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Abstrakt: Abstrakt cesky

Abstract:

Quantum walks have been introduced as a generalization of a classical random walk to a

unitary evolution of a quantum particle. Their promising applications have been found. For

instance we mention existence of speeding-up quantum walk based algorithms or applications

to quantum transport. Discrete-time quantum walks are driven by an evolution operator con-

sisting of a coin and a step operator. Spectrum of this evolution operator determines basic

properties of the walk. We focus on the walks with non-empty point spectrum. Existence

of a constant eigenvalue leads to an additional peak in a position probability distribution.

This phenomena is called trapping. The new peak is located at the origin of the walk. After

infinitely many steps, there is still a large amount of probability trapped in this additional

peak, whereas the remaining probability peaks becomes less significant. Besides deep intro-

duction into the problem, we analyse how is trapping affected by a choice of the coin operator

and the choice of the initial state. This work summarizes results extending knowledge of the

trapping walks, with focus on a full classification of the coins providing trapping walks on cer-

tain types of lattices. Significant effort is also dedicated to the analysis of the trapping walks

and its spreading in the limit of infinitely many steps and to the control of the peaks in the

position probability distribution. Special choices of the initial states affect the distribution

and especially the trapping peak in a very non-intuitive way.
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Introduction

Classical random walks are well known as a tool describing processes in nature. The term

random walks was first introduced by Karl Pearson in 1905 [1]. Their applications in physics,

biology or chemistry have been found. Moreover, the concept gained its place even in different

fields as economy for modelling stock markets, ecology or psychology. The wide range of

applications in a classical world resulted in formation of its quantum counterpart as a model

with a great promise to the future.

Quantum walks [2, 3, 4] were developed as a generalization of a classical random walk,

where a quantum particle is propagating on a discrete lattice. It represents a concept with a

great potential in particular with respect to its possible applications. Quantum walk based

algorithms for the database search have been suggested [5]. Among others, one can find

further applications in quantum information theory [6], transport theory [7] in photosynthetic

systems [8] or use it as a universal tool for quantum computation [9]. Although it may seem

that it is primarily a theoretical concept, a number of experimental realizations have been

reported [10, 11, 12, 13]. The last significant achievement in this field was the experimental

realization of a genuine two-dimensional quantum walk on a square lattice [14].

We can divide quantum walks into two classes. It is discrete-time and continuous-time

walks. Continuous time quantum walks are driven by a given hamiltonian. On the other

hand, the discrete-time quantum walks require implementation of an additional degree of

freedom referred to as coin. Both of these types have some advantages and some disadvan-

tages. For instance, continuous-time quantum walks are more convenient from computational

perspective, but discrete-time quantum walks are easier to implement. One can read more

about its similarities or differences in [24]. We will consider only discrete translationally

invariant walks.

Compared to classical random walks, quantum walks has considerably different features.

One can imagine simple classical discrete-time random walk as a Galton board. Sum of the

individual paths any ball can go through results in the most probable final location of the ball

being its starting position, i.e. binomial distribution. Change of pins in the board by beam

splitters and balls by a laser beam behaves differently. The individual paths might subtract

each other due to a phase change on the beam splitters and thus the most probable locations

are shifted right and left from the origin. Mathematical description of such a discrete quantum

walk requires additional degree of freedom, referred to as a coin. Without it, spreading of the

walk would be trivial Moreover, the resulting probability distribution is affected by a choice
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of the initial state of this coin. There is nothing like an initial coin state classically and thus

the quantum walks are better adaptable to special situations.

For translationally invariant walks, the shape of the position probability distribution

can be analysed using similarities with the wave theory, namely the propagation of a wave

packet. Further investigation of the time evolution is considerably simplified using the Fourier

transform from the position to the momentum variable. The travelling peaks are associated

with the continuous spectrum of the unitary evolution operator in the Fourier picture and the

phases of the corresponding continuous spectrum are represented by the dispersion relation.

The group velocity of spreading of the walk is given by the first derivative of the phase

with respect to the momentum. It can be shown that the maximal peaks propagate with

the maximal group velocity. This results from the stationary phase method [15] which says

that the largest contributions to the probability distribution comes from points, where the

derivative of the dispersion relation vanishes.

For certain quantum walks, the evolution operator has also non-empty point spectrum.

This property results in one additional peak in the position probability distribution placed

at the initial position of the particle. Similar effect occur also classically for so-called lazy

random walks. Nevertheless, not all trapping walks have its classical counterpart. which is

also our case. We emphasize that the existence of this extra peak is influenced by the initial

state of the walk. For most of the walks we can find so-called escaping state, which is an initial

state for which the additional peak is not observed. Further, a choice of a coin plays a crucial

role in trapping, since it is the coin which specifies the exact form of the evolution operator

driving a distribution of the probability over a given lattice. Trapping is also sensitive to the

dimensionality of the lattice and the dimensionality of the walk. It was found for the three-

state quantum walk on a line with the Grover coin [16, 17] (i.e. three-state Grover walk),

that the point spectrum of the evolution operator contains an eigenvalue equal to one and

thus the walk exhibits trapping. In this case by the three-state walk we mean that the walker

can, excepts movements to the left and right, stay at the actual position. If we increase the

dimensionality of the lattice and perform the three-state Grover walk on a honeycomb lattice

[18], the trapping will not be observed. Staying on a line and decreasing the dimensionality of

the walk to a two state walk leads to a non-trapping walk for any choice of a coin. Although it

might seem that allowing the walker to stay at its actual position contributes to the existence

of the trapping, there exist walks for which this is not required. The four-state Grover walk

exhibits trapping on a line or a two-dimensional lattice regardless to the fact that the walker

does not have the option to stay. By the four-state walk on a line we assume that the particle

performs one and two steps to the right and left. On a two-dimensional lattice these four

states are movements to the left, right, down and up.

In this work, we focus on finding conditions under which the point spectrum of the

evolution operator exists. These conditions are restrictions on a choice of a coin, which in

general depends on several parameters. We studied the role of the coin parameters, where

we focused on a discrete time, translationally invariant quantum walk on a line and two-

dimensional lattice. For example, we examined limiting distribution for certain types of
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walks. The aim of limiting distribution is to provide an approximation of the probability

distribution of quantum walk for large number of steps. It is very useful, since otherwise

one has to calculate the probability distribution recursively using the results for the previous

steps. The complexity of the calculations and resulting limiting distribution is influenced by

the choice of the coin space basis. There exist a basis that is more suitable than the standard

one. This choice provides much simpler resulting distribution formulas. In addition, suitable

basis reveals some very interesting features that are otherwise hidden, respectively difficult

to extract from other ones theoretically predicted expressions. In addition, calculation of the

trapping probability at the vicinity of the origin is in the suitable basis much easier. As for

the limiting distribution, interesting properties regarding trapping arising from the choice of

the basis are observed.

The thesis is divided into five chapters and follows the work done during the doctoral

studies. Most of the results provided in the thesis were already published and the original

articles are listed in the list of publication at the end of the thesis. These papers are for

better resolution in the text numbered by Roman numerals. Due to this fact, we provide

a more detailed description and introduction into the problems than one can find in the

papers. We devote more attention to the explanation of the problem, methods and partial

results providing full solution. Considering the results, we often skip their explicit forms, if

they are too space consuming and rather refer to the particular paper. Further, the structure

of the thesis is not done in a way that every chapter corresponds to one paper. The topics

of the individual articles partially overlap and are therefore rearranged in order to ensure a

better flow of the text.

The first chapter of the thesis deals with the description of the discrete-time quantum

walks with non-empty point spectrum with respect to the walks that will be studied in the

following chapters. We provide an introduction to the trapping effect that accompanies us

throughout the whole thesis. On a simple example, which is a two and a three-state walk

on a line, we introduce notation, explain basic properties and concepts and show how the is

the analysis of the quantum walks performed. Next we introduce Wigner walks on a line,

which are defined for any dimension starting with two and thus cover walks with more than

three allowed movements. By an increasing dimension we mean only a dimension of a coin

space, i.e. number of possible movements. The lattice is still one-dimensional. A separate

section is devoted to quantum walks on a two-dimensional lattice. Except a brief illustration

of differences from a walk on a line, we illustrate a new phenomena called strong trapping.

This feature neglects the importance of the initial state on the existence trapping. We provide

an example of a strong trapping coin class and show that an escaping state for which the

trapping is not observed does not exist.

Chapter two is devoted to the one-parameter deformations of the Grover walk. It describes

the construction of these families and briefly summarizes some results from [I]. Although this

work was done during master and not doctoral studies, we find these constructions very

useful for the following work. We present only the most important results to which we will

refer to in the following chapters. The results are two classes of coins preserving trapping
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and these classes are further studied especially in the last chapter which discusses a limiting

distribution. Since it was not clear whether these two families cover all three-state trapping

coins. The investigation continues in the following section.

The third chapter extends the results from chapter two and provides a full classification

of the trapping coins for the three-state quantum walks on a line. The starting point of

the analysis is a general unitary coin on which we apply conditions, the trapping coin has to

satisfy. We focus only on the non-trivial walks, i.e. the walks where none of the elements in the

final trapping matrix is zero. This chapter follows arguments presented in [II], where one can

also find situation for the trivial trapping cases. The final two non-trivial classes of coins have

a significant number of free parameters. Nevertheless, not all of these parameters influence

the spreading of the walk and the trapping. We show that these classes are generalization of

the one-parameter families introduced in chapter two.

The classification of four-dimensional coins was addressed using different methods from

that applied on the three-dimensional case. Therefore, we devote a whole chapter to this new

method. The starting point in the analysis is, instead of a general unitary coin, a stationary

state of the walk. It is the eigenstate corresponding to the constant eigenvalue of the evolution

operator. Provided that the coin is not given, we cannot find an exact form of the stationary

state. Nevertheless, we can restrict a wide region of the possible states using the knowledge

that we are dealing with a trapping walk. This allows us to discover a maximal support on

which the stationary state might exist. Since the evolution operator remains the stationary

state unchanged, we can find conditions on the coin leading to the trapping. Further we have

to keep in mind, that the coin has to be a unitary matrix. These all together give us unique

parametrizations of the trapping coins. Here we have to distinguish between two non-trivial

cases, where one of these cases equals strong trapping family of coins. Many trivial sub-cases

arise here and we will discuss them in the last section of this chapter. This section contains

unpublished results that are currently prepared for submission.

The most comprehensive chapter five deals with a limiting probability distribution and

the role of the coin eigenstates on a simplification of this distribution. This approximative

probability distribution was usually derived with respect to the standard coin space basis.

Even though this choice is a natural one, it seems that there are better but not so obvious

choices. We begin with the analysis of the limiting distribution for the two one-parameter

families introduced in chapter two. We show that in this case, the coin space basis formed

by the eigenvectors of the coin is a much better choice. In this basis, the limiting density

gains a simple form and thus we call it suitable. Further, we do the similar analysis for the

Wigner walks introduced in chapter one. Here the suitable basis is not given directly by the

eigenstates of the coin. This helps us to understand what is really behind the simplification

of the limiting density function and how to generally construct the suitable basis of the coin

space. The main results of this chapter have been published in [III, IV]

The rest of the thesis provides conclusions summarizing the obtained results, outlook and

one appendix providing technical support to the last chapter. The references are extended

by a list of publications.
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Chapter 1

Discrete-time quantum walks with

non-empty point spectrum

Quantum walks can be divided into two classes. It is discrete-time and continuous-time walks.

Continuous time quantum walks are driven by a given hamiltonian. On the other hand, the

discrete-time quantum walks require implementation of an additional degree of freedom re-

ferred to as coin. Both of these types have some advantages and some disadvantages. For

instance, continuous-time quantum walks are more convenient from computational perspec-

tive, but discrete-time quantum walks are easier to implement. One can read more about its

similarities or differences in [24].

Throughout the entire thesis, we will assume only discrete-time and translationally in-

variant quantum walks. It means that the walker can make only discrete-time steps on a

certain lattice type. The Hilbert space is given by a tensor product of a position and a coin

space,

H = Hp ⊗HC . (1.1)

The position space Hp is spanned by all possible positions on a given lattice and the coin

space HC is determined by the allowed local moves - local steps.

Every walk starts by the choice of the initial state |ψ0〉. This choice can be arbitrary and

might help to reach our goals. For example, the convenient choice for the quantum walk

bases search algorithm might be superposition over all possible positions. The convenient

choice for us is to start the walk at the origin. In general, quantum walks are translationally

invariant and thus any single initial position can be assumed as a new origin. Therefore we

will usually write the initial state as a tensor product

|ψ0〉 = |0〉 ⊗ |ψC〉 = |0〉|ψC〉. (1.2)

The initial coin state is an arbitrary state |ψC〉 from HC , satisfying the normalization condi-

tion 〈ψC |ψC〉 = 1. Every single step of the walk is realized by the unitary evolution operator

Û = Ŝ(Îp ⊗ Ĉ), (1.3)
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where Ĉ is a coin operator acting only on the coin Hilbert space HC , Îp is an identity on the

position space Hp and Ŝ is a step operator operator, acting on the tensor product of both

spaces. Matrix representation of the coin operator Ĉ is called coin and often labeled as C.

The only requirement is that the coin has to be a unitary matrix.

After time t, it means after t steps, the state of the walker reads

|ψ(t)〉 = Û t|ψ0〉.

The time evolution of the quantum walk is given by repeated action of the unitary evolution

operator Û from Eq. (1.3). For better understanding, we omit further general description

of the quantum walk behaviour and leave it to the specific examples, which will clarify the

structure for all other types of discrete-time quantum walks. Therefore, we now turn to the

two and three-state quantum walk on a line and provide introductory details regarding the

analysis and the evolution of the walk. We introduce coin states and its matrix description

and show how the coin acts on these states. Further, we define a step operator and for

illustration describe an action of the coin and the step operators during first three steps of

the walk. Fourier analysis as a powerful tool for studying the quantum walks is discussed

in a separate subsection. The results coming from this analysis are further used during

investigation of the spreading of the walk and will accompany us during the whole thesis. At

the end of the following section, we introduce so-called Wigner walks as one of the models

we will study later. Finally, we enlarge the lattice by another dimension and summarize our

notation for the four-state walks on a two-dimensional lattice with particular interest in the

four-state Grover walk. In the relation to this, effect of strong trapping is explained.

1.1 Quantum walks on a line

We start with a simple example which is a two-state quantum walk on a line. The walker can

move only one step to the left or one step to the right at each discrete time moment. Due to

the allowed movements of the walker, the coin Hilbert space is given by

HC = Span{|L〉, |R〉} = C2 = Span

{(
1

0

)
,

(
0

1

)}
. (1.4)

Here |L〉 corresponds to the movement to the left and |R〉 to the movement to the right. In

the last equality, we have used a matrix representation of the coin states. From it follows

our notation that the left state corresponds to the first element in the vector. The same

applies for the right state and the second element. Later we will work with so-called vector

of probability amplitudes where this notation is important. The position Hilbert space is

spanned by all possible locations of the particle on a line

Hp = Span{|x〉, x ∈ Z}.

As mentioned before, the walk is driven by a coin, here it is two-dimensional unitary matrix

C =

(
CLL CLR

CRL CRR

)
.
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The coin operator Ĉ acts on the coin states via its matrix representation C as

Ĉ|L〉 =
(
CLL|L〉〈L|+ CRL|R〉〈L|

)
|L〉 = CLL|L〉+ CRL|R〉 =

(
CLL

CRL

)
= C

(
1

0

)
,

Ĉ|R〉 =
(
CLR|L〉〈R|+ CRR|R〉〈R|

)
|R〉 = CLR|L〉+ CRR|R〉 =

(
CLR

CRR

)
= C

(
0

1

)
.

The step operator Ŝ from Eq. (1.3) changes the position of the particle according to the

internal coin state,

Ŝ (|x〉 ⊗ |L〉) = |x− 1〉 ⊗ |L〉,

Ŝ (|x〉 ⊗ |R〉) = |x+ 1〉 ⊗ |L〉.

A well known and extensively studied two-state quantum walk is called Hadamard walk

[25]. It is a quantum walk with the coin given by the Hadamard matrix

C = H =
1√
2

(
1 1

1 −1

)
.

If we measure the position probability of the Hadamard walk after each step, the resulting

distribution is the same as for the classical random walk, which is binomial. For illustration

we look at the first three steps of the Hadamard walk. For example, we choose the initial

state to be |ψ0〉 = |0〉 ⊗ |R〉. Then

1st step: Û |ψ0〉 = Ŝ(Îp ⊗ Ĉ)|ψ0〉 = Ŝ

(
|0〉 ⊗ 1√

2
(|L〉 − |R〉)

)
=

=
1√
2
| − 1〉 ⊗ |L〉 − 1√

2
|1〉 ⊗ |R〉,

2nd step: Û2|ψ0〉 = Ŝ(Îp ⊗ Ĉ)
1√
2

(| − 1〉 ⊗ |L〉 − |1〉 ⊗ |R〉) =
1

2
Ŝ| − 1〉 ⊗ (|L〉+ |R〉)+

+
1

2
Ŝ|1〉(|L〉 − |R〉) =

1

2
(|0〉|L〉+ |0〉(|L〉+ |R〉)− |2〉|R〉),

3rd step: Û3|ψ0〉 =
1

2
√

2
(| − 3〉|L〉+ | − 1〉(2|L〉+ |R〉)− |1〉|L〉+ |3〉|R〉).

For the second and the third step, we omitted the sign for the tensor product. For instance

we wrote |2〉|R〉 instead of |2〉 ⊗ |R〉. From now on, we will usually use this shorter notation

without the tensor product sign. After t steps of the walk, we have

|ψ(t)〉 = Û t|ψ0〉 =

t∑
x=−t

ψLx |x〉|L〉+ ψRx |x〉|R〉.

After tracing out the coin states we get that

p(x, t) = |ψLx |2 + |ψRx |2
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p
(x
,t
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initial QW state 1

2
(|L〉 + i|R〉)

Figure 1.1: Position probability distribution of the quantum walk (QW) with the Hadamard

coin and the classical random walk (RW) after t = 100 steps. The initial coin state of the

quantum walk |ψC〉 = 1√
2
(|L〉+ i|R〉) leads to a symmetric probability distribution with two

peaks that move to the right or left with increasing number of steps. Probability around the

origin decreases to zero. On the other hand we have classical unbiased random walk with

equal probability of movements to the left or right. This results in a binomial probability

distribution with highest value at the origin, which slowly vanishes with increasing distance

from the origin.

is the probability that the particle is after t steps located at position x. We see that after the

third step, the probability of being at positions | ± 1〉 is not the same. This is in a striking

difference to the ordinary random walk. The situation is depicted in the Fig. (1.1) for a

symmetric initial state.

From this fact and the third step of the walk one can see, that with this initial state

the walk inclines to the left, since the probability of being at the position −1 is higher than

for position +1. This is different than for the classical unbiased random walk, where the

position probability distribution is symmetric and the highest probability peak is located ate

the origin of the walk.

The lower dimensional quantum walks are rather well understood. However, depending

on the dimensionality of the coin, they exhibit striking differences. As one from such effects

we can list trapping. This manifest itself in additional peak in the position probability

distribution which is stable and does not vanish with time approaching infinity. On the

other hand, the travelling peaks depicted in Fig. (1.1) are getting smaller. Trapping can be

observed already for a three-state quantum walk on a line.
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1.1.1 Three-state Grover walk on a line

Another extensively studied types of walks are those driven by the Grover coin. The Grover

coin C
(N)
G is for a given dimension N defined as

C
(N)
G = 2|z〉〈z| − I(N), (1.5)

where |z〉 is equal superposition over all standard basis states |i〉,

|z〉 =
1√
N

N∑
i=1

|i〉, (1.6)

and I(N) is N-dimensional identity matrix. If we choose appropriate lattice, Grover walks

lead to the existence of trapping.

Let us look in more detail at the three-state Grover walk on line. The walk is performed

on a line, therefore the position space is the same as we had for the two-state quantum walk

on a line. The difference comes with the coin space HC , which is now three-dimensional and

its standard basis consists of possible movements of the walker. In this case, by the three-

state walk we mean that the walker can move one step to the left, one step to the right or

stay on its actual position. Thus

HC = C3 = Span{|L〉, |S〉, |R〉} = C3 = Span


 1

0

0

 ,

 0

1

0

 ,

 0

0

1


 . (1.7)

The time evolution is given by the unitary propagator

Û = Ŝ(Îp ⊗ Ĉ(3)
G ), (1.8)

Eq. (1.3). We assume the coin C
(3)
G , i.e. matrix representation of the coin operator Ĉ

(3)
G to

be three-dimensional Grover matrix,

C
(3)
G =

1

3

 −1 2 2

2 −1 2

2 2 −1

 . (1.9)

The step operator Ŝ moves the particle on the lattice according to its coin state,

|x〉|L〉 Ŝ−→ |x− 1〉|L〉,

|x〉|S〉 Ŝ−→ |x〉|S〉,

|x〉|R〉 Ŝ−→ |x+ 1〉|R〉.

(1.10)

and its explicit form reads

Ŝ =

∞∑
−∞

(|x− 1〉〈x| ⊗ |L〉〈L|+ |x〉〈x| ⊗ |S〉〈S|+ |x+ 1〉〈x| ⊗ |R〉〈R|) .
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The time evolution is given by a repeated action of Û on the initial state |ψ0〉. After t

steps the walk reaches state

|ψ(t)〉 = U t|ψ0〉 =
∑
x

|x〉(ψL(x, t)|L〉+ ψS(x, t)|S〉+ ψR(x, t)|R〉), (1.11)

where the initial state is located at the origin and is of the form

|ψ0〉 = |0〉 ⊗ |ψC〉 = |0〉 ⊗ (ψL(0, 0)|L〉+ ψS(0, 0)|S〉+ ψR(0, 0)|R〉) .

The initial coin state |ψC〉 is a superposition of the basic coin states and its amplitudes have

to satisfy the normalization condition

|ψL(0, 0)|2 + |ψS(0, 0)|2 + |ψR(0, 0)|2 = ||ψ(0, 0)||2 = ||ψ0||2 = 1.

We call ψL,S,R(x, t) probability amplitudes and from now on, let us call

ψ(x, t) = (ψL(x, t), ψS(x, t), ψR(x, t))T (1.12)

the vector of probability amplitudes. The probability of finding the particle at a position x

after total number of steps t then reads

p(x, t) =
∑

j=L,S,R

|ψj(x, t)|2 = ||ψ(x, t)||2. (1.13)

Fourier analysis

The time evolution of the initial state |ψ(t)〉, Eq. (1.11) can be efficiently handled by the

Fourier analysis. Instead of working with a full state |ψ(t)〉, we use the probability amplitude

vector ψ(x, t), Eq. (1.12) providing the same information and apply the discrete Fourier

transform on it. It is a transform from a discrete position variable x to a new continuous

momentum variable k,

ψ̃(k, t) =
∑
x

eixkψ(x, t), k ∈ (0, 2π).

It is not difficult to check that ψ̃ evolves in time thanks to a new evolution operator Ũ(k) as

ψ̃(k, t) = Ũ(k)ψ̃(k, t− 1) = Ũ(k)tψ̃(k, 0) = Ũ(k)tψ0. (1.14)

The last equality results from the fact that the vector ψ̃(k, 0) is the Fourier transform of the

initial probability amplitude vector ψ(0, 0) = ψ0. Provided the walk starts at the origin of the

lattice, both initial vectors ψ̃(k, 0) and ψ0 are the same. It can be shown with some algebra

[26] that the new evolution operator in the Fourier picture reads

Ũ(k) =

 e−ik 0 0

0 1 0

0 0 eik

 .C
(3)
G , (1.15)

where C
(3)
G is the Grover coin from Eq. (1.9). The diagonal matrix is the step operation in

the Fourier picture and can be interpreted in the following way. The first diagonal element

11



e−ik corresponds to kick to the left, the third one means kick to the right and the constant

middle element says do nothing. This provides intuitive insight into the construction of the

evolution Ũ even for different types of walks.

Due to unitarity, we can rewrite Eq. (1.15) using spectral decomposition as,

Ũ(k) =

3∑
j=1

λj(k)vj(k)v†j(k)

where λj(k), vj(k) are its eigenvalues and eigenvectors. The power of t than gives

Ũ(k)t =

3∑
j=1

(λj(k))tvj(k)v†j(k)

and therefore the time evolution, Eq. (1.14) gains the form

ψ̃(k, t) =

3∑
j=1

λj(k)t(vj(k), ψ0)vj(k). (1.16)

This is very simple sum compared to Eq. (1.11) with sum over all possible positions.

Further, it is very convenient to rewrite the eigenvalues λj(k) of Ũ(k) from Eq. (1.15) in

the exponential form

λj(k) = eiωj(k). (1.17)

For the Grover walk, the phases ωj(k) read

ω1,2(k) = ± arccos

(
−1

3
(2 + cos k)

)
,

ω3(k) = 0. (1.18)

This shows that that the point spectrum of the evolution operator Ũ(k) is indeed non-empty

with the constant eigenvalue λ3(k) = 1.

If we want to go back to the position variable x, we have to employ the inverse Fourier

transform on ψ̃(k, t) from Eq. (1.16). Then the position probability amplitude vector reads

ψ(x, t) =
1

2π

3∑
j=1

2π∫
0

e−ixkψ̃(k, t)dk =

=
1

2π

3∑
j=1

2π∫
0

ei(ωj(k)−x
t
k)t (vj(k), ψ0) vj(k)dk. (1.19)

The last equality uses Eq. (1.16) and the exponential expression of the eigenvalues, Eq.

(1.17). This formula allows us to calculate probability amplitude vector at a given position

x. Moreover, in the following subsection we will use it for determination of peaks in the

position probability distribution and analysis of their spreading through the lattice.
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Figure 1.2: Position probability distribution of the Grover walk after t = 100 steps is depicted

for the initial state |ψ0〉 = |0〉 ⊗ |S〉. Central trapping peak decreases exponentially with

increasing distance from the origin of the lattice.

Calculation of the peak velocities and trapping

The Grover walk is special because it exhibits trapping. This property occurs due to the

fact that one of the eigenvalues λj(k) of the evolution operator Ũ(k) is independent of the

momentum variable k. We now describe how this constant eigenvalue affects the probability

distribution.

A typical probability distribution of the Grover walk is shown in Fig. (1.2). It has three

dominant peaks and the central one is present due to the trapping effect. However, the

presence of the peaks can be influenced by a choice of the initial coin state |ψC〉, Eq. (1.2).

If we choose the initial state (initial probability amplitude vector) to be orthogonal to the

eigenvector corresponding to the constant eigenvalue of Ũ(k), the central peak in the position

probability distribution does not appear.

The integral from Eq. (1.19) can be analysed with the help of so-called stationary phase

approximation. Here we will give only brief explanation of the method, for more details see

for example [15].

Intuitively one can see, that the exponential function in the integral is rapidly oscillating,

therefore increments cancel out each other. The most relevant increments come from points

where the oscillations vanish. These points will be stationary points of the phase

ϕj(k) = ωj(k)− x

t
k,

that is points where
d

dk
ϕj(k) =

d

dk
ωj(k)− x

t
= 0.
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This implies that probable location of the particle depending on the momentum k is after t

steps given by

x =
d

dk
ωj(k)t.

Therefore, k-dependent pseudo-velocity of the walk is equal to

vj(k) =
d

dk
ωj(k). (1.20)

Furthermore, higher order stationary point means larger increment. In other words, second

order stationary point k0, for which

d2

dk2
ϕj(k)

∣∣∣∣
k0

=
d2

dk2
ωj(k)

∣∣∣∣
k0

=
d

dk
vj(k)

∣∣∣∣
k0

= 0, (1.21)

corresponds to the peak in the position probability distribution and

xmax =
d

dk
ωj(k)

∣∣∣∣
k0︸ ︷︷ ︸

vR,L

t (1.22)

is the position of the probability peak after t steps. We have denoted the velocities of the

right and left travelling peaks as vR,L.

To summarize, first derivative of the phase ωj(k) expressed at point k0, which is the point

where the second derivative of ωj vanishes, gives velocities and therefore positions of the

peaks in the position probability distribution.

In the case of the Grover walk we get that the highest probability peaks are found for the

momentum

k0 = 0,

and velocities of the travelling probability peaks are according to Eq. (1.22)

vR,L = lim
k→0+

d

dk
ω2,1(k) = ± lim

k→0+

sin k√
5− 4 cos k − cos2 k

= ± 1√
3
, (1.23)

where ω1,2(k) are given by Eq. (1.18). Note that the remaining phase ω3 = 0 immediately

leads to stationary trapping peak with velocity vS = 0, which is therefore centered at the

origin. Moreover, since the point k0 is the stationary point of the velocity, the peak velocity

vR,L corresponds to the maximal velocity of spreading of the walk. This means that travelling

probability peaks are the fastest parts in the position probability distribution, see Fig. (1.2).

Last but not least we have to note similarities with wave theory. Phases ωj(k) from

Eq. (1.18) can be assumed as dispersion relations. It is known that the first derivative of

the dispersion relation with respect to wave-number corresponds to the group-velocity of

spreading of the wave packet. Therefore, we might consider phases ωj(k) as the dispersion

relations, momentum k as a wave-number and the pseudo-velocities, Eq. (1.20) as the group

velocity and its maximum is given by Eqs. (1.22) and (1.23).
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1.1.2 Wigner walks

Wigner walks are a model of quantum walks on a one-dimensional lattice, where the coin is

chosen as a Wigner rotation matrix. This type of a walk exists for any coin dimension starting

with dimension two and provided that the dimension is odd, the trapping effect is observed.

We emphasize that here by the dimension we mean a number of allowed movements. All

the walks spread over a one-dimensional lattice, thus the dimension of the lattice is still the

same.

The dimension of the Wigner rotation matrix is 2j + 1, where j is a half-integer. The

construction of these matrices comes from the quantum mechanical rotation operator and its

irreducible matrix representation using Wigner formula [27, 28]. For each half-integer j, the

(2j + 1) × (2j + 1) Wigner rotation matrix is a unitary matrix R(j) that provides a 2j + 1

dimensional representation of the rotation group SO(3). Since it corresponds to the matrix

representation of the coin operator, from now on we will use more common designation for

quantum coin as C
(j)
W instead of R(j).

Considering the Hilbert space H of the 2j + 1−dimensional walk from Eq.(1.1), 2j + 1

allowed movements |j〉, |j−1〉, . . . |− j〉 form the standard basis of the coin Hilbert space HC .

Note that since j can be also half-integer, the description of the walks is unified by setting

the lengths of the individual step as 2m, m = −j, . . . , j. Position Hilbert space is given as

before by discrete positions on a one-dimensional lattice,

Hp = Span{|x〉, x ∈ Z}.

Coin C
(j)
W is defined by the matrix elements 1

(C
(j)
W )mn(α, γ, ρ) = 〈m|Ĉ(j)|n〉

where m,n = −j,−j + 1, . . . , j − 1, j and rotation Ĉ
(j)
W is the coin operator that is for the

Wigner walks used in the evolution operator, Eq. (1.3). The matrix elements take the form

(C
(j)
W )mn(α, γ, ρ) = e−iαmc(j)

mn(ρ)e−iγn, (1.24)

where

c(j)
mn(ρ) =

∑
l

Γ(j,m, n, l)ρ2j+m−n−2l
√

1− ρ2
2l−m+n

and

Γ(j,m, n, l) = (−1)l
√

(j +m)!(j −m)!(j + n)!(j − n)!

(j − n− l)!(j +m− l)!(l + n−m)!l!
.

1In [23] authors use parameter β instead of ρ. The relations between these two choices are cos β
2
= ρ, sin β

2
=√

1− ρ2. Therefore, |ρ| cannot exceed 1. Moreover, it is worth to assume that |ρ| < 1. The reason is that

ρ = ±1 corresponds to the trivial walk with trivial dynamics. This notation is also more convenient for us

since ρ corresponds to the maximal velocity of spreading, i.e. velocity of peaks in the position probability

distribution.
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Figure 1.3: Allowed steps of 2j + 1−dimensional Wigner walk for different choices of j. If j

is integer, we have odd-state walk where one of the possible movement is always to stay at

the actual position. Both odd and even-state walks occupy only half of the positions on the

lattice at each time.

The time evolution operator as described by Eq. (1.3) needs also a shift operator, which

in the case of the Wigner walk has the form

Ŝ =
∞∑

x=−∞

j∑
m=−j

|x+ 2m〉〈x| ⊗ |m〉〈m|. (1.25)

As we have mentioned above, this operator is defined in the way that the length of the step

is not always equal to one, but can be larger and depends on the internal state of the coin

m. The allowed movements are 2j steps to the right and left, 2(j − 1) steps to the right and

left and so on. For integer j there is an odd number of steps allowed, therefore the walker

may also stay on the actual position as one of the possibilities. Due to these movements, the

walk occupies only half of the possible position at each time. The situation for the allowed

steps of the Wigner walk and several choices of j is depicted in the Fig. (1.3).

The initial state of the walk |ψ0〉 = |0〉 ⊗ |ψC〉 evolves in time in a similar way as the

three-state walk in Eq. (1.11). Therefore

|ψ(t)〉 =
∑
x

j∑
m=−j

ψ(j)
m (x, t)|x〉 ⊗ |m〉

and the probability of finding the particle at position x after t steps reads

p(x, t) =

j∑
m=−j

|ψ(j)
m (x, t)|2. (1.26)
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Note that the time evolution can be expressed also in a different way using position represen-

tation of a (2j+1)-component probability amplitude vector ψ(j)(x, t) = (ψ
(j)
−j , ψ

(j)
−j+1, . . . , ψ

(j)
j )

and coin elements responsible for change of the coin states. Components of this vector evolves

in time t as

ψ(j)
m (x, t+ 1) =

j∑
n=−j

C(j)
mnψ

(j)
n (x+ 2n, t).

Further analysis is done similarly as among the lines presented in subsection 1.1.1. Using the

Fourier transform we change the position to the momentum representation

ψ̃(j)(k, t) =
∑
x

eikxψ(j)(x, t).

It simplifies the calculation of the evolution of the probability amplitude vector to

ψ̃(j)(k, t+ 1) = Ũ(k)ψ̃(j)(k, t) = Ũ t(k)ψ0,

where Ũ(k) as the evolution operator in the Fourier picture read

Ũ(k) = Diag{e−2ikj , e−2ik(j−1), . . . , e2ik(j−1), e2ikj}.C(j)
W .

Here Diag denotes diagonal matrix.

The importance of the introduced Wigner walks model sits in its suitable basis and the

limiting distribution analysed in chapter 5. These walks helped us to understand physical

meanings of the suitable basis and thus provided approach for its construction that can be

applied for other types of walks.

By this final subsection, we have introduced all classes of quantum walks on a line whose

properties will be later analysed. We do not limit ourselves only to a one-dimensional lattice

and thus the next section is devoted to four-state quantum walks on a two-dimensional lattice.

We introduce a notation and some properties we will refer to in the following chapters,

especially chapter 2 and 4.

1.2 Quantum walks on a two-dimensional lattice

Let us start with a quantum walk on a two-dimensional lattice, where the walker can move

in a plane to the left, right, down or up at each discrete time step. Therefore, the position

Hilbert space

Hp = Span{|x, y〉;x, y ∈ Z}

is spanned by positions x on the horizontal lattice and y on the vertical lattice. Coin Hilbert

space is given by

HC = C4 = Span{|L〉, |R〉, |D〉, |U〉} = Span




1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1


 ,
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denoting movements to the left, right, down and up.

Considering the time evolution, the evolution operator has the same form as before,

Û = Ŝ(Îp ⊗ Ĉ)

and coin C is now an arbitrary four-dimensional unitary matrix of the general form

C =


CLL CLR CLD CLU

CRL CRR CRD CRU

CDL CDR CDD CDU

CUL CUR CUD CUU

 . (1.27)

Further, the step operator reads

Ŝ =
∑
x,y

|x− 1, y〉〈x, y| ⊗ |L〉〈L|+ |x+ 1, y〉〈x, y| ⊗ |R〉〈R|+

+ |x, y − 1〉〈x, y| ⊗ |D〉〈D|+ |x, y + 1〉〈x, y| ⊗ |U〉〈U |.

The time evolution of the probability amplitude vector after Fourier transform from positions

x, y to momenta k, l is in complete analogy with Subsec. 1.1.1 and reads

ψ̃(k, l, t) = Ũ(k, l)ψ(k, l, t− 1) = Ũ t(k, l)ψ0.

Here

Ũ(k, l) = Diag{e−ik, eik, e−il, eil} · C, (1.28)

is the evolution in the momentum Fourier representation. Since we are interested in the

quantum walks with non-empty point spectrum, we describe one such a four-state walk,

which is the Grover walk.

1.2.1 Four-state Grover walk on a two-dimensional lattice

In the case of the Grover walk, the coin is four-dimensional Grover matrix

C
(4)
G =

1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 (1.29)

constructed acording to Eq. (1.6).

Surprisingly, even though there is no option for the walk to stay at the the individual

step, the trapping effect appears. The phases ωj(k, l) of the eigenvalues λj(k, l) = eiωj(k,l) of

Ũ(k, l) from Eq. (1.28) with coin C = C
(4)
G are equal to

ω1,2(k, l) = ± arccos

(
−1

2
(cos k + cos l)

)
,

ω3(k, l) = 0,

ω4(k, l) = π.
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Figure 1.4: Position probability distribution of the four-state Grover walk on a two-

dimensional lattice. Initial state is chosen to be the escaping state from Eq. (1.34). For

the escaping state, trapping peak is not observed. The total number of steps is t = 100.

The existence of the constant phase ensures that the point spectrum of the walk is non-empty

and therefore, the trapping at the vicinity of the origin appears.

We note that the eigenvectors corresponding to the constant eigenvalue λ3,4 = ±1 =

eiω3,4(k,l) read

v3,4(k) =
1

n3,4

(
1± e−il, eik(±1 + e−il), (±1 + eik)e−il, 1± eik

)T
, (1.30)

with normalization factor

n3,4 = ±4 (±2 + cos k + cos l) .

The dependence of the trapping on the choice of the initial coin state is essential. For

majority of the initial states, four-state Grover walk is trapped. Nevertheless, we can find an

escaping state for which the trapping peak is not observed. It was found that certain coins

lead to trapping quantum walks regardless of an initial state. Such walks are called strongly

trapping.

1.2.2 Strong trapping

In [29], Kollár et al. introduced a completely new so-called strong trapping effect for two-

dimensional quantum walks. Strong trapping manifest itself in the absence of an escaping

state, that is initial coin state for which the trapping is not observed. The main importance of
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this new phenomena sits in its possible applications in transport, efficiency and deposition of

excitation in planar structures or spatial quantum search algorithms. In general, the existence

of point spectrum of the time evolution operator Ũ(k, l) and the corresponding stationary

states are responsible for trapping. Any initial coin state with non-zero overlap with the

stationary state inevitably lead to the presence of the central trapping probability peak. The

escaping state for which the trapping is not observed is the initial coin state orthogonal to

trapping (stationary) state. For strong trapping coin class we cannot find such a state.

As an example of the main though let us first discuss the four-state Grover walk. This

walk exhibits trapping but not strong trapping. The escaping state exists and has form

|ψescC 〉 =
1

2
(|L〉+ |R〉 − |D〉 − |U〉) , (1.31)

which in the matrix representation read

ψescC =
1

2
(1, 1,−1,−1).

Indeed, the stationary states, Eq. (1.30), are the eigenstates of the evolution operator

Ũ(k, l) corresponding to the constant eigenvalues ±1. The escaping initial state (initial

probability amplitude vector) is independent of the momentum k, thus can be written as

ψ0 = (α, β, γ, δ)T . It has to satisfy the condition

(v3,4, ψ0) = 0.

Comparison of the individual terms accompanying expressions eif(k,l), f(k, l) = 0, k, l, ... lead

to the conditions

1 : α+ δ = 0

e−ik : β + δ = 0

eil : α+ γ = 0

ei(l−k) : β + γ = 0

which provide the initial state,

ψ0 =
1

2
(1, 1,−1,−1)T = ψescC ⇔ |ψ0〉 = |0, 0〉 ⊗ 1

2
(|L〉+ |R〉 − |D〉 − |U〉)︸ ︷︷ ︸

|ψC〉esc

.

In [29] authors constructed non-trivial coin of the form

CST =


e−i(α1+α2)c1c2 e−i(β1+β2+ϕ)s1s2 −e−i(α2+β1)c2s1 −e−i(α1+β2)c1s2

ei(β1+β2+ϕ)s1s2 ei(α1+α2)c1c2 ei(α1+β2+ϕ)c1s2 ei(α2+β1=ϕ)c2s1

e−i(α1+α2)c1s2 −ei(α2+β2−ϕ)c2s1 −e−i(β1−β2)s1s2 e−i(α1−α2)c1c2

e−i(α2+β1)c2s1 −ei(α1−β2−ϕ)c1s2 ei(α1−α2)c1c2 −ei(β1−β2)s1s2

 , (1.32)

where

cj = cos δj , sj = sin δj , j = 1, 2.
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Here the stationary states reads

vλ=±1 =
1

2


eiβ1s1 ± eileiβ2s2

eikeile−i(β1+ϕ)s1 ± eike−i(β2+ϕ)s2

eiα1c1 ∓ eike−iα2c2

−eikeile−iα1c1 ± eileiα2c2

 (1.33)

It holds that for most of the CST -coins, arbitrary initial state

|ψ0〉 = |0, 0〉 ⊗
(
α|L〉+ β|R〉+ γ|D〉+ δ|U〉

)
︸ ︷︷ ︸

|ψC〉

−→ ψ̃0 = ψ0 = (α, β, γ, δ)T

has non-zero overlap with the stationary state vλ=±1 and thus exhibits strong trapping effect.

The only difference is the case where

cos 2δ1 = cos 2δ2,

for which we can find an escaping state. Also we have

strong trapping ⇔ ∀ψ0, (vλ=±1, ψ0) 6= 0 ⇔ cos 2δ1 6= cos 2δ2.

In the case of cos 2δ1 = cos 2δ2, the escaping state is given by

ψesc0 = ψescC =
1√
2


e−iβ1 cos δ1

−e−i(α1+α2−β2−ϕ) cos δ1

−e−iα1 sin δ1

−e−i(α2+β1−β2) sin δ1

 .

Thus, initial state of the form

|ψesc0 〉 = |0, 0〉 ⊗
(
e−iβ1 cos δ1|L〉 − e−i(α1+α2−β2−ϕ) cos δ1|R〉−

−e−iα1 sin δ1|D〉 − e−i(α2+β1−β2) sin δ1|U〉
)

(1.34)

leads to a non-trapping walk.

In this section, we have introduced the concept of the four-state quantum walks on a

two-dimensional lattice. We have showed that at least for the Grover walk, non-empty point

spectrum and thus trapping effect exist. Moreover, for a specific coin class one can find a

stronger version of trapping. It means that trapping is observed regardless the choice of

the initial state. This feature is not observed for the Grover walk for which we can find

a single initial state having zero overlap with the stationary state. We will return to the

strong trapping effect in chapter 4 which is devoted to the classification of the trapping coins

for four-state quantum walk on a two-dimensional lattice. We show that from all trapping

families of coins, there exist no other strong trapping coin class besides CST .
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Figure 1.5: Position probability distribution of the quantum walk with strongly trapping

coin class, Eq. (1.32). We have chosen parameters δ1 = π/3, δ2 = π/4 and all the phases

α1,2 = β1,2 = ϕ = 0. The initial coin state of the walk is the state which is for the Grover

walk escaping, Eq. (1.34). This state was chosen for better comparison with Fig. (1.4).

Strong trapping coin class exhibits trapping regardless of the initial state. Moreover, for

this particular state the trapping peak is very thick and covers considerable part of the

total probability. The central peak achieves value around 0.3 and exceeds the rest of the

distribution significantly. Therefore, the plot range is cut. The total number of steps is

t = 100.
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Chapter 2

Continuous deformations of the

Grover walk

Based on the trapping effect exhibited by the three-state quantum walk on a line with the

Grover coin, we expect the existence of other coins or coin classes leading to trapping. We can

immediately find a simple example of another trapping matrix. If we choose as a coin some

trivial matrix, for instance the identity matrix, the walk will certainly satisfy the condition to

exhibit non-empty point spectrum. We can see it directly for the three-state walk by choosing

the initial coin state as ”stay at your actual position”, |ψC〉 = |S〉 = (0, 1, 0)T . The action

of the identity matrix leaves this state unchanged and trapped at the origin. The identity

matrix does not mix coin states at all, there is no interference and the dynamics is trivial.

The question is whether there exist other non-trivial coins preserving the trapping effect

and whether the already known coins are connected in some way. We show that such a

connection can be established and the trivial matrices can be linked with the non-trivial

ones. These connections lead to two one-parameter families of coins preserving the trapping

effect. From the reasons that will be clear soon, let us call these two families as eigenvalue

and eigenvector family.

Both resulting families of coins preserve the existence of the point spectrum of the time

evolution operator in the Fourier picture. In other words, presented one-parameter families

provide trapping walks for an arbitrary choice of the additional parameter. The advantage

of the presented approach is that it can be easily extended to higher-dimensional quantum

walks.

2.1 Eigenvalue family of coins

First, we describe the construction of the eigenvalue family for the three-state Grover walk

on a line and apply the knowledge to the four-state Grover walk on a two-dimensional lattice.

The approach is based on finding trivial matrices having full rank that commute with the

Grover matrix. Therefore, their common eigenvectors can be found. This is not true for the

eigenvalues which are different and we emphasize it by the name eigenvalue family.
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2.1.1 Eigenvalue deformation of the three-state Grover walk on a line

The trivial matrix that plays a crucial role here is the anti-diagonal permutation matrix

P (3)
π =

 0 0 1

0 1 0

1 0 0

 . (2.1)

Three-state quantum walk on a line with this permutation coin will only switch |L〉 � |R〉
in each step and state |S〉 remains unchanged. There is no mixing of the coin states, and the

walker only jumps step to the right or left and then immediately back in the next step. Such

a walk does not spread across the lattice.

This specific choice of the trivial coin is not arbitrary, since the spectrum of this matrix

and the Grover matrix C
(3)
G , Eq. (1.9), differs only in a sign of one eigenvalue. Since the

matrices P
(3)
π and C

(3)
G commute, their eigenvectors can be chosen the same. The change of

sign can be solved by addition of a phase factor ϕ into the spectral decomposition of the

Grover matrix. The decomposition of C
(3)
G reads

C
(3)
G = λ1v1v

†
1 + λ2v2v

†
2 + λ3v3v

†
3 = −v1v

†
1 − v2v

†
2 + v3v

†
3 (2.2)

where v1,2,3 are the eigenvectors of the Grover matrix,

v1 =
1√
6

(1,−2, 1)T (2.3)

v2 =
1√
2

(1, 0,−1)T

v3 =
1√
3

(1, 1, 1)T ,

with the corresponding eigenvalues λ1,2 = −1, λ3 = 1. On the other hand, due to a different

sign of the first eigenvalue, the decomposition of P
(3)
π reads

P (3)
π = v1v

†
1 − v2v

†
2 + v3v

†
3. (2.4)

Adding a phase factor provides a continuous transfer between these two matrices,

P (3)
π

ϕ←→ C
(3)
G

as

C
(3)
def1

(ϕ) = −e2iϕv1v
†
1− v2v

†
2 + v3v

†
3 =

1

6

 −1 + e2iϕ 2(1 + e2iϕ) 5− e2iϕ

2(1 + e2iϕ) 2(1− e2iϕ) 2(1 + e2iϕ)

5− e2iϕ 2(1 + e2iϕ) −1− e2iϕ

 . (2.5)

We call C
(3)
def1

(ϕ) an eigenvalue family of coins.

From both, the construction and the final form of the eigenvalue family, it is easy to check

that the choice ϕ = π/2 leads to the permutation matrix P
(3)
π . On the other hand, the choice

ϕ = 0 gives the Grover matrix C
(3)
G , Eq. (1.9). The factor of 2 in the additional phase is

not necessary, it is only convenient choice for further calculation. One can check quite easily

that this new coin class preserves the trapping effect. Additional information and analysis

regarding trapping and spreading of the walk is formulated in [I, 30].

24



2.1.2 Eigenvalue deformation of the four-state Grover walk on a two-

dimensional lattice

In the same way as for the three-state walk, we can construct an eigenvalue family for the

four-state quantum walk. We start from the four-dimensional Grover matrix from Eq. (1.29)

and connect it with the permutation matrix of the form

P (4)
π =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (2.6)

This matrix switches only the coin states corresponding to the horizontal or vertical lattice,

|L〉 ←→ |R〉, |D〉 ←→ |U〉. (2.7)

The spectrum of the permutation matrix

λP
(4)
π

1 = 1, λP
(4)
π

2 = −1, λP
(4)
π

3 = −1, λP
(4)
π

4 = 1, (2.8)

differs from the spectrum of the Grover matrix

λ
C

(4)
G

1 = −λP
(4)
π

1 = −1, λ
C

(4)
G

2,3,4 = λP
(4)
π

2,3,4, (2.9)

in the sign of the first eigenvalue. The common eigenvectors of the matrices P
(4)
π and C

(4)
G

corresponding to the eigenvalues from Eqs. (2.8) and (2.9) read

v1 =
1

2
(1, 1,−1,−1)T

v2 =
1√
2

(0, 0, 1,−1)T

v3 =
1√
2

(1,−1, 0, 0)T

v4 =
1

2
(1, 1, 1, 1)T . (2.10)

The one-parameter family of trapping coins C
(4)
def1

(θ) with parameter θ ∈ R connecting

the Grover matrix and the permutation matrix P̃π is constructed in the same way as in the

previous section. Using the spectral decomposition we obtain

C
(4)
def1

(θ) = −e2iθv1v
†
1 − v2v

†
2 − v3v

†
3 + v4v

†
4 =

=
1

4


−(1 + e2iθ) 3− e2iθ 1 + e2iθ 1 + e2iθ

3− e2iθ −(1 + e2iθ) 1 + e2iθ 1 + e2iθ

1 + e2iθ 1 + e2iθ −(1 + e2iθ) 3− e2iθ

1 + e2iθ 1 + e2iθ 3− e2iθ −(1 + e2iθ)

 . (2.11)
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Figure 2.1: Position probability distribution for the four-state walk on a two-dimensional

lattice with coin C
(4)
1 (θ), Eq. (2.11). The initial state is a state which for which the Grover

walk is non-trapping, Eq. (1.34). Parameter θ = π/8 and the total number of steps t = 100.

It is seen that C
(4)
def1

(0) = C
(4)
G and C

(4)
def1

(
π
2

)
= P

(4)
π . Sometimes it is useful to multiply the

eigenvalue family C
(4)
def1

(θ) by a global phase e−iθ which changes many of the complex matrix

elements to simple cosine function.

The new C
(4)
def1

(θ) family of coins preserves the presence of the constant eigenvalues of

the evolution operator Ũ(k, l), Eq. (1.28). To show it, we write down their explicit forms,

λj(k, l, θ) = eiωj(k,l,θ), j = 1, 2, 3, 4, with phases

ω1,2(k, l, θ) = θ ± arccos

(
−1

2
(cos k + cos l) cos θ

)
,

ω3(k, l, θ) = 0,

ω4(k, l, θ) = π.

The constant eigenvalues are the same as for the Grover walk on a two-dimensional lattice,

i. e. λ3,4(k, l, θ) = ±1.

Note that there exist other permutation matrices with one different eigenvalue. These

matrices are, from our experience, not worth to use. They switch between the horizontal and

the vertical lattice and do not lead to trapping.
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2.1.3 Eigenvalue families for other types of higher-dimensional quantum

walks

The application of the approach described in the previous subsections is not limited only to

the three-state Grover walk on a line or the four-state Grover walk on a square lattice. We

are convinced that it can be applied to any type of walk exhibiting trapping.

Due to the fact that there is no trapping for any two-state quantum walk on a line, we

might assume that trapping exists only for odd-state walks on a line, where one of the allowed

movement is to stay at the actual position. This feature was observed for the Wigner walks

(subsection 1.1.2). Despite that, the four-state Grover walk on a line exhibits trapping. The

possible movements are step to the left or right and two steps to the left or right. Then, in

analogy with Eq. (1.15) and Eq. (1.28), the evolution operator in the Fourier picture reads

Ũ(k) = Diag{e−2ik, e−ik, eik, e2ik}.C(4)
G , (2.12)

where C
(4)
G is the four-dimensional Grover matrix, Eq. (1.29).

One can easily check, that the propagator Ũ(k) has two constant eigenvalues equal to ±1.

Furthermore, a trivial walk with non-empty point spectrum needs to employ trivial coin in

the form

P̄π =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

This anti-diagonal permutation matrix, whose eigenvalues differ from the eigenvalues of C
(4)
G

only in one sign, has common eigenvectors pi, i = 1, . . . , 4 with C
(4)
G . These are

p1 =
1

2
(−1, 1,−1, 1),

p2 =
1

2
(−1,−1, 1, 1),

p3 =
1

2
(1,−1,−1, 1),

p4 =
1

2
(1, 1, 1, 1).

Note that the choice of the eigenvectors is a bit different than in Eq. (2.10) due to different

permutation matrices P̄π and P
(4)
π from Eq. (2.6).

Now we can construct the eigenvalue family of coins similarly as in previous section, it is

by a suitable addition of a phase factor eiϑ into the spectral decomposition. The resulting

one-parameter family then reads

C̄
(4)
def1

(ϑ) = −p1p
†
1 − p2p

†
2 − e

2iϑp3p
†
3 + p4p

†
4 =

=
1

4


−(1 + e2iϑ) 1 + e2iϑ 1 + e2iϑ 3− e2iϑ

1 + e2iϑ −(1 + e2iϑ) 3− e2iϑ 1 + e2iϑ

1 + e2iϑ 3− e2iϑ −(1 + e2iϑ) 1 + e2iϑ

3− e2iϑ 1 + e2iϑ 1 + e2iϑ −(1 + e2iϑ)

 ,
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Figure 2.2: Position probability distribution for the four-state Grover walk on a line. As an

initial state we have a state which is for the walk on a two-dimensional lattice escaping, Eq.

(1.34). For the similar walk on a line, this initial state leads to trapping walk. The total

number of steps is t = 200.

which is just a rearrangement of the eigenvalue family for the four-state walk on a 2D lattice,

Eq. (2.11).

We have mentioned that the Grover matrix can be constructed in any dimension starting

with dimension three, following Eq. (1.6). Therefore, we may construct eigenvalue families

also for five and higher-state quantum walk on a line or a two-dimensional lattice. The key

moment is to find a proper trapping trivial coin with spectrum differing only in a sign of one

eigenvalue compared to the spectrum of the Grover matrix. This trivial coin depends on the

dimensionality of the lattice. Such eigenvalue families will always preserve trapping.

2.2 Eigenvector family of coins

In the previous section we have described the construction of the eigenvalue family of trapping

coins based on the sign difference in the spectrum. Nevertheless, there exist trivial matrices

that have the same spectrum as the Grover matrix, but since these matrices do not commute

with the Grover matrix, their eigenvectors cannot be chosen the same. We will show that the

eigenvectors of the trivial and the Grover matrices can be parametrized in order to provide a

continuous change from the trivial to the Grover matrix. Therefore, we call the new family

of matrices eigenvector family of coins.

The idea of the parametrization of the eigenvectors is inspired by the work of Watabe et.

al. [31]. In this paper the authors studied a four-state quantum walk on a two-dimensional
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Figure 2.3: Position probability distribution for the four-state quantum walk on a two-

dimensional lattice with the coin C
(4)
def2

(p) results in elliptic spreading. We have chosen

p = 2/3 and the initial state is given by Eq. (1.34). It is seen that this state is not an

escaping state as it was for the Grover walk. The total number of steps is t = 100.

lattice with one parameter family of coins. This one-parameter family of coins has the form

C
(4)
def2

(p) =


−p q

√
pq
√
pq

q −p √
pq
√
pq

√
pq
√
pq −q p

√
pq
√
pq p −q

 , p+ q = 1, p ∈ 〈0, 1〉. (2.13)

One can easily check that the spectrum of this matrix is the same as for the Grover matrix

C
(4)
G from Eq. (1.29). In fact, the choice p = q = 1/2 equals the Grover matrix C

(4)
G . Note

that the choices p = 0 or p = 1 result in trivial matrices that switches the coin states only

on the horizontal or vertical lattice, while the others remain unchanged.

This C
(4)
def2

(p) family of coins exhibits trapping. Unfortunately, there was no explanation

on the construction of the given family. We have analysed the family of coins, proposed the

construction and employ it to define new types of walks. In the next subsection we provide, as

an example, the eigenvector family for the three-state walk on a line. It will be seen that the

described approach can be easily applied also to other types of walks. For more information

about the spreading of these four-dimensional walks see [30].
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2.2.1 Eigenvector deformation of the three-state Grover walk on a line

There exist two trivial matrices with the same spectrum as the Grover matrix C
(3)
G , Eq. (1.9),

exhibiting trapping. These matrices T, T ′ are given by

T =

 0 0 1

0 −1 0

1 0 0

 , T ′ =

 −1 0 0

0 1 0

0 0 −1

 . (2.14)

The coin T is very similar to the permutation matrix, Eq. (2.1), and leads to the same type

of walk, where the particle jumps back and forth without spreading through the lattice. The

coin T ′ does not even change the coin states at all and results in a similar type of walk as

with the identity matrix. Therefore, initial coin state components |L〉 or |R〉 send the particle

to the left or right at each step. After t steps, the particle can be found only at three possible

positions, x = 0 and x = ±t. Therefore, the velocity of spreading is equal to one, which is

the maximum velocity any quantum walk can reach, provided that the particle moves to the

neighbouring side on the lattice at each step, i.e. the length of the step is equal to one. Note

that for the Wigner walks introduced in Subsec. (1.1.2) the steps can be larger and we have

to multiply the basic velocity by the length of the step.

One can easily check that the eigenvalues of the trivial coins T and T ′ are the same as for

the Grover matrix C
(3)
G , it is λT,T

′

1,2 = −1 and λT,T
′

3 = 1. On the other hand, these matrices

do not commute with the Grover matrix and thus their eigenvectors cannot be chosen the

same. For the trivial coin T the eigenvectors are given by

vT1 = (0,−1, 0)T ,

vT2 =
1√
2

(1, 0,−1)T ,

vT3 =
1√
2

(1, 0, 1)T

and for the matrix T ′ we have

vT
′

1 =
1√
2

(1, 0, 1)T ,

vT
′

2 =
1√
2

(1, 0,−1)T ,

vT
′

3 = (0, 1, 0)T .

Both trivial matrices have clearly different eigenvectors from the Grover coin, Eq. (2.3).

Nevertheless, an appropriate parametrization of the eigenvectors leads to the transition

T
ρ←→ G3

ρ←→ T ′,

where ρ is a parameter connecting these three matrices, respectively their eigenvectors. The
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parametrized eigenvectors read

v1(ρ) =

(
ρ√
2
,−
√

1− ρ2,
ρ√
2

)T
(2.15)

v2(ρ) =
1√
2

(1, 0,−1)T

v3(ρ) =

(√
1− ρ2

2
, ρ,

√
1− ρ2

2

)T
,

(2.16)

where ρ ranges from 0 to 1.

The resulting eigenvector family of coins C
(3)
def2

(ρ) is then formed as

C
(3)
def2

(ρ) = −v1(ρ)v†1(ρ)− v2(ρ)v†2(ρ) + v3(ρ)v†3(ρ) =

=

 −ρ2 ρ
√

2(1− ρ2) 1− ρ2

ρ
√

2(1− ρ2) 2ρ2 − 1 ρ
√

2(1− ρ2)

1− ρ2 ρ
√

2(1− ρ2) −ρ2

 . (2.17)

To get the original Grover matrix we have to choose ρ = 1/
√

3 and the choices ρ = 0, ρ = 1

give the matrices T, T ′. Note that for the three-state Grover walk, the velocity of spreading

of the walk given by Eq. (1.23) is equal to ±1/
√

3. The trivial walk with coin T from Eq.

(2.14) does not spread through the lattice at all, therefore its velocity equals zero. Further,

the walk with T ′ coin, Eq. (2.14), spreads with the maximal velocity equal to one. It is

not an accident that these velocities are the same as the choice of the parameter ρ. This

additional parameter really corresponds to the rate of spreading of the walk. To show it we

have to look at the phases ωj(k, ρ) of the eigenvalues λj(k, ρ) of the evolution operator

Ũ(k, ρ) = Diag{e−ik, 1, eik}.C(3)
def2

(ρ),

which is, up to the coin which is now C
(3)
def2

(ρ), the same as Eq. (1.15). The phases of the

eigenvalues of Ũ(k, ρ) read

ω1,2(k, ρ) = ± arccos
(
ρ2 − 1− ρ2 cos k

)
ω3(k, ρ) = 0. (2.18)

Following the recipe given in the subsection 1.1.1 the velocities of spreading of the walk, i.e.

the velocities of the probability peaks, are given by

vR,L(ρ) =
∂ω2,1(k, ρ)

∂ρ

∣∣∣∣
k0

= lim
k→0+

∂ω2,1(k, ρ)

∂ρ
= ±ρ (2.19)

and

vS(ρ) = 0.

We remind that k0 = 0 is a point, where the second derivative of the dispersion relations

ω1,2(k, ρ) vanishes.
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In this chapter we have shown that the Grover walk is not the only three-state or four-

state walk exhibiting trapping. Nevertheless, the presented construction of the one-parameter

families preserving trapping can be easily applied to higher dimensional walks, but does not

allow us to make any statement about a completeness of these trapping classes. The following

chapter is a step leading towards a full classification of the trapping three-state quantum walks

on a line.
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Chapter 3

Classification of trapping coins for

three-state quantum walk on a line

In the previous chapter we have described an easy and intuitive constructions of trapping

coins that can be used for more types of walks. The disadvantage of the construction of the

eigenvector respectively eigenvalue families is that it does not say whether these two families

cover all trapping coins or not. In this chapter we answer this question and show, how the

most general trapping coin look like. We put the already found families into the context

and comment how they form its subclasses. Since this is quite a complex problem, we have

to limit ourselves to the three-state quantum walk on a line and will present a construction

that covers all trapping coins. We will see that a general trapping coin for the three-state

walk on a line contains more than one parameter. Nevertheless, even with higher number of

parameters which ensure the existence of trapping, it is still a rare effect among all possible

quantum walks.

3.1 Conditions on a non-empty point spectrum

We consider a three-state quantum walk on a line, for which the coin states are given by Eq.

(1.7) and the time evolution operator, Eq. (1.15), has in the Fourier representation following

form

Ũ(k) = Diag{e−ik, 1, eik}.C. (3.1)

Here C is a general coin with matrix elements Cij , i, j = L, S,R, thus

C =

 CLL CLS CLR

CSL CSS CSR

CRL CRS CRR

 . (3.2)

Since we are interested in trapping at the vicinity of the origin, which is described by the

non-empty point spectrum of the evolution operator Ũ(k), we can immediately write the

eigenvalues of Ũ(k), as

λ1(k) = eiα, λ2,3(k) = eiω2,3(k). (3.3)
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In order to ensure the trapping, one of the eigenvalues has to be constant. Here λ1 is a

constant eigenvalue and λ2,3 depend on the momentum k. The characteristic equation of

Ũ(k) from Eq. (3.1) reads

det(Ũ(k)− λI) = (λ− λ1(k))(λ− λ2(k))(λ− λ3(k)) = 0. (3.4)

Here we assume that λ1,2,3(k) are the eigenvalues from Eq. (3.3). Now we compare terms

with the same power of λ on the left and the right hand side of Eq. (3.4). The absolute term

gives

λ0 : ei(α+ω2(k)+ω3(k)) = detC,

which, due to k−independence of the coin C, results in

ω2(k) = −ω3(k) = ω(k),

detC = eiα. (3.5)

The first equation of Eqs. (3.5) shows that the eigenvalues λ2,3(k) of the evolution operator

Ũ(k) from Eq. (3.1) are complex conjugate. The other two powers of λ in Eq. (3.4) give

λ1 : 1 + eiα(eiω(k) + e−iω(k)) = mLe
ik +mS +mRe

ik,

λ2 : eiα + eiω(k) + e−iω(k) = CLLe
−ik + CSS + CRRe

ik.
(3.6)

Here we have used Eq. (3.5) and have denoted as mj , j = L, S,R sub-determinants of the

coin C from Eq. (3.2) with crossed-out jth row and jth column. For example,

mL =

∣∣∣∣∣ CSS CSR

CRS CRR

∣∣∣∣∣ = CSSCRR − CSRCRS .

From Eqs. (3.6) we get that

λ1 => 2 cosω(k) = e−iα(mLe
ik +mS +mRe

−ik − 1),

λ2 => 2 cosω(k) = CLLe
−ik + CSS + CRRe

ik.
(3.7)

These two equations provide us with the last constraints on the diagonal matrix elements of

the general trapping coin C,

CLL = e−iα(CLLCSS − CLSCSL),

CRR = e−iα(CRRCSS − CRSCSR),

CSS − 1 = e−iα(CLLCRR − CLRCRL − 1). (3.8)

These constraints ensure the existence of the point spectrum of Ũ(k). Moreover, from the

second equation in Eqs. (3.7) and the fact that ω ∈ R we see that the left hand side is real.

Thus we get another requirements on the right hand side. The elements CLL(RR) staying at

the right hand side have to compensate the imaginary parts of e±ik. Thus we may conclude

that CLL = C∗RR.
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3.2 Unitarity

It is known that the coin C from Eq. (3.2) has to be unitary. Until now we did not use

any requirement on the matrix elements Cij , i, j = L, S,R to ensure unitarity. We have only

constraints on the existence of the point spectrum without exploiting unitarity of the matrix

elements.

Since we want to find all trapping coins, our coin C has to be the most general three-

dimensional unitary matrix. There exist several recursive methods for the construction of

general unitary matrices. Nevertheless, even in the moderate dimension of three, the final

matrix with nine real parameters has quite complicated form. The application of the con-

ditions from Eq. (3.8) makes possible solutions unreadable. However we know that at least

two solutions exist in the form of the one-parameter families, Eqs. (2.11, 2.17).

Let us now briefly describe a parametrization, which we use and modify in order to find

a convenient unitary coin. It is known that every unitary matrix can be decomposed into a

product of three unitary matrices [20], where two of them are diagonal. For the elements of

the three-dimensional unitary matrix U(3) we need nine real parameters that are hidden in

the decomposition of the form

C = Diag{eiα1 , eiα2 , eiα3}.V.Diag{eiα4 , eiα5 , eiα6}. (3.9)

Here Diag denotes diagonal matrix. Parameters αi, i = 1, . . . , 6 appear only in sums with

some other αj , j = 1, . . . , 6, j 6= i and therefore the diagonal matrices effectively give only

five independent real parameters γ1,...,5 that will be specified later. The unitary matrix V

includes the remaining four parameters and can be constructed recursively [20]. Nevertheless,

this and most other recursive parametrisation would lead to the unsolvability as mentioned

above. Fortunately, there is a way to solve this problem. Let us take as V so-called quark

mixing matrix [32]

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.10)

which satisfy the requirement of four independent real parameters. Here cij = cos θij , sij =

sin θij , i = 1, 2, j = 2, 3. Following the prescription from Eq. (3.9) we get unitary matrix

with nine real independent parameters, which are

δ, θ12, θ13, θ23, γ1, γ2, γ3, γ4, γ5,

and

γ1 = α1 + α4, γ2 = α1 + α5, γ3 = α1 + α6, γ4 = α2 + α4, γ5 = α3 + α4.
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The general 9-parameter unitary coin in the convenient form then reads

C =



eiγ1c12c13 eiγ2s12c13 s13e
i(γ3−δ)

−eiγ4(s12c23+

+c12s23s13e
iδ)

ei(γ4+γ2−γ1)(c12c23−
−s12s23s13e

iδ)
e−i(γ1−γ3−γ4)s23c13

eiγ5(s12s23−
−c12c23s13e

iδ)

ei(γ5+γ2−γ1)(−c12s23−
−s12c23s13e

iδ)
ei(γ5+γ3−γ1)c23c13


. (3.11)

Now we can use this coin together with the conditions ensuring trapping. Applying the

first two conditions from Eq. (3.8) on the matrix (3.11) imply

CLL ⇒ c13(c12 − e−i(γ3+γ5)c23) = 0, (3.12)

CRR ⇒ c13(c12 − ei(γ3+γ5)c23) = 0.

We have used the fact from Eq. (3.5) saying that the constant eigenvalue is equal to the

determinant of the coin

detC = eiα = ei(−γ1+γ2+γ3+γ4+γ5).

To get a non-trivial solution, where by non-trivial we mean that no Cij equals zero, all the

θij-parameters have to be non-zero. Trivial solutions wil not be discussed here and one can

find them in [II]. Following Eq. (3.12), we have to satisfy the conditions

cos θ12 = cos θ23 and γ5 = −γ3.

Let us note that the condition γ5 = −γ3 immediately follows also from the fact that CLL =

C∗RR, which we have already mentioned below Eq. (3.7).

For the complete solution, we still have to use the last equation in Eqs. (3.8) which

provide two final non-trivial solutions. Let us summarize the results:

cos θ12 = cos θ23, γ5 = −γ3 and

First solution

δ = 0, γ1 = γ2 + γ4

C
(3)
full1

=

 ei(γ2+γ4)c13c23 eiγ2s23c13 s13e
−iγ5

−eiγ4(s23c23 + c23s23s13) c2
23 − s2

23s13 e−i(γ2+γ5)s23c13

eiγ5(s2
23 − c2

23s13) ei(γ5+γ4)(−c23s23(1− s13) e−i(γ2+γ4)c23c13

 ,

(3.13)

Second solution

sin θ13 =
sin(γ1 − γ2 − γ4)

sin(δ − γ1 + γ2 + γ4)
,where δ 6= γ1 − γ2 − γ4 and − 1 ≤ sin θ13 ≤ 1
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C
(3)
full2

=

 eiγ1c23B eiγ2s23B sin ΓAei(−γ5−δ)

−ei(γ1−γ2)As23c23 sin δ eiΓc2
23 + eiΓAs2

23 sin Γ e−i(γ1+γ5−γ4)s23B

eiγ5(s2
23 + sin Γc2

23Ae
iδ) ei(−γ5+γ4)Ac23s23 sin δ e−iγ1c23B

 ,

where (3.14)

Γ = γ2 + γ4 − γ1, A = 1/ sin(Γ + δ), B =
√
A2 sin (2Γ + δ) sin δ.

These two families C
(3)
full1

= C
(3)
full1

(θ13, θ23, γ2, γ4, γ5) and C
(3)
full2

= C
(3)
full2

(θ23, δ, γ1, γ2, γ4, γ5)

cover all non-trivial three-dimensional coins that lead to the non-empty point spectrum of

the evolution operator Ũ(k) from Eq.(3.1). Thus the trapping effect exists for an arbitrary

choice of their parameters.

Each of these new families C
(3)
full1,2

is a generalization of the previously found one-parameter

families of coins that we derived in chapter 2 and called the eigenvalue and the eigenvector

family. More precisely, the matrix C
(3)
full1

from Eq. (3.13) is the generalized eigenvector family

C
(3)
def2

(ρ) from Eq. (2.17) and the same holds for C
(3)
full2

, Eq. (3.14), and the eigenvalue family

C
(3)
def1

(ϕ) from Eq. (2.11). Indeed, if we choose in C
(3)
full1

(θ13, θ23, γ2, γ4, γ5) the parameters as

γ2,4,5 = 0, θ13 = arcsin(1− ρ2), θ23 = arccos

(
− ρ√

2− ρ2

)
(3.15)

we get the eigenvector family C
(3)
def2

(ρ). Further for C
(3)
full2

(θ23, δ, γ1, γ2, γ4, γ5) we have to

choose

γ1 = γ2 = π, γ4 = γ5 = −ϕ, θ23 = − arctan 2, δ = ϕ+ arctan

(
2 cotϕ

3

)
. (3.16)

This choice give us, up to the irrelevant global phase factor eiϕ, the eigenvalue family C
(3)
def1

(ϕ).

A general three-dimensional unitary matrix C from Eq. (3.11) has nine real parameters.

We have reduced the number of parameters from nine to five resp. six in the case of C
(3)
full1

resp. C
(3)
full2

matrix. It the case of the eigenvalue and eigenvector family from Eqs. (2.5, 2.17),

the additional parameters ϕ and ρ influence the rate of spreading of the walk. For general

trapping coins C
(3)
full1,2

, there might exist parameters that can be ignored, since they do not

influence the rate of spreading and the shape of the probability distribution. We analyse this

feature in the same way as we did for the three-state Grover walk in the section 1.1.1. Some

results are summarized and commented in the following subsection.

3.3 Spreading of a general three-state trapping quantum walk

Every quantum walk spreads across a given lattice with a certain speed. This velocity is

calculated via dispersion relation and depends on a coin parameter. Dispersion relations

arises from the eigenvalues of the evolution operator. Thus we have to begin with calculation
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of the eigenvalues of Ũ(k) = Diag{e−ik, 1, eik}.C(3)
full1,2

, Eqs. (3.1). We consider as C
(3)
full1,2

general trapping coins of the three-state walk, Eqs. (3.13, 3.14). In both cases, one eigenvalue

will be independent of the momentum k. The existence of this eigenvalue is associated with

the central non-moving peak in the probability distribution. Further, we have two complex

conjugate eigenvalues e±iωfull1 (k) for the C
(3)
full1

walk and e±iωfull2 (k) for the C
(3)
full2

walk. These

eigenvalues are related to the travelling peaks in the probability distribution.

The phases read

ωfull1(k) = arccos(cos(γ2 + γ4 − k) cos θ13 cos θ23 + 1/2(sin θ13 − 1) sin2 θ23),

ωfull2(k) = arccos

(
cos(γ1 − k)A cos θ23 −

sin δ sin2 θ23

2 sin(d− γ1 + γ2 + γ4)

)
,

where A =

√
sin δ sin(δ − 2(γ1 − γ2 − γ4))

sin2(δ − γ1 + γ2 + γ4)
. (3.17)

We emphasize that the phases (dispersion relations) ωfull1,2(k), depend on less parameters

than the original coins C
(3)
full1,2

, Eq. (3.13, 3.14). The parameters appearing in the dispersion

relation are the only ones that influence the spreading of the walk. Any other parameter can

be ignored. First of all we can ignore parameters shifting momentum k, i.e. γ2,3 in ωfull1 and

γ1 in ωfull1 . In the case of C
(3)
full1

walk, we end up with two parameters which are relevant

C
(3)
full1

: θ13, θ23.

From the same reasons, spreading of the walk with C
(3)
full2

coin is influenced only by three

parameters, one angle and two phases

C
(3)
full2

: θ23, δ and κ = (γ1)− γ2 − γ4. (3.18)

Since we have determined that the propagation of the trapping three-state walk depends

only on two parameters in the case of C
(3)
full1

coin, Eq. (3.13), or three parameters in the case

of C
(3)
full2

coin, Eq. (3.14), we can finally look how these parameters affects the spreading of

the walk. To do that, we unify the marking. We can rewrite the dispersion relations from

Eqs. (3.17) into the form

ωfull1,2(k) = arccos(α cos k − β).

From Eq. (3.17) we see that

C
(3)
full1

: α = cos θ13 cos θ23,

β = −1/2(sin θ13 − 1) sin2 θ23,

C
(3)
full2

: α = A cos θ23,

β =
sin δ sin2 θ23

2 sin(d− γ1 + γ2 + γ4)
.

Here we have ignored any parameter shifting the momentum k as discussed above. To get

the point k0, for which the second derivative of the dispersion relation ωfull1,2(k) vanishes,

we have to solve the following equation,

αβ(1 + cos2 k) + (1− α2 − β2) cos k = 0.
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The solution to this equation reads

k0 = arccos ∆,

where

∆ =
α2 + β2 − 1 +

√
(1− α2 − β2)2 − 4α2β2

2αβ
.

The velocities of the left and the right travelling peaks are then vR,L = ±vmax. Here

vmax = ρ

√
1−∆2√

1− (ν − ρ∆)2
. (3.19)

These results are depicted in the Fig. 5.4 for both C
(3)
full1,2

walks. For more information see

[II].

We have showed how the individual parameters influence the spreading of the walk. The

trapping peak does not spread at all and thus has to be analysed separately. Therefore, let

us investigate a role of the coin parameters on the trapping. In general, the eigenvalues of

Ũ(k) from Eq. (3.1) are eiα, e±iω. Specifically, α = 0, ω = ωfull1 for quantum walk with

C
(3)
full1

coin and α = Γ, ω = ωfull2 for C
(3)
full2

walk (see Eq. (3.17)). We can always multiply

the coin by a global phase factor that does not change the dynamics of the walk. Let us

choose the global phase as the inverse of the constant eigenvalue, e−iα. The eigenvalues of

the propagator Ũ(k) now read

λ1 = 1, λ2,3(k) = e−i(α∓ω(k)).

Further we have the eigenvector v1(k) corresponding to the constant eigenvalue λ1 = 1 and

v2,3(k) corresponding to the λ2,3(k) = e−i(α∓ω(k)). We assume that all the eigenvectors are

normalized. To calculate the trapping probability, we perform the inverse Fourier transform

as shown in Eq. (1.16) back to position variable x

ψ(x, t) =
1

2π

∫ π

−π
dke−ixkψ̃(k, t) =

3∑
j=1

∫ π

−π
dk(e−i

x
t
kλj)

t(vj(k), ψ0)vj(k).

Here ψ̃(k, t) is a probability amplitude vector at time t in the Fourier picture, which was

introduced in Subsec. (1.1.1). On the left hand side we have probability amplitude vector in

the position space ψ(x, t). Using the form of the eigenvalues λ1,2,3(k) we get

ψ(x, t) =
1

2π

∫ π

−π
dke−ixk(v1(k), ψ0)v1(k) +

+
1

2π

(∫ π

−π
dke−ixke−i(α±ω(k))t(v2(k), ψ0)v2(k)+

+

∫ π

−π
dke−ixke−i(α±ω(k))t(v3(k), ψ0)v3(k)

)
. (3.20)

From the Riemann-Lebesgue lemma the last two time-dependent integral in (3.20) vanish

when time t approaches infinity. In the limit of large time t (large number of performed
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(a) Peak velocity for the quantum walk with coin C
(3)
full1

. The velocity

depends only on two parameters θ13 and θ23.

(b) Peak velocity for the quantum walk with coin C
(3)
full2

. In this case,

the velocity depends on three parameters. One angle θ23 and two phases

δ, κ = (γ1)− γ2 − γ4. Here we have chosen κ = π
5 . The empty regions

are prohibited δ−regions. For every θ23 there is a condition adjacent

to the C
(3)
full2

solution, Eq. (3.14), which is sin θ13 = sin(κ)
sin(δ−κ) . Since the

value of the sine function is limited by one, | sin θ13| ≤ 1 and κ was

chosen, restriction on δ naturally arises.

Figure 3.1: Velocity of the probability peak from Eq. (3.19) for the quantum walks with

C
(3)
full1

and C
(3)
full2

coins, Eqs. (3.13, 3.14) in dependence on the coin parameters.
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steps), the probability amplitude reads

ψ∞(x) = lim
t→∞

ψ(x, t) = lim
t→∞

1

2π

∫ π

−π
dke−ixk(v1(k), ψ0)v1(k). (3.21)

For the vector v1(k) holds

C
(3)
full1

:

v1(k) =
1

n(k)


−e−iγ5s23

(
sin θ13

2 + cos θ132

)
ei(k−γ2−γ5)

(
sin θ13

2 − cos θ132

)
+ ei(γ4−γ5)c23

(
sin θ13

2 + cos θ132

)
−eiks23

(
sin θ13

2 + cos θ132

)
,


n(k) = 2 + s2

23(1 + s13)− 2c13c23 cos(k − γ2 − γ4) =

= a− 2b cos(k − c),

C
(3)
full2

:

v1(k) =
1

n(k)

 ei(γ2+γ4)sδs23

−ei(γ1+γ4)sδc23 + ei(k+γ4)
√
sδ sin(δ + 2κ)

ei(k+γ1+γ5)sδs23

 ,

n(k) = sδ

(
sin(δ + 2κ) + sδ(1 + s2

23)− 2c23 cos(k − γ1)
√
sδ sin(δ + 2κ)

)
=

= a− 2b cos(k − c). (3.22)

We have denoted sin δ = sδ.

The corresponding probability of trapping at position x after infinitely many steps is given

by the square of norm of the probability amplitude vector (see Eq. (5.26))

p∞(x) = lim
t→∞
|ψ(x, t)|2 = |ψ∞(x)|2 (3.23)

and depends on the initial state of the walk. Due to the number of parameters in our coins,

is not suitable to choose a general initial state. Since we want to focus only on the role of

coin parameters on trapping we choose as a reference initial state maximally mixed state,

|ψ0〉 = |0〉 ⊗ 1√
3

(|L〉+ |S〉+ |R〉)⇒ ψ0 =
1√
3

(1, 1, 1)T . (3.24)

This is convenient choice because it covers all coin states with equal probability. It is known

that the central peak decreases exponentially when we move away from the origin. Therefore,

we take only the top of the peak corresponding to the position x = 0,

p∞ = p∞(0).

For a maximally mixed state we then have

p∞ =
1

3
(|ψ1,∞|2 + |ψ2,∞|2 + |ψ3,∞|2),

where the elements of the probability amplitude vector ψ∞ = ψ∞(0) = (ψ1,∞, ψ2,∞, ψ3,∞)T

are given by Eqs. (3.21) and (3.24). All the integrands in p∞ can be expressed in the form

In =

∫ π

−π

eink

2π(a− 2b cos(k − c))
dk, n = −1, 0, 1, (3.25)
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and then calculated with the help of the contour integration methods. We see that integral

I−1 = I∗1 and thus we have to calculate only integrals I0,1. Note that the denominator in Eq.

(3.25) follows from the normalization of the vector v1(k), Eq. (3.22) corresponding to the

constant eigenvalue. For the C
(3)
full1

walk we have

C
(3)
full1

: a = (1 + s13)s2
23 + 2, b = c13c23, c = γ2 + γ4 (3.26)

and for the C
(3)
full2

walk

C
(3)
full2

: a =
(

(1 + s2
23 sin δ) + sin(δ + 2κ)

)
sin δ, b =

√
sin δ sin(δ + 2κ)c23 sin δ, c = γ1.

(3.27)

Substitution z = eik turns Eq. (3.25) into contour integration over a unit circle

In = − 1

2πi

∮
|z|=1

zn

be−icz2 − az + beic
dz =

∮
|z|=1

f(z)dz.

Here we can apply residue theorem that

In =
∑

k,|zk|<1

Res(f, zk).

For simple poles zk of the function f(z) the residue is given by

Res(f, zk) = lim
z→zk

(z − zk)f(z)

Here we deal only with simple poles in the form

z1,2 = eic
a±
√
a2 − 4b2

2b
.

Note that in our case of a, b from Eqs. (3.26, 3.27), pole z1 falls out of the unit circle region

and therefore

In = Res(f, z2) =


1√

a2−4b2
, n = 0,

eic
(

a√
a2−4b2

−1

)
2b , n = 1.

(3.28)

This general approach can be applied to both coins C
(3)
full1

and C
(3)
full2

. Since the results

are quite long [II], we will present them only graphically in Fig. 3.2. We emphasize that, as

one might expected, the probability depends on the same reduced number of parameters as

the velocity of spreading, it is θ13 and θ23 for C
(3)
full1

walk, δ, θ23, κ = (γ1)− γ2− γ4 for C
(3)
full2

walk.

To conclude, after omitting cases containing at least one zero, there exist two classes of

coins for three-state quantum walk on a line which lead to a non-empty point spectrum of

the evolution operator in the Fourier picture Ũ(k). These classes have five resp. six free

parameters, but only two resp. three are relevant and influence the dynamics. Both classes

are generalizations of previously found one-parameter families of coins discussed in chapter

2. The results show that although we have enlarged the number of parameters, the trapping

is for the three-state quantum walk on a line still quite a rare phenomena. Compared to nine

real parameters general three-dimensional unitary coin contains, our special choices providing

trapping are negligible.
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(a) For the walk with C
(3)
full1

coin, the limiting probability of finding

the particle trapped at the origin depends on the same parameters

as the peak velocity, on the angles θ13 and θ23.

(b) The limiting trapping probability at the origin depends, for the

walk with C
(3)
full2

coin on the same parameters as the peak velocity,

it is θ23, δ, κ. Here we have chosen κ = π
5 . The δ−region is limited

by the condition −1 ≤ sin θ13 ≤ 1 as described for Fig. (3.1b)

.

Figure 3.2: Limiting probability p∞ of finding the particle at the origin (position m = 0)

when the number of steps t approaches infinity. The maximally mixed state from Eq. (3.24)

was chosen as the initial state. The walks are driven by C
(3)
full1

resp. C
(3)
full2

coins from Eqs.

(3.13, 3.14).
43



Chapter 4

Classification of trapping coins for

four-state quantum walks on a

two-dimensional lattice

In chapter 3, we have described the construction of all trapping coins for the three-state

quantum walks on a line in. For that classification we have used a decomposition of the

unitary matrices as a product of two diagonal and one d2 − (2d − 1)−parameter unitary

matrix, where d is the dimension of the walk. For the three state walk d = 3. We used a

trick since we did not use recurrent parametrization but found more suitable choice of the

four-parameter matrix, which was the quark mixing matrix. In this case, we were able to find

all solutions leading to trapping walks. Unfortunately, we have also found that this approach

would almost certainly not be useful for higher dimensional quantum walks. Although there

exist generalization of the mixing matrix to the dimension four, which reads [33]

M =


s1s3s5 s1s3c5 s1c3 c1

M21 M22 M23 −s1c2

M31 M32 M33 −s1s2c4

M41 M42 M43 −s1s2s4

 ,

where the elements in the middle of the matrix are given by

M23 = c1c2c3 − s2s3c6e
iδ

M33 = c1s2c3c4 + c2s3c4c6e
iδ + s3s4s6e

iβ

M22 = c1c2s3c5 + s2c3c5c6e
iδ + s2s5s6e

iγ

M32 = c1s2s3c4c5 − c2c3c4c5c6e
iδ − c3s4c5s6e

iβ − c2c4c5c6e
iγ + s4s5c6e

i(β+γ−δ)
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and the edge elements read

M43 = c1s2c3s4 + c2s3s4c6e
iδ − s3c4s6e

iβ

M21 = c1s2s3s5 + s2c3s5c6e
iδ − s2c5s6e

iγ

M42 = c1s2s3s4c5 − c2c3s4c5c6e
iδ + c3c4c5s6e

iβ − c2s4s5s6e
iγ − c4s5c6e

i(β+γ−δ)

M31 = c1s2s3c4s5 − c2c3c4s5c6e
iδ − c3s4s5s6e

iβ + c2c4c5s6e
iγ − s4c5c6e

i(β+γ−δ)

M41 = c1s2s3s4s5 − c2c3s4s5s6e
iδ + c3c4s5s6e

iβ + c2s4c5s6e
iγ + c4c5c6e

i(β+γ−δ)

and its nine parameters make impossible to read out all the cases leading to a trapping

quantum walk. Here sj resp. cj stands for sin θj resp.cos θj , j = 1, . . . , 6.

One can definitely find some solutions leading to trapping when an approach similar to

that of chapter 3 would be applied, but now for a four-dimensional mixing matrix M. For

example, one solution is of the form

c2 = c3, s2 = s3, c6 = −c1, s6 = s1, δ = β = σ1 = 0,

γ = π, σ2 = −σ5, σ3 = σ6, σ4 = −σ7,

but many other possible solutions remain hidden in the complicated expressions and large

number of parameters. Thus the completeness of the solutions would be impossible.

Since we want to find all trapping coins for the four-state quantum walk on a two-

dimensional lattice, we have to develop a completely different approach. In [29] an alternative

construction of one (strong) trapping coin class arising from the tensor product of unitary

matrices. This alternative approach also does not lead to full classification. In fact the idea of

a stationary state as the starting point is basis for further investigations that leads to desired

result.

We devote the present chapter to the classification of four-dimensional walks. This chapter

will be divided into several section. First we prove that the stationary state is restricted to a

2× 2 subspace of the lattice. We can say that this is the key knowledge that provides, with

some algebra, a full classification of the trapping coin classes.

4.1 Support of stationary states

As we have already mentioned, the analysis begin with a stationary state of a walk. It is a

state which is invariant with respect to the action of the evolution operator. Knowledge of a

coin controlling the walk leads to unique stationary state. If we do not know anything about

the coin, it is hard to say something about the stationary state. Therefore, it is necessary to

restrict a set of all possibly stationary states to those which are relevant. The restriction is

done by specification of positions on which the state is trapped.

Trapping is caused by the existence of the constant eigenvalue eiφ of the evolution operator

Ũ(k, l) = Diag{e−ik, eik, e−il, eil}.C, (4.1)
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where C is an arbitrary 4 × 4 unitary matrix with its matrix elements as in Eq. (1.27).

Multiplication of the coin C by a global phase e−iφ only changes the eigenvalues of Ũ(k, l),

but does not change the walk at all. Therefore, we can assume without loss of generality that

the constant eigenvalue is always equal to one. It leads to equation

Ũ(k, l)ψ = ψ

with ψ = (ψ1, ψ2, ψ3, ψ4)T being the eigenvector corresponding to the eigenvalue λ = 1. The

vector ψ is found by solving the characteristic equation

det (Ũ(k, l)− I)︸ ︷︷ ︸
W

= 0

which says that the rows of W are not linearly independent. We denote the identity matrix

as I. Thus, at least two rows of W are linearly dependent. Let us denote the rows of W as

Wj , j = 1, 2, 3, 4 and assume that the first and the third row W1,3 are linearly dependent.

After omitting one of these rows we still have to get that W2

W3

W4

 .

 ψ2

ψ3

ψ4

 = 0,

 W1

W2

W4

 .

 ψ1

ψ2

ψ4

 = 0. (4.2)

Pluging Eq. (4.1) into the Eq. (4.2) gives, in the case of eliminated V1, three equations

for ψj , j = 1, . . . , 4. Solving these equations leads to expressions consisting of the elements

depending on momenta k, l only in the exponential form. Thus the solution the most generally

depends on momenta in the form

ommited W1 : 1︸︷︷︸
|x,y〉

, eik︸︷︷︸
|x+1,y〉

, eil︸︷︷︸
|x,y+1〉

, ei(k+l)︸ ︷︷ ︸
|x+1,y+1〉

, ei(k+2l)︸ ︷︷ ︸
|x+1,y+2〉

, ei2l︸︷︷︸
|x,y+2〉

.

Hence the stationary state occupies maximally a 2×3 lattice region. Nevertheless, the solution

without W3 leads to expressions with momenta of the form

ommited W3 : 1︸︷︷︸
|x,y〉

, eik︸︷︷︸
|x+1,y〉

, eil︸︷︷︸
|x,y+1〉

, ei(k+l)︸ ︷︷ ︸
|x+1,y+1〉

, ei(2k+l)︸ ︷︷ ︸
|x+2,y+1〉

, ei2k︸︷︷︸
|x+2,y〉

and thus a 3× 2 support. There should be no difference in the solution between omitting W1

or W3 row since these two choices are completely equivalent. This leads us to the conclusion

that the stationary state occupies maximally a 2× 2 region on the lattice. Therefore, we can

write a general stationary state for any trapping four-state walk as

|ψstat〉 = |x, y〉⊗|ξx,y〉+|x+1, y〉⊗|ξx+1,y〉+|x, y+1〉⊗|ξx,y+1〉+|x+1, y+1〉⊗|ξx+1,y+1〉 (4.3)

with |ξi,j〉, i(j) = x(y), x(y) + 1 being the coin state. Its general form reads

|ξi,j〉 = ξ
(L)
i,j |L〉+ ξ

(R)
i,j |R〉+ ξ

(D)
i,j |D〉+ ξ

(U)
i,j |U〉.
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Note that the exact form of the coefficients ξ
(.)
i,j of the coin states |ξi,j〉 are strictly given by

the stationary state requirements and their exact forms will be specified later.

In Eq. (4.2), we have chosen rows W1,3 to be linearly dependent and this choice was not

unreasonable. According to our notation from Eq. (4.1), the first and the second row of

W = Ũ(k, l) − I is k−dependent and thus responsible for the kicks on the horizontal part

of the 2D lattice. On the other hand, l−dependent W3,4 are related to the vertical part of

the lattice. Picking one k−dependent W1 or W2 and one l−dependent W3 or W4 sample and

assuming their linear dependence is sufficient for a first half of the proof. It is the part where

we study support of stationary states provided that the k−dependent (horizontal) lines W1,2

are gained by multiplication of the l−dependent (vertical) lines W3,4 by a k, l−dependent

factor. Indeed one can check that for instance a choice of W2 and W3 as linearly dependent

rows leads to 2× 2 support similarly as we have shown for W1 and W3.

Due to this limitation, one might become suspicious about the completeness of the proof.

By now, we have not assumed that k−dependent rows W1 and W2 or l−dependent rows W3,4

can be linearly dependent. Therefore, we look at this situation and reveal that it does not

enlarge the 2× 2 support proved in the previous paragraphs. Here we can even calculate the

explicit form of the coin as a direct sum of two unitary matrices.

Now we describe the second half of the proof. Let us assume that W1,2 are linearly

dependent, it is W1 = KW2, where K is in general function of a momentum k. Then

0 = W1 −KW2 =

=
(
−1 + e−ikCLL −KeikCRL, e−ikCLR −K(−1 + eikCRR),

e−ikCLD −KeikCRD, e−ikCLU −KeikCRU
)
. (4.4)

Here we have to keep in mind that the matrix elements Ci,j , i, j = L,R,D,U (see Eq. (1.27))

are independent of k. The last two equations can be solved as eighter K = e−2ik CLD
CRD

= e−2ik CLU
CRU

∧ CRD, CRU 6= 0 ⇒ K ∼ e−2ik,

or CLD = CRD = CLU = CRU = 0 ⇒ correct solution.
(4.5)

We have already marked that the second solution is correct. Indeed, the first solution with

K ∼ e−2ik does not work since it requires dependence of the matrix element Cij on momentum

k. If we plug the first solution from Eq. (4.5) into the first two elements from (4.4) we

immediately see that we cannot satisfy these equation with elements of the coin C being

momentum independent. These arguments clearly confirm that the correct solution is the

second one from Eq. (4.5). Due to unitarity, since CLD = CRD = CLU = CRU = 0 than

also CDL = CDR = CUL = CUR = 0. All the coin elements responsible for mixing of the

horizontal |L〉, |R〉 and the vertical |D〉, |U〉 coin states are equal to zero. Therefore, the final

coin is a direct sum of two two-dimensional unitary matrices describing separate spreading

horizontally and vertically,

C =

(
U1 0

0 U2

)
.
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The most general two-dimensional unitary matrix is of the form

Ui =

(
eiαi cos δi e−iβi sin δi

eiβi sin δi −e−iαi cos δi

)
, i = 1, 2. (4.6)

This parametrization together with the first two components from Eq. (4.4) gives, after some

algebra, additional conditions that δ1 = π/2 and K = e−i(k+β). Finally we constructed a coin

C =


0 e−iβ1 0 0

eiβ1 0 0 0

0 0 eiα2 cos δ2 e−iβ2 sin δ2

0 0 eiβ2 sin δ2 −e−iα2 cos δ2

 . (4.7)

Now it is easy to check that the support of a stationary state of the walk with this coin

remains 2 × 2. We have assumed that the first two rows W1,2 are linearly dependent. For

assumption of the linear dependence of W3 and W4, we can prove that the support does not

exceed 2× 2 region analogously. Now we have covered all the cases resulting from the linear

dependence of W = Ũ(k, l)− I and thus completed the proof.

4.2 Conditions on the trapping coins

The stationary state |ψstat〉 from Eq. (4.3) remains during the time evolution unchanged.

Therefore, it has to satisfy

Û |ψstat〉 = Ŝ(Îp ⊗ Ĉ)|ψstat〉 = |ψstat〉.

This relation can be written using reverse of the step operator as

Ŝ−1|ψstat〉 = (Îp ⊗ Ĉ)|ψstat〉. (4.8)

The right hand side of this equation only changes the coin state and not positions,

(Îp ⊗ Ĉ)|ψstat〉 = |x, y〉 ⊗ |ξĈx,y〉+ |x+ 1, y〉 ⊗ |ξĈx+1,y〉+

+ |x, y + 1〉 ⊗ |ξĈx,y+1〉+ |x+ 1, y + 1〉 ⊗ |ξĈx+1,y+1〉,

where |ξĈi,j〉 = Ĉ|ξi,j〉, i, j = L,R,D,U. On the other hand, the left hand side changes

positions according to the coin states. Thus we have to eliminate these coefficients ξ
(.)
i,j from

Eq. 4.3 that would take us outside of the 2× 2 region |m,n〉, m = x, x+ 1, n = y, y+ 1. For

instance

Ŝ−1
(
ξ(R)
x,y |x, y〉 ⊗ |R〉

)
= |x− 1, y〉︸ ︷︷ ︸

/∈2×2

⊗|R〉 ⇒ ξ(R)
x,y = 0.
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Therefore

Ŝ−1|ψstat〉 = ξ(R)
x,y︸︷︷︸
f

|x, y,R〉+ ξ(U)
x,y︸︷︷︸
d

|x, y, U〉+ ξ
(R)
x,y+1︸ ︷︷ ︸
h

|x, y + 1, R〉+

+ ξ
(D)
x,y+1︸ ︷︷ ︸
b

|x, y + 1, D〉+ ξ
(L)
x+1,y︸ ︷︷ ︸
a

|x+ 1, y, L〉+ ξ
(U)
x+1,y︸ ︷︷ ︸
g

|x+ 1, y, U〉+

+ ξ
(L)
x+1,y+1︸ ︷︷ ︸

c

|x+ 1, y + 1, L〉+ ξ
(D)
x+1,y+1︸ ︷︷ ︸

e

|x+ 1, y + 1, D〉 (4.9)

and thus

|ψstat〉 = |x, y〉 ⊗ (a|L〉+ b|D〉) + |x, y + 1〉 ⊗ (c|L〉+ d|U〉) +

+ |x+ 1, y〉 ⊗ (e|D〉+ f |R〉) + |x+ 1, y + 1〉 ⊗ (g|U〉+ h|R〉) (4.10)

From Eqs. (4.8-4.10) we have that the coin operator changes the coin states of the stationary

state as

a|L〉+ b|D〉 Ĉ−→ f |R〉+ d|U〉

c|L〉+ d|U〉 Ĉ−→ h|R〉+ e|D〉

e|L〉+ f |D〉 Ĉ−→ a|L〉+ g|U〉

g|L〉+ h|D〉 Ĉ−→ c|L〉+ e|D〉

or in matrix form as

C


a

0

b

0

 =


0

f

0

d

 , C


0

f

e

0

 =


a

0

0

g

 ,

C


c

0

0

d

 =


0

h

b

0

 , C


0

h

0

g

 =


c

0

e

0

 . (4.11)

The coin C is a matrix representation of the coin operator Ĉ with matrix elements Cij , i, j =

L,R,D,U and we respect the ordering introduced in Sec. 1.2.

The conditions from Eq. (4.11) can be further rewritten as

C


a 0 c 0

0 f 0 h

b e 0 0

0 0 d g


︸ ︷︷ ︸

A

=


0 a 0 c

f 0 h 0

0 0 b e

d g 0 0


︸ ︷︷ ︸

B

. (4.12)
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If the determinant of the matrix A is non-zero than we can invert it and find solution for

the coin C as C = B.A−1. Nevertheless, it may happen that detA = 0. In the following

two sections we will discuss these two possibilities in more detail. Before we do that, we can

derive some conditions the parameters a,−, h have to satisfy.

We know that coin C is unitary, therefore C†C = I and

0 = B†B −B†B = A†C†CA−B†B = A†A−B†B =

=



|a|2 + |b|2−
−|d|2 − |f |2 eb∗ − gd∗ ca∗ − hf∗ 0

be∗ − dg∗ |e|2 + |f |2 − |a|2 − |g|2 0 hf∗ − ca∗

ac∗ − fh∗ 0 |c|2 + |d|2 − |b|2 − |h|2 gd∗ − eb∗

0 fh∗ − ac∗ dg∗ − be∗ |g|2 + |h|2−
−|c|2 − |e|2


.

(4.13)

From Eq. (4.13) one can see that 0 = A†A−B†B is equivalent to conditions:

|a|2 + |b|2 = |d|2 + |f |2, (4.14)

|g|2 + |h|2 = |c|2 + |e|2, (4.15)

|c|2 + |d|2 = |b|2 + |h|2, (4.16)

ac∗ = fh∗, (4.17)

be∗ = dg∗ . (4.18)

Here we ignore condition |e|2 + |f |2 = |a|2 + |g|2 in the second row and column of the matrix

(4.13) which is already governed in Eqs. (4.14-4.16). Equation (4.17) implies |ac| = |fh| and
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Eq. (4.18) implies |be| = |dg|. This can be used further in Eq. (4.16) from which we obtain:

|c|2 + |d|2 =|b|2 + |h|2 |c|2 + |d|2 =|b|2 + |h|2

⇓.|a|2 ⇓.|g|2

|a|2|c|2 + |a|2|d|2 =|a|2|b|2 + |a|2|h|2 |g|2|c|2 + |g|2|d|2 =|g|2|b|2 + |g|2|h|2

m(|ac| = |fh|) m(|be| = |dg|)

|f |2|h|2 + |a|2|d|2 =|a|2|b|2 + |a|2|h|2 |g|2|c|2 + |e|2|b|2 =|g|2|b|2 + |g|2|h|2

m m

|h|2
(
|f |2 − |a|2

)
=|a|2

(
|b|2 − |d|2

)
|g|2

(
|c|2 − |h|2

)
=|b|2

(
|g|2 − |e|2

)
m(by (4.14)) m(by (4.15))

0 =
(
|h|2 − |a|2

) (
|f |2 − |a|2

)
0 =

(
|g|2 − |b|2

) (
|g|2 − |e|2

)
m m

0 = (|h| − |a|) (|f | − |a|) 0 = (|g| − |b|) (|g| − |e|)

m (by (4.14)− (4.15)) m (by (4.14)− (4.15))
either |a| = |h| and |c| = |f |

or |a| = |f | and |c| = |h|
and |b| = |d| and |g| = |e|


either |g| = |b| and |d| = |e|

or |g| = |e| and |b| = |d|
and |c| = |h| and |a| = |f |

thus there are two possibilities,

I) |a| = |h| and |c| = |f | and |g| = |b| and |d| = |e|, (4.19)

II) |a| = |f | and |c| = |h| and |b| = |d| and |g| = |e|. (4.20)

Note that the determinant of the matrix A from Eq. (4.12) reads

detA = adeh− bcfg.

It is easy to check that the situation I) from Eq. (4.19) corresponds to detA 6= 0. On the

other hand, the situation II) from Eq. (4.20) results in detA = 0. This supports our suspicion

that we have to distinguish between zero or non-zero value of the determinant of the matrix

A and we can now proceed to the detail analysis of these two cases.

4.3 Non-zero determinant, detA 6= 0

First we look at the non-zero determinant corresponding to the situation I) from Eq. (4.19).

This reduces the conditions from Eqs. (4.14-4.16) to

|a|2 + |b|2 = |c|2 + |d|2. (4.21)

We can assume without loss of generality that the norm of |ψstat〉 from Eq. (4.10) is

2. It implies, due to Eq. (4.21) that |a|2 + |b|2 = |c|2 + |d|2 = 1. This allows us to write

|a|, |b|, |d|, |f | as sine and cosine functions,

|a| = sin δ1 = |h| |b| = cos δ1 = |g| |c| = sin δ2 = |f | |d| = cos δ2 = |e|. (4.22)
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Note that since we assumed that Eq. (4.20) does not hold, it follows that the parameters

δ1,2 has to be different, δ1 6= δ2. Different parameters imply |bcfg| 6= |adeh|, and therefore

detA 6= 0.

Since the determinant of the matrix A, Eq. (4.12) is non-zero, we may invert A and

calculate C = B.A−1. This is uniquely determined by the amplitudes a, b, c, d, Eq. (4.22), of

|ψstat〉 from Eq. (4.10). Let us check that this construction of the coin C satisfies unitarity.

Matrix C is unitary if and only if I = C†C =
(
A†
)−1

B†BA−1. Since A is invertible, we can

multiply this with A† and A from left and right. This leads us to condition B†B = A†A. We

have already met this condition in Eq. (4.13) which is equivalent to (4.14)-(4.18). Therefore,

any solution to these equations leads to a valid unitary coin.

From Eq. (4.22) we know the amplitudes of a,−, h. Every complex parameter p can be

written using its magnitude and phase as p = |p|eiφp, p = a,−, h. Eq. (4.17) shows that we

can assume without loss of generality that φa−φc = φf −φh, and similarly φb−φe = φd−φg
by Eq. (4.18). Since we can multiply everything by a global phase we can also assume

φa = 0. We can combine this phase information with our knowledge on the magnitudes

(4.22) to conclude that all possible unitary values of C = B.A−1 can be obtained using the

following parametrisation:

a = sin δ1, b =ei(φd+φe−φg) cos δ1, c =ei(φh−φf) sin δ2, d =eiφd cos δ2,

e =eiφe cos δ2, f =eiφf sin δ2, g =eiφg cos δ1, h =eiφh sin δ1.

One can check that this parametrization provides, up to a global phase, the same stationary

state as we had in Eq. (1.33).

Finally, the first class of the four-dimensional coins leading to trapping at the vicinity of

the origin read

C
(4)
full1

= C =B ·A−1 =

=


e−i(α1+α2)c1c2 −e−i(α2+β1)s1c2 −e−i(α1+β2)c1s2 e−i(β1+β2+ϕ)s1s2

e−i(α1−β2)c1s2 −e−i(β1−β2)s1s2 e−i(α1−α2)c1c2 −ei(α2−β1−ϕ)s1c2

e−i(α2−β1)s1c2 ei(α1−α2)c1c2 −ei(β1−β2)s1s2 −ei(α1−β2−ϕ)c1s2

ei(β1+β2+ϕ)s1s2 ei(α1+β2+ϕ)c1s2 ei(α2+β1+ϕ)s1c2 ei(α1+α2)c1c2

 ,

(4.23)

where

s1 = sin δ1, c1 = cos δ1, s2 = sin δ2, c2 = cos δ2,

α1 =φg −
φd + φe + π

2
, α2 = −φd − φe + π

2
,

β1 =
φd + φe − π

2
, β2 = φf − φh +

φd + φe − π
2

, ϕ = −φd − φe + φh + π . (4.24)

When omitting a global phase φa, this trapping coin class has 7 real parameters. Let

us remind that this coin class was already derived in [29] using an alternative construction.

More importantly, this is a strongly trapping coin class, already described in section 1.2.2,

C
(4)
full1

= CST .
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It means that four-state quantum walks with this coin are trapped regardless of the initial coin

state. This is satisfied provided that cos 2δ1 6= cos 2δ2. We remind that for cos 2δ1 = cos 2δ2

such a strong trapping can be avoided using the escaping initial state, Eq. (1.34). One

particular situation of spreading is depicted in subsection 1.2.2, Fig. (1.5).

Note that the parametrization and the resulting coin, Eq. (4.23), is still valid if one of

the parameters a,−, h is equal to zero. More precisely, due to Eq. (4.22) if one parameter is

zero, then some other one is zero as well and thus we always have even number of zeros. If

only two parameters are zero, we still have detA 6= 0 and the approach described above is

still valid. Different situation comes with four parameters being equal to zero, since then we

fall under situation II) from Eq. (4.20), which will be analysed later.

4.4 Determinant equal to zero, detA = 0

Let us turn to the situation II) given by Eq. (4.20). This case results in detA = 0. To see

this, multiply the two equations (4.17) and (4.18) to get

adc∗g∗ = bfe∗h∗.

Now multiply both sides with cgeh and use conditions (4.20) to get

adeh|cg|2 = bcfg|eh|2.

This is further equivalent to

0 = |cg|2 (adeh− bcfg)︸ ︷︷ ︸
detA

= 0,

which implies

detA = 0

even in the case when c or g is equal to zero. This results in the fact that the matrix A is

not invertible and we cannot follow the construction from the previous section. Moreover,

here we have to distinguish between several cases since there are more ways of getting a zero

determinant of the matrix A. As one of the trivial cases we can for instance choose a = 0.

Then from Eq. (4.20) also f = 0 which immediately results in detA = 0. Nevertheless,

there exist also a non-trivial case that occurs provided that the parameters a, b, c, e 6= 0 and

adeh = bcfg. Let us first analyse the non-trivial case and then turn back to the trivial ones.

4.4.1 Non-degenerate case

The non-degenerate case occurs when all amplitudes of |ψstat〉 , Eq. (4.10), are non-zero. Due

to constraints from Eq. (4.20) it is sufficient to assume that

a, b, c, e 6= 0
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Further, since detA = 0, the elements have to satisfy condition

adeh = bcfg. (4.25)

Due to zero determinant, matrix A is not invertible and thus we cannot get C directly by

inverting A. However, since no coefficients are zero we can see that the last 3 columns of A are

linearly independent and their linear combination together with the determinant condition

from Eq. (4.25) provides the first column of A. Therefore the columns of A span a three-

dimensional subspace. It is now easy to find a vector orthogonal to all columns of A in the

form

vA = (deh, ceg,−cfg,−ceh). (4.26)

Because the coin C is unitary, it reflects three- dimensional subspace of A to three-dimensional

subspace of B. Therefore, the columns of the matrix B from Eq. (4.12) are not linearly

independent as well and its one dimensional orthogonal subspace is spanned by the vector

vB = (egh, bcg,−cgh,−aeh). (4.27)

Again from unitarity, we know that C reflects the orthogonal subspace vA of A to orthogonal

subspace vb of the matrix B. We have that

vAA = 0, vBB = 0

and from Eq. (4.20) also

‖ vA ‖=‖ vB ‖ .

This allows us to assume that

Cv†A = eisv†B

and define A,B → Ã, B̃ by replacing the first columns with v†A, e
isv†B. It is

A•1 → v†A = Ã•1, B•1 → eisv†B = B̃•1,

A•j → Ã•j , B•j → B̃•j , j = 2, 3, 4.

The explicit form of the new matrices read

Ã =


(deh)† 0 c 0

(ceg)† f 0 h

−(cfg)† e 0 0

−(ceh)† 0 d g

 , B̃ =


eis(egh)† a 0 c

eis(bcg)† 0 h 0

−eis(cgh)† 0 b e

−eis(aeh)† g 0 0

 . (4.28)

This results in the alternative to Eq. (4.12) in the form CÃ = B̃. Since Ã has now full

column rank it can be inverted and therefore we can write

C = B̃Ã−1.

Similarly as in section 4.3, we can assume without loss of generality that the norm of

|ψstat〉 , Eq. (4.10) is
√

2 and that a ∈ R (the phase of a can be assumed as a global phase
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and thus eliminated). This provides, together with conditions from Eq. (4.20), additional

restriction of the form

〈ψstat|ψstat〉 = 2 ⇒ |a|2 + |b|2 + |c|2 + |e|2 = 1.

It is seen that we need three angles δ1,2,3 to parametrize |a|, |b|, |c|, |e| in sine and cosine form.

Additional phases are chosen to satisfy Eqs. (4.17)-(4.18). At the end we have the following

parametrisation:

a =s1s3, b =c1s2e
i(φd+φe−φg), c =s1c3e

i(φh−φf), d =c1s2e
iφd ,

e =c1c2e
iφe , f =s1s3e

iφf , g =c1c2e
iφg , h =s1c3e

iφh , (4.29)

where δk ranges from 0 to 2π, sk = sin δk and ck = cos δk) where k = 1, 3, 4.

Using this parametrisation, we get our new coin class as

C
(4)
full2

= C = B̃Ã−1 =
ei(α+γ3)Ξc2

1c2s2 eiα
(
Ξc2

1c
2
2 + 1

)
ei(α−γ1+γ3)Ξc1c2s1s3 ei(α−γ2+γ3)Ξc1c3c2s1

e−iα
(
Ξc2

1s
2
4 + 1

)
e−i(α+γ3)Ξc2

1c2s2 e−i(α+γ1)Ξc1s1s3s2 e−i(α+γ2)Ξc1c3s1s2

ei(β+γ2)Ξc1c3s1s2 ei(β+γ2−γ3)Ξc1c3c2s1 ei(β−γ1+γ2)Ξc3s
2
1s3 eiβ

(
Ξc2

3s
2
1 + 1

)
e−i(β−γ1)Ξc1s1s3s2 e−i(β−γ1+γ3)Ξc1c2s1s3 e−iβ

(
Ξs2

1s
2
3 + 1

)
e−i(β−γ1+γ2)Ξc3s

2
1s3

 ,

(4.30)

where Ξ =
(
eis − 1

)
, α = −φf , β = φe − φg,

γ1 = φd + φe − φg + π, γ2 = φd + φf − φh + π, γ3 = φd + φf − φg + 2π .

(4.31)

This new coin class is not a strongly trapping coin class and we can therefore find an

escaping initial state that leads to the non-trapping type of walk. This escaping state has

already been revealed during the construction of the coin class from Eq. (4.30), respectively

matrix Ã, and is proportional to

ψescC ∼ v†A = (deh, ceg,−cfg,−ceh)†.

Due to constraints from Eq. (4.20) and parametrization from Eq. (4.29) we can simplify the

amplitudes to

v†A ∼
(
b†e−i(φg+φh), e†e−i(φh+φg−φf ),−a†e−i(φg+φh),−c†e−i(φe+φh)

)
.

Finally, multiplication of the amplitudes by a global phase ei(φd+φe+φh) and parametrization

(Eq:paramZeroDet) provides the escaping state in the form

|ψesc〉 = cos δ1 sin δ2|L〉 + cos δ1 cos δ2e
iγ3 |R〉 + sin δ1 sin δ3e

iγ1 |D〉 + sin δ1 cos δ3e
iγ2 |U〉.

(4.32)

Here we have used for γ1,2,3 notation from Eq. (4.31).

Now we turn to the cases when there are some zero amplitudes. Note that there is always

even number of zero parameters. This is due to Eq. (4.20) containing conditions on the

magnitudes of the parameters a,−, h.
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Figure 4.1: Four-state quantum walk on a 2D lattice with the coin class from Eq. (4.30).

The parameters are α = β = γ3 = 0, γ1 = γ2 = π, δ1 = δ2 = δ3 = s = π/4 and are chosen

so that the escaping state (4.32) as the initial state is the same as the escaping state for the

Grover walk, Eq. (1.34). Number of steps is t = 100. Since the spreading is slow, the plot

range is cut to the relevant area.
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4.4.2 Two zero amplitudes

Suppose that there are two zero elements. Without loss of generality we can assume a = 0 = f.

Then the determinant of Ã from Eq. (4.28) is non-zero and we can use the approach described

above. This leads to the matrix C
(4)
full2

from Eq. (4.30) with some of the sine or cosine

functions equal to zero. For a = 0 = f = s1s3 we have only one choice, since the other one

leads to more than two zeros:

sin δ1 = 0︸ ︷︷ ︸
⇒c=h=0

or sin δ3 = 0︸ ︷︷ ︸
X

. (4.33)

It is seen that the first choice s1 = 0 leads to four zero elements and will be therefore analysed

later. Thus we can conclude that situation

a = f = 0 ∧ b, c, d, e, h, g 6= 0 ⇔ sin δ3 = 0

focuses only on the second case with sin δ3 = 0. The same analysis can be done for b, c and

e equal to zero,

b = d = 0 ∧ a, c, e, f, g, h 6= 0 ⇔ sin δ2 = 0,

c = h = 0 ∧ a, b, d, e, f, g 6= 0 ⇔ cos δ3 = 0,

e = g = 0 ∧ a, b, c, d, f, h 6= 0 ⇔ cos δ2 = 0. (4.34)

Even though this set of equations indeed summarizes all two-zero cases, careful reader

might discover problem with the determinant of Ã which we are now going to discuss and

discover its elimination. Let us remind that during the construction of the matrix Ã, Eq.

(4.28), we have chosen one particular column of the matrix A and replaced it. In Ã we

have replaced the first column of the matrix A. In general, there was no specific reason for

choosing this particular column and we could have replaced different column instead. The

reason for mentioning this becomes clear in the following paragraphs, here we mention only a

motivation. Since we are dealing with two-zero case we find out that the value of det Ã varies

in dependence on its parameters. Special choices even lead to det Ã = 0. This inconvenient

situation can be resolved by an alternative modification of the matrix A.

Although we claimed that det Ã 6= 0 for a = f = 0 it is actually not true for example for

c = h = 0 where det Ã = 0. It is due to a fact that vA = 0 as well. Thus it seems that we

cannot use results from Eq. (4.30) and have to find a different approach instead. Let us now

explain the solution to this problem in more detail. One can easily check that

a = f = 0

b = d = 0

}
det Ã 6= 0

c = h = 0

e = g = 0

}
det Ã = 0. (4.35)

The issue with zero determinant in the last two cases of Eq. (4.35) can be easily solved. It

initially arises from the construction of the Ã matrix, where we have removed the first column
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of the matrix A from Eq. (4.12) and have it replaced by v†A, which is orthogonal complement

to the columns of A and vA is given by Eq. (4.26). Since the columns of the matrix A are

linearly dependent, we could have, without loss of generality, replaced the last column of A

by a vector orthogonal to its columns in a different form,

u†A = (bdf,−adf,−bcf,+ade)†.

This vector is non-zero for c = h = 0 and e = g = 0 and gives rise to u†B of the form

u†B = (bfg,−adh,−abf,+abd)†

satisfying

Cu†A = eisu†B.

Vector u†B is of course orthogonal to the first three columns of the matrix B. Let us note

Au, Bu matrices A,B with replaced fourth column by u†A and eisu†B. Now we can write instead

of Eq. (4.12) that CAu = Bu. Matrix Au is invertible and from its completely equivalent

construction it is no surprise that it provides the same result as Ã, it is

C
(4)
full2

= C = BuA
−1
u = B̃Ã−1. (4.36)

Let us remind that the aim of this equivalent construction was to get rid of the zero deter-

minant from Eq. (4.35). We have reached the goal and for c = h = 0 and e = g = 0 hold

that detAu 6= 0 and thus Au remains invertible. Nevertheless, with a = f = 0 or b = d = 0

we get detAu = 0 since also u†A = 0. Let us summarize and conclude two-zero subsection by

the following diagram:

a = f = 0

b = d = 0

}
det Ã 6= 0

c = h = 0

e = g = 0

}
detAu 6= 0

 class C
(4)
full2

Eq.(4.30)


sin δ3 = 0

sin δ2 = 0

cos δ3 = 0

cos δ2 = 0.

(4.37)

4.4.3 Four zero amplitudes

One can guess from the previous subsection and the construction of the matrices Ã, Au that

we will have to distinguish between several sub-cases as well. For example, if a = f = 0 and

b = d = 0, it is sin δ3, sin δ2 = 0, (see Eqs. (4.33, 4.34)) it still holds that det Ã 6== 0 since

the rank of A remains three. More precisely, the first row is of A is given only by zeros and

we appropriately replace this first column in the construction of Ã. Nevertheless, if a = f = 0

through sin δ1 = 0, we get that also c = h = 0, Eq. (4.33). This situation leads to rankA = 2

and therefore we cannot use results from Eq. (4.30) and have to solve it separately.

Four zero amplitudes and rank three

This situation is already covered in the solution C
(4)
full2

from Eq. (4.30), with some of the ele-

ments being set to zero. We get four different combinations of the zero amplitudes satisfying

rank condition, which are discussed below.
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As we have already mentioned, rank three is achieved for

I) sin δ3 = sin δ2 = 0 i.e a = f = b = d = 0, c = h = e = g 6= 0.

Similarly, according to Eq. (4.37) we can combine cosines,

II) cos δ3 = cos δ2 = 0 i.e c = h = e = g = 0, a = f = b = d 6= 0.

These two cases give us stationary states, Eq. (4.10) of the form

|ψstat〉 = c|x, y + 1〉 ⊗ |L〉+ e|x+ 1, y〉 ⊗ |D〉+ |x+ 1, y + 1〉 ⊗ (g|U〉+ h|R〉) ,

|ψstat〉 = |x, y〉 ⊗ (a|L〉+ b|D〉) + d|x, y + 1〉 ⊗ |U〉+ f |x+ 1, y〉 ⊗ |R〉,

living on a smaller ”corner-like” support. From Eq. (4.10) we see that another two corner-like

cases are allowed,

III) sin δ3 = cos δ2 = 0 i.e a = f = e = g = 0, b = d = c = h 6= 0,

IV ) sin δ2 = cos δ3 = 0 i.e b = d = c = h = 0, a = f = e = g 6= 0.

The cases III), IV) correspond to rank(A) = 3. The only problem and also a reason why we

have separated these two situations is the determinant of Ã and Au from Eqs. (4.28, 4.36),

since both determinants are equal to zero. This is completely the same situation as described

below Eq. (4.35) arising from a specific choice of replaced column in Ã, Au and leading to

the same result, Eq. (4.36). For those interested, in III) we would have to replace the third

column of A, Eq. (4.12) by the orthogonal complement w†A = (bdh, bcg,−adh,−bch)† to the

columns of A. The resulting matrix would have non-zero determinant, thus can be inverted

and results in the coin class C
(4)
full2

, Eq. (4.30, 4.36). Similarly in IV) we have to replace the

second column of A.

We have shown that there exist four four-zero case I) − IV ) which are governed in the

not strongly trapping solution provided in Eq. (4.30). The remaining four-zero cases have to

be analysed differently due to smaller rank of the matrix A, Eq. (4.12).

Four zero amplitudes and rank two

Only two four-zero cases remain for analysis,

i) a = f = c = h = 0 ⇔ sin δ1 = 0,

ii) b = d = e = g = 0 ⇔ cos δ1 = 0.

This situations correspond to even smaller rank of A, which is now two. Therefore, we cannot

use result of Eq. (4.30).

Let us start with the first situation i). From Eq. (4.12) we see that the coin acts in the

following way

C


0

0

b(e)

0

 =


0

0

0

d(g)

 , C


0

0

0

d(g)

 =


0

0

b(e)

0

 , (4.38)
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which corresponds only to switches between |D〉 
 |U〉 coin states. There are no specific

conditions on |L〉, |R〉 mixing. Note that elements e and g written in the brackets provide the

same information as b, d and thus can neglected or even set to zero. Nevertheless, this would

lead to a six zero case tat will be described afterwards. Due to Eq. (4.38) and conditions

from Eq. (4.20) we have that

CUD =
d

b
=
g

e
=

∣∣∣∣∣ |b| = |d||e| = |g|

∣∣∣∣∣ = eiγ and CDU =
b

d
=
e

g
= e−iγ ,

which together with CDD = CUU = 0 constitutes diagonal sub-matrix C1 of the final coin

Ci). There are no other restrictions on the horizontal movements |L〉, |R〉 and their mixing

can be driven by an arbitrary unitary matrix U similarly as in Eq. (4.6). This all leads to

the coin class of the form

Ci) =

(
U 0

0 C1

)
=


eiα cos δ e−iβ sin δ 0 0

−eiβ sin δ e−iα cos δ 0 0

0 0 0 e−iγ

0 0 eiγ 0

 . (4.39)

Indeed, this coin class describes rather one-dimensional than two-dimensional walk. There is

no spreading through the vertical lattice since the particle only jumps up and immediately

back.

An identical analysis can be done for the case ii). We get, instead of conditions for the

vertical movements from Eq. (4.38) conditions for the horizontal movements leading to the

same sub-matrix C1. Matrix U now mixes vertical states |D〉, |U〉. In total we get that

Cii) =

(
C1 0

0 U

)
, (4.40)

where blocks U,C1 are the same as in Eq. (4.39). Compare the results with Eq. (4.7) derived

during the proof on the support of stationary states.

Coins Ci),Cii) describe a two-state walk rather than a four-state walk. The left-right

(up-down) movements are bz the choice of the amplitudes a,−, h suppressed.

Six zero amplitudes

The last situation we have to analyse is six-zero case. We look at one of these situations,

since the other are analogical. For instance we might have a = f = c = h = e = g = 0.

Then the matrix A has the same rank as in the previous subsection, it is rank two. We have

already mentioned in the previous subsection that the elements e, g in the brackets appearing

in Eq. (4.38) might be neglected since they do not provide any extra information. We can,

without loss of generality, set them to zero. Further analysis is the same as for the case i)

from the previous subsection and lead to the embedded one-dimensional coin Ci) from Eq.
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(4.39). We summarize all possible cases in the following diagram:

a = f = c = h = e = g = 0

a = f = c = h = b = d = 0

}
lead to coin Ci) from Eq. (4.39),

b = d = e = g = a = f = 0

b = d = e = g = c = h = 0

}
lead to coin Cii) from Eq. (4.40).

We have shown that the six-zero case is analogical to the four-zero situation and the

final coins are given as a direct sum of two unitary matrices. Each of these matrices control

spreading on a horizontal or a vertical lattices. Moreover, one matrix contains only anti-

diagonal elements and thus kills the horizontal or the vertical spreading in the case of Ci) or

Cii) coin. Therefore, six-zero describes rather two-state than four-state walks.

In this chapter we have classified all trapping coins for the four-state quantum walk on

a two dimensional lattice. The analysis started with a proof of a restriction imposed on

a support of a stationary state. Further, amplitudes of the stationary state are uniquely

determined by a coin. Analysis of these amplitudes leads to their parametrization resulting

in the final forms of the trapping coins. At the beginning, we had to distinguish between

two basic choices for the parametrization. Both of these choices provided one coin class with

all matrix elements being non-zero. Whereas one of these classes exhibited stronger version

of trapping, the other one did not. Further, to complete the classification, we have analysed

also all the subclasses consisting of some zero matrix elements.
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Chapter 5

Limiting distribution and role of

coin eigenstates

The role of the limiting distribution as approximative probability distribution becomes im-

portant when one investigates a quantum walk after infinitely many steps. If we consider t as

a number of steps, the probabilities p(x, t) = ||ψ(x, t)||2 (see e.g. Eq. (1.13)) that the particle

is located at position x are calculated recursively from the results for the previous steps. With

increasing number of steps, this becomes a memory consuming process. Moreover, the usual

oscillations in the probabilities and neighbourhood positions are for increasing number of

steps less significant. The probability distribution can be then replaced by its approximation

arising from the limiting density.

The expression of the limiting density function strongly depends on the coin space basis.

Proper choice of the basis is accompanied by a simpler formula from which some interesting

regimes can be read out. In this chapter we focus on the role of the coin space basis in order

to find a suitable choice which we call suitable. Although some of the coin classes have their

suitable basis formed by the eigenvectors of the coin, this fact is not a general rule. We

show that the essence of the suitable basis sit is different point. Nevertheless, at least for the

Wigner walks, certain connection of the suitable coin space basis to the eigenvectors of the

Wigner matrices still exists.

5.1 Velocity density for the eigenvector family

Our investigation of the limiting density starts with the eigenvector family of coins C
(3)
def2

(ρ),

Eq. (2.17), discussed in chapter 2. This coin class were already studied from the viewpoint of

the limiting distribution by T. Machida et. al. [21]. The authors calculated the group-velocity

density and the trapping probability with respect to the initial coin state in the standard coin

space basis |L〉, |S〉, |R〉. From the velocity density f(v) it is easy to construct approximate

position probability distribution for large number of steps as 1
t f(x/t). By approximate we

mean that the fluctuating probabilities that are typical in the position probability distribution

are smoothed out.
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In [21], the eigenvector family C
(3)
def2

(ρ) was modified into

C(θ) =


−1+cos θ

2
sin θ√

2
1−cos θ

2
sin θ√

2
cos θ sin θ√

2
1−cos θ

2
sin θ√

2
−1+cos θ

2

 ≈ C(3)
def2

(ρ). (5.1)

For the choice

cos θ = 2ρ2 − 1, sin θ = 2ρ
√

1− ρ2 (5.2)

the matrix C(θ) is exactly the eigenvector family C
(3)
def2

(ρ), Eq. (2.17). In the further analysis,

we will stay faithful to the parameter expressing the velocity of spreading which is ρ and the

corresponding coin C
(3)
def2

(ρ).

We have already mentioned that the limiting distribution was derived with respect to the

initial coin state in the standard basis |L〉, |S〉, |R〉,

|ψ0〉 = |0〉 ⊗
(
α|L〉+ β|S〉+ γ|R〉

)
︸ ︷︷ ︸

|ψC〉

, |α|2 + |β|2 + |γ|2 = 1. (5.3)

In the limit of large number of steps t→∞, the moments of the particles re-scaled position

x/t (pseudo-velocity) can be calculated as [22]

lim
t→∞

〈(x
t

)r〉
= 〈vr〉 =

ρ∫
−ρ

vrf(v)dv. (5.4)

Here we have denoted as v the (group) velocity of the walk and f(v) is the velocity density

function. In the standard basis, the velocity density has the form [21]

f(v) =

√
1− cos θ

2π(1− v2)
√

1 + cos θ − 2v2
(d0 + d1v + d2v

2) (5.5)

=

√
1− ρ2

2π(1− v2)
√
ρ2 − v2

(d0 + d1v + d2v
2),

where the range of the velocity is limited by the maximum (see Eq. (1.23)) of the group

velocity, thus v ∈ (−vmax, vmax) = (−ρ, ρ). The parameter ρ immediately gives the rate of

spreading. The coefficients dj , j = 0, 1, 2 crucially depend on the initial states and are equal

to

d0 = |α+ γ|2 + 2|β|2, (5.6)

d1 = 2

(
−|α− β|2 + |γ − β|2 −

(
2−

√
2− 2ρ2

ρ

)
Re((α− γ)β̄)

)
,

d2 = |α|2 − 2|β|2 + |γ|2 − 2

(√
2− 2ρ2

ρ
Re((α− γ)β̄) +

2− ρ2

ρ2
Re(αγ̄)

)
.

Note that for the density from Eq. (5.5) we have

ρ∫
−ρ

f(v)dv < 1. (5.7)
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It is because the density function does not include the trapping peak at the origin with

zero velocity. The supplement to one is therefore equal to the probability that the particle

is trapped around the origin. In [21], the authors derived also this trapped part of the

probability distribution with result

p∞(x) =
1

128(1− ρ2)2

(
2(1− ρ2)|Bν|x+1| +Aν|x||2 + ρ2|Bν|x+1|

+(A+B)ν|x| +Aνx−1|2 + 2(1− ρ2)|Bν|x| +Aν|x−1||2
)
, (5.8)

where

ν = − 1

ρ2
(2− ρ2 − 2

√
1− ρ2)

A = 4(1− ρ2)α+ 2ρ
√

2− 2ρ2β

B = 4(1− ρ2)γ + 2ρ
√

2− 2ρ2β (5.9)

and ∑
x

p∞(x) =
1

8
√

2(2− 2 cos ρ2)3/2
(|A|2 + |B|2 + 2νRe(AB̄)). (5.10)

One can check that the sum of Eq. (5.10) and Eq. (5.7) is then normalized to unity

ρ∫
−ρ

f(v)dv +
∑
x

p∞(x) = 1.

Both, the velocity density and the trapping probability, strongly depend on the parameters

α, β, γ of the initial coin state |ψC〉, Eq. (5.3). This suggests that the change of the coefficients

may bring some simplifications.

We suggest the idea that a proper choice of the basis coin states can lead to a simplified

expression for p∞(x) and f(v) and hence allow a clear insight into the role of the coin for the

propagation. One of the possibilities at hand that is often the suitable choice in quantum

mechanical problems is the basis formed by the eigenvectors of the coin C
(3)
def2

(ρ),

|u1,+〉 =

√
1− ρ2

2
|L〉+ ρ|S〉+

√
1− ρ2

2
|R〉 =

(√
1− ρ2

2
, ρ,

√
1− ρ2

2

)T
,

|u2,−〉 =
ρ√
2
|L〉 −

√
1− ρ2|S〉+

ρ√
2
|R〉 =

(
ρ√
2
,−
√

1− ρ2,
ρ√
2

)T
,

|u3,−〉 =
1√
2

(|L〉 − |R〉) =
1√
2

(1, 0,−1)T . (5.11)

Here |u1,+〉 corresponds to the eigenvalue +1 of C
(3)
def2

(ρ) and |u2(3),−〉 correspond to the

eigenvalue −1. The initial state in the new basis reads

|ψ0〉 = |0〉 ⊗
(
g1|u1,+〉+ g2|u2,−〉+ g3|u3,−〉

)
(5.12)

and satisfies the normalization condition

|g1|2 + |g2|2 + |g3|2 = 1.
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Using Eq. (5.11) we find that the initial states from Eqs. (5.3) and (5.12) are connected by

α =
1√
2

(√
1− ρ2g1 + ρg2 + g3

)
,

β = ρg1 −
√

1− ρ2g2,

γ =
1√
2

(√
1− ρ2g1 + ρg2 − g3

)
. (5.13)

Note that d1 is given by a coherent combination of the amplitudes, whereas for d0,2 not. The

substitution of Eq. (5.13) into Eq. (5.6) together with condition |g1|2 + |g2|2 + |g3|2 = 1 gives

d0 = 2(1− |g3|2),

d1 = −2

ρ
(g2ḡ3 + g3ḡ2),

d2 =
2

ρ2
(|g2|2 + 2|g3|2 − 1). (5.14)

This change of the basis greatly simplifies the expressions for the coefficients d0,1,2 and there-

fore the final expressions of the velocity density function and the trapping probability. We

have

f(v) =

√
1− ρ2

π(1− v2)
√
ρ2 − v2

(
(1− |g3|2)− 1

ρ
(g2ḡ3 + g3ḡ2)v +

1

ρ2
(|g2|2 + 2|g3|2 − 1)v2

)
(5.15)

in the case of the density function, Eq. (5.5) and

p∞(x) =


2−2ρ2

ρ4
ν2x|g1 + g3|2 for x > 0,

1
ρ2
|ν|(|g1|2 + (1− ρ2)|g3|2) for x = 0,

2−2ρ2

ρ4
ν|2x||g1 − g3|2 for x < 0.

(5.16)

for the trapping probability from Eq. (5.8). Coherent linear combination of the amplitudes

appears for the position outside the origin. From these two new expressions for f(v) and

p∞(x) one can unveil many interesting features that were hidden before in the complicated

forms of Eqs. (5.5, 5.8). As an example we mention the choice of the initial coin state

where g1 = ±g3. In this case one half of the central peak in Eq. (5.16) corresponding to

the negative or the positive positions x vanish. In Fig. (5.1), one can compare the resulting

position probability distributions for several initial states. It is seen that even for smaller

number of steps, the limiting density and the trapping probability p∞(x) provide a good

approximation.

The eigenvalue family is not the only option for which the coin space basis constituted by

the coin eigenvectors appears to be suitable. In the following section we show how this basis

affects the limiting description of the eigenvector family of coins.

5.2 Velocity density for the eigenvalue family

A similar analysis as above can be done for the eigenvalue family C
(3)
def1

(ϕ) from Eq. (2.5).

For this matrix, no previous analysis was done. We start the calculations immediately in the
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(a) Probability distribution for the initial state

|u1,+〉 from Eq. (5.11). For this choice, both trav-

elling peaks at positions x = ±25 disappear and

only the central peak is present.
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initial state |u2,-〉

(b) Probability distribution for the initial state

|u2,−〉 from Eq. (5.11). For this choice there exist

all travelling peaks, but the central peak disap-

pears.

real values

trapping
density

-50 0 50
0

2.10-1
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initial state |u3,-〉

(c) Probability distribution for the initial state

|u3,−〉 from Eq. (5.11). For this choice there exist

both travelling peaks as well as the trapping one.

Figure 5.1: Probability distributions for the quantum walk with C
(3)
def2

(ρ) coin, Eq. (5.1).

The initial states are chosen as the eigenstates of C
(3)
def2

(ρ). For all figures, the parameter

ρ = 1
4 and the total number of steps is t = 100. Thus the travelling peaks are located

at positions x = ±ρt = ±25. The red solid lines correspond to the limiting probability

calculated from the group velocity density f(v), Eq. (5.15), as 1
t f(xt ). Red dashed lines

depict the trapping probability from Eq. (5.16). Finally, black dots are probabilities coming

from the numerical simulation of the walk. It is seen that even for relatively small number

of steps, the approximations work very well.
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more convenient basis. Based on the previous results, we may guess that this new basis is

formed by the eigenvectors of the coin C
(3)
def1

(ϕ). Let us now describe this approach in more

detail. At first we remind that the eigenvalue family is given by

C
(3)
def1

(ϕ) =
1

6

 −1 + e2iϕ 2(1 + e2iϕ) 5− e2iϕ

2(1 + e2iϕ) 2(1− e2iϕ) 2(1 + e2iϕ)

5− e2iϕ 2(1 + e2iϕ) −1− e2iϕ

 . (5.17)

Using the results of [16], [22] we have for the moments of the pseudo-velocity x/t

〈(x
t

)r〉 t→∞−→
π∫
−π

3∑
j=1

(
iλ′j(k)

λj

)r
|(vj(k), ψ0)|2 dk

2π
, (5.18)

where λj(k) resp. vj(k) are the eigenvalues resp. the eigenvectors of the evolution opera-

tor in the Fourier representation Ũ(k) = Diag{e−ik, 1, eik}.C(3)
def1

(ϕ). We have denoted first

derivative of the eigenvalue with respect to the momentum k as λ′j(k). The eigenvalues can

be written as

λ1(k) = 1, λ2,3 = ei(ϕ±ω(k)),

with the momentum dependent phase

ω(k) = − arccos
(
−cosϕ

3
(2 + cos k)

)
. (5.19)

The eigenvectors corresponding to these eigenvalues read

v1(k) =

√
2

5 + cos(k)

 1
1
2(1 + eik),

eik

 , (5.20)

v2,3(k) =
1
√
n2,3


(
e−ik + e−i(ϕ±ω(k))

)
cosϕ

cosω(k) + e±iω(k) − e−i(2ϕ±ω(k)) + cos k cosϕ(
e−ik + ei(ϕ±ω(k))

)
cosϕ

 ,

where the normalization factor equals to

n2,3 =
4

3
cos2 ϕ

(
9− 4 cos2 ϕ± 2Λ sinϕ− cos k

(
(4 + cos k) cos2 ϕ± Λ sinϕ

))
,

Λ =
√

9− cos2 ϕ(2 + cos k)2.

Substituting these eigenvalues and eigenvectors into Eq. (5.18) gives

lim
t→∞

〈(x
t

)r〉
= 〈vr〉 =

π∫
−π

(
dω

dk

)r (
(−1)r|(v2(k), ψ0)|2 + |(v3(k), ψ0)|2

) dk
2π
.

Note that the element of the summation corresponding to the stationary state v1(k), Eq.

(5.18), disappears due to λ′1(k) = 0. To calculate the overlaps (vj(k), ψ0), j = 2, 3 we
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determine the initial state in the suitable basis formed by the eigenstates of the matrix

C
(3)
def1

(ϕ), which are

|p1,+〉 =
1√
3

(|L〉+ |S〉+ |R〉), (5.21)

|p2,−〉 =
1√
6

(|L〉 − 2|S〉+ |R〉),

|p3,−〉 =
1√
2

(|L〉 − |R〉),

where

C
(3)
def1

(ϕ)|p1,+〉 = |p1,+〉, C
(3)
def1

(ϕ)|p2,−〉 = −|p2,−〉, C
(3)
def1

(ϕ)|p3,−〉 = −|p3,−〉.

The initial coin state in the suitable basis |ψC〉 = (q1|p1,+〉+ q2|p2,−〉+ q3|p3,−〉) satisfying

the normalization condition |q1|2 + |q2|2 + |q3|2 = 1 can be written in the standard basis as

|ψ0〉 = |0〉 ⊗

((
q1√

3
+

q2√
6

+
q3√

2

)
|L〉+

(
q1√

3
−
√

2

3
q2

)
|S〉+

(
q1√

3
+

q2√
6
− q3√

2

)
|R〉

)
.

Now the sum of the overlaps |(v2,3(k), ψ0)|2 from Eq. (??) can be divided into two cases:

r even ⇒

|(v2(k), ψ0)|2 + |(v3(k), ψ0)|2 = 3|q2|2 + 5|q3|2 − 2 +
12

5 + cos k
(1− |q2|2 − 2|q3|2)

r odd ⇒

−|(v2(k), ψ0)|2 + |(v3(k), ψ0)|2 =
cosϕ sin k

Λ
.(

−
√

3(q2q̄3 + q̄2q3 + i tanϕ(q2q̄3 − q̄2q3))− i
√

6 tanϕ
2 + cos k

5 + cos k
(q1q̄3 − q̄1q3)

)
.

(5.22)

Now we can perform the last step, which is change of a variable. To get a velocity density, we

have to replace the momentum k in Eq. (5.22) by the group-velocity variable v. The relations

used in this transformation are obtained from the dispersion relation, Eq. (5.19), from which

v =
dω

dk
=

cosϕ sin k

Λ
=

cosϕ sin k√
9− cos2 ϕ(2 + cos k)2

. (5.23)

Here ω is a phase from Eq. (5.19). Now the situation is a bit more difficult than for the

C
(3)
def2

(ρ) coin, since the transformation is not unique and we have to distinguish between two

intervals joined by the separating point k1, where the transformation coincides:

k ∈ (−k1, k1) −→ cos k =
2v2 +

√
1 + 3v2 − 9v2

cos2 ϕ
(1− v2)

1− v2
,

k ∈ (−π,−k1) ∪ (k1, π) −→ cos k =
2v2 −

√
1 + 3v2 − 9v2

cos2 ϕ
(1− v2)

1− v2
,
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with the separating point equal to

k1 = arccos

(
1

4 cos2 ϕ
(9− 5 cos2 ϕ− 3 sinϕ

√
9− cos2 ϕ)

)
.

For the sine function we obtain

k ∈ (−k1, k1) −→

sin k =
v

cosϕ(1− v2)

√√√√9(1− v2)

cos2 ϕ
− 5− 3v2 + 4

√
1− 9v2

1− v2

cos2 ϕ
+ 3v2,

k ∈ (−π,−k1) ∪ (k1, π) −→

sin k =
v

cosϕ(1− v2)

√√√√9(1− v2)

cos2 ϕ
− 5− 3v2 − 4

√
1− 9v2

1− v2

cos2 ϕ
+ 3v2.

We have everything necessary and can proceed with the calculation of the moments. Thus,

we can summarize the results.

In the new variable v the moments read

lim
t→∞

〈(x
t

)r〉
=

vmax∫
−vmax

vrf(v)dv. (5.24)

This expression is familiar from the previous case, Eq. (5.4). Nevertheless, the velocity

density f(v) is now much more complicated,

f(v) =
1

6π(1− v2)Θ

(
(3|q2|2 + 5|q3|3 − 2)Υ+ + (1− |q2|2 − 2|q3|2)Ω−

−v
√

3(q2q̄3 + q̄2q3 + i(q2q̄3 − q̄2q3) tanϕ)Υ+ − iv(q1q̄3 − q̄1q3)Ξ
)

(5.25)

with

Υ± = Φ+ ± Φ−,

Φ± =
√

9(1− v2)− (5 + 3v2) cos2 ϕ± 12Θ cosϕ,

Ω = 4 cosϕ
(5− 3v2)Υ+ cosϕ+ 3ΘΥ−

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Ξ =
3
√

6 tanϕ((v2 + cos2 ϕ)Υ+ −ΘΥ− cosϕ)

8 cos2 ϕ+ 3v2 sin2 ϕ
,

Θ =

√√√√(v2
max − v2)

(
v2
max − v2 + sinϕ

√
1− cos2 ϕ

9

)
.

The maximal group-velocity appearing in the integral from Eq. (5.24) reads

vmax =

√
3− cos2 ϕ− sinϕ

√
9− cos2 ϕ

6
.
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In the previous chapter, we have derived the relations for the trapping probability. The

final expression obtained for the trapping probability amplitude vector is given by

ψ∞(x) = lim
t→∞

ψ(x, t) =
1

2π
e−ixk

∫ π

−π
dk(v1(k), ψ0)v1(k). (5.26)

The probability can be calculated with the help of the contour integration as shown at the

end of the previous chapter. Nevertheless, this time we are lucky since we can avoid it and

use previous results. One can easily check that vectors in Eq. (5.21) are equal to Eq. (5.11)

with the parameter ρ = 1√
3
. This choice of ρ corresponds to the Grover matrix (1.9). The

same holds for the vector v1(k) in Eq. (5.20). From this follows that the trapping probability

p∞(x) = ||ψ∞(x)||2

is the same as for the Grover walk, which means that it is completely independent of the

parameter ϕ. Thus, it is sufficient to choose ρ = 1√
3

in Eq. (5.16) and change the coefficients

gj → qj ,

p∞(x) =


12(5− 2

√
6)2x|q1 + q3|2 for x > 0

(5− 2
√

6)(3|q1|2 + 2|q3|2) for x = 0

12(5− 2
√

6)|2x||q1 − q3|2 for x < 0

(5.27)

One can check that
vmax∫
−vmax

f(v)dv +
∑
x

p∞(x) = 1 (5.28)

and thus the normalization of the total probability to one is satisfied.

Let us discuss some interesting regimes. For instance we see that the choice of the initial

coin state |ψC〉 = |p2,−〉, i.e. q1,3 = 0, q2 = 1 results in the absence of the trapping at the

origin, as depicted in the Fig. (5.2b). Further, we can again cancel one half of the trapping

peak with the choice q1 = ±q3. And most importantly, although the expression of the velocity

density is quite complicated in this case, the trapping probability expression is very simple.

This suggest that the basis formed by the eigenvectors of the coin is a convenient choice.

Behaviour of the walk is for several initial states depicted in Fig. 5.2.

One might be interested, why exactly the eigenvector basis is the suitable one and whether

we can apply this construction of the new basis for other types of walks as well. The interesting

point here is that one eigenvector of the coins C1,2(ρ(ϕ)) is in both cases orthogonal to the

eigenvector v1(k) corresponding to the constant eigenvalue of the evolution operator in the

Fourier picture Ũ(k). The eigenvector v1(k) is the only one that appears in the calculation

of the trapping probability amplitude Eq. (3.21). The question whether the basis formed by

the eigenvector is always a good choice will be analysed more in the next section. Here we

only reveal that even though the eigenvector basis is always better than the standard one, it

is not necessarily the right one. Nevertheless, there is a connection of the suitable basis and

the eigenvectors of the coin.
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(a) Probability distribution for the initial state

|p1,+〉 from Eq. (5.21). For this choice of the ini-

tial state, trapping peak appears.
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(b) Probability distribution for the initial state

|p2,−〉 from Eq. (5.21). For this choice of the ini-

tial state, central peak disappears.
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(c) Probability distribution for the initial state

|p3,−〉 from Eq. (5.21). For this choice there exist

all travelling peaks as well as the trapping peak.

Figure 5.2: Probability distributions for the quantum walk with C
(3)
def1

(ϕ) coin, Eq. (5.17).

The initial states are eigenstates of the coin C
(3)
def1

(ϕ), which form the suitable basis. Pa-

rameter ϕ is chosen as π
4 and the total number of steps is t = 100. The figures show only

relevant region bounded by the travelling peaks. By changing the initial state we can control

the dominant peaks present in the distribution. Red solid line corresponds to the group ve-

locity density, Eq. (5.25), and red dashed line to the trapping probability, Eq. (5.27). Black

dots are probabilities coming from the numerical simulation. It is seen that even for smaller

number of steps, the approximative distributions work quite well.
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5.3 Velocity density for the Wigner rotation matrices

This section is devoted to the model of quantum walks introduced in Sec. (1.1.2) and its

limiting distribution. We will find the suitable coin space basis in which the distribution

gains the simplest form and point out interesting regimes. In the previous chapter, the basis

was composed of the eigenvectors of the coin. Here the situation is different and there exist a

more convenient basis than the one generated by the eigenvectors. We will provide connection

of the suitable basis with the shape of the probability distribution, which results in a recipe

for the construction of the suitable basis also for other types of walks.

Wigner walks are defined for any dimension 2j + 1, where half-integer j describes even

state walk and integer j leads to odd number of allowed movements. T. Miyazaki et al.

[23] derived a formula for calculating the velocity density for any choice of the dimension

parameter j. As is known from Eq. 5.4 and [22], the moments of the particles pseudo-velocity

(re-scaled position) are in the limit of large number of steps given by

lim
t→∞

〈(x
t

)r〉
= 〈vr〉 =

∫
vrf (j)(v)dv,

where f (j)(v) is the limiting velocity density of 2j+ 1-dimensional walk. It was shown in [23]

that its explicit form is given by

f (j)(v) =
∑

0<m≤j
f (j,m)(v), (5.29)

where the summation increases m by one and therefore the sum runs over half-integers or

integers in dependence on the value of j. The total velocity density is expressed as a sum of

individual densities. This indicates that the Wigner walks can be decomposed into several

walks spreading through the lattice. The individual walks have different step lengths and

thus different velocities as shown in Fig. (1.3). We note that the approximative position

probability distribution after large number of steps t results from the limiting density as

p(j)(x, t) ≈ 2

t
f (j)

(x
t

)
.

The factor of 2 follows from the fact that the Wigner walks are bipartite and thus occupy

only half of the positions on a given lattice at each step.

Every density f (j,m)(v) reads

f (j,m)(v) =
1

2m
µ
( v

2m
, ρ
)
M(j,m)

( v

2m

)
, (5.30)

where µ is the Konno’s density function [34, 35] and

µ
( v

2m
, ρ
)

=

√
1− ρ2

π(1−
(
v

2m

)2
)
√

(ρ−
(
v

2m

)
)(ρ+

(
v

2m

)
)
I{|v/2m|≤|ρ|}. (5.31)

The function I{•} is the indicator function that is equal to 1 if the condition • is satisfied and

0 otherwise. The condition |v/2m| ≤ |ρ| arises from the fact that the velocity v cannot exceed
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the maximal group velocity ρ times the length of the step 2m, where ρ is in absolute value

smaller than one (see section 1.1.2). The maximal group velocity corresponds to the velocity

of the highest peaks in the probability distribution. Such peaks have the fastest propagation.

The individual densities contain also weight functions M(j,m)
(
v

2m

)
, which are polynomials

of the degree 2j in v.

5.3.1 Divergences of the Konno’s density function

In some cases, the Konno’s density function, Eq. (5.31), diverges. This occurs for instance in

the case of v = ±2m. Nevertheless, this situation is not very interesting due to the fact that

it can happen only for trivial walk. Indeed, let us take for example the two-state Wigner

walk. Here j = m = 1/2 and thus the indicator function I|v|≤|ρ|. It follows that the divergence

velocity is v = ±1. One can immediately see that it means movement one step to the right

(left) at each time. Such a situation may arise only with coin given by a diagonal unitary

matrix that does not mix the coin states (e.g. identity matrix).

The more interesting divergence of µ appears when

v = ±2mρ,

which is exactly the maximal velocity of spreading of the individual walks and also the extreme

of the condition of the indicator function from Eq. (5.31). Since M(j,m)
(
v

2m

)
in Eq. (5.30)

is a polynomial in v, µ contains only divergences which provide the highest increment in the

velocity distribution f (j,m)(v) from Eq. 5.30 From the velocity distribution we can easily

get approximative position probability distribution. At time t it is given by 2
t f

(j)(x/t). Note

that this approximative distribution provides a good fit only for large values of f. This allows

us to formulate the statement that the fastest parts of the distribution correspond to the

highest peaks in the position probability distribution and are observed at the points where

the Konno’s density function diverges. Although we have not mentioned the connection of

some divergence to the existence of a probability peak before, the knowledge that the highest

peak is the fastest is already known. In section 1.1.1, we showed it using the analogy with

wave theory.

From the knowledge of the individual density functions f (j,m)(v), we can easily get rid

of some peaks in the probability distribution by a proper choice of the initial state. To

do that, we need to cancel divergences of the function µ with the help of the weight func-

tion M(j,m)
(
v

2m

)
. This function includes coefficients qm of the initial coin state |ψC〉 in the

standard basis,

|ψ0〉 = |0〉 ⊗ |ψC〉 = |0〉 ⊗
j∑

m=−j
qm|m〉, (5.32)

satisfying normalization condition

j∑
m=−j

|qm|2 = 1.
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We will show that the basis providing cancellations of the peaks in the probability distribution

will be the suitable one with respect to the limiting density function.

5.3.2 Elimination of the parameter γ

Before turning to the construction of the suitable basis, we would like to simplify our problem

as much as possible. The Wigner coins has in general three real parameters, C
(α,γ,ρ)
W . From

[23] we know that parameter α do not appear in the formulas for the weight functionsM(j,m)

and therefore do not influence the velocity density f (j)(v), Eq. (5.29)

The parameter γ can be easily eliminated as well, since it appears only as an additional

phase accompanying parameters qm forming the initial coin state |ψC〉. From the distribution

pattern of the phases we can read out that a rotation of the coin state basis

|m〉 → eimγ |m〉

lead to new initial coin state in the form

|ψγC〉 =

j∑
m=−j

e−imγqm︸ ︷︷ ︸
qγm

|m〉.

Indeed, let us look at the explicit results for j = 1/2 that is for the two-state Wigner

walk. The velocity density

f ( 1
2

)(v) = µ(v, ρ)M( 1
2
, 1
2) (5.33)

has its weight function given by a polynomial

M( 1
2
, 1
2) = 1 +M( 1

2
, 1
2)

1 v, (5.34)

where

M( 1
2
, 1
2

)

1 = −|q1/2|2 + |q−1/2|2 + 2

√
1− ρ2

ρ
<(q1/2q−1/2e

−iγ). (5.35)

The coefficients qi, i = ±1/2 comes from Eq. (5.32). A change in the rotated basis, it is

plugging

q±1/2 = e±iγ/2qγ±1/2 (5.36)

into the function M( 1
2
, 1
2

)

1 results in the desired velocity density with the only non-trivial

parameter ρ.

Since we have explained and have showed on a simple example that the parameter γ can

be easily cancelled, from now on we will assume that γ = 0.

5.3.3 Construction of the suitable basis

We start with the two-state walk model with j = 1/2. The standard basis coin states are

| − 1/2〉, |1/2〉, which denote the movements one step to the right and one step to the left.
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From Eqs. (5.33 - 5.36) the complete velocity density in the rotated basis, which is equivalent

to the standard basis (and choice γ = 0), is

f ( 1
2

)(v) =

√
1− ρ2

π(1− v)2)
√

(ρ− v)(ρ+ v)︸ ︷︷ ︸
µ(v,ρ)

×

×

1 +

(
−|q1/2|2 + |q−1/2|2 + 2

√
1− ρ2

ρ
(q1/2q−1/2 + q1/2q−1/2)

)
︸ ︷︷ ︸

M
( 12 ,

1
2 )

1

v

 . (5.37)

Here qm, m = ±1/2 represent the coefficients of the initial coin state, Eq. (5.32), in the

standard basis. It is

|ψC〉 = q1/2|1/2〉+ q−1/2| − 1/2〉.

To get rid of the divergences in the Konno’s density µ(v, ρ), we have to find q±1/2 in order

to satisfy the equations

1 +M( 1
2
, 1
2

)

1 =
ρ± v
ρ

. (5.38)

In other words, we have to solve the equations

ρ− ρv(|q1/2|2 − |q−1/2|2) +
√

1− ρ2(q1/2q−1/2 + q1/2q−1/2)v = ρ± v.

The solutions to these two equations

ρ+ v : q1/2 =

√
1− ρ

2
,

q−1/2 =

√
1 + ρ

2
,

ρ− v : q1/2 =

√
1 + ρ

2
,

q−1/2 = −
√

1− ρ
2

,

provide the coefficients of the initial coin state that lead to the elimination of divergences in

the density f ( 1
2

)(v), Eq. (5.37). We denote the eliminating states as

|ψ+
1/2〉 =

√
1−ρ

2 |1/2〉 −
√

1+ρ
2 | − 1/2〉,

|ψ−1/2〉 =
√

1+ρ
2 |1/2〉+

√
1−ρ

2 | − 1/2〉.

Suitable basis (5.39)

We claim that these states form the suitable basis of the coin space. Clearly, the vectors

form an orthonormal basis. Moreover, the velocity density f ( 1
2

)(v), Eq. (5.37) simplifies

considerably in this new basis, which we now show.

Let us rewrite the initial state of the walk from using the new basis Eq. (5.39),

|ψC〉 = h−1/2|ψ
+
1/2〉+ h+

1/2|ψ
−
1/2〉.
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This leads to relations between coefficients of the standard basis and the suitable basis given

by

q1/2 = h−1/2

√
1− ρ

2
+ h+

1/2

√
1 + ρ

2
,

q−1/2 = h−1/2

√
1 + ρ

2
− h+

1/2

√
1− ρ

2
. (5.40)

Now we can plug these conversion relations into the Eq. (5.35). Let us remind that in this

equation we used the fact that γ can be, without loss of generality, set to zero. The conversion

of the coefficients results in a simple function

M( 1
2
, 1
2

)

1 =
1

ρ
(1− 2|h+

1/2|
2). (5.41)

When we plug this relation into the velocity density function, Eq. (5.37), we get a much

simpler formula

f ( 1
2

)(v) =

√
1− ρ2

(
ρ+ (1− 2|h+

1/2|
2)v
)

ρπ(1− v)2)
√

(ρ− v)(ρ+ v)
.

It is also immediately seen that the choice h+
1/2 means that the initial coin state |ψC〉 in the

suitable state |ψ+
1/2〉 from Eq. (5.39), cancels the divergence of the |ψ+

1/2〉 for v → ρ,

f ( 1
2

)(v)
∣∣∣
|ψC〉=|ψ+

1/2
〉

=

√
1− ρ2

√
ρ− v

ρπ(1− v)2)
√
ρ+ v

.

Therefore, the right travelling peak in the position probability distribution is not observed

for this choice. The same situation for the left travelling probability peak and divergence

v → −ρ occurs when h+
1/2 = 0, i.e. |ψC〉 = |ψ−1/2〉. These situations are illustrated in Fig.

(5.3)

5.3.4 Relation of the suitable basis to the eigensystem of the Wigner ma-

trix

For higher dimensional Wigner walks, calculation of the right choice of the coefficients qm,

Eq. (5.32) leading to the cancellation of the divergences in Eq. (5.30) becomes difficult.

Therefore it is worth to find an easier way to construct the suitable basis. Motivated by the

results for the Grover walk from the previous sections, where the suitable basis was given by

the eigenvectors of the Grover matrix, we might assume similar connection here.

Indeed, we can use coin eigenvectors for the suitable basis construction. The eigenvectors

of

C
( 1
2

)

W =

(
ρ −

√
1− ρ2√

1− ρ2 ρ

)
read

|ϕ+
1 〉 =

1√
2

(|1/2〉 − i| − 1/2〉),

|ϕ−1 〉 =
1√
2

(|1/2〉+ i| − 1/2〉) (5.42)
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Figure 5.3: Position probability distribution for the two-state Wigner walk after t = 100.

The initial states are the suitable states |ψ±1/2〉 = |χ∓1/2〉 from Eq. (5.39). It is seen that the

suitable state as the initial coin state eliminates one of the probability peaks.

and satisfy the eigenvalue equations

C
( 1
2

)

W |ϕ
+
1 〉 = eiϕ1 |ϕ+

1 〉, C( 1
2

)|ϕ−1 〉 = e−iϕ1 |ϕ−1 〉. (5.43)

The phase factor is equal to

ϕ1 = arccos ρ.

The eigenvectors from Eq. (5.42) are clearly different than the suitable basis, Eq. (5.39).

Nevertheless, if we take a simple combination of the eigenvectors , Eq. (5.42), and the

corresponding eigenvalues in the form

|χ−1/2〉 =
1√
2

(
e−i

ϕ1
2 |ϕ+

1 〉 − e
i
ϕ1
2 |ϕ−1 〉

)
,

|χ+
1/2〉 =

i√
2

(
e−i

ϕ1
2 |ϕ+

1 〉+ ei
ϕ1
2 |ϕ−1 〉

)
(5.44)

and rewrite it using the standard coin space basis | ± 1/2〉 we get that

|χ−1/2〉 =

√
1 + ρ

2
|1/2〉 −

√
1− ρ

2
| − 1/2〉,

|χ+
1/2〉 =

√
1− ρ

2
|1/2〉+

√
1 + ρ

2
| − 1/2〉. (5.45)

Comparison of Eq. (5.39) with the suitable states from Eq. (5.45) shows that

|χ±1/2〉 = |ψ∓1/2〉.
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We got a suggestion for a new approach for the construction of the suitable basis that can be

easily followed also in the case of higher-dimensional Wigner walks. In higher dimensions, we

always find b(2j+1)/2c pairs of the coin eigenstates |ϕ±i 〉, i = 1, . . . b(2j+1)/2c corresponding

to the eigenvalues e±iϕi (see Eqs. (5.42, 5.43)). For the odd-state walk we have one more

eigenstate |ϕ0〉 orthogonal to all the vectors |ϕ±i 〉.
We can conclude that states |χ±1/2〉 from Eq. (5.45) given by the linear combination of

the eigenstates |ϕ±1 〉 from Eq. (5.42) with the help of the corresponding eigenvalues from Eq.

(5.43) constitute the suitable basis of the coin space and the Hilbert space can be rewritten

as

HC = Span{|χ+
1/2〉, |χ

−
1/2〉}. (5.46)

5.3.5 Three-state Wigner walk, j=1

In this section we analyse the Wigner walk where j = 1 (the three-state Wigner walk). The

allowed movements here are, according to the step operator from Eq. (1.25) two steps to the

right and left or stay at the actual position. Thus, only even sites are occupied at any time,

odd sites are always empty. This only affects the limiting distribution by an additional factor

of two,

p(1)(x, t) ≈ 2

t
f (1)

(x
t

)
.

The standard basis of the coin space is denoted as | − 1〉, |0〉, |1〉 and the relevant coin

C
(1)
W is given by the matrix elements Eq. (1.24) with non-relevant parameters α, γ set to zero.

It is

C
(1)
W =

 ρ2 −
√

2ρ
√

1− ρ2 1− ρ2

√
2ρ
√

1− ρ2 −1 + 2ρ2 −
√

2ρ
√

1− ρ2

1− ρ2
√

2ρ
√

1− ρ2 ρ2

 . (5.47)

This matrix is very similar to the modified Grover coin introduced in subsectiion 2.2.1 and

analysed in more detail from the viewpoint of the limiting distribution in [21, III] and section

5.1. Compared to the modified Grover coin, only two elements have different signs here.

Therefore, it is not surprising that these two three-state walk models give the same results

as will be checked later.

Following Eq. (5.32) we have for the initial state in the standard basis

|ψC〉 = q−1| − 1〉+ q0|0〉+ q1|1〉. (5.48)

The results of [23] say that in the standard coin space basis, the velocity density reads

f (1)(v) =
1

2
µ
(v

2
, ρ
)
M(1,1)

(v
2

)
, (5.49)

where M(1,1)(v) can be expressed as a polynomial in v,

M(1,1)(v) =M(1,1)
0 +M(1,1)

1 v +M(1,1)
2 v2.
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Note that for the two-state Wigner walk the degree of this polynomial was only one. The

individual members of the weight function M(1,1)(v) are given by

M(1,1)
0 =

1

2

(
|q1|2 + 2|q0|2 + |q−1|2 − q1q−1 − q1q−1

)
,

M(1,1)
1 = −|q1|2 + |q−1|2 +

+

√
1− ρ2

√
2ρ

(q1q0 + q1q0 + q0q−1 + q0q−1),

M(1,1)
2 =

1

2
(|q1|2 − 2|q0|2 + |q−1|2)−

−
√

1− ρ2

√
2ρ

(q1q0 + q1q0 − q0q−1 − q0q−1) +

+
2− ρ2

2ρ2
(q1q−1 + q1q−1). (5.50)

Let us note that the suitable basis of the coin space can be constructed similarly as

in previous subsection, Eq. (5.44), by a linear combination of the eigenstates of the coin

C
(1)
W . In the three-state case, we need one more suitable vector |ϕ0〉 which will complete the

orthonormal basis. The eigenvectors of the three-dimensional Wigner coin C
(1)
W , Eq. (5.47),

read

|ϕ0〉 =
1√
2

(|1〉+ | − 1〉),

|ϕ−1 〉 =
1

2
(−i|1〉+

√
2|0〉+ i| − 1〉),

|ϕ+
1 〉 =

1

2
(i|1〉+

√
2|0〉 − i| − 1〉)

and satisfy the eigenvalue equations

C
(1)
W |ϕ0〉 = |ϕ0〉,

C
(1)
W |ϕ

−
1 〉 = e−iϕ1 |ϕ−1 〉,

C
(1)
W |ϕ

+
1 〉 = eiϕ1 |ϕ+

1 〉,

with the phase factor

ϕ1 = arccos (2ρ2 − 1).

Two elements of the suitable basis are given by a linear combination of the eigenvectors having

the eigenvalues with the same phase, i.e. states |ϕ±1 〉. We need one more state to complete

the new orthonormal basis. Since |ϕ0〉, |ϕ−1 〉, |ϕ
+
1 〉 are orthogonal, |ϕ0〉 will be orthogonal to

any linear combination of |ϕ±1 〉 and therefore, directly |ϕ0〉 can be chosen as the third element

of the new basis.

Thus the suitable basis of the coin space

HC = Span{|χ0〉, |χ+
1 〉, |χ

−
1 〉} (5.51)
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is formed by the states

|χ0〉 = |ϕ0〉,

|χ+
1 〉 =

1√
2

(
e−i

ϕ
2 |ϕ+

1 〉+ ei
ϕ
2 |ϕ−1 〉

)
,

|χ−1 〉 =
i√
2

(
e−i

ϕ
2 |ϕ+

1 〉 − e
iϕ
2 |ϕ−1 〉

)
.

These states can be rewritten in the standard basis as

|χ0〉 =
1√
2

(|1〉+ | − 1〉),

|χ+
1 〉 =

√
1− ρ2

2
|1〉+ ρ|0〉 −

√
1− ρ2

2
| − 1〉,

|χ−1 〉 =
ρ√
2
|1〉 −

√
1− ρ2|0〉 − ρ√

2
| − 1〉,

and the initial coin state in the new basis reads

|ψC〉 = h0|χ0〉+ h+
1 |χ

+
1 〉+ h−1 |χ

−
1 〉. (5.52)

The new basis allows us to find relations between the initial state in the standard and the

suitable basis, Eqs. (5.48, 5.52). These relations can be expressed through the initial state

coefficients as

q1 =
1√
2
h0 + h+

1

√
1− ρ2

2
+ h−1

ρ

2
,

q0 = h+
1 ρ− h

−
1

√
1− ρ2,

q−1 =
1√
2
h0 − h+

1

√
1− ρ2

2
− h−1

ρ

2
.

Once these relations are inserted into Eq. (5.50) the weight elements gain the following simple

form

M(1,1)
0 = |h+|2 + |h−|2,

M(1,1)
1 = −1

ρ
(h0h− + h0h

−),

M(1,1)
2 =

1

ρ2
(|h0|2 − |h+|2).

Now we can check that the basis we have chosen, Eq. (5.51) is really suitable. We do

that by comparing the elements M(1,1)
0,1,2 with the results for the eigenvalue family derived in

section 5.1. Indeed, Eq. (5.53) and the results for d0,1,2 of the modified Grover coin, Eq.

(5.14) are the same. To see it we have to ignore the factor two in d0,1,2 since for the Wigner

walk it is a part of the Konno’s density µ
(
v
2 , ρ
)
, Eq. (5.49). We also have to employ the

normalization condition |h0|2 + |h+
1 |2 + |h−1 |2 = 1 and the correspondence h0 → g3, h

−
1 → g2.

As for the Grover and the modified Grover walk, the velocity density does not fully de-

scribe the total probability distribution. Three-state quantum walk with Wigner coin exhibits
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trapping at the vicinity of the origin as well as the modified Grover walk (its eigenvector de-

formation). The process of calculation of the trapping is described in [III] and subsection 5.1.

It is not surprising that even for the trapping probability we get the same results as for the

eigenvector deformation of the Grover walk. The only difference here is that the odd sides of

the lattice are empty. Therefore

p∞(2x) =



ν2|x| 2(1−ρ2)
ρ4
|h0 − h+

1 |2, x < 0,

ν
ρ2

((1− ρ2)|h0|2 + |h+
1 |2), x = 0,

ν2x 2(1−ρ2)
ρ4
|h0 + h+

1 |2, x > 0,

(5.53)

where we have denoted

ν =
2− ρ2 − 2

√
1− ρ2

ρ2
.

It is seen that the choices h0 = ±h+
1 set the trapping probability either for positive or for

negative positions of x to zero. This situation is depicted in Fig. (5.6). It follows that such a

property can be used for another simplification of the trapping probability from Eq. (5.53).

We emphasize that here we are talking only about further simplification of the trapping

probability and not of the limiting density, for which the suitable basis is clear.

The initial state ignoring left half of the trapping peak is of the form

|ψC〉 = |λ+
1 〉 =

1√
2

(
|χ0〉+ |χ+

1 〉
)
.

Similarly, the state

|ψC〉 = |λ−1 〉 =
1√
2

(
|χ0〉 − |χ+

1 〉
)

shows trapping only for negative positions of x. Moreover, states |λ+〉, |λ−〉 are orthogonal.

Therefore we are allowed to use them as a basis in the subspace of the coin space affecting

trapping and decompose the initial coin state as

|ψC〉 = l+1 |λ
+
1 〉+ l−1 |λ

−
1 〉+ h−1 |χ

−
1 〉.

Here |χ−1 〉 completes the orthonormal basis. We find that the trapping probability turns into

p∞(2x) =



Q2|x| 2(1−ρ2)
ρ4
|l−1 |2, x < 0,

Q
ρ2

(
|l+1 |2 + |l−1 |2 − 1

2ρ2
|l+1 + l−1 |2

)
, x = 0,

Q2x 2(1−ρ2)
ρ4
|l+1 |2, x > 0.

This additional change of the basis affecting trapping will become more interesting for models

with larger values of j.

Note that the suitable basis does not have the same effect on the probability distribution

as for the two-state walk with suitable states eliminating left or right probability peak. For
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(a) For this initial state, both travelling peaks disappear, but trapping is observed.
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(b) Here we see the opposite situation to the previous figure. For this initial state,

trapping is not observed and both travelling peaks are present.

Figure 5.4: Spreading of the three-state Wigner walk after t = 100 steps. The initial coin state

was chosen as the suitable states |χ±1 〉 and the coin parameter is ρ = 0.5. This initial state

eliminates both travelling peaks or the trapping peak. Red solid line is the approximative

distribution arising from the limiting density, red dashed line trapping probability and black

dots probabilities coming from simulation of the time evolution. Due to significant difference

in heights of the trapping and the travelling peaks, we use a logarithmic scale on the y−axis.
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(a) For this suitable state as the initial state of the walk, all the peaks are

present.
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(|0〉+|1
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(b) Simple linear combination of the suitable states gives an initial state which

eliminates only one travelling peak.

Figure 5.5: Spreading of the three-state Wigner walk after t = 100 steps. The initial coin

state was chosen as the suitable state |χ0〉 and a combination of the suitable states 1√
2
(|χ0〉+

|χ−1 〉). Coin parameter is ρ = 0.5. The initial states eliminate none of the travelling peaks

or one travelling peak, which is similar to the two-state Wigner walk with the initial state

equals the suitable state. Red solid line is the approximative distribution arising from the

limiting density, red dashed line trapping probability and black dots probabilities coming

from simulation of the time evolution. Due to significant difference in heights of the trapping

and the travelling peaks, we use a logarithmic scale on the y−axis.
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Figure 5.6: Detail of the trapping peak after t = 500 steps and for the coin parameter ρ = 0.5.

The initial coin state 1√
2
(|χ0〉+ |χ+

1 〉) eliminates half of the trapping peak. Red dashed line

corresponds to the limiting trapping probability and black dots are exact probabilities for a

given number of steps. We can see that the trapping probability fits quite well.

the three-state Wigner walk, the position probability distributions with the suitable initial

states are depicted in the Figs. (5.4a-5.5a). It is seen that the initial state |ψC〉 = |χ−1 〉
eliminates the central non-moving peak. Next, the state |χ+

1 〉 eliminates both left and right

travelling peaks and preserves the presence of the central trapping peak. The last state |χ0〉
was chosen as an orthogonal complement to states |χ±1 〉 and maintains all three position

probability peaks. Nevertheless, it is not difficult to find a new basis whose two constituting

states eliminate either the left or the right probability peak similarly to the two-state walk.

These states are

|η+〉 =
1√
2

(
|χ0〉+ |χ−1 〉

)
|η−〉 =

1√
2

(
|χ0〉 − |χ−1 〉

)
.

The orthogonal complement to these states is the suitable state |χ+
1 〉, which eliminates both

travelling peaks. The basis {|η+〉, |η−〉, |χ+
1 〉} brings the initial coin state into the form

|ψC〉 = n+|η+〉+ n−|η+〉+ h+|χ+〉
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and therefore

M(1,1)
0 = 1 + |h+|2 +

1

2
(n+n− + n+n−),

M(1,1)
1 = −1

ρ
(|n+|2 − |n−|2),

M(1,1)
2 =

1

ρ2
(1− 3

2
|h+|2 − 1

2
(n+n− + n+n−)).

From the comparison with the results in the suitable basis, Eq. (5.44), we see that now we

have a more complicated result. Even through the suitable basis influence the probability

distribution in a different way than we expected from the two-state walk, it is truly the

convenient choice. Nevertheless, basis {|η+〉, |η−〉, |χ+
1 〉} is still more convenient choice than

the standard basis {| − 1〉, |0〉, |1〉}.

5.3.6 Higher dimensions

We summarize the results for the four and five-state Wigner walks. In appendix A.3 we

provide result also for the six-state Wigner walk. We use the construction of the new basis

described in the previous subsection. Some technical details are omitted and one can find

them in the appendix. It was shown that we have to distinguish between even and odd state

walks during the construction of the suitable basis.

Four-state walk

The choice of j = 3/2 leads to a four-state walk. Since the allowed movements are three

steps to the left (right) and one step to the left (right), the walk jumps between even and

odd positions on the lattice. The coin states in the standard basis read

| − 3/2〉, | − 1/2〉, |1/2〉, |3/2〉.

The initial state in the standard basis is given by

|ψC〉 = q3/2|3/2〉+ q1/2|1/2〉+ q−1/2| − 1/2〉+ q−3/2| − 3/2〉

and satisfies the normalization condition

3/2∑
j=−3/2

|qj |2 = 1.

The four-dimensional Wigner coin whose matrix elements are given by Eq. (1.24) has the

form

C
( 3
2

)

W =


ρ3 −

√
3ρ2
√

1− ρ2
√

3ρ
(
1− ρ2

)
−
(
1− ρ2

) 3
2

√
3ρ2
√

1− ρ2 ρ
(
3ρ2 − 2

) (
1− 3ρ2

)√
1− ρ2

√
3ρ
(
1− ρ2

)
√

3ρ
(
1− ρ2

)
−
√

1− ρ2
(
1− 3ρ2

)
ρ
(
3ρ2 − 2

)
−
√

3ρ2
√

1− ρ2(
1− ρ2

) 3
2

√
3ρ
(
1− ρ2

) √
3ρ2
√

1− ρ2 ρ3


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and parameter ρ corresponding to the velocity of spreading ranges from zero to one. To

construct the suitable basis we need the eigenvectors of C
( 3
2

)

W that are

|ϕ+
1 〉 =

1√
8

(
√

3|3/2〉 − i|1/2〉+ | − 1/2〉 − i
√

3| − 3/2〉),

|ϕ−1 〉 =
1√
8

(
√

3|3/2〉+ i|1/2〉+ | − 1/2〉+ i
√

3| − 3/2〉),

|ϕ+
2 〉 =

1√
8

(|3/2〉+ i
√

3|1/2〉 −
√

3| − 1/2〉 − i| − 3/2〉),

|ϕ−2 〉 =
1√
8

(|3/2〉 − i
√

3|1/2〉 −
√

3| − 1/2〉+ i| − 3/2〉).

The corresponding eigenvalue equations read

C
( 3
2

)

W |ϕ
−
1 〉 = e−iϕ1 |ϕ−1 〉, C

( 3
2

)

W |ϕ
+
1 〉 = eiϕ1 |ϕ+

1 〉,

C
( 3
2

)

W |ϕ
−
2 〉 = e−iϕ2 |ϕ−2 〉, C

( 3
2

)

W |ϕ
+
2 〉 = eiϕ2 |ϕ+

2 〉,

where the phases are given by

ϕ1 = arccos ρ,

ϕ2 =


arccos

(
ρ(4ρ2 − 3)

)
, 0 < ρ ≤ 1

2 ,

2π − arccos
(
ρ(4ρ2 − 3)

)
, 1

2 < ρ ≤ 1.

In the construction of the suitable basis we mix only the eigenvectors corresponding to

the same phase factor ϕ1 or ϕ2. It means that we assume the suitable basis in the form

|χ+
1 〉 =

1√
2

(e−i
ϕ1
2 |ψ+

1 〉+ ei
ϕ1
2 |ψ−1 〉),

|χ−1 〉 =
i√
2

(e−i
ϕ1
2 |ψ+

1 〉 − e
i
ϕ1
2 |ψ−1 〉),

|χ+
2 〉 =

1√
2

(e−i
ϕ2
2 |ψ+

2 〉+ ei
ϕ2
2 |ψ−2 〉),

|χ−2 〉 =
i√
2

(e−i
ϕ2
2 |ψ+

2 〉 − e
i
ϕ2
2 |ψ−2 〉) (5.54)

and the initial coin state is expressed in this basis as

|ψC〉 = h+
1 |χ

+
1 〉+ h−1 |χ

−
1 〉+ h+

2 |χ
+
2 〉+ h−2 |χ

−
2 〉.

One can rewrite this initial state in the standard basis and obtain transformation relation

between the standard coefficients qn, n = −3/2, . . . , 3/2 and the suitable coefficients h±1,2.

One can find these relations in appendix A.1.

The total velocity density is a sum of two densities, as stated for example in Eq. (5.29).

Therefore,

f ( 3
2

)(v) = f ( 3
2
, 1
2

)(v) + f ( 3
2
, 3
2

)(v),
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with

f ( 3
2
, 1
2

)(v) = µ(v, ρ)M( 3
2
, 1
2

)(v),

f ( 3
2
, 3
2

)(v) =
1

3
µ
(v

3
, ρ
)
M( 3

2
, 3
2

)
(v

3

)
. (5.55)

Each of these densities has two divergent points and thus the position probability distribution

exhibits maximally four probability peaks corresponding to the divergences of the Konno’s

density functions µ(v, ρ), µ
(
v
3 , ρ
)
.

For m = 1
2 , the weight function from Eq. (5.55) is equal to

M( 3
2
, 1
2

)(v) =M( 3
2
, 1
2

)

0 +M( 3
2
, 1
2

)

1 v +M( 3
2
, 1
2

)

2 v2 +M( 3
2
, 1
2

)

3 v3,

which can be expressed in the new suitable basis with the help of the transformation relations

from Eq. (A.1) and results from [23] as

M( 3
2
, 1
2

)

0 = |h+
1 |

2 + |h−1 |
2,

M( 3
2
, 1
2

)

1 = −1

ρ

[
2(|h+

1 |
2 − |h−1 |

2) +

√
3

2
(h+

1 h
+
2 + h+

1 h
+
2 − h

−
1 h
−
2 − h

−
1 h
−
2 )

]
,

M( 3
2
, 1
2

)

2 = −
√

3

4ρ2

[√
3(|h+

1 |
2 + |h−1 |

2 − |h+
2 |

2 − |h−2 |
2)− (h+

1 h
+
2 + h+

1 h
+
2 + h−1 h

−
2 + h−1 h

−
2 )
]
,

M( 3
2
, 1
2

)

3 =
3

4ρ3

[
(3|h+

1 |
2 − 3|h−1 |

2 + |h+
2 |

2 − |h−2 |
2) +

√
3(h+

1 h
+
2 + h+

1 h
+
2 − h

−
1 h
−
2 − h

−
1 h
−
2 )
]
.

Similarly, the second weight function from Eq. (5.55) for m = 3
2 is determined as

M( 3
2
, 3
2

)(v) =M( 3
2
, 3
2

)

0 +M( 3
2
, 3
2

)

1 v +M( 3
2
, 3
2

)

2 v2 +M( 3
2
, 3
2

)

3 v3.

Here

M( 3
2
, 3
2

)

0 = |h+
2 |

2 + |h−2 |
2,

M( 3
2
, 3
2

)

1 =

√
3

2ρ
(h+

1 h
+
2 + h+

1 h
+
2 − h

−
1 h
−
2 − h

−
1 h
−
2 ),

M( 3
2
, 3
2

)

2 =

√
3

4ρ2

[√
3(|h+

1 |
2 + |h−1 |

2 − |h+
2 |

2 − |h−2 |
2)− (h+

1 h
+
2 + h+

1 h
+
2 + h−1 h

−
2 + h−1 h

−
2 )
]
,

M( 3
2
, 3
2

)

3 = − 1

4ρ3

[
(3|h+

1 |
2 − 3|h−1 |

2 + |h+
2 |

2 − |h−2 |
2) +

√
3(h+

1 h
+
2 + h+

1 h
+
2 − h

−
1 h
−
2 − h

−
1 h
−
2 )
]
.

The behaviour of the four-state Wigner walk together with its limiting distribution is depicted

in Figs. (5.7 - 5.10) for several choices of the initial coin state.

Five-state walk

For j = 2 we have a five-state walk model, which spreads through the lattice performing four

and two steps to the left and right. Therefore, the walk occupies only even positions on the

lattice. Since the dimension of the walk is odd, the particle has also a possibility to stay at
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initial state |1
+〉

Figure 5.7: Position probability distribution of the four-state Wigner walk on a line. The

initial state is the suitable state |χ+
1 〉, Eq. (5.54) and the total number of steps t = 100. It is

seen that in the limit of large number of steps, two probability peaks will be neglected.

density
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0

10-2
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
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initial state |2
+〉

Figure 5.8: Position probability distribution of the four-state Wigner walk on a line. The

initial state is the suitable state |χ+
2 〉, Eq. (5.54) and the total number of steps t = 100. It is

seen that in the limit of large number of steps, two of four probability peaks will be neglected.
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Figure 5.9: Position probability distribution of the four-state Wigner walk on a line. The

initial state is a linear combination of the suitable states |χ+
1 〉, |χ

+
2 〉, Eq. (5.54) and the total

number of steps t = 100. It is seen that in the limit of large number of steps, both faster

peaks vanish.
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Figure 5.10: Position probability distribution of the four-state Wigner walk on a line. The

initial state is a linear combination of the suitable states |χ−1 〉, |χ
−
2 〉, Eq. (5.54) and the total

number of steps t = 100. It is seen that in the limit of large number of steps, both slower

peaks vanish.
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the actual position as depicted in the Fig. (1.3). The coin space is spanned by the standard

basis states

HC = Span{| − 2〉, | − 1〉, |0〉, |1〉, |2〉},

and the initial coin state is in the standard basis given by

|ψC〉 = q−2| − 2〉+ q−1| − 1〉+ q0|0〉+ q1|1〉+ q2|2〉.

We remind that five-state Wigner walk on a line exhibits trapping at the vicinity of the origin.

The matrix representation of the coin operator is given by a five-dimensional Wigner

matrix with matrix elements formulated in Eq. (1.24),

C
(2)
W =

ρ4 −2
√
Rρ3

√
6Rρ2 −2R3/2ρ R2

2
√
Rρ3 ρ2

(
4ρ2 − 3

) √
6
√
Rρ
(
1− 2ρ2

)
−R

(
1− 4ρ2

)
−2R3/2ρ√

6Rρ2
√

6
√
Rρ
(
2ρ2 − 1

)
6ρ4 − 6ρ2 + 1

√
6
√
Rρ
(
1− 2ρ2

) √
6Rρ2

2R3/2ρ −R
(
1− 4ρ2

) √
6
√
Rρ
(
2ρ2 − 1

)
ρ2
(
4ρ2 − 3

)
−2
√
Rρ3

R2 2R3/2ρ
√

6Rρ2 2
√
Rρ3 ρ4


and

R = 1− ρ2.

Its eigenstates can be written as

|ϕ0〉 =

√
3

8
|2〉+

1

2
|0〉+

√
3

8
| − 2〉,

|ϕ+
1 〉 =

1

2
(i|2〉+ |1〉+ | − 1〉 − i| − 2〉),

|ϕ−1 〉 =
1

2
(−i|2〉+ |1〉+ | − 1〉+ i| − 2〉),

|ϕ+
2 〉 =

1

4
(|2〉+ 2i|1〉 −

√
6|0〉 − 2i| − 1〉+ | − 2〉),

|ϕ−2 〉 =
1

4
(|2〉 − 2i|1〉 −

√
6|0〉+ 2i| − 1〉+ | − 2〉) (5.56)

and satisfy the eigenvalue equations of the form

C
(2)
W |ϕ0〉 = |ϕ0〉,

C
(2)
W |ϕ

±
1 〉 = e±iϕ1 |ϕ±1 〉,

C
(2)
W |ϕ

±
2 〉 = e±iϕ2 |ϕ±2 〉.

For the phases of the eigenvalues we have the following expressions

ϕ1 = arccos
(
2ρ2 − 1

)
,

ϕ2 =


arccos

(
8ρ4 − 8ρ2 + 1

)
, 0 < ρ ≤ 1√

2
,

2π − arccos
(
8ρ4 − 8ρ2 + 1

)
, 1√

2
< ρ < 1.

(5.57)
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Similarly as in the case where index j = 1, for the construction of the suitable basis, we

combine only the eigenvectors with the complex conjugate eigenvalues, i.e. with the same

eigenvalue phase factor ϕ1 or ϕ2. These combinations provide us four suitable vectors. The

last vector of the new basis is given directly by the eigenstate of the coin C
(2)
W with real

eigenvalue, which is the vector |ψ0〉. Hence we get the suitable basis in the form

|χ0〉 = |ϕ0〉,

|χ+
1 〉 =

1√
2

(
e−i

ϕ1
2 |ϕ+

1 〉+ ei
ϕ1
2 |ϕ−1 〉

)
,

|χ−1 〉 =
i√
2

(
e−i

ϕ1
2 |ϕ+

1 〉 − e
i
ϕ1
2 |ϕ−1 〉

)
,

|χ+
2 〉 =

1√
2

(
e−i

ϕ1
2 |ϕ+

2 〉+ ei
ϕ1
2 |ϕ−2 〉

)
,

|χ−2 〉 =
i√
2

(
e−i

ϕ1
2 |ϕ+

2 〉 − e
i
ϕ1
2 |ϕ−2 〉

)
. (5.58)

It allows us to decompose the initial state as

|ψC〉 = h0|χ0〉+ h+
1 |χ

+
1 〉+ h−1 |χ

−
1 〉+ h+

2 |χ
+
2 〉+ h−2 |χ

−
2 〉.

From this initial state expressed in the standard basis follow relations allowing us to rewrite

all previous results into the new basis. The relations can be found in appendix A.2.

The total density f (2)(v) is a sum of two densities for the walk with m = 1 and the walk

with m = 2. Therefore

f (2)(v) = f (2,1)(v) + f (2,2)(v),

where

f (2,1)(v) =
1

2
µ
(v

2

)
M(2,1)

(v
2

)
,

f (2,2)(v) =
1

4
µ
(v

4

)
M(2,2)

(v
4

)
.

The first weight functions can be expressed in the powers of the velocity v as

M(2,1)(v) =M(2,1)
0 +M(2,1)

1 v +M(2,1)
2 v2 +M(2,1)

3 v3 +M(2,1)
4 v4,

The particular elements with respect to the standard coin space basis can be found in [23]

and, using the relations from Eq. (A.2) read

M(2,1)
0 = |h+

1 |
2 + |h−1 |

2,

M(2,1)
1 =

1

ρ

[
h+

1 h
−
2 + h+

1 h
−
2 + h+

2 h
−
1 + h+

2 h
−
1 +
√

3(h0h
−
1 + h0h

−
1 )
]
,

M(2,1)
2 =

1

ρ2

[
3|h0|2 − 4|h+

1 |
2 − |h−1 |

2 + |h+
2 |

2 + |h−2 |
2 +
√

3(h0h
+
2 + h0h

+
2 )
]
,

M(2,1)
3 = − 1

ρ3

[
2(h+

1 h
−
2 + h+

1 h
−
2 ) + h+

2 h
−
1 + h+

2 h
−
1 +
√

3(h0h
−
1 + h0h

−
1 )
]
,

M(2,1)
4 = − 1

ρ4

[
3|h0|2 − 4|h+

1 |
2 + |h+

2 |
2 +
√

3(h0h
+
2 + h0h

+
2 )
]
.
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For the second weight function we have

M(2,2)(v) =M(2,2)
0 +M(2,2)

1 v +M(2,2)
2 v2 +M(2,2)

3 v3 +M(2,2)
4 v4,

with the individual elements expressed in the suitable basis as

M(2,2)
0 = |h+

2 |
2 + |h−2 |

2,

M(2,2)
1 = −1

ρ

[
h+

1 h
−
2 + h+

1 h
−
2 + h−1 h

+
2 + h−1 h

+
2

]
,

M(2,2)
2 =

1

ρ2

[
|h+

1 |
2 + |h−1 |

2 − |h+
2 |

2 − |h−2 |
2 −
√

3

2
(h0h

+
2 + h0h

+
2 )

]
,

M(2,2)
3 =

1

2ρ3

[
2(h+

1 h
−
2 + h+

1 h
−
2 ) + (h−1 h

+
2 + h−1 h

+
2 ) +

√
3(h0h

−
1 + h0h

−
1 )
]
,

M(2,2)
4 =

1

4ρ4

[
(3|h0|2 − 4|h+

1 |
2 + |h+

2 |
2) +

√
3(h0h

+
2 + h0h

+
2 )
]
.

Note that especially the zero-order part M
(2,2)
0 depends only on the probabilities of being in

the eigenstates corresponding to the eigenvalue phase factor ϕ2, Eq. (5.57). On the other

hand, M
(2,1)
0 depends only on the probabilities to be in the eigenstates corresponding to the

phase factor ϕ1. It is not possible to see similar correspondence for higher order parts.

Let us note that the weight function M(2,1)(v) describing the inner walk can be set to

zero quite easily. Indeed, for the initial coin state

|ψC〉 =
1

2
|χ0〉 −

√
3

2
|χ+

2 〉,

all termsM(2,1)
i , i = 1, . . . , 4 vanish. Hence, for this initial state the moments of the quantum

walk are determined by a single density which reads

f (2,2)(v) =
3
√

1− ρ2

16π
(

1−
(
v
4

)2)√(
ρ− v

4

) (
ρ+ v

4

) .
Here we have demonstrated the power of the initial state which has completely eliminated

one of two densities.

The calculation of the trapping probability described in section 5.1 results in

p(2)
∞ (2x) =



Q2x31−ρ2
2ρ4

(
|l0 + f(x)l+|2 + |l+|2

)
, x > 0,

91−ρ2
4ρ4

Q2
(
|l+|2 + |l−|2

)
+ 3

8Q
2|l+ + l−|2 +

2−ρ2−
√

1−ρ2
4ρ2

Q|l0|2−

−
√

6
2−r2+ 1

2

√
1−r2

8r2
Q2
(

(l+ + l−)l0 + (l+ + l−)l0

)
, x = 0,

Q2|x|31−ρ2
2ρ4

(
|l0 + f(x)l−|2 + |l−|2

)
, x < 0.

(5.59)

Here Q is the same as for the three-state Wigner walk, i.e.

Q =
2− ρ2 − 2

√
1− ρ2

ρ2
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and

f(x) =

√
6

ρ2

(
ρ2 − 2 + 2|x|

√
1− ρ2

)
.

Moreover, the coefficients l0, l
± can be expressed by the amplitudes of the initial state in the

suitable basis as

l0 = 1/2h0 −
√

3

2
h+

2 ,

l+ =

√
3

8
h0 +

1√
2
h+

1 +
1√
8
h+

2 ,

l− =

√
3

8
h0 −

1√
2
h+

1 +
1√
8
h+

2 .

Figs. (5.11-5.16) depict the trapping probability together with the limiting distribution and

the real probabilities calculated for a given number of steps. We have chosen the initial states

as the suitable basis states.
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density
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2.10-2

x
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x
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initial state |0〉

Figure 5.11: Position probability distribution of the five-state Wigner walk on a line. The

initial state is the suitable state |χ0〉 from Eq. (5.56) and the total number of steps t = 100.

It is seen that in the limit of large number of steps, all the peaks are present.
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trapping
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10-1
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p
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initial state |0〉

Figure 5.12: Detail of the trapping peak of the five-state Wigner walk on a line. The initial

state is the suitable state |χ0〉 from Eq. (5.56) and the total number of steps t = 500. It is

seen that the probabilities are not monotonically decreasing.

real values

density

trapping

-200 0 200
0

0.03

x

p
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x
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)

initial state |1
+〉

Figure 5.13: Position probability distribution of the five-state Wigner walk on a line. The

initial state is the suitable state |χ+
1 〉 from Eq. (5.56) and the total number of steps t = 100.

It is seen that in the limit of large number of steps, the fastest peaks vanish.
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real values

density

-200 0 200
0

0.025

x

p
(2
) (
x
,t
)

initial state |1
-〉

Figure 5.14: Position probability distribution of the five-state Wigner walk on a line. The

initial state is the suitable state |χ−1 〉 from Eq. (5.56) and the total number of steps t = 100.

It is seen that in the limit of large number of steps, the slower peaks as well as the trapping

peak vanish.
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2
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3
2

|2
+〉

Figure 5.15: Position probability distribution of the five-state Wigner walk on a line. The

initial state is a linear combination of the suitable states |χ0〉, |χ+
2 〉 from Eq. (5.56) and the

total number of steps t = 100. It is seen that in the limit of large number of steps, the slower

peaks vanish. It is due to zero density f (3/2,1/2)(v).
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trapping
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0.2
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p
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) (
x
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initial state |λ-〉

Figure 5.16: Detail of the trapping peak for the initial coin state |λ−〉 =
√

3
8 |χ0〉 − 1√

2
|χ+

1 〉+
1√
8
|χ+

2 〉. For this particular choice, the right half of the peak vanishes. Moreover, the rest of

the peak is not decreasing. The total number of steps is 500.
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Appendix A

Remarks on Wigner walks

A.1 Four-state Wigner walk

During the derivation of the weight function in the suitable basis is subsection 5.3.6, we

have skipped several technical steps. For those interested, here we provide relations that are

necessary for turning the results from [23] into the suitable basis.

In terms of the standard basis, the new compiled in Eq. (5.54) reads

|χ+
1 〉 =

√
3

2
√

2

√
1 + ρ|3/2〉 −

√
1− ρ
2
√

2
|1/2〉+

√
1 + ρ

2
√

2
| − 1/2〉 −

√
3

2
√

2

√
1− ρ| − 3/2〉,

|χ−1 〉 =

√
3

2
√

2

√
1− ρ|3/2〉+

√
1 + ρ

2
√

2
|1/2〉+

√
1− ρ
2
√

2
| − 1/2〉+

√
3

2
√

2

√
1 + ρ| − 3/2〉,

|χ+
2 〉 =

(1− 2ρ)
√

1 + ρ

2
√

2
|3/2〉+

√
3(1 + 2ρ)

√
1− ρ

2
√

2
|1/2〉 −

−
√

3(1− 2ρ)
√

1 + ρ

2
√

2
| − 1/2〉 − (1 + 2ρ)

√
1− ρ

2
√

2
| − 3/2〉,

|χ−2 〉 =
(1 + 2ρ)

√
1− ρ

2
√

2
|3/2〉 −

√
3(1− 2ρ)

√
1 + ρ

2
√

2
|1/2〉 −

−
√

3(1 + 2ρ)
√

1− ρ
2
√

2
| − 1/2〉+

(1− 2ρ)
√

1 + ρ

2
√

2
| − 3/2〉.

The expressions provide us the transformation relations between the coefficients in the stan-

dard and the suitable basis as

q3/2 = h+
1

√
3

2
√

2

√
1 + ρ+ h−1

√
3

2
√

2

√
1− ρ+ h+

2

(1− 2ρ)
√

1 + ρ

2
√

2
+ h−2

(1 + 2ρ)
√

1− ρ
2
√

2
,

q−3/2 = h+
1

−
√

3

2
√

2

√
1− ρ+ h−1

√
3

2
√

2

√
1 + ρ− h+

2

(1 + 2ρ)
√

1− ρ
2
√

2
+ h−2

(1− 2ρ)
√

1 + ρ

2
√

2
,

q1/2 = −h+
1

√
1− ρ
2
√

2
+ h−1

√
1 + ρ

2
√

2
+ h+

2

√
3(1 + 2ρ)

√
1− ρ

2
√

2
− h−2

√
3(1− 2ρ)

√
1 + ρ

2
√

2
,

q−1/2 = h+
1

√
1 + ρ

2
√

2
+ h−1

√
1− ρ
2
√

2
− h+

2

√
3(1− 2ρ)

√
1 + ρ

2
√

2
− h−2

√
3(1 + 2ρ)

√
1− ρ

2
√

2
.

(A.1)
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These relations are now applied to the results from [23] and lead to the final weightsM( 3
2
, 1
2)

i

and M( 3
2
, 3
2)

i with i = 0, 1, 2, 3 stated in subsection 5.3.6.

A.2 Five-state Wigner walk

In subsection 5.3.6 we have referred to this appendix consisting of the relations leading to

the transition between the standard and the suitable basis of the coin space.

Using the Eq. (5.56), the suitable basis can be expressed in terms of the standard coin

space basis as

|χ0〉 =

√
3

8
|2〉+

1

2
|0〉+

√
3

8
| − 2〉,

|χ+
1 〉 =

√
1− ρ2

2
|2〉+

ρ√
2
|1〉+

ρ√
2
| − 1〉 −

√
1− ρ2

2
| − 2〉,

|χ−1 〉 = − ρ√
2
|2〉+

√
1− ρ2

2
|1〉+

√
1− ρ2

2
| − 1〉+

ρ√
2
| − 2〉,

|χ+
2 〉 =

1− 2ρ2

2
√

2
|2〉+ ρ

√
2− 2ρ2|1〉 −

√
3

2
(1− 2ρ2)|0〉 − ρ

√
2− 2ρ2| − 1〉+

+
1− 2ρ2

2
√

2
| − 2〉,

|χ−2 〉 = ρ

√
1− ρ2

2
|2〉 − 1− 2ρ2

√
2
|1〉 − ρ

√
3− 3ρ2|0〉+

1− 2ρ2

√
2
| − 1〉+

+ρ

√
1− ρ2

2
| − 2〉.

Let us remind that the initial coin state can be expressed in the standard and the suitable

basis as

|ψC〉 = h0|χ0〉+h+
1 |χ

+
1 〉+h

−
1 |χ

−
1 〉+h

+
2 |χ

+
2 〉+h

−
2 |χ

−
2 〉 = q−2|−2〉+q−1|−1〉+q0|0〉+q1|1〉+q2|2〉.

These facts lead to the transformation relations from the standard coin space basis coef-

ficients qi, i = −2, . . . , 2 to the new coefficients h0, h
±
1 , h

±
2 which are

q2 =

√
3

8
h0 +

√
1− ρ2

2
h+

1 −
ρ√
2
h−1 +

1− 2ρ2

2
√

2
h+

2 + ρ

√
1− ρ2

2
h−2 ,

q1 =
ρ√
2
h+

1 +

√
1− ρ2

2
h−1 + ρ

√
2− 2ρ2h+

2 −
1− 2ρ2

√
2

h−2 ,

q0 =
1

2
h0 − ρ

√
3− 3ρ2h−2 ,

q−1 =
ρ√
2
h+

1 +

√
1− ρ2

2
h−1 − ρ

√
2− 2ρ2h+

2 +
1− 2ρ2

√
2

h−2 ,

q−2 =

√
3

8
h0 −

√
1− ρ2

2
h+

1 +
ρ√
2
h−1 +

1− 2ρ2

2
√

2
h+

2 + ρ

√
1− ρ2

2
h−2 . (A.2)

Final weights are then obtained from these equations and the results for the five-state Wigner

walks with respect to the standard coin space basis from [23].
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A.3 Six-state Wigner walk

We would like to illustrate how the suitable basis affect even more complicated walk, namely

the six-state Wigner walk. This part is presented in the appendix, since we deal only with

the analysis of the behaviour based on the previous results and we do not provide any new

insight into the problem. Nevertheless, we find the results depicted especially in the figures

interesting. The suitable basis brings the desired simplifications here as well. Despite the

fact that the resulting formulas are even in the simplifying basis very complicated, they are

reachable.

The six-state Wigner walks occurs for j = 5/2. Performed movements are one, three and

five steps to the left and right, which lead to the standard coin space basis

HC = Span{| − 5/2〉, | − 3/2〉, | − 1/2〉, |1/2〉, |3/2〉, |5/2〉}

and the standard initial coin state of the form

|ψC〉 = q−5/2| − 5/2〉+ q−3/2| − 3/2〉+ q−1/2| − 1/2〉+ q1/2|1/2〉+ q3/2|3/2〉+ q5/2|5/2〉.

The walk is driven by quite a complicated coin with its matrix elements given by Eq. (1.24),

C
( 5
2)

W =

=



ρ5 −
√

5Rρ4
√

10Rρ3 −
√

10R3/2ρ2
√

5R2ρ −R5/2

√
5Rρ4 Wρ3

√
2RVρ2

√
2Uρ R3/2X

√
5R2ρ√

10Rρ3 −
√

2RVρ2 T ρ −
√
RS

√
2Uρ −

√
10R3/2ρ2

√
10R3/2ρ2

√
2Uρ

√
RS T ρ

√
2RVρ2

√
10Rρ3

√
5R2ρ −R3/2X

√
2Uρ −

√
2RVρ2 Wρ3 −

√
5Rρ4

R5/2
√

5R2ρ
√

10R3/2ρ2
√

10Rρ3
√

5Rρ4 ρ5


.

(A.3)

Here

R = 1− ρ2,

S = 1− 8ρ2 + 10ρ4,

T = 3− 12ρ2 + 10ρ4,

U = −2 + 7ρ2 − 5ρ4,

V = 3− 5ρ2,

W = −4 + 5ρ2,

X = 1− 5ρ2.

The eigenstates of the coin C
( 5
2)

W are

|ϕ±1 〉 =
1

4

(
±i
√

5| − 5/2〉+ | − 3/2〉 ± i
√

2| − 1/2〉+
√

2|1/2〉 ± i|+ /2〉+
√

5|5/2〉
)
,

|ϕ±2 〉 =
1

4
√

2

(
±i
√

5| − 5/2〉 − 3| − 3/2〉 ∓ i
√

2| − 1/2〉 −
√

2|1/2〉 ∓ 3i|3/2〉+
√

5|5/2〉
)
,

|ϕ±3 〉 =
1

4
√

2

(
±i,
√

5| − 5/2〉 ∓ i| − 3/2〉+
√

10| − 1/2〉 −
√

10|1/2〉 ± i
√

5|3/2〉+ |5/2〉
)
,
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satisfying the eigenvalue equation

C
( 5
2

)

W |ϕ
±
1,2,3〉 = e±iϕ1,2,3 |ϕ±1,2,3〉. (A.4)

The phases are

ϕ1 = arccos(ρ),

ϕ2 =

 arccos(ρ(4ρ2 − 3)), 0 < ρ ≤ 1
2

2π − arccos(ρ(4ρ2 − 3)), 1
2 < ρ ≤ 1,

ϕ3 =


2π + arccos(ρ(5− 20ρ2 + 16ρ4)), 0 < ρ ≤ 1

4

(
−1 +

√
5
)
,

2π − arccos(ρ(5− 20ρ2 + 16ρ4)), 1
4

(
−1 +

√
5
)
< ρ ≤ 1

4

(
1 +
√

5
)
,

arccos(ρ(5− 20ρ2 + 16ρ4)), 1
4

(
1 +
√

5
)
< ρ ≤ 1.

Thus, the suitable basis is then given by

|χ+
1 〉 =

1√
2

(
e−i

ϕ1
2 |ϕ+

1 〉+ ei
ϕ1
2 |ϕ−1 〉

)
|χ−1 〉 =

i√
2

(
e−i

ϕ1
2 |ϕ+

1 〉 − e
i
ϕ1
2 |ϕ−1 〉

)
|χ+

2 〉 =
1√
2

(
e−i

ϕ2
2 |ϕ+

2 〉+ ei
ϕ2
2 |ϕ−2 〉

)
|χ−2 〉 =

i√
2

(
e−i

ϕ2
2 |ϕ+

2 〉 − e
i
ϕ2
2 |ϕ−2 〉

)
|χ+

3 〉 =
1√
2

(
e−i

ϕ3
2 |ϕ+

3 〉+ ei
ϕ3
2 |ϕ−3 〉

)
|χ−3 〉 =

i√
2

(
e−i

ϕ3
2 |ϕ+

3 〉 − e
i
ϕ3
2 |ϕ−3 〉

)
. (A.5)

We can now express the initial coin state in the new basis as

|ψC〉 = h+
1 |χ

+
1 〉+ h−1 |χ

−
1 〉+ h+

2 |χ
+
2 〉+ h−2 |χ

−
2 〉+ h+

3 |χ
+
3 〉+ h−3 |χ

−
3 〉

.

In the case of the five-state walk, the total velocity density is the sum of three individual

densities for inner, middle and outer walk

f ( 5
2

)(v) = f ( 5
2
, 1
2

)(v) + f ( 5
2
, 3
2

)(v) + f ( 5
2
, 5
2

)(v).

Every density can be expressed by Konno’s density function µ and weight function M as

f ( 5
2
,m)(v) =

1

2m
µ
( v

2m
, ρ
)
M( 5

2
,m)
( v

2m

)
, m =

1

2
,
3

2
,
5

2
. (A.6)

The weight function is given by a polynomial in v/2m up to the power five, i.e.

M( 5
2
,m)
( v

2m

)
=

5∑
i=0

M( 5
2
,m)

i

( v

2m

)i
.
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The exact formulas for the elements of the weight function can be found in [23]. Then we

only have to use the transformation relations between the standard and the suitable basis, it

is between the coefficients qi, i = −5/2, . . . , 5/2 and h±j , j = 1, 2, 3. The conversion relations

are given by

q5/2 =
1

4

(
h+

3 sin
(ϕ3

2

)
− h−3 cos

(ϕ3

2

)
+
√

5
(
h+

2 sin
(ϕ2

2

)
+−h−2 cos

(ϕ2

2

)
+

+
√

2
(
h+

1 sin
(ϕ1

2

)
− h−1 cos

(ϕ1

2

))))
,

q3/2 =
1

4

(√
2h−1 sin

(ϕ1

2

)
− 3h−2 sin

(ϕ2

2

)
+
√

5h−3 sin
(ϕ3

2

)
+
√

2h+
1 cos

(ϕ1

2

)
−

−3h+
2 cos

(ϕ2

2

)
+
√

5h+
3 cos

(ϕ3

2

))
,

q1/2 =
1

4

(
2h+

1 sin
(ϕ1

2

)
− 2h−1 cos

(ϕ1

2

)
+
√

2
(
−h+

2 sin
(ϕ2

2

)
+ h−2 cos

(ϕ2

2

)
+

+
√

5
(
h−3 cos

(ϕ3

2

)
− h+

3 sin
(ϕ3

2

))))
,

q−1/2 =
1

4

(
2h−1 sin

(ϕ1

2

)
+ 2h+

1 cos
(ϕ1

2

)
−
√

2
(
h−2 sin

(ϕ2

2

)
+ h+

2 cos
(ϕ2

2

)
+

+
√

5
(
h−3 sin

(ϕ3

2

)
+ h+

3 cos
(ϕ3

2

))))
,

q−3/2 =
1

4

(√
2h+

1 sin
(ϕ1

2

)
− 3h+

2 sin
(ϕ2

2

)
+
√

5h+
3 sin

(ϕ3

2

)
−
√

2h−1 cos
(ϕ1

2

)
+3h−2 cos

(ϕ2

2

)
−
√

5h−3 cos
(ϕ3

2

))
,

q−5/2 =
1

4

(
h−3 sin

(ϕ3

2

)
+ h+

3 cos
(ϕ3

2

)
+
√

5
(
h−2 sin

(ϕ2

2

)
+ h+

2 cos
(ϕ2

2

)
+

√
2
(
h−1 sin

(ϕ1

2

)
+ h+

1 cos
(ϕ1

2

))))
.

Once we have the suitable basis and the transformation relations, we can express the

weights in the new basis. Let us start with the most inner walk, it is m = 1/2. The corre-

sponding weight is given by

M( 5
2
, 1
2

)(v) =M( 5
2
, 1
2

)

0 +M( 5
2
, 1
2

)

1 v +M( 5
2
, 1
2

)

2 v2 +M( 5
2
, 1
2

)

3 v3 +M( 5
2
, 1
2

)

4 v4 +M( 5
2
, 1
2

)

5 v5.

In the suitable basis, the coefficients in the polynomial are significantly simplified. We start

with absolute term which read

M( 5
2
, 1
2

)

0 = |h+
1 |

2 + |h−1 |
2.

Following terms are given by

M( 5
2
, 1
2

)

1 =
1

ρ

(
3(|h+

1 |
2 − |h+

1 |
2) +

√
2(h−1 h̄

−
2 + h−2 h̄

−
1 − h

+
1 h̄

+
2 − h

+
2 h̄

+
1 )
)
,

M( 5
2
, 1
2

)

2 = − 1

4ρ2

(
8(|h+

1 |
2 + |h−1 |

2 − |h+
2 |

2 − |h−2 |
2)−

−3
√

2(h−1 h̄
−
2 + h−2 h̄

−
1 + h+

1 h̄
+
2 + h+

2 h̄
+
1 ) +

√
10(h−1 h̄

−
3 + h−3 h̄

−
1 + h+

1 h̄
+
3 + h+

3 h̄
+
1 )
)
,
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M( 5
2
, 1
2

)

3 =
1

2ρ3

(
16(|h−1 |

2 − |h+
1 |

2) + 8(|h−2 |
2 − |h+

2 |
2)+

+
√

10(h−1 h̄
−
3 + h−3 h̄

−
1 − h

+
1 h̄

+
3 − h

+
3 h̄

+
1 ) +

√
5(h−2 h̄

−
3 + h−3 h̄

−
2 − h

+
2 h̄

+
3 − h

+
3 h̄

+
2 )
)
,

M( 5
2
, 1
2

)

4 =
1

8ρ4

(
10(|h−1 |

2 + |h+
1 |

2)− 15(|h−2 |
2 + |h+

2 |
2) + 5(|h−3 |

2 + |h+
3 |

2)−

−5
√

2(h−1 h̄
−
2 + h−2 h̄

−
1 + h+

1 h̄
+
2 + h+

2 h̄
+
1 ) + 3

√
10(h−1 h̄

−
3 + h−3 h̄

−
1 + h+

1 h̄
+
3 + h+

3 h̄
+
1 )+

+
√

5(h−2 h̄
−
3 + h−3 h̄

−
2 + h+

2 h̄
+
3 − h

+
3 h̄

+
2 )
)
,

M( 5
2
, 1
2

)

5 = − 5

8ρ5

(
10(|h−1 |

2 − |h+
1 |

2) + 5(|h−2 |
2 − |h+

2 |
2) + |h−3 |

2 − |h+
3 |

2+

+5
√

2(h−1 h̄
−
2 + h−2 h̄

−
1 − h

+
1 h̄

+
2 − h

+
2 h̄

+
1 ) +

√
5(h−2 h̄

−
3 + h−3 h̄

−
2 − h

+
2 h̄

+
3 + h+

3 h̄
+
2 )+

+
√

10(h−1 h̄
−
3 + h−3 h̄

−
1 − h

+
1 h̄

+
3 − h

+
3 h̄

+
1 )
)
.

The second density for the middle walk with m = 3/2 read

M( 5
2
, 3
2

)
(v

3

)
=M( 5

2
, 3
2

)

0 +M( 5
2
, 3
2

)

1

v

3
+M( 5

2
, 3
2

)

2

(v
3

)2
+

+M( 5
2
, 3
2

)

3

(v
3

)3
+M( 5

2
, 3
2

)

4

(v
3

)4
+M( 5

2
, 3
2

)

5

(v
3

)5
.

The individual elements are in the suitable basis given by

M( 5
2
, 3
2

)

0 = |h−2 |
2 + |h+

2 |
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Finally, the last density for the outer walk read
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We illustrate the results graphically on several figures for several choices of the initial

state, Figs. (A.1 - A.3).
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Figure A.1: Position probability distribution for the six-state Wigner walk. The initial coin

state is the suitable state |χ+
2 〉 from Eq. (A.5), the total number of steps t = 100 and

parameter ρ = 1/2. Red solid line is the limiting density 1
t f

( 5
2)(x/t), Eq. (A.6). It is seen

that only three probability peaks are present since the suitable initial state eliminates one

divergence for each density from f( 5
2)(x/t).
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Figure A.2: Position probability distribution for the six-state Wigner walk. The initial coin

state is the suitable state |χ+
3 〉 from Eq. (A.5), the total number of steps t = 100 and

parameter ρ = 1/2. Red solid line is the limiting density 1
t f

( 5
2)(x/t), Eq. (A.6). It is seen

that only three probability peaks are present since the suitable initial state eliminates one

divergence for each density from f( 5
2)(x/t).
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Figure A.3: Position probability distribution for the six-state Wigner walk. The initial coin

state is the suitable state |χ−1 〉 from Eq. (A.5), the total number of steps t = 100 and

parameter ρ = 1/2. Red solid line is the limiting density 1
t f

( 5
2)(x/t), Eq. (A.6). It is seen

that only three probability peaks are present since the suitable initial state eliminates one

divergence for each density from f( 5
2)(x/t). It is seen that after one hundred steps, the real

values (black dots) located closely on the left hand side from the origin exceed the slowest

left probability peak, respectively its real values. Of course, this situation disappears with

higher number of steps. Nevertheless, we find the situation of an additional probability hill

quite interesting, since there was nothing similar in the lower dimension. The only hills in

the limiting density (red solid line) appeared for probability peaks that were destroyed by a

choice of the initial state, i.e. cancelled divergence in the Konno’s density function. Similar

but smaller hill near the origin of the lattice and at position that does not correspond to a

probability peak is observed also for the walk with initial |χ+
2 〉 state, Fig. (A.1).
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Conclusions and outlook

The entire thesis is devoted to the analysis of trapping as an interesting and promising prop-

erty certain quantum walks exhibit. Whereas the travelling peaks decreases with increasing

number of steps, the central trapping peaks still holds a large amount of probability around

the origin of the lattice. We have limited ourselves only to discrete-time and translationally

invariant quantum walks, where some of the properties can be studied by the wave theory

methods. After the introductory part describing basic concepts and tools used for analysis

of the walks, we have investigated trapping walks in more detail and provided several new

result. We have mostly focused on classification of the coins responsible for trapping and

on the limiting approximation of the position probability distribution, control of probability

peaks and role of the free parameters. The following paragraphs summarize the main results

of the individual chapters.

The introductory chapter one is followed by constructions of specific trapping one-parameter

families of coins in chapter two. The approach is based on a connection of some trivial ma-

trices that share the eigenvalues or the eigenvectors with the well-known Grover matrix, for

which the trapping was found. Addition of a parameter into the eigenvectors or the eigenval-

ues of the trivial matrix led to continuous transitions (one-parameter families) between the

trivial and the Grover matrix, whereas the trapping was preserved for all choices of the new

parameter. These ideas hidden in the structure of the new coin classes result in the names

eigenvalue and eigenvector family. We started with a three-state walk on a line and showed

that extensions to higher dimensional walks are possible without significant increase of the

difficulty of the construction. Furthermore, following chapters had often referred to these

new coin classes as a starting point or due to comparison of the results.

We have revealed that instead of isolated coins, there exist whole families of coins exhibit-

ing trapping. This fact naturally leads to the question of completeness, which was studied

in chapter three. From the approach presented in the previous chapter that resulted in two

one-parameter families, a conclusion regarding the completeness could not be obtained as a

simple consequence of the way of construction starting from a special choice of a known trap-

ping coin. Therefore, in chapter three we began with a general matrix and found conditions

trapping matrix for three-state quantum walk on a line has to satisfy. These conditions were

imposed to a general unitary matrix in a special form, given as a product of three matrices,

where one of these matrices is a quark-mixing matrix known from standard model. The

remaining two are simple diagonal matrices. As a result we found two classes of coins with
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five and six real parameters and showed that most of these parameters can be ignored, since

only two or three parameters influence the spreading of the walk and the trapping. More-

over, these classes are generalizations of the eigenvalue and the eigenvector family derived in

chapter two. The choice of the general coin containing the mixing matrix was the key point

in the classification due to its convenient form. Different coins together with the conditions

on trapping led to more complicated equations for which the analytical solution could not

be revealed with certainty that it is complete. As a consequence, application of this method

to higher dimensional walk is not suitable as we have showed on a special example at the

beginning of chapter four. Let us emphasize that for the three-state quantum walk on a line,

the described approach provided a classification of the trapping coins and the completeness

of the classification followed, without any doubts, from the presented construction starting

with the most general coin in a convenient form.

As the method successful for the full classification for the 3D walk is not suitable for

higher dimension, in chapter four we developed a completely new approach that was applied

on a four-state quantum walk on a two-dimensional lattice. Since the trapping walks are

quantum walks with non-empty point spectrum, there exist a stationary state as an eigenstate

corresponding to this constant eigenvalue. It can be shown that this stationary state is

localized on maximally 2 × 2 support of the lattice. This restriction allowed us to begin

the analysis with the most general stationary state and thus guaranteed completeness of the

classification. Further restrictions on the amplitudes determining the stationary state stem

from the action of the coin a step operator on the stationary state and the fact that coin has

to be unitary. This all together determined an existence of two possible situations. The first

one could be solved only by inverting a matrix composed of the amplitudes of the stationary

state. This case gave us not only a trapping, but a strongly trapping coin class. The second

case corresponded to the situation where this simple inversion could not be done due to

determinant equal to zero. We altered the matrix to satisfy the requirements on the non-zero

determinant and got a coin class which is trapping but not strongly trapping. We analysed

also all trivial cases to provide a full classification of the trapping coins for the four-state

quantum walk on a 2D lattice.

At the end of the thesis, we looked at the limiting distribution for several types of quantum

walks. The limiting distribution is approximative probability distribution that is very useful

when one considers large number of steps. We showed that it is not always convenient to

express this distribution in the standard coin space basis. Although the standard basis is

simple, it might provide quite complicated and physically non-transparent results. Therefore,

we propose a different basis in which the limiting density gains the simplest form. First we

provided suitable basis and resulting distribution for eigenvalue and eigenvector families of

coins. In these cases, the suitable basis was given directly by the eigenvectors of the coins.

We assumed that the eigenvector basis is always suitable, since it is a natural basis in many

quantum mechanical problems. In the case of the Wigner walks studied in the last section

of this fifth chapter, we found out that the idea behind the suitable basis has to be different.

Three-state Wigner walk is analogical in spreading to quantum walk with eigenvector family
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of coins. Nevertheless, in the case of three-state Wigner walk, the eigenvalue basis provided

different and more difficult density function. This led us to idea that the suitable basis is

composed of the initial coin states, for which a peak in the position probability distribution

disappears. We showed that this basis gave the same results as the eigenvector basis for

the eigenvector family of coins. Moreover, we found a connection of the suitable basis to

the coin’s eigenvectors and thus provided simple recipe for construction of this basis even

for higher dimensional Wigner walks. The proposed suitable basis is not only helpful in the

simplification of the limiting distribution function, it also reveals some interesting properties

that can be observed for a special choice of the initial state. The decrease of the trapping

peak is not purely exponential. The trapping probability may even increase for certain

positions. Simple combinations of a suitable basis state as the initial states of the walk

breaks a symmetry of the trapping peak with respect to the origin of the lattice in a very

special way. It leads to cancellation of the left or the right half of the peak.

Trapping is a rare feature certain quantum walks exhibit. This effect is closely related

to the choice of the coin and the initial state. It is not a property of an isolated coin,

there exist whole trapping classes. We focused on two basic facts. It is what types of

coins results in a trapping walk and how these coins and the corresponding initial states

affects trapping. We presented results in this direction that can be further developed. We

outline the possible direction in the following comments. We provided a classification of

trapping coins for several types of walk, i.e. three-state quantum walk on a line and four-

state quantum walk on a two-dimensional lattice. Compared to the analysis of the three-

state walk, the approach used for the four state walk is more straightforward and thus of

high potential in application for a different type of walks, probably even in higher dimension.

The amount of information we could get only from basic properties of the coin was very

surprising and promising. This greatly simplified the whole process of classification which was

then, compared to the less-dimensional three-state walk, easier to implement. The question

of stability under percolations is also interesting, especially for the strong trapping coin

class. Furthermore, figures showing spectrum of the walks are similar to that appearing in

topological phases studies. We showed that classification of the trapping coin for the three-

state quantum walk on a line results in two non-trivial classes of coins. Each of these classes

comprised eigenvalue or eigenvector family of coins that were found by a modification of the

Grover walk. Similar situation can be found for the four-state walk on a 2D lattice. In this

case we can even construct (up to phases) the final non-trivial classes by a modification of the

four-state Grover walk similarly as in chapter two. Nevertheless, it is not enough to deform

only the eigenvalues or the eigenvectors of the Grover coin and we have to deform both

eigenvalues and eigenvectors. The difference between the final two classes sits in the number

of eigenvalues that are deformed. Suitable bases introduced in the last chapter control the

existence of the peaks in the position probability distribution. The provided simplifications

this suitable bases provide are significant. Suitable basis also affect a subject of this theses,

which is trapping, in a striking way. We especially mean cancellation of one half of the

trapping peak and the fact, the the peak might not be purely decreasing. Of course, these
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interesting behaviours of the trapping peaks exist also in the standard basis description.

Nevertheless, the expressions are enormously complicated and thus this properties cannot be

decoded. On the other hand, suitable basis brings these features almost for free. This all

is obviously connected to simplifications of descriptions even for more complicated types of

walks, which might be subject of further studies as well.
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[18] B. Kollár, M. Štefaňák, T. Kiss, I. Jex (2010), Phys. Rev. A, 82, 012303.

111



[19] N. Inui, Y. Konishi and N. Konno (2004), Phys. Rev. A, 69, 052323.

[20] C. Jarlskog (2005), J. Math. Phys., 46, 103508.

[21] T. Machida, arXiv:1401.1522.

[22] G. Grimmett, S. Janson and P. F. Scudo (2004), Phys. Rev. E, 69, 026119.

[23] T. Miyazaki, M. Katori and N. Konno (2007), Phys. Rev. A, 76, 012332.

[24] A.M. Childs (2010), Commun. Math. Phys., 294, 581.

[25] A. Ambainis, E. Bach, A. Nayak, A. Wishwanath, J. Watrous (2001), in Proceedings of the 33th

STOC (ACM Press, New York), p. 60.

[26] A. Nayak, A. Vishwanath (2000), arXiv:quant-ph/0010117.

[27] A. Messiah, Quantum mechanics, vol. II, (North Holland, Amsterdam, 1962).

[28] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra,

(Academic Press, New York, 1959).

[29] B. Kollár, T. Kiss and I. Jex (2015), Phys. Rev. A, 91, 022308.
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