we
take a subset B ⊂ Rn such that Λ ⊂ B and B \Λ is connected. We introduce
a new operator with the added Neumann boundary condition. This operator
can be written as a direct sum of Neumann Laplacian −∆N

Rn\B on a set Rn\B
and the operator −∆B

Λ,β associated with the following form

hΛ,B
β (ψ) = (∇ψ,∇ψ)2

B +
(
β−1[ψ]Λ, [ψ]Λ

)
Λ

with the domain H1(B \ Λ). Using Neumann bracketing we obtain, in the
sense of ordering forms,

−∆N
Rn\B ⊕−∆B

Λ,β ≤ −∆Λ,β .

The Neumann Laplacian is positive and as a result it is sufficient to check
that the operator −∆B

Λ,β is positive. We show that the form hΛ,B
β is positive
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for sufficiently large negative β. We use the inequality

0 ≤ ‖[ψ]Λ‖2
Λ ≤ ‖ψ|Λ+‖2

Λ + ‖ψ|Λ−‖2
Λ ≤ C̃(‖∇ψ‖2

B + ‖ψ‖2
B) , (3.5)

which is a direct result of [GM08, Lemma 2.5]. We introduce the notation
ψ =

∫
B\Λ ψ(x)dx for the average of the function ψ. Direct calculation shows

that

[ψ − ψ]Λ = [ψ]Λ ,

∇(ψ − ψ) = ∇ψ .

Now we estimate the norm ‖ψ − ψ‖2
B in the following way

λN2 ‖ψ − ψ‖2
B ≤ ‖∇(ψ − ψ)‖2

B

where λNj denotes j-th eigenvalue including the multiplicity of Neumann
Laplacian on set B\Λ. The previous inequality holds due to the fact that the
constant function is the eigenfunction corresponding to the lowest eigenvalue
of the Neumann Laplacian and ψ − ψ is an orthogonal projection of the
function ψ with respect to the ground state of the Neumann Laplacian. Now
we rewrite the inequality (3.5) for the function ψ − ψ as follows

‖[ψ]Λ‖2
Λ = ‖[ψ − ψ]Λ‖2

Λ ≤ C̃(‖∇(ψ − ψ)‖2
B + ‖ψ − ψ‖2

B) ,

≤ C̃

(
‖∇(ψ − ψ)‖2

B +
‖∇(ψ − ψ)‖2

B

λN2

)
≤ C̃

(
1 +

1

λN2

)
‖∇ψ‖2

B .

These inequalities imply that

‖[ψ]Λ‖2
Λ ≤ −β‖∇ψ‖2

B

holds for −β ≥ C̃
(

1 + 1
λN2

)
. Rewriting the latter we obtain

0 ≤ ‖∇ψ‖2
B +

1

β
‖[ψ]Λ‖2

Λ

which completes the proof.
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Summary

In this thesis we studied spectral properties of Schrödinger operators de-
scribing δ′-interactions supported by curves and surfaces. The results can
be divided into two main groups. One is concerned with the strong coupling
limit asymptotics of the spectrum and the second one with the absence of the
discrete spectrum for δ′-interaction supported by a non-closed hypersurfaces.
The first terms in the asymptotic expansion for the discrete eigenvalues in a
strong coupling limit can be written as

λj = − 4

β2
+ µj +O(β ln |β|)

where β−1 corresponds to the interaction strength and µj depends on the
geometry of the interaction support. The essential spectrum is either positive
real line axis

σess(HΓ,β) = [0,∞)

for the case of a compact manifold Γ and for an infinite manifold Γ with
a sufficiently fast decaying interaction. For the case of a constant coupling
strength and an infinite manifold which is asymptotically flat the essential
spectrum behaves as

σess(HΓ,β) = [ε,∞) .

where ε→ − 4
β2 . The most interesting property of the spectrum studied and

proved in this work is the absence of the negative spectrum for sufficiently
weak δ′-interaction supported by a non-closed manifold. Such behavior was
previously unknown for attractive potential in R2. We can rephrase the result
in a way that there exists a critical value β∗ such that for any β ≤ β∗ the
discrete spectrum is empty. If we consider a curve we can show that bending
the curve results in the effective decrease of the value of β∗.
There are several open questions to be addressed. Among them we can list
the optimization of the support shape with respect to the discrete spectrum
or the challenging question of determining the precise value of β∗ for a general
non-closed manifold.

74



Bibliography

[AGHH05] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solv-
able Models in Quantum Mechanics, 2nd edition with an appendix by
P. Exner, AMS Chelsea Publishing, Providence, R.I., 2005.

[AGS87] J.P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of
sphere interactions in quantum mechanics, J. Phys. A 20 (1987), 3687-
3712.

[AN00] S. Albeverio, L. Nizhnik: Approximation of general zero-range po-
tentials, Ukrainian Math. J. 52 (2000), 582-589.
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Abstract
We consider a generalized Schrödinger operator in L2(R2) with an attractive
strongly singular interaction of δ′ type characterized by the coupling parameter
β > 0 and supported by a C4 smooth closed curve � of length L without self-
intersections. It is shown that in the strong-coupling limit, β → 0+, the number
of eigenvalues behaves as 2L

πβ
+O(| ln β|), and furthermore, that the asymptotic

behavior of the jth eigenvalue in the same limit is − 4
β2 + μ j + O(β| ln β|),

where μ j is the jth eigenvalue of the Schrödinger operator on L2(0, L) with
periodic boundary conditions and the potential − 1

4γ 2, where γ is the signed
curvature of �.

PACS numbers: 03.65.Db, 03.65.Ge
Mathematics Subject Classification: 81Q10, 35J10, 35P15

1. Introduction

Schrödinger operators with singular interactions supported by manifolds of a lower dimension
have been studied for several decades beginning with the early works [Ku78, BT92]. In recent
years they have attracted attention as a model of a quantum particle confined to sets of nontrivial
geometry and a possible alternative to usual quantum graphs [BK13], having two advantages
over the latter. The first is that they lack the abundance of free parameters associated with the
vertex coupling. The second, perhaps physically more important, is that the confinement is not
strict and certain tunneling between parts of the graph is allowed. One usually speaks about
‘leaky’ quantum graphs and describes them using Hamiltonians which can be formally written
as −� − αδ(· − �), α > 0, where � is the support of the attractive singular interaction. A
discussion of such operators and a survey of their properties can be found in [Ex08].

One can think of the singular interaction as a δ potential in the direction perpendicular to �,
at least at the points where the manifold supporting the interaction is smooth. If the codimension

1751-8113/13/345201+12$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1
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of � is one, however, there are other singular interactions which can be considered, a prime
example being the one coming from the one-dimensional δ′ interaction [AGH05], that is,
operators which can be formally written as

H = −� − β−1δ′(· − �).

The formal expression has to be taken with a substantial pinch of salt, of course,
because in contrast to the δ interaction, which can be approximated by naturally scaled
regular potentials, the problem of approximating δ′ is considerably more complicated4—see
[Še86, CS98, ENZ01] and also [CAZ03+, GH10]. What is important for our present purpose,
however, is that irrespective of the meaning of such an interaction, there is a mathematically
sound way of defining the above operator through boundary conditions, and moreover, one
can also specify it using the associated quadratic form [BLL13].

Apart from the definition, one is naturally interested in spectral properties of such
operators, in particular, in relation to the geometry of �. In the case of the δ-type singular
interaction, we know, for instance, that � in the form of a broken or bent line gives rise to a
nontrivial discrete spectrum [EI01] and a similar result can also be proven for the δ′ interaction
[BEL13]. In this paper we want to demonstrate another manifestation of the relation between
eigenvalues of H and the shape of �. It is inspired by [EY02] in which it was shown how the
eigenvalues coming from a δ interaction supported by a C4 Jordan curve � behave in the strong-
coupling regime, α → ∞, namely, that after a renormalization consisting of subtracting the
�-independent divergent term they are in the leading order given by the respective eigenvalue
of a one-dimensional Schrödinger operator with a potential determined by the curvature of �.

Here we are going to show that in the δ′ case, where the strong-coupling limit is β → 0+,
we have an analogous result, namely that the asymptotic expansion of the eigenvalues starts
from a �-independent divergent term followed by the appropriate eigenvalues of a one-
dimensional Schrödinger operator, the same as in the δ case. We will also be able to derive an
asymptotic expression for the number of eigenvalues dominated by a natural Weyl-type term.
In the next section we state the problem properly and formulate the indicated results; the next
two sections are devoted to the proofs. The technique is similar to that of [EY02], however, the
argument is slightly more complicated because the present form of the associated quadratic
form does not allow one to estimate the operator in question using operators with separated
variables. In conclusion, we shall comment briefly on possible extensions of the results.

2. Formulation of the problem and main results

We consider a closed curve � without self-intersections identified with the graph of

� : [0, L] → R2, s �→ (�1(s), �2(s)),

with the component functions �1, �2 ∈ C4(R). We assume conventionally that the curve is
parameterized by its arc length, in other words, �′2

1 + �′2
2 = 1. The operator we are interested

in acts as the Laplacian outside the interaction support,

(Hβψ)(x) = −(�ψ)(x)

for x ∈ R2 \ �, and its domain is D(Hβ ) = {ψ ∈ H2(R2 \ �) | ∂n�
ψ(x) = ∂−n�

ψ(x) =
ψ ′(x)|�, −βψ ′(x)|� = ψ(x)|∂+� −ψ(x)|∂−�}, where n� is normal to �, which for definiteness

4 It is important to bear in mind that δ′ is not approximated by squeezed potentials of zero mean [CAZ03+, GH10]
which illustrates that the name, invented originally by Grossmann, Høegh-Krohn, and Mebhkhout, is unfortunate and
can lead a reader unfamiliar with the concept to false conclusions. Some authors proposed alternative terms, see e.g.
[CS99], but the name stuck and we shall use it, keeping in mind that δ′ is not a distributional potential.
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is supposed to be the outer one, and ψ(x)|∂±� are the traces of the function ψ in the regions
separated by the curve. The quadratic form associated with this operator is well known [BLL13,
proposition 3.15]; it is bounded from below for any β > 0. In order to write it, we employ
the locally orthogonal curvilinear coordinates (s, u) in the vicinity of the curve introduced in
relation (3.1) below. With an abuse of notation we write the value of a function ψ ∈ H1(R2\�)

as ψ(s, u); then we have

hβ[ψ] = ‖∇ψ‖2 − β−1
∫

�

|ψ(s, 0+) − ψ(s, 0−)|2 ds.

To state our main theorem we introduce the following operator:

S = − ∂2

∂s2
− 1

4
γ (s)2, (2.1)

where γ denotes the signed curvature of the loop, γ (s) := (�′′
1�′

2 − �′
1�

′′
2 )(s). The domain of

this operator is D(S) = {ψ ∈ H2(0, L) | ψ(0) = ψ(L), ψ ′(0) = ψ ′(L)}. We denote by μ j

the jth eigenvalue of S with the multiplicity taken into account.

Theorem 2.1. One has σess(Hβ ) = [0,∞) and to any n ∈ N there is a βn > 0 such that

#σdisc(Hβ ) � n holds for β ∈ (0, βn).

For any such β we denote by λ j(β) the jth eigenvalue of Hβ , again counted with its multiplicity.
Then the asymptotic expansions

λ j(β) = − 4

β2
+ μ j + O(β| ln β|), j = 1, . . . , n,

are valid in the limit β → 0+. The error term here depends on j and the eigenvalues of the
two operators are numbered in ascending order.

Theorem 2.2. The counting function β �→ #σdisc(Hβ ) admits the asymptotic expansion

#σdisc(Hβ ) = 2L

πβ
+ O(| ln β|) as β → 0+.

3. Proof of theorem 2.1

The essential spectrum of Hβ is found in [BLL13, theorem 3.16]. To prove the claim about
the discrete one we first need a few auxiliary results. To begin with, we introduce locally
orthogonal curvilinear coordinates s and u which allow us to write points (x1, x2) in the
vicinity of the curve as

(x1, x2) = (�1(s) − u�′
2(s), �2(s) + u�′

1(s)). (3.1)

Since � is supposed to be a C4 smooth closed Jordan curve, it is not difficult to establish that
the map (3.1) is injective for all u small enough; for a detailed proof see [EY02].

We choose a strip neighborhood a := {x ∈ R2 : dist (x, �) < a} of � with the half-
width a small enough to ensure the injectivity of (3.1) on a, and use bracketing to get a
two-sided estimate of the operator Hβ by imposing the Dirichlet and Neumann conditions at
the boundary of a, i.e.

HN (β) � Hβ � HD(β), (3.2)

where both the estimating operators correspond to the same differential expression and
D(HN (β)) = {ψ ∈ D(Hβ ) | ∂u+ψ(s, a) = ∂u−ψ(s,−a) = 0}, while the other is
D(HD(β)) = {ψ ∈ D(Hβ ) | ψ(s, a) = ψ(s,−a) = 0}. The operators HD(β) and HN (β) are
obviously direct sums of operators corresponding to the parts of the plane separated by the

3
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boundary conditions, and since their parts referring to R2 \ a are positive, we can neglect
them when considering the discrete spectrum. The parts of HN (β) and HD(β) referring to the
strip a are associated with the following quadratic forms,

hN,β [ f ] = ‖∇ f ‖2 − β−1
∫

�

| f (s, 0+) − f (s, 0−)|2 ds,

hD,β [ f ] = ‖∇ f ‖2 − β−1
∫

�

| f (s, 0+) − f (s, 0−)|2 ds,

respectively, the former being defined on H1(a \ �), the latter on H̃1
0 (a \ �) understood as

a set of functions which are locally H1 and vanish at the boundary of a. Our first task is to
rewrite these forms in terms of the curvilinear coordinates s and u.

Lemma 3.1. Quadratic forms hN,β , hD,β are unitarily equivalent to quadratic forms qN,β and
qD,β which can be written as

qD[ f ] =
∥∥∥∂s f

g

∥∥∥2
+ ‖∂u f ‖2 + ( f ,V f ) − β−1

∫ L

0
| f (s, 0+) − f (s, 0−)|2 ds

+ 1

2

∫ L

0
γ (s)

(| f (s, 0+)|2 − | f (s, 0−)|2) ds

qN[ f ] = qD[ f ] −
∫ L

0

γ (s)

2(1 + aγ (s))
| f (s, a)|2 ds +

∫ L

0

γ (s)

2(1 − aγ (s))
| f (s,−a)|2 ds

defined on H̃1
0 ((0, L) × ((−a, 0) ∪ (0, a))) and H1((0, L) × ((−a, 0) ∪ (0, a))), respectively,

with periodic boundary conditions in the variable s. The geometrically induced potential in
these formulæ is given by V = uγ ′′

2g3 − 5(uγ ′ )2

4g4 − γ 2

4g2 with g(s, u) := 1 + uγ (s), and we employ

here the conventional shorthands, ∂s = ∂
∂s etc.

Proof. We express ∂s and ∂u as linear combinations of ∂x1 and ∂x2 with the coefficients
∂sx1 = �′

1 − u�′′
2 , ∂sx2 = �′

2 + u�′′
1 , ∂ux1 = �′

2, and ∂ux2 = −�′
1. Working out the inverse

coordinate transformation we get

∂x1 = g−1(−�′
1∂s − (�′

2 + u�′′
1 )∂u), ∂x2 = g−1(−�′

2∂s + (�′
1 − u�′′

2 )∂u),

where g = (�′
1 − u�′′

2 )�′
1 + (�′

2 + u�′′
1 )�′

2 = 1 + uγ because �′2
1 + �′2

2 = 1 holds by
assumption. The last relation gives �′

1�
′′
1 + �′

2�
′′
2 = 0 which in turn implies γ 2 = �′′2

1 + �′′2
2 .

Using these identities we can check by a direct computation [EŠ89] that

q j,β [U f ] = h j,β [ f ]

where (U f )(s, u) := √
1 + uγ (s) f (x1(s, u), x2(s, u)) holds for j = D, N and all functions

f ∈ D(h j,β ), which proves the claim. �
The forms qN,β and qD,β are still not easy to handle and we are going to replace the

estimate (3.2) by a cruder one in terms of the following forms associated with operators. As
for the upper bound, we introduce the quadratic form q+

a,β acting as

q+
a,β [ f ] = ‖∂u f ‖2 + (1 − a‖γ ‖∞)−2‖∂s f ‖2 + ( f ,V (+) f )

−β−1
∫ L

0
| f (s, 0+)− f (s, 0−)|2 ds + 1

2

∫ L

0
γ (s)(| f (s, 0+)|2−| f (s, 0−)|2) ds,

where V (+) := aγ ′′
+

2(1−a‖γ ‖∞ )3 − γ 2

4(1+a‖γ ‖∞ )2 with γ ′′
+ := (γ ′′)+ and the positive (negative) part

given by the standard convention, f± := 1
2 (| f | ± f ); we have neglected here the non-positive

term − 5
4 (uγ ′)2g−4. In contrast to the argument used in the δ interaction case [EY02] the
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operator Q+
a,β associated with this form does not have separated variables, however, one can

write it as Q+
a,β = U+

a ⊗ I + ∫ ⊕
[0,L)

T +
a,β (s) ds and we are going to show that the spectrum of the

second part associated with the form

t+a,β (s)[ f ] := ‖ f ′‖2 − 1

β
| f (0+) − f (0−)|2 + 1

2
γ (s)(| f (s, 0+)|2−| f (s, 0−)|2)

is independent of s. The operator itself acts as T +
a,β (s) f = − f ′′ with the domain

D(T +
a,β (s)) = { f ∈ H2((−a, a) \ {0}) | f (a) = f (−a) = 0,

f ′(0−) = f ′(0+) = −β−1( f (0+) − f (0−)) + 1
2γ (s)( f (0+) + f (0−))}.

Lemma 3.2. The operator T +
a,β (s) has exactly one negative eigenvalue t+ = −κ2

+ provided
a
β

> 2 which is independent of s and such that

κ+ = 2

β
− 4

β
e−4a/β + O(β−1 e−8a/β ) holds as β → 0.

Proof. An eigenfunction corresponding to the eigenvalue −κ2 and obeying the conditions
f (±a) = 0 and f ′(0−) = f ′(0+) is, up to a multiplicative constant, equal to sinh(κ(x ∓ a))

for ±x ∈ (0, a). The function is odd, hence f (0−) = − f (0+) and the s-dependent term does
not influence the eigenvalue; the spectral condition is easily seen to be

κ = 2

β
tanh(κa). (3.3)

We are interested in the asymptotic behavior of the solution as β → 0+. Let us rewrite the
condition as β = 2

κ
tanh(κa); since the right-hand side is monotonous as a function of κ > 0

it is clear that there is at most one eigenvalue and that this happens if β < 2a. Furthermore,
the right-hand side is less that 2

κ
which means that κ < 2β−1 and the inequality turns to an

equality as β → 0 and κ → ∞. Next we employ the Taylor expansion

2

β
tanh(κa) = 2

β
(1 − 2 e−2κa + 2 e−4κa + O(e−6κa)),

and since κ → 2
β

as β → 0, relation (3.3) yields the sought result. �

Next we estimate in a similar fashion the operator with the Neumann boundary condition
which we need to get a lower bound. To this aim we employ the quadratic form q−

a,β , defined
as

q−
a,β [ f ] = ‖∂u f ‖2 + (1 + a‖γ ‖∞)−2‖∂s f ‖2 + ( f ,V (−) f )

−β−1
∫ L

0
| f (s, 0+) − f (s, 0−)|2 ds − 1

2

∫ L

0
γ (s)(| f (s, 0+)|2−| f (s, 0−)|2) ds

−‖γ ‖∞
∫ L

0
| f (s, a)|2 ds − ‖γ ‖∞

∫ L

0
| f (s,−a)|2 ds,

where V (−) = − aγ ′′
+

2(1−a‖γ ‖∞ )3 − 5(aγ ′
+ )2

4(1−a‖γ ‖∞ )4 − γ 2

4(1−a‖γ ‖∞ )2 . As before, the operator associated

with the quadratic form can be written as Q−
a,β = U−

a ⊗ I +∫ ⊕
[0,L)

T −
a,β (s) ds, where the operator

T −
a,β (s) referring to the transverse variable acts for any s ∈ [0, L) as T −

a,β (s) f = − f ′′ with the
domain

5
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D(T −
a,β (s)) = { f ∈ H2((−a, a) \ {0}) | ∓‖γ ‖∞ f (±a) = f ′(±a) ,

f ′(0−) = f ′(0+) = −β−1( f (0+) − f (0−)) + 1
2γ (s)( f (0+) + f (0−))}. (3.4)

We are going to estimate the spectrum of T −
a,β (s) and check its independence of s.

Lemma 3.3. The operator T −
a,β (s) has exactly one negative eigenvalue t− = −κ2

− for any β

small enough; the latter is independent of s and for β → 0 we have

κ− = 2

β
+ 4

β

2 − β‖γ ‖∞
2 + β‖γ ‖∞

e−4a/β + O
(

− 4

β

(
2 − β‖γ ‖∞
2 + β‖γ ‖∞

)2

e−8a/β

)
.

Proof. The function satisfying f ′′(x) = κ2 f (x) for x �= 0 together with the boundary conditions
∓‖γ ‖∞ f (±a) = f ′(±a), which has its derivative continuous at x = 0, is of the form

f (x) =
{

A eκx + B e−κx if x ∈ (−a, 0)

C eκx + D e−κx if x ∈ (0, a)

The constant A is arbitrary, while for the others the requirements imply B = AZ e−2κa with
Z := κ−‖γ ‖∞

κ+‖γ ‖∞
and D = −A, C = −B. The remaining property from (3.4) leads to

κ(A − B) = 1

β
(A + B − C − D) + 1

2
γ (s)(A + B + C + D),

and since the last term vanishes we can rewrite the spectral condition as

κ = 2

β

1 + Z e−2κa

1 − Z e−2κa
.

As before, we are interested in the regime β → 0+. Note that as long as Z > 0 we have
κ > 2β−1, hence κ is large and ξ = Z e−2κa is small and the expansion

κ = 2

β

1 + ξ

1 − ξ
= 2

β
(1 + ξ )(1 + ξ + ξ 2 + O(ξ 3))

yields the stated behavior of κ as β → 0+. Since we are interested in the strong-coupling
situation, we may assume Z > 0 without loss of generality. This assumption is satisfied for
2β−1 > ‖γ ‖∞, and the uniqueness of the eigenvalue is a consequence of the above spectral
condition and the monotonicity of the function κ �→ 1

κ
1+Z e−2κa

1−Z e−2κa which can be checked by a
direct computation. �

Next we estimate the eigenvalues of the operators U±
a , referring to the longitudinal part in

the expressions for Q±
a,β in a similar way to [EY02]; they correspond to the second and third

terms in the definition of the quadratic forms q±
a,β .

Lemma 3.4. There is a positive C independent of a and j such that

|μ±
j (a) − μ j| � Ca j2

holds for j ∈ N and 0 < a < 1
2‖γ ‖∞

, where μ±
j (a) are the eigenvalues of U±

a , respectively,
with the multiplicity taken into account.

Proof. We employ the operator S0 = −∂2
s with the periodic boundary conditions, i.e. the

domain D(S0) = { f ∈ L2((0, L)) | f (0) = f (L), f ′(0) = f ′(L)}; its eigenvalues, counting
multiplicity, are 4[ j

2 ]2 π2

L2 , j = 1, 2, . . . , where [·] as usual denotes the entire part. Its difference
from our comparison operator (2.1) on L2(0, L) is easily estimated,

‖S − S0‖ � 1
4‖γ ‖2

∞,

6
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and consequently, by the min–max principle we have∣∣∣∣∣μ j − 4

[
j

2

]2
π2

l2

∣∣∣∣∣ � 1

4
‖γ ‖2

∞ (3.5)

for j ∈ N. Next we can use another simple estimate,

U+
a − 1

(1 − a‖γ ‖∞)2
S = aγ ′′

+
2(1 − a‖γ ‖∞)3

− γ 2

4(1 + a‖γ ‖∞)2
+ γ 2

4(1 − a‖γ ‖∞)2
,

and since the last two terms combine to a‖γ ‖∞γ 2(1 − a2‖γ ‖2
∞)−2, we infer that∣∣∣∣μ+

j − μ j

(1 − a‖γ ‖∞)2

∣∣∣∣ � c0a (3.6)

holds for some c0 > 0 and any j ∈ N. Combining now (3.5) and (3.6) we get

|μ+
j − μ j| �

∣∣∣∣μ+
j − μ j

(1 − a‖γ ‖∞)2

∣∣∣∣ + |μ j| ·
∣∣∣∣1 − (1 − a‖γ ‖∞)2

(1 − a‖γ ‖∞)2

∣∣∣∣
� c0a + c1a|μ j| � Ca j2

with suitable constants. The second inequality is checked in a similar way: we use

U−
a − 1

(1 + a‖γ ‖∞)2
S = − aγ ′′

+
2(1 − a‖γ ‖∞)3

− 5a2(γ ′
+)2

4(1 − a‖γ ‖∞)4

− a‖γ ‖∞
(1 − a‖γ ‖∞)2(1 + a‖γ ‖∞)2

γ 2,

which implies ∥∥∥∥U−
a − 1

(1 + a‖γ ‖∞)2
S

∥∥∥∥ � c̃0a + c̃1a2 � c2a,

where in the second inequality we employed the fact that a is bounded. With help of the
min–max principle we then get∣∣∣∣μ−

j − μ j

(1 + a‖γ ‖∞)2

∣∣∣∣ � c2a,

hence finally we arrive at the inequality

|μ−
j − μ j| � c2a + |μ j|

∣∣∣∣1 − (1 + a‖γ ‖∞)2

(1 + a‖γ ‖∞)2

∣∣∣∣ � c2a + c3a|μ j| � Ca j2

valid for a suitable C which completes the proof. �
Now we are ready to prove our first main result.
We define a(β) = − 3

4β ln β and denote the eigenvalues of the operators T ±
a(β),β

as t j
±,β ,

respectively, taking their multiplicities into account. From Lemmata 3.2 and 3.3 we know that
t1
±,β = t± for small enough β, while t j

±,β � 0 holds for j > 1. Collecting the estimates worked
out above we have

Q−
a(β),β = U−

a(β) ⊗ I +
∫ ⊕

(0,L)

T −
a(β),β (s) ds � HN (β) � Hβ

� HD(β) � U+
a(β) ⊗ I +

∫ ⊕

(0,L)

T +
a(β),β (s) ds = Q+

a(β),β (3.7)

and the eigenvalues of the operators Q±
a(β),β

between which we squeeze our singular
Schrödinger operator Hβ are naturally tk

±,β + μ±
j (a(β)) with k, j ∈ N. Those with k � 2

and j ∈ N are uniformly bounded from below in view of the inequality

tk
±,β + μ±

j (a(β)) � μ±
1 (a(β)) = μ1 + O(−β ln β), (3.8)

7
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hence we can focus on k = 1 only. For j ∈ N we denote

ω
j
±,β = t1

±,β + μ±
j (a(β)).

With our choice of a(β) we have e−4κa = β3, so from the above lemmata we get κ± = 2
β
+O(β)

and μ±
j (a(β)) differ from μ j by O(−β j2 ln β); putting these estimates together we can

conclude that

ω
j
±,β = − 4

β2
+ μ j + O(−β ln β) as β → 0+ (3.9)

with the error term in general dependent on j. Combining (3.8) and (3.9) we can conclude that
to any n ∈ N there is a β(n) > 0 such that

ωn
+,β � 0, ωn

+,β < tk
+,β + μ+

j (a(β)) and ωn
−,β < tk

−,β + μ−
j (a(β))

holds for β � β(n), k � 2, and j � 1. Hence the jth eigenvalue of Q±
a(β),β

, counting

multiplicity, is ω
j
±,β for all j � n and β � β(n). Furthermore, for β � β(n) we denote ξ

j
+(β)

and ξ
j
−(β) as the jth eigenvalue of HD(β) and HN (β), respectively; then from (3.7) and the

min–max principle we obtain

ωn
−,β � ξ

j
−(β), ξ

j
+(β) � ωn

+,β

for j = 1, 2, . . . , n , which in particular implies ξ n
+(β) < 0. Using the min–max principle

once again we conclude that Hβ has at least n eigenvalues in the interval (−∞, ξ n
+(β)) and

for any 1 � j � n we have ξ
j
−(β) � λ j � ξ

j
+(β) which completes the proof.

4. Proof of theorem 2.2

For a self-adjoint operator A with inf σess(A) = 0 we put N−(A) := #{σd(A) ∩ (−∞, 0)}. In
view of (3.7) the eigenvalue number of Hβ can be estimated as

N−(Q−
a,β ) � N−(HN (β)) � #σd (Hβ ) � N−(HD(β)) � N−(Q+

a,β ). (4.1)

In order to use this estimate we define

K±
β = { j ∈ N| ω

j
±,β < 0}

and derive the following asymptotic expansions of these quantities.

Lemma 4.1. In the strong-coupling limit, β → 0+, we have

#K±
β = 2L

πβ
+ O(| ln β|). (4.2)

Proof. We choose K such that β−1 > K > 0 and (β−1 − K)2 < β−2 − 4β − 16−1‖γ ‖2
∞; this

can be obviously done for all sufficiently small β. With the preceding proof in mind we can
write

K+
β = {

j ∈ N| t1
+,β + μ+

j (a(β)) < 0
}
.

Lemma 3.2 allows us to make the following estimate,

K+
β ⊃

{
j ∈ N

∣∣ μ j + Ca(β) j2 <
4

β2
− 16

β2
e−4a(β)/β = 4

β2
− 16β

}
;

8
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using further (3.5) and the indicated choice of K we infer that

K+
β ⊃

{
j ∈ N| 4

[
j

2

]2
π2

L2
+ Ca(β) j2 <

4

β2
− 16β − 1

4
‖γ ‖2

∞

}

⊃
{

j ∈ N
∣∣∣ j2 π2

L2
− 3

4
Cβ ln β j2 < 4

(
1

β
− K

)2
}

⊃
{

j ∈ N| j < 2

(
1

β
− K

) (
π2

L2
− 3

4
Cβ ln β

)−1/2
}

.

We employ the Taylor expansion (M + x)−1/2 = M−1/2 − 1
2 xM−3/2 + O(x2); since we are

interested in the asymptotics β → 0+, we rewrite the right-hand side of the last inequality as

2

(
1

β
− K

) (
π2

L2
− 3

4
C ln β

)− 1
2

� 2

(
1

β
− K

) [
L

π
+ 3

8
Cβ ln β

(
L

π

)3
]

,

which allows us to infer that

#K+
β � 2L

πβ
+ O(| ln β|) (4.3)

holds as β → 0+. In a similar way we estimate #K−
β . First we choose a number K′ satisfying

0 < K′ <
(
4β + ‖γ ‖2

∞
16

)1/2
and note that 1

β2 + 4β + ‖γ ‖2
∞

16 < ( 1
β

+ K′)2. Then we have

K−
β = {

j ∈ N
∣∣ t1

−,β + μ−
j (a(β)) < 0

}
⊂

{
j ∈ N

∣∣∣ μ j − Ca(β) j2 <
4

β2
+ 16

β2

2 − β‖γ ‖∞
2 + β‖γ ‖∞

e−4a(β)/β

}

⊂
{

j ∈ N
∣∣∣ μ j + 3

4
Cβ ln β j2 <

4

β2
+ 16β

2 − β‖γ ‖∞
2 + β‖γ ‖∞

}
.

With the help of the fact that 2( j − 1) � j for j > 1 we further have

K−
β ⊂ {1} ∪

{
j � 2|

(
( j − 1)π

L

)2

+ 3

4
Cβ ln β( j − 1)2 <

4

β2
+ 16β + ‖γ ‖2

∞
4

}

⊂ {1} ∪
{

j � 2| ( j − 1)2 <

(
4

β2
+ 16β + ‖γ ‖2

∞
4

) ((π

L

)2
+ 3

4
Cβ ln β

)−1
}

⊂ {1} ∪
{

j � 2| j < 1 + 2

(
1

β
+ K′

) ((π

L

)2
+ 3

4
Cβ ln β

)−1/2
}

.

Now we can estimate the expression on the right-hand side of the last inequality in the
asymptotic regime β → 0+ as

2

(
1

β
+ K′

) ((π

L

)2
+ 3

4
Cβ ln β

)− 1
2

� 2L

πβ
+ O(| ln β|).

In combination with the above inclusions this leads to

#K−
β � 2l

πβ
+ O(| ln β|) (4.4)

as β → 0+. Finally, we know that t1
+,β < t1

−,β which implies K+
β ⊂ K−

β , and this together with
(4.3) and (4.4) concludes the proof. �

We also need to estimate the second eigenvalue of the operators T −
a(β),β

(s).

9
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Lemma 4.2. T −
a,β (s) with a fixed s ∈ [0, L) has no eigenvalues in

[
0, min

{ ‖γ ‖∞
2a ,

(
π
4a

)2})
provided 0 < β < 2a.

Proof. Let us check first that zero is not an eigenvalue. The corresponding eigenfunction
should have to be linear and the conditions ∓‖γ ‖∞ f (±a) = f ′(±a) and f ′(0−) = f ′(0+)

would require f (x) = ±A(∓‖γ ‖∞x + 1 + ‖γ ‖∞a) for ±x ∈ (0, a), and as in lemma 3.3 the
spectral condition would read −‖γ ‖∞ = 2

β
(1 + ‖γ ‖∞a) which cannot be true because the

right-hand side is positive. Furthermore, the spectral condition for an eigenvalue k2 > 0 is
found again as in lemma 3.3; after a simple calculation we find that it reads

1

2
β = 1

k

‖γ ‖∞ tan ka + k

‖γ ‖∞ − k tan ka
.

The right-hand side can be estimated by 1+‖γ ‖∞a
‖γ ‖∞−k2a provided that ka < π

2 and at the same time
‖γ ‖∞ − k tan ka > 0; by finding the value for which this expression equals 1

2β we would
obviously get a lower bound to k. Rewriting the condition as

−ka2 = (1 + ‖γ ‖∞a)
2

β
− ‖γ ‖∞

we see that the left-hand side is negative while the right-hand side is positive under
our assumption, hence one has to determine the restriction coming from the condition
‖γ ‖∞ − k tan ka > 0. In particular, for ka < 1

4π this is true provided ‖γ ‖∞ − 2k2a > 0,
which means that the spectral problem has no solution if k2 is smaller than either ‖γ ‖∞

2a or(
π
4a

)2
, which concludes the argument. �

Now we are ready to prove our second main result.
We begin by showing that the relation

N−(Q−
a(β),β ) = #K−

β (4.5)

holds for any sufficiently small β > 0. We know that all the eigenvalues of Q−
a(β),β

can be

written as {t j
−,β + μ−

k (a(β))} j,k∈N with the multiplicity taken into account. From the previous

lemma we have t2
−,β > min

{ ‖γ ‖∞
2a ,

(
π
4a

)2 }
which together with |μ−

j (a) − μ j| � Ca j2 implies
the existence of a β0 such that

t j
−,β + μ−

k (a(β)) > 0

holds for j > 1, k � 1, and β ∈ (0, β0). This implies

N−(Q−
a(β),β ) = #{(k, j) ∈ N2| tk

−,β + μ−
j (a(β)) < 0}

= #{ j ∈ N| t1
−,β + μ−

j (a(β)) < 0} =: K−
β ,

i.e. the relation (4.5); combining it with (4.1) we obtain

#K+
β � #σd(Hβ ) � N−(Q−

a,β ) = #K−
β ,

which by virtue of lemma 4.1 concludes the proof.

5. Concluding remarks

We have seen that, despite very different eigenfunctions, the δ′ ‘leaky loops’ behave in the
strong-coupling regime similarly to their δ counterparts: the number of negative eigenvalues
is given in the leading order by a Weyl-type term, and the eigenvalues themselves are after
a natural renormalization determined by the one-dimensional Schrödinger operator with the
known curvature-induced potential.

10
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The question is whether and how the current results can be extended. The bracketing
technique we used would work for infinite smooth curves � without ends, provided that
suitable regularity assumptions were imposed. If, on the other hand, the curve is finite or
semi-infinite the situation becomes more complicated because one has to impose appropriate
boundary conditions at the endpoints of the interval on which the comparison operator (2.1) is
defined. One can modify the present argument to get an estimate on the number of eigenvalues
because there those boundary conditions play no role, the counting functions in the Dirichlet
and Neumann case differing by an O(1) term. For an eigenvalue position estimate, on the
other hand, this is not sufficient and one conjectures that the Dirichlet comparison operator
has to be used. For a two-dimensional open arc � supporting a δ interaction this conjecture
has recently been proved [EP12]; the argument is more complicated because one cannot use
operators with separated variables. We believe that the same method could work in the δ′ case
too—however, the question is not simple and we postpone discussing it to another paper.

On the other hand, finding the asymptotics in the case when � is not smooth, or even has
branching points, represents a much harder problem and the answer is not known even in the
δ case, although some inspiration can be found in the squeezing limits of Dirichlet tubes; see,
e.g., [CE07].
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1. Introduction

Quantum mechanics of particles confined to curves, graphs, 
tubes, surfaces, layers, and other geometrically nontrivial objects 
is a rich and inspirative subject. On one hand it is useful physi-
cally, in particular, to describe various nanostructures, and at the 
same time it offers numerous interesting mathematical problems. 
Models of “leaky” structures [1] in which the confinement is real-
ized by an attractive potential have the advantage that they take 
quantum tunneling into account. The potential is often taken sin-
gular, of the δ type, because it is easier to handle [2].

Very recently also more singular couplings of the δ′ type at-
tracted attention. The corresponding Hamiltonians can be formally 
written as

Hβ = −Δ − β−1δ′(· − Γ ), (1)

where Γ is a smooth surface supporting the interaction. Some pre-
fer to write the interaction term as β−1(δ′(· − Γ ), ·)δ′(· − Γ ) to 
stress that the interaction is invariant with respect to mirror reflec-
tion. What is important, however, is that either of the expressions 
is purely formal. A proper definition which employs the standard 
δ′ concept [3] will be given below, here we only note that we write 
β−1 to underline that a strong δ′ interaction corresponds to small
values of the parameter β . We also note that investigation of such 
δ′ interactions is not just a mathematical exercise. Due to a sem-
inal idea of Cheon and Shigehara [4] made rigorous in [5,6] they 

* Corresponding author at: Nuclear Physics Institute ASCR, 25068 Řež near Prague, 
Czech Republic.

E-mail addresses: exner@ujf.cas.cz (P. Exner), jexmicha@fjfi.cvut.cz (M. Jex).

can be approximated by a scaled “tripple-layer” potential combina-
tion. The possibility of forming such systems with barriers which 
become more opaque as the energy increases is no doubt physi-
cally attractive.

The subject of this letter is the strong coupling asymptotics of 
bound states of operators (1) with an attractive δ′ interaction sup-
ported by a finite or infinite surface in R3. The analogous problem 
for δ interaction supported by infinite surface was solved in [7]. As 
in this case, we are going to show that the asymptotics is deter-
mined by the geometry of Γ . As a byproduct, we will demonstrate 
the existence of bound states for sufficiently small β for non-
planar infinite surfaces which are asymptotically planar, in a way 
alternative to the argument proposed recently in [8].

2. The Hamiltonian

The first thing to do is to define properly the operator (1). It 
acts, of course, as Laplacian outside of the surface Γ

(Hβψ)(x) = −(Δψ)(x)

for x ∈ R3 \ Γ and the interaction will be expressed through suit-
able boundary conditions on the surface which, in accord with [3], 
would include continuity of the normal derivative together with 
a jump of the function value. Specifically, the domain of the oper-
ator will be

D(Hβ) = {
ψ ∈ H2(R3 \ Γ

) ∣∣ ∂nΓ ψ(x) = ∂−nΓ ψ(x) =: ψ ′(x)
∣∣
Γ

,

−βψ ′(x)
∣∣
Γ

= ψ(x)
∣∣
∂+Γ

− ψ(x)
∣∣
∂−Γ

}
,

http://dx.doi.org/10.1016/j.physleta.2014.06.017
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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where nΓ is the normal to Γ and ψ(x)|∂±Γ are the appropri-
ate traces of the function ψ ; all these quantities exist in view 
of the Sobolev embedding theorem. Being interested in the at-
tractive δ′ interactions, we choose the above form of boundary 
conditions with β > 0. Another way to define the operator Hβ

is by the means of the associated quadratic form as discussed 
in [2]. Its domain is H1(R3 \ Γ ) and the form value for a func-
tion ψ ∈ H1(R3 \ Γ ) is given by

hβ [ψ] = ‖∇ψ‖2 − β−1
∥∥ψ(x)

∣∣
∂+Γ

− ψ(x)
∣∣
∂−Γ

∥∥2
L2(Γ )

. (2)

As indicated we are interested in the spectrum of Hβ in the 
strong-coupling regime, β → 0+ , for two kinds of surfaces Γ . The 
first is an infinite surface of which we assume that:

(a1) Γ is C4 smooth and allows a global normal parametrization 
with uniformly bounded elliptic tensor,

(a2) Γ has no “near self-intersections”, i.e. there exists its sym-
metric layer neighborhood of a finite thickness which does 
not intersect with itself,

(a3) Γ is asymptotically planar in the sense that its curvatures 
vanish as the geodetic distance from a fixed point tends to 
infinity,

and finally

(a4) trivial case is excluded, Γ is not a plane.

In fact, the assumption (a1) can be weakened in a way similar to 
[9], however, for the sake of simplicity we stick to the existence of 
a global normal parametrization. The second class to consider are 
finite surfaces. The compactness makes the assumptions simpler 
in this case, on the other hand, we have to require additionally 
absence of a boundary:

(b) Γ is a closed C4 smooth surface of a finite genus.

In this case no global parametrization exists, of course, but the 
geometry of Γ can be described by an atlas of maps representing 
normal parameterizations with a uniformly bounded elliptic tensor.

3. Geometric preliminaries

Let us collect now some needed facts about the geometry of the 
surface and its neighborhoods; for a more complete information 
we refer, e.g., to [10]. We consider infinite surfaces first and we in-
troduce normal coordinates on Γ starting from a local exponential 
map γ : ToΓ → Uo with the origin o ∈ Γ to the neighborhood Uo

of the point o; the coordinates s are given by

s = (s1, s2) → expo

(∑
i

siei(o)

)
(3)

where {e1(o), e2(o)} is an orthonormal basis of ToΓ . By assump-
tion (a1) one can find a point o ∈ Γ such that the map (3) can be 
extended to a global diffeomorphism from ToΓ � R2 to Γ .

Using these coordinates, we express components of the surface 
metric tensor gμν as gμν = γ,μ · γ,ν and denote gμν = (gμν)−1. 
The invariant surface element is denoted as dΓ = g

1
2 d2s where 

g := det gμν . The unit normal n(s) is defined as the cross product 
of the linearly independent tangent vectors γ,μ , i.e. n(s) = γ,1×γ,2

|γ,1×γ,2| . 
The Gauss curvature K and mean curvature M can be calculated by 
means of the Weingarten tensor hν

μ := −n,μ · γ,σ gσν ,

K = det hν
μ = k1k2, M = 1

2
Tr hν

μ = 1

2
(k1 + k2).

We recall that the eigenvalues of hν
μ are the principal curvatures 

k1,2 and that the identity K − M2 = − 1
4 (k1 − k2)

2 holds.
We also need neighborhoods of the surface Γ . A layer Ωd of 

halfwidth d > 0 will be defined as the image of Dd := {(s, u) : s ∈
R2, u ∈ (−d, d)} by the map

L: Dd 	 q ≡ (s, u) → γ (s) + un(s) (4)

This definition provides at the same time a parametrization of Ωd , 
and the assumption (a2) can be rephrased as

(a2) there is a d0 > 0 such that the map (4) is injective for any 
d < d0.

Moreover, in view of (a1) such an L is a diffeomorphism, which 
will be crucial for the considerations to follow. The layer Ωd can be 
regarded as a manifold with a boundary and characterized by the 
metric tensor which can be expressed in the parametrization (4)
as

Gij =
(

(Gμν) 0
0 1

)
,

where Gμν = (δσ
μ − uhσ

μ)(δσ
ρ − uhσ

ρ )gρν . We use here the conven-
tion in which the Latin indices run through 1, 2, 3, numbering the 
coordinates (s1, s2, u) in Ωd , and the Greek ones through 1, 2. The 
volume element of the manifold Ωd can be written in the form 
dΩd := √

G d2s du with

G := det Gij = g
[
(1 − uk1)(1 − uk2)

]2 = g
(
1 − 2Mu + K u2)2;

with the future purpose in mind we introduce a shorthand for the 
last factor, ξ(s, u) := 1 − 2M(s)u + K (s)u2. The curvatures also al-
low us to express more explicitly the next assumption:

(a3) K , M → 0 as |s| :=
√

s2
1 + s2

2 → ∞.

Recall next a few useful estimates made possible by the as-
sumption (a3), cf. [11]. In combination with (a1) and (a2) it implies 
that the principal curvatures k1 and k2 are uniformly bounded. We 
set

ρ := (
max

{‖k1‖∞,‖k2‖∞
})−1;

note that ρ > d0 holds for the critical halfwidth of assumption 
(a2). It can be checked easily that for a given d < ρ the follow-
ing inequalities are satisfied in the layer neighborhood Ωd of Γ ,

C−(d) ≤ ξ ≤ C+(d), (5)

where C± := (1 ± dρ−1)2, and this in turn implies

C−(d)gμν ≤ Gμν ≤ C+(d)gμν. (6)

Since the metric tensor gμν uniformly elliptic by assumption, we 
also have

c−δμν ≤ gμν ≤ c+(d)δμν (7)

as a matrix inequality for some positive constants c± .
Let us briefly describe modifications needed if we pass to closed 

surfaces. As we have indicated a global parametrization is replaced 
now by a finite atlas A of maps; in each part Mi we introduce 
normal coordinates and define layer neighborhoods by the maps 
M̂i on Di,d := {(s, u) : s ∈ domMi, u ∈ (−d, d)} with a given d > 0,

M̂i : Di,d 	 q ≡ (s, u) → γi(s) + un(s) (8)

In view of assumption (b) there is a critical d0 > 0 such that ev-
ery map M̂i : Di,d → Ωd from A is injective provided d < d0 and 
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a diffeomorphism. Furthermore, M̂i(si, ui) = M̂ j(s j, u j) implies 
Mi(si) = M j(s j). The above estimates of the metric tensor re-
mains valid also for compact Γ .

4. The results

As in the case of a δ interaction supported by a surface, the 
asymptotics is determined by the geometry of Γ . To state the re-
sults, we introduce the following comparison operator,

S = −ΔΓ − 1

4
(k1 − k2)

2 = −ΔΓ + K − M2, (9)

where ΔΓ is the Laplace–Bertrami operator on the surface Γ and 
k1,2 are the principal curvatures of Γ . The spectrum of S is purely 
discrete if Γ is compact. In the noncompact case the potential 
vanishes at infinity and has negative values unless Γ is a plane 
which is, however, excluded by assumption (a4). Consequently, 
σess(S) = [0, ∞) and the discrete spectrum is nonempty. We de-
note the eigenvalues of S , arranged in the ascending order with 
the multiplicity taken into account, as μ j .

First we inspect the essential spectrum in the strong-coupling 
regime:

Theorem 1. Let an infinite surface Γ satisfy assumptions (a1)–(a4), then 
σess(Hβ) ⊆ [ε(β), ∞), where ε(β) = − 4

β2 + O(e−c/β) holds as β →
0+ for some constant c > 0.

We note that in case of a compact Γ we have σess(Hβ) = [0, ∞); 
a proof can be found in [8]. The next two theorems describe the 
asymptotics of the negative point spectrum of Hβ .

Theorem 2. Let an infinite surface Γ satisfy assumptions (a1)–(a4), 
then Hβ has at least one isolated eigenvalue below the threshold of the 
essential spectrum for all sufficiently small β > 0, and the j-th eigen-
value behaves in the limit β → 0+ as

λ j = − 4

β2
+ μ j + O(−β lnβ).

Theorem 3. Let a compact surface Γ satisfy assumption (b), then Hβ

has at least one isolated eigenvalue below the threshold of the essential 
spectrum for all β > 0, and the j-th eigenvalue behaves in the limit β →
0+ as

λ j = − 4

β2
+ μ j + O(−β lnβ).

5. Bracketing estimates

The basic idea is analogous to the one used in [7], namely to 
estimate the operator Hβ from above and below, in a tight enough 
manner, by suitable operators for which we are able to calcu-
late the spectrum directly. The starting point for such estimates 
is the bracketing trick, that is, imposing additional Dirichlet/Neu-
mann conditions at the boundary of the neighborhood Ωd of the 
surface Γ . We introduce quadratic forms h+

β and h−
β , both of them 

given by the formula

‖∇ψ‖2
L2(Ωd)

− β−1
∫
Γ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

with the domains D(h+
β ) = H̃1

0(Ωd \ Γ ) and D(h−
β ) = H1(Ωd \ Γ ), 

respectively, the former being understood as a set of functions 
which are locally H1 and vanish at the boundary of Ωa . We denote 
the self-adjoined operators associated with these forms as H±

β . By 
the standard bracketing argument we get

−ΔN
R3\Ωd

⊕ H−
β ≤ Hβ ≤ −ΔD

R3\Ωd
⊕ H+

β , (10)

where −Δ
D,N
R3\Ωd

is the Dirichlet–Laplacian and Neumann–Laplacian

respectively on the set R3 \ Ωd . The operators −Δ
D,N
R3\Ωd

are pos-

itive, hence all the information about the negative spectrum is 
encoded in the operators H±

β .

The next step is to transform the operators H±
β into the curvi-

linear coordinates (s, u). This is done by means of the unitary 
transformation

Uψ = ψ ◦ L : L2(Ωd) → L2(Dd,dΩ).

By (·, ·)G we denote the scalar product in L2(Dd, dΩ). The opera-
tors U H±

β U−1 acting on this space are associated with the forms

h±
β

(
U−1ψ

)

= (
∂iψ, Gij∂ jψ

)
G − β−1

∫
Γ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

having the domains H̃1
0(Dd \ Γ, dΩ) and H̃1(Dd \ Γ, dΩ), respec-

tively. Next we employ another unitary transformation, inspired 
by [11], with the aim to get rid of the transverse coordinate de-
pendence, i.e. switch from the metric dΩ to dΓ du by

Ũψ = ξ
1
2 ψ : L2(Dd,dΩ) → L2(Dd,dΓ du).

Similarly as before, we denote the scalar product in L2(Dd, dΓ du)

as (·, ·)g and consider the operators

F ±
β := Ũ U H±

β U−1Ũ−1

which act in L2(Dd, dΓ du). The quadratic forms ζ±
β associated 

with F ±
β can be calculated as h±

β (Ũ−1U−1ψ) with the result

ζ+
β [ψ] = (

∂μψ, Gμν∂νψ
)

g + (
ψ, (V 1 + V 2)ψ

)
g + ‖∂3ψ‖g

− β−1
∫
Γ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

−
∫
Γ

M
(∣∣ψ(s,0+)

∣∣2 − ∣∣ψ(s,0−)
∣∣2)

dΓ

ζ−
β [ψ] = ζ+

β [ψ] +
∫
Γ

ς(s,d)
∣∣ψ(s,d)

∣∣2
dΓ

−
∫
Γ

ς(s,−d)
∣∣ψ(s,−d)

∣∣2
dΓ,

where ς = M−K u
ξ

, the two curvature-induced potentials are

V 1 = g− 1
2
(

g
1
2 Gμν J ,μ

)
,ν

+ J ,μGμν J ,ν , V 2 = K − M2

ξ2

with J = ln ξ
2 . The corresponding form domains are H̃1

0(Dd \ Γ,

dΓ du) and H̃1(Dd \ Γ, dΓ du), respectively.

6. Proof of Theorem 1

In the excluded case when Γ is a plane, the spectrum is easily 
found by separation of variables. Since a δ′ interaction in one di-
mension has a single eigenvalue equal to − 4

β2 , cf. [3, Sec. I.4], we 

get σ(Hβ) = σess(Hβ) = [− 4
β2 , ∞). We want to show that under 

the assumption (a3) the essential spectrum does not change, at 
least asymptotically. We employ an estimate which follows from 
Lemma 4 that we will prove below, namely



2094 P. Exner, M. Jex / Physics Letters A 378 (2014) 2091–2095

d∫
−d

∣∣∣∣d f

du

∣∣∣∣
2

du − β−1
∣∣ f (0+) − f (0−)

∣∣2

≥
(

− 4

β2
− 16

β2
exp

(
−4d

β

))
‖ f ‖L2(−d,d). (11)

As we shall see the inequality holds for sufficiently small β and 
d
β

> 2. The inclusion σess(Hβ) ⊆ [ε(β), ∞) is equivalent to

infσess(Hβ) ≥ ε(β)

which will be satisfied if infσess(H−
β ) ≥ ε(β) for H−

β acting in 
L2(Ωd) for d < g0 < ρ . This is obvious from inequalities (10)
and the fact that the operator −ΔN

R3\Ωd
is positive and cannot 

thus contribute to the negative part of the spectrum. In the next 
step we divide the surface Γ into two parts, namely Γ int

τ := {s ∈
Γ | r(s) < τ } and Γ ext

τ := Γ \ Γ int
τ . The layer neighborhoods cor-

responding to Γ int
τ and Γ ext

τ are D int
τ = {(s, u) ∈ Dd| s ∈ Γ int

τ } and 
Dext

τ = Dd \ D int
τ . We introduce the Neumann operators on respec-

tive neighborhoods, H−,z
β,τ for z = int, ext associated with the forms

(
∂iψ, Gij∂ jψ

)
G − β−1

∫
Γ z

τ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

defined on H̃1(Dz
τ \ Γ, dΩ). Using once more Neumann bracketing 

we get H−
β ≥ H−,int

β,τ ⊕ H−,ext
β,τ . The inner part is compact, hence the 

spectrum of H−,int
β,τ is purely discrete. Consequently, the min–max 

principle implies

infσess
(

H−
β

) ≥ infσess
(

H−,ext
β,τ

)
,

and it is sufficient to check that the right-hand side cannot be 
smaller than ε(β). The quantities m+

τ := supΓ ext
τ

ξ and m−
τ :=

infΓ ext
τ

ξ tend to one as τ → ∞ in view of assumption (a3). We 
have the following estimate,

(
ψ, H−,ext

β,τ ψ
)

G ≥
∫

Dext
τ

∣∣∂3ψ(q)
∣∣2

dΩ

− β−1
∫

Γ ext
τ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

≥ m−
τ

∫

Dext
τ

∣∣∂3ψ(q)
∣∣2

dΓ du

− β−1
∫

Γ ext
τ

∣∣ψ(s,0+) − ψ(s,0−)
∣∣2

dΓ

≥ 1

β2m+
τ m−

τ

[
−4 − 16 exp

(
−4d

β

)]

×
∫

Dext
τ

∣∣ψ(q)
∣∣2

dΩ,

and since τ is arbitrary, we obtain ε(β) ≥ − 4
β2 − 16

β2 exp(− 4d
β

).

7. Proof of Theorem 2

To prove the second theorem, we will need several auxiliary re-
sults. The operators F ±

β are still not suitable to work with and so 
we replace them with a slightly cruder bounds. First we estimate 
the values of the potentials V 1 and V 2. With the help of inequali-
ties (5)–(7) we are able to check that

dv− ≤ V 1 ≤ dv+

holds for suitable numbers v± and d < d0 < ρ . On the other hand, 
V 2 can be estimated as

C−2−
(

K − M2) ≤ V 2 ≤ C−2+
(

K − M2),
where C± are the same as in (5). This allows us to replace (10)
with the estimates using operators D±

β ,

D−
d,β

:= U−
d ⊗ I +

⊕∫
Γ

T −
d,β

(s)dΓ ≤ F −
β ≤ Hβ

Hβ ≤ F +
β ≤ U+

d ⊗ I +
⊕∫

Γ

T +
d,β

(s)dΓ =: D+
d,β

(12)

where

U±
d = −C±ΔΓ + C−2±

(
K − M2) + v±d

with the domain D(U±
d ) = L2(R2, dΓ ) and the transverse part acts 

as

T ±
d,β

(s)ψ = −Δψ

with the domains

D
(
T +

a,β (s)
) = {

f ∈ H2((−a,a) \ {0}) ∣∣ f (a) = f (−a) = 0,

f ′(0−) = f ′(0+) = −β−1( f (0+) − f (0−)
)

+ M
(

f (0+) + f (0−)
)}

and

D
(
T −

a,β (s)
) =

{
f ∈ H2((−a,a) \ {0}) ∣∣ ∓‖M‖∞ + d‖K‖∞

C−
f (±a)

= f ′(±a),

f ′(0−) = f ′(0+) = −β−1( f (0+) − f (0−)
)

+ M
(

f (0+) + f (0−)
)}

,

respectively. The negative spectrum is described by the following 
result the proof of which can be found in [12].

Lemma 4. Each of the operators T ±
d,β

(s) has exactly one negative eigen-
value t±(d, β), respectively, which is independent of s provided that 
d
β

> 2 and β(‖M‖∞ + d‖K‖∞) < 1. For all β > 0 sufficiently small 
these eigenvalues satisfy the inequalities

− 4

β2
− 16

β2
exp

(
−4d

β

)
≤ t−(d, β) ≤ − 4

β2
≤ t+(d, β)

≤ − 4

β2
+ 16

β2
exp

(
−4d

β

)
.

On the other hand, the spectrum of the operators U±
d has the 

asymptotic expansion governed by the operator S which we can 
adopt from [7]:

Lemma 5. The eigenvalues of U±
d satisfy the relations

μ±
j (d) = μ j + C±

j d + O
(
d2) for d → 0,

where μ j is the j-th eigenvalue of the operator S and the constants C±
j

are independent on d.
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With these prerequisites we are ready to prove the second the-
orem. We put d(β) = −β ln β . Using the fact that each of the 
operators T ±

d,β
(s) has exactly one negative eigenvalue t±(d(β), β)

together with the explicit form of D±
d,β

we can write their spectra 
as t±(d(β), β) + μ±

j (d(β)), where μ±
j are the eigenvalues of the 

operators U±
d . Using now Lemmata 4 and 5 we are able to rewrite 

this as

t±
(
d(β),β

) + μ±
j

(
d(β)

) = − 4

β2
+ μ j + O

(
β| ln β|),

hence the min–max principle in combination with inequalities (12)
conclude the argument.

8. Proof of Theorem 3

The existence of isolated eigenvalues can be checked variation-
ally as in [8]. For a test function ξ one chooses characteristic 
function of the volume enclosed by the surface Γ ; this yields an 
estimate of the ground state energy from above,

λ0 ≤ hβ(ξ)

‖ξ‖2
= β−1 S

V
(13)

where hβ is quadratic (2), S is the area of the surface Γ and V is 
the volume enclosed by Γ . The proof of the asymptotic expansion 
proceed with minimum modifications as for the infinite surface, 
hence we omit the details.
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We consider a generalized Schrödinger operator in L2(R2) describing an attractive δ′

interaction in a strong coupling limit. δ′ interaction is characterized by a coupling
parameter β and it is supported by a C4-smooth infinite asymptotically straight curve
Γ without self-intersections. It is shown that in the strong coupling limit, β → 0+, the
eigenvalues for a non-straight curve behave as − 4

β2 + µj + O(β| lnβ|), where µj is the

j-th eigenvalue of the Schrödinger operator on L2(R) with the potential − 1
4
γ2 where γ

is the signed curvature of Γ.

Keywords: δ′ interaction, quantum graphs, spectral theory

1. Introduction

The quantum mechanics describing the particle confined to various manifolds is

studied quite extensively. It is very useful for describing various nanostructures

in physics but it also offers a large variety of interesting problems from the purely

mathematical point of view. Systems where the confinement is realized by a singular

attractive potential, so called ’leaky’ quantum graphs [1], have the advantage that

they take quantum tunneling effects into account in contrast to quantum graphs

[2]. The confining potential is often taken to be of the δ type. One can think also

about more singular types of potentials namely δ′ type based on the concept of δ′

interaction in one dimension [3].

We are interested in the spectrum of the operator which can be formally written

as

H = −∆− β−1δ′(· − Γ)

where δ′ interaction is supported by an infinite curve Γ in R2. We are interested in

the strong coupling regime which corresponds to small values of the parameter β.

We derive spectral asymptotics of discrete and essential spectra. As a byproduct

we obtain that for a non-straight curve the bound state arises for sufficiently small

β in an alternative way to one presented in [4].
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2. Formulation of the Problem and Results

We consider a curve Γ parameterized by its arc length

Γ : R → R2 , s 7→ (Γ1(s),Γ2(s)) ,

where Γ1(s),Γ2(s) ∈ C4(R) are component functions. We denote signed curvature

as γ(s) := (Γ′′
1Γ

′
2 − Γ′

1Γ
′′
2 )(s). We introduce several conditions for the curve Γ as:

(Γ1) Γ is C4 smooth curve,

(Γ2) Γ has no “near self-intersections”, i.e. there exists its strip neighborhood of a

finite thickness which does not intersect with itself,

(Γ3) Γ is asymptotically straight in the sense that lim|s|→∞ γ(s) = 0 and

(Γ4) Γ is not a straight line.

The operator, we are interested in, acts as a free Laplacian outside of the inter-

action support

(Hβψ)(x) = −(∆ψ)(x)

for x ∈ R2 \Γ with the domain which can be written as D(Hβ) = {ψ ∈ H2(R2 \Γ) |
∂nΓψ(x) = ∂−nΓψ(x) = ψ′(x)|Γ, −βψ′(x)|Γ = ψ(x)|∂+Γ−ψ(x)|∂−Γ}. The vector nΓ

denotes the normal to Γ and ψ(x)|∂±Γ are the appropriate traces of the function ψ.

For the purpose of the proofs we introduce curvelinear coordinates (s, u) along the

curve in the same way as done in [6], i.e.

(x, y) =
(
Γ1(s) + uΓ′

2(s),Γ2(s)− uΓ′
1(s)

)
. (1)

As a result of the conditions (Γ1) and (Γ2) it can be shown that the map (1) is

injective for all u small enough. We denote d as a maximum for which the map

(1) is injective. A strip neighborhood around Γ of thickness a < d is denoted by

Ωa := {x ∈ R2 : dist (x,Γ) < a}.

The quadratic form associated with the operator Hβ was derived in [5] and it

can be written as

hβ [ψ] = ‖∇ψ‖2 − β−1

∫

R
|ψ(s, 0+)− ψ(s, 0−)|2 ds .

where we used the curvelinear coordinates in the strip neighborhood of the curve Γ

for the functions ψ ∈ C(R2)∩H1(R2 \Γ) as ψ(s, u). We also need to introduce the

operator defined on the line as

S = − ∂2

∂s2
− 1

4
γ(s)2 , (2)

with the domain D(S) = H2(R). The eigenvalues of the operator S are denoted by

µj with the multiplicity taken into account. Now we are ready to write down the

main results of our paper.

Theorem 2.1. Let an infinite curve Γ satisfy conditions (Γ1)–(Γ3), then

σess(Hβ) ⊆ [ǫ(β),∞), where ǫ(β) → − 4
β2 holds as β → 0+.
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Theorem 2.2. Let an infinite curve Γ satisfy assumptions (Γ1)–(Γ4), then Hβ has

at least one isolated eigenvalue below the threshold of the essential spectrum for all

sufficiently small β > 0, and the j-th eigenvalue behaves in the strong coupling limit

β → 0+ as

λj = − 4

β2
+ µj +O(−β ln(β)) .

3. Bracketing estimates

For the proofs of both theorems we will need estimates of our operator Hβ via

Dirichlet and Neumann bracketing as done in [7]. We introduce the operators with

added either Dirichlet or Neummann boundary conditions at the boundary of the

strip neighborhood Ωa of Γ. We introduce quadratic forms h+β and h−β on the strip

neighborhood of Γ which can be written as

h±β [ψ] = ‖∇ψ‖2 − β−1

∫

R
|ψ(s, 0+)− ψ(s, 0−)|2 ds

with the domains D(h+β ) = H̃1
0 (Ωa \ Γ) and D(h−β ) = H̃1(Ωa \ Γ). The operators

associated with the quadratic forms h±β are denoted by H±
β , respectively. With the

help of Dirichlet-Neumann bracketing we are able to write the following inequality

−∆N
R2\Ωa

⊕H−
β ≤ Hβ ≤ −∆D

R2\Ωa
⊕H+

β , (3)

where −∆N,D
R2\Ωa

denotes either Neumann or Dirichlet Laplacian on R2 \ Ωa respec-

tively. Neumann Laplacian and Dirichlet Laplacian are positive and as a result all

the information about the negative spectrum, which we are interested in, is encoded

in the operators H±
β .

Now we rewrite the quadratic forms h±β in the curvelinear coordinates (1). We

obtain expression which are analogical to those obtained in [6], i.e.

Lemma 3.1. Quadratic forms h+β , h
−
β are unitarily equivalent to quadratic forms

q+β and q−β which can be written as

q+[f ] = ‖∂sf
g

‖2 + ‖∂uf‖2 + (f, V f)− β−1

∫

R
|f(s, 0+)− f(s, 0−)|2 ds

+
1

2

∫

R
γ(s)

(
|f(s, 0+)|2 − |f(s, 0−)|2

)
ds

q−[g] = qD[g]−
∫

R

γ(s)

2(1 + aγ(s))
|f(s, a)|2 ds+

∫

R

γ(s)

2(1− aγ(s))
|f(s,−a)|2 ds

defined on H̃1
0 (R × ((−a, 0) ∪ (0, a))) and H̃1(R × ((−a, 0) ∪ (0, a))), respectively.

The geometrically induced potential in these formulæ is given by

V (s, u) =
uγ′′

2g3
− 5(uγ′)2

4g4
− γ2

4g2

with g(s, u) := 1 + uγ(s).
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The proof of this lemma can be done step by step as done in [6] so we omit the

details.

We will also need cruder estimates by quadratic forms b±β [f ] which satisfy

b−β [f ] ≤ q−[f ] ≤ hβ [f ] ≤ q+[f ] ≤ b+β [f ]. The quadratic form b+β [f ] can be writ-

ten as

b+β [f ] = ‖∂uf‖2 + (1− aγ+)
−2‖∂sf‖2 + (f, V (+)f)

−β−1

∫

R
|f(s, 0+)− f(s, 0−)|2ds+

1

2

∫

R
γ(s)

(
|f(s, 0+)|2 − |f(s, 0−)|2

)
ds

where V (+) := a(γ′′)+
2(1−aγ+)3 − γ2

4(1+aγ+)2 and f+ := maxs∈R |f | denotes maximum of

|f |. The quadratic form b−β [f ] can be written as

b−β [f ] = ‖∂uf‖2 + (1 + aγ+)
−2‖∂sf‖2 + (f, V (−)f)

−β−1

∫

R
|f(s, 0+)− f(s, 0−)|2 ds−

1

2

∫

R
γ(s)

(
|f(s, 0+)|2 − |f(s, 0−)|2

)
ds

−γ+
∫

R
|f(s, a)|2 ds− γ+

∫

R
|f(s,−a)|2 ds

where V (−) = − a(γ′′)+
2(1−aγ+)3 − 5(a(γ′)+)2

4(1−aγ+)4 − γ2

4(1−aγ+)2 . The operators B±
β associated

with b±β [f ] can be written as B±
β = U±

a ⊗ I +
∫ ⊕

R T±
a,β(s) ds where U±

a corresponds

to the longitudinal variable s and T±
a,β(s) corresponds to the transversal variable u.

The operators T±
a,β(s) act as T

±
a,β(s)f = −f ′′ with the domains

D(T+
a,β(s)) =

{
f ∈ H2((−a, a) \ {0}) | f(a) = f(−a) = 0 ,

f ′(0−) = f ′(0+) = −β−1(f(0+)− f(0−)) +
1

2
γ(s)(f(0+) + f(0−))

}

D(T−
a,β(s)) =

{
f ∈ H2((−a, a) \ {0}) | ∓γ+f(±a) = f ′(±a) ,

f ′(0−) = f ′(0+) = −β−1(f(0+)− f(0−)) +
1

2
γ(s)(f(0+) + f(0−))

}
.

The operators U±
a act as U±

a f = −(1∓aγ+)−2f ′′+V (±)f with the domain D(U±
a ) =

H2(R). The operators T±
a,β(s) depend on the variable s, however, their negative

spectrum is independent of s. Now we state two lemmata estimating the eigenvalues

of operators T±
a,β(s) and U

±
a . Their proofs can be found in [6] so we omit the details.

Lemma 3.2. Each of the operators T±
a,β(s) has exactly one negative eigenvalue

t±(a, β), respectively, which is independent of s provided that a
β > 2 and 2

β > γ+.

For all β > 0 sufficiently small these eigenvalues satisfy the inequalities

− 4

β2
− 16

β2
exp

(
−4a

β

)
≤ t−(d, β) ≤ − 4

β2
≤ t+(d, β) ≤ − 4

β2
+

16

β2
exp

(
−4a

β

)
.

Lemma 3.3. There is a positive C independent of a and j such that

|µ±
j (a)− µj | ≤ Caj2
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holds for j ∈ N and 0 < a < 1
2γ+

, where µ±
j (a) are the eigenvalues of U±

a , respec-

tively, with the multiplicity taken into account.

Now we are ready to prove our main theorems.

4. Proof of Theorem 2.1

First we prove the trivial case for the straight line. By separation of variables the

spectrum is σ(Hβ) = σess(Hβ) =
[
− 4

β2 ,∞
)
.

The case for non-straight curve is done similarly as for the singular interaction

supported by nonplanar surfaces in [8, 9]. The inclusion σess(Hβ) ⊆ [ǫ(β),∞) can

be rewritten as

inf σess(Hβ) ≥ ǫ(β) .

The inequality Hβ ≥ H−
β ⊕ −∆N

R2\Ωd
implies that it is sufficient to check

inf σess(H
−
β ) ≥ ǫ(β) in L2(Ωa) for a < d because the operator −∆N

R3\Ωd
is posi-

tive. Next we divide the curve Γ into two parts. First part is defined as Γint
τ :=

{Γ(s)|s < τ} and the second one Γext
τ := Γ\Γint

τ . The corresponding strip neighbor-

hoods are defined as Ωint
a := {x(s, u) ∈ Ωa|s < τ} and Ωext

a := {x(s, u) ∈ Ωa|s > τ}.
We introduce Neumann decoupled operators on Ωint,ext

a as

H−,int
β,τ ⊕H−,ext

β,τ .

The operators H−,ω
β,τ , ω = int, ext are associated with quadratic forms h−,ω

β,τ which

can be written as

h−,ω
β,τ = ‖∂sf

g
‖2 + ‖∂uf‖2 + (f, V f)− β−1

∫

Γω
τ

|f(s, 0+)− f(s, 0−)|2 ds

+
1

2

∫

Γω
τ

γ(s)
(
|f(s, 0+)|2 − |f(s, 0−)|2

)
ds

−
∫

Γω
τ

γ(s)

2(1 + aγ(s))
|f(s, a)|2 ds+

∫

Γω
τ

γ(s)

2(1− aγ(s))
|f(s,−a)|2 ds

with the domains H̃1(Ωω
a ). Neumann bracketing implies that H−

β,τ ≥ H−,int
β,τ ⊕

H−,ext
β,τ . The spectrum of the operator H−,int

β,τ is purely discrete [10] and as a result

min-max principle implies that

inf σess(H
−
β,τ ) ≥ inf σess(H

−,ext
β,τ ) .

We denote the following expression Vτ := inf |s|>τ,u∈(−a,a) V (s, u). The assumption

(Γ2) gives us that

lim
τ→∞

Vτ = 0



March 25, 2014 1:38 WSPC Proceedings - 9.75in x 6.5in delta˙line˙arxiv page 6

6

With the help of Lemma 3.2 we can write the following estimates

h−,ext
β,τ [f ] ≥ ‖∂uf‖2 + Vτ‖f‖2 − β−1

∫

Γext
τ

|f(s, 0+)− f(s, 0−)|2 ds

+
1

2

∫

Γext
τ

γ(s)
(
|f(s, 0+)|2 − |f(s, 0−)|2

)
ds

−
∫

Γext
τ

γ(s)

2(1 + aγ(s))
|f(s, a)|2 ds+

∫

Γext
τ

γ(s)

2(1− aγ(s))
|f(s,−a)|2 ds

≥
(
Vτ − 4

β2
− 16

β2
exp

(
−4a

β

))
‖f‖2

Because we can choose τ arbitrarily large we obtain the the desired result.

5. Proof of Theorem 2.2

For the proof of the second theorem we use the inequalities (3) and Lemmata 3.2

and 3.3. First we put a(β) = − 3
4β lnβ. Now with the explicit form of B±

β in mind

and the fact that T±
a,β(s) have exactly one negative eigenvalue we have that the

spectra of B±
β can be written as t±(d(β), β) + µ±

j (d(β)). Using Lemmata 3.2 and

3.3 we obtain

t±(a(β), β) + µ±
j (a(β)) = − 4

β2
+ µj +O(β| ln β|) .

The min-max principle along with the inequality (3) completes the proof.
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Let Λ ⊂ R2 be a non-closed piecewise-C1 curve, which is either bounded with two
free endpoints or unbounded with one free endpoint. Let u±|Λ ∈ L2(Λ) be the traces of
a function u in the Sobolev space H1(R2 \ Λ) onto two faces of Λ. We prove that for a
wide class of shapes of Λ the Schrödinger operator HΛω with δ′-interaction supported
on Λ of strength ω ∈ L∞(Λ;R) associated with the quadratic form H1(R2 \ Λ) ∋
u →


R2
�
∇u

�2dx −

Λ
ω
�
u+|Λ − u−|Λ�2ds has no negative spectrum provided that ω

is pointwise majorized by a strictly positive function explicitly expressed in terms
of Λ. If, additionally, the domain R2 \ Λ is quasi-conical, we show that σ(HΛω) =
[0,+∞). For a bounded curve Λ in our class and non-varying interaction strength
ω ∈ R, we derive existence of a constant ω∗ > 0 such that σ(HΛω) = [0,+∞) for all
ω ∈ (−∞,ω∗]; informally speaking, bound states are absent in the weak coupling
regime. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939749]

I. INTRODUCTION

In this paper, we study the self-adjoint operator corresponding to the formal differential expression

−∆ − ωδ′(· − Λ), on R2,

with the δ′-interaction supported on a non-closed piecewise-C1 curve Λ ⊂ R2, which is either
bounded with two free endpoints or unbounded with one free endpoint, here ω ∈ L∞(Λ;R) is called
the strength of the interaction. More precisely, for any function u in the Sobolev space H1(R2 \ Λ)
its traces u±|Λ onto two faces of Λ turn out to be well-defined as functions in L2(Λ), and employing
the shorthand notation [u]Λ B u+|Λ − u−|Λ we introduce the following symmetric sesquilinear form:

a
Λ
ω[u, v] B (∇u,∇v)L2(R2;C2) − (ω[u]Λ, [v]Λ)L2(Λ),

dom aΛω B H1(R2 \ Λ), (1.1)

which is closed, densely defined, and semibounded in the Hilbert space L2(R2); see Proposition 3.1.
Let HΛω be defined as the unique self-adjoint operator representing the form aΛω in the usual manner.
We regard HΛω as the Schrödinger operator with δ′-interaction of strength ω supported on Λ.

The aim of this paper is to demonstrate a peculiar spectral property of HΛω. Namely, we show
absence of negative spectrum for HΛω under not too restrictive assumptions on the shape of Λ and
assuming that the strengthω is pointwise majorized by a strictly positive function explicitly expressed
in terms of the shape of Λ. The important point to note here is that the discovered phenomenon is
non-emergent for δ′-interactions supported on loops in R2, cf., [Ref. 3, Theorem 4.4].

a)jexmicha@fjfi.cvut.cz
b)lotoreichik@ujf.cas.cz

0022-2488/2016/57(2)/022101/20/$30.00 57, 022101-1 © 2016 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  147.32.4.13 On: Tue, 19 Jan 2016 14:55:01



022101-2 M. Jex and V. Lotoreichik J. Math. Phys. 57, 022101 (2016)

The basic geometric ingredient in our paper is the concept of monotone curves. A non-closed
piecewise-C1 curve Λ ⊂ R2 is monotone if it can be parametrized via the piecewise-C1 mapping
ϕ : (0,R) → R, R ∈ (0,+∞], as

Λ =
�
x0 + (r cos ϕ(r),r sin ϕ(r)) ∈ R2 : r ∈ (0,R)	, (1.2)

here, x0 ∈ R2 is fixed. For example, a circular arc subtending an angle θ ≤ π is monotone, whereas a
circular arc subtending an angle θ > π is not.

In the next theorem, which is the first main result of our paper, we provide a condition on ω
ensuring absence of negative spectrum for the operator HΛω with Λ being monotone. The statement
of Theorem A below is contained in Theorem 4.2, in Subsection IV B.

Theorem A. Let a monotone piecewise-C1 curve Λ ⊂ R2 be parametrized as in (1.2) via ϕ :
(0,R) → R, R ∈ (0,+∞]. Then the spectrum of HΛω satisfies

σ(HΛω) ⊆ [0,+∞) if ω(r) ≤ 1

2πr


1 + (rϕ′(r))2 , for r ∈ (0,R).

If ω is majorized as above and, additionally, the domain R2 \ Λ is quasi-conical, then σ(HΛω) =
[0,+∞).

Roughly speaking, a domain Ω ⊂ R2 is quasi-conical if it contains a disc of arbitrary large
radius; see Subsection III B for details. In Proposition 4.7, we demonstrate that, in general, the
operator HΛω may have negative spectrum if the δ′-interaction is “sufficiently strong.”

Operators HΛω with non-varying strengths ω ∈ R are of special interest. One can derive from
Theorem A that for a bounded monotone Λ one can find a constant ω∗ > 0 such that

σ(HΛω) = [0,+∞), for all ω ∈ (−∞,ω∗]. (1.3)

In other words, there are no bound states in the weak coupling regime. Computation of the largest
constant ω∗ > 0 such that (1.3) still holds presents a more delicate problem, which will be consid-
ered elsewhere.

In the formulation of the second main result of the paper we use the notion of a linear frac-
tional transformation (LFT). The complex plane C can be extended up to the Riemann sphere
C B C ∪ {∞} with a suitable topology and for a,b,c,d ∈ C such that ad − bc , 0 one defines the
LFT as

M : C → C, M(z) B az + b
cz + d

,

with the exception of the points z = ∞ and z = −d/c if c , 0, which have to be treated separately;
see Subsection II C. The next theorem generalizes Theorem A to the case of curves, which are im-
ages of monotone curves under LFTs; the statement of this theorem is contained in Theorem 4.12,
in Subsection IV C. Here, we confine ourselves to non-varying interaction strengths only.

Theorem B. Let Λ ⊂ R2 be a bounded piecewise-C1 curve. Suppose that there exists a LFT
M : C → C such that M(∞),M−1(∞) < Λ and that M−1(Λ) is monotone. Then there exists a con-
stant ω∗ > 0 such that

σ(HΛω) = [0,+∞), for all ω ∈ (−∞,ω∗].
In the main body of the paper also an explicit formula for ω∗ in the above theorem is provided.

Using Theorem B we can treat, e.g., any circular arc, since it can be mapped via a suitable LFT
to a subinterval of the straight line in R2; see Example 4.13. One may even conjecture that for any
bounded Λ there exists an ω∗ > 0 such that σ(HΛω) = [0,+∞), for all ω ∈ (−∞,ω∗].

Our proofs rely on the min-max principle applied to the form aΛω in (1.1) on a suitable core.
A further important ingredient in our analysis is careful investigation of a model one-dimensional
problem with a point δ′-interaction on the loop.

The results of this paper contribute to a prominent topic in spectral theory: existence/non-
existence of weakly coupled bound states for Schrödinger-type operators. Absence of bound states
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in the weak coupling regime holds for Schrödinger operators with regular potentials in space
dimensions d ≥ 3 (but not for d = 1,2!); see Ref. 38. Also such an effect occurs for δ-interactions
supported on arbitrary compact hypersurfaces in R3 (see Ref. 13) and for δ-interactions on compact
non-closed curves in R3 (see Ref. 17). However, for δ-interactions in R2 supported on arbitrary
compact curves such an effect is non-existent.19,26

Schrödinger operators with δ′-interactions supported on hypersurfaces are attractive from
physical point of view, because they exhibit rather unusual scattering properties, cf., [Ref. 1, Chap.
I.4]. These operators are also physically relevant in photonic crystals theory.20 As a mathematical
abstraction they were perhaps first studied in Refs. 2 and 37, where interactions were supported on
spheres. A rigorous definition of such operators with interactions supported on general hypersur-
faces has been posed in [Ref. 12, Section 7.2] as an open question. Such Hamiltonians with inter-
actions supported on closed hypersurfaces without free boundaries have been rigorously defined
in Ref. 5 using two approaches: via the theory of self-adjoint extensions of symmetric operators
and by means of form methods. Spectral properties of them were investigated in several subsequent
works.3,4,14–16,24,32 In the recent preprint33 Schrödinger operators with δ′-interactions supported
on non-closed curves and surfaces are defined via the theory of self-adjoint extensions and their
scattering properties are discussed.

Let us briefly outline the structure of the paper. Section II presents some preliminaries: Sobolev
spaces, geometry of curves, linear fractional transformations, and a model one-dimensional spectral
problem. Section III provides a rigorous definition of the operator HΛω and a characterisation of its
essential spectrum. Section IV contains proofs of our main results, formulated in Theorems A and B, as
well as some related results and examples. In Section V, final remarks are given and two open questions
are posed. A couple of standard proofs of identities related to LFTs are outsourced to the Appendix.

A. Notations

By DR(x) B {x ∈ R2 : |x − x0| < R}, we denote the open disc of the radius R > 0 with the
center x0 ∈ R2. If such a disc is centered at the origin, we use the shorthand notation DR B DR(0).
By definition, we set D∞ B R2. For a self-adjoint operator T, we denote by σess(T), σd(T), and
σ(T) its essential, discrete, and full spectra, respectively. For an open set Ω ⊂ R2, the space of
smooth compactly supported functions and the first order Sobolev space are denoted by D(Ω) and
by H1(Ω), respectively.

II. PRELIMINARIES

This section contains some preliminary material that will be used in the main part of this paper.
In Subsection II A, we provide basic facts on the Sobolev space H1, in particular, we define the
Sobolev space H1(R2 \ Λ) for a non-closed Lipschitz curve Λ. In Subsection II B, we introduce
the notions of a piecewise-C1 curve and of a monotone curve. The concept of the linear fractional
transformation is discussed in Subsection II C. A model spectral problem for one-dimensional
Schrödinger operator with one-center δ′-interaction on a loop is considered in Subsection II D and a
sufficient condition for absence of negative eigenvalues in this spectral problem is established.

A. Sobolev spaces

Let Ω ⊂ R2 be a simply connected Lipschitz domain from the class described in [Ref. 39,
Chap. VI]. This class of Lipschitz domains includes (as a subclass) Lipschitz domains with compact
boundaries as in [Ref. 35, Chap. 3], hypographs of uniformly Lipschitz functions, and some
other domains with non-compact boundaries. In what follows the Hilbert spaces L2(Ω), L2(Ω;C2),
L2(∂Ω), and H1(Ω) are defined as usual; see, e.g., [Ref. 35, Chap. 3] and Ref. 34. For the sake of
brevity, we denote the scalar products in both L2(Ω) and L2(Ω;C2) by (·, ·)Ω without any danger
of confusion. The scalar product in L2(∂Ω) is abbreviated by (·, ·)∂Ω. The space of functions on Ω
smooths up to the boundary ∂Ω is defined as
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D(Ω) B �
u|Ω : u ∈ D(R2)	.

By [Ref. 35, Theorem 3.29], see also Refs. 34 and 39, the space D(Ω) is dense in both L2(Ω) and
H1(Ω). The natural restriction mapping D(Ω) ∋ u → u|∂Ω ∈ L2(∂Ω) can be extended by continuity
up to the whole space H1(Ω); see, e.g., [Ref. 35, Theorem 3.37] and Ref. 34. The corresponding
extension by continuity H1(Ω) ∋ u → u|∂Ω ∈ L2(∂Ω) is called the trace mapping. The statement of
the first lemma in this subsection appears in several monographs and papers in various forms; see,
e.g., [Ref. 3, Lemma 2.6] and [Ref. 21, Lemma 2.5] for two different proofs of this statement.

Lemma 2.1. Let Ω ⊂ R2 be a Lipschitz domain. Then for any ε > 0 there exists a constant
C(ε) > 0 such that

�
u|∂Ω�2

∂Ω
≤ ε∥∇u∥2

Ω + C(ε)∥u∥2
Ω

holds for all u ∈ H1(Ω).
The following hypothesis will be used throughout the paper.

Hypothesis 2.1. Let Ω+ ⊂ R2 be a simply connected Lipschitz domain from the above class,
whose complement Ω− B R2 \Ω+ is a Lipschitz domain from the same class. Set Σ B ∂Ω+ = ∂Ω−
and suppose that Λ ⊂ Σ is a connected subarc of Σ, which is not necessarily bounded if Σ is
unbounded.

Obviously, the orthogonal sum H1(Ω+) ⊕ H1(Ω−) is a Hilbert space with respect to the scalar
product

(u+ ⊕ u−, v+ ⊕ v−)1 B (u+, v+)H1(Ω+) + (u−, v−)H1(Ω−), u±, v± ∈ H1(Ω±).
The norm associated to this scalar product is denoted by ∥ · ∥1. Let us define the jump of the trace as

[u]Σ B u+|Σ − u−|Σ, u = u+ ⊕ u− ∈ H1(Ω+) ⊕ H1(Ω−).
The Hilbert space L2(Σ) can be decomposed into the orthogonal sum

L2(Σ) = L2(Λ) ⊕ L2(Σ \ Λ).
The scalar products in L2(Λ) and L2(Σ \ Λ) will further be denoted by (·, ·)Λ and (·, ·)Σ\Λ. Clearly
enough, the restrictions of u±|Σ for a u± ∈ H1(Ω±) to the arcs Σ \ Λ and Λ satisfy u±|Σ\Λ ∈ L2(Σ \ Λ)
and u±|Λ ∈ L2(Λ). Let us also introduce the notations

[u]• B u+|• − u−|•, • = Λ,Σ \ Λ, u = u+ ⊕ u− ∈ H1(Ω+) ⊕ H1(Ω−).
The linear space

FΛ B
�
u ∈ D(Ω+) ⊕ D(Ω−) : [u]Σ\Λ = 0

	
(2.1)

is a subspace of the Hilbert space H1(Ω+) ⊕ H1(Ω−), and its closure in H1(Ω+) ⊕ H1(Ω−)
H1(R2 \ Λ) B FΛ

∥ ·∥1 (2.2)

is itself a Hilbert space with respect to the same scalar product (·, ·)1.
Remark 2.2. The above construction of the space H1(R2 \ Λ) can easily be translated to the

higher space dimensions, in which case Λ will be a hypersurface with free boundary (open hyper-
surface).

Remark 2.3. The space H1(R2 \ Λ) can also be defined in an alternative way. The set R2 \ Λ
is an open subset of R2. Hence, one can define for any u ∈ L2(R2) its weak partial derivatives ∂1u
and ∂2u by means of the test functions in D(R2 \ Λ); see, e.g., [Ref. 35, Chap. 3]. Then the space
H1(R2 \ Λ) is given by

H1(R2 \ Λ) = �
u ∈ L2(R2) : ∂1u, ∂2u ∈ L2(R2)	.

We are not aiming to provide here an argumentation that this new definition gives rise to the same
space as in (2.2). It is only important here that the equivalence of these definitions automatically
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implies that the space H1(R2 \ Λ) is independent of the continuation of the arc Λ up to Σ. Another
way of verifying the independence of the space H1(R2 \ Λ) from a continuation of Λ can be found
in Ref. 9.

Next proposition collects some useful properties of the traces of functions in H1(R2 \ Λ) onto
Σ \ Λ and onto Λ.

Proposition 2.4. Let the curves Σ,Λ ⊂ R2, and the domains Ω± ⊂ R2 be as in Hypothesis 2.1.
Let the Hilbert space (H1(R2 \ Λ), (·, ·)1) be as in (2.2). Then the following statements hold.

(i) [u]Σ\Λ = 0, for all u ∈ H1(R2 \ Λ).
(ii) For any ε > 0 there exists a constant C(ε) > 0 such that

�[u]Λ�2
Λ
≤ ε∥∇u∥2

R2 + C(ε)∥u∥2
R2,

for all u ∈ H1(R2 \ Λ).

Proof. (i) It can be easily checked that the continuity of the trace mappings

H1(Ω±) ∋ u± → u±|Σ ∈ L2(Σ)
implies that the mapping

H1(Ω+) ⊕ H1(Ω−) ∋ u → [u]Σ\Λ ∈ L2(Σ \ Λ)
is well-defined and continuous. Note that for any u ∈ H1(R2 \ Λ) there exists an approximating
sequence (un)n ⊂ FΛ (cf., (2.2)) such that ∥un − u∥1 → 0 as n → ∞. Hence, we obtain

[u]Σ\Λ = lim
n→∞

[un]Σ\Λ = 0.

(ii) By Lemma 2.1 for any ε > 0 there exist constants C±(ε) > 0 such that

∥u±|Σ∥2
Σ ≤ (ε/2)∥∇u±∥2

Ω± + C±(ε)∥u±∥2
Ω±, (2.3)

for all u ∈ H1(Ω+) ⊕ H1(Ω−). Set then C(ε) B max{2C+(ε),2C−(ε)}. Using the result of item (i)
and bounds (2.3) we obtain that for any ε > 0 and any u = u+ ⊕ u− ∈ H1(R2 \ Λ) ⊂ H1(Ω+) ⊕
H1(Ω−) holds

�[u]Λ�2
Λ
=
�[u]Σ�2

Σ
≤ 2∥u+|Σ∥2

Σ + 2∥u−|Σ∥2
Σ

≤ ε∥∇u+∥2
Ω+
+ ε∥∇u−∥2

Ω− + 2C+(ε)∥u+∥2
Ω+
+ 2C−(ε)∥u−∥2

Ω−

≤ ε∥∇u∥2
R2 + C(ε)∥u∥2

R2.

�

Remark 2.5. For ω1,ω2 ∈ L∞(Λ;R) by writing ω1 ≤ ω2 we will always implicitly mean that
ω2 − ω1 ≥ 0 almost everywhere.

B. On curves in R2

We begin this subsection by defining the notion of a piecewise-C1 curve. It should be empha-
sized that, especially for unbounded curves, definition of a piecewise-C1 curve is non-unique in the
mathematical literature.

Definition 2.6. A non-closed curve Λ ⊂ R2 satisfying Hypothesis 2.1 is called piecewise-C1 if it
can be parametrized via a piecewise-C1 mapping

λ : I → R2, λ(s) B (λ1(s), λ2(s)), I B (0,L), L ∈ (0,+∞], (2.4)

such that λ(I) = Λ and λ is injective. If, moreover, |λ ′(s)| = 1 for almost all s ∈ I, then such a
parametrization is called natural and L is then called the length of Λ.
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We require in the above definition, that the curve Λ satisfies Hypothesis 2.1, to avoid increasing
oscillations at infinity for unbounded curves.

Further, we proceed to define a (non-standard) concept of a monotone curve. The authors have
not succeeded to find a common name for this concept in the literature on geometry.

Definition 2.7. A piecewise-C1 curve Λ ⊂ R2 is called monotone if it can be parametrized via a
piecewise-C1 mapping ϕ : (0,R) → R with R ∈ (0,+∞] such that

Λ =
�
x0 + (r cos ϕ(r),r sin ϕ(r)) ∈ R2 : r ∈ (0,R)	,

with some fixed x0 ∈ R2.

Informally speaking, a curve Λ is monotone if the distance (measured in R2) from one of its
endpoints is always increasing when travelling along Λ from this endpoint towards another endpoint
or towards infinity.

Remark 2.8. For a curve Λ ⊂ R2 as in Definition 2.7 any function ω ∈ L∞(Λ) can be viewed as
a function of the argument r ∈ (0,R).

C. Linear fractional transformations

For later purposes we introduce LFTs and state several useful properties of them. To work with
LFT it is more convenient to deal with the extended complex plane (Riemann sphere) C B C ∪ {∞}
rather than the usual complex plane. The complex plane itself as a subset of C can be naturally
identified with the Euclidean plane R2 and occasionally we will use this identification.

For the purpose of convenience the extended complex plane C is endowed with a suitable
topology: a sequence (zn)n ∈ C converges to z ∈ C if one of the following conditions holds:

(i) z = ∞ and there exists N ∈ N such that zn = ∞ for all n ≥ N ;
(ii) z = ∞ and any infinite subsequence (znk)k ⊂ C of (zn)n satisfies lim

k→∞
|znk | = ∞;

(iii) z ∈ C, there exists N ∈ N such that zn , ∞ for all n ≥ N , and lim
n→∞

zn = z in the sense of
convergence in C.

This definition of topology can also be easily reformulated in terms of open sets. The above topol-
ogy on C is equivalent to the topology of S2 (unit sphere in R3). A natural homeomorphism between
C and S2 is called stereographic projection; see, e.g., [Ref. 29, Section 6.2.3].

For a,b,c,d ∈ C such that ad − bc , 0 the mapping M : C → C is a LFT if one of the two
conditions holds:

(i) c = 0, d , 0, M(∞) B ∞, and M(z) B (a/d)z + (b/d) for z ∈ C.
(ii) c , 0, M(∞) B a/c, M(−d/c) B ∞, and M(z) B az+b

cz+d
for z ∈ C, z , −d/c.

The following statement can be found in [Ref. 29, Section 6.2.3].

Proposition 2.9. Any LFT M : C → C is a homeomorphism with respect to the above topology
on C and its inverse M−1 is also a LFT. The composition M1 ◦ M2 of two LFTs M1,M2 is a LFT as
well.

It is convenient to introduce M1(x, y) B Re M(x + iy) and M2(x, y) B Im M(x + iy). Then
Cauchy-Riemann equations

∂xM1 = ∂yM2, ∂xM2 = −∂yM1, (2.5)

hold pointwise in R2 except the point M−1(∞). In view of these equations the Jacobian JM of the
mapping M can be computed (again except the point M−1(∞)) by the formulae

JM = (∂xM1)2 + (∂yM1)2 = (∂xM2)2 + (∂yM2)2, (2.6)

also the following relation turns out to be useful:

⟨∇M1,∇M2⟩ = ∂xM1∂xM2 + ∂yM1∂yM2 = 0, (2.7)
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i.e., the vectors ∇M1 and ∇M2 are orthogonal to each other.
Next, auxiliary lemma is of purely technical nature and is proven for convenience of the reader.

Lemma 2.10. Let M be a LFT with the Jacobian JM. Then for any x ∈ R2, x , M−1(∞), and
any function u : R2 ≃ C → C differentiable at the point M(x)

|(∇v)(x)|2 = |(∇u)(M(x))|2JM(x)
holds with v = u ◦ M.

Proof. Using relations (2.6), (2.7), and the chain rule for differentiation we obtain

|∇v |2 = �(u′x ◦ M)∂xM1 + (u′y ◦ M)∂xM2
�2
+
�(u′x ◦ M)∂yM1 + (u′y ◦ M)∂yM2

�2

=
(|u′x ◦ M |2 + |u′y ◦ M |2)JM + 2Re

�(u′xu′y) ◦ M
�
·


∇M1,∇M2

�

=
(|u′x ◦ M |2 + |u′y ◦ M |2)JM = |(∇u) ◦ M |2JM .

The claim is thus shown. �

D. Point δ ′-interaction on a loop

In this subsection, we introduce an auxiliary self-adjoint Schrödinger operator Td,ω acting in
the Hilbert space (L2(I), (·, ·)I) with I B (0,d) and corresponding to a point δ′-interaction on the
one-dimensional loop of length d > 0. Employing the following shorthand notation:

[ψ]∂I B ψ(d−) − ψ(0+), ψ ∈ H2(I),
we define

Td,ωψ B −ψ ′′, dom Td,ω B
�
ψ ∈ H2(I) : ψ ′(0+) = ψ ′(d−) = ω[ψ]∂I	, (2.8)

where ω ∈ R; see Refs. 1, 7, 10, 18, 23, and 27 for the investigations of more general operators
of this type. Note that ω = 0 corresponds to Neumann boundary conditions at the endpoints. Next
proposition states a spectral property of Td,ω, which is useful for our purposes.

Proposition 2.11. The self-adjoint operator Td,ω in the Hilbert space L2(I), defined in (2.8), is
non-negative if dω ≤ 1.

Proof. We prove this proposition via construction of an explicit condition for the negative
spectrum of Td,ω and its analysis. Obviously, the spectrum of Td,ω is discrete (due to the compact
embedding of H2(I) into L2(I)). An eigenfunction of Td,ω, which corresponds to a negative eigen-
value λ = −κ2 < 0 (κ > 0) is characterized by the following two conditions:

− ψ ′′(x) = −κ2ψ(x), (2.9a)
ψ ′(0+) = ψ ′(d−) = ω[ψ]∂I . (2.9b)

Condition (2.9a) is satisfied by a function, which can be represented in the form

ψ(x) = A exp(κx) + B exp(−κx), x ∈ (0,d),
with some constants A,B ∈ C. Simple computations yield

ψ(0+) = A + B, ψ(d−) = A exp(κd) + B exp(−κd),
ψ ′(0+) = κA − κB, ψ ′(d−) = κA exp(κd) − κB exp(−κd).

The above identities and condition (2.9b) together imply

A =
1 − exp(−κd)
1 − exp(κd) B, (2.10a)

κA − κB = ω
(
A
�

exp(κd) − 1
�
+ B

�
exp(−κd) − 1

�)
. (2.10b)
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Substituting formula (2.10a) into (2.10b), we arrive at

κB
(

1 − exp(−κd)
1 − exp(κd) − 1

)
= ω

(
− B(1 − exp(−κd)) + B(exp(−κd) − 1))

that is equivalent to

exp(−κd) − exp(κd) = 2ω
κ

(
1 − exp(−κd)) (1 − exp(κd)) .

Making several steps further in the computations, we obtain

1 =
2ω
κ

(1 − exp(−κd))(1 − exp(κd))
exp(κd)(exp(−2κd) − 1) =

2ω
κ

exp(κd) − 1
exp(κd)(exp(−κd) + 1)

=
2ω
κ

1 − exp(−κd)
1 + exp(−κd) .

Define then the following function:

Θω(κ) B 2ω
κ

1 − exp(−κd)
1 + exp(−κd) , κ > 0.

Hence, the point λ = −κ2 is a negative eigenvalue of Td,ω if and only if Θω(κ) = 1. Let us consider
the following auxiliary function:

f (x) B 1 − e−x
1 + e−x , x ≥ 0,

which is clearly continuously differentiable, and whose derivative is given by

f ′(x) = 2
(ex/2 + e−x/2)2 , x ≥ 0.

Hence, using the standard inequality a + 1/a > 2, a ∈ (0,+∞), a , 1, we get f ′(x) < 1/2 for all
x > 0. Applying the mean value theorem to f , we obtain

f (x) = f (0) + f ′(ξ)(x − 0) = f ′(ξ)x < x
2
,

here, ξ ∈ (0, x). Finally, note that

0 ≤ Θω(κ) = 2ω
κ

f (κd) < dω.

Thus, for dω ≤ 1 the equation Θω(κ) = 1 has no positive roots and the claim follows. �

According to, e.g., Ref. 28, the operator Td,ω represents the sesquilinear form

ad,ω[ψ,ϕ] B (ψ ′, ϕ′)I − ω[ψ]∂I[ϕ]∂I , dom ad,ω B H1(I), (2.11)

and we can derive the following simple corollary of Proposition 2.11.

Corollary 2.12. Let the sesquilinear form ad,ω be as in (2.11). If dω ≤ 1, then ad,ω[ψ] ≥ 0 for
all ψ ∈ H1(I).

Remark 2.13. Consider the non-negative symmetric operator

Sψ B −ψ ′′, dom S B H2
0(I),

in L2(I). The operator S is known to have deficiency indices (2,2). One may consider self-adjoint
extensions of S in L2(I). The self-adjoint operator Td,ω with dω = 1 turns to be the Krein-von
Neumann extension of S (the “smallest” non-negative self-adjoint extension of S), i.e., for any other
non-negative self-adjoint extension T of S

(T + a)−1 ≤ (Td,ω + a)−1

holds for all a > 0; see, e.g., [Ref. 36, Corollary 10.13, Theorem 14.25, Example 14.14].
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III. DEFINITION OF THE OPERATOR AND ITS ESSENTIAL SPECTRUM

In this section, we rigorously define using form methods Schrödinger operators with δ′-
interactions supported on non-closed curves as in Hypothesis 2.1 and characterise their essential
spectra. In the latter characterisation the notion of a quasi-conical domain plays an essential role.

A. Definition of the operator via its sesquilinear form

Schrödinger operators with δ′-interactions supported on closed hypersurfaces were defined
and investigated in Refs. 2, 3, 5, and 14–16. The goal of this subsection is to define rigorously
Schrödinger operator with δ′-interactions supported on a non-closed curve Λ satisfying Hypoth-
esis 2.1. In the case of a bounded C2,1-smooth curve Λ our definition of the operator agrees with
the one in the recent preprint,33 where this Hamiltonian is defined using the theory of self-adjoint
extensions of symmetric operators.

Let ω ∈ L∞(Λ;R) and denote by ∥ω∥∞ its sup-norm. Recall the definition of the sesquilinear
form aΛω in (1.1)

a
Λ
ω[u, v] B (∇u,∇v)R2 − (ω[u]Λ, [v]Λ)Λ, dom aΛω B H1(R2 \ Λ). (3.1)

If ω ≡ 0, we occasionally write aΛN instead of aΛω.

Proposition 3.1. Let Λ ⊂ R2 be as in Hypothesis 2.1, let ω ∈ L∞(Λ;R), and let the linear space
FΛ be as in (2.1). Then the sesquilinear form aΛω in (3.1) is closed, densely defined, symmetric, and
lower-semibounded in the Hilbert space L2(R2). Moreover, FΛ ⊂ dom aΛω is a core for this form.

Proof. Since aΛω[u,u] ∈ R for all u ∈ dom aΛω, the form aΛω is, clearly, symmetric. It is straight-
forward to see the chain of inclusions D(R2) ⊂ FΛ ⊂ dom aΛω. Density of dom aΛω in L2(R2) follows
thus from the density ofD(R2) in L2(R2); for the latter see, e.g., [Ref. 35, Corollary 3.5].

The norm induced in the conventional way by the form aΛN on its domain H1(R2 \ Λ) is easily
seen to be equivalent to the norm ∥ · ∥1 introduced in Subsection II A. Hence, the form aΛN is closed
and the space FΛ, being dense in H1(R2 \ Λ), is a core for it, cf., [Ref. 36, Dfn. 10.2]. Let us then
introduce an auxiliary form

a
′[u, v] B (ω[u]Λ, [v]Λ)Λ, dom a′ B H1(R2 \ Λ).

Using Proposition 2.4 (ii) we get for all ε > 0 the following bound:

|a′[u,u]| ≤ ε ∥ω∥∞aΛN[u,u] + C(ε)∥ω∥∞∥u∥2
R2,

with some C(ε) > 0. Choosing ε < 1
∥ω∥∞ in the above bound, we obtain that a′ is relatively bounded

with respect to aΛN with form bound <1. Hence, by [Ref. 36, Theorem 10.21] (KLMN theorem) the
form aΛω = a

Λ
N + a

′ is closed and the space FΛ is a core for it. �

Definition 3.2. The self-adjoint operator HΛω in L2(R2) corresponding to the form aΛω via the
first representation theorem (see, e.g., Ref. 25, Chap. VI, Theorem 2.1]) is called Schrödinger
operator with δ′-interaction of strength ω supported on Λ.

If ω is a non-negative function, then we occasionally say that the respective δ′-interaction is
attractive.

B. Essential spectrum

In this subsection, we characterise the essential spectrum of the operator HΛω. To this aim, we
require the following auxiliary lemma.

Lemma 3.3. Let the self-adjoint operator HΛω be as in Definition 3.2. Then for any u ∈ D(R2 \
Λ) holds

u ∈ dom HΛω and HΛωu = −∆u. (3.2)
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Proof. Let Σ and Ω± be as in Hypothesis 2.1. Let u ∈ D(R2 \ Λ) ⊂ FΛ ⊂ dom aΛω and v ∈
dom aΛω. Define u± B u � Ω± and v± B v � Ω±. With these notations in hands we get

a
Λ
ω[u, v] = (∇u+,∇v+)Ω+ + (∇u−,∇v−)Ω−,

where the boundary term in (3.1) vanished due to the choice of u. Applying the first Green identity
(see, e.g. [Ref. 35, Lemma 4.1] and also [Ref. 3, Sec. 2]) to the above formula, we get

a
Λ
ω[u, v] = (−∆u+, v+)Ω+ + (−∆u−, v−)Ω−

+
�
∂ν+u+|Σ\Λ + ∂ν−u−|Σ\Λ, v |Σ\Λ

�
Σ\Λ

+
�
∂ν+u+|Λ, v+|Λ

�
Λ
+
�
∂ν−u−|Λ, v−|Λ

�
Λ
= (−∆u, v)R2,

where we employed that ∂ν±u±|Λ = 0, that ∂ν+u+|Σ\Λ + ∂ν−u−|Σ\Λ = 0, and that [v]Σ\Λ = 0; for the
latter, cf., Proposition 2.4 (i). Finally, the first representation theorem yields (3.2). �

Next, we define the notion of the quasi-conical domain; see Ref. 22 and also [Ref. 11,
Def. X.6.1].

Definition 3.4. A domain Ω ⊂ R2 is called quasi-conical if for any n ∈ N there exists xn ∈ R2

such that Dn(xn) ⊂ Ω. Recall that here Dn(xn) is the disc of radius n with the center xn.

Using this notion, we prove that positive semi-axis lies inside the spectrum of HΛω if the domain
R2 \ Λ is quasi-conical. The technique of this proof is rather standard.

Proposition 3.5. Let the curve Λ ⊂ R2 as in Hypotheses 2.1 be such that the domain R2 \ Λ is
quasi-conical. Then the spectrum of the self-adjoint operator HΛω in Definition 3.2 satisfies

σ(HΛω) ⊇ [0,+∞). (3.3)

Proof. First, for any k ∈ R2, define the sequence

un(x) B vn(x)eik ·x, n ∈ N,

where vn(x) B n−1v(n−1x), n ∈ N, and v is a non-trivial function in D(R2) with supp v ⊂ D1 and
such that ∥v∥R2 = 1. The prefactor in the definition of vn is chosen in such a way that also each vn
satisfies ∥vn∥R2 = 1. In fact, we have (by direct computations)

∥vn∥R2 = 1, ∥∇vn∥R2 =
∥∇v∥R2

n
, ∥∆vn∥R2 =

∥∆v∥R2

n2 . (3.4)

Second, we set

wn(x) B un(x − xn), n ∈ N,

with xn corresponding to the quasi-conical domain R2 \ Λ according to Definition 3.4. Hence, we
get

supp wn ⊂ Dn(xn) ⊂ R2 \ Λ,

and therefore wn ∈ D(R2 \ Λ) for all n ∈ N. It is clear in view of Lemma 3.3 that each wn belongs to
dom HΛω ⊃ D(R2 \ Λ).

A direct computation yields

| − ∆wn − |k |2wn |2 ≤ 2|∆vn |2 + 4|k · ∇vn|2 ≤ 2|∆vn |2 + 4|k |2 · |∇vn |2.
Using (3.4) and Lemma 3.3, we therefore have

∥HΛωwn − |k |2wn

�2
R2 = ∥ − ∆wn − |k |2wn∥2

R2 ≤ 2∥∆vn∥2
R2 + 4|k |2∥∇vn∥2

R2 → 0, n → ∞.

Since the choice of k ∈ R2 was arbitrary, we conclude applying Weyl’s criterion (see [Ref. 41,
Sec. 7.4] and also [Ref. 30, Theorem 4]) that [0,+∞) ⊆ σ(HΛω). �

We emphasize that not for every non-closed curve Λ ⊂ R2 the domain R2 \ Λ is quasi-conical;
e.g., for the Archimedean spiral, defined in polar coordinates (r, ϕ) by the equation r(ϕ) B a + bϕ,
ϕ ∈ R+, a,b > 0, the domain R2 \ Λ is not of this type.
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In the case of bounded curves, we show that the essential spectrum of HΛω coincides with the set
[0,+∞).

Proposition 3.6. Let the bounded curve Λ ⊂ R2 be as in Hypothesis 2.1 and let the self-adjoint
operator HΛω be as in Definition 3.2. Then its essential spectrum is characterised as

σess(HΛω) = [0,+∞).

Proof. Let the curve Σ ⊂ R2 and the domains Ω± ⊂ R2 be as in Hypothesis 2.1, in particular,
Λ ⊂ Σ. Let us also set c B ∥ω∥∞. Consider the sesquilinear form

a
Σ
c[u, v] B (∇u,∇v)R2 − c([u]Σ, [v]Σ)Σ,

dom aΣc B H1(Ω+) ⊕ H1(Ω−).
(3.5)

According to [Ref. 3, Prop. 3.1] the form aΣc is closed, densely defined, symmetric, and lower-
semibounded in L2(R2). The self-adjoint operator HΣc in L2(R2) representing the form aΣc , satisfies

σess(HΣc) = [0,+∞), (3.6)

see [Ref. 3, Theorem 4.2] and also [Ref. 5, Theorem 3.16]. The sesquilinear forms aΛω and aΣc in (3.1)
and (3.5), respectively, naturally satisfy the ordering

a
Σ
c ≺ aΛω

in the sense of [Ref. 25, Section VI.2.5], see also [Ref. 6, Section 10.2.3]. Indeed, first, dom aΛω ⊂
dom aΣc and second, for any u ∈ dom aΛω the inequality aΣc[u,u] ≤ aΛω[u,u] holds due to the choice of
the constant c ≥ 0. Hence, using (3.6) and [Ref. 6, Section 10.2, Theorem 4] we arrive at

0 = inf σess(HΣc) ≤ inf σess(HΛω).
Therefore, we end up with the following inclusion:

σess(HΛω) ⊆ [0,+∞). (3.7)

Moreover, for simple geometric reasons for any bounded curve Λ the domain R2 \ Λ is quasi-
conical and hence by Proposition 3.5 the opposite inclusion

σess(HΛω) ⊇ [0,+∞) (3.8)

holds as well. The claim then follows from these two inclusions ((3.7) and (3.8)). �

IV. NON-NEGATIVITY OF HΛω
This section plays the central role in the present paper. We obtain various sufficient conditions

for the operator HΛω to be non-negative. Under additional assumptions, we also show that positive
spectrum of HΛω comprises the whole positive real axis and thus the operator HΛω has no bound
states. In the proofs, we use the min-max principle for self-adjoint operators, a reduction to the
one-dimensional model problem discussed in Subsection II D, and some insights from geometry
and complex analysis.

A. An auxiliary lemma

In this subsection, we prove a lemma, based on which we show non-negativity of the operators
HΛω under certain assumptions on ω. For the formulation of this lemma, we require the following
hypothesis, the assumptions of which are grouped in three logical blocks labelled by capital latin
letters.

Hypothesis 4.1. (A) Let a monotone piecewise-C1 curve Λ ⊂ R2 be parametrized via the mapp-
ing ϕ : (0,R) → R, R ∈ (0,+∞], as in Definition 2.7 with x0 = 0.
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(B) Suppose that piecewise-C1 domains G± ⊂ DR satisfy the following conditions:

G+ ∩ G− = ∅, DR = G+ ∪ G−, and Λ ⊂ G+ ∩ G−.

Set Σ B G+ ∩ G−. In particular, the inclusion Λ ⊂ Σ holds.
(C) Let the function ω ∈ L∞(Λ;R) as a function of the distance r from the origin satisfy

ω(r) ≤ 1

2πr


1 + (rϕ′(r))2 , for r ∈ (0,R). (4.1)

We further deal with the space H1(G+) ⊕ H1(G−) ⊂ L2(DR). Let us introduce also the follow-
ing notations:

[u]• B u+|• − u−|•, • = Λ or Σ \ Λ, u = u+ ⊕ u− ∈ H1(G+) ⊕ H1(G−).
Clearly, one can define polar coordinates (r, ϕ) on DR, which are connected with the usual Carte-
sian coordinates via standard relations x = r cos ϕ and y = r sin ϕ. The points (r, ϕ + 2πk) with
k ∈ Z are identified with each other. The disc DR in the polar coordinate system is given by
DR =

�(r, ϕ) : r ∈ [0,R), ϕ ∈ [0,2π)	.
For the substantial simplification of further computations we make use of the following short-

hand notation:

f
Λ
DR,ω

[u] B ∥∇u∥2
DR
− (ω[u]Λ, [u]Λ)Λ, u ∈ D(G+) ⊕ D(G−), (4.2)

where all the objects are as in Hypothesis 4.1. Now, we formulate and prove the following lemma.

Lemma 4.1. Assume that Hypothesis 4.1 holds. Then fΛDR,ω
[u] ≥ 0 for all u ∈ D(G+) ⊕ D(G−)

such that [u]Σ\Λ = 0.

Proof. Let u ∈ D(G+) ⊕ D(G−) be such that [u]Σ\Λ = 0. The proof of fΛDR,ω
[u] ≥ 0 is then split

in three steps.
Step 1. For any (x, y) ∈ DR \ Σ the value |(∇u)(x, y)|2 can be expressed in polar coordinates

(r, ϕ) as

|(∇u)(x, y)|2 = |(∂ru)(r, ϕ)|2 + 1
r2 |(∂ϕu)(r, ϕ)|2.

Using the above expression for the gradient, we obtain the following estimate:

∥∇u∥2
DR
=

 2π

0

 R

0
|(∇u)(r, ϕ)|2rdrdϕ ≤

 R

0

1
r

(  2π

0
|(∂ϕu)(r, ϕ)|2dϕ

)
dr, (4.3)

in which we have thrown away a positive term in the second step. Interchanging of the integrals in
the above computation can be justified by Fubini’s theorem (see, e.g., [Ref. 40, Chap. 2, Theorem
3.1]).

Step 2. Using the mapping ϕ : (0,R) → R as in Hypothesis 4.1 (A) we define the following
auxiliary function:

j(r) B


1 + (rϕ′(r))2, r ∈ (0,R).
The curvilinear integral along Λ in (4.2) can be rewritten in terms of the mapping ϕ : (0,R) → R and
the function j in the conventional way and then further estimated with the help of assumption (4.1)

(ω[u]Λ, [u]Λ)Λ =
 R

0
ω(r)j(r)|u+(r, ϕ(r)) − u−(r, ϕ(r))|2dr

≤
 R

0

1
2πr

�
u+(r, ϕ(r)) − u−(r, ϕ(r))�2dr.

(4.4)

Step 3. Define the following function:

S(r) B
 2π

0
|(∂ϕu)(r, ϕ)|2dϕ − 1

2π
�
u+(r, ϕ(r)) − u−(r, ϕ(r))�2, (4.5)
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where r ∈ (0,R). Thanks to the choice of u, for all r ∈ (0,R) the function [0,2π) ∋ ϕ → u(r, ϕ)
can naturally be identified with the piecewise-C1 function ψr on the interval I = (0,2π), which
by [Ref. 36, App. E] belongs to H1(I). Moreover, the relation S(r) = ad,ω[ψr] holds with the form
ad,ω as in (2.11), where d = 2π and ω = 1/2π. In particular, dω = 2π/2π = 1 and by Corollary 2.12
we obtain

S(r) ≥ 0, for all r ∈ (0,R).
Finally, using (4.3), (4.4) and non-negativity of S(r) we arrive at

f
Λ
DR,ω

[u] ≥
 R

0

S(r)
r

dr ≥ 0.

�

B. Non-negativity of HΛω for monotone Λ

In this subsection, we obtain various explicit sufficient conditions on ω ensuring non-negativity
of HΛω assuming that Λ is monotone. General results are illustrated with two examples: an
Archimedean spiral and a subinterval of the straight line in R2.

Theorem 4.2. Let a monotone piecewise-C1 curve Λ ⊂ R2 be parametrized via ϕ : (0,R) → R,
R ∈ (0,+∞], as in Definition 2.7. Let the self-adjoint operator HΛω be as in Definition 3.2 with
ω ∈ L∞(Λ;R). Then

σ(HΛω) ⊆ [0,+∞) if ω(r) ≤ 1

2πr


1 + (rϕ′(r))2 , for r ∈ (0,R).

If ω is majorized as above, and additionally, the domain R2 \ Λ is quasi-conical, then σ(HΛω) =
[0,+∞).

Proof. Let Σ and Ω± be as in Hypothesis 2.1. Without loss of generality, we assume that x0 = 0
in Definition 2.7.

Let us define the complement Ωc B R
2 \ DR of the disc DR, the curve Γ B Σ∩DR, and the

domains G± B Ω±∩DR. It is straightforward to see that the tuple {DR,G+,G−,Λ,ω} satisfies
Hypothesis 4.1.

Let u ∈ FΛ and define uR B u � DR, uc B u � Ωc. Then it holds that

uR ∈ D(G+) ⊕ D(G−) and [uR]Γ\Λ = 0.

Hence, using Lemma 4.1 we get

a
Λ
ω[u,u] = fΛDR,ω

[uR] + ∥∇uc∥2
Ωc
≥ fΛDR,ω

[uR] ≥ 0.

Since FΛ is a core for the form aΛω, we get by [Ref. 8, Theorem 4.5.3] that the self-adjoint operator
HΛω is non-negative. If, additionally, the domain R2 \ Λ is quasi-conical, Proposition 3.6 implies that

σ(HΛω) = [0,+∞).
�

Example 4.3. Let the piecewise-C1 curve Λ ⊂ R2 be defined as

Λ B {(r cos(r),r sin(r)) ∈ R2 : r ∈ R+}.
Obviously, this curve is monotone in the sense of Definition 2.7 with x0 = 0 and ϕ(r) B r, r ∈
(0,+∞). The curve Λ is a special case of an Archimedean spiral. Theorem 4.2 yields that

σ(HΛω) ⊆ [0,+∞) if ω(r) ≤ 1

2πr
√

1 + r2
, for r > 0.
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The case of a non-varying interaction strength ω is of special interest. In the rest of this
subsection, we assume for the sake of demonstrativeness that ω ∈ R is a constant. Define also the
following characteristic of a bounded monotone piecewise-C1 curve Λ ⊂ R2 (parametrized as in
Definition 2.7):

ω∗(Λ) B inf
r ∈(0,R)

1

2πr


1 + (rϕ′(r))2 . (4.6)

It is not difficult to see that 0 < ω∗(Λ) < +∞.
The following corollary is a direct consequence of Theorem 4.2, Proposition 3.6, and simple

geometric argumentation.

Corollary 4.4. Let Λ ⊂ R2 be a bounded monotone piecewise-C1 curve and let the self-adjoint
operator HΛω be as in Definition 3.2 with non-varying strength ω ∈ R. Then

σ(HΛω) = [0,+∞), for all ω ∈ (−∞,ω∗],
with ω∗ = ω∗(Λ) > 0 defined in (4.6).

To illustrate this corollary we provide an example.

Example 4.5. Consider the interval of length L > 0 in the plane:

Λ B {(x,0) ∈ R2 : 0 < x < L}. (4.7)

Clearly, the interval Λ is monotone in the sense of Definition 2.7 with x0 = 0 and ϕ(r) = 0,
r ∈ (0,L). Then we get from Corollary 4.4, using formula (4.6), that

σ(HΛω) = [0,+∞) for all ω ∈
�
−∞, 1

2πL

�
.

Remark 4.6. Let Λ be as in (4.7). It is worth noting that the result of the above example can be
improved in the following way. Define the points x0 = (0,0), x1 = (0,L), the intervals

Λ0 B {(x,0) ∈ R2 : 0 < x < L/2}, Λ1 B {(x,0) ∈ R2 : L/2 < x < L},
the discs DL/2(x0), DL/2(x1), and the complement

Ωc B R
2 \ (DL/2(x0) ∪ DL/2(x1))

of the closure of their union. Let u ∈ FΛ and define uk B u � DL/2(xk), k = 0,1, uc B u � Ωc.
Assuming that ω ∈ (−∞, 1

πL
], we get by Lemma 4.1 that

a
Λ
ω[u,u] = fΛ0

DL/2(x0),ω[u0] + fΛ1
DL/2(x1),ω[u1] + ∥∇uc∥2

Ωc
≥ 0.

Thus, the operator HΛω is non-negative and by Proposition 3.6 we get σ(HΛω) = [0,+∞).
One may expect that for a sufficiently large coupling constant ω > 0 or for a sufficiently long

curve Λ negative spectrum of the self-adjoint operator HΛω is non-empty. In the next proposition, we
confirm this expectation via an example.

Proposition 4.7. Let Λ ⊂ R2 be as in (4.7) and the self-adjoint operator HΛω be as in Defini-
tion 3.2 with non-varying strength ω ∈ R. Then

σd(HΛω) ∩ (−∞,0) , ∅, for all ω ∈
�
π

2L ,+∞
�
.

Proof. Let us split the plane R2 into three domains

Ω1 B (−∞,0) × R, Ω2 B (0,L) × R, Ω3 B (L,+∞) × R,
via straight lines

Π1 B {0} × R, Π2 B {L} × R,
as indicated in Figure 1.
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FIG. 1. Splitting of R2 into three domains {Ωk}3
k=1.

Consider the sesquilinear form

a
Λ
ω,D[u, v] B aΛω[u, v], dom aΛω,D B

�
u ∈ dom aΛω : u|Πk = 0, k = 1,2

	
.

It is not difficult to check that the sesquilinear form aΛω,D is closed, symmetric, densely defined,
and semibounded in L2(R2). This form induces via the first representation theorem the self-adjoint
operator HΛω,D in L2(R2), which can be represented as the orthogonal sum H1 ⊕ H2 ⊕ H3 with respect
to the decomposition L2(R2) = ⊕3

k=1L2(Ωk). Note that H1 and H3 are both non-negative and their
spectra are given by the set [0,+∞). The spectrum of H2 can be computed via separation of variables
in the stripΩ2. In particular, the ground state of H2 corresponds to the eigenvalue

λ1(H2) = π2

L2 − 4ω2,

where we used that the one-dimensional Schrödinger operator on the full-line with one-center point
δ′-interaction of strength ω > 0 has the lowest eigenvalue −4ω2, cf., [Ref. 1, Chap. I.4], where not
ω, but β = 1/ω is called the strength of δ′-interaction.

If the assumption in the formulation of the proposition holds, then λ1(H2) < 0 and the operator
HΛω,D has at least one negative eigenvalue.

It remains to note that by Proposition 3.6 we have σess(HΛω) = [0,+∞) and that the form
ordering

a
Λ
ω ≺ aΛω,D

can easily be verified, which yields by [Ref. 6, Section 10.2, Theorem 4] that the operator HΛω has at
least one negative eigenvalue. �

C. Absence of bound states for HΛω and LFTs

In this subsection, we show absence of bound states in the weak coupling regime for a class
of bounded non-monotone piecewise-C1 curves, which are (with minor restrictions) images of
bounded monotone curves under LFTs. Since the identical transform M(z) = z is a LFT, this class is
certainly larger than the class of bounded monotone curves. As an example, we treat δ′-interaction
supported on a circular arc subtending an angle θ > π.

First, we provide for convenience of the reader two standard claims on change of variables
under LFT. The proofs of them are outsourced to the Appendix.

Lemma 4.8. Let Λ ⊂ R2 be a bounded curve as in Hypothesis 2.1, let the space FΛ be as
in (2.1), and let M : C → C be a LFT such that M(∞),M−1(∞) < Λ. Then for any u ∈ FΛ

R2
|∇u|2dx =


R2
|∇v |2dx (4.8)

holds with v B u ◦ M.

Remark 4.9. The function v itself in the formulation of the above lemma is continuous and
piecewise smooth, but it is not necessarily compactly supported or square-integrable.
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Lemma 4.10. Let Λ ⊂ R2 be a bounded piecewise-C1 curve, parametrized via the mapping
λ : I → R2, I B (0,L), as in Definition 2.6, let the space FΛ be as in (2.1) and let ω ∈ L∞(Λ;R).
For a LFT M : C → C with JM as in (2.6) and such that M(∞),M−1(∞) < Λ define Γ B M−1(Λ),
γ B M−1 ◦ λ and

ω(γ(s)) B ω(λ(s))


JM(γ(s)), s ∈ I . (4.9)

Then the relation
�
ω[u]Λ, [u]Λ�Λ =

�
ω[v]Γ, [v]Γ�Γ

holds for any u ∈ FΛ and v B u ◦ M.

Remark 4.11. Note that the function v in the formulation of the above lemma does not belong
to FΓ in general. However, v± B v � M−1(Ω±) with Ω± as in Hypothesis 2.1 are well-defined
and continuous up to Γ. Hence, the restrictions v±|Γ are meaningful and [v]Γ B v+|Γ − v−|Γ is
well-defined.

Now, we can formulate the key result of this subsection, whose proof with all the above
preparations is rather short.

Theorem 4.12. Let Λ ⊂ R2 be a bounded piecewise-C1 curve and let the self-adjoint operator
HΛω in L2(R2) be as in Definition 3.2 with non-varying strength ω ∈ R. Suppose that there exists a
LFT M : C → C such that

(a) M(∞),M−1(∞) < Λ,
(b) Γ B M−1(Λ) is monotone.

Let the constant ω∗(Γ) > 0 be associated to Γ via (4.6). Then it holds that

σ(HΛω) = [0,+∞) for all ω ∈ (−∞,ω∗],
where ω∗ B

ω∗(Γ)
supz∈Γ

√
JM(z) .

Proof. Step 1. Suppose that the curve Λ is parametrized via the mapping λ : (0,L) → R2 (as in
Definition 2.6). Define the mapping γ B M−1 ◦ λ. Due to assumption (a) the curve Γ is bounded
and the mapping γ parametrizes it. Without loss of generality suppose that the curve Γ is monotone
in the sense of Definition 2.7 with x0 = γ(0) = 0 and with ϕ : (0,R) → R, R = |γ(L)|. Consider the
complement Ωc B R

2 \ DR of the disc DR. Let the curve Σ and the domains Ω± be associated to Λ
as in Hypothesis 2.1.

Define auxiliary domains G± B M−1(Ω±) ∩ DR. Thus, the splitting

DR = G+ ∪̇M−1(Σ) ∪̇G−

holds. Let ω be defined via the formula (4.9) in Lemma 4.10. Hence, we obtain

ω ≤ ω sup
z∈Γ


JM(z) ≤ ω∗ sup

z∈Γ


JM(z) = ω∗(Γ).

Summarizing, the tuple {DR,G+,G−,Γ,ω} fulfils Hypothesis 4.1.
Step 2. Let u ∈ FΛ with FΛ as in (2.1) and define the composition v B u ◦ M . Set vR B v � DR

and vc B v � Ωc. Using Lemmas 4.8 and 4.10 we obtain

a
Λ
ω[u,u] = ∥∇u∥2

R2 − (ω[u]Λ, [u]Λ)Λ = ∥∇v∥2
R2 − (ω[v]Γ, [v]Γ)Γ

= ∥∇vR∥2
DR
− (ω[vR]Γ, [vR]Γ)Γ + ∥∇vc∥2

Ωc
≥ fΓDR, ω[vR, vR] ≥ 0,

(4.10)

where we applied Lemma 4.1 in the last step. Hence, the operator HΛω is non-negative.
Step 3. Since the curve Λ is bounded, Proposition 3.6 applies, and we arrive at σess(HΛω) =

[0,+∞). The results of Step 2 and Step 3 imply the claim. �
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To conclude this subsection, we show that a model of sufficiently weak δ′-interaction of
non-varying strength supported on a circular arc subtending the angle 2π − 2ε (ε ∈ (0, π)) has no
bound states in the weak coupling regime. We emphasize that circular arcs subtending angles θ > π
are non-monotone and the results of the previous subsection do not apply to them.

Example 4.13. The circular arc (see Figure 2) can be efficiently parametrized as follows:

Λ B
�(R sin ϕ,R(1 − cos ϕ)) ∈ R2 : ϕ ∈ (ε,2π − ε)	, (4.11)

where ε ∈ (0, π) and R > 0 is the radius of the underlying circle. Consider the LFT M(z) B 1/z.
One easily sees that

M1(x, y) = Re M(x + iy) = x
x2 + y2 ,

and according to (2.6) the Jacobian JM of this LFT is given by the formula

JM(x, y) = �(∂xM1)2 + (∂yM1)2�(x, y)
=

(x2 − y2)2
(x2 + y2)4 +

4x2y2

(x2 + y2)4 =
1

(x2 + y2)2 .
(4.12)

Next observe that M(∞) = M−1(∞) = 0 < Λ. Moreover, this LFT is inverse to itself and under the
LFT M−1(z) = 1/z the arc Λ ⊂ R2 is mapped onto the interval

Γ B M−1(Λ) = ��
x,− 1

2R

�
∈ R2 : |x | < cot(ε/2)/(2R)	,

which is obviously monotone in the sense of Definition 2.7. Compute further ω∗(Γ) defined in (4.6)

ω∗(Γ) = inf
r ∈(0, |Γ|)

1
2πr
=

1
2π |Γ| =

R
2π cot(ε/2) ,

here |Γ| in the length of Γ. Moreover, we obtain from (4.12) that

sup
z∈Γ


JM(z) = 4R2.

FIG. 2. The circular arc of radius R > 0 subtending the angle 2π−2ε with ε ∈ (0, π).
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Hence, Theorem 4.12 implies that

σ(HΛω) = [0,+∞), for all ω ∈
�
−∞, (8πR)−1 tan(ε/2)�.

V. REMARKS AND OPEN QUESTIONS

In the present paper, we have analysed from various perspectives a new effect of absence of the
negative spectrum for Hamiltonians with δ′-interaction supported on non-closed curves in R2. Quite
a few questions remain open and we wish to formulate two of them.

Comparing Example 4.5 and Proposition 4.7 one may pose the following question.

Open Question A. Let the constant L > 0 be fixed and the interval Λ be as in (4.7). The prob-
lem is to find the critical strength ωcr(L) > 0 such that the operator HΛω is non-negative if and only if
ω ∈ R satisfies ω ≤ ωcr(L).

The same question as above can be asked for other shapes of Λ, but the authors do not expect
that an exact formula for the critical strength can be found.

On one hand, our method of the proof does not allow to cover curves of generic shape. On the
other hand, despite many attempts, we have not found out any example of a bounded non-closed
curve, for which bound states in the weak coupling regime do exist. A general open question can be
posed.

Open Question B. Is it true that for any bounded sufficiently smooth non-closed curve Λ ⊂ R2

there exists a constant ω∗ > 0 such that σ(HΛω) = [0,+∞) for all ω ∈ (−∞,ω∗]?
It is worth noting that the program carried out in Subsection IV C for linear fractional trans-

formations can be generalized by means of Neumann bracketing to arbitrary conformal maps. This
could be a possible way to answer Question B.

Finally, we mention that several assumptions play only technical role and can be removed with
additional efforts. Namely, assuming that Λ is a subarc of the boundary of a Lipschitz domain is
technical as well assuming that the curve Λ is piecewise-C1 in some of the formulations instead of
just being Lipschitz.
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APPENDIX: PROOFS OF LEMMAS 4.8 AND 4.10

Proof of Lemma 4.8. Consider the following two open sets:

E B R2 \ ({M(∞)} ∪ M(Λ)) and F B R2 \ Λ.

By the formula in Lemma 2.10 and using that R2 \ E is a null set, we get
R2
|∇v |2dx =


E

|∇v |2dx =

E

|(∇u) ◦ M |2JMdx.

According to Proposition 2.9, we have that M−1 : E → F is a bijection which is additionally every-
where differentiable in E, cf., (2.5). Hence, we can apply the substitution rule for Lebesgue integrals
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(e.g., [Ref. 31, Theorem 8.21, Corollary 8.22]) and get
R2
|∇v |2dx =


F

|(∇u) ◦ M ◦ M−1|2JM(JM)−1dx

=


F

|∇u|2dx =

R2
|∇u|2dx,

where in the last step we employed that R2 \ F is a null set. �

Proof of Lemma 4.10. Observe first that by definition of the curvilinear integral we have

�
ω[v]Γ, [v]Γ�Γ =

 L

0
ω(γ(s))|v+(γ(s)) − v−(γ(s))|2|γ′(s)|ds. (A1)

Using elementary composition rules, we also note

v+(γ(s)) − v−(γ(s)) = (u+ ◦ M ◦ M−1 ◦ λ)(s) − (u− ◦ M ◦ M−1 ◦ λ)(s)
= u+(λ(s)) − u−(λ(s)), (A2)

where u± = u � Ω± and v± = v � M−1(Ω±). Observe also that λ = M ◦ γ. Using (2.6) and (2.7), we
obtain

|λ ′(s)|2 = �(∇M1 ◦ γ)(s) · γ′(s)�2 + �(∇M2 ◦ γ)(s) · γ′(s)�2
= |(∇M1 ◦ γ)(s)|2 · |γ′(s)|2cos2 α + |(∇M2 ◦ γ)(s)|2 · |γ′(s)|2sin2 α

= JM(γ(s)) · |γ′(s)|2,
where α is the angle between ∇M1 and γ′. Thanks to (A1) and using (A2), we arrive at

�
ω[v]Γ, [v]Γ�Γ =

 L

0
ω(γ(s))|v+(γ(s)) − v−(λ(s))|2 |γ′(s)|ds

=

 L

0

ω(γ(s))
JM(γ(s)) |u+(λ(s)) − u−(λ(s))|2 |λ ′(s)|ds.

Finally, employing (4.9) we end up with the desired relation
�
ω[v]Γ, [v]Γ�Γ =

�
ω[u]Λ, [u]Λ�Λ.

�

1 Albeverio, S., Gesztesy, F., Høegh-Krohn, R., and Holden, H., Solvable Models in Quantum Mechanics. With an Appendix
by Pavel Exner, 2nd ed. (AMS Chelsea Publishing, Providence, RI, 2005).

2 Antoine, J.-P., Gesztesy, F., and Shabani, J., “Exactly solvable models of sphere interactions in quantum mechanics,” J.
Phys. A 20, 3687–3712 (1987).

3 Behrndt, J., Exner, P., and Lotoreichik, V., “Schrödinger operators with δ- and δ′-interactions on Lipschitz surfaces and
chromatic numbers of associated partitions,” Rev. Math. Phys. 26, 1450015 (2014).

4 Behrndt, J., Grubb, G., Langer, M., and Lotoreichik, V., “Spectral asymptotics for resolvent differences of elliptic operators
with δ and δ′-interactions on hypersurfaces,” J. Spectral Theory 5, 697–729 (2015).

5 Behrndt, J., Langer, M., and Lotoreichik, V., “Schrödinger operators with δ and δ′-potentials supported on hypersurfaces,”
Ann. Henri Poincaré 14, 385–423 (2013).

6 Birman, M. Sh. and Solomjak, M. Z., Spectral Theory of Self-adjoint Operators in Hilbert Space, Mathematics and its
Applications (Soviet Series) (Kluwer, Dordrecht, 1987).

7 Brasche, J. F. and Nizhnik, L., “One-dimensional Schrödinger operators with δ′-interactions on a set of Lebesgue measure
zero,” Oper. Matrices 7, 887–904 (2013).

8 Davies, E. B., Spectral Theory and Differential Operators (Cambridge University Press, Cambridge, 1995).
9 Duduchava, R., “Extension of functions from hypersurfaces with boundary,” Complex Var. Elliptic Equations 57, 625–651

(2012).
10 Eckhardt, J., Kostenko, A., Malamud, M., and Teschl, G., “One-dimensional Schrödinger operators with δ′-interactions on

Cantor-type sets,” J. Differ. Equations 257, 415–449 (2014).
11 Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators (Oxford University Press, New York, 1987).
12 Exner, P., “Leaky quantum graphs: A review,” in Analysis on Graphs and its Applications, Proceedings of Symposia in Pure

Mathematics Vol. 77 (American Mathematical Society, Providence, RI, 2008), pp. 523–564.
13 Exner, P. and Fraas, M., “On geometric perturbations of critical Schrödinger operators with a surface interaction,” J. Math.

Phys. 50, 112101 (2009).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  147.32.4.13 On: Tue, 19 Jan 2016 14:55:01



022101-20 M. Jex and V. Lotoreichik J. Math. Phys. 57, 022101 (2016)

14 Exner, P. and Jex, M., “Spectral asymptotics of a strong δ′ interaction on a planar loop,” J. Phys. A: Math. Theor. 46, 345201
(2013).

15 Exner, P. and Jex, M., “Spectral asymptotics of a strong δ′ interaction supported by a surface,” Phys. Lett. A 378, 2091–2095
(2014).

16 Exner, P. and Khrabustovskyi, A., “On the spectrum of narrow Neumann waveguide with periodically distributed δ′-traps,”
J. Phys. A: Math. Theor. 48, 315301 (2015).

17 Exner, P. and Kondej, S., “Hiatus perturbation for a singular Schrödinger operator with an interaction supported by a curve
in R3,” J. Math. Phys. 49, 032111 (2008).

18 Exner, P., Neidhardt, H., and Zagrebnov, V. A., “Potential approximations to δ′: An inverse Klauder phenomenon with
norm-resolvent convergence,” Commun. Math. Phys. 224, 593–612 (2001).

19 Exner, P. and Tater, M., “Spectra of soft ring graphs,” Waves Random Media 14, S47–S60 (2004).
20 Figotin, A. and Kuchment, P., “Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional

photonic crystals,” SIAM J. Appl. Math. 56, 1561–1620 (1996).
21 Gesztesy, F. and Mitrea, M., “Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent

formulas for Schrödinger operators on bounded Lipschitz domains,” in Perspectives in Partial Differential Equations, Har-
monic Analysis and Applications, Proceedings of Symposia in Pure Mathematics (AMS, 2008), pp. 105–173.

22 Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (I.P.S.T., New York,
1966).

23 Golovatiı̆, Y. D. and Man´ko, S. S., “Exact models for Schrödinger operators with δ′-like potentials,” Ukr. Mat. Visn. 6,
173–207 (2009).

24 Jex, M., “Spectral asymptotics for a δ′ interaction supported by an infinite curve,” in Mathematical Results in Quantum
Mechanics (World Scientific, 2014).

25 Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (Springer-Verlag, Berlin, 1995), Reprint of
the 1980 edition.

26 Kondej, S. and Lotoreichik, V., “Weakly coupled bound state of 2-D Schrödinger operator with potential-measure,” J. Math.
Anal. Appl. 420, 1416–1438 (2014).

27 Kostenko, A. and Malamud, M., “1-D Schrödinger operators with local point interactions on a discrete set,” J. Differ. Equa-
tions 249, 253–304 (2010).

28 Kostenko, A. and Malamud, M., “Spectral theory of semibounded Schrödinger operators with δ′-interactions,” Ann. Henri
Poincaré 15, 501–541 (2014).

29 Krantz, S. G., A Guide to Complex Variables (Mathematical Association of America, Washington, DC, 2008).
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