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Introduction

During the centuries, physical theories have been developed with the growing knowledge
of the world. Older theories were extended or replaced by the new ones. It usually turns
out that older theories are valid only under certain conditions which are connected with
observation abilities in the time of their origin. For example classical mechanics, developed
in 17th century, works well only for macroscopic objects and velocities which are low in
comparison with the velocity of light. In such case a new theory should coincide with the old
one in predictions for phenomena where these conditions are satisfied. This is the so called
correspondence principle.

Classical mechanics was replaced in the 20th century by two new theories: relativistic
mechanics (for velocities close to the velocity of light) and quantum mechanics (for micro-
scopic objects). The correspondence principle provides the connection between these newer
theories and classical mechanics. If the velocity of light goes to infinity, the relativistic me-
chanics transforms into the classical one and its underlying symmetry group — Poincaré group
— singularly transforms into Galilei group. Assuming the Planck constant tending to zero
one gets another limiting process from the quantum mechanics to the classical one, which
corresponds to the singular transition of Heisenberg algebra into abelian one.

The mathematical formulation of the correspondence principle for relativistic mechanics
was given by Inénii and Wigner [43]. So called Inénii-Wigner contractions (IW—contractions)
similar to the examples given above were introduced and studied. The mathematical concept
of the limiting process (contraction) between Lie algebras was already known from the work
of Segal [69], where it was formulated in terms of limiting process of bases. The general
definition of contraction in terms of the family of non—singular linear operators was given by
Saletan [67]. All these contractions represent continuous contractions.

The currently used definition of the continuous contraction [55, 75] is the following one.
Let £ be a finite-dimensional Lie algebra with Lie bracket [.,.] and U : (0,1] — GL(£)
be a continuous map which maps real numbers € into regular linear operators U. on the
vector space L. If there exists a limit [z,y]y := El_i)ra[x,y]e = al—i>%l+ U U.x, Uy for any

z,y € L, then [.,.]p is a well-defined Lie bracket and the vector space L together with |.,.]o
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is called one—parametric continuous contraction of the Lie algebra £. The older Saletan’s
definition required the existence of the limit Uy := 81_1)1& U. while the simple IW—contractions
used only diagonal U, with eigenvalues € and 1 only. So called generalized IW—contractions
[22, 38| consider that the eigenvalues of the diagonal U, are integer powers of the contraction
parameter €, allowing positive as well as negative exponents.

The topological approach to the continuous contraction known as degenerations [8, 10] of
Lie algebras represents another generalization of this problem. The degeneration of a given
n—dimensional Lie algebra £ over the field K is any element from the Zariski closure of the
orbit of £ under the action of the group GL(n, K) on the variety of all n—dimensional Lie
algebras over K. The relations of contractions and deformations of Lie algebras were also
studied for example in [25, 51, 75].

The useful necessary criteria for the existence of the continuous contraction between two
algebras were introduced in works [8, 10, 55]. These criteria enabled the systematical study
of continuous contractions among four-dimensional Lie algebras [8, 55]. Let us note that the
contractions of three-dimensional Lie algebras were already obtained in [73].

In this work we concentrate on the algebraical approach to contractions — so called graded
contractions. Graded contractions were originally introduced in [17] as a generalization of
Inonii-Wigner contractions with the aim of the systematical study of IW-contractions. Un-
fortunately, it appeared that the results of graded contractions do not cover all possible
IW-—contractions [73, 77] and thus, graded contractions do not represent a generalization of
[W-—contractions. However, they can still be considered as a possible connection of different
Lie algebras.

In contrast to continuous contractions, graded contractions represent a purely algebraical
standpoint. Instead of a limit of a continuous family of isomorphic algebras which fulfil
Jacobi identities, the commutation relations among the graded subspaces are multiplied by
contraction parameters which have to satisfy the system of quadratic equations (contraction
system) resulting from the Jacobi identities. The complexity of this system depends on the
number of grading subspaces and the structure of grading.

There are two types of graded contractions: continuous graded contractions which cor-
respond to IW—contractions and discrete graded contractions which possess no equivalent in
continuous contractions. These discrete contractions yield, among other things, special con-
tinuous parametric families of non—isomorphic Lie algebras as graded contractions of a single
Lie algebra. Such continuous parametric families could be interesting for the deformation
theory of Lie algebras. However, the physical interpretation of discrete graded contractions

has not been found yet. It is even claimed that it cannot exist [77].



The concept of graded contractions is not restricted only to Lie algebras. It can be used
for any graded algebras. The only difference is the origin of the contraction system which
is derived from the inner composition law of the given algebra. Many examples of graded
contractions were studied in literature. These are for example, the graded contractions of
inhomogeneous algebras [14, 61], central extensions [16], affine algebras [19, 42|, Jordan al-
gebras [45], Virasoro algebras [48]. Physically motivated examples related to the kinematical
and conformal group of space-time were presented in [18, 72|. The attempt to obtain all
graded contractions of ZY-graded so(N + 1) for arbitrary natural number N was made in
[39], however, only continuous graded contractions were studied herein.

The general solution of the graded contractions — considering only so called generic case
— was achieved in [76, 77]. Since this solution depends solely on the grading group (the
structure of the Lie algebra does not matter at all), it is obtained simultaneously for all Lie
algebras which allow the given grading. However, this approach is in a certain sense too
general. For a concrete Lie algebra the number of results obtained in this way is significantly
smaller than in our approach.

The concept of graded contractions was also extended to the contractions of represen-
tations which are compatible with a given grading [54]. Since the complete representation
theory exists only for simple Lie algebras, it can be helpful for the construction of the rep-
resentations of solvable Lie algebras which are obtained via graded contractions of some
simple Lie algebra. The examples of graded contractions of representations can be found in
[50, 60, 71].

The contractions of simple Lie algebras have been often studied because of their many
interesting physical applications. Simple Lie algebras can be contracted into solvable ones but
not conversely. Therefore, it might be expected that the contractions of simple Lie algebras
will lead to wider structures than the contractions of other types of Lie algebras. Hence, the
systematical study of the contractions of simple Lie algebras is desirable.

The graded contractions of the lowest dimensional simple Lie algebra sl(2, C) are already
known [17] for both its fine gradings. Let us recall that the graded contractions of the Cartan
graded sl(2,C) are Ay 1 & Ay, Az 1, Az s, As 4, Ag%), while from the Pauli graded sl(2,C) only
As 1, As 4 were obtained. Let us also note that there is only one three-dimensional Lie algebra
As 2 which is not a graded contraction of sl(2, C).

The goal of this work is to continue in a systematical study of graded contractions with the
examination of the graded contractions for all four fine gradings of the Lie algebra sl(3, C).
This task has already been solved for one of these gradings (Cartan grading) in [1, 13]. A
summary about the Pauli graded contractions of sl(3, C) was also published [37].



All contractions of the Lie algebra sl(3,C) form a subset of all 8-dimensional complex
Lie algebras. Since these are still not completely classified, the classification of the graded
contraction of sl(3,C) is a difficult task. Let us recall that there exists a complete classifi-
cation of all simple Lie algebras, while the solvable Lie algebras were classified only for the
dimensions not greater than six. For the nilpotent Lie algebras the classification is done up to
dimension 8. Our work thus partially contributes to the classification problem of Lie algebras
of the dimensions higher than 6. We have developed an algorithm which has enabled us to
classify all presented graded contractions of sl(3, C), including the ranges of parameters for
the parametric families.

Let us note that a computer program for the computation of graded contractions was
written [5] in 1993, but it is inaccessible to us. As it deals with two-term contraction
equations only, it is not suitable for our purpose. We have used our own program written
in MAPLE 8 which enables us to use the symmetries during the computation of graded
contractions and also serves for the classification of the resulting Lie algebras.

This work is divided into three parts. The first part formed by chapters 1.-4. provides
the theoretical background and describes the algorithms which are used in the second part.
In the second part(chapters 5.-8.) the complete investigation of all graded contractions for
all fine gradings of sl(3,C) is performed. The obtained classification results are postponed
to the third part which consists of three Appendices. These contain all contraction matrices
and the tables of resulting Lie algebras and of the invariant functions for one—parametric
families of Lie algebras.

In chapter 1 we introduce the notation and recall the basic facts from the theory of Lie
algebras. Chapter 2 is devoted to gradings of Lie algebras. The basic definitions are recalled.
The symmetries of the gradings are introduced and described for so called group gradings.
The overview of all group gradings of sl(3, C) is also given.

In chapter 3 the definition of the graded contraction is introduced and its basic properties
described. Let us note that in contrast to the known literature our definition of the graded
contraction is explicitly formulated and is slightly different from the previously used con-
cept, where the structure of algebras was ignored and group gradings were supposed. The
definition of the continuous and discrete graded contractions is recalled and the criteria for
distinguishing among them are presented. The role of the symmetry group of the grading in
the construction and solution of the system of contraction equations is also described. The
equivalence of contraction matrices, leading to the isomorphism among the corresponding
graded contractions, is defined. Finally, the algorithm which we used for the computing of

contraction matrices for sl(3, C) is described.



Chapter 4 deals with the identification problem of Lie algebras. The description of al-
gorithms used for the direct decomposition, Levi decomposition and the computation of
nilradical are presented. The set of numerical invariants containing the dimensions of gen-
eralized derivations and the number of formal invariants is introduced. With the exception
of some parametric continua of Lie algebras, this set together with invariant functions form
a sufficient tool for distinguishing among contracted Lie algebras of sl(3,C). Finally, the
algorithm of the identification and its possible extensions are given.

In Chapters 5,6,7 all graded contractions of the Pauli, Gell-Mann and Cartan graded
sl(3,C) are obtained. Starting from the description of the grading and its symmetry group
we always give the construction of the system of contraction equations based on the knowl-
edge of the orbits in the set of relevant grading indices under the symmetry group of the
grading. The solution of the contraction system and the higher—order identities are found.
The classification of the results is also described. The isomorphic graded contractions are
specified and the structure of the resulting decomposable Lie algebras is given. The non—
isomorphic graded contractions are tabulated in Appendix B. Several examples illustrating
the manipulation with solutions and the identification of Lie algebras are added. Chapter
7 also contains the comparison of our results for the Cartan graded contractions of sl(3,C)
with previous results obtained in [1, 13].

Chapter 8 contains the graded contractions of the I'y-graded sl(3,C) which are non—
solvable Lie algebras. Moreover, the comparison of results from all four grading is presented.
Finally, different approaches to graded contractions are investigated and their possible out-

comes are compared.



Chapter 1

Lie algebras

In this chapter we recall some basic definitions and properties of linear and Lie algebras. The
proofs of stated propositions can be found in [28, 44]. All vector spaces and algebras will be
considered over the field of complex numbers C, which is algebraically closed of characteristic
zero. Moreover, in the second part of this chapter only finite-dimensional vector spaces and

algebras will be considered.

1.1 Linear Algebras

By a complex linear algebra A we will understand a vector space A over C on which
bilinear map (multiplication) p: A x A — A is given. The bilinearity of x means that for
all x,y,z € A and for all a € C it holds

ulow +9,2) = o, 2) + u(w,2), w0z +y) = aplern) + plzy). (L1)
According to the properties of multiplication p on A we recognize following types of algebras:
e commutative (abelian) algebra if 1 is commutative.

e associative algebra if multiplication p (usually denoted by -) is associative, i.e. for
all x,y,z € A holds
r-(y-2)=(x-y) 2 (1.2)

e Lie algebra if multiplication p (usually denoted by [, ] and called Lie bracket) fulfills

following two conditions

(1) [z,z] =0, Vze A (anti-commutativity)

(2) [z, [y, 2]] + [y, [z, ]] + [z, [z,9]] =0, Vz,y,z € A (Jacobi identity).



The first condition can be equivalently rewritten as
(1) [z,yl =—ly,2], Va,yeA
e Jordan algebra if multiplication p (denoted by o) for all x,y € A satisfies
(1) zoy=youx
(2) zo(z?oy)=x%0(z0Y).

If an algebra A is of finite dimension n € N and £ = (ey, ..., e,) is a basis of A, then the

numbers cﬁ ; € C defined by equations

p(ei,e;) = Z cfjek (1.3)
k=1

are called structural constants of the algebra A with respect to the basis £.
For vector subspaces B, C' of an algebra A we will denote by (B, C') the vector subspace
of A spanned by all products p(b, c), where b € B,c € C, i.e.

wu(B,C) = spang {u(b,c)|b€ B, ce C}. (1.4)

A vector subspace B of A is called a subalgebra of A if B is closed with respect to multipli-
cation on A, i.e. u(B,B) C B. A subalgebra B of A is called an ideal of A if u(A,B) C B
and u(B, A) C B.

Let B be an ideal of A, then the factor vector space

A/B={[zx]=x+B|z € A} (1.5)

together with the well-defined multiplication p([z], [y]) = [u(x,y)], Vx,y € A is called the
factor algebra of A according to the ideal B.
The set
C(A) ={z € Al p(z,y) = uly, x), Vy € A} (1.6)

forms a vector subspace of A and is called the center of algebra A.
Let A, A be algebras with multiplications p, i, then a linear mapping h : A — A is
called a homomorphism of algebras A, .Z, if for all z,y € A it holds

h(u(x, y)) = p(h(z), h(y)). (1.7)

The kernel of h
kerh = {z € A|h(z) =0} (1.8)
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forms an ideal of A. If the homomorphism A is onto A and kerh = 0, then h is called
an isomorphism and algebras A, A are said to be isomorphic and denoted by A = A.
An isomorphism from A onto A is called an automorphism of algebra A. The set of all
automorphisms of A forms a group Aut(A) called automorphism group of algebra A.

The isomorphism 22 is an equivalence relation on the set of all algebras (2 and the cosets
of this equivalence [A] = {./Z( €N A .A} are called isomorphism classes. Let M be
a non—empty set and © C  a set of algebras such that A € © = [A] C ©. Any map
€: 0 — M which for all A, A € © fulfils A =~ A = £(A) = £(A) is called an invariant
characteristic of © or shortly an invariant.

Let A;, Ay be algebras with multiplications pq, 2. The direct sum of their vector spaces
A= {(z1,22) | 21 € Ay, 79 € Ay} (1.9)
forms, together with a multiplication p given by

(1, 2), (Y1, 92)) = (a1, 1), (T2, Y2)), (1.10)

a new algebra A called a direct sum of algebras A;, A, and denoted A = A; & As.
Algebras A;, Ay can be identified with ideals in A

Alg{(.ﬂjl,())’l'l E.Al}, Agg{(o,xg)’$2 EAQ}, (111)

therefore, we will say that A;, A are ideals in algebra A. The direct sum of two associative,
Lie or Jordan algebras is also an associative, Lie or Jordan algebra, respectively.
Let A be an associative algebra. If we define a new multiplication on A (so called

commutator) by formula
[IL‘7y]:ZL‘y—yI’, VCC,yEA, (112)

then the vector space A together with this commutator [, | forms a Lie algebra A, called

the Lie algebra of an associative algebra A. If a new product on A is defined by
1
xoy:§(x~y+y'x), Va,y € A, (1.13)

then vector space A becomes a Jordan algebra denoted by A.
Let V' be a vector space over C. We denote by End(V) a vector space of all linear
operators on V. Considering End(V') together with composition of linear operators we get

associative algebra End(V'). The Lie algebra of this associative algebra will be denoted by

11



gl(V) = End(V), and the Jordan algebra by jor(V) = End(V) . If the dimension of V' is

n € N, we can choose a basis £ = (ey,...,¢,) and for A € gl(V) we can write
Aej = ZAijei, Aij eC (114)
i=1
and uniquely assign to A a n x n complex matrix A = (A;;). In this way we get an

isomorphism between gl(V') and the Lie algebra of all n x n complex matrices gl(n,C). If A
is an algebra, then we will use also notation End(A), gl(.A) and jor(A) for an associative, Lie
and Jordan algebras of all linear operators on A.

Let h : A — A be an isomorphism of algebras A and .2(, then map ¢ : End(A) —

End(A), defined for all X € End(A) by formula

g(X)=hXh (1.15)

is an isomorphism of associative algebras End(A) and End(A), and consequently of Lie

algebras gl(A), gl(A) and Jordan algebras jor(A), jor(.A), thus

T Bl A e Ty EA) 2 al(A)
A2 A — End(A) ZEnd(4) = or(A) 2 jor(A). (1.16)

A linear operator D € End(.A) is called a derivation of an algebra A if for all z,y € A
it holds
Du(z,y) = p(Dz,y) + p(x, Dy). (1.17)
The set of all derivations of A forms a Lie subalgebra of gl(A) and will be denoted by der(.A).
It can be easily proved, using (1.15), that

A A= der(A) = der(A). (1.18)

1.2 Lie algebras

From now on we will consider only finite-dimensional vector spaces and Lie algebras. Let
L be a Lie algebra of a finite dimension n € N. The multiplication (Lie bracket) on £ is
denoted by [,] and fulfils for all z,y, z € L following conditions

[(L’,y] = —[y,x] (119)
[, [y, 2] + [y, [z, 2]] + [2, [2, y]] = 0. (1.20)

12



If X = (x1,...,2,) is a basis of £, then, due to bilinearity of Lie bracket [,]| and Jacobi
identity, it is sufficient if for all 7, j,k = 1,...,n it holds

[0, 5] = —[x), 2] (1.21)
(i, [z, 2x]] + [, [28, ]| + [, [75, 25]] = O, (1.22)

or equivalently in terms of structural constants we have

==, Vigjk=1,...,n (1.23)
Z(c:-?cé-k + i+ aid;) =0, Vi jk=1,..n (1.24)

=1
Let V be a vector space of a finite dimension, a homomorphism p : £ — gl(V) of Lie
algebras £ and gl(V) is called a representation of a Lie algebra £ on the vector space V.
Considering £ as a representation space and mapping ad, : £ — gl(£) defined for all x € £

by
(adg )y = [z,y], YyeLl (1.25)

we get so called adjoint representation of £. It follows from Jacobi identity, that ad, x
is for any x € L a derivation of the Lie algebra £. Such derivations are called inner. The
set of all inner derivations ad(£) = {adzz |z € L} forms an ideal in der(£). Let p be a
representation of £ on V', a mapping f : L x L — C defined by formula

f(z,y) = Te(p(z)p(y)), Vr,y €L (1.26)

is an invariant, symmetric, bilinear form called a trace form of representation p. Invariance

of f means that for all z,y, z € L it holds

[z, 9], 2) = f(z, ]y, 2]). (1.27)
The trace form of the adjoint representation of £
Ke(x,y) = Tr(adg(z) ads(y)), Vz,y € L (1.28)

is called the Killing form of L.
The kernel of the adjoint representation of £ forms an ideal in £ and is equal to the center
of L, i.e.
C(L) =ker(ady) ={z € L]|[z,y] =0, Yy e L}. (1.29)

In addition to the center, there are more significant ideals in any Lie algebra L, such as so

called derived or commutator algebra D(L) of £ defined by
D(£) = [£, L], (1.30)

or following series of ideals in L:



e derived series D°(£) D DY(£) D ... > D¥(L) O ... defined by

D(L)y=L, D" (L£)=[D¥<L),D*L)], keN, (1.31)

e lower central series £!' D £2 D> ... D> LF D ... defined by

L=, =Lk L], keN (1.32)

e upper central series C'(£) C C*(£) C ... C C*(L) C ... defined by

CY(L)=C(L), C*L)/CH(L) =C(L/Ck(L)), keN. (1.33)

Note that for any j, k € N it holds
D(L) c £, (L7, LM ¢ 7, (£, CFY(L)) c CF(L). (1.34)

According to occurrence of ideals and the behavior of the series of ideals we define following

types of Lie algebras. We say that a Lie algebra L is

a) abelian, if D(L) =0,

b) nilpotent, if there exists k € N such that £¥ = 0,

d

)
)
¢) solvable, if there exists k € N such that D*(L) = 0,
) semisimple, if £ has no nonzero solvable ideal,

)

e) simple, if £ has no ideals (except 0 and £) and D(L) # 0.

A Lie algebra L is abelian if and only if C'(£) = £. Such algebras have trivial multipli-
cation (identically equal to 0) and differ only in their dimensions.

Any nilpotent Lie algebra is according to (1.34) solvable. If £ is nilpotent and £ # 0,
then C'(L£) # 0. Since it holds for every k € N

L =0« CFL)=L (1.35)

we have that £ is nilpotent if and only if there exists k¥ € N such that C*(£) = L. Recall
that a linear operator A € End(V) is called nilpotent if A* = 0 for some k € N.

Theorem 1.1 (Engel). A Lie algebra L is nilpotent if and only if ad x is nilpotent for every
reL.

14



It follows from definition that every subalgebra of a nilpotent or solvable Lie algebra is
also nilpotent or solvable, respectively. Let h : L — L be a homomorphism of Lie algebras
£ and L, then for all k& € N it holds

h(D*(L)) = D*(h(L)),  h(L") = (R(L))". (1.36)
Moreover, if h is an isomorphism, then
h(C*(L)) = C*(h(L)). (1.37)

Therefore, every homomorphic image of a nilpotent or solvable Lie algebra is nilpotent or

solvable as well.

Theorem 1.2. A Lie algebra L is solvable
1. if there exists a solvable ideal A in L such that L/ A is solvable.
2. if and only if D(L) is nilpotent.

Theorem 1.3 (Lie). Let £ be a solvable Lie subalgebra of gl(V). Then there exists a basis

i V' such that all matrices of linear operators from L are upper triangular in this basis.

If A, B are two ideals in £, then A+ B, ANB and [A, B] are also ideals in £. Moreover, it
holds that the sum of any two nilpotent or solvable ideals in £ is also a nilpotent or solvable
ideal, respectively. The sum N (L) of all nilpotent ideals in £ is a maximal nilpotent ideal in
L called a nilradical. The sum R(L) of all solvable ideals in £ is a maximal solvable ideal

in L called a radical.

Theorem 1.4. The radical R(L) of a Lie algebra L is the orthogonal complement D(L)* of
D(L) with respect to the Killing form K¢, i.e.

R(L)={x e L] Tr(adz(x)ads(y)) =0, Yy € D(L)}. (1.38)

Using the radical we can rewrite the definition of a semisimple Lie algebra equivalently
as L is semisimple if R(L) = 0. Moreover, £ is semisimple if and only if £ contains no
abelian ideal # 0. The following theorem gives conditions for a Lie algebra to be solvable or

semisimple in the terms of its Killing form.
Theorem 1.5 (Cartan’s criterion). Let L be a Lie algebra, K, the Killing form of L, then

1. L is solvable if and only if K(z,y) =0 for all x,y € D(L)
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2. L is semisimple if and only if K, is non—degenerate, i.e.
Lr={rc L|K (x,y)=0, Vyc L} =0. (1.39)
The corollary of this theorem says that £ is solvable if and only if K(x,z) = 0 for all

x € D(L).

Properties of semisimple Lie algebras are summarized in the following theorem.
Theorem 1.6. Let L be a semisimple Lie algebra.

1. L is a direct sum of simple ideals, uniquely up to their ordering of factors.

2. All ideals and factor algebras of L are semisimple.

3. L is perfect, i.e. D(L) = L.

4. L is complete, i.e. ad(L) = der(L) and C(L) = 0.

Any simple Lie algebra is according to the definition semisimple. All simple Lie algebras
are already classified. There are five so called exceptional simple Lie algebras and four infinite
series of so called classical simple Lie algebras. We will be mainly interested in one of these
series called special linear Lie algebras sl(n,C),n > 2. The Lie algebra sl(n,C) is a

subalgebra of gl(n, C) formed by all n x n complex matrices with zero trace i.e.
sl(n,C) = {A € gl(n,C)| Tr(A) = 0}. (1.40)

Let L£1,Ly be two Lie algebras with Lie brackets [,]i,[,]s and d : Lo — der(£;) a

homomorphism of Lie algebras. The direct sum of the vector spaces L1, Lo
L= {(1’1,1’2) | X € /:,1, To € EQ} (141)
together with a Lie bracket [,]; defined by

(21, 22), (Y1, 92)la = ([21, 91]1 + d(z2)ys — d(y2)71, [22, Y2)2) (1.42)

forms a new Lie algebra L called semidirect sum of Lie algebras £;, £,. For this semidirect
sum we will use the notation £ = £; < Lo, where £; identified with {(z1,0)|z; € £} forms
an ideal in £ and L, identified with {(0,z2) | 22 € L5} is a subalgebra in £. If, in particular,
d =0, we get definition of direct sum of Lie algebras and L, £, become ideals in L.

For any Lie algebra £ it holds that £/R(L) is semisimple and

1L, R(L)] C N(L). (1.43)
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Theorem 1.7 (Levi). Let £ be a Lie algebra with radical R(L). Then there exists a semisim-
ple subalgebra S of L called Levi factor, such that L= R(L)<S.

It follows from this theorem that [£, R(L)] = D(£) N R(L) and together with (1.43) we
have that the radical of D(L) is nilpotent

R(D(L)) = D(£) N R(L) = [£, R(L)] € N(L). (1.44)

Theorem 1.8 (Malcev-Harish-Chandra). Let £L =R < S, where R is a solvable ideal and S
1s a semisimple subalgebra and let S be a semisimple subalgebra of L. Then there exists an

automorphism a € Aut(L) such that a(S) C S.

Corollary 1.9. Any semisimple subalgebra of a Lie algebra L can be embedded in a Levi
factor of L.

Corollary 1.10. Let &1,8y be semisimple subalgebras of a Lie algebra L such that L =
R(L)<S; = R(L)<Sy. Then there exist an automorphism a € Aut(L) such that a(S;) = Ss.

We will call a Lie algebra £ decomposable if there exists nonzero ideals L1, £, in £ such
that £ = L1 ® L. In the opposite case we will call £ indecomposable. We will call a Lie
algebra £ Levi decomposable if £ has a nontrivial Levi decomposition i.e. £L = R(L)<S,
where S is semisimple and [R(L),S] # 0.

Theorem 1.11 (Ado). Let £ be a Lie algebra, N(L) its nilradical. Then there exists a
faithful (one—to—one) representation p : L — gl(V) such that p(N(L)) is composed of

nilpotent linear operators.
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Chapter 2

Gradings of Lie algebras

Graded contractions of Lie algebras are contractions which preserve chosen grading of a given
Lie algebra. Therefore, before approaching graded contractions, we devote this chapter to
the description of Lie gradings, i.e. gradings of Lie algebra. We start with basic definitions
concerning Lie gradings. Then we define a symmetry group of Lie grading, which will play a
crucial role during the search for graded contractions, and describe relations between gradings
and automorphisms of Lie algebras. We focus on the special case of Lie gradings — so called
group gradings, and we describe their construction. There were classified fine group gradings
for classical simple Lie algebras in terms of MAD-groups in [33]. We describe relation of
symmetry group and MAD-group for fine group gradings. In the end we present the overview

of all group gradings of the Lie algebra sl(3,C) taken from [63].

2.1 Basic definitions

Let £ be a finite-dimensional Lie algebra over C. A decomposition

r:L=PL (2.1)

i€l
of the vector space L into a direct sum of its vector subspaces L; # 0, i € [ is called a

grading of Lie algebra L, if for any pair of indices i, 7 € I there exists k € I such that
[Li, L;] C L. (2.2)

Vector subspaces L; are called grading subspaces. The number of grading subspaces is

equal to the cardinality |/| of the index set I. A pair of indices 7, j € I is called
e relevant if [L;, L;] # 0,
e irrelevant if [L;, L;] = 0.
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Relation (2.2) allows us to define binary operation ¢ on the index set I. For any relevant

pair 7,7 € I we define

ioj=kel < [L;,L;] C Ly. (2.3)
For irrelevant pairs we can choose k € I arbitrarily. It follows from anti-commutativity of
Lie bracket, that ¢ is commutative operation.

It is sometimes possible to decompose grading subspaces of the grading I' such that new
vector subspaces form also grading of £. A grading I:L= ) ieJ Ej is called a refinement
of agradingT': L =P
if |.J| > |I], then T is called proper refinement of I'. A grading I' which has no proper

ser Li, if for any j € J there exists ¢ € I such that Zj C L;. Moreover,
refinement is called fine grading. If all grading subspaces of I' are one-dimensional, then
I' is obviously fine and we call it finest grading. In the opposite way, if it is possible by
composition of some grading subspaces of I' to get another grading I, we call it coarsening
of grading I'. Thus, I is coarsening of I' if and only if ' is refinement of I'. Refinements
and coarsenings allow us to define partial ordering on the set of all gradings of £, where the
maximal elements are fine gradings and the minimal element is a trivial grading (with only
one grading subspace £).

If g € Aut(L) is an automorphism of £, then for all ¢, 5 € I there exists k € I such that

[9(Li), 9(L;)] = g[Li, Lj] C g(Li) (2.4)
and the decomposition

r9: L =EHg(L) (2.5)
iel
is also grading of £. Gradings I' and I'Y have the same structure (number of grading subspaces,
their dimensions and relations between them). Such gradings are called equivalent. More
precisely, two gradings I' : £ = P, L; and T:f= P
if |I| = |J| and there exists g € Aut(L) such that

(Vi € I)(3j € I)(g(Li) = Ly). (2.6)

e Zj are called equivalent I' 2 T,

Note that a grading of a given Lie algebra £ depends only on its grading subspaces i.e.
two gradings I' : £ = ,.; L; and T:f= @jeJ Zj are equal I' = [ if there exists bijection
f: T — J such that for all i € I it holds L; = L .

2.2 Symmetries of Lie gradings

Every automorphism g € Aut(£) maps a grading I' : £ = €., L; of Lie algebra £ onto an

i€l
equivalent grading I'Y = I". Now we will be interested only in such automorphisms g € Aut(£)

which preserve grading I, i.e. for which I'Y = I" holds.
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Let us denote the symmetry group of the set I by Sy i.e. St is the set of all bijections from
I onto I. An automorphism g € Aut(L) is called a symmetry of grading I' : £ = ,, L

if there exists such a permutation m, € Sy that
9(Li) = Ly, Vi€l (2.7)
We show that the set of all symmetries of T"
Aut(T') = {g € Aut(L) | Iy € S1, 9(Li) = Ly } (2.8)

forms a subgroup of Aut(L£) called a symmetry group of grading I'. Aut(I") contains
identity and for g, g, € Aut(I') there exists m, 7 € S; such that g1(L;) = L ), g2(Li) =
Ly, and for all @ € I we have

(9195 ) (Li) = 91(951(LWQ(W;1(¢)))) = gl(sz_l(i)) = L7r1(7r2_1(i)) = L(mw;l)(i)‘ (2.9)

Thus, g1g, " € Aut(I') and Aut(T) is a subgroup of Aut(L).
It follows from (2.9) that the mapping Ar : Aut(I') — S; defined by

Ar(g) =T, (2.10)

is a homomorphism of groups Aut(I') and S;, so called permutation representation of

the group Aut(I") on the set I. The kernel of this representation Ap
Stab(I") = ker(Ar) = {g € Aut(I") | g(L;) = L;, Vi€ I} (2.11)

is the stabilizer of I' in Aut(T"). Therefore, the stabilizer of " is a normal subgroup of Aut(T")

and according to the isomorphism theorem for groups, we have
Aut(T")/ Stab(I") = Ar(Aut(T)). (2.12)

This group Ar(Aut(I')) will play crucial role in the concept of graded contractions as the
symmetry group of system of contraction equations.

Let us denote the set of all diagonal automorphisms of the grading I' by

Diag(I") = {g € Aut(T") |Vi € I,3)\; € C\{0}, ¢

This set forms an abelian subgroup in Aut(I'). Moreover, it lies in the center of Stab(I") and
thus, it is a normal subgroup in Stab(I'). We show that Diag(I") is also a normal subgroup
in Aut(I"). It is sufficient to prove that for all ¢ € Aut(I') and for all h € Diag(I") it holds
g 'hg € Diag(T'). Let us take an arbitrary x € L;, then

(97" hg)(z) = g7 (h(g(2)) = g7 Me(y9(®)) = Aeiyg” " (9(2)) = Ae(iy® (2.14)

where m = Ar(g). Thus, (g7 hg)

L; = Ay Idz, and g~'hg € Diag(T').
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2.3 Group gradings of Lie algebras

In many cases of gradings, the index set I with the commutative operation ¢ has a group
structure or at least can be embedded into an abelian group. Such gradings are called group
gradings and we will devote this section to their description. More precisely: a grading
I': L =&, L; is called group grading or semigroup grading if there exist an abelian
group or semigroup G, respectively, and an injective mapping f : I — G such that for any

relevant pair of indices 7,7 € I it holds

fliog) = f(@)+ (), (2.15)

where + denotes binary operation in G. The group (semigroup) G is called grading group
(semigroup). Further on we will assume, without loss of generality, that I is a subset of G
if not, one can take f(I) as an index set instead of I.

In [59] it was asserted that any grading is a semigroup grading, and further that any
grading of simple Lie algebra is a group grading. The first assertion was disproved in [24] by
an explicit example of grading constructed on 16—dimensional nilpotent Lie algebra. However,
it is still possible that the second assertion is true, for simple Lie algebras no counter examples
are known. Let us note that graded contractions do not depend on the existence of group
structure of the index set I.

A refinement or coarsening of a group grading is called group refinement or group
coarsening, respectively, if it is a group grading. A fine group grading is a group grading
which has no proper group refinement. Group refinements and coarsenings define partial
ordering on the set of all group gradings of L.

Great advantage of group gradings is their easy construction. Let g € Aut(L) be a
diagonalizable automorphism of £. For any eigenvalue A in the spectrum o(g) C C\{0} of

g, we denote by Ly the eigenspace of g in £ corresponding to A, i.e.
Ly =ker(g — A1dg). (2.16)
For any two eigenvalues A, 1 € 0(g) and corresponding eigenvectors x € Ly, y € L, we have

glz,yl = [9(x), 9(y)] = Az, py] = Aulz, y]. (2.17)

Thus, [z,y] is either zero or Au is eigenvalue of g. Taking all possible x € Ly, y € L, we get
either [Ly,L,] =0 or [Ly,L,] C Ly,. Eigenspaces corresponding to different eigenvalues are

disjoint and, since ¢ is diagonalizable, their sum forms whole £. Therefore,

L= P L, (2.18)
)

Xeo(g

21



is a grading of Lie algebra L. For any pair of relevant indices A\, u € o(g) we have
Ao = A (2.19)

and the spectrum o(g) of automorphism ¢ is a subset in multiplicative group C\{0}. Hence
this grading is a group grading and we will denote it Gr(g).
Let us take another diagonalizable automorphism h € Aut(£) which commutes with g.

Then for any A € o(g) and all x € Ly we have

g9(h(z)) = h(g(x)) = h(Az) = Ah(z). (2.20)

Thus, k(L)) = Ly and it can be split up into eigenspaces of h. These eigenspaces, indexed
by pairs from o(g) x o(h), are common eigenspaces of g and h and form a group refine-
ment Gr(g, h) of grading Gr(g). Similarly, any set S C Aut(L) of diagonalizable mutually
commuting automorphisms determines some group grading Gr(.S).

On the other hand, we have for any grading I" the group of mutually commuting diagonal

automorphisms Diag(I") and it holds:
1. T'is a refinement of Gr(Diag(I"))

2. For any set S C Aut(£) of mutually commuting diagonalizable automorphisms is
S C Diag(Gr(S)). (2.21)
The following theorem is proved in [70]. It says that any group grading I' is generated by
certain set of mutually commuting diagonalizable automorphisms for example by Diag(T").

Theorem 2.1. Let I' : L = @, ; L; be a group grading of a finite-dimensional complex Lie
algebra L. Then

1. there exists a set of automorphisms S C Aut(L) such that Gr(S) =T
2. Gr(Diag(l')) =T.

Having group grading I' = Gr(.S) we can obtain its group refinement by enlarging the set
S of mutually commuting diagonalizable automorphism in Aut(£). Once the set S cannot
be enlarged, it becomes an abelian group G so called MAD—group (maximal abelian group
of diagonalizable automorphisms). The following theorem proved in [70] states that a MAD-

group generates a fine group grading and
G = Diag(Gr(G)). (2.22)
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Theorem 2.2. Let I" be a group grading of a finite—dimensional complex Lie algebra L. Then
[ is a fine group grading if and only if the set Diag(I") is a MAD—group in Aut(L).

This theorem provides one-to-one correspondence between fine group gradings and MAD—
groups in Aut(L£). And together with another theorem from [70] the classification of all non—
equivalent group gradings is converted into classification of non—conjugated MAD—groups in

Aut(L).

Theorem 2.3. Let Gi,Gs C Aut(L) be MAD-groups on finite—dimensional complex Lie
algebra L. Let Ty = Gr(Gy) and T's = Gr(Gs) be the fine group grading generated by G, and
Go respectively. Then gradings I'y and T's are equivalent if and only if the MAD—groups G,
and Gy are conjugated i.e. if there exists h € Aut(L) such that hGih™' = G.

Non-conjugated MAD—groups were found and classified in [31, 32, 33] for all simple clas-

sical complex Lie algebras except Dj.

2.4 Symmetries of group gradings

Another advantage of group gradings lies in the construction of their symmetry group. Let
us suppose a group grading I' : £ = @,.; L; generated by a set of mutually commuting
diagonalizable automorphisms S C Aut(£) i.e. I' = Gr(S). We show that the normalizer
of S

N(S) ={g € Aut(L) | gS = Sg} (2.23)

is a subgroup of the symmetry group Aut(I'). Since normalizer N'(S) is a subgroup in Aut(L),
it is sufficient to prove that V'(S) C Aut(T"). Let us take g € N(S), then for any h € S there
exists h € S such that hg = g}z. Let Xz be an eigenvalue of h such that h L = Xz Id;, then

for all z € L; we have

h(gz) = g(ha) = g(\ix) = Nilgw) (2.24)
and gz is common eigenvector of all h € S. Thus, there exists j € S such that gz € L; for
L, and for all 1 € I

there exists j € I such that gL; C L;, we have that gL, = L;. Thus, g is a symmetry of the
grading I' = Gr(S) and

all z € L;, i.e. gL; C Lj. Since g is an automorphism of £ = @, ;

N(S) € Aut(Gr(S)). (2.25)

Similarly, for the centralizer of S in Aut(£)

C(S)={g € Aut(L) | gh = hg, Vh € S} (2.26)
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it holds
C(S) C Stab(Gr(9)) (2.27)

and therefore, C(S) is a subgroup of Stab(Gr(.59)).

We focus now on fine group gradings only. Let G be a MAD-group in Aut(£) and
I' = Gr(G), then G = Diag(I"). Since Diag(I') is a normal subgroup in Aut(I'), we have
Aut(T") € M (G) and together with (2.25) we get

N(G) = Aut(T). (2.28)

Thus, the symmetry group of the fine group grading I' is the normalizer of its generating
MAD-group. Moreover, Diag(T") lies in the center of Stab(I") and therefore, Stab(I") C C(G),
which with respect to (2.27) gives

C(G) = Stab(I"). (2.29)
Using these results we can rewrite the formula (2.12) into the following form
Ar(Aut(T")) =2 Aut(I")/ Stab(T") = N(G)/C(G). (2.30)

Note that for finest grading it holds Diag(I") = Stab(I).

2.5 Group gradings of Lie algebra sl(3,C)

From all Lie algebras we are mainly interested in the simple Lie algebra sl(3,C). This Lie
algebra sl(3, C) has four non—equivalent fine group gradings [59] called Gell-Mann (Orthog-
onal), Cartan (Toroidal), Pauli and I'y. All these fine group gradings can be obtained using
MAD-groups method developed in [33]. Gell-Mann and Cartan grading are formed by one
two—dimensional subspace and six one-dimensional ones. Pauli and I'y grading are finest. We
leave detailed description of these gradings and their symmetries [34, 35, 36] to the following
chapters.

Since sl(3, C) is a simple Lie algebra, the other group gradings can be obtained — according

to the following theorem from [23] — as coarsenings of the fine ones.

Theorem 2.4. Let I" be a group grading of a finite—dimensional simple complex Lie algebra

L. Then there exists a finitely generated abelian group G and an index set J C G such that:

1. the grading subspaces of T are indexed by elements from the set J, i.e. I' : L = @jeJ L;;

and
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2. for any coarsening I'" of the grading " there exists a group homomorphism f such that
the grading subspaces of I are indeved by J' C f(G), i.e. T': L = @, L; and
Li = @i Lic for any i€ J'.

The group f(G) is unique up to isomorphism. The group G is called the universal group

of the group grading I.

Complete classification of group gradings of sl(3,C) was given in [63]. Here we present
only oriented graph describing hierarchy of all 17 group grading of sl(3, C). The graph of the
figure 2.1 shows successive refinements of group gradings leading from the trivial one (whole
sl(3,C)) to the four fine group gradings. Nodes of the graph stand for inequivalent gradings,
links with arrows indicating refinements. The graph exhibits 8 levels corresponding to the
number of grading subspaces: the numbers increase downwards, from 1 to 8, starting from
the level of sl(3, C) itself. Let us mention that for the Lie algebra sl(3, C) no other gradings

than the above listed group gradings are known.
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Figure 2.1: The hierarchy of 17 group gradings of sl(3,C) [63]; The gradings are distributed
into 8 levels according to the number M of their grading subspaces. Nodes of the graph
stand for non—-equivalent gradings, links (arrows) indicate refinements. Black circles denote
fine gradings.
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Chapter 3

Graded contractions

Graded contraction is a process of transition from a given Lie algebra with a chosen grading to
another Lie algebra with the same grading by change of its Lie bracket. Graded contractions
are also the Lie algebras resulting in this process.

The main goal of this work is to describe the concept of graded contractions and apply
it to the group gradings of the Lie algebra sl(3,C). In this chapter we will concentrate on
the description of graded contractions. Graded contractions of Lie algebras were originally
introduced in [17] as an algebraic method for computing classical continuous contractions
and then studied e.g. in [13, 54, 39, 58, 74, 76, 77].

We start with the definition of I'-graded contraction, contraction matrices Cr(£) and the
contraction system Sp(L£). Then we investigate some relations of graded contractions which
correspond to different gradings. We introduce the normalization matrix as a solution of
Sr(£) and define strong equivalence (normalization) for contraction matrices. Two types
of contraction matrices — discrete and continuous — are distinguished. We also define
the action of permutation representation Ar(Aut(I')) of the symmetry group of grading
I' on the set of all contraction matrices Cr(£) and show how it can simplify notation of
the contraction system Sp(L£). Using this action and strong equivalence, we define a new
equivalence of contraction matrices and we describe an algorithm which produces all solutions

of the contraction system Sr(L£) up to this equivalence.

3.1 Basic definitions

Let £ be a complex Lie algebra of finite dimension with a Lie bracket [,]. Let I' : £ = €,.; L;
be a grading of £ with |I| = m € N grading subspaces. Then any complex Lie algebra L°

with a Lie bracket [,]. which satisfies two conditions

1. the underlying vector space of L is the underlying vector space of £, i.e. L* = ,.; L
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2. for all ¢, 5 € I there exits €;; € C such that for all x € L; and y € L; it holds
[$,y]a = gij[x7y] (31)

is called I'-graded contraction of Lie algebra £. Complex numbers ¢;; are called contrac-
tion parameters.

It follows from the first condition that both the Lie algebra and its contraction have the
same dimensions. The second condition guarantees that for any ¢,7 € I there exists k € [
such that

(L, Lj]. = €45[Ls, Lj] C &Ly (3.2)
and thus, £° is also I'-graded, i.e. I' : £° = @, L; is a grading of L.

If i,j € I is an irrelevant pair of indices for grading I' of £, i.e. [L;, L;] = 0, then (3.1)

implies that it will also be irrelevant pair for grading I' of £° and thus, €;; can be chosen

arbitrarily. Therefore, we will call contraction parameter ¢;;
e relevant if [L;, L;] # 0
e irrelevant if [L;, L;] = 0.

We will consider all irrelevant contraction parameters to be zeros.
During the search of all ['-graded contractions of Lie algebra £ we will follow the procedure
introduced in [17]. We start with I'-graded Lie algebra £ =

map [, ] on its underlying vector space according to (3.1)

ser Li and define a new bilinear

[ZE,y]E = Eij[l',y], \V/ZE S LZ‘, Vy - Lj7 \V/Z,j € ], (33)

where ¢;; are arbitrary complex numbers. Since [,]. is bilinear, it is determined by this
condition unambiguously on whole £. In order to get a Lie algebra, bilinear map [, ]. has to
be anti-commutative and must fulfil the Jacobi identity.

Anti-commutativity of bracket [,]. is, owing to bilinearity of this bracket, equivalent to

the following condition. For all 4,5 € I and for all x € L;,y € L; it holds
culey) = 2.yl = —ly,a)e = —eily. 7] (3.4
and therefore, for all relevant pairs of indices i, j € I we have
e (3.5)

For irrelevant pairs 4,7 € I we postulate ;; = €j; = 0. It is often convenient to order the

index set I and view the set of all contraction parameters as a symmetric m X m matrix
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e = (&) — so called contraction matrix or in short just contraction. The set of all
contractions of I'-graded Lie algebra £ will be denoted by Cr(L£). We order the set I by
fixing one bijection O : I — {1,2,...,m} and we will write simply i < j for i, j € I instead
of O(i) < O(j).

The Jacobi identity for our new bilinear map [, |., i.e.
[, [y, 2lele + [y, [z @le]e + [z vyl = 0, Va,y,z € L, (3.6)

is a trilinear condition and therefore, it is equivalent to the following condition. For all
1,7,k € I it holds

[z, [y, 2)cle + [y, [2, 2le)e + (2, [2,9]c)e =0, Vo e L;,Vy € L;,Vz € L. (3.7)

Using (3.3) we can rewrite this condition into the following system of equations for variables

g;; called contraction system Sp(L£): for all 4,5,k € 1

e(ijk): erijor|®, [, 2]] + erijroiy [2, 7] 4 €ij€kiiosl2, (7, Y]] = 0
(3.9)
Vo € L;j,Vy € L;,Vz € L.

These equations e(i j k) are called contraction equations and do not depend on the order
of indices i, 7, k. In other words, triplets (4,7, k) and (j,1, k) lead to the same contraction
equations e(ij k) = e(jik), taking in to account that ¢ is symmetric. Thus, we can equiv-
alently demand the validity of the contraction system Sp(L) only for all indices i < j < k.
However, it will be more convenient to handle these triplets as unordered triplets (i j k) and
demand the validity of the contraction system Sr(L£) only for all unordered triplets of indices.
Let us consider the index set I and the set I™ of all n-tuples with entries in I. Let S,
denote the symmetric group of the set {1,2,...,n}. We define equivalence relation on I"™ as
follows: two n-tuples (x1,...,2,), (y1,...,yn) € I"™ are equivalent if and only if there exists

o € S, such that
T = Youi), Vi=1,2,....n. (3.9)

Cosets (x1 ... x,) = {(xg(l), X)) |0 E Sn} defined by this equivalence are called un-
ordered n-tuples and the set of all unordered n-tuples with entries in I is denoted I’
Any contraction equation e(i j k) is in fact the system of equations (3.8) generated by all
xr € L,y € Lj, z € L. Owing to linearity of Lie bracket [,], this system is equivalent (has
the same solutions) to the system generated by basis vectors of grading subspaces L;, L;, Ly
only. If I' is finest grading, then each contraction equation e(i j k) can be represented by one

equation.
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Using the Jacobi identity for [, ]
[z, [y, 2]] + [y, [2, 7)) + [z, [x,9]] =0, Vz,y,2 € L, (3.10)
one can rewrite contraction equation e(i j k) as follows
e(ijk): (gjk€ijok — €ij€hioj) |, (U, 2]] + (Eki€jkoi — Eij€hiios) Y 2, x]] = 0, (3.11)

where v € L;,y € Lj,z € L. In special case, when there exist 2’ € L;,y € L;, 2 € Ly
such that [2, [y, 2']] and [y, [/, 2']] are linearly independent, contraction equation (3.11) is

equivalent to the following two—term equations:
e(ij k)1 EjkEijok = Eij€kioj = Eki€ikoi- (3.12)

However, this condition is not always fulfilled and three—term equations can arise in system
of contraction equations. Let us note that in some works [39, 74, 76] only two—term equations
are considered in the system of contraction equations.

Notice that irrelevant contraction parameters do not appear in the contraction system
Sr(£) and the set of all solutions of Sp(L) gives the set of all contraction matrices Cr(L).

Thus, we can summarize the results into following proposition.

Proposition 3.1. Any contraction matriz ¢ = (g;5) € Cr(L) is symmetric and its relevant

contraction parameters satisfy the contraction system Sr(L)

V(ijk) eI} e(ijk): ejprijorl, [y, 2] + €ricinoilys [2, 7]] + €ijeniojl2, [z, y]] = 0
(3.13)
Ve € L;,Vy € L;,Vz € L.

Irrelevant contraction parameters can be considered equal to zeros.

3.2 Contractions of different gradings

We have defined I'-graded contractions of Lie algebra £. All these I'-graded contraction of
all possible gradings I' of £ are together called graded contractions of £. Since we are
interested in all graded contractions, it will be useful to know how graded contractions of
Lie algebra £ which correspond to different gradings I' and I are related to each other. In
general case there is no known connection between such graded contractions. However, if
there is a relation between gradings I" and f, then there is also a relation between the cor-
responding graded contractions. We will consider two types of relations, namely equivalence

and refinement.
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Let us take an automorphism g € Aut(£) and suppose two equivalent gradings
r:L=@L and T9:L=EHg(L) (3.14)
iel iel
For any I'-graded contraction £° of Lie algebra £ we can construct a new Lie algebra L,

where the Lie bracket [,]? is defined by formula

[z, 9! = glg 'z, 97 "y).,  Vz,y €L, (3.15)

i.e. g: L5 — L5 is an isomorphism of Lie algebras. Then for all x € g(L;) and all y € g(L;)
we have
[z, = glg™" 2,97 yle = cijglg™ w97 Y] = eyl y)- (3.16)
Thus, £ is a ['Y-graded contraction of £ and any I'-graded contraction is isomorphic to some
of T'9-graded contractions. Moreover, Cr(£) C Crs(L) and considering I'Y and mapping g~*
one can prove the reversed inclusion. Hence Cr(L£) = Cry(L) for any g € Aut(L). Since for
any two equivalent gradings there exists an automorphism g € Aut(L£), we conclude that any
two equivalent gradings lead to the same set of graded contractions (up to isomorphism).
Therefore, we will consider only inequivalent gradings of Lie algebra L.
Let us suppose now that grading
=L (3.17)
i€l jEJZ‘
is a refinement of the grading I' : £ = @,; Li, i.e. Li = D, Zj for all ¢ € I. Let L° be a
I'-graded contraction of £. Then any I'-graded contraction £¢ of £ with Lie bracket
[z, y]. = ei;lz, yl, Ve el = @Zk, VyeL; = @El, (3.18)
keJ; lEJj
is also a f—graded contraction of £. And any f—graded contraction with contraction matrix

€ € Cs(L) is I'-graded contraction if and only if for all ¢, j € I there exists ¢;; € C such that
Er = €ij; Vk € J“Vl c Jj. (319)

Thus, considering the refinement I we get all I'-graded contractions as contractions with
contraction matrices which are formed by blocks of the same elements. Hence all graded
contractions of given Lie algebra £ can be obtained from fine gradings of £ as mentioned
above.

We can conclude that during the search of all graded contractions of a given Lie algebra it
is sufficient to consider all inequivalent gradings which have no proper refinement. Therefore,
in next chapters we will investigate only graded contractions of the Lie algebra sl(3, C) which

correspond to its inequivalent fine gradings.
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3.3 Successive graded contractions

A natural question which can arise is, what happens if graded contractions of graded contrac-
tion are investigated. Let us suppose that £ given by € € Cp(L) is a [-graded contraction
of Lie algebra £ = @,.; L;. Let L5 given by v € Cp(L?) be a I'-graded contraction of L°.

Then according to the definition of graded contractions we have for Lie brackets

Thus, £57 is also I'-graded contraction of Lie algebra £ and the corresponding contraction
matrix is kK = (€;;7;;) € Cr(£). This leads us to the definition of so called elementwise

matrix multiplication e (also known as Hadamard product)
K=¢c®7y <= Kijj = E&ij%j, VZ,] el (321)
Note that this multiplication is obviously commutative and associative.

Lemma 3.2. Any I'-graded contraction L=7 of a I'-graded contraction L% of Lie algebra L
is a T'-graded contraction L=V of L i.e. e~ € Cp(L) for all e € Cr(L) and all v € Cr(LF).

It remains to determine which of I'-graded contractions of Lie algebra £ are simultaneously
I-graded contractions of £°. L" is a I'-graded contraction of £ if there exist 7;; € C such
that for all 7,7 € I it holds

kijlz, y] = [z, yle = iz, yle = vgeiz,yl, Vo e L, Vy € L;. (3.22)

If 4,7 € I is an irrelevant pair of indices for grading I' of £ then x;; = €;; = v;; = 0. If 7,
is a relevant pair of indices then we have k;; = v;;6;;. If €;; = 0 then ~;; = 0 (is irrelevant)
and x;; = 0. On the other hand if ¢;; # 0 we can put v;; = /{Z-jsl-_jl. Thus, the only condition
on contraction matrix k € Cp(L£) is k;; = 0 if ;; = 0. Therefore, we define the support of
contraction matrix £ € Cp(L) as the set S(¢) of all unordered pairs of grading indices (i j)
for which g;; = ¢, # 0

S(e) = {(iJ) € 12| ey # 0} (3.23)

and we conclude this section with following proposition.

Proposition 3.3. All I'-graded contractions of L% are all I'-graded contractions L% of L for
which contraction matriz k € Cp(L) fulfils S(k) C S(e).
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Note that if the contraction system admits only two—term equations (3.12), then the
set Cr(L) is closed with respect to elementwise matrix multiplication . Moreover, for any
contraction matrix ¢ € Cr(L) so called projection & with property £ e £ = € defined by

~ 0<:>€ij:0

€ij = < 1 — Eij 7& 0 \V/Z,j € Ia (324)

is also a contraction matrix in Cp(£) and each subset of Cp(L£) formed by all contraction

matrices with the same support is an abelian group with respect to multiplication e.

3.4 Trivial contractions

Observing the contraction system Sr(£) in the form (3.11) one can immediately write some
of its solutions. These solutions are contraction matrices € = (¢) which have all relevant con-
traction parameters equal to the same complex number ¢ € C. However, these contractions
lead, as we will see further on, only to two types of Lie algebras. If ¢ = 0, then we get abelian
Lie algebra and if ¢ # 0, we get Lie algebra isomorphic with £. Therefore, these solutions of
Sr(L) are called trivial solutions. Similarly, we will say that graded contraction £¢ of Lie
algebra L is trivial if £* = £ or L¢ is abelian.

An important example of trivial I'-graded contraction is given by a regular linear map
h : L — L for which grading subspaces are eigen—subspaces. Let us assume that A is defined

on grading subspaces L;,7 € I, by relations
hx = a;x, Vo € Ly, (3.25)

where 0 # a; € C are arbitrary nonzero complex numbers. We define a new Lie bracket [, ],

on the vector space L as follows
[, yla = b7 [ha, hy], Va,y € L, (3.26)

and obtain a new Lie algebra £% which is isomorphic to £ via h. This corresponds to change
(renormalization) of basis of grading subspaces L; — a;L;. For all relevant pairs of indices

t,7 € I we have

@, Yo = B [ha, hy) = 2 [z,y), Vo€ LiVye L, (3.27)

0]

and therefore, £ is I'-graded contraction of £ with the contraction matrix o = (o;) € Cr(£)

where relevant contraction parameters are

ay =% yijel (3.28)
Qo
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This matrix « is called normalization matrix. The importance of normalization matrix
lies in the fact that it will enable us to classify solutions of the contraction system Sp(L).

Let us consider a I'-grading L£° of the Lie algebra £. We use regular map h given by
(3.25) and define a new Lie bracket [,], on £ as follows

[z,9],, = ' [ha, hy)., Va,y € L. (3.29)

We get Lie algebra £# isomorphic with £°. Then similarly as in (3.27) we have for all 4, j € I

a;Q; a;Q;

[$7y:|€ = —Sij[l',y], Vl’ - LZ,Vy - Lj. (330)

0] 707

[, y],, = b~ [ha, hyl. =

Therefore, £ is also I'-grading of the Lie algebra £ and the corresponding contraction matrix
is u = avee. Taking the inverse of the map h we get that € = ave i, where « is a normalization
matrix with relevant parameters of the form

~ Qioj
Qi a4, ( )

Proposition 3.4. Let L° be a I'-graded contraction of Lie algebra L = @,_; L;. Then L*,

where p = « e €, is for any normalization matrix o = (Zi_aj_'), a; # 0,Vi € I a I'-graded
107

i€l

contraction of L and the Lie algebras L* and LF are isomorphic.

Thus, any two solutions & and g of the contraction system Sp(L) for which there exists
a normalization matrix « such that © = « e ¢ lead to isomorphic I'-graded contractions.
Moreover, the condition of existence of normalization matrix defines an equivalence on the
set Cp(L) of all solutions of contraction system Sp(L). Two contractions ¢, € Cp(L) are
called strongly equivalent ¢ ~ y if there exists a normalization matrix « such that e = aep,

i.e. if there exist nonzero complex numbers a; € C,Vi € I such that

ei= Uy, Vijel (3.32)

107

Since we will be interested in non-isomorphic results only, we will normalize every solution
— replace it by strongly equivalent solution which consists of as many 0’s and 1’s as possible.
For example, any trivial nonzero solution is normalized to the solution which has all relevant

contraction parameters equal to 1.

3.5 Continuous and discrete graded contractions

All I'-graded contractions of the given Lie algebra £ can be divided into two types. A solution

e € Cr(L) is called continuous if there exists a continuous set of solutions e(t) € Cr(L),
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0 < t <1 such that for all relevant contraction parameters one has
() =1, ey(t) #0, & = limey;(t). (3.33)

A solution which is not continuous is called discrete.
Continuous graded contractions are related to the classical continuous contractions [43,
55, 67, 69, 75]. For example, if for given continuous graded contraction ¢ € Cp(L), the

corresponding set of solutions has the form

€ij = tm+ﬂjfm<>j Ny Ny Nioj € Z, Z,j c [, (334)

then ¢ is so called generalized In6nii—-Wigner contraction [74]. However, discrete graded
contractions have no equivalent in classical continuous contraction [77].

An efficient tool for distinguishing between continuous and discrete graded contractions
was developed in [74]. So called higher—order identities allow us to identify discrete graded
contractions. Let us consider an equation where on both sides stand products of r relevant
contraction parameters. If this equation is satisfied for all contractions ¢ € Cr(£) for which
all relevant contraction parameters do not vanish, it will be also satisfied for any limit of
these solutions, i.e. for any continuous solution. Thus, we call any equation ” P = F” of the
type

P(e) :=€4,€ip - - - €ip, = Ej4E)y - - - €5, =1 P(€), (3.35)
where 7 € N and i = {iy,42,...,%},] = {J1,72,.-.,Jr} are disjoint sets of relevant pairs of
grading indices, higher—order identity of order r, if it holds for all contraction matrices
without zeros on all relevant positions, but is violated by some contraction matrix with zero
on some relevant position. There are two possible types of violation of a given higher—order
identity P, = P”. We say that contraction ¢ € Cp(L) violates higher-order identities
"p=p

strongly if 04 R(e) £ Bi(e) £ 0,
- weakly if 0= PB(e)# Pe) or P(e) # P(e) = 0.

Proposition 3.5. Let a solution € € Cr( L) of the contraction system Sr(L) be a continuous

graded contraction. Then € satisfies all higher—order identities.

Higher—order identities can be constructed from the two term equations of the contraction
system Sr(£) by multiplying these equations and reducing all terms which are common for
both sides of resulting equation. Another possibility is to construct higher—order identities
from the knowledge of the explicit form of solutions without zeros on relevant positions.

Let us mention that in all cases of graded contractions of sl(3, C) which will be presented

in next chapters it holds:
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e All contraction matrices without zeros on relevant positions are normalization matrices.
e All continuous graded contractions are generalized Inonii—Wigner contractions (3.34).

e Any discrete solution of Sp(£) violates at least one of presented higher-order identities.

3.6 Action of the symmetry group of the grading

In previous chapter we have found that there is the symmetry group Aut(I') (2.8) which
leaves the grading I' : £ = €p,; L; of the Lie algebra £ unchanged. Now we will show that
the contraction system Sp(L£) is also preserved under certain action of this symmetry group
or rather its permutation representation Ar(Aut(I')) (2.12).

First we recall some basic definitions concerning group actions. For a group G and a set
X # () a mapping ¢ : G x X — X is called left or right action of the group G on the set
X if for all x € X it holds

1. Vg,h € G, ¥(gh,x) =v(g,9(h,x)) or ¥(gh,x) = ¢(h,¥(g,x)), respectively, and
2. Y(e,x) = x, where e € G is the unit element.

If ¢ is an action of G on X then the relation a =, b < dg € G, (g, a) = b is an equivalence

on the set X and the equivalence class corresponding to element a € X
laly ={be X|b=pa}={be X |dge G, b=1¢(g,a)} (3.36)

is called an orbit of a € X.

Any contraction equation e(i j k) (3.8) is determined by unordered triplet (i j k) € I3 of
grading indices. Variables of these equations, i.e. relevant contraction parameters ¢;; = €j;,
are determined by unordered pairs (i j) € I2. Therefore, we denote the set of all relevant

unordered pairs of grading indices i,j € [ as
T ={(ij) € I2|[Li, ;) # 0} (3.37)
and the set of relevant contraction parameters as
E={ex|kel}. (3.38)

Since we will work mainly with unordered n-tuples of grading indices, we define a left

action of S; (the symmetry group of the index set ) on the set I of all unordered n-tuples
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of grading indices. Any permutation 7w € Sy acts on unordered n-tuple (z1 xs ... z,,) € I as

follows
m(zy 2 ... xy) = (w(xy) w(X2) ... T(21)). (3.39)

We will be interested in restrictions of this action to subgroup Ar(Aut(I')) of S; and subsets
of I"". Let us consider any permutation 7 € Ar(Aut(I')) and corresponding automorphism
g € Aut(I") i.e. m = Ap(g). Let (ij) € Z be an unordered relevant pair of grading indices,
then

[Lntiys L)) = [9Lis gLj] = g[Li, L] # 0. (3.40)

Thus, (7(i)7(j)) is also an unordered relevant pair of grading indices and (3.39) is well
defined action of the group Ar(Aut(I')) on the set Z. Moreover,

La(iyor(j) D [La(i)s La(j)) = [9Li, 9Ls] = g[Li, L] C 9(Lioj) = L(iog)- (3.41)
And therefore, it holds for all relevant pairs of grading indices 7, j € I
m(ioj)=m(i)on(y). (3.42)

Clearly, if (ij) is irrelevant pair, then also (w(i)7(j)) is an irrelevant pair for any = €
Ar(Aut(T)).
For any permutation 7 € Ap(Aut(I')) and any contraction matrix € = (¢;;) we define an

action of 7 on the contraction matrix ¢ — &™ by formula
(€7T>Z'j = Ex(i)n(j)s VZ,j el (343)

We observe that the action on variables €;; +— &r@)r(j) is, due to (3.40), an action of the
group Ar(Aut(I')) on the set of all relevant contraction parameters £. Since all irrelevant
contraction parameters are equal to zero, the action (3.43) leaves irrelevant positions I2\Z of
matrix € unchanged. We prove now that (3.43) is well defined action of the group Ap(Aut(I'))
on the set of all contraction matrices Cr(L).

Consider any permutation 7 € Ar(Aut(I')) and automorphism g € Aut(I') such that
g(L;) = Ly for all i € I. Then for any contraction matrix ¢ € Cp(£) equation

[[E, y]aﬁ = 57r(i)7r(j)[x7 y] = 871'(2')71'(]')9_1[ng gy] - g_l[gxa gy]a (344)

holds for all € L;,y € L; and 4,5 € I. Thus, g is an isomorphism between Lie algebras
L5 and £5. And it follows from the first equality of (3.44) that €™ € Cp(£). Thus, we have

proved the following proposition.
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Proposition 3.6. Let L be a I'-graded contraction of a I'-graded Lie algebra £ = @,.; L;
and m € Ap(Aut(T')). Then L5 is also a T'-graded contraction of L and the Lie algebras L°

and L5 are isomorphic, L5 = LF.

Let us focus on the contraction system Sp(L). We have shown that for any permutation
7 € Ap(Aut(I')) the substitution €;; — ex(;)x(j) preserves the set Cr(L) of solutions of the
contraction system Sr(L£). Now we verify that it preserves also the contraction system Sp(L).

We write any contraction equation e(i j k) € Sp(£) in the form
e(ijk): ejrcijorlz, [y, 2]] + cyclically =0, Vo € L;,Vy € L;,Vz € Ly, (3.45)

For any permutation 7 € Ap(Aut(I')) and contraction equation e(ijk) € Sp(L) we define

the action

e(ijk) — e(x(i) n(j) m(k)). (3.46)
Taking g € Aut(I') which corresponds to 7, i.e. g(L;) = L@, Vi € I, we can write contraction
equation e(7 (i) m(j) w(k)) in the form

e(m(@) m(j) T(k)) 1 Eniyn(h)Eni)iri)omi 92, (99, 92]] + cyclically = 0, (3.47)

for all x € L;;y € L;j,z € L. Since g is an automorphism of £ and for all relevant
pairs of grading indices (3.42) holds (terms with irrelevant grading indices do not appear in

contraction equations) we have
G(En(jyr(k)Ex(i) m(jok) [T [y, 2]] + cyclically) = 0, Vo € L;,Vy € L;,Vz € Ly. (3.48)
And this equation is equivalent to
Er () (k)En(i) m(ok) T, (Y, 2]] + cyclically =0, Vo € L;,Vy € L;,Vz € Ly, (3.49)

which is exactly the equation e(i j k) where the substitution €;; + ex()x(j) is effected. Thus,
we have verified the invariance of the contraction system Sr(£) (up to equivalence of solutions)
under the substitution of contraction parameters €;; +— er@yx(j)- Moreover, this leads us
to the new method of construction of the contraction system Sp(L). Namely, having one
equation, we can generate a whole orbit of equations merely by substituting €;; — €x(i)r(j)
till all permutations 7 from Ar(Aut(I')) are exhausted. Since any equation is determined by
unordered triplet of grading indices, these orbits of equations correspond to the orbits in I3
with respect to the action of the group Ar(Aut(I')). Thus, construction of the system

of contraction equations consists in following three steps

e Determine orbits in I? with respect to the action (3.39) of the group Ar(Aut(T)).
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e Choose the representatives of these orbits and generate contraction equations (3.8).

e Irom each of these equations generate the orbit by substitutions €;; = €r()r(;), Where

7 runs through whole group Ap(Aut(I)).

3.7 Equivalence of contraction matrices

We have seen, in Proposition 3.4, that strongly equivalent contraction matrices lead to iso-
morphic Lie algebras as well as any two permutations Ap(Aut(I')) of contraction matrix,
according to Proposition 3.6. This leads us to the following definition of equivalence of con-
traction matrices. Two contraction matrices e1,e9 € Cp(L) are called equivalent, &1 ~ &,

if there exits a normalization matrix o and permutation m € Ar(Aut(I")) such that
g1 =aech. (3.50)

In order to verify that the relation ~ is well defined equivalence, we firstly notice that the

"inversion” @ and every permutation o, m € Ar(Aut(I')) of any normalization matrix «

Q5 = aiaj, 621']' = Qioj al = M, V(Z]) S ], 0 7£ a; € C, Viel (351)

bl 1]
Qioj a;a; Qe (i)om(5)

are also normalization matrices. Taking identical permutation 7 = Id and normalization
matrix « generated by numbers a; = 1,Vi € I we get reflexivity of ~, i.e. that e ~ ¢ for all

e € Cp(L). If we multiply the relation (3.50) by normalization matrix &, we get
aecy=qeqech =cj. (3.52)

Considering inverse permutation 7! we have

-1 1 1

= (@) el . (3.53)

Thus, the relation ~ is also symmetric. Suppose now that ¢; = c e <5 and e, = J @ €5 then

ey = ()" = (aee)"

ci=aecy=ae(fecl) =aef e (c]) = (e ) el (3.54)

Since («ve ™) is normalization matrix and 7o € Ar(Aut(I")), we have verified also transitivity
of ~. Thus, relation ~ defined by (3.50) is an equivalence relation and combining propositions

3.4 and 3.6 we get the following result.

Proposition 3.7. Let e1,e5 € Cr(L) be equivalent contraction matrices, i.e. £ = @ €5 for
some normalization matriz « and some permutation m € Ap(Aut(L')), then Lie algebras L

and L% are isomorphic, i.e.
g1 ~ E9g —> L= [52 (355)
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Let us emphasize that the implication (3.55) can not be reversed. There exist I'-graded
contractions which are isomorphic in spite of the fact that their corresponding contraction
matrices are not equivalent. Note that in some works [74, 76] the equivalence of contraction
matrices is defined in the same manner as our strong equivalence (3.32).

We discuss now some properties of equivalent and strongly equivalent contractions. Any
two strongly equivalent contractions e; & g9, (€1 = « @ £9) are also equivalent and have the
same support S(e1) = S(e2). We show that they also violate the same higher-order identities
in the same way. If 7 = B” is higher order identity then

Bi(e1) = F(a e &) = R(a)F(e2) = B(a)B(e2) = P(a e ez) = B(e)
and since « fulfills all higher—order identities we have
P(e1) = B(e1) <= P(e2) = Fle2).

Moreover, if €; violates " 2 = P” strongly, then
F(e1) _ B(@)B(e) _ Fe)
Be1)  Fla)B(e2)  Be2)

and the complex number % is the same for all contractions strongly equivalent with e;.
J

40 (3.56)

Let us now consider two equivalent contractions €1,e9 € Cr(L), (61 = ae€]). These con-
tractions have generally different supports S(e1) # S(e2) with the same number of elements
|S(e1)| = |S(e2)|- Therefore, we define the number of zeros in contraction matrix € as the
number of relevant contraction parameters which are equal to zero v(¢) = |€] —|S(¢)|. This
number of zeros is the same for all equivalent contractions. Moreover, we show that equiva-
lent contractions €; ~ €5 violate the same number of higher—order identities in the same way.
Any higher—order identity ” P, = P is determined by sets i = {i1,...,4.},j = {j1,...,jr} of
unordered relevant pairs of indices. If we define an action of permutation 7 € Ap(Aut(L))

on the set i as 7(i) = {n(41),...,7(i;)}, we can write for both sides of ” P, = P”
P(e3) = (€3)ir - - (€3)ir = (€2)n1(ir) - - - (E2)n13) = P13y (€2) (3.57)
and since €7 and ¢; are strongly equivalent, we have
P(e1) = Be1) <= B(e3) = Ble3) <= Pr(e2) = Prg(e2)- (3.58)

It follows from the relation (3.58) that having one higher—order identity ” P = P” we can
generate whole orbit of higher-order identities ” Py = Pr¢)” where m € Ap(Aut(I)).
We have shown that two equivalent solutions violate higher—order identities and thus fulfil

sufficient condition of discreteness at the same time. Let us now consider that ey = v e €]
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and g9 is continuous, i.e. there exists continuous family of contraction matrices £(t) € Cr(L),
0 < t < 1 without zeros on relevant positions such that e, = lim; .o&(¢). Then, clearly,
aec™(t) € Cr(L), 0 <t < 1is also an continuous family of contraction matrices without

zeros and € = av e €] = lim;_,o v @ €7(¢), thus £ is also continuous contraction.

Proposition 3.8. Any two equivalent solutions have the same number of zeros, violate the
same number of higher—order identities in the same way and are simultaneously discrete or
continuous. Moreover, strongly equivalent solutions have the same support and violate the

same higher—order identities in the same way.

3.8 Solving the contraction system Sp(£)

In this section we present the algorithm based on the following theorem from [40] for solving

the contraction system Sp(L).

Theorem 3.9. Let Cr(L) be the set of all contraction matrices, I the set of relevant unordered
pairs of grading indices, Sp(L) the contraction system for I'-graded Lie algebra £ = @, L.
For any subset Q@ C Cp(L) and P = {k1, ks, ..., kn} CZ we denote

Ro={c e Cr(L)| (Ve € Q)(e » &)},
R ={e € Ro|(Vk € P)(ex #0)}.

Then a solution € € Ry is not equivalent to any solution in R° if and only if the following

system of equations holds:

Emy (k1)Emi(ks) - - - Emi(km) = 0
(3.59)

Ertn (k1) Emn(kz) « - Emn(km) = 05

here the set of permutations {my,ma, ..., 7.} exhaust all elements of the symmetry group
Aut(T") of the grading T.

Proof. Consider ¢ € Ry and suppose that there exists ¢/ € R? such that ¢/ ~ ¢, i.e. there
exist normalization matrix o and permutation 7 € Ap(Aut(T')) such that &’ = c e ™ € R".
Thus, (v ec™); # 0 for all £ € P and, since ay, # 0 for all relevant k, this is equivalent to
(e™)k = ex(ry # 0 for all k € P. Hence € € Ry is equivalent to some solution in R? if and only
if there exists 7 € Ap(Aut(I')) such that for all k£ € P it holds ;) # 0 . Therefore, ¢ € Ry
is not equivalent to any solution in R? if and only if for any permutation 7 € Ar(Aut(T))

there exists k € P such that e, = 0, i.e. if and only if equations (3.59) are satisfied. O
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The system of equations (3.59) is called non—equivalence system for the sets Q C
Cr(£) and P C 7 and is, as well as the contraction system Sp(L), invariant under the
substitution of contraction parameters ¢;; +— %%@MU% where 7 € Ap(Aut(T")) and «; # 0.
For any system S of equations we denote R(.S) the set of all its solutions. Repeated use of

the Theorem 3.9 leads to the following algorithm for evaluation of solutions:

0. We start with Qy = @) and the set of assumptions P° C Z. Then Ry = Cr(L£) and we

compute all solutions which have nonzeros on assumed positions P°
R = {5 € Cr(L) | (Vk € PY)(ex # O)}
and write the non—equivalence system S° (3.59) for the sets Qy = () and P°.

1. We set Q; = R? and take assumptions P* C Z, P! # PY. Then
Ri={ecC(L)| (Ve e R%)(e » &)} =R(Sr(L)US?)
is the set of all solutions of the system Sp(£) US°. Furthermore, we explicitly evaluate
R'={e € R(Sr(L)US®)| (Vk € P")(ex £ 0)}
and write the non—equivalence system S* (3.59) for the sets Q; = R® and P'.

2. We set @y = RY UR! and take assumptions P? C Z. Then Ry = R(Sr(L) US° U S?)
and we evaluate the set R? = {e € Ry | (Vk € P?)(ex # 0)} and write non—equivalence
system S%. We continue till we have evaluated the whole Cr (L), i.e. till for some n € N
the set R, is empty or consists only of trivial solution ¢ = (0). Then all solutions of
Sr(£) (up to equivalence) are collected in sets R?, R}, R?,...,R" ! and R,,.

The efficiency of this algorithm depends on the choice of the assumption sets P°, P, ..., C Z.
For example taking P° = {k} C T we get S” = {e,) = 0|7 € Ap(Aut(I))}, i.e. solutions
inequivalent with those in R® must have zeros on the whole orbit of relevant contraction
parameters represented by ¢;. Clearly, if Z forms only one orbit with respect to the action of
Ar(Aut(T")), then there is only one such solution — the trivial solution € = (0). Therefore,

it is more convenient to take the sets of assumptions consisting of at least two elements.

3.9 Graded contraction summary

We summarize the concept of graded contractions into the algorithm which was used for
their computation. Let us suppose that we have grading I' : £ = @,.; L; of a complex Lie
algebra L of finite dimension n € N. For computing it is more convenient to replace the set

I of grading indices by the set of natural numbers {1,... ,m}.
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. We take the permutation representation Ar(Aut(I')) of the symmetry group Aut(I")
of the grading I' and construct orbits of its action on the set of unordered triplets of

grading indices I3.

. From each orbit we choose one representative - unordered triplet (i j k) and compute
corresponding contraction equation e(ij k), i.e. a set of equations (3.8) generated by
all basis elements of grading subspaces L;, L; and Lj. Then we use group Ap(Aut(I))

and generate from these contraction equations the contraction system Sr(£) (3.13).

. Using Theorem 3.9 we solve the contraction system Sp(L£) with results stored in sets
R%, R, .... Each set R consists of all solutions of the contraction system and some

non—equivalence system under certain assumptions.

. Since equivalent contraction matrices have the same number of vanishing elements
(elements which are equal to zero), we discuss when elements of contraction matrix
£ € R’ vanish and divide sets R* into the subsets R} according to numbers j € Ny of

zeros in contraction matrices e.

. In order to get non—equivalent contraction matrices, we collect in sets Ré- (k) all solutions
from 72; with the same supports. These sets were formed by only one parametric matrix
in all cases which we have computed. If there are more than one solution in some set

R;(k) then only solutions are considered which are not strongly equivalent.

. Each set R!(k) can be represented by projection £(k) of its arbitrary element (3.24). It
follows from the fact that R’ include all solutions of certain system with the symmetry
group Ar(Aut(I')) under certain assumptions that if there exists 7 € Ap(Aut(I")) such
that (£(k1))™ = é(k2), then all solutions in R (k1) are equivalent to solutions in R’ (ks).
Thus, the set R(k;) can be omitted.

. Using normalization matrix a (3.28) we normalize every solution €, i.e. we replace
it by a strongly equivalent solution « e ¢ which has as many as possible contraction

parameters equal to 1.

. We construct higher—order identities and decide which solutions are discrete and which
are continuous. Continuous solutions are also found as generalized Inonii—Wigner con-

traction.
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Chapter 4

Identification of Lie algebras

Let us assume that we have solved the contraction system Sr(£) and found all non-equivalent
contraction matrices € € Cp(L) for [-graded contractions of the Lie algebra £. These matrices
are divided into sets according to the number of zeros and marked as continuous or discrete.
Each contraction matrix ¢ € Cp(L) corresponds to a new Lie algebra £°. Some contraction
matrices depend on one or more complex parameters and therefore lead to whole continuously
parameterized families of Lie algebras.

Thus we have now, as a result, all Lie algebras (up to isomorphism) which are I'-graded
contractions of Lie algebra £. However, among these Lie algebras £° there can still be some
isomorphic ones. In order to purify resulting I'-graded contractions from isomorphic cases
and in order to list them properly, we have to identify each Lie algebra L°.

Identification of a given Lie algebra usually means the determination of its isomorphism
class. Since a complete classification of Lie algebras in dimension 8 is not known, it can be a
difficult task (including the completion of this classification). However, it will be sufficient for
us to classify I'-graded contractions of the Lie algebra sl(3, C). Therefore, by identification of
L we mean finding all resulting algebras which are isomorphic with £° and finding invariant
characteristics which distinguish £° from the rest of non-isomorphic results.

Unfortunately, existing methods [4, 66] do not allow us to recognize all resulted graded
contractions of the Lie algebra sl(3, C). Therefore, we enlarge these methods with computa-
tion of some invariants. We start with investigation of the structure of the chosen I'-graded
contraction L%, describe algorithms from [66] for finding the decomposition, the Levi de-
composition and the nilradical of the Lie algebra, which we have used. Then we introduce
Casimir operators [2] as the invariants of Lie algebras. We present numerical invariants such
as dimensions of vector spaces formed by certain operators on Lie algebras [41]. Finally we
describe the problem of seeking isomorphism and whole identification procedure.

Algorithms for Lie algebras [66] are based on their structural constants. In the whole
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chapter we will consider a I'-graded complex Lie algebra £ = @;" ; L; with dimension n € N.
Let n; € N denote dimension of grading subspace L; and € = (ey, ..., e,) be basis of £ such
that vectors ey, ..., e,, form basis of L, vectors e,, 1, ..., €n,4+n, form basis of Ly and so on.
For any contraction matrix € € Sp(£) we construct a new n X n matrix €* such that every
element ¢;; in matrix € is replaced by the n; x n; matrix with all entries equal to €;;. Let cfj
be the structural constants of £ with respect to the basis £, then the structural constants of

I'-graded contraction £° with respect to £ are given by the commutators

lei,ejle = Zefjcfjek, Vi,j € {l,...,n}. (4.1)
k=1

In the following sections we will describe particular steps of our identification procedure.

4.1 Central decomposition

First step in identification procedure lies in the special case of the direct decomposition —
so called central decomposition of Lie algebras, where one of resulting ideals is abelian.

Suppose that £ has such decomposition, i.e.

L=LBLy, [L1,L4]=0, [L£1,Ls] =0, [Lo,L5] C Ly, (4.2)
then clearly £, C C(£) and D(L) = D(L;) C L. Thus, the central decomposition can exist
only if C'(£) is not subset of D(L), i.e.

C(L)ND(L) #C(L) (4.3)

Let us consider now that condition (4.3) holds for £ , then there exists a nonzero comple-

mentary subalgebra A in the center of £ such that
CL)=A® (C(LYND(L)), AnD(L)=0. (4.4)

This abelian algebra A is called maximal central component of £ and if we find its com-

plementary vector space £’ in £ such that D(L) C L', then we get the central decomposition
L=Aa L (4.5)

Since ideals A and £’ in £ are complements, they are not unique. However, they are unique
up to a central automorphism of £, see [66].

During the decomposition we determine the complementary algebra 4 and its basis. Then
we merge this basis with the basis of D(£) and complete them to the basis of £. Having
this new basis, the decomposition is obvious and we replace the original Lie algebra £ by its
non—abelian part denoted by £’. Further on we will investigate only non—abelian parts of Lie

algebras.
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4.2 Direct decomposition

In this step we show that the existence of the direct decomposition of a given n—dimensional
complex Lie algebra L is equivalent to the existence of certain a n x n complex matrix.

Let R = C™" denote the ring of n x n complex matrices. Any nonzero element £ € R
satisfying E? = F is called an idempotent in the ring R. The unit element 1,, is called
trivial idempotent. A complex number )\ is an eigenvalue of an idempotent £ € R if there

exists nonzero vector x € C" such that Fx = Ax. It follows from the equation
\r = Bx = E*r = E(\r) = o (4.6)

and from the Jordan normal form of matrix £ that the spectrum of any nontrivial idempotent
Eiso(E)=1{0,1}.
Let us consider now that there is a nontrivial idempotent E in the centralizer of the

adjoint representation of £ in the ring R
Cr(ad(L)) ={X € Rly € L,[X,ad,(y)] = X ad,(y) — ad,(y)X =0} . (4.7)
Then we have for all x,y € L
[Ex, Ey| = ad;(Ez)Ey = Eady(Er)y = —FEad;(y)Ex = —E*ad;(y)zr = E[r,y]  (4.8)

and thus, this idempotent E is an endomorphism of the Lie algebra £. Let £y and £, denote
the eigen—subspaces of idempotent E corresponding to eigenvalues 0 and 1. For any two

eigenvectors x € L,y € L, p,v € {0,1} we have

Elz,y] = [Ex, By] = [px, vy] = pvlz, yl. (4.9)

Hence [z,y]| € L, is either zero or eigenvector corresponding to eigenvalue pyv. For y = v we
have [£,,L,] C £, and L, is a subalgebra of £. If ;1 # v, then E[z,y] = 0 and [z,y] € Ly.
We show that in this case is [z, y] = 0. Suppose that ¢ =0 and v = 1, then Fx =0, Ey =y
and

[z,y] = [z, Ey] = ads(z) By = Fadg(x)y = Elz,y] = 0. (4.10)

Therefore, [Ly, £1] = 0 and the Lie algebra £ is direct sum of its ideals Lo, £;.
On the other hand, if £ = Ly @ L4, then there exists a basis (21, ..., Zng, Y1, - - Yn,) of L
such that (z1,...,2,,) is a basis of Ly and (yi,...,yn,) basis of £;. In this basis any inner

derivation is a block diagonal matrix of the form

d 0
adg,(x) ® adg, (y) = (a 58($) il (y)) , x € Lyy €Ly (4.11)
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and therefore, matrices

0,, O 1,, O
EO = OTLO D 1n1 = ( 00 1n1> , El = 1n0 D On1 = ( OO Onl) (412)
are idempotents in Cr(ad(L£)). Thus, we have proved the following theorem.

Theorem 4.1. Lie algebra L is decomposable into the direct sum of its ideals if and only if
there exists a nontrivial idempotent E in the centralizer Cr(ad(L)) of the adjoint represen-

tation of L. In such case the decomposition has the form
L=Ly® Ly (4.13)
where Ly, L1 are eigen—subspaces of the idempotent E corresponding to the eigenvalues 0, 1.

Now we describe the algorithm which we have used for finding idempotents and decom-
positions. This algorithm is based on an algorithm from [66], where also the theoretical

background for these algorithms can be found.

1. Starting with the n-dimensional complex Lie algebra £ for which C'(£) C D(L), choose
a basis of £ and determine n x n complex matrices of the adjoint representation ad(L)

of £ with respect to this basis.

2. Compute the centralizer A = Cg(ad(£)) of ad(£) in R, i.e. an associative algebra
formed by all complex n x n matrices which commute with all elements in ad(L£), and
its Jacobson radical J(A) (maximal nilpotent ideal, J(A)¥ = 0 for some k € N)

according to the formula

J(A) = {o € A| Tr(zy) = 0, Yy € A}. (4.14)

3. It is proved in [66] that £ is indecomposable if and only if dim(A) — dim(J(A)) = 1.
In other cases it holds dim(A) — dim(J(A)) > 1 and £ is decomposable.

4. Choose a basis (x1,,...,2,,b1,...,b,) of A such that (z1,,...,2,) is a basis of J(A),
by = 1, and Tr(b;)) = 0, 2 < i < p. Find a basis element b,,2 < r < p which has
reducible minimal polynomial m,(¢) € C[t] (monic polynomial with lowest degree in t
for which m,.(b,) = 0). Factorize m, into two mutually prime nonconstant polynomials

f1, fo. Using Fuclidean division algorithm find polynomials Py, P satisfying

P1f1 -+ ngg =1. (415)
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5. Complex matrix F = P;(b,) f1(b,) is an idempotent in A and its eigen—subspaces Ly, £,

form components of the direct decomposition of L.

We use this algorithm and decompose any decomposable Lie algebra into the direct sum

of indecomposable components. From now on we deal only with indecomposable Lie algebras.

4.3 Dimensions of the series

For any Lie algebra £ we compute the derived series D¥(L), the lower central series £¥ and
the upper central series C*(L) defined by relations (1.31), (1.32) and (1.33). Since we are
dealing with complex algebras of finite dimension, these series of ideals have only a finite
number of different elements. In any series there is an element which is different from the
previous one but is the same as all following elements; we will call such element the last
element of the series and ignore all following elements. The last element in the upper
central series is the so called hypercenter.

It follows from (1.36) and (1.37) that the structure of any ideal in the mentioned series is
an invariant characteristic of Lie algebra. We will use dimensions of these ideals and define

the following invariant characteristics of Lie algebra L:

DS(L) = (dim(D°(L)),...,dim(D*(L))) (4.16)
CS(L) = (dim(LY),...,dim(L")) (4.17)
US(L) = (dim(CY(L)),...,dim(C*(L))). (4.18)

Since we are dealing with 8-dimensional algebras we will not separate numbers in round
bracket by commas. The first number in DS(L) and CS(L) is the dimension of L. If the
last number in DS(L) is zero, then L is solvable and the number of nonzeros in DS(L) is
called the solvability rank of £. If the last number in C'S(L) is zero, then £ is nilpotent
and the number of nonzeros in C'S(L) is called the nilpotency rank of £. First number in
US(L) is the dimension of the center of £ and the last is the dimension of hypercenter.

We divide all Lie algebras into classes according to the invariants DS(L),CS(L) and
US(L) and decide which algebras are nilpotent or solvable.

4.4 Levi decomposition

Indecomposable Lie algebras which are not solvable are either simple or admit nontrivial
Levi decomposition. In order to obtain this decomposition we have used an algorithm from

[66]. Before we approach the description of this algorithm, we recall that according to the

48



Levi theorem 1.7, any Lie algebra £ can be written as a semidirect sum £ = R(L) < S of
its radical R(L) and semisimple subalgebra S. The radical is unique and basis independent.
Semisimple subalgebra S is isomorphic to the factor algebra £/R(L) and is unique up to an

automorphism of £. We obtain the Levi decomposition of £ as follows.
1. Find the radical R(L) of the Lie algebra L, according to Theorem 1.4 it is
R(L)={x € L| Tr(ads(z)ads(y)) = 0,Yy € D(L)}. (4.19)

If £ = R(L), then L is solvable and & = 0 (excluded in our case). If R(L) = 0, then

L = § is semisimple (in our case simple). In all other cases £ has nontrivial Levi

decomposition.
2. If the radical R(L) is abelian, then choose a basis (71,...,7,, apt1,...,a,) for £ such
that (r1,...,7,) is a basis for R(L). Let commutation relations in this basis be
n p p
[aia ak] = Z Cékal + Z fiz;g/rp’ [Tpa Tq] =0, [ai7 Tq] = Z hgqrm
l=p+1 p=1 p=1
p+1<ikl<n, 1<p,q<p. (4.20)

Replace the basis elements a; by s; = a; + Zgzl x,1p such that [s;, sg] = Z?:pﬂ st
i.e. coefficients z;, € C must satisfy the following system of inhomogeneous linear

equations

n

P p
Z cﬁkxlq — Zhgpa:kp + thpxip =fi, 1<q¢<p, p+1<ik<n (4.21)
l=p+1 p=1 p=1

The existence of solution of this system follows from the existence of the Levi decom-
position of £. Now (s,11,...,S,) forms a basis of semisimple subalgebra S. If R(L) is

not abelian, then continue.

3. Semisimple subalgebra S is perfect and therefore, S lies in any ideal in the derived series
of £. Find the last element of the derived series, i.e. D¥(L), k € N such that D*=1(L) #
D*(L£) = D*1(L). The Levi decomposition of Lie algebra £ can be obtained now from
the Levi decomposition of the perfect Lie algebra D*(£) = R(D*(L)) <S8 by extending
basis of R(D*(L)) to the basis of R(L).

4. From now on we assume that £ is perfect. Since the radical R(L) is not abelian,

D(R(L)) is nonzero ideal in £. Choose a basis (71, ...,7p, 1,3 Tp, Gpi1s - -, Cp)
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for £ such that (ry,...,7y) is a basis for D(R(L)), (rpy+1,...,7,) basis for a comple-
ment of D(R(L)) in R(L) and (ay41,. .., a,) for a complement of R(L) in £. Construct
the factor algebra £ = £/D(R(L)). It has dimension dim£ = n — p’ < n and the
commutation relations for £ are obtained by setting r = ... = ry = 0 in the commu-
tation relations for £. £ is a perfect Lie algebra with abelian radical R(L)/D(R(L)).
According to step 2 obtain its Levi decomposition £ = R(£) <S. From residue classes

in S construct elements of £ and obtain a proper subalgebra of £, namely
L1 =D(R(L)) + &, (4.22)

satisfying dim £, = n—p+p’ < n. If D(R(L;)) is abelian, obtain a Levi decomposition
of Ly; if not, continue until, after a finite number of steps, an algebra £, with an abelian
radical is acquired. For this algebra we obtain £ = R(Ly) <S8, where § is the desired

semisimple subalgebra which appears in the Levi decomposition of £L = R(L) < S.

Semisimple subalgebra & can be further decomposed, using algorithm from section 4.2,
into direct sum of simple Lie algebras. Structure of radical R(L) and semisimple subalgebra
S are invariant for the given Lie algebra £. Thus, we divide all classes with non—solvable Lie

algebras into new classes according to the types of radicals and semisimple subalgebras.

4.5 Nilradical

Nilradical, as a maximal nilpotent ideal in a Lie algebra, represents another invariant char-
acteristic of the given Lie algebra £. However, for nilpotent and semisimple Lie algebras
the nilradical is trivial. We used the following algorithm taken from [66] and computed the
nilradical for all solvable non—nilpotent Lie algebras and for all algebras which have nontrivial

Levi decomposition.

1. Determine the radical R(L). Nilradical is solvable ideal and thus, N(£) C R(L) and
it follows from (1.43) that N(£) = N(R(L)). From now on we replace £ by R(L) and

assume that £ is solvable.

2. Calculate the ideals D(L£) and D?(L), these are nilpotent and thus belong into N (L)
and

N(L)/D*(L) = N(L/D*(L)). (4.23)

From now on we consider the algebra £/D?(L) instead of £, thus we assume that £ is

solvable and its derived algebra D(L) is abelian.
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3. Calculate the hypercenter of £, i.e. the last element C*(£) in the upper central sequence
of £. This is also nilpotent ideal contained in N(£) and

N(L)/CH(L) = N(L/C*(L)). (4.24)

We have thus reduced the problem of finding nilradical of an arbitrary complex finite—
dimensional Lie algebra to that of finding N (L) for a solvable Lie algebra £ with abelian
derived algebra and C'(£) = 0.

4. Introduce a basis (uy,...,uy) for the derived algebra D(L) and extend it to a basis

(Upy ooy Uy Ty e oy T Of L.

5. Choose a basis element of D(L), say uq, and an element of the complement, say z;.
Define ug; = uy, wij = [, uojl, - - -, wij = [z, u;—1,;]. Thus generate a chain of elements

in D(L),
Si = {uoj, uj, - - uijt (4.25)

such that the set is linearly dependent but the set S;_; is linearly independent. Thus,

there exists a set of numbers ay; € C, not all vanishing, such that
Wij + a1Ui—1j + - - + aijug; = 0. (4.26)
Using coefficients in (4.26), form the polynomial
fila) =4+ aq" ™" + -+ a1 q + ayy. (4.27)
According to the properties of this polynomial continue with one of the following steps.

6. If a;; = 0, form the ideal By = [z;, D(L)] and determine the nilradical of L£/B;.
Construct the algebra M defined by M/B; = N(L£/B;) and find its nilradical N(M);
then N(L) = N(M).

7. If a;; # 0 and f;(q) is not square free, find a nonconstant polynomial g;(¢) which divides

fi(q) and is square free. Form the ideal
By = gj(adc(z;))D(L), (4.28)

where n x m matrix D(L), whose columns represent basis elements of the derived
algebra, is multiplied by n x n matrix g;(adz(z;)) and the result is matrix By, whose

columns spanned over C form ideal By. Proceed further as with the ideal By, i.e. put
M/By = N(L/Bs), B, C M and N(L) = N(M).
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8. If a;; # 0 and f;(q) is square free and if j < n —m, then replace j by j + 1 and return
to step 5. If j = n —m, then determine the centralizer in £ of the element u; = uy;

used in step 5:
M = Cr(u1) ={y € L[y, ua] = 0}. (4.29)

We have dim M > dim D(L) (since D(L) is abelian). If dimM = dim D(L), the
N(L) = D(L). If dim M > dim D(L), then N(L) = N(M), where N(M) is found
returning to step 2, but using M in place of L.

4.6 Casimir operators

Casimir operators of a Lie algebra £ are well known invariants used in representation theory
for the labelling of irreducible representations of £. As elements of the universal enveloping
algebra of £, they are polynomials in generators (basis elements) of £ which commute with
all elements in £. The form of the Casimir operators depends on the choice of basis in L.
However, there are some characteristics which are basis independent, such as degrees of these
polynomials or number of functionally independent polynomials, and thus represent invariant
characteristics for L.

More precisely, let us consider the tensor algebra T'(L) of the vector space L, i.e.

T(L) = é T*(L), (4.30)

where T°(L) = C, TH(L) =L and TH(L) = LR L ® ... ® L (k times) is k-th tensor power
of the vector space £. Note that the bilinear multiplication ® in algebra T'(L) is associative.
Let I be the two—sided ideal in T'(L£) generated by all elements of the form z®@y—y®@x—[x, y],
where x,y € L, i.e.

I=spanc{a®@ (z@y—y®x—|z,y)@b|lz,y € L, a,be T(L)}, (4.31)

then the associative algebra U(L) = T'(£)/I is called the universal enveloping algebra of
L [20]. The product of u and v in U(L) is denoted simply by uv. Vector subspaces of U(L)

Un(L) =spanc {1, z129... 2, € U(L) | 21,22, ...,2, € L, p < m} (4.32)

form the increasing sequence Up(L) = C C U (L) =CH L CUy(L) C ... CUp(L) C ... of
subspaces in U(L) called canonical filtration of U(L). For nonzero u € U(L) we call the

number

dg(u) = min{m € Ny |u € U,,(L)} (4.33)
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degree or filtration of u. The center of U(L)
Z(L)={ueUL)|vu=uv, Yo e U(L)} (4.34)

is an abelian subalgebra in U(L). Considering the composition 7 of canonical mappings
L — T(L) — U(L) we can identify the Lie algebra £ with the subalgebra 7(£) in Lie
algebra U(L), of the associative algebra U(L). An element v € U(L) is called a Casimir
operator of the Lie algebra £ if

[z,u] = 2u — ux =0, Vr € L. (4.35)

Thus, the set of all Casimir operators of the Lie algebra £ is the center of its universal
enveloping algebra U(L).

There are several methods [6, 57, 62] for computing Casimir operators of Lie algebras.

The classical method [57] suggests to represent elements of basis (eq,...,e,) in £ by the
vector fields
- 0
S Z k
€ — T = Cijxka_xj’ (436)

jk=1
which have the same commutation rules and act on the space of continuously differentiable
functions F'(xy,...,x,) of n variables. A function F is called a formal invariant of L if it
solves the following linear system of first-order partial differential equations
n
~ oF .
TiF(xy,...,1,) = craop—~(21,...,2,) =0, Vi=1,...,n. (4.37)
: J 6xj
Ji:k=1
Let us note that any continuously differentiable function of formal invariants is also a formal
invariant. According to the classical theorem in [20], the number of functionally independent

solutions of system (4.37) is

7(L£) = dim(L) — sup rank M, (4.38)
T1,eesTp
where M, is skew-symmetric matrix with entries (Mg);; = ZZ:1 cfjxk and x1,...,x, are

independent complex numbers. A maximal set of functionally independent formal invariants
is called fundamental set of invariants and the cardinality of this set 7(£) is invariant
characteristic for the Lie algebra L.

Formal invariants which are polynomials in variables xi,...,z, are in one to one cor-
respondence with Casimir operators of the Lie algebra £. This correspondence is provided

by symmetrization [2, 21]: any term wxy, ...xy, of polynomial F(z1,...,2,) in commuting
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variables z; is replaced by symmetric term in non-commuting basis elements ey, ..., e, € £

as follows .
Thy oo Tpy, ]? Z €hyr) - -+ Chiggy)- (4.39)

oes,
Formal invariants which are not polynomials (usually rational or exponential functions) corre-
spond via symmetrization (4.39) to so called generalized Casimir operators. It is known
[2] that for semisimple and nilpotent Lie algebras the fundamental set of invariants can be
constructed of polynomials.

We compute for each Lie algebra £ the number of independent formal invariants 7(L).
Furthermore, we find and list all independent Casimir operators for each of the resulting
nilpotent Lie algebras. Since these are all polynomials, we use the Poincaré—Birkhoff-Witt
theorem [21] which says: if (e, es,...,e,) is a basis for £, then the set of all elements of the
form

efebr | ekn ki koo .. k, € Np (4.40)

n

forms a basis for U(L). From this basis we generate a general element u*) € U(L) of order

k € N and require

e, uP] = e;u® — uPe; = 0, Vi=1,...,n. (4.41)

This leads to a system of linear homogeneous equations and its solutions correspond to all
Casimir operators of £ up to order k. If the number 7(L£) of independent Casimir operators
is not obtained among these solutions, we have to increase the order k of general element.

Since the Lie algebra sl(3,C) has two Casimir operators — one of order two and one
of order three, it was sufficient to consider & = 3. Let us note that computed Casimir
operators are not necessarily symmetric, since they are written in the ordered basis (4.40).
The increasing sequence of orders of all independent Casimir operators (up to certain order)
is also an invariant characteristic of the Lie algebra L.

The Casimir operators of contracted Lie algebras were also studied (mainly for continuous
contraction) in [1, 11, 78].

4.7 Generalized derivations

Since for any two isomorphic Lie algebras are their algebras of derivations (1.18) also iso-
morphic, the structure of the algebra of derivations of £ is an invariant characteristic for the
Lie algebra £. Thus, any invariant of der(£) is also an invariant of £. However, the search

for invariants of der(£) is usually more difficult because of higher dimension. Therefore, of
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all invariants of der(£) we will use mainly the dimension of der(£). Let us note that there
is also possibility to search for the algebra of derivations of der(£) and so on and construct
sequence der”(£) = der(der* (L)), k € N, so called tower of derivation algebras of £
[64].

In order to get more invariants, similar to dim(der(£)), we have generalized the concept
of derivations in [III, VI] as follows. Let a, 3,7 be arbitrary complex numbers; then a linear
operator A € End(L) is called («, 3,v)—derivation of L if for all =,y € L it holds

aAlz,y] = BlAz, y] + [z, Ay]. (4.42)

Let us note that several non—equivalent generalizations of derivations have been studied in
[7, 30, 49]. For given a, 3,7 € C, the set of all (a, 3,~)—derivations of £ forms a vector
subspace of End(£) which we denote by der(qg.)(L).

Let h: £ — L be an isomorphism of Lie algebras £ and L and A an (e, B,7v)—derivation
of £. Then for all z,y € £ we have

aAlh o, byl = BIAL 2, byl + [ e, ARy (4.43)
Applying the isomorphism h to this equality we get
ahAh™ [z, yl; = BlhAR ', yl 7 + [z, hAR 1Y) 7, (4.44)

ie. hARh™'is an (a,3,~)—derivation of £. Since the mapping ¢ : A — hAh™! is an

isomorphism of associative algebras End(£) and End(L), we conclude that

g(der(a3-)(L)) = der(a,z, (L) (4.45)

Thus, the dimensions of the vector spaces der(q,g,)(£) are invariants for L.
It follows directly from the definition of spaces der(, .)(£) that for any § € C\ {0} it
holds

der(a,gﬁ) (,C) = der(a(;ﬁ(;ﬁg)(ﬁ) = der(amﬁ) (,C) (446)
Moreover, the anti-commutativity of the Lie bracket leads to
der(a,57)(£) = der (0,5 (£) N der(20,844,514) (£)- (4.47)

Using (4.46) and (4.47) we have obtained a complete classification of all vector spaces
der(q,5) (L) [VI]. Some of these vector spaces form subalgebras of End(L), gl(£L) or jor(L).
We have shown in [VI] that there are only the following types of spaces der(q,54)(L):

e associative algebra der(g,0)(£) = End(£) of all linear operators on the vector space L.
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e associative algebra der( o0)(£) = {A € End(L) | A(D(L)) = 0} of all linear operators

on £ which map derived algebra D(L) to the zero vector; thus its dimension is

dim(der(; 0)(£)) = codim(D(£)) dim(L). (4.48)

e associative algebra der(1,0)(£) = {A € End(L) | A(L) C C(L)} of all linear operators

on £ which map whole £ into its center C'(£); thus its dimension is

dim(der(g 1,0)(£)) = dim(£) dim(C(£)). (4.49)

e associative algebra der(;10)(£) = Cgnaz)(ad(£)), i.e. the centralizer of the adjoint

representation of £ in End(L).
e Jordan algebra der(g,—1)(£) = {4 € End(£) | [Az,y] = [z, Ay|, Va,y € L}.
e Jordan algebra der 1,-1)(£) = der1,-1)(£) Nder( p,0)(L).
e Lie algebra der(y11)(£) = {A € End(£) | [Az,y] = —[z, Ay], Vz,y € L}.
e Lie algebra der(;1,1)(£) = der(£) of the derivations of L.
e one-parametric sets of vector spaces der(;1,0)(£L), der(s1.1)(£), where § € C\ {0,1}.

Thus, we have eight algebras and two parametric sets of vector spaces, all uniquely determined
by the Lie algebra L. It follows from (4.45) and the fact that mapping ¢ is an isomorphism
of associative algebras that the structures of these algebras form also invariants of L. Since
the structure of associative algebras End(L),der(; ,0)(£) and der(gq,0)(£) depends only on
the dimension of £, its derived algebra D(L) and its center C'(L), invariants of these algebras
will not distinguish between Lie algebras in the same class (formed in section 4.3). Therefore,
these associative algebras are, from our point of view, useless.

Considering all possible intersections of vector spaces of generalized derivations we get

only two new vector spaces:
e associative algebra der( o,0)(£) Nder(g1,0)(£) with dimension codim(D(£)) dim(C'(£)).
e Lie algebra derq 11)(£) Nderq,1)(L).

Structure of both these intersections forms also invariants for £. However, the associative
algebra der o 0)(£)Nder (g 1,0)(£) is for any indecomposable Lie algebra £ uniquely determined

by dimensions of £, D(£) and C'(£) and therefore is also useless for our purpose.
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We adopt the following notation for the list of invariants of £ given by dimensions of the
algebras of generalized derivations:
dim, g+)(£) = [dim(der(L)), dim(der,1y(£)), dim(derq 1,0)(£)),

dim(der(£) Nder(gq,1y(£)), dim(derq 1,-1)(£)), dim(dero1,-1)(L))].
(4.50)

Furthermore, we use remaining one-parametric sets of vector spaces derq,1,1)(£), der(a,1,0)(£)
for the definition of the invariant functions of £. Functions 9,92 : C — Nj defined by

relations

Yr(a) = dim(der,1,1)(£)) (4.51)
Ye(e) = dim(der(q,0)(L)) (4.52)

are called invariant functions corresponding to («, (3, y)—derivations of Lie algebra L. It

follows from the relations between vector spaces of generalized derivations that for all « € C

it holds
codim(D(L)) dim(C(£)) < ¢%(a) < dim(derq,-1)(L)), (4.53)
codim(D(L)) dim(C (L)) < e(a) < (dim(L))% (4.54)

Invariant functions turned out to be very useful especially for recognizing Lie algebras
whose commutation relations depend on parameters. We have used them mainly for one—
parametric families of Lie algebras. During the identification of graded contractions, invariant
function 1, appeared to be more effective than function 2. Let us note that the invariant
function v, (a) alone provides a complete set of invariants sufficient for classification of all
three—dimensional complex Lie algebras [41]. Let us note that the same generalization of
derivations is possible for any commutative or anti-commutative algebra.

The great advantage of these invariants is their easy computation. If cfj are structural
constants of the Lie algebra £ in basis (e, ..., e,), then the matrix A = (A4;;) € C™" of any

(e, B,7)—derivation of £ in this basis is given by the system of homogeneous linear equations:

n

> (ad} Agm — B Ami = 1Ch Ami) =0, i k=1,2,...n. (4.55)

m=1
Thus, the computation of our invariants is reduced to the computation of rank of n? x n?

complex matrix.

4.8 Twisted cocycles

Invariant characteristics of Lie algebras can also be extracted from Chevalley cohomology

of Lie algebras. For example, the dimensions of cohomology spaces with respect to adjoint
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and trivial representation were computed (up to dimension 7) and used as invariants for
7-dimensional nilpotent Lie algebras in [10]. It is also known that derivations of a Lie
algebra L are cocycles of the dimension one corresponding to the adjoint representation of L.
The question whether there exists some equivalent for generalized derivations in cohomology
theory was positively answered in [VII, 41].

Let us first recall the basic terms concerning cohomology of Lie algebras. Let V be a
vector space over C and p representation of £ on the vector space V. A ¢—linear map

c:LXLx--x L —Viscalled a V—cochain of dimension ¢ of L, if ¢ is alternating, i.e.

g—times
c(xq,...,xq) = 0 if x; = z; for some i # j or equivalently (over C) if for all pairs of indices

i,7, (1 <i<j<gq),it holds

c(xr,.ony @y, Xy o xg) (T, T, Ty, ) = 0. (4.56)
We denote the vector space of all V-cochains of the dimension ¢ for ¢ € N by C%(L, V') and
C%L,V)=V. We define amap d: C4(L, V) — CH(L, V) for g =0,1,2,... by

de(x) = p(x)e, c€ COL,V)
g+1 '
de(wy, ... wg) = Y (=) p(xi)e(a, ., By )+ (4.57)

i=1
g+1

+ Y (D) Yellwna] . B B Tgn)
Zz]<:j1
where the symbol Z; means that the term z; is omitted. It is proved, for example in [28],
that for this map d it holds dd = 0.

V—cochain z € C(L,V) is called a cocycle of the dimension ¢ corresponding to the
representation p if dz = 0. The set of all cocycles of the dimension ¢ corresponding to p
is denoted by Z(L,p). An element w € CL,V) is called coboundary if there exists
c € CTY(L,V) such that dc = w. The set of all coboundaries BY(L, p) = dC* (L, V) of
the dimension ¢ and the set Z9(L, p) are vector subspaces of C9(L,V). Since dd = 0, we
have BY(L,p) C Z%L,p). The factor vector space Z%(L,p)/BY(L,p) = HYL,p) is then
called a cohomology space of the dimension ¢ of £ with respect to the representation p.
It follows directly from the definition that cocycles and coboundaries of the dimension one

corresponding to the adjoint representation of L are

ZN(L,ad;) = der(L), BY(L,ad;) = ad(L). (4.58)
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The concept of cocycles was generalized [VII, 41] in the following way. Let p be a repre-
sentation of the complex Lie algebra £ on the vector space V and k = (k;5) a (¢+1) x (¢+1)
complex symmetric matrix. We call any V—cochain ¢ € C%(L,V), g € N a k—twisted co-
cycle or shortly k—cocycle of the dimension ¢ corresponding to the representation p if it

satisfies
g+1

O = Z(—l)i+1/€iip($i)0(l'1, Ce ,Q/T\Z', e ,$q+1)—|—
i=1
q+1

+ E (—1)i+jmijc([$i,x]~],$1,...,@,...,@,...,qu) (459)
3,7=1
i<

for all z;...., 2,41 € L. The set of all k—cocycles of the dimension ¢, denoted by Z(L, p, k),
forms a vector subspace of C'9(L, V). Considering one-dimensional x-cocycles corresponding

to the adjoint representation of £ we get («, (3, y)—derivations of L:
Z' (L adg, (89)) = der(ap.)(L). (4.60)

Let us note that there is no suitable generalization of mapping d (4.57) compatible with
(4.59) and thus no twisted coboundaries and twisted cohomology.

Since we are interested in comparable invariant characteristics, we have to consider only
those representations which are given uniquely by the examined Lie algebra, i.e. adjoint or
trivial representation. It was proved in [41] that if h : L — £ is an isomorphism of Lie
algebras £ and £, then the mapping f : CYUL, L) — C’q(EN, EN) defined for all ¢ € CY(L, L)
by relation

(fO) @1, ..., Tg) = he(h ™ Ty, ... h7'E,),  VEi,.... T, €L (4.61)

is an isomorphism of vector spaces C(L, £), C?(L, £). Moreover, for any complex symmetric
(¢+ 1) x (¢ + 1) matrix it holds

F(Z9(L, adg, k) = ZUL, ad, k). (4.62)

Thus, the dimensions of the vector spaces Z9(L,ad., k) are invariants of the Lie algebra L.
In [41] vector spaces of two—dimensional k—cocycles corresponding to ad, were explored.

These vector spaces denoted by

B1 az a
Coc(al,ama&ﬁl,ﬁz,ﬁs)(‘c) =77 (‘C: adg, (O‘2 B3 a?)) (463)

ag a1 B2

consist of all V-cochains B € C?*(L, £) which for all z,y, z € L satisfy

0= OélB(l‘, [ya Z]) + OQB(Zﬂ [w,y]) + a3B(y7 [Z7$]>
+ bilz, By, 2)] + Balz, B(@,y)] + Bsly, B(z, )] (4.64)
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Classification of spaces coC(a,,as,as,8,8.8:) (L), done in [41], leads to 16 possible spaces which
depend on two, three or four parameters. Besides this classification we choose, rather empir-
ically following our calculations, two one—parametric sets of vector spaces coc(a; as,as,81,8.,83)

and define new invariant functions. We call functions ¢, 0% : C — Ny defined by formulas

or(a) = dim(cocn 1,1,0,a,0)(L)) (4.65)
gp%(a) = dim(coc(o,1,1,0,1,1)(£)) (4.66)

the invariant functions corresponding to two—dimensional twisted cocycles of the adjoint
representation of a Lie algebra £. Computation of these invariant functions consists in
solution of a system of linear homogeneous equations, i.e. in the determination of the rank
of a matrix.

Let us note that the invariant function ¢, together with the invariant function ¢, defined

in the previous section classify all four-dimensional complex Lie algebras [VII, 41].

4.9 Isomorphism

There are only two possible ways how to prove that two given algebras £ and L of the same
dimension n are isomorphic. The first is the explicit calculation of their isomorphism. The
second way (possible only for low—dimensional Lie algebras) is based on the existing classifi-
cation. If there exists in the desired dimension classification of Lie algebras given by invariant
characteristics, it is sufficient to compute and compare these invariant characteristics. In any
case if two Lie algebras differ in some invariant characteristic, then they are not isomorphic.
Since there is no complete classification in the dimension 8, we have to follow the first way.
We try to find explicitly isomorphisms for all algebras which are in the same class.

Let us consider that cfj and Efj are structural constants of Lie algebras £ and £ with
respect to bases & = (e1,...,e,) and € = (€1,...,€,). Then the regular linear mapping
A: L — L defined by relations

Aei = Z Ajigja Aji S (C, (467)
j=1

is isomorphism if and only if the following system of n*(n — 1)/2 quadratic equations is
satisfied

Y A=Y & AuA,;  di=1...n—1 j=i...n ken (4.68)
r=1

w,r=1
Using computers (system MAPLE 8) it is usually more convenient to solve the system (4.68)

first and then test its solutions on regularity, i.e. if det(A4;;) # 0. Computation can be
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simplified by choice of bases &, £. For example, a basis which follows lower or upper central
series, immediately fix some zero elements in the matrix (A;;). However, since the system
(4.68) is not a system of linear equations, there is no guarantee that the computer will find
all its solutions. Thus, only the existence of an isomorphism can be proved in this way.
Sometimes, it is possible to prove the nonexistence of a regular solution of the system (4.68)
by hand.

Let us note that there exists also an algorithm for solving systems of nonlinear equations
such as (4.68). This algorithm based on so called Grobner basis was successfully used in
[15] for finding isomorphisms of four-dimensional Lie algebras. However, it seems to be not
suitable for us since, according to [46], the program already fails to terminate in a reasonable

time in the dimension 6 in some cases and we are working mainly in the dimension 8.

4.10 Identification procedure

We summarize the whole identification procedure, which we have used for classifying graded
contractions of the Lie algebra sl(3,C). The individual steps of this procedure, described in

detail in previous sections, are applied in the following order:

e Central decomposition — we separate a maximal central component whenever it is

possible and continue with identification of non—abelian parts of Lie algebras only.

e Direct decomposition — we decompose all Lie algebras into a sum of indecomposable

ones and continue with identification of these indecomposable Lie algebras.

e Numerical invariants — we compute derived, lower and upper central series, algebras
of generalized derivation and number of formal invariants and divide all algebras into

classes according to their invariants

inv(L) = DS(L), CS(L),US(L), dima5.)(L), 7(L). (4.69)

e Levi decomposition — we determine radical and Levi decomposition of any non—
solvable Lie algebra and refine classes of these non-solvable Lie algebras according to

the types of radicals and semisimple parts.

e Isomorphisms — we test all Lie algebras in the same class upon isomorphisms. We

keep only one representative of the isomorphic Lie algebras.

e Nilradical — we determine nilradical for any solvable Lie algebra and refine classes of

solvable non—nilpotent Lie algebras according to the types of nilradicals.
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e Casimir operators — we compute Casimir operators for all nilpotent Lie algebras and,

whenever necessary, use their orders as invariants.

e Invariant functions — we compute invariant functions 1, ¢, ¢" for all one-parametric
families of Lie algebras and for Lie algebras which have not been distinguished from

each other yet.

We took the following convention for parametric families of Lie algebras. A parametric
family is considered and counted as one Lie algebra (parametric Lie algebra) whenever it has
the same derived, lower and upper central series for all values of its parameters. The values
of the parameters for which numerical invariants or Casimir operators will differ from general
ones will be marked and corresponding Lie algebras will be considered only as special cases
of this parametric Lie algebra.

During the identification we change the basis of the given Lie algebra such that first
vectors of the new basis form gradually the basis of the center, the nilradical and the radical.

There are also following possibilities how to distinguish two non—isomorphic Lie algebras,

which were not used in the main identification procedure:

Compare the structure of ideals in their derived, lower and upper central series.

Compare the structure of algebras of generalized derivations.

Build the tower of generalized derivations, i.e. generalized derivations of algebras of gen-

eralized derivations and so on.

Choose other possible invariant functions which are related with twisted cocycles of the

dimension two or more.

Let us note that there are more invariants which we have found in literature and did not

use for classification of our results. These invariant characteristics of the Lie algebra L are:

(1) The maximal dimension of abelian subalgebra and the maximal dimension of abelian
ideal. These are used in [55].

(2) Megaideals, ideals and characteristic subalgebras were determined for low-dimensional
Lie algebras in [65]. A vector subspace V' C £ which is invariant under any automorphism
of L,i.e. g(V)CV, Vg € Aut(L), is called a megaideal of the Lie algebra £. A vector
subspace V' C L which is invariant under any derivation of £, i.e. D(V) C V, VD €
der(L), is called a characteristic subalgebra of £. All megaideals and characteristic

subalgebras of L are ideals of L.
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(3) The structure of all possible subalgebras of the Lie algebra £. Algorithm for finding all
subalgebras, which are inequivalent with respect to the group of inner automorphisms

was described in [56].

(4) The structure of factor algebras such as £/C(L) as well as existence of some special

elements, for example x € £ such that dim([z, £]) = 1, is considered in [68].

(5) The dimension of null space of the Killing form, i.e.

v(L) =dim{zr € L|Kc(x,y) = Tr(adg(z) ade(y)) =0, Yy € L}.

(6) The dimension of the space of all invariant symmetric bilinear forms, i.e. all bilinear

mapping w : L X L — C satisfying

w(z,y) = w(y,x), w([z,y], 2) = w(z, [y, 2]), Vr,y,z € L. (4.70)

(7) The dimensions of all cohomology spaces with respect to adjoint and trivial representation
were used in [10, 52, 53].

(8) The dimension and structure of Lie algebra of prederivations [9]. Any P € gl(£) is called
prederivation of L if for all z,y, z € £ it holds

Pl [y, 2]]) = [P(2), ly, 2]] + [z, [P(y), 21| + [, [y, [P(2)]]- (4.71)

The set of all prederivations of £ forms a subalgebra Pder(L) of the Lie algebra gl(L)

and contains der(L).

(9) The characteristic sequence for nilpotent Lie algebras [29]. Let £ be a nilpotent complex
finite-dimensional Lie algebra. For any = € £ we denote by c¢(z) = (n1,n2,...,n,) the
ordered sequence ny > ng > ... > n, of dimensions of the Jordan blocks of the nilpotent
operator adz(z). Since z is an eigenvector of adz(x), we have alwaysn, = 1. Let x,y € L
and c¢(z) = (n1,ne,...,n, = 1), c(y) = (M1, ma, ..., my = 1) be corresponding sequences,
we say that c(x) > c(y) if there exists ¢ such that ny = my,ny = ma, ..., n;_1 = m;_
and n; > m,;. This defines the lexicographical ordering in the set of all sequences. The

ordered sequence

c(L) =sup{c(z)|z e L\ D(L)} (4.72)

is called a characteristic sequence of the nilpotent Lie algebra £ and a vector z € L

for which ¢(z) = ¢(L) is called a characteristic vector of L.

63



(10)

(11)

(13)

The minimal numbers used for two-step nilpotent (£3 = [[£, L], £]] = 0) Lie algebras in
[27]. Chose a basis (x; + D(L),...,zs + D(L)) for L/D(L) such that

mn (L) = (dim(adz(z1)(L)),. .., dim(adz(zs)(L))) (4.73)
is minimal s-tuple in lexicographic order. Then mn(L) is invariant of L.

Ratios of the eigenvalues of ad,(z) for generic element z in £ are used as invariants in
classification of 4-dimensional complex Lie algebras [3]. Moreover, the following invari-

ants for non—nilpotent Lie algebras are defined there. If the numbers

. P222(T) _ P333() _ p§33(x)
all) = pin(z)’ x2(£) pin(x)’ xa(£) Paga()’ (4.74)
where
pui(z) = —Tr(ade(z)),  pom(z) = %[(Tf(adz:(flf)))2 — Tr(adg(2))?], (4.75)
pass(z) = é[(Tlr(adg(x)))3 — 3Tr(adg(z)) Tr(ads(z))? + 2 Tr(ad(2))?], (4.76)

are defined and independent of x € L, then they are invariants of L.

The other trace-based invariants are used for non-nilpotent Lie algebras in [8]. Let

1,7 € N, if the number ’ .
() = o)) Tr(ade(3)
N Tr((adz(x)) (adc(y))’)

is defined and independent of elements z,y € L, then we call it (i, j)—invariant of Lie

(4.77)

algebra L.

The rank of the Lie algebra £ is defined as the dimension of its Cartan subalgebra. The
Cartan subalgebra is a nilpotent subalgebra H of £ which is its own normalizer, i.e.
H={x € L]|[x,H] C H}. The set of all roots of H in L, i.e. all linear maps av: H — C
for which

L(a) = {y € L|Vz € H,3k € N, (adz(z) — a(z))"(y) = 0} # {0}, (4.78)

forms a root system. The role of root systems of Lie algebras is well known from the

classification of simple Lie algebras [28].

The rank of the nilpotent Lie algebra L is defined as the dimension of the maximal
torus 7" on L, i.e. the maximal (in the sense of inclusion) abelian subalgebra 7' in

der(L) consisting of semisimple (eigenvectors form a basis of £) endomorphisms. For
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*

any linear map o € T* (T* is the dual space of the vector space T') we define a vector
subspace of £

Lo,={x € L]|t(x) =a(t)x, Vt e T}. (4.79)

The set
W(T) ={(a,dim(L,)) |« € T*, dim(L,) > 0} (4.80)

is called the weight system associated to £. Two weight systems W (T") and W'(T")
are equivalent if dim(7") = dim(7”) and the linear representation of 7" in L is equivalent

to that of 7" on L£'. Equivalence classes of weight systems were used as invariants in [12].

The invariants mentioned above were not used in our identification procedure for various
reasons. First of all, we were looking for a uniform way of describing contracted Lie algebras.
For example, we have not found a suitable algorithm for computing (1) and (2). These can be
obtained from (3), however, the process of searching (3) is too laborious. The comparison of
the factor algebras (4) is a lower—dimensional task, however, it works well only in some cases
and, similarly as the searching for special elements, it requires an individual treatment of the
investigated algebras. Numerical invariants (5),(6) and (8) are easily computable but have
relatively small discerning ability and do not significantly extend our set of invariants inv(L).
Invariants (9) and (10) are not convenient for us, since their computation is based on finding
the extremal values over elements of a given Lie algebra and thus present vast difficulties
on a computer. Invariants (11) and (12) could be very helpful especially for parametric
families of Lie algebras, but unfortunately, they are not defined for nilpotent Lie algebras.
The computation of (13) and (14) and subsequently their juxtaposition is too laborious and
not suitable for our approach. Finally, cohomologies (7) are helpful, but they are not able
to classify parametric families of Lie algebras. Therefore, we have preferred rather twisted

cocycles over cohomologies.
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Chapter 5

Pauli graded contractions of sl(3, C)

The content of this chapter was already published in [IT].

5.1 Pauli grading of sl(3,C)

A finest grading called Pauli grading was found [58] for any classical simple Lie algebra in
the series A,,_1 = sl(n,C), n > 2. The name Pauli grading is deduced from generalized n x n
Pauli matrices which form the bases for grading subspaces of the Pauli grading of sl(n,C) in

its defining n—dimensional representation. Let us define n X n complex matrices

010 00
001 ... 00
Qn = diag(1, w,, w2, ..., w1, P, =1 : , (5.1)
000 01
1 00 0 0
where w,, = exp(2mi/n). These matrices fulfil

and their products — generalized Pauli matrices — form so called Pauli’s group
IL, = {wkQi P! |4, j,k=0,1,...,n—1}. (5.3)

In our case n = 3 the Pauli grading is one of the four fine group gradings of the Lie algebra
sl(3,C). The Pauli grading decomposes sl(3, C) into eight 1-dimensional subspaces. In the

defining 3-dimensional representation, the basis vectors (generators) are 3 x 3 generalized
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Pauli matrices:

Ip:sl(3,C) = Lot ® Loa © Lo © Lao © L11 © Loo @ L1z @ Loy (5.4)
= CQ®CR*®a CPaCP* & CPQ & CP’Q* 4 CPQ* & CP*Q
1 0 0 1 0 O 010 0 01
=C|0 w 0|®C|[0 w* 0|®C|0 O 1 1 00|
0 0 w? 0 0 w 100 010
0 w 0 0 0 w 0 w? 0 0 0 w?
®Cl0 0 w*|®C|1 0 0|®C|0 0 w]®C|f1 0 0
1 0 0 0 w? 0 1 0 0 0 w O
where w = exp(27i/3) and Q = @3, P = P3. Putting L, := spanc{X,s} = CX,; = CQ
and using (5.2) we have the commutation relations
[XT87 XT’S’] = (wST, - WTS/)XT—FT’,s-i-s’ (mod 3) - (55)

The index set [ for the Pauli grading consists of 8 ordered couples (7, s), where r,s = 0,1, 2
with the exception of (0,0) and the commutative operation ¢ is a componentwise addition
(mod 3). Thus, the grading group is the additive abelian group Zs x Zs.

The symmetry group Ar, (Aut(I'p)) of the Pauli grading was described in detail in [34,
35, 36]. It was shown there that Ar,(Aut(I'p)) is isomorphic to a finite matrix group

()

This group has 48 elements and contains the subgroup SL(2,Zs) of order 24 formed by all

a,b,c,d € Z3, ad —bc#0  (mod 3)} : (5.6)

matrices with determinant equal to 1. If we denote 74 € Ar, (Aut(I'p)) the permutation of
index set I C Zj x Zs corresponding to the matrix A = (¢ %) € Hj, then the action of 74 on

the indices (7, j) € I is given by

7TA<i7j) = (Zvj)A = ((ZCL + Cj) mod 3> (Zb“‘]d) mod 3)' (57)

For computer processing it is more convenient to choose some ordering O of index set [
and replace I by the set {1,2...,8}. Our ordering O corresponds to the order of grading
subspaces in (5.4), i.e

(0,1) (0,2) (1,00 (2,00 (1,1) (2,2) (1,2) (2,1)

o | l l l l l l l (5.8)
1 2 3 4 5 6 7 8

We will also the use notation for basis vectors X, = eo(s). The commutation relations of
sl(3,C) in basis (ey,...,e,) are written in Table 5.1.
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Table 5.1: Commutation relations of Pauli graded sl(3,C)

L |e e es ey es €6 er es
e1 | 0 0 (w—1es (w*—1)eg (w—1er (w—1)es (w—1ez (w?—1)eg
) 0 (W*—1er (w—1)eg (W*—1ez (w—1)eg (W —1)es (w—1)ey
e3 0 0 (1—w)es (I1—wHey (1—wes (1—w)e
eq 0 (1—whe; (I—-w)er (1—wlex (1 —w?es
es 0 0 (w—whey (W2 —w)ey
es 0 (W —w)er (w—w)es
e 0 0
es 0

5.2 Contraction system for the Pauli grading

In this section we will describe the construction of the system of contraction equations Sp
for the Pauli grading of sl(3,C) using the symmetry group of this grading. We start with
overview of the orbits of the action of the symmetry group Hsz = Ar,(Aut(I'p)) on the sets
I3 13

The index set I = Zs x Zs \ {(0,0)} forms a whole one orbit. It corresponds to the
fact that the symmetry group Aut(I'p) transforms an arbitrary grading subspace to any of
the other grading subspaces. There are three orbits of unordered pairs of grading indices in
I?. Two of them are formed by irrelevant pairs: 8-point orbit represented by ((0,1)(0,1))
and 4-point orbit represented by ((0,1)(0,2)). The remaining 24—point orbit, represented by

point ((0,1)(1,0)), is equal to the set of all relevant pairs of unordered grading indices Z, i.e.
T = {((0,1)A(1,0)4)| A € Hy} . (5.9

These relevant pairs of indices correspond to 24 relevant contraction parameters. Irrelevant
parameters are equal to zero and thus, the explicit form of the contraction matrix ¢ with

respect to chosen ordering O is:
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0 0 €01)(10) €(01)(20) €(01)(11) €(01)(22) €E(01)(12) E(01)(21)

0 0 €(02)(10) €(02)(20) €(02)(11) €(02)(22) €(02)(12) €(02)(21)
£(01)(10)  €(02)(10) 0 0 E10)(11) €(10)(22) E(10)(12) E(10)(21)

c— €(01)(20) €(02)(20) 0 0 €20)(11) €(20)(22) €(20)(12) €(20)(21) . (5.10)

€01)(11) €(02)(11) €@0)(11) €(20)(11) 0 0 €11)(12) €@1)(21)
€(01)(22) €(02)(22) €(10)(22) €(20)(22) 0 0 €(22)(12) €(22)(21)
€01)(12) €(02)(12) €(10)(12) €(20)(12) €@1)(12) £(22)(12) 0 0
€01)(21) €(02)(21) €(10)(21) €(20)(21) €(@1)(21) €(22)(21) 0 0

Let us note that the orbits of the symmetry group Hs on the sets I and I? coincide with the
orbits of its subgroup SL(2,Zs3).
Contraction equations are labelled by unordered triplets of grading indices I3. The equa-

tion e((4,j)(k,1)(m,n)) € Sp is given by
5(i,j)(k+m,l+n)5(k,l)(m,n) [le [Xkly anH + cyclically = 0, (511)

where the word ”cyclically” means that the two remaining terms are obtained from the
first one by the substitutions: (ij) — (mn), (kl) — (i), (mn) — (kl) and (ij) — (kl),
(kl) — (mn), (mn) — (ij), respectively. Using (5.5) we have

(8.5 (k) E () o) (W™ — W) (@B — Y 4 eyelically | X g mjien = 0. (5.12)

The equation (5.12) is identically fulfilled for any unordered triplet ((,7)(k,[)(m,n)) which
has at least two identical indices, for example (7, j) = (k,1). Thus, the number of contraction
equations is given by the combination number (§) = 56. Moreover, it follows from (5.12)
that the equations for which it simultaneously holds i+ k+m =0 and j+ [+ n = 0 are also
fulfilled identically (where operation + is considered in Zs, i.e. + mod 3). This situation
arises in eight cases. Hence, the contraction system consists of 48 equations.

The set I3 of unordered triplets of grading indices is decomposed into six orbits with
respect to the action of the symmetry group Hs. There are three 8-point orbits represented
by points ((0,1)(0,1)(0,1)),((0,1)(0,1)(0,2)), ((0,1)(1,0)(2,2)) and one 48-point orbit rep-
resented by ((0,1)(0,1)(1,0)), which lead to identically fulfilled equations. Remaining two
24-point orbits represented by points ((0,1)(1,0)(0,2)) and ((0,1)(1,0)(1, 1)) lead to two sets
of contraction equations. Let us note that the orbits of H3 and its subgroup SL(2,Z3) on the
set I3 coincide except the 48-point orbit which splits into two 24-point orbits of SL(2,Zs)
represented by points ((0,1)(0,1)(1,0)) and ((0,1)(0,1)(2,0)).

The contraction system Sp is now generated by the action of SL(2, Zs3) from two equations
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e((0,1)(1,0)(0,2)) and e((0,1)(1,0)(1,1)). These equations

[e01)(12)10)(02) (1 — w?) (w — 1) + €02)a1)€(01) 10y (w — 1) (w® — 1) 4+ 0] X710 = 0, (5.13)
[Eneneanan (1 —w) (W’ = 1) + anazneanon(l —w)(1 —w?) + 0] X5 =0, (5.14)

can be simplified and the whole system of 48 contraction equations can be written simply as

SP 1 E(0n)(12)4802)(10)a — E(n10)aE2)a1a = 0, VA € SL(2,Zs), (5.15)
St eonEnAganana — Eonanacanaza =0, VA € SL(2,Z3), (5.16)

where we have used the abbreviation (ka4 = €gijagna-

It turns out that the system of contraction equations Sp contains linearly dependent
equations which can be eliminated. It follows from the fact that quadruples of grading
indices [(01)(12)][(02)(10)] and [(01)(10)][(02)(11)] lie in the same SL(2,Zs)-orbit in the set
7?2 (the pairs of indices in the bracket [ | and the pairs of these brackets are unordered).
Remaining quadruples [(01)(21)][(10)(11)] and [(01)(11)][(10)(12)] lie in different orbits in Z?
and thus cannot be transformed to each other. Therefore, the equation of the subsystem S%

generated by the unit matrix can be written in the form

1 2
€(01)(10)XE€(02)(11)X — €(01)(10)€(02)(11) = 0, X= (0 1) . (5-17)
Adding this equation and the equation of S$ generated by matrix A = X

£(01)(10)X2E(02)(11)X2 — €(01)(10)xE(02)(11)x = 0, (5.18)

we get

E(01)(10)X2E(02)(11) X2 — €(01)(10)E(02)(11) = 0. (5.19)
Since X? = 1 holds, the equation (5.19) is the equation of S% generated by matrix A = X2
Hence, we conclude that the left cosets of SL(2,Z3) with respect to the cyclic subgroup
{1, X, X?} generate the triplets of dependent equations. By Lagrange’s theorem, the number
of these cosets is 24/3 = 8. In this way we obtained 8 equations (one to each coset) which
can be eliminated from the system S%. Therefore, the system of contraction equations Sp

for the Pauli grading of sl(3, C) consists of 40 linearly independent equations.

5.3 Finding the solution of Sp

We solve the system of contraction equations Sp using the Theorem 3.9. First of all we choose

the appropriate sequence of assumptions. The system Sp can be solved explicitly under the
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assumption that two of its variables do not vanish. Since all relevant contraction parameters

lie in the same orbit, we can choose the index k € Z of the first variable arbitrarily. In

order to find the appropriate second variable, we define the equivalence relation =* on the
set ZF := T \ {k} as follows
i,jeIl, i="j & (3reAr,(Aut(Tp)) (7 (i k) = (j k)), (5.20)

where (i j) € Z? denotes an unordered pair 4,7 € Z and 7 (i k) := (7(i) m(k)). We choose
the index & = (01)(10) and decompose Z* into nine equivalence classes Z¥, ..., Z¢ of the

equivalence =" listed in Table 5.2.

Table 5.2: The equivalence classes of =(01(10)

TF | (11)(12), (11)(21), (22)(12), (22)(21)
5| (01)(11), (10)(11), (01)(12), (10)(21)
5 | (02)(22), (20)(22), (02)(21), (20)(12)
T | (01)(20), (02)(10)

TE 1 (01)(22), (10)(22)

Tk | (01)(21), (10)(12)

TE | (02)(11), (20)(11)

¥ | (02)(12), (20)(21)

75 | (02)(20)

The solutions of Sp are found in five consecutive steps. In each of the following steps,
k = (01)(10) is fixed, and it is assumed that the corresponding ¢ # 0. Let in R™ further
g; # 0 be assumed. Then, in the next step, in evaluating R™"!, one finds the following:
the non—equivalence system S™ and previous assumption €, # 0 imply zeros on all positions
4, 5 =F i. It is advantageous to take pairs of indices from the three largest classes in Table
5.2, namely, (22)(21) € Z7, (10)(11) € Z¥, (02)(22) € Z¥, in order to evaluate the sets R°, R!
and R?, R? respectively.

Now, we list the five steps and then make more detailed explanation.

L R" = {e € R(Sp) | coya0) # 0, @221y # 0}
8% enaoagea@eya =0 VA€ Hs

2. R — {6 € R(SpuS?) | o110y # 0, €aoyan) # 0, Eo1)22) 7 0}
S gonanagananagonea =0 VA€ Hy
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3. R2={c € R(SpUS USY) | conyao) # 0, eaoyar) # 0}
S*: eonuoacaonana =0 VA€ Hy
4. RP={ceR(SpUS'US' US?) | c01)a0) # 0, (02)(22) # 0}
S eonanagoeya =0 VYA€ Hy
5. R'={eeR(SpUS’US'US*US?) | eonao) # 0}
S*: eonana =0 VA€ Hs
Step 1. In the rest of this subsection the parameters a,b,c,... are arbitrary complex

numbers. Explicit solution under the assumption (1)10) # 0, £(22)(21) # 0 can be written as

four parametric matrices. These matrices in R° can be equivalently replaced by renormalized

matrices R, == {9,¢9,€3,£} where
001 001wuadwd 0 0 1 d ad 1 1 a
000 O0O0O0 ¢ d 0 O bad bad bad bd b ab
1 00 00O0O0O0 1 bad 0 0 decba c¢ cba cba
L0 000 O0O0OO0OTO0OT1 L0 d bad O 0 dcba d ¢ 1
10 000000 O] 27 | ad bad dcba dcba 0 0 cba ac |’
1 00 0 0O0O01 1 bd c d 0 0 e 1
a c 00 0O0O00O0 1 b cba c cba ¢cb O 0
b d 010100 a ab cba 1 ac 1 0 0
0O 0 100 1 0 0 0 0 1 0 ad 1 0 a
0 0 bd 0 0 ad a b 0O 0 bd O O O O b
1 6d 0 0 0 ¢ O cb 1 bd 0 0 0 ¢ 0 ¢b
L0 0O 0 000 d 0 1 L0 0O 0 0 0 0O d0 1
3710 0 0 OO O O O)]”"* Jad 0O 0 O 0 0 0 ac
1 ad ¢ d 0 0 ac 1 1 0 ¢ d 0 0 0 1
0O a 0 00 ac 0 O 0O 0 0 0 O0O0 O
0O b ¢ 1 0 1 0 0 a b ¢ 1 ac 1 0 0

Step 2. Note that the system of 48 equations S° together with €(g1)(10) # 0 enforces zeros
on all positions from ZF. Moreover, the assumption eanan) # 0 and S enforces further 4

zeros. Then the assumption €1)10) # 0, €10)(11) # 0, €(01)(22) # 0 gives us a single solution:

001 ad 100
0 0cO0O0dOO
1 ¢ 001 e 00
R, =1{e'}, where &' = Z 8 (1) 8 8 g 8 8 (5.21)
1 de f0OOO0O
00 0O0O0O0OGO00@O0
000 O0O0O0O0© 0
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Step 3. Further solutions with assumption €110y # 0, €a0ya1) # 0, inequivalent to

those in R' and RY, are listed below:

e}

2
€7,

2
€gs

2
€x,

2
€4

2
€3,

2
Eg,

= {el,

nor

)

)

Y

s
COTV IO covZoooo ocoooQoooo
CO" VOO CO10ODDODODDOD DOV OOOO
COPLOCOCODOOC DO DDODDODOD OO VO OO
co-3Socococo co~J8cocoococ co—-Sococoo
= = Q Q ) )
TOO0OO 30OV 3 I0O00 300 3 IHOoOOoO g oW
OO OO H LAY A4 OO =10 = U 4000 A0
OO0 OCO1TO0OO0O0O0OD ODOO—AOO OO
OO~ 30000 OO " 3I0CO0CO0OOD OO IO OO
I | Il
a N o <f [a\INe)
W w )
i i co v 3oocoo
OO VIO OO L OO ~s
coowBoocoo
OO0 VO OO OO0 O
coTVoocoo
COOTV OO0 OOV OOOO
o o co-H 3ooco o
OO+ 3OO0 OO H 3OO0 OO
O =N O
S — O O 3
SoO0Oo IV I3 Sco0o0 IO I S T = S
OO MO U AN MO Mo v HHOO ~ES v
OO0 OO TO0OO0OO0OO0OD OOH—AOO OO
OO~ 30000 OO~ 30000 OO0~ 3I 0000

001 ad 000

0 0 cd O e 00

1 ¢ 001000

0eO fO0O0O0O

000O0O0O0O0OQO0
0 00O0O0O0OO0OQ 0

)

1 a 0 00 O
1

0
0 00

0 00 O

1

1

0

1 00 O
a 1 0 O

ab 0 ¢ ab
001 ab 0 0 0 O

000 O

0 00 O

0 00 O

C

1
00 b ab 0 00 O

0

o~

[a\lar)

A~

Step 4. Now we can of course ignore the equations S! because they are satisfied identi-

cally due to the system S2. We list the next set

3€1}

3
€3,

3
€9,

={el=

nor

73



)

O OO OO O OO OO0 oo oo oo
SO O OO O OO OO0 oo oo oo
O —=H O OO OO o =+ O O O o oo
O OO OO DD OO OO0 oo oo oo
S OO OO WO Oo oo oo oo
—S O OO OO OO0 H 3O o oo oo
SO OO 1T OO OO 3o o —HOoO o
OO+ I OO OO OO 100 +H0O 0o

I I

3&4 3@%
SO OO OO OO OO o oo oo
O OO OO OO0 O—H OO o oo
OSOS—H O O OO OO A+H OO oo
SO OO DD DO OO OO oo oo oo
TS OO DD O DODODO DO O OO
— O O O OO OO HO0O OO oo oo
SO OO OO OO "I 1O OO0 oo o -+ O
OO T OO0 OO0 0O o oo

o™ —

[aelar)

Step 5. The systems S°, §?, §? together with £(g1y10) # 0 give us 12 zeros and further

20 non-trivial conditions. Adding two zeros following from Sp we obtain 3 solutions:

= {51117 5%7 5§}

nor

)

001 aO0OO0O0O0
00 b c0O0O00O0
1 000000
a c 0 00O0O00O
000O0O0O0OO0O© O
0 00O0O0O0O0O© O
000O0O0O0O0®O
000O0O0OO0O0® O

£

)

0010000 a

00 0b0O0cO

1 0000O0GdO

0b0O0O0O0O0 e

000O0O0O0OO0OTO
000O0O0OO0OO0OO
0O cdOO0OO0O0O
a 00 e 0000

<t —

001 0O0wa0O0

0000O0O0OO0O© O
1 000O0©DbsO0O
000O0O0O0O0O@ 0
000O0O0O0OO0O©O
a 0b 00O0O0O0
000O0O0O0OO0O© O
000O0O0O0OO0O© O

<t

Since all pairs of relevant indices lie in one orbit (the whole set Z), the system S* : g, =

0, Vk € 7T enforces zeros on all 24 positions. This precisely means that now only the trivial

zero solution is inequivalent to solutions in RY, R!, R?, R3, R*, i.e. we have evaluated the

whole R(Sp) up to equivalence.
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5.4 Solutions

Once we have solved the system Sp, we have to list the complete set of its inequivalent
normalized solutions. Therefore, we take now each solution matrix and discuss all possible
combinations of zero or nonzero parameters. Then we divide the sets of solutions R in new
sets according to the number of zeros v(g) in contraction matrices and eliminate equivalent
solutions from these sets like in following examples. In this way we get 188 non—equivalent
contraction matrices. The results are given in the Appendix A.1.

0

oo and let all its parameters be

Example 5.1. For instance, take the matrix 3 in the set R
non-vanishing. This is clearly the only solution of Sp without zeros, i.e. v(e)) = 0. Our
question is whether or not it is possible to normalize it to the trivial contraction matrix g
which has all relevant epsilons equal to unity. Then the resulting graded contractions would
be isomorphic to the algebra sl(3,C) for arbitrary nonzero values of parameters in 5. We
have verified that the system of 24 equations corresponding to the matrix equality eJe o = g
has a general solution in C\{0}. The matrix €} with nonzero parameters is then equivalent

to the trivial solution £y and the corresponding graded contraction is isomorphic to sl(3, C).

Ezample 5.2. The set R}, contains six solutions with 16 zeros. These solutions are given by

contraction matrix ! (5.21), where only one of the parameters a, b, ¢, d, e, f is equal to zero

and the rest is considered nonzero. The projections of these solutions are

1.11. 1111 L.1111.
il i il
. . 10 o . 01 . . o .

N N 1. _ (2l a1 1....1 — (21 21 1....1.
Ca=i.1.... —(5f)(22>» Ee= 1.1 —(5f)(22)a Ce=1.1...: )
1111, 0. 1111 11.1°
SEREE L1 REERE
11, .11: 99 1.1 01 11,011

a1 1....1. _ (2l 2l 1....1 _ (2l 2l 1. . ...
& = il —(5f)(10>7 €a= 1.1 _(5f)(10), Er= 1.1 )
1111 1.11 111 .

where zeros are shown as dots. Except €!, they are all generated by action of Hy on the
solution }. Thus, for example, solution e, and solution (5})@ 2) (equivalent to the solution
5}) have the same supports. Hence, they are both solutions with 16 zeros of the system
Sp U SY under the same assumptions gonoy 7 0, aoyany # 0, €p1)22) # 0. Since all such
solutions are g}, ... 5} and since €}, . .. ,5} have different supports, the solution (e})(% 2) has

to be strongly equivalent (since we have used the set R = which was already normalized,

nor
in the case of set R! there is an equality instead of strong equivalence) to the solution &!.

Therefore, the only non—equivalent solutions with 16 zeros in the set R}

1 1
nor ar€ £, and 5.

These five—parametric solutions can be further normalized. For example, the contraction
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matrix £} is strongly equivalent to one-parametric contraction matrix marked as £'%?
labl.. g1l
i c 1d 111%
c. . €. q .o a: Q.
1 ~ 16,2 __ _ 1 _wag
=141 x e =|1g [ maeey i =—— 0, j€l (5.22)
lde . tit: Qi+j

In order to see this, it is sufficient to verify the following system of equations:

ap1010 q aa01a20 —1 ba01a11 —1 ap1Q22 1
— 4 — L, Vv — 4 — 4
ai 21 a2 a20
(5.23)
Qp2010 Ap2a22 ai1p0ai1 a10a22
c =1, d =1, =1, = 1.
Q12 a21 @21 ap2

This system has a solution in C\ {0} for ¢ = .

5.5 Higher—order identities

In order to determine which solutions are discrete, we construct higher—order identities. As

an example of a third order identity for the Pauli grading one can give the following equation:

E(01)(10)E(01) (11)€(02)(22) = €(01)(20)€(01)(22)€(02)(10)- (5.24)

It can either be deduced directly from the system Sp, or we can use the fact (following from
example 5.1) that all solutions with all nonzero relevant elements can be written in the form

of the normalization matrix «. Hence the identity

a(01)@10) 401)@(11) A(02)422) _ 4(01)%(20) A(01)4(22) 4(02)%(10) (5.25)

Ay 02 4@ a1y o) ()

is evidently satisfied. Putting the contraction matrix £!%? (5.22) into the identity (5.24) we
get ¢ = 1. Thus, the identity (5.24) is violated by any contraction matrix €'%? with ¢ # 1
and such matrix corresponds to discrete contraction.

Applying the symmetry group Hj to (5.24), we can write the 24-point orbit of higher-order

identities in the form

€(01)(10)A€(01)(12)AE(02)(21)A = €(01)(22)AE(01)(21)AE(02)(12)A VA € Hs. (5-26)

Note that the action is effective only for 24 elements of the subgroup SL(2,Zs).

We have found a set of second and third order identities. In all we have 104 such identities,
24 of them being of second order. Table 5.3 lists their representative points and the number
of the resulting identities under the action of SL(2,Zs). For each solution of the system Sp

we were able to decide that one of two exclusive alternatives holds:
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e cither we found that a solution violates some of 104 identities listed in Table 1 and

therefore, it is discrete

e or we explicitly found a continuous path of the form (3.34), hence the solution is

continuous

Thus, it was not necessary to investigate the completeness of our set of higher-order iden-
tities. Among all 188 solutions there were 81 continuous and 99 discrete ones. Remaining
8 contraction matrices were continuous only for isolated values of its parameters, otherwise

they were discrete.

Table 5.3: Orbits of 2nd and 3rd order identities for the Pauli grading

Order Representative equation Number of equations
2 £(01)(10)€(02)(11) = £(01)(20)€(02)(21) 24
3 E(O(10)EODINEED(12) = E(01)(20)€(01)(22)E(01)(21) §
3 €(01)(10)€(01)(12)€(02)(21) = €(01)(22)€(01)(21)€(02)(12) 24
3 €(01)(10)€(01)(11)€(02)(21) = €(01)(22)€(01)(21)€(02)(10) 24
3 €(01)(10)€(01)(11)€(02)(22) = €(01)(20)€(01)(22)€(02)(10) 24

5.6 Identification of contracted Lie algebras

The set of 188 inequivalent solutions of the system of contraction equations for the Pauli
graded Lie algebra sl(3,C) was divided into 13 groups according to the numbers v of zeros
among 24 relevant entries in the contraction matrices . These solutions are denoted £,
where the second index ¢ is numbering solutions with the same v. Correspondingly, the
contracted Lie algebra corresponding to solution £”* is denoted P, ;. The following table

gives the number of solutions € corresponding to each v:

Among the 188 solutions there are two trivial solutions. One trivial solution 2!, with 24

\15\16\17\18\19\20\21\22\23\24
\7 \7 \17\36\45\42\21\7 \1 \1

12
2

Number of zeros v H 0 ‘ 9
Number of solutions H 1|1

zeros, corresponds to the 8—dimensional abelian Lie algebra while the other trivial solution

0,1

g™l without zeros, corresponds to the initial Lie algebra sl(3,C). Among the remaining
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186 nontrivial solutions, 11 solutions depend on one nonzero complex parameter a and two
depend on two nonzero complex parameters a, b. The corresponding parametric families of
Lie algebras — the parametric Lie algebras — are denoted by P,;(a), P,;(a,b). Each of
these parametric Lie algebras will be counted as one algebra.

We started our identification procedure with 186/13 (it means 186 algebras, 13 among
them parametric) non—abelian Lie algebras. The results of the direct decomposition were

following:

- 70/1 algebras allowed the central decomposition. Further, only non—abelian parts P (with

dimensions lower than 8) of these algebras P, ; were investigated.

- 12 algebras were decomposable into the direct sum of two non—abelian indecomposable

ideals.

Thus, we have to identify 198/13 indecomposable Lie algebras. These algebras are now

divided according to their dimensions as follows:

Dimension

3

| slef 7 | s
Number of algebras H 11 ‘

5
19|12 | 42/1 | 110/12

The computation of derived, lower and upper central series reveal that there are 24/4

4
14

solvable and 174/9 nilpotent Lie algebras. These algebras are divided according to their
numerical invariants inv(P) (4.69) into 18 classes of solvable (non-nilpotent) and 118 classes
of nilpotent Lie algebras. Since all investigated algebras are solvable, we can skip the Levi
decomposition which is trivial in all cases.

We have found 4 isomorphic algebras, which can be omitted, in classes of solvable Lie
algebras and 52 isomorphic algebras in classes of nilpotent Lie algebras. Moreover, with
respect to our convention in 4.10, we extend the definition of following two nilpotent and two

solvable parametric Lie algebras for zero value of parameters:

Pi55(a,0) := 7316,2(%), Pi122(0,0) := 731577(1%2)7

5.27
P18,25(0) = 7319,26, P15,6(O) = P16,6- ( )

The nilpotent Lie algebras Pig25(a) and Pig 26 are not in the same inv(P)—class. Thus, after
the extension we lose one nilpotent class. Therefore, we have now 24 — 6 = 18 solvable Lie
algebras in 18 classes and 174 — 54 = 120 nilpotent Lie algebras in 117 classes. Since all
classes of solvable Lie algebras consist of one algebra only, the solvable Lie algebras are now
identified up to ranges of parameters for the parametric Lie algebras. For these solvable

non-nilpotent Lie algebras nilradicals are computed and listed in the resulting tables.
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There are still two classes of nilpotent Lie algebras which contain at least two algebras.
The first class consists of algebras Pig31 and Pa11. The second one consists of algebras
Piss(a), Pirg and Pi712. The computation of Casimir operators shows that the Lie algebra
Pao,11 has four independent Casimir operators of orders 1,1, 2,2 while the Lie algebra Pig 3
has four independent Casimir operators of orders 1, 1,2, 3. Therefore, these algebras are not
isomorphic. Since all three algebras in the second class have the same Casimir operators,
we have to use invariant function to distinguish them. Comparing the following tables with

invariant function ¢ («)

Piss(a),a # 0 Piro Pir.12
o 0 Qo 0] -2 o 0 —%
o(a) | 1916 d(a) | 1917 | 16 o(@) | 19] 17 | 16

we conclude that the Lie algebras Pig3(a), Pi7,9, Pi712 are not isomorphic. Blank spaces in
the tables denote general value of complex variable «, different from all previous listed values,
e.g. it holds ¥p g ,(a) () = 16 for o # 0 while ¥p,, ,(a) = 16 for o # 0, —2.

Now, we have identified all of the 198/13 indecomposable algebras up to ranges of param-
eters for parametric algebras. We get 18/3 solvable non—nilpotent Lie algebras and 120/6
nilpotent ones. These indecomposable Lie algebras are listed together with their invariant
characteristics in Appendix B.1. All resulting decomposable Lie algebras can be written as
their direct sums. There are 8 mutually non-isomorphic decomposable Lie algebras among

the graded contractions of Pauli graded sl(3, C):

solvable and discrete: nilpotent and discrete: nilpotent and continuous:
/ / / !/ / /
7318,32 = 7321,9 D 7321,97 7320,10 = 7321,2 D 7323,1: 7321715 = 7322,3 S 7323,1»
/ / / !/ / /
7319736 = 7)21,9 S¥ 7)22,17 7320,21 = 7)22,1 ¥ 7322,17 7)22,2 = 7)23,1 ¥ 7)23,1 @ 2A17

Pao20 = Py g ® Poz 1 & A, Para = Pagy @ Pozy @ A,

where A; stands for one-dimensional abelian Lie algebra. Remaining decomposable algebras

are nilpotent and isomorphic to those listed above:
Pao 22 = Pao 21, Poi 10 = Parg = Pora, Pazg = Paso.

For the purpose of completeness, we also list the remaining isomorphisms among indecom-

posable nilpotent Lie algebras:
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!/ ~J / ~J / / ~J / ~J / / ~J !/ ~J /
7)22,5 - 7)22,4 = 7322,37 le,s - 7)21,5 - 7)21,37 P21,18 - 7)21,13 = 7)21,117

Porar = Paraa = Pay o, P0,29 = Pao26 = Pao 195 Paoos = Paozs = Pao 4
Paoga = Paois = Pao s Pao,37 = Pao 32, Pao,34 = Paost,
Pr939 = Pig 33 = Pig 31, Pao 27 = Paois = Paoir, Pao 36 = Pao 33,
Pig,a0 = Pio3s = Prg 25, Pao,30 = Pao,25 = Poo12, Pig31 = Pig 26,
P35 = Prgza = Proos, Pisss(a) = Priggo(a) = Pigas(a), Pigsr = Prgso = Pig,6-

Let us note that isomorphic graded contractions were always of the same type, i.e. all discrete
or all continuous.

The overview with number of results is summarized in Table 5.4. The number of con-
tracted Lie algebras are divided there according to the dimension of their non—abelian parts

and their types.

Table 5.4: The number of nontrivial graded contractions of the Pauli graded sl(3,C)

Dimension of Solvable Nilpotent Total
non—abelian part | Indec. | Dec. | Indec. | Dec.

3 1

4 1 1

5 1 4

6 1 9 1 11

7 4 28 1 34

8 11 2 77 3 93
146

Including two trivial contractions we have obtained 148 non—isomorphic contracted Lie al-
gebras as graded contractions of the Pauli graded Lie algebra sl(3,C). Among them there are
7 one—parametric and 2 two—parametric families of Lie algebras. We used the invariant func-
tions to determine the ranges of parameters for one—parametric families as in the following
example. These functions are given in Appendix C.1. Let us note that, due to higher dimen-
sions of corresponding matrices and number of their parameters, a proper determination of

invariant functions for two—parametric families could not be obtained.

Ezample 5.3. For the one-parametric Lie algebra P;713(a), a # 0 with nonzero commutation

relations:
[63,66] = €1, [63,67] = €9, [64,68] = €1, [65,68] = €9,

e, 7] = e3, [es, €s] = —aey, [er,e5] = e5,

(5.28)
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we have found an isomorphism:

1
Pizaz(a) = Pizas (a) ) (5.29)

which leads to the following restriction for the parameter a:
a€Cyp:={2€C|0<|z]|<1}U{z€C||z| =1,Im(z) > 0}. (5.30)

Numerical invariants are different only for value a = —1:

inv(Prr13(a)) = (850)(8520)(258) [19,19,8,9,7,18] 4 for a = —1,

5.31
inv(Piras(a)) = (850)(8520)(258) [17,19,8,9,7,18] 4 for a # 0, —1. (5:31)

In order to distinguish among algebras given by different values of the parameter a in the set

C'0, we compute invariant functions ¥°(a), ¥ (a) and ¢°(a). Functions ¥°(a), ¢°()

a#0 a#0
Q 0|1 «Q
PO>a) || 16 | 8| 7 Wa) || 15

are in this case useless. However, the invariant function ¥ (a)

a=—1 a=1
o 1]0|-1 o -1]0 |1
(o) |[19]19 | 17 | 16 Yla) || 19 [ 19|17 | 16
a#0,£1
o 0|—a|—-1]|-1]1
(o) |19 17 | 17 | 17 | 17 | 16

is different for different a,b € C;y and, therefore, there is no isomorphism among the Lie

algebras Pi713(a) with a € Cyy. In such case, we use a notation a € Cj,.
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Chapter 6

Gell-Mann graded contractions of

sl(3, C)

In this chapter we find and identify all graded contractions of the Gell-Mann graded Lie
algebra sl(3,C). Since the Gell-Mann grading is not finest we can expect less solutions than

in the case of the Pauli grading.

6.1 Gell-Mann grading of sl(3,C)

The Gell-Mann grading of the Lie algebra sl(n,C) (also known as the orthogonal grading)
was first described in [47]. This fine group grading decomposes sl(n, C) into n(n — 1) one-
dimensional grading subspaces and one (n — 1)-dimensional abelian subalgebra. In the
defining n—dimensional representation of sl(n,C), the bases of these grading subspaces are

formed by generalized Gell-Mann matrices:

Mjk = _Z(E]k: — Ekj)7 Njk = Ejk + Ekj7 1< ] <k < n, (61)

where Ejj, is the n x n matrix whose element on position j, % is equal to one and other
elements are equal to zero. The basis of abelian subalgebra is formed by diagonal traceless

matrices
Dj :Ejj_Ej—l—l,j—l—lu ]: 1,2,...,71-1. (62)

The Gell-Mann grading of the Lie algebra sl(3, C) has the form:

I :sl(3,C) = Loot @ Li11 ® Lior ® Loi1 @ L11o ® Loio @ Lo,
= spang{e, es} @ Cez ® Cey @ Ces @ Ceg @ Ce; @ Ceg (6.3)

where the basis (ey,...,es) is in the defining 3—dimensional representation formed by Gell-

Mann matrices [26]. Since the computation of the graded contractions does not depend on a
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concrete choice of bases for grading subspaces, we took the following basis:

1 0 0 00 O 010 0 01

er=10 —1 0], ea=10 1 0], es=|1 0 0}, e=1020 0],
0O 0 O 00 -1 0 00 1 00
0 0O 0 -1 0 00 0 0 0 —1

es=10 0 1}, e=11 0 0], es=(0 0 =1}, es=10 0 O
010 0O 0 O 01 0 10 0

(6.4)
The commutation relations of sl(3,C) corresponding to this basis are in Table 6.1.

Table 6.1: Commutation relations of the Gell-Mann graded sl(3, C)

L €1 €9 €3 €4 €5 (&1 €7 €g

€1 0 0 —266 —E€g €7 —263 €5 —€4

€9 0 0 € —E€g —267 €3 —265 —€y4

es 2eg —eg 0 —er —eg 2e;q —ey —es

€4 €g €g €7 0 —€g —€5 €3 2(61 + 62)

€5 —€7 267 €8 €6 0 €4 262 €3

(&1 263 —e€3 —261 €5 —€4 0 —eésg €7

e —es5 2es es —es —2e9 es 0 —eg

es e €4 es —2(e1 + €3) —e3 —ey €6 0

The index set [ for the Gell-Mann grading of sl(3, C) consists of 7 ordered triplets (4, j, k),
where 4,5,k = 0,1 with the exception of (0,0,0) and the commutative operation ¢ is the
componentwise addition (mod 2). Thus, the grading group is the additive abelian group Z3
and I =73\ (0,0,0).

The symmetry group Ar, (Aut(I'g)) of the Gell-Mann grading was described in detail in
[34, 36]. This symmetry group Ar,(Aut(I'¢)) is isomorphic to the stability subgroup SLg
of the point (0,0, 1) in the finite matrix group SL(3,Z,), i.e.

a b e
SLg = c d f a,b,c,d,e, f € Zy, ad—bc=1 (mod 2) » . (6.5)
0 0 1

The number of elements in SLg (24) can be easily counted [I] as the order of the group
|SL(2,Z2)| = 6 multiplied by 4. The action of SL¢g on the index set [ is given as follows. If
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(Aut(T'p)) is the permutation of the index set I C Z3 corresponding to the matrix
A= (0 § {) € SLg, then for (i, ], k) € I it holds

7TA(¢7j7 k) = (i7j7 k)A = ((ZCL—FC]) mod 25 (Zb+]d) mod 2, (Z€+jf + k) mod 2)- (66)

Let us note that the ordering O of the index set I is given by the order of grading subspaces
in (6.3) and O(I) = {1,2,...,7}.

6.2 Contraction system for the Gell-Mann grading

Using the symmetry group SLg, we construct the system of contraction equations Sg for
the Gell-Mann grading of sl(3,C). At first, we describe the orbits of the action of SLg =
Ar.(Aut(T'g)) on the sets I, I2, I3

The index set I = Z3 \ {(0,0,0)} consists of two orbits. One orbit is formed by a
single point (0,0, 1) and the second — six—point orbit — is represented by point (0, 1,0). It
corresponds to the fact that the symmetry group Aut(I'g) leaves the first grading subspace
invariant while the rest of the grading subspaces are permuted.

The set of unordered pairs of grading indices I? splits under the action of SL¢ into five
orbits. Two of them are formed by irrelevant pairs of grading indices: 6—point orbit rep-
resented by ((0,1,0)(0,1,0)) and 1-point orbit represented by ((0,0,1)(0,0,1)). Remaining

three orbits are formed by relevant pairs Z of grading indices:

e 12—point orbit represented by ((0,1,0)(1,0,0)),

e G—point orbit represented by ((0,1,0)(0,0,1)), corresponding relevant contraction param-
eters will be marked by superscript o,

e 3—point orbit represented by ((0,1,0)(0,1,1)), corresponding relevant contraction param-

eters will be marked by superscript e.
The irrelevant parameters form the diagonal of the contraction matrix £ and thus its
explicit form with respect to the chosen ordering O is:

o

001)(011)  €(001)(110) € (001)(010)

(@)
—~o

0 €oona11)  E(ony(ion) €

( ( 001)(100)
€(001)(111) 0 Eainon)  E(O11)  E(111)110) EA11)(010)  E(111)(100)
€{oon)(t01) E(111)(101) 0 €aon(o11)  £(101)(110)  €(101)(010)  E(101)(100)

€= | €ooryo11) E@1n)(o11) E(101)(011) 0 €011)(110)  €{o11y(010) E(011)(100) | - (6.7)
€o1)(110)  €(111)(110)  E(101)(110)  E(011)(110) 0 £(110)(010)  €(110)(100)
€on)(010) EA11)(010)  E(101)(010)  E(o11)(010) E(110)(010) 0 £(010)(100)
€001)(100) E(111)(100)  E(101)(100) E(011)(100) E(110)(100)  E(010)(100) 0
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Contraction equations are labelled by unordered triplets of grading indices I3. The equa-

tion e((7, 7, k)(l,m,n)(p,q,r)) € Sg is given by

E(i.jk)(Lpmtantr) € (Lm.m) (p.g.r) [Tijk[Timn, Tper]] + cyclically =0, 65)

Vxije € Liijky, YTumn € Lamm)s VOpgr € Lipgr),

where the word ”cyclically” means that the two remaining terms are obtained from the first
one by permutation of its grading indices. Since [@;jk[Zimn, Tpgr]] € Lititp j+m+qhtntr and
Looo = {0}, the equation is fulfilled for any unordered triplet ((4,j, k)(l,m,n)(p,q,r)) for
whicht+{+p=0,7+m+q=0and k+n+r = 0, where the operation + is considered in
Zo, i.e. + mod 2. Moreover, if there are two grading indices equal in the unordered triplet
((,7,k)(l,m,n)(p,q,7)), then the corresponding equation has only two terms. And if these
indices correspond to the grading subspace which forms an abelian subalgebra of sl(3, C),
then the equation (6.8) is also identically fulfilled.

The set I? of unordered triplets of grading indices is decomposed into 11 orbits with
respect to the action of the symmetry group SLg. The representatives and the number of
points in these orbits are summarized in Table 6.2. Since all grading subspaces form abelian
subalgebras of sl(3,C), only the orbits of the last column lead to nontrivial contraction

equations.

Table 6.2: The representatives and the number of points in orbits of action SLg on I3

Trivial equations Nontrivial equations
(0,1,0)(0,1,0)(1,0,0) | 24 || (0,1,0)(0,0,1)(0,0,1) | 6 || (0,1,0)(1,0,0)(0,1,1) | 12
(0,1,0)(0,1,0)(0,1,0) | 6 | (0,1,0)(1,0,0)(1,1,0) | 4 | (0,1,0)(1,0,0)(0,0,1) | 12
(0,1,0)(0,1,0)(0,1,1) | 6 | (0,1,0)(0,0,1)(0,1,1) | 3 | (0,1,0)(1,0,0)(1,1,1) | 4
(0,1,0)(0,1,0)(0,0,1) | 6 | (0,0,1)(0,0,1)(0,0,1) | 1

We write the contraction equation corresponding to the point ((0,1,0)(1,0,0)(1,1,1)).
Acting by SLg on this contraction equation we generate 4 equations which form the first

part S, of the system Sg. Using the commutation relations (Table 6.1) we get
+ 6?101)(100)5(111)(010) les, [es, ex]]+
+ el w000 (€3, [e7, es]] = 0,

5?011)(010)5(111)(100) e7, [es, €3]]
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5?011)(010)5(111)(100)(_262) + 5?101)(100)5(111)(010)(261 + 2ep) + 5?111)(110)8(010)(100)(_261) = 0.

Since e; and es are linearly independent vectors, we obtain the following two—term equations

5?011)(010)5(111)(100)1 = f?101)(100)5(111)(010)1 = ff111)(110)5(010)(100)1~ (6.9)
e b b

This comprises two independent equalities a = b, b = ¢ and one dependent a = ¢. Considering

the action of SLg on Z?2, one can see that the indices of the terms a,b,c lie in the same

12-point orbit. Moreover, the matrix X = (% é §> transforms the equation b = ¢ into
the equation a = ¢ and the matrix ¥ = (gé?) transforms b = ¢ into a = b. Thus,

the whole S}, is generated from the equation b = ¢ by action of SLg. Since the stability
subgroup H = {1, X,Y,Y? XY, XY?} of the point ((0,1,0)(1,0,0)(1,1,1)) provides all six
permutations of the terms a, b, ¢, each of four left cosets of SLs — with respect to the group
H — generates six linearly dependent equations. Among these six equations only two are
linearly independent, therefore, we get 8 linearly independent equations.

The representative point ((0,1,0)(1,0,0)(0,0,1)) contains the index of the 2-dimensional

grading subspace Lgo;. Therefore, it leads to two equations

£(101)(010)€ (001)(100) [e7, [es, ei]]+€(011)(100)5?001)(010) [es, [ei, 67“+€(()001)(110)5(010)(100) [e:, e, es]] = 0,

where ¢ = 1,2. Using the commutation relations (Table 6.1) we have

o

<_5(101)(010)€ 001)(100) — 5(011)(100)5?001)(010) + 26?001)(110)5(010)(100))‘53 =0,

o

(—€qon)(010)€ 001)(100) T 25(011)(100)5((3001)(010) - E((3001)(110)5(010)(100))63 =0.

By summing and subtracting these equations we obtain new two—term equations

€(001)(100) (101)(010) = E(001)(010)€(011)(100) = E(001)(110)€(010)(100) - (6.10)
o b M

Considering the action of SLg, the matrix X = <g é §> transforms the term a into the term
b while the term c is unchanged. In fact, the index of the term ¢, i.e. [(001)(110)][(010)(100)],
lies in 12-point orbit in Z? while the indices of a,b belong to the one 24-point orbit. The
stability subgroup of ((0,1,0)(1,0,0)(0,0,1)) is a cyclic group {1, X} and, therefore, the
whole system S% consists of 24 linearly independent equations generated from b = ¢ by

action of SLg.
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The last representative point ((0,1,0)(1,0,0)(0,1,1)) leads to three-term equation

£(111)(010)€(011)(100) [€7, [€8; €5]] + 5(()001)(100)5@11)(010) [es, [e5, e7]]+
+€(011)(110)€ (010)(100) €5, [e7, es]] = 0,

(2\5?001)(100)52011)(010)1 — £(111)(010)£(011)(100) ~ £(011)(110)£(010)(100) ) €4 = 0. (6.11)

v

" vV VvV
a b c

The indices of b, ¢ belong to the same 24—point orbit, while the index of a belongs to 12—point
orbit in Z2. The matrix Z = (é g ?) € SL¢ transforms b into ¢ while a is preserved. Since
the stability subgroup of ((0,1,0)(1,0,0)(0,1,1)) is {1, Z}, we get 12 linearly independent
three-term equations by the action of SLg on (6.11).

Thus, the system S¢ consists of the following three subsystems:

Se: €(101)(100)AE(111)(010)4 = E(111)(110)4E(010)(100)4, VA € SLg, (6.12)
SZ © €0001)(010)AE(O11)(100)4 = Eo01)(110)AE(010)(100)4, VA € SLg, (6.13)

SE © 2€5001)(100) AE011) (010)4 = E(111)(010) A (011)(100)A + E(011)(110)AE (010)(100)4, VA € SLg, (6.14)

where we have used the abbreviation ;x4 = €(ijamna-

Observing the form of terms in these subsystems and considering that the contraction
parameters €,c°,¢® belong into the different orbits, it is obvious that equations from the
different subsystems are linearly independent. Thus, the contraction system S¢ for the Gell-
Mann graded Lie algebra sl(3,C) consists of 44 linearly independent equations. 32 of these

equations are two—term equations and remaining 12 are three-term equations.

6.3 Finding solution of S;

Using the Theorem 3.9 we solve the system of contraction equations Sg. First of all we
choose the appropriate sequence of assumptions. These assumptions are chosen in order to
enforce as many nonzero’s among the contraction parameters as possible while €10(100) is
considered nonzero. The solutions of S are found in seven consecutive steps. Let us note
that if there were any nonzero parameters in solution, it was always possible to renormalize
them to 1, i.e. to find strongly equivalent contraction matrix with units on their positions.
Other parameters which are arbitrary complex numbers are denoted by a, b, ¢, d,e, f.

Now, we list now the seven steps and then make more detailed explanation.
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7.

80

31:

82:

S ¢

84:

85

= {e € R(Se) | €010)(100) 7 0, €{oo1y01) # 0}
D E(010)(100) A€ (po1y(101)a = 0 VA € SLg
= {e € R(S¢ US") | e010)(100) # 0, €l111y(110) 7 0}

£(010)(100) A€ (11111004 = 0 VA € SLg

={e € R(Sc US° US") | £(010)(100) # 0, €Qoo1y010) 7 0 £(1on)(110) # 0}
(010)(100)A5((3001)(010),45(101)(110),4 =0 VAe SLg

={e € R(Sc US US"US?) | €010)(100) # 0, £{001y(010) 7 0}
(010)(100)A5(()001)(010)A =0 VAe SLg

= {e e R(ScUS " US' US> US?) | i010)100) # 0, €inyaon) # 0}

€(010)(100)AE(111)(101)4 = 0 VA € SLg

= {8 S R(SG U SO U Sl U 82 U Sd U 84) ‘ €(010)(100) 7é 0}
: 10004 =0 VA€ SLg

R =R(SqUS'US'US?US*US US?)

Step 1. The explicit solution of the system Sg under the assumptions €io)100) 7 0 and

€ {001)(101) # 0 is given as one parametric matrix. All parameters which do not allow the zero

value can be renormalized to 1. Thus, we have R? = {0}, where
01 1 a a 1 a
1 0 b ¢ ¢ ¢ b
150 1 b 1 0
fl=la ¢ 1 0 ca ¢ a
a cb b ca c ba
1 ¢ 1 ¢ ¢ 0 1
a b b a ba 1 0

Step 2. The non—equivalence system S° has 24 equations. Solutions of Sg and S° under

the assumptions €(i0)(100) # 0 and 5?111)(110) # 0 are described by 3 parametric matrices.

After normalization we have Rl = {el &l l}, where
0000001 00000 ad0© 00 a 00000
0000111 0000111 a 00 a al 11
00000O0O01 0000aal 0a0a001

e1=]0000 11 1|,e5=]00 000 10f,e5=]0a a 00 10
0101001 01 a00ad0 0100000
0101001 a 1 a1l a 01 0101001
1111110 01100710 0110010
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Step 3. The solutions of S¢ and 36 non-equivalence conditions S° U S' under the
assumptions £(10y(100) 7 0,5‘(”001)(010) # 0, and £(101)(110) # 0 are given by two parametric
matrices R? = {e? e2}. These assumptions were chosen in order to separate the solution &?
which is a consequence of three—term equations. Let us note that solutions of this type do

not appear if only two—term equations are considered.

00 0 001 0 00 000 1 0
00 0 000 a 00 000 -1 1
00 0 010b fab+13 00 001 1 0

e=10 0 0 000 0 , =10 0 000 0 O
00 1 000 0 00 100 1 0
10 b 000 1 1 -1101 0 -1
0 a 3ab+3 0 0 1 0 01 000 -1 0

Step 4. Assumptions £(g10)(100) 7 0, {01010y 7 0 lead to the solutions R, = {e}, 3},
00 0O0O0OT1FQO0 0 a 00010
00 0O0O0uad O a 0000 cd
000O0O0UWbDO 00 0O0O0O0O0
e=[00000¢c0]|, e&s=]0000000
000O0O0GCdSO 00 0O0O0O0O0
1 a b c d 01 1 ¢ 00001
00 0O0O0OT1FQO0 b d 00010

Step 5. Equations S® are satisfied identically due to S*. Thus, we evaluate the solutions

R = {e1,€3} of S¢ and S°US'US2US* under assumptions € (g10)(100) # 0 and e(111y101) 7 0:

nor

—

I
coococoocoo

0O O oo~k OoO o

0

o

o O OO

_ o O O a OO

SO, O O O

O O OO O oo

— = O == OO

0
1
0
-1
—a
a

0

0
1
-1
0
—b
0
b

0
0
—a
—b
0

a

b

o Q O ~= O

O = "o O = O

Step 6. There are six parametric solutions of S¢ with assumption €gigy100) # 0, in-

equivalent to those listed above. After renormalization of nonzero parameters we have the

set

R5

nor

_ 5 5 5 5 5 _5
- {€1>52’€37€47557€6}
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000O00O0O0O 000O00O0O0O 0000O0TO0O
000O0O0O0O 000000 a 000O0O0u adhb
000a0Db c 000O0O0O Wb 0000O0TO0O

&=100a 00del|l,s5=[000000¢c|,e5=]0000000O0],
000O00O0O 000O00Od 0000O0TO0O
00bdoO0OO0O 1 0000O0GO0 1 0a 00001
00 ce 010 0abcdlO 0b0O0O0T10
0000O0O0O 0000O0TOO 0a 00000
00000 a0 0000O0TO0O a 000000
0000O0T®DBO 0000O0TO0O 000b 000

e&5=100000 ¢ O0|,2=]000000O0|,eg=[002b0000
0000O0TGCdHO 00000 ad}db 0000O0O0O
0 abecdO01 0000ado01 0000O0O01
0000O0T1O0 0000©DBGT1O0 0000010

Step 7. Finally, the non—equivalence system S° = {5(010)(100) 21=0|VA € SLc;} enforces
zero value of all unmarked contraction parameters and ensures fulfilment of all previous non—
equivalence systems. Due to these 12 zero contraction parameters, all two—term equations

are satisfied and three-term equations are reduced to €(001)(100) A€ (011) (010)4 = 0, VA € SLg.

6

Corresponding solutions are RS == R6 = {§ &5 &5, €5 8}, where

0abecdef 00a000O0Bb 000a0bO0
@ 000000 00000O0O 00000O0O0O
b 000000 a 00000 ¢ 00000O0O0O
S=1c000000[,85=[0o000000|,e=[a0000¢co0],
d 000000 00000O0O0O 00000O0O0O
e 000000 0000O0O0O b 00 c 000
f 000000 b 0 c 0000 00000O0O
0a000b00 0000000
a 000 c 00 0000a 00
00000O0O 00000O0UWb
g=(o000000f[, f=]00000¢co0
b c 00000 0a 00000
00000O0O 000c00O00O
00000O0O 00b0O0O0O

We have solved the contraction system Sg up to the equivalence. Solutions are collected
in the sets RF

nor?

k =0,1,2,...,6 and the contraction matrices from different sets are in-
equivalent. Since equivalent solutions have the same number of zeros v(e), we discuss when
elements of contraction matrices vanish and divide each set R _ into subsets according to

nor

v(e). Let us note that, besides all possible combinations of zero and nonzero parameters,

90



the case a = —1/b has to be considered for the solution 2. In these subsets we collect all
solutions with the same support. In fact, there was always only one solution with the given
support. For example, solutions €} with @ = b = ¢ = 0 and &2 with b = 0 have the same
support, but they also represent the same solution only with different notation of parame-
ter. Using the symmetry group we compare projections of solutions with different supports
and choose only inequivalent ones as in example 5.2. All 89 normalized representatives of
equivalence classes of solutions are listed in Appendix A.2.

Let us note that the solution without zeros, i.e. &7, where a,b,c,d # 0, is strongly
equivalent to the trivial solution €% which has all relevant contraction parameters equal to
1. Thus, any contraction matrix without zeros has a form of the normalization matrix «

(3.28).

6.4 Higher—order identities

Since any solution without zeros has the form of normalization matrix «;; = ij ,(i7) € T,
1T

any continuous contraction matrix is a limit of normalization matrices. Thus, any higher—
order identity can be deduced from the identities which hold for normalization matrix. For

example the equation

@(001)@(100) A(011)@(010) a(011)@(110) A(010)@(100)
@(001)(100) X (011)(010) = = = @(011)(110) ¥(010)(100)
a(101) a(001) a(101) a(110)
(6.15)

is evidently satisfied for any normalization matrix. However, considering the contraction

matrix €5 we get 0 = —b and thus (6.15) is violated for any b # 0. Therefore, the equation
(6.15) represents 2nd order identity.
Applying the symmetry group SLg to (6.15), we can write the 24-point orbit of 2nd order

identities in the form

8((3001)(100)5?011)(010) = £(011)(110)€(010)(100), VA € SLg. (6.16)

Note that the action is effective for all 24 elements of the symmetry group SLg.

We have found a set of all 57 second order identities. These identities are divided into
5 orbits. Their representatives and the number of the resulting identities under the action
of SL¢g are written in Table 6.3. For each solution of the system Sg we were able to decide
whether it is continuous or discrete. Any discrete contraction violated at least one of 57
identities listed in Table 6.3. For the remaining solutions — the continuous ones — we

explicitly found a continuous path of the form (3.34). Among 89 solutions there were 50
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continuous solutions, and 36 discrete ones. Remaining 3 solutions were continuous only for

a special value of its parameters, otherwise they were discrete.

Table 6.3: Orbits of 2nd order identities for the Gell-Mann grading

Representative equation Number of equations
€(001)(100)€ (011)(010) = E(011)(110)€(010)(100) 24
€(001)(100)E(101)(100) = E(110)(100)€ (010)(100) 12
€(111)(010)€(011)(100) = €(011)(110)€(010)(100) 12
€(111)(100)€(011)(100) = €(110)(100)E(010)(100) 6
€(001)(101)E (001)(100) = € (001)(111)E (001)(110) 3

6.5 Identification of contracted Lie algebras

All 89 solutions of the system of contraction equations S¢ for the Gell-Mann graded sl(3, C)
are divided into 14 groups according to the number of zeros v among the 21 relevant con-
traction parameters. The number of contraction matrices in these groups are summarized in

the following table:

Number of zeros v Ho\fs \11\12\13\14\15\16\17\18\19\20\21
Number of solutions H 112

\ \ \3\2\1\2\9\12\18\23\11\3\1

Contraction matrices are denoted !, where the second index 4 is numbering solutions with
the same number of zeros v. The contracted Lie algebra given by solution £” is denoted G, ;.

As always, there are two trivial solutions: 2! (with 21 zeros) corresponding to the 8-
dimensional abelian Lie and €% (without zeros) corresponds to the initial Lie algebra sl(3, C).
Among the remaining 87 nontrivial solutions, 8 solutions depend on one nonzero complex
parameter a and two depend on two nonzero complex parameters a, b. The corresponding
parametric families of Lie algebras — the parametric Lie algebras — are denoted by G, ;(a),
G..i(a,b). Each of these parametric Lie algebras will be counted as one algebra.

During the identification it turned out that among all 87/10 (behind slash being the

number of parametric cases) nontrivial contractions:

- 66/8 algebras allow the central decomposition. Further, only non-abelian parts G/ ; (with

the dimensions lower than 8) of these algebras G, ; were investigated.
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- 7/1 algebras are decomposable into the direct sum of two non-abelian indecomposable

ideals.

Thus, after the decompositions there are 94/10 indecomposable Lie algebras. These algebras

are divided according to their dimensions as follows:

5|6 7 | 8
Number of algebras || 22/1 | 12/2 | 10 | 29/5 | 21/2

Dimension H 3 ‘

The computation of the derived, lower and upper central series revealed that there are
54/1 nilpotent, 33/9 solvable (non-nilpotent) and 7 non-solvable Lie algebras. Values of
numerical invariants inv(G) (4.69) divided these algebras into 28 classes of nilpotent, 17
classes of solvable and 4 classes of non—solvable Lie algebras. The Levi decomposition was
nontrivial only in 3 cases, two of them with abelian radical.

We have found 26 isomorphic algebras — which can be omitted — in the classes of nilpo-
tent, 16/4 isomorphic algebras in the classes of nilpotent and 3 isomorphic algebras in the
classes of non—solvable Lie algebras. Omitting these algebras we get only one algebra in each
inv(G)—class. Thus, all algebras are now identified up to ranges of parameters for the para-
metric algebras. There are 28/1 nilpotent, 17/5 solvable and 4 non—solvable non—isomorphic
indecomposable Lie algebras. These indecomposable Lie algebras are listed together with
their invariant characteristics in Appendix B.2. All resulting decomposable Lie algebras can
be written as their direct sums.

There are only 4 mutually non—isomorphic decomposable Lie algebras among the graded
contractions of Gell-Mann graded sl(3, C):

Non-solvable (discrete contraction) Go1 = Gigs® Gl ® 24,

Solvable (discrete contractions) Gi31 = Glgo ® Grg0 @ 241
Gis2 = Glgp ® G q @ 24;

Nilpotent (continuous contraction)  Giz1s = Gy @ Gyoy & 24,

where A; stands for one-dimensional abelian Lie algebra. Remaining three decomposable

algebras are isomorphic to those listed above:

Gir2(a) = Gz, G191 = Gig11 = Giris.

For the purpose of completeness, we also list all isomorphisms among the indecomposable

Lie algebras:

Not—solvable Gis21 = Giss,
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Solvable

Gro8 = Gio6 = Gr92, G814 = G1813 = Gigs11 = Gise, G170 = Giro = Girr = Gire,
gl7,8<a) = g17,11(4a), g16,3(a) = 916,5(461) = g16,4(4a)7

Nilpotent
G203 = Ga02 = Go01,  Gro.10 = Giga, G199 = Gig7 = Gios = Gig 3,
Gis20 = Gis19 = Gisr, Gisir = Gis e, Gis22 = Gisa = G2,
Gi714 = Gi72, G815 = Gig12 = Gig10 = G186, G183 = Gis1s
G717 = Giras, Gi6,10 = Gie.s, Gi6,11 = Gie,r-

Let us note that isomorphic graded contraction were always of the same type, i.e. all discrete
or all continuous.

Table 6.4 provides the overview of the number of contracted Lie algebras for the Gell-
Mann graded sl(3,C). Lie algebras are divided there according to the dimension of their

non—abelian parts and their types.

Table 6.4: The number of nontrivial graded contractions of the Gell-Mann graded sl(3, C)

Dimension of Solvable Nilpotent | Non-solvable || Total
non—-abelian part || Indec. | Dec. | Indec. | Dec. | Indec. | Dec.

3 1 1 1 3

4

5 2 2 4

6 2 2 3 1 1 1 10

7 6 10 16

8 6 12 2 20
53

Including two trivial contractions we have obtained 55 non-isomorphic contracted Lie
algebras as the graded contractions of the Gell-Mann graded Lie algebra sl(3,C). Among
them there are 4 one-parametric and 2 two-parametric families of Lie algebras. From all
these contracted Lie algebras 20 are discrete contractions, 32 continuous contractions and 3
parametric algebras represent continuous contractions for a special value of the parameter,
otherwise they are discrete. We used the invariant functions to determine the ranges of the

parameters for all one-parametric algebras. These functions are given in Appendix C.2.
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6.6 Example of identification

In this section we will demonstrate the whole identification procedure on a concrete example.

Let us consider an one—parametric solution

172

(6.17)

Q)

|
O R EFR, OQ O
O OO O OO R
O OO OO oo
OO OO OO
OO OO oo
OO OO oo
OO OO o oo

of S¢. In order to get the commutation relations of the corresponding contracted Lie algebra
Gi72(a), we have to multiply the elements of the commutation Table 6.1 of sl(3,C) by the
corresponding elements of the matrix (¢'7%)* according to (4.1). Matrix (¢!7?)* is formed
from £'”2 by doubling its first row and then its first column. Thus, the nonzero commutation
relations of Lie algebra Gi72(a) are
le1, €3] = —2aeq, [e1,e5] = e7, le1, €6) = —2e3, [e1, e7] = es, (6.18)
[ea, €3] = aeg, lea, e5] = —2e7,  [ea, 6] = €3, lea, 7] = —2es,
where the parameter a runs through C \ {0}. It is in fact one-parametric continuum of
Lie algebras, thus we have to investigate it carefully for each possible value of the complex
parameter a.
At first, we compute the center and the derived algebra of Gi72(a). These are both

independent of the value of the parameter a # 0

C(Gir2(a)) = spanc{es, es}, D(Gi72(a)) = spanc{es, es, s, €7} (6.19)

Since C(Gi72(a)) € D(Gi72(a)), we choose the complement A = spang{e4, es} of the derived
algebra in the center and separate it as a maximal central component of Gi75(a). Thus, we
get

Gi72(a) = spanc{ey, es} @ spanc{ei, s, €3, €5, €6, €7} (6.20)
From now on we continue with non-abelian part G|;,(a) = spanc{ei, ez, €3, €5, €6, €7} only.

The six—dimensional Lie algebra Gj;,(a) has the following commutation table
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17.2(a@) e e e3 es eq er
el 0 0 —2aeg er —2es es
€ 0 0 aeg —2e7 es —2e;
es 2aeg —aeg 0 0 0 0
€5 —€7 267 0 0 0 0
(&1 263 €3 0 0 0 0
€7 —€5 265 0 0 0 0

In order to determine the decomposability of Gj;,(a) we have to find the centralizer
Cr(ad(Gyr4(a))) of its adjoint representation ad(Gj;,(a)) in R = gl(6,C). For any a # 0 we
get Cr(ad(Gi75(a))) = spanc{bi, b}, where

0 20000 1 =20 0 0 0
-2 50000 2 =40 0 0 0
0 01000 0 0 0 0 0 0
by = 0 0040 0} by = 0 0 0 -30 0 (6.21)
0 00010 0 0 0 0 0 0
0 0000 4 0 0 0 0 0 —3

The Jacobson radical (4.14) of Cr(ad(G;4(a))) is formed by zero matrix only and, there-
fore, Gj;5(a) is decomposable for any a # 0. We choose a new basis (by + by = 1¢,b2)
in Cr(ad(Gi;4(a))) and factorize the minimal polynomial (¢ 4 3) of b,. The equation
Pt + Py(t + 3) = 1 is fulfilled for P, = —P; = 1/3 and thus, the matrix

1

is an idempotent in Cr(ad(G}7,(a))). The eigen-subspaces of the idempotent E correspond-

ing to the eigenvalues 0 and 1
Gi72(a)’ = spanc{2e; + es, €3, €6}, Giro(a)t = spanc{ey + 2es, €5, €7} (6.23)

form ideals in Gi,,(a). Thus, we have decomposed Lie algebra Gi;,(a) into the direct sum

of two new three-dimensional Lie algebras
Girola) = gi?,z(a)o SY 917,2(601- (6.24)

Now, we continue with the identification of these two three-dimensional Lie algebras.

Having changed the notation of their basis elements, we get their commutation relations in
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the following form

917’2(a)0 21 T2 T3 917,21 T Ta T3
Ty 0 —3axs —3T9 T 0 —3x3 —3x9
T 3azs 0 0 To 373 0 0
T3 379 0 0 T3 329 0 0

The commutation relations of G, ,(a)" are independent of the parameter a and thus, G, ,(a)"

represents only one Lie algebra 917721.

The centralizers of the adjoint representations of algebras Q{m(a)o and Q{ml are one—
dimensional (formed only by the multiples of the unit matrix) and therefore, these algebras
are indecomposable. We continue in the identification procedure with the computation of

numerical invariants. For both algebras we get (independently of the values of a # 0)
DS =(3,2,0), CS=(3,2), US=(0), dimug, =1[4,3,1,2,0,1, 7=1.(6.25)

Thus, both these algebras are solvable, non—nilpotent, with zero center and belong into the
same inv—class labelled by numbers (6.25). This class contains six more algebras (given by
other contractions). During the search for isomorphisms it appears that all algebras in this

class are isomorphic. In fact, one can see that rescaling the basis vectors of G, ,(a)°

, 1.e.
taking a new basis (\/Laxl, Ta,/axs) in Gi; 4(a)’, we get the same commutation relations as for
ggml. Thus, Gi;,(a)° belongs for any a # 0 into the same isomorphism class and, therefore,
represents also only one Lie algebra. We choose the representative Gjq, of this isomorphism
class, usually according to the name of the graded contraction with indecomposable non—
abelian part and the lowest number of zeros.

All parts of the Lie algebra Gi75(a) are now identified and we conclude that
Gi72(a) = Gi7o(1) = 91972 &) 91972 @ 2A4,, (6.26)
Gi72(a) = spanc{2e; + eq, €3, €6} @ spanc{e; + 2e, e5, e7} O spang{eq, es}. (6.27)
For the listing of the representative G4, in appendix we determine its nilradical. We use
the form of 917721. Since the derived algebra of any solvable Lie algebra is a nilpotent ideal,
we immediately have that N (9'17721) = spang{zs, z3}. Finally, we simplify the commutation
relations of 917’21 by choice of basis (y1, Y2, ys) = (22 + T3, 2 — 3, 541) starting with vectors

from nilradical. Thus, we get the nonzero commutation relations of Gig,

[y1, ys] = 1, [Y2, ys] = — 2. (6.28)

Comparing these commutation relations with the list of Lie algebras in [57] we see that our

algebra Gjq , is the solvable three-dimensional algebra denoted by A3 4.
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Chapter 7

Cartan graded contractions of sl(3, C)

This chapter is devoted to the determination of all contractions of the Lie algebra sl(3,C)
which preserve the Cartan grading. The solution of this task was already given in [1, 13].

We apply our method in order to obtain and eventually improve the results of [1, 13].

7.1 Cartan grading of sl(3,C)

The most famous grading is probably the Cartan grading — also known as root space de-
composition [28]. This grading plays a crucial role in the classification theory of simple
Lie algebras. The Cartan grading, as a fine grading, decomposes sl(n, C) into n? — n one—
dimensional grading subspaces (root spaces) and one (n — 1)-dimensional abelian subalgebra
(Cartan subalgebra). The bases of these grading subspaces are formed by n x n matrices
E;j,i # j with unit on position 7, j and zeros elsewhere. The basis of the abelian subalgebra
is formed by n x n diagonal traceless matrices.
The Cartan grading of the Lie algebra sl(3,C) has a form:

Fe:sl(3,C) = Loy & L1o® Lo1 @ L1n ® L_1-1 & Lo_1 & L_1o,

= spanc{e, es} ® Cez ® Cey @ Ces @ Ceg @ Cey @ Ceg, (7.1)
where the basis (eq, . . ., eg) is in the defining 3—dimensional representation formed by matrices
1 0 0 00 O 010 000

er=(0 —1 0}, ea=10 1 0], es=10 0 0], e4q=10 0 1],
0 0 0 00 —1 000 0 00
(7.2)
0 01 000 0 00 0 00
es=|(0 0 0], e=10 00|, e=100 0], es=1[1 0 0
000 100 010 000

The commutation relations of sl(3,C) corresponding to this basis are in Table 7.1.
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Table 7.1: Commutation relations of the Cartan graded sl(3, C)

sl(3,C) el €9 e €4 es 6 er es
el 0 0 2es —ey es —eg er —2eg
€9 0 0 —€3 264 €x —€g —267 eg
€3 —263 €3 0 €5 0 —€7 0 €1
€4 €4 —264 —€5 0 0 €g €9 0
es —es5 —es 0 0 0 e1+ es es —ey
€6 €6 eg er —eg  —(e1 +e2) 0 0 0
€7 —e7 267 0 —€9 —E€3 0 0 €6
€ 268 —€g —€1 0 €4 0 —€g 0

The index set I for the Cartan grading of sl(3,C) is formed by 7 ordered pairs (i, j),
where 7,7 = —1,0,1, with exception of the pairs (1,—1),(—1,1). The operation ¢ is the
componentwise addition, where 1 +1 = —1 and (—1) + (—1) = 1. Thus, the index set I is
the subset of the additive abelian group Zs X Zs, where 2 is congruent to —1.

The symmetry group Ar, (Aut(I'c)) of the Cartan grading, described in [34, 36], is iso-
morphic to the subgroup G'L¢ of GL(2,Z3) which consists of the following 12 matrices:

10 -1 0 1 1 -1 -1 1 0 -1 0
are (00) (0 5) G 2) G0 3) (B A) ()
0 1 0 -1 1 1 -1 -1 0 1 0 —1
1 0/ \-1 0)" \—-1 0)" 1 0)” \-1 —-1)7 \1 1)
(7.3
The action of the symmetry 74 € Ar,(Aut(I'c)) corresponding to the matrix A € GL¢ on

the index (i, j) € I is given by the right multiplication of the vector (i, j) by the matrix A.
Let us note that the ordering O is given by the order of grading subspaces in (7.1).

7.2 Contraction system for the Cartan grading

Before approaching the construction of the system of contraction equations S¢ for the Cartan
grading of sl(3,C), we describe the orbits of the action of the symmetry group GLo =
Ar.(Aut(T'¢)) on the sets I, I2, I3

YUY Tu”t

There are two orbits in the set of grading indices I = Z2 \ {(1,—1,),(—1,1)}, one orbit

99



with only one point (0,0) and the six—point orbit represented by point (1,0). It corresponds
to the fact that the symmetry group Aut(I'c) leaves the Cartan subalgebra invariant while
the root spaces are permuted.

The set of unordered pairs of grading indices I? consists of six orbits. Three orbits
are formed by irrelevant pairs of grading indices: two 6—point orbits represented by points
((1,0)(1,0)), ((1,0)(1,1)) and 1-point orbit represented by point ((0,0)(0,0)). Remaining

three orbits are formed by relevant pairs Z of grading indices:

e G-—point orbit represented by ((1,0)(0,1)),

e G—point orbit represented by ((1,0)(0,0)), corresponding relevant contraction parameters
will be marked by superscript o,

e 3-point orbit represented by ((1,0)(—1,0)), corresponding relevant contraction parameters

will be marked by superscript e.

The irrelevant parameters are zeros and thus, the explicit form of the contraction matrix

€ with respect to chosen ordering O is:

o (o) o o o

0 £00)(10) €(00)(01) €o0y(11) €0y (-1-1)  €(00)(0-1)  E(00)(~10)
€(00)(10) 0 €(10)(01) 0 €(10)(—1-1) 0 €(10)(10)
€(00)(01) €(10)(01) 0 0 E01)(-1-1)  £{o1)(0-1) 0

e= | €ona 0 0 0 €liy—1-1)  €ano-1)  EQ1)(-10)
€00)(—1-1) EQ0)(—1-1) €(O01)(=1-1) E(11)(—1-1) 0 0 0
€(00)(0-1) 0 Eono-1) Ean-1) 0 0 €(0-1)(-10)
g?00)(—10) 8Elo)(—m) 0 €(11)(-10) 0 €(0-1)(-10) 0

(7.4)
Let us note that during the action of GL¢ on the contraction matrix e, the marked contrac-
tion parameters are transformed to contraction parameters with the same mark.

Each contraction equation e((z, j)(k,1)(m,n)) € S¢ has a form

E(i,j) (kmii+n)E (k1) (mn) [ Tij [Thts Tmn]] + cyclically =0,

(7.5)
vxij € Lij;vxk;l € Lklyvxmn € Lmna

where the word ”cyclically” means that the two remaining terms are obtained from the
first one by permutation of its grading indices. Since [x;;[ki, Tmnl] € Litktm jritn and
Ly_y = L_y; = {0}, the equations is fulfilled for any unordered triplet ((4, j)(k,1)(m,n)) for
which:+k+m=1and j+l+n=—-1lori+k+m=—1and j+ [+ n = 1. Moreover,
if there are two grading indices equal in the unordered triplet ((z,7)(k,1)(m,n)) € I2, then
the corresponding equation is identically fulfilled (since all grading subspaces are abelian

subalgebras).
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There are 13 orbits in the set I3 of unordered triplets of grading indices with respect to the
action of the symmetry group GL¢o. The representatives and the number of points in these
orbits are summarized in Table 7.2. Since all grading subspaces form abelian subalgebras of

sl(3,C), only five orbits can lead to nontrivial contraction equations.

Table 7.2: Representatives and number of points in orbits of action GLg on I3

Trivial equations Nontrivial equations
(1,0)(1,0)(1,1) | 12 || (1,0)(0,1)(1,1) | 6 || (1,0)(0,1)(-1,0) | 12
(1,0)(1,0)(0,1) | 12 | (1,0)(0,0)(0,0) | 6 || (1,0)(0,1)(0,0) 6
(1,0)(1,0)(1,0) | 6 | (1,0)(1,1)(0,0) | 6 || (1,0)(-1,0)(0,0) | 3
(1,0)(1,0)(0,0) | 6 | (0,0)(0,0)(0,0) | 1 | (1,0)(0,1)(-1,-1) | 2
(1,0)(1,0)(-1,0) | 6

Considering the point (1,0)(0,1)(1,1) we get trivial equations. Thus, there are only
four orbits leading to nontrivial contraction equations. We write the contraction equation

corresponding to the representative point (1,0)(0,1)(—1,0) of 12—point orbit

o

E(10)(~1)E(01)(~10) €3, [€4, €s]] + ooy 01)E(10)(—10) [€4: [€5, €3]] + €y (—10)E(10) 01 €8, [€3, €4]] = 0.
Since [e4, es] = 0, the first term containing the irrelevant contraction parameter vanishes.
Therefore, we get equation

5E00)(01)5Z10)(—10) = £(11)(—10)E(10)(01)- (7.6)

Since the index of the term on the left-hand side in (7.6), i.e. [(00)(01)][(10)(—10)], belongs
into 12-point orbit in Z2, while the index of the right-hand side lies in 6-point orbit, the
action of GL¢ on the equation (7.6) generates 12 linearly independent equations S!.

Since the point (0,0)(1,0)(0,1) contains the index of the two-dimensional grading sub-

space (Cartan subalgebra) Log, there are two corresponding contraction equations

5?00)(11)5(10)(01)[61" [637 64“ + 5(10)(01)5?00)(01)[637 [64a ez“ + 5(10)(01)5?00)(10) [64a [ei» 63“ =0,

where ¢ = 1,2. Using Table 7.1 with the commutation relations of sl(3,C) we get

o

(5?00)(11)5(10)(01) + £(10)(01)€ (00)(01) — 2€(10)(01)E 00)(10))65 =0,

—

o

(5?00)(11)8(10)(01) — 22(10)(01)€ (00)(01) + €(10)(01)€ 00)(10))65 = 0.

—~
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By summing and subtracting these equations we obtain the following two terms equation:

5((300)(11)5(10)(01)1 = \5((}00)(01)5(10)(01)/ = f(()oo)(lo)g(lo)(Ol)j' (7.7)
b b b

A stability subgroup of the point (0,0)(1,0)(0,1) is a cyclic group {1, X}, where X = ({}) €
GLc. The action of X on the equation (7.7) transforms ¢ into b while a is preserved. In
fact, the indices of b and ¢ have stability subgroups of order 1 and lie in the same 12—point
orbit in Z? while the index of a has a stability subgroup of order 2 and thus, belongs into the
6-point orbit. Therefore, using the action of GLs we get from (7.7) 12 linearly independent
equations S? generated by equation a = c.

Three—point orbit with the representative point (1,0)(—1,0)(0,0) generates the third part

S3 of the system of contraction equations:

5?10)(—10)5?00)(—10) [e3, [es, ei] + 6Zlo)(—10)5?00)(10) [es, [€:, €3]] + 8(00)(00)’3&0)(—10) e, [es, es]] = 0,
for i = 1,2. Since [e3, es] = e and Lqg is abelian, third term with the irrelevant contraction
parameter vanishes. Fvaluating the rest of the commutators we get only one two-term

equation

(o]

5210)(710)5(00)(710) = 5?10)(710)5(()00)(10)- (7.8)

This equation is invariant under the stability subgroup G; = {1,—1,Y, =Y}, where Y =
(1 %), of the point (1,0)(—1,0)(0,0) and thus, the action of GLc on (7.8) generates only
three different equations. These equations are linearly independent, because the indices of
the left-hand side and the right-hand side of (7.8) lie in the same 6-point orbit and Z? and
their stability subgroup {1,Y} belongs into the stability subgroup G.

The last part of the system S? is generated from the equation corresponding to the

representative point (1,0)(0,1)(—1, —1) of 2—point orbit
6Z1())(_10)5(01)(—1—1) [63, [647 66“+5Z01)(0_1)5(10)(—1—1) [647 [667 63]]+5Z11)(_1_1)5(10)(01) [667 [637 64“: 0.
Using commutation relations we get

(€00)(—10)EO1)(=1-1) — EQ1ny—1-1yE0)01))€1 + (Efory(0-1)€(10)(~1-1) — E(1y(—1-nEo)on) )€z = 0,

which leads to the following two—term equations:

5{10)(—10)5(01)(—1—1)1 = \5{()1)(071)8(10)(—1—1)/ = \5211)(7171)6(10)(01)/ (7.9)
e e e
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The indices of terms a,b,c belong into one 6-point orbit in Z? and the action of matrix
X = (9}) transforms a into b while ¢ is preserved. Thus, the S? consists of four linearly
independent equations generated from a = c.

The whole system of contraction equations S¢ consists of the following four subsystems:

St E010)(—10) A€ (00)(01) A4 = E(11)(~10)AE(10)(01)A> VA € GLo, 12 equations, (7.10)
Sé : 6?00)(11)A5(10)(01)A = 5((300)(10),45(10)(01)147 VA € GLo, 12 equations, (7.11)
Ser: £(10)(~10)A€(00)(—10)A = €(10)(—10) A (00)(10)A> VA€ GLc, 3 equations, (7.12)
S¢, E010)(—10)AE(01)(~1-1)A = E{11)(—1-1)AE(10)(01) A VA € GLe, 4 equations,  (7.13)

where the abbreviation € ka4 = €(j)am)a has been used. Let us note that the indices of
the terms from different subsystems belong into different orbits in Z2 and, therefore, these

31 equations are linearly independent.

7.3 Finding the solution of S¢

In order to solve the system of contraction equations S¢ for the Cartan grading of sl(3,C)
we construct the sequence of assumptions and then use Theorem 3.9. We solve the system
Sc in four steps. There are two 6-point orbits and one 3—point orbit of relevant contraction
parameters. We choose €(19)1) from 6-point orbit and we assume that (10yo1) # 0 in first
three steps, since the number of points in the orbit determines the number of independent
equations in the non—equivalence system in the last step. For the first step we extend the
assumption such that the term 5211)(7171)145(10)(01)14 of the equation (7.13) is nonzero. This
assumption together with S7, ensures that all contraction parameters marked by e are nonzero
and the corresponding non-equivalence system in the next step will ensure that S¢, is satisfied.

All steps with the assumptions and the non—equivalence systems are listed below.
1. R={eeR(Sc) | eqoyon # 0, ely_1-1) # 0}
S ea0)onA(1y—1-na =0 VA€ GLc
2. R = {6 € R(ScUS?) | eaoyon) # 0, eany-10) # O}
S cnoyonacan-ina =0 VA€ GLc
3. R={ceR(ScUS"US") |eqnon #0,}
S%: caoona =0 VA€EGLc
4. R*=R(ScuUS"US'US?

In order to list the solution of separate steps, we renormalize all nonzero parameters of these

solutions to 1, i.e. we find a strongly equivalent contraction matrix with units in the places
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of nonzero parameters. This renormalization was successful in all cases. Other parameters
in solutions which are arbitrary complex numbers are denoted by a, b, c,d, e, f. We describe
solutions of these four steps in detail.

Step 1. The explicit solution of the system S¢ under the assumptions &(10)01) 7# 0 and

€(11)(—1-1) 7 0 Is given as one parametric matrix, i.e. RY .= {e%}, where
0 a aaaaa
a 01 01 01
a1 00110
f=1a 0001 aa
a1 11000
a 01 a 00 a
a1l 0 a 0 a0

Step 2. The non—equivalence system S” has 6 equations and ensures that S, is satisfied.
The solutions of S¢ and S° under the assumptions eaoyony # 0 and g(11y(—10) 7# 0 are described

by two parametric matrices. Since all parameters of these matrices are nonzero, after the

1

renormalization we get R. == {e1,e3}, where

0111001 0111111
1010001 1010101
1100000 1100000
eg=]100000 1], &1 000001
000000O0DO 1100000
000000O00O 1000001
1101000 1101010

Step 3. Solutions of S¢ and 12 non—equivalence conditions S’US! under the assumptions

eaoyo1) # 0 are given by eight parametric matrices R2,, = {e1,¢3,¢3, €3, €2, €5, €3, €3}, where

0 a a ab c d 0 a a a a a b 0 00O0O0OO0OTPO O
a 01 00 0 O a 001 0 ¢ 00 001 0 aO00Db
a1 00 0 0 O a 1 0 0 0 0 O 01 00 O0O0O0
e2=la 00000O0|,e5=[a 0000O0O0|,e2=]1000000 0],
b 000 000 a ¢ 0 0 0 00 0O a 00 O0O0O0
c 00 0 0O00O0 a 00 00 0O 000O0O0OTO0OTO 0
d 00 000 O0 b 000 0 0O 0Ob0OO0OO0O0O0
0 a a a b b b 0 a a a ab a 0 a a a a a a
a 001 0000 a 01 00 0O a 001 0b 00
a 1 0 0 0 0 O a1 00 ¢ 00 a 1 00 ¢ 00
e2=a 00 0 00 0f,e2=]a 000 O0O0O0],e2=[a 00000 0],
b 000 0 O0O0 a 0 ¢c 0000 a b c 00 00
b 000 00 ¢ b 000 0O00O0 a 00 0 0 00
b 000 0 ¢ O a 00 0 00O a 00 0000
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000O0O0O0O©O 0000O0O0O
001 0O0O0O0 001000 a
01 00wadO0 01 000O0UDO
e2=10000000|,e2=[10000000
0 0a 0000 00 00O0O0O
000b0O0O0O 00b0O0O0C
00 0O0O0O0®O0 0a 00O0¢cO

Step 4. Finally, the non—equivalence system S? = {5(10)(01) 4=0|VA e GLC} enforces a
zero value for the whole orbit of unmarked contraction parameters and ensures the fulfilment

of all previous non—equivalence systems. Due to this 6 zeros, the systems S% and S¢, are sat-

isfied automatically and the solutions of remaining 15 equations are R3 == {}, 3,3 €3 3},

where

00 a b cdef 000 aa 00 0 0a 0O0uadO
a 00 0O0O00O0 000O0O0O0TOQ 0 00 0O0O0O0OTOU
b 00000 O 0O000O0O0O0TOU a 00 00 b 0
e2=|ec 00000O0]|,e5=[a 0000DbO0O0],e5=]000000O0],
d 000000 a 00 b 0 00 00 0O0O0O 0O
e 000 00O 000O0O0O0OQ 0 a 0b 0000
f000O0O0O 000O0O0O0TOQ 0 00 0O0O0O0TU

0 a 0000 a 000 O0O0O0OTDO O

a 00 0 0 0 b 000 O0O0O0 a

000 O0O0OO0OTO O 00 0O0O0TUDO

e2=10 00000 O0],ed=]0000¢00

000 O0O0O0O© 0 000 cO0O00O0

000 O0O0O0OO© 0 00 b 0O0O0O0

a b 000 00 0 a 00 O0O00O0

R2 R3 and the contraction

1
Rnor » "Vnorsy " Vnor

All solutions of S¢ are divided into four sets R,
matrices from different sets are inequivalent. As in previous chapters we discussed when the
elements of the contraction matrices vanish and divided each set R . into subsets according
to the number of zeros v(g). In these subsets we collected all solutions with the same support.
Since all matrices with the same support were either strongly equivalent, or a special case of
one of them, there was always only one inequivalent solution with the given support. Using
the symmetry group we compare the projections of solutions with different supports and
choose only inequivalent ones as in example 5.2. All 47 normalized representatives of the

equivalence classes of solutions are listed in Appendix A.3.
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7.4 Continuous and discrete solutions

The only solution without zeros listed in sets RF . is the solution £} where a # 0. This
solution can be renormalized to its own projection. Therefore, every solution without zeros
has a form of the normalization matrix (3.28) and we can use the normalization matrix for
constructing higher—order identities as in previous chapters. However, in the case of Cartan
grading, higher—order identities follow immediately from the system of contraction equations.

Dividing the equation (7.11) by £10)(01)4 We have
E(00)(11)A = E(00)(10) A VA € GLc. (7.14)

Since the action of matrix Z = (} ;) transforms the left-hand side of (7.14) into its right—
hand side and the stability subgroup of the equation (7.14) is {1, Z}, we get 6—point orbit of

first order identities. These identities can be written in the following form

5?00)(10) = 6?00)(01) = 6?00)(11) = 6?00)(7171) 5?00)(071) = 6(()00)(710)- (7.15)

Thus, we have the necessary condition for continuous solutions: the contraction matrix ¢ is
a continuous contraction if all its relevant contraction parameters in the first row (marked
by o) have the same value.

This condition also appeared to be a sufficient condition, since for all solutions satisfying
(7.15) we explicitly found a continuous path of the form (3.34). Among all 47 solutions of S¢
there are 17 continuous solutions, and 26 discrete ones. Remaining 4 solutions are continuous

only for a special value (namely unit) of their parameters, otherwise they were discrete.

7.5 Identification of contracted Lie algebras

There are 47 inequivalent contraction matrices solving the system of contraction equations
S¢ for the Cartan graded sl(3,C). These contraction matrices are divided into 12 groups
according to the number of zeros v among 15 relevant contraction parameters. The number

of contraction matrices in these group are summarized in the following table:

Number of zeros v H0\4 6\7\8\9\10\11\12\13\14\15
H1 11112

Number of solutions ‘ ‘ ‘ ‘3‘4‘4‘6‘12‘9‘3‘1

The contracted Lie algebra corresponding to the contraction matrix £** is denoted 7,,;, where
the second index i is numbering contraction matrices with the same number of zeros v.
There are two trivial solutions: €'®! (with 15 zeros) corresponding to the 8-dimensional

abelian Lie algebra and €' (without zeros) corresponding to the initial Lie algebra sl(3, C).
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Among the remaining 45 nontrivial solutions, there are 21 parametric contraction matrices.
Nontrivial contraction matrices are divided according to the number of their parameters as
follows:

Number of parameters H 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ )

Number of solutions H 24 ‘ 9 ‘ 6 ‘ 4 ‘ 1 ‘ 1

These parameters in contraction matrices are denoted by a,b,c,d, f and all are nonzero
complex numbers. The parametric families of Lie algebras corresponding to the parametric
solutions will be counted as one algebra and their number among the investigated cases will
be written behind the slash.

We have to identify 45/21 non—abelian Lie algebras. The results of the direct decompo-

sition are following:

- 34/16 algebras allow the central decomposition. Further, only non-abelian parts 7,,; (with

dimensions lower than 8) of these algebras 7,; were investigated.
- 11/5 algebras are decomposable into the direct sum of two non—abelian indecomposable

ideals.

- 2/2 algebras are decomposable into the direct sum of three non-abelian indecomposable

ideals.

After the decomposition we continued in the identification procedure with 60/23 inde-

composable Lie algebras. These algebras are divided according to their dimensions as follows:

Dimension

| 2| 3 4[5 6|78
Number of algebras | 13/5 [ 17/4 [ 0| 8/3 [ 6/4 | 7/3 | 9/4

We computed the numerical invariants inv(7") and found out that there are 35/23 solvable
non-nilpotent Lie algebras divided into 15 classes, 22 nilpotent Lie algebras divided into 8
classes and 3 non-solvable Lie algebras in 3 classes. Thus, non-solvable Lie algebras are
now separated. The Levi decomposition is nontrivial only for two of them, in both cases the
radical is non—abelian.

During the search for isomorphisms, we have found 19/11 isomorphic algebras in the
classes of solvable and 14 isomorphic algebras in the classes of nilpotent Lie algebras. By
omitting these algebras we get only one algebra in each class of the nilpotent Lie algebras
and we conclude that there are 8 nilpotent and 3 non—solvable indecomposable Lie algebras.

Among the classes of solvable non—nilpotent Lie algebras, there remains one class con-
taining two algebras. These algebras are two-parametric families 7q,(a,b) and 7y 3(a,b). In

order to distinguish among them we use the invariant function ¢. The tabulation of invariant
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functions for more than one-parametric Lie algebras is usually too laborious. Fortunately,
it is not necessary in this case. Since every invariant function has only a finite number of
points for which its value is different from the general value (the value in the last column
of the table with the given invariant function), it is sufficient to show that DT (ab) and
PO1Y 4 (a,b) have different general values. The computation shows that these general V’alues are
independent of the parameters a,b and P () (x) = 25 while @75/73(a,b)(x) = 27. Therefore,
Lie algebras 7g,(a,b) and 74 5(a,b) are not isomorphic and we conclude that there are 16/12
solvable non—nilpotent indecomposable Lie algebras. These indecomposable Lie algebras are
listed together with their invariant characteristics in Appendix B.3. All algebras are now
identified up to the ranges of their parameters.

The decomposable Lie algebras are given as the direct sums of the indecomposable ones
and the abelian Lie algebra A;. There are 9 non-isomorphic decomposable Lie algebras.

Eight of them are solvable (non—nilpotent) and appear as discrete graded contractions:

Ti04 & 71,4,2 D 71/1,4» Tiz4(a) = 71/4,1 @ 71,4,1 D 71/4,2 ® A,
711,3(6% b,c) = 7'1/3,3(61) S 7113,3(5) ® 24, Ti26 = 71/4,1 D 71/3,6 @ A,

711,5(5% b) = 71/2,1<aa —b) @ 71,4,27 713,1(@ = 71/4,1 S5 71/4,1 ® 4A;,
Ti23(a,b) = T}y, © T)55(b) © 3A,, T34 =Ty, © Ty, ®3A,

and one is nilpotent and appears as a continuous contraction:
!/ !
T35 = Tiyn ® Ty o ® 241

Other decomposable results are isomorphic to those listed above:

Tiz5(a) = Tiza(a), T35 = Tz,
Ti32(a) = Ti31(a), Ti29 = Tisg.

We also list the isomorphisms among the indecomposable Lie algebras. There are isomor-
phisms among the nilpotent algebras (left column) and two among the solvable algebras

(right column):

714,3 = 714,2; 712,2(6% b) = 712,1(—6% _b)7
Ti37 = Tise, Tiip(a,b,c) = Ty 1(—a,cb),

Th2.12 = Tia 10,

Let us note that isomorphic graded contractions were always of the same type, i.e. all discrete
or all continuous.

The overview of the number of contracted Lie algebras for the Cartan grading of sl(3, C)
is given in Table 7.3. Lie algebras are divided there according to the dimension of their

non—abelian parts and their types.
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Table 7.3: The number of nontrivial graded contractions of the Cartan graded sl(3, C)

Dimension of Solvable Nilpotent Non-solvable || Total
non-abelian part || Indec. | Dec. | Indec. | Dec. | Indec. | Dec.

2 1 1
3 1 1 1 3
4 1 1
5 2 2 1 5
6 3 1 1 1 1 7
7 4 2 2 8
8 5 2 3 1 11

36

Including two trivial contractions we have obtained 38 non-isomorphic contracted Lie
algebras as graded contractions of the Cartan graded Lie algebra sl(3,C). Among them,
there are 12 parametric families of Lie algebras, one of them with five parameters.

From all these 38 contracted Lie algebras, 21 are discrete contractions and 13 continuous
contractions. Remaining 4 parametric algebras are continuous contractions for a special value
of parameters otherwise they are discrete. In order to determine the ranges of parameters
for one—parametric algebras, we have used the invariant functions. These functions are given

in Appendix C.3.

7.6 Comparison of results

Having classified all contracted Lie algebras of the Cartan graded sl(3, C), we compare them
with the results in papers [1, 13]. We have found 38 different graded contractions which
preserve the Cartan grading of sl(3,C), while in the paper [1] only 34 different graded
contractions were found. These contractions were denoted by Cj and classified accord-
ing to their types, possible decomposition, series DS, CS,US and nilradicals. The com-
parison of results, based on this classification (extended by the number of formal invari-
ants, 7 whenever it was necessary), shows that the missing algebras are algebras Tig2, Ti28
and parametric families 7g2(a,b), Z125(1,b). Moreover, in [1] solely special cases, namely
Cs3 = T113(1,1,1), Csq = Ti53(1), of parametric Lie algebras 7y 3(a, 1, ¢) and 7;3 3(a) were
found. Let us note that in the earlier paper [13] these two algebras Cs3 and C34 were omitted.

The correspondence between the graded contractions from [1], denoted by Cj, and our
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results, denoted by 7; ;, is shown in Table 7.4.

7-]’

Table 7.4: Comparison of graded contractions for Cartan graded sl(3, C)

Non-—solvable Solvable non—nilpotent Nilpotent
Indecomposable Lie algebras
Gy Toq Cs Ty.1(a,b,c,d, f) Cs Ti211
Cy Tin Cy Ts1(a,b,c) Cy Ti16
Cs 771(a) Cho 794
Co 775(a)
Cr Ts1
Decomposable Lie algebras
Cn 7—12,7 Cis 7'10,1(6% b, c, d) Cor 7'12,10
Cha Ty 3 Cia Ty 3(a,b) Cas Ti29
Cis Ts 2 Cag Ti36
Cis Ti11(a,b,c) Cso Ti3s
Cir 7'10,3(60 Ca 714,2
Cig 7'12,1 (a, b) Cso 715,1
Cho Ti14
Cao Ti26
Car Ti15(a,b)
Ca Ti0.4
Cas Ti24
Ca Ti34
Cas Ti3a
Cae Tian
Cs3 Ti15(1,1,1)
C34 Ti33(1)
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Chapter 8

sl(3,C) graded contractions summary

In this chapter we outline the situation for the last grading I'y of sl(3,C). Then, we com-
pare the graded contractions obtained from different gradings of sl(3,C). We also compare
our results with results of [5, 76, 77] which were obtained as solutions of general two—term

equations.

8.1 [y grading of sl(3,C)

In contrast to all previously described gradings, the finest grading I'y is known [34] only for

the Lie algebra sl(3,C). It decomposes sl(3, C) into eight one-dimensional grading subspaces
7

sI(3,C) = @Li, L; = spanc{e;s1}, (8.1)

1=0

where the basis vectors e; are usually represented by 3 x 3 complex matrices

0 0 O 0 10 0 00 0 01
er=101 0], e=[0 00|, es=[0 0 1|, es=1(1 0 0],
0 0 —1 -1 00 000 0 00
2 0 0 010 0 00 0 01
es=10 —1 0], es={0 0 0], e=1(00 0|, es=[-1 0 0].
0 0 -1 1 00 010 0 00
(8.2)
The commutation relations corresponding to the basis (e, ..., eg) are written in Table 8.1.

The index set [ for grading I'y coincides with the additive group Zg. The symmetry group
Ar,(Aut(T'y)) of the grading I'y, described in [34, 36], is isomorphic to the multiplicative group

Gy =1{1,3,5,7}, (8.3)

where the multiplication is considered modulo 8. The action of the symmetry group G4 on

the index set I = Zg is also given as a multiplication modulo 8, i.e. if 7, € Ar,(Aut(I'y))
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Table 8.1: Commutation relations of 'y grading of sl(3, C)

sl(3,C) el €9 es €4 es €6 er es
el 0 D) 2e3 ey 0 —eg —2ey es
€9 €9 0 €4 es —3eg —2e7 0 ey
es —2e3 —ey 0 0 0 —eg el 0
N —ey —es 0 0 —3eg el e 2e3
es 0 3eg 0 3es 0 3es 0 3ey
eg €6 2er; es —ey —3ey 0 0 —es
er 2e; 0 —eq ) 0 0 0 —eg
es —esg —ey 0 —2e3 —3eq es g 0

is a permutation of the index set I corresponding to a € Gy, then for any ¢ € I we have

7a(1) = (1a) mod 8-

8.2 Contraction system for grading [,

We construct the system of contraction equations Sr, for the I'y grading of sl(3, C). Since the
symmetry group G4 = Ar,(Aut(I'4)) has only four elements, we will deal with more orbits
than in the case of other fine gradings. Even the set of the grading indices I = Z; consists
of four orbits. These orbits are {0}, {4}, {2,6} and {1,3,5,7}. It reflects the fact that the
grading subspaces Ly and L, are preserved under the action of the symmetry group Aut(I'y)
and the subspaces Lo, Lg can be transformed only to each other.

The set of unordered pairs of grading indices I? splits under the action of G4 into 15
orbits. Eight of these orbits are formed by relevant grading indices and the corresponding
orbits of the relevant contraction parameters are marked in the contraction matrix € by

different superscripts

0 e €5 €03 0 €05 o7

*

o] . [ ]
cor 0 €9y €13 €1y €35 €17
. [ ] * I

37
. 8.4
847 ( )

0 €9y 0 €3 0 &€}
€05 €15 E95 €35 €15 O €57
g 0 €5 €3 0 0 0 g5
cor €17 0 &3 €l &5 g5 O

*
€o6
0
* o o <
€02 €12 O 0 0 &35 €% O
o
€36
0
0
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There are 42 orbits in the set I3, however, only 13 of them lead to nontrivial contrac-
tion equations. The representatives of these 13 orbits, the number of their points and the

corresponding contraction equations are summarized in Table 8.2.

Table 8.2: Equations of Sr,

Representative Generating equation | Number of points
(1,3,5) 3e13E%s — 261565 — €01€5; =0 4
(0,1,2) e95(2e8s — €01 —€03) =0 4
(0,1,5) els(2e8s — €01 —€05) =0 2
(1,2,5) 2615656 — €12E55 — €35617 = 0 2
(1,2,6) €995 — €015 = 0 4
(1,2,7) €12€37 — €02€17 = 0 4
(1,2,4) €12€34 — €14895 = 0 4
(1,4,7) €13€1r — €147 = 0 2
(1,3,4) 17654 — €145, = 0 2
(0,1,3) e13(€03 —€01) =0 2
(0,1,4) ey, (05 — €01) = 4
(0,1,7) er.(eor —€01) =0 2
(0,2,6) €56(€06 — €02) =0 1

Table 8.3: Assumptions and number of solutions for Sr,

Efoe36 7 0 11 eloetr 7 0 9 €l2e15 7 0 1
€127 # 0 3 €12657 # 0 6 €12€13 # 0 1
€1235 7 0 7 €1205 7 0 9 12674 7 0 1
€985 7 0 5 €l2€01 7 0 5 €l2gg7 7 0 1
€123 # 0 1 €12602 7 0 2 €1y 7 0 1
€12617 # 0 8 €12606 7 0 1 0 82
€126%5 7 0 8 €12€07 7 0 1
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The whole system of contraction equations Sr, consists of 37 linearly independent equa-
tions generated by action of the group G4 from those listed in Table 8.2.

Since there are only four symmetries in G4, the solution of the contraction system Sr,
according to the Theorem 3.9 is more complicated than in previous cases. However, it is still
feasible. We have solved this system in 20 steps and obtained 163 parametric matrices. The
assumptions of these steps together with the number of obtained solutions in each step are
in Table 8.3.

After discussing the vanishing contraction parameters in all 163 solutions of Sr, and elim-
inating equivalent solutions we finished with 977 non-equivalent contractions of I'j-graded
s1(3,C). From these 977 contraction matrices two are trivial and 498 depend on at least one
complex parameter. The number of contraction matrices according to the number of their

parameters are given in the following table:

number of parameters H 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5)
number of solutions H

479‘288‘152‘49 ‘ 8 ‘ 1

All contraction matrices are divided into sets according to the number v of zeros among
the relevant contraction parameter. The number of the matrices in these sets are summarized

in the following table:

\7\8\9\10\11\12\13\14\15\16\17\18\19\20\21
\ \1\3\6\11\27\51\98\134\157\167\159\109\42\8\1

v |o]e
Solutions ‘ 112
Since the only solutions without zeros have the form of normalization matrix (3.28), it is

easy to verify that the following equations hold for any solution without zeros
* * [ o _x o o o o
€o1 = €2 = €03 = €05 = Egg = €07; €15%26 = €12835) €14€45 = E34847- (8.5)

Moreover, for any of these equations there exists at least one solution with zeros which
violates it. Therefore, equations (8.5) are higher—order identities. It also appears that every
solution which satisfies these identities is a generalized Inonti-Wigner contraction, i.e. it is
of the form (3.34). Finally, we conclude that among all 977 solutions of Sr,, there are 195
continuous contractions and 713 discrete ones. Remaining 69 are continuous contractions

only for a special value (unit) of their parameters, otherwise they are discrete.
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8.3 Identification of contracted Lie algebras

The classification of all 977 graded contractions of the I'y-graded Lie algebra sl(3, C) seems
to be unattainable at present, mainly because of the high number of parametric solutions.
Therefore, we focus only on the results (Appendix A.4) which lead to non-solvable Lie
algebras. We have 28/1 such contraction matrices. Among them there is only one parametric
solution depending on one nonzero complex parameter a.

The solution without zero €®! is trivial and leads to the Lie algebra sl(3, C). Exploring the
decomposability of the remaining 27/1 solutions we find that 13 solutions allow the central
decomposition and 12/1 algebras are decomposable into the direct sum of two non—abelian
ideals. Numerical invariants divide all non—solvable parts into 11 classes. With the exception
of one class (containing two algebras distinguished by their radicals), all these classes contain
isomorphic Lie algebras only. The representatives of these classes are always chosen to be
non—abelian parts of some of 27 investigated algebras. Having determined the solvable parts
of Lie algebras we have finished the identification of all 28 non—solvable contractions of I'y-
graded sl(3,C).

There are 23 non-isomorphic non-solvable graded contractions of I'y-graded sl(3,C). In
addition to the trivial contraction Ly, = sl(3,C) there are 12 other contractions with the
indecomposable non—-abelian parts (these are tabulated in Appendix B.4) and the following

10 decomposable Lie algebras

L5 =5s1(2,C) @sl(2,C) @ 2A4,, Lion =s1(2,C) @ Agy Ay,
L1396 = (24, <s1(2,C)) @ As 1, Lisgs =s1(2,C) ® A5,
Li4121(a) =s1(2,C) @ Aéjﬁ’%’_l% L5133 =81(2,C) & Aszg @ 24,
L1588 =2 51(2,C) @ As 3, L5160 = s1(2,C) & As 4,
L5134 2 s1(2,C) & Aéjgl), Lirz0 =5l(2,C) & Asy @ 24,

For the solvable parts of the Lie algebras we use the notation of [57], where the first index i
is the dimension of the Lie algebra A; ;. The graded contractions are denoted by L; ;, where
¢ is the number of zeros among the relevant contraction parameters in the corresponding
contraction matrix. Let us note that all decomposable graded contractions listed above
appeared as discrete contractions. For the completeness we also write the isomorphisms

found among the non—solvable graded contractions of I'y-graded sl(3, C)
Liog1 = Lioa, Liags = Liagrr, Lisin = Lisgs, Lirn = Lirgo, Lisse = Ligar.

Let us note that except Li911 all these algebras are discrete contractions.
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Table 8.4 summarizes the number of non-solvable I'y-graded contractions of sl(3, C). The
number of algebras are divided there according to the dimension of non—abelian parts and
the type of contraction. Together with one trivial we have obtained 23 non-isomorphic Lie

algebras. One of them depends on one nonzero parameter.

Table 8.4: The number of nontrivial graded contractions of the I';-graded sl(3, C)

Dimension of Non-solvable || Total
non—abelian part || Indec. | Dec.

3 1 1

5 1 1

6 2 3 5

7 1 2

8 7 6 13
22

8.4 Comparison of results from different gradings

We have obtained the graded contractions from all four fine gradings of sl(3, C). There always
arise two common Lie algebras, namely 8.4; and sl(3, C), as results of the trivial contractions.
Since there are common coarsenings for some of these four fine grading, it is expectable
that there will be also common (isomorphic) Lie algebras among the corresponding non—
trivial contractions. However, not all common results are the consequence of the existence
of common coarsening.

The comparison of the resulting Lie algebras is based on our classification of the results.
We have compared the numerical invariants inv (4.69) and we tried to find an isomorphism
for algebras with the same values of these invariants. We also computed invariant functions
whenever it was necessary for the proof of nonexistence of the isomorphism. This procedure
was sufficient in all cases.

Table 8.5 shows common non-solvable Lie algebras among all graded contractions of
sl(3,C). The isomorphic algebras are always on the same line. Let us note that all 5 non—
solvable graded contractions from the Gell-Mann case were reobtained in the case of I'y. Let
us also recall that there are no non—trivial non—solvable graded contractions in the case of
Pauli grading.

The resulting solvable and nilpotent Lie algebras are compared in Tables 8.6 and 8.7.
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Note that for these types of algebras we can compare only results from Cartan, Gell-Mann
and Pauli grading. Let us also note that all 9 nilpotent graded contractions from Cartan

case appear also in Gell-Mann case.

Table 8.5: Non—solvable graded contractions of sl(3,C)

Cartan | Gell-Mann | I'y

Tia7 G188 Lis a7
Gia.2 L1251
Go1 Ly s
G2 Ls 1

Tia G6.1 Le 2

Table 8.6: Solvable non—nilpotent graded contractions of sl(3,C)

Cartan Gell-Mann Pauli
Ti33(1) G192

Grs o 1LY Z1V3E) Dy o0(1)
Tio1(—1,-1) Pis,34
To1(1,va, Vb, Vb, \/a) | Gisa(a,b)
T9:(1,1,1,1,1) Gis1(1,1) Praa(1,1)
T7(1) Gi1.2
Ts1 Po,1
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Table 8.7: Nilpotent graded contractions of sl(3,C)

Cartan Gell-Mann Pauli
Tiap Ga0,1 Pas
Ti38 G17,18 Paa 2
Ti36 Gio3 Paa 3
Ti29 G18,16 Poa1,16
712,10 Gie,12 Po112
Tiom1 Gis,23 Pig 35
Tiie G159 P20,33
Ty 4 G55 Pis5(1,1)
Tios Gise
Giga Paaz
Gig,7 Poa1,19
Gi7,13 Pao,1
G18,18 Poa1,20
Girs P20,39
Giss Poi 11
915,6<71J5\/§i) P1s,13
G162 Prg a1

8.5 Comparison of methods

There are three different approaches to graded contractions. In the original one, introduced
by J. Patera and M. de Montigny in [17], graded contractions are examined independently
of the detailed structure of the contracted Lie algebra. The only necessary information is
the knowledge of the grading group and of the relevant contraction parameters. Contraction
equations are considered in the generic two-term form only, i.e. in the form of (3.12). Let

us note that only the relevant contraction parameters appear in these contraction equations.
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For this method a computer program was also written [5]. We will refer to this method as
non—generic case.

The second approach used by E. Weimar-Woods in [76] considers only the so called generic
case — when all contraction parameters are relevant — it completely ignores specifications
of the contracted Lie algebra. Here are also considered two—term equations only. These
equations are based solely on the knowledge of the grading group. The advantages of this
and the previous method lie in the possibility to study graded contractions of whole classes
of Lie algebras simultaneously.

In comparison to our approach, both these methods have two important disadvantages.
These disadvantages follow from the independence of the structure of the contracted Lie al-
gebra. First, they can neither use the symmetries of the grading to simplify the computation,
nor to classify solutions. Secondly, they exclusively use two—term contraction equations, but
these are often too restrictive, and therefore, result in less solutions then our method.

We have investigated the difference in the number of solutions of these three methods
as follows. We took all our solutions and tested whether they satisfy the systems of two—
term equations. It is a simple test for non—generic case. However, in the generic case where
irrelevant parameters are also present, we have to substitute our solution into equations
and then solve the rest of equations for the irrelevant parameters. Some of these irrelevant
parameters are even not defined in our approach since they correspond to the zero grading
subspaces.

The number of solutions of the system of contraction equations for sl(3,C) from three
different methods are summarized in Table 8.8. The column solutions contains the number
of our solutions for each grading of sl(3,C). The columns yes (no) contain the number of
our solutions which solve (do not solve) the system for the given method. The column par.
contains the number of parametric solutions which solve the relevant system only for some
special values of parameters (usually unity).

Since there are two-term equations only in the cases of Cartan and Pauli grading , our
solutions correspond to the solutions from the non—generic case. However, in the case of Gell—
Mann and I'y grading, where three-term equations also appear, the non—generic method gives
less solutions. Having done the the classification of results, we can say that in Gell-Mann case
it means the loss of 10 unique (non—-isomorphic) graded contractions and one one—parametric
continuum. In I'y case only 2 unique graded contractions among the non—solvable graded
contractions were lost.

Table 8.8 clearly shows that the consideration of Generic case leads only to a part of

solutions even if only two—term equations exist. Considering also the identification of results,
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Table 8.8: Number of solutions of the contraction system for sl(3, C)

Grading Solutions Non-generic case Generic case
yes par. no yes par. no
Cartan 47 47 26 21
Gell-Mann 89 74 1 14 55 6 28
Pauli 188 188 42 7 139
ry 977 555 88 334 193 197 587

where the structure of original Lie algebras plays a significant role, it seems to be more

convenient to apply our method.
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Conclusion

We have described the concept of graded contractions in detail. In Chapter 3 we have
extended the original concept [17] from group gradings to arbitrary gradings. We have also
used individual approach which takes into account the structure of the graded Lie algebra and
takes the advantage of the grading symmetries. These symmetries simplified the construction
and solution of the contraction system and also enabled us to classify its solutions. The
concept of higher—order identities was retaken from [76] and modified for our purpose to
discriminate discrete and continuous solutions. Using Theorem 3.9 from [40] we finished the
Chapter 3 with an algorithm for computing the graded contractions. The algorithm was
implemented in the computer system MAPLE 8 where all computations were done as well.

This algorithm produces all nonequivalent contraction matrices. However, demanded out-
come of our work was the set of all unique (non—isomorphic) graded contractions. This prob-
lem was solved in Chapter 4, where the algorithm for the identification of finite-dimensional
complex Lie algebras was given. This algorithm extends the known algorithm for the decom-
positions and nilradical from [66] by computation Casimir operators, numerical invariants
and invariant functions. The invariant functions appeared to be a very useful tool for the
identification of parametric families of Lie algebras, especially for nilpotent ones where no
other general method is known. We have also mentioned the other possible invariants known
from literature. This identification algorithm was also implemented in MAPLE 8.

In Chapters 5,6,7 and 8 we have investigated the graded contractions for all four fine grad-
ings of sl(3,C). We have always described the grading, its symmetry group, the construction
and the solution of the contraction system and the identification of resulting graded contrac-
tions. Except for the case of I'y we have, using our two algorithms, found and identified all
possible non—isomorphic graded contractions. The nonequivalent contraction matrices as well
as non-isomorphic graded contractions with indecomposable non—-abelian part are tabulated
in Appendices. The examples of the identification are given in Chapters 5 and 6. Our results
in Chapter 5 concerning the Pauli grading of sl(3, C) were already published [II, IV, V]. The
publication about graded contractions of the Gell-Mann graded Lie algebra sl(3, C), content
of the Chapter 6, is in preparation.
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Since the graded contractions for the Cartan graded sl(3,C) were already computed in
the literature [1, 13|, Chapter 7 contains the comparison of our and previously known results.
We have found six new graded contractions which were omitted in [13] and [1].

Chapter 8 contains partial results of the graded contractions for the case of I'y-graded
sl(3,C). Because of the number of nonequivalent solutions being too large (977) — following
from the low number of symmetries (4) — we have classified only non-solvable graded con-
tractions. Moreover, the results from previous chapters were there compared and common
graded contraction tabulated.

Since there are still two approaches to the concept of graded contractions [17, 76], we have
also compared our method with them in Chapter 8. It appeared that our method, which
takes into account the structure of sl(3, C), produces more solutions than the other methods.
Moreover, we could simplify the solution of the contraction system and the classification of
the contracted Lie algebras (only nonequivalent contraction matrices are considered).

The graded contractions were originally introduced as an algebraical method for comput-
ing classical continuous contractions which are usually considered in physical applications.
Therefore, we have also determined which graded contractions are continuous and which
are discrete. Let us note that all continuous graded contractions of sl(3,C) are generalized
Inonti-Wigner contractions.

Unfortunately, the general solution of the graded contractions for the fixed grading (for
example Pauli grading) of sl(n, C), similarly as for Lie algebra so(n) in [39], seems to be un-
reachable, since even in Pauli’s case for n = 5 three-term equations appear. The identification
of the potential results is also almost impossible, the dimension being too high. However, the
part of the contraction matrices can be obtained from those computed generally for generic
case [76].

The possible application of our results is in computing representations of the resulting
Lie algebras. Following the concept of the graded contractions of the representations [54],
where the know-ledge of graded contraction is essential, one can contract the representations

of sl(3,C) to the representation of its graded contraction.
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Appendix A: Contraction matrices

Appendix A contains the complete lists of non—equivalent solutions of contraction system
for the Pauli, Gell-Mann and Cartan grading and the list of non—equivalent solutions cor-
responding to non—solvable graded contractions of I'y-graded Lie algebra sl(3,C). Except
the last one, these lists are divided according to the number of zeros among the relevant
contraction parameters. The solution £/ refers to the j—th solution in the relevant list of
solutions with ¢ zeros.

If it is not specified, parameters a, b, ¢, d, f in contraction matrices are arbitrary nonzero
complex numbers. The subscript C' or D denotes continuous or discrete solution, respectively.

Zeros in contraction matrices are shown as dots.

A.1 Contraction matrices for Pauli grading

e Trivial solutions %! and 2!

e Solution with 9 zeros %!

11. .. ...

11 11

11« ...

11.1.. .1

11.- .. ...

11.1-1.-/¢

e Solutions with 12 zeros e'®!, g12:2

111111 S la- - -
So1T
1. . 11--1bb1
1- 111 al:--alba
1o 1 Cla-
1-11. .1 b1
1..1 . ... . bb
1--111- -/7C - la *

*Reb>0V (Reb=0AImb > 0); continuous for a = 1,b = 1, otherwise discrete.
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15,7

e Solutions with 15 zeros e'!, ..

€

111111 -11-

e e T

ok

** Continuous for a = 1,b = 1, otherwise discrete.

e Solutions with 16 zeros e'®!, ... £167

111
R |

e .

1
a
|
1

B =
—

———
Qe e

SRV

11 .
o111
11--1--
11..1--
R T
-11----/D

1 Continuous for a = 1, otherwise discrete.

17,17

e Solutions with 17 zeros '™, ... ¢

.11-11 - o1

= .

e e
=

1 Continuous for a = 1, otherwise discrete.
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B
——

e
e e
—

i

.
—

B

e .
=




e Solutions with 18 zeros '8!, .. .,

S1--111 o111

e ..
—
=

18,36

* Continuous for a = 1, otherwise discrete.

e Solutions with 19 zeros e'®!,... ¢

“1--11- Sl -1

i e \iiiia

19,45
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111 -

11

B

S U U
B
B e
e e e e
N R =
N—
T

==
R .
=

e
—



b\ i)

I T 5 T N

11
c\1.......7¢c

20,42

o Nl e N

-
.

........ c \.. ... p
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R
=

N i

B

[N

B



[y
[y
—_

o1

1 1.

e

11

—_
—

=
=

11

11

127

1.
.1
.1

R T

e e
e
e
B
Q




11 11 Co11 1 1 1
.. 1..... L1 . 1
o1 11 S 1. ... 1 1. 1
.. 1 . C1 . 1
11 :
. 1 : 1
c c \1 Jo \1 /o 1
R T
N
1...1..
1.
B
e
e Solutions with 22 zeros £2>!, ... 237
S T SIS 11 1L S T
1.1 1o 1- 1 1
C1 1

e NDi i e Nl e N e N

R .1
R | 1
1. 1.
L1 . ..
1.
/o e c
e Solution with 23 zeros 231 .
1.
),

A.2 Contraction matrices for Gell-Mann grading

e Trivial solutions %!, g21:!
C1TTILIN g
1o11111\ [
TR U U T
SERESEE I EERRRES
1111-11 ) e
11111-1/) \ e
111111-7¢ \oooinn c
e Solutions with 6 zeros €%, £6-2
111111 111
1-11111 Co111.
11--1-" 11-1111
11..1.. 111-111
1111.-11 1111-11
11--1-- SUI11 -
11-.1../¢ 111--/¢
e Solution with 9 zeros %!
C11 -1
1111
11 -1 -1
1111
S T T
1 - 111 -/p
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e Solutions with 11 zeros 't gtt:2 113
S11 -1 S111111 N TR
1-11111 1--1-1. S 111
11+ -1-- Lo 11-1111
1 11.-1- 11 - -1
S11 -1 I--1-1. B IR
11+ -1- - I1--1-. So111 -
S C \N1. ... .. C 1. C
e Solutions with 12 zeros e'®!, g12:2
CS111-11 .
-1 1 -1 - 1 -11-
o1 11 - —1-1
1 1 1- 11 o1 -1 - 11
S 1.1 ..
1 1 D 1 D
e Solution with 13 zeros g'3! S
C-11--11
-1 .- .1 . .
1 - -1 - -
1111
-1 . 1 L.
1 1 D
e Solutions with 14 zeros g'4!, g142
S -111-11 1
-1 - -1 - 11 - 111-
r - - 11 - - ..
11 - -1 1 1
-1 -1 - 1.1,
1 - D NG )
e Solutions with 15 zeros !>t ... g!®?
cabll11 ca e S111 T I AR
a - oo a-b1111 1-11 1-1---1 o111
boooee S 111 111 - Sl 11
1 -« . . 1 e e 111 .11 - -1 -
1o A P Co1 1
1. .. ... R P 1. .. A
1« .. * o * C -1 C - c
%((14_1).. e
. . a 11 - -lfllifll -1 -1 .- o111 -
latha - 1. E Lt RIS
. 1 . R D | 1 -1 1-1-1-
1 1 R -1 - -1 - 1 1. - 1-11--
. . 1 1 o D . . D C

* Continuous for a = b = 1, otherwise discrete.

f
ta # 0,—1, continuous for a = 1, otherwise

discrete.
e Solutions with 16 zeros 16!, ... £16:12
.all111 111 - - ca oo N S T
a - oo 1-11--- a-1111 1.-al1-11 --all11
1 - - - - .. 11 - ... <1 S A a o e -
1. - .. 11 - -1 -1 -1
1 oo .. . .1 B P
1 - -« .. 1 S N
....... D C ......./D 1. D .1-.-.../D
L R S
11 - - 3 5\ S R D
1-11- o111 o111 So1-1-1 T
11-1- 1q..1. S “1--1-1 1-1 - -1--
11 - - 2 Y I T 1.
.- -1 - 11- 11 .01 - -1
.11 - EEETE B WP N
C 2 11 C A
D -1 D D
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e Solutions with 17 zeros e'™!,... ¢

1111-- ca-111- -111---

e e
- Q
—_

DN ... p Nl g Nl o

—
.
e

111--- S11-1-- Se111 - TS Sl 1 SL

e
—

.

—
—
—

B

—_
—
-

11-1- 111 o111 11 SR T

—
B i
—

—

—

11 1.1 - R R R R P
1 - - e 1 o oo o v 1-1-.-. a1 11 1---1--

—
B



e Solutions with 20 zeros 2!,

o\ e N e
A.3 Contraction matrices for Cartan grading

e Trivial solutions %!, g!5:!

111 LILIN e
11 11\ [
11--11-\ 4 -
1 o110
1111\
T-11--1) \ v
11-1-1-7¢ \oovies c
e Solution with 4 zeros !
S111111
1. . -1-. -
1...1..
1---111
1111- - -
1.1
1--1- c
e Solution with 6 zeros %!
S111111
1-1-1--
I1--1-
1.« .« ..
111
1. - .- - ..
i R C
e Solutions with 7 zeros ", 72
-11111a calalal
1 -1 1. . a - - - - - -
11 .- 11
1 - .« - .. a - - - - 1-
11 .- - -« . 1 -1 - ..
1 ... ... a - -1 -
a - - - - - . * 1 .. .«... *
* Continuous for a = 1, otherwise discrete.
e Solutions with 8 zeros ¥, 82, 83
-111bca 11111 S111-1
1-1- - - S1-1 1-1-
11 11 I1- -1
1 -« . i 1 1
b - 11
C oo 1. . .. 1-11- - -
Q- e PN D ......./D

t Continuous for @ = b = ¢ = 1, otherwise discrete.

e Solutions with 9 zeros %!, ..., &%
cabed f1 -111ba- 111-bax /- oo
a - - 1 -1 - - - 1-1-... o111
b - 11 - 11 - 111 -
c - 1 - .. .. 1 - P
d - b oo L. 111 - -
e - Q@ ¢ e e e b - a1
1 - T N D a - D L C

! Continuous for a = b =c=d = f = 1, otherwise discrete.
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e Solutions with 10 zeros %!, ...

abcdl - . ..
@ - - e e

e Solutions with 11 zeros e'™!, ... ¢

B SIS JR ST

cabecl--

=0 SR
= 0o
.. .o
.. .o
. .
.. C e
SN~——————
o
B e Sl ST
P <Y
P~
F
e e e e
T

-/ D

.abl--- .ab-1-- .a-b1-- R

Q- e Q- e Q- e R PR R P
b oo hoooe e B A
1o v e 1« o e a - -
1 - . Q- e

e Solutions with 13 zeros e'®!, ... ¢

cal-- .- a1 v al-- R R
a - - a - - R R R
1« a -
1o o 1o e v v v

Ao N1 e Nl e
14,2

e Solutions with 14 zeros e'*!, ¢
p N\ e N1 e
A.4 Contraction matrices for ['y grading

e Trivial solution

B
B

0,1

e
e
e
e e

[l o ST
il
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e Nontrivial solutions

11

B

6,1 _

e
.o —_ .

T e

B
—

8,2

Q)
=
e

9,6 _

-111--1-
1-11-- - -
12,50 1100
ghedd = 111"
1-11-- -

111--1-
1.1 -+ ..
. 11 ---1-
g3 = 11"
1-11-- . -

™M
=
R .
e e
-

R P
14,121 oot
€ =l a-1-1-1

1.1 - ...

16,71 _

.1 - - -1
16,141 Lol
e = 11
1.1 .. ...

17,71 _

/
[
e ke .
e e e e e
e ek
e e
R

6,2

R R

8,3

Q)]
e

—-214-41-2
A B
R T
--11 1

£12,51

W W W Ww-
—
—
—_

=
-

S14,77

RSN

215,88 _

1695 _ | -1
€ - 11 -
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71

R
R

9,5

210,11 _

3

3

3

3

-111--1-

1-11----
13,55 1100L
g = L1 1>

R

e
—

£14.83 _

15,134 __ R R
€ =1 - 1-1-1.-

16133 _ | -~ . ... ..
€ - 11

£17,70

£1859 _




Appendix B: Graded contractions of
sl(3, C)

The lists of all contracted Lie algebras of the Pauli, Gell-Mann and Cartan graded sl(3,C) as
well as the list of all non—solvable contracted Lie algebras of I';-graded sl(3, C) are presented.
Only indecomposable non—abelian parts of contracted Lie algebras are tabulated. The struc-
ture of decomposable Lie algebras is found in previous chapters. Algebras are divided into
classes according to the dimensions of the derived series (DS), the lower central series (CS)
and the upper central series (US). For each of the listed Lie algebras we give its nonzero
commutation relations, dimensions of algebras of generalized derivations dim(, g ), number
of formal invariants 7 and the type of contraction (C—continuous, D—discrete). The Levi de-
composition is given in the last column for non—solvable Lie algebras. For the non—solvable
and the solvable non—nilpotent Lie algebras the nilradical is added. For the nilpotent Lie
algebras Casimir operators are presented.

Parametric Lie algebras are written in general form on the first lines (ended by restriction
on parameters) in tables. Solely the values of parameters for which some characteristics are
different are presented on the following lines. Casimir operators are rewritten only if their
order depends on the value of parameters. For specification of the ranges of parameters for

one—parametric contractions, the following notations are used
Co =C \ {0}>
C, ={z€C||z| <1}U{ze€C||z| =1AIm(z) >0},
Cio={2z€C|0<|z| <1}U{z€eC||z| =1 AIm(z) > 0},
Cyp={2€C|0<|z+1] <1ARe(z) > —3}U
{zeC||z+1=1ARe(z) > —3 Alm(z) >0} .
We use the superscript * for any of the listed sets if there are no isomorphisms among Lie
algebras corresponding to different parameters in the given set.

For low—dimensional Lie algebras the alternative name (AN) is assigned according to the

list of algebras from [57]. This name is also used for nilradicals and Levi decompositions.
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GeT

B.1: Nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim, 5, 7 Casimir operators T AN
(310)(310)(13) Pys1 ez, es] = e [6,6,3,5,3,4] 1 e C A;q
(420)(4210)(124) Pioq  lea,ea] = €1, [e3,e4] = €2 [7,7,3,4,2,5] 2 e1, €3 —2eje3 C A
(510)(510)(15) Pioqr  [ea,ea] =e1, [e3,e5] = e [15,15,5,14,10,11] 1 e C As,
(520)(520)(25) Paa 3 [es, e5] = e1, [eq,e5) = ea [13,13,7,9,7,11] 3 e1, ea, egez —ejey C Asq
(520)(5210)(135) Poiz  lea,eq] =e1, [es,e5] = e1, [eq,e5] = e2 [10,11,5,7,4,7] 1 e C A4ss
(530)(5320)(235) Poio  [es,ea] =e1, [es,e5] = ea, [eq,e5] = e3 [10,10,5,4,4,11] 3 e, ea, €3+ 2e1e5 — 2ezey C A4ss
(620)(620)(26) Piiig  les es] = e, [ea,e6] = e1, [es5,e6] = €2 [17,18,10,14,10,14] 2 eq, ey C  Asa
(620)(6210)(146) Piio1  le2,e6] = €1, [e3,e5] = e1, [eq,e6] = €2 [14,14,5,11,7,10] 2 e, €3 —2ejey C A2
(630)(630)(36) Piiie  lea,es] = e1, [ea,e6] = ea, [e5,e6] = €3 [18,18,10,9,10,19] 4 e1, €2, e3, e1eg —eses +eses  C Aga
(630)(6310)(136) Py ez es] =e1, [e3,eq] = e1, [es,e5] = e3, [eq,e6] = €2 [11,10,4,6,4, 8] 2 ey, ezez —ejey C Aé}ﬂ

P lea,es] =e1, [e3,e6] = e1, [es,e6] = e3, [es,e6] = €2 [12,12,5,7,4,8] 2 e, €2 —2ejey C A1
(630)(6310)(246) Poia [es,ee] =e1, [ea,es5] = ez, [eq,e6] = €3 [13,15,7,8,6,13] 2 ey, e C Asr

Pii3 [es, eq] = e1, [ea,eq] = ea, les,eq] = e3 [15,16,7,9,6,13] 4 ey, es, €3 —2eres, ezeg —erey O Ay
(630)(6320)(246) Pio.s [es,eq] = e1, [es,e5] =e1, [es,e6] =ea, [e5,e6] = ey [13,15,7,8,6,13] 2 ey, e C Ao
(640)(64310)(1346) Pigo  [ea,e5] = €1, [e3,e6] = €1, [es,e5] = €3, [eq,e6] = €2, [e5,e6] =eq [10,9,4,5,3,8] 2 e1, ejeq —eges C Aé}is
(710)(710)(17) Piioo  le2,e5] = e1, [e3,e6] = e1, [es,e7] = €1 [28,28,7,27,21,22] 1 ¢ C
(720)(720)(27) Piozo  les ee] = e1, [ea,er] = ez, [e5,e6] = €2, [es,e7] = ey [19,19,11,15,11,15] 3 e1, e, eley — ejeaes + e3es C

P11 les,es] = e1, [es,e7] = e1, [es,er] = e [21,22,11,18,14,18] 3 e1, €2, e1e5 — eaeq C
(720)(7210)(157) Pioao  le2,e5] =e1, [e3,e6] = e1, [es,e7] = ey, [es,e7] = ea [19,20,7,16,11,14] 1 e C
(730)(730)(37) P11z [ea,ee] = €1, [es,e7] = ez, [eg,e7] = e3 [20,24,13,15,13,22] 3 e1, e, €3 C
(730)(7310)(137) Ploas lez,es] = e, [es,e6] = e1, [es,e6] = e3, [ea,er] =e1, [es,e7] =ea [13,13,5,9,5,9] 1 e D

Pioaz  [e2,e6] = €1, [es,er] = e1, [es,e6] = €2, [es,e7] =e3 [14,14,5,9,5,10] 3 ey, — 2e1eq, €3 —2e1es D

Ploa [e2, e6] = €1, [e3,e7] =e1, [ea,e7] =e3, [es,e6] = es, [es,e7] =ea [15,14,5,9,5,10] 3 e1, €2 —2eeq, e1e5 — eze3 C
(730)(7310)(147) Ploz  lea,es] =e1, [e3,e6] = e1, [es,e7] = €1, [es,er] = ez, [es,e7] = €4 [16,16,7,11,7,11] 1 e C
(730)(7310)(257) Pio10  les ee] = e1, [ea,er] = ez, [e5,e6] = €3, [es,e7] = ey [15,18,9,11,8,15] 3 e1, e, 2eleq — 2erege5 +eged D

Pio.s [es,e6] = e1, [es,e7] =e1, [es,es] =e3, [e5,e7] = e [17,18,9,11,9,16] 3 e1, ez, €3+ 2ezeq — 2eqe5 C

Pioa1  les,er] =e1, [ea,er] = e3, [e5,e6] = €1, [es,e7] = ea [18,20,10,13,9,16] 3 e1, ea, €3 — 2ejeq C

Poo1a  les,er] = e1, [es,e7] = ez, [es,e6] = e1, [es,e7] = e3 [19,20,10,13,9,16] 3 e1, ea, e1e4 — eaes C
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B.1: Nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim(, g, 7 Casimir operators T
(730)(7320)(257) Plo1g [e3,es5] = e1, [es,e6] = €2, [ea,e7] = e1, [es,e7] = €2, [es,e7] =eq  [14,15,9,9,8,15] 3 e1,ea,e1e] 4+ 2(edes3 + ereger —e3eg) D
Pioo les,es] = e, [ea,e6] = ea, [es,e7] = e1, [es,e7] = €4 [16,17,9,11,9,16] 3 e1, e, e+ 2(ezer —ereg) D
Ploar les,es] = e1, [es,e7] = ea, [es,e6] = €2, [es5,e7] = €1, [es,e7] =es5 [16,18,9,12,8,15] 3 1, e, eley — ereqes + eles C
(740)(7410)(147) Pisaz [e2,es5] = e1, [es,e6] = e1, [ea,e7] = e1, [es,e6] = €2, [es,e7] =eq, [15,13,7,9,6,11] 1 ¢ C
les, e7] = e3
(740)(7410)(247) Plog [e3,es] = e1, [es,er] =e1, [es,e6] = e3, [es5,e7] = €2, [es,e7] =eq [16,17,8,9,7,16] 3 €1, e2, €3 +2(ezeq — e16€5) C
(740)(7410)(357) Pios lea,er] = e1, [es,e6] = ea, [es,e7] = eq, [eg,e7] = e3 [18,22,10,10,9,22] 3 e, €2, €3 C
(740)(7420)(247) Plgg les,es] =e1, [es,er] = ea, [es,e6] = €2, [ea,e7] = €1, [es,e7] =e3, [11,14,7,6,6,15] 3 e, e, D
[es, e7] = eq e1es — 2(eeg — ereqer + e3es) + exel
Ploo les,es] =ei1, [es,e6] = €2, [ea,e7] = e1, [es,e7] =e3, [es,e7] =eq [12,15,7,7,6,15] 3 e1,ea,e1el —2(eeg — ereaer) +eae: D
Pyor  les,es] = €1, [ea,er] = ea, [e5,e6] = e3, [es,e7] = eq [13,17,7,8,6,15] 3 e1, e, e1€3 — 2ejeze5 + €€l D
Ploa les,es] =e1, [es,e6] = €1, [ea,e7] = ea, [es,e7] =eu, [es,e7] =e3  [15,15,7,7,6,15] 3 e1, eg, ere7 — eseg + esey C
Plos les,er] =e1, [es,er] =e3, [es,e6] = e1, [es5,e7] = €2, [es,e7] =e5 [16,18,7,9,6,15] 3 e1, e, €3 —2e1e4 C
Pioaz  es,er] = e1, [es,er] = ea, [es,e7] = e3, [es,e7] = €4 [19,19,7,10,6,15] 5 e1, e, €3 —2eres, e — 2eqeq, C
€93 — €164
(740)(7420)(357) Pios lea,er] = e1, [es,e6] = €2, [es,e7] = e3, [es,e7] = €5 [17,22,10,10,9,22] 3 e, €2, €3 C
(740)(74310)(1357) Pisa1  le2,e6] = €1, [es,er] =e1, [ea,er] = e3, [es5,e6] = €3, [es,e7] = €2, [13,13,5,8,4,9] 3 e1, €2 —2ejey, eze3 —ere; C
[es, e7] = es
(7510)(754210)(12457) Pi;;  [ea,er] = e1, [e3,er] = ea, [es,e5] = €1, [ea,e6] = €2, [e5,e6] = €3, [12,10,4,4,2,9] 3 e1, €2 —2eje3, ere6 — eaes + ezey C
[es, e7] = eq, [es, e7] = e5
(820)(820)(28) Pisss les,es] = e1, [es,er] =ea, [es,e6] = €2, [ea,es] = €1, [es,e7] =e1, [22,25,13,21,15,19] 2 ey, ey C
[e5, e8] = e2
Proaa [es,es] = e1, [es,e7] =e1, [es5,e7] =ea, [es,es] =e1, [es,es] =ex  [24,25,13,21,15,19] 2 ey, e C
Paoz2  [es,er] =e1, [ea,e7] =ea, [e5,es] = ea, [es, e8] = e1 [26,26,13,22,18,22] 4 ey, ea, e1eq — eze3, €165 — €266 C
Paoss  [es,es] =e1, [ea,er] =e1, [es,es] =e1, [er,es] = e [28,29,14,25,19,23] 2 eq, e C
(830)(830)(38) Pioa1 les,es] = €1, [ea,e7] =ea, [es,e7] = €3, [es,es] =e1, [es,es] = ez  [20,24,16,15,16,25] 4 ey, eq, es, C
e1(erer — exeg — ezeg) + eaezes — e3eq
Paoss [ea,er] =e1, [es,er] =eq, [e5,es] =e1, [es, e8] =es3 [23,28,16,19,16,25] 4 1, e, e3, eres — e1ezes + eaesey C
Paos1 [ea,er] =e1, [es,es] =e1, [es,er] = e2, [es, e8] = es3 [26,28,16,19,17,26] 4 e1, ea, €3, e1eg — €264 — €365 C
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B.1: Nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim(qa,5,9) 7 Casimir operators T
(830)(8310)(138) P17 [ea, e8] = e1, |es,er] =e1, [ea,eq] = €1, les,es] = ea, [e5,6e7] = ea, [16,15,6,12,6,10] 2 e1, eres — ezes D
e5, es] = e3, [es, e7] = e3
Pis3 [ea, e7] = e1, [es,es] =e1, [eq,e7] =ea, [es,es] =es, [es,e7] =e3, [19,16,6,12,6,10] 4 ey, ejeg — ege3, €3 — 2ereyq, €3 —2e1e5 D
e, e8] = ez
(830)(8310)(148) Pis.o [ea, e8] = e1, [es,er] =e1, [eq,e6] =e1, [es,e7] = ea, [e5,es] =e3, [18,17,6,13,8,12] 2 e, ejes — eges C
[es, es] = ea
(830)(8310)(158) Pig.3 [ea, e8] = €1, [es,er] = e1, [es,e6] =e1, [es,e7] = ea, [es,es] =e3  [20,19,6,15,11,15] 2 ey, eres — ezes C
(830)(8310)(268) Pis2a [e3,es] = €1, les,er] = €1, [ea,es] = €2, [e5,e6] = €1, [es,es] =e3, [19,20,11,14,10,17] 2 e, eo D
e, e7] = €2
Prooa  les,es] = e1, [ea,er] = ea, [es,es] = e3, [es,e7] =e1, [es,e8] =ea [20,22,11,15,10,17) 4 e1, e2, 2e1e5 — €2, eles — ereaes +e3e3 D
Pro2s  les,es] =e1, [ea,e6) = €1, [es,er] = €1, [es,es] =e3, [es,e7] =ex  [20,22,11,15,11,18] 2 eq, e D
Pios1  les,es] =e1, [eq,es] = ea, [es,e7] = e, [es,e7] = €1, [es,es] = ez [21,23,11,16,12,19] 4 €1, e2, e1eq — ezes, D
2(e3es — e1eaeq) + 263
P11 les.er] =e1, [ea,er] =es, [es,es] =e1, [es, e8] = ea [21,23,11,16,12,19] 4 €1, ea, ereg — ezes, 2ei1eq — €3 D
Paoa7  es,es] =e1, [es,e7] = ea, [e5,e5] =es, [es,es] = €2 [23,25,11,18,13,20] 4 e1, ea, ereq — eze3, 2eies — €3 D
Pioas  les,es] =e1, e, e7r] =e1, [es,e6] = €1, [es,e5] = €3, [er,es] =ea  [24,25,13,18,13,20] 2 eq, e C
(830)(8320)(268) Pi7.1a [es,er] =e1, [es,es] = ea, [es,e6] = €1, [ea,e7] = ea, [e5,e6] = €2, [16,19,11,13,10,17] 2 ey, eo D
[es, e8] = e1, [er,es] = e3
Pis2o  les.es] = €1, [es,es] = ea, [es,e7] = €2, [ea,es] = €1, [es,e7] =e1, [18,19,11,13,10,17] 2 ey, e D
e, es] = e3
Pro21  les,eq] = e1, [es,er] = ez, [es,es] = ea, [e5,es] =e1, [es,er] =es  [20,20,11,14,12,19] 4 e1, e2, ereq — ezes, 2(erer —ezeg) +e2 D
Pisis  es,er] =e1, [es,es] = ea, [ea,e6] = €2, [e5,e7] = ea, [es,es] =e1, [20,22,11,15,11,18] 2 ey, eo D
[e7, e8] = e3
Proas  les.er] =e1, [es,es) = ea, les,e6] = €1, [es,es] =e1, [er,es] = ez  [22,24,11,17,13,20] 2 ey, e D
(840)(840)(48) Pao,3s  les,er] =e1, [es,es] = ea, [eg,e7] = €3, [es,es] = es [24,33,17,17,17,33] 4 e1, €2, €3, €4 C
(840)(8410)(248) Pis36 les,er] =e1, [ea,es] =e1, [es,e6] = €1, [es,e7] =es, [es,es] = eq, [18,22,10,13,9,18] 2 ey, eo D
[e7,es] = €2
Proas les,er] = e1, [ea,es] =e1, [es,e7] =e3, [es,es] =eu, [er,e5] =ea [19,22,10,13,9,18] 4 €1, e2, 2e1e5 — €3, 2e1e6 — €3 D
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DS,CS,US Name Commutation relations dimq,5,) Casimir operators T
(840)(8410)(258) Pis10 les,er] =e1, [ea,es] =e1, [es,e6] = eq, [e, e8] = eq, [19,22,10,13,9,18] 2 ey, e D
[e7,es] = es
Pio,6 les,er] = e1, [ea,es] = e1, les,er] = ez, [es, e8] = €4, [er,es] =e3  [20,22,10,13,9,18] 4 ey, e, eres5 — ezes, 2e1e6 — €3 D
(840)(8410)(368) Pio2s  [es,es] =e1, [es,er] =e1, [es,es] =es, [es,e7] = €2, [es,e8] =e3 [20,27,13,14,12,25] 4 ey, ea, e3, 2e1(e1e6 — eaes5 — e3eq) + eges D
Pro1s  [es,es] =e1, [es,er] =e1, [es,es] =es, [es,e7] = ea, [es,e5] =eq [21,27,13,14,12,25] 4 ey, e, €3, €1(2e1e6 — 2eze5 — €3) + 2ezezeq C
Pao12  lea,es] =e1, [es,er] =e2, [es, es] =ea, [er,e5] =e3 [22,28,13,15,12,25] 4 e1, ea, e3, 2e1e6 — €} D
Pao 4 [es, es] = e1, [es,es] = ea, [es,e7] =e3, [er,es] =eq [23,28,13,15,12,25] 4 €1, ea, €3, eres — ezey C
(840)(8420)(248) Pig.a les, e5] = e1, les,er] = ea, [eq,eq] = €2, [es, e8] = €1, [e5,e7] =e3, [12,16,9,8,8,17] 2 e, ey D
[e5,es] = €2, [es,e7] = €1, [es, e8] = €4
Pi716  |es.es] = e1, [es,er] =ea, [es,eq] = €1, [e4, e8] = ea, [es,e7] =e3, [14,16,9,8,8,17] 2 e, ey D
[e6, e8] = e, [e7,es] = €1
Pir1s  les,er] =e1, [es,e6] =e1, [es,es] =e2, [es5,e7] =es3, [es,es] =e1, [15,18,9,10,8,17] 2 e, ey
[es, e7] = €2, [es,es] = ea
Pig2s  les,es] =e1, [es,er] =e2, [ea,e6] = €2, [eq e8] =e1, [es,e7] =e3, [16,16,9,8,8,18] 4 ey, e, 2(ere6 — ezeg) — €3,
[es, es] = eq 2(erer — eges) + €2
Piso1  les,er] =e1, [ea,e6] = €1, [ea,es] = €2, [es,e7] =e3, [es,es] =e1, [16,18,9,10,8,17] 2 e, ey
[667 68] = €4
Pis22  les,es) =e1, [es,e6] = €2, [ea,e7] = €1, [e5,e5] =e3, [es,e7] =eq, [16,18,9,10,8,17] 4 ey, e, 2ere5 — €3,
[e7,es] = ea e1(2e1e6 — 2ege7 — €3) + 2ede3
Pis2s  |es,er] =e1, [ea,es] =ea, [e5,e7] =e3, [e5,es] = e1, [es,er] = e2, [16,21,9,12,8,17] 4 ey, ey, 2e1e0e6 — €165 — 2€3e3,
[es, es] = eq 2e;(ereq — eges) + eaed
Pi72 [es,e7] = e1, [es,es] = ea, lea,eq] = ea, [es,e7] =e3, [e5,e6] = €1, [17,16,9,8,8,18] 4 ey, es, ereg — eser + eses,
[es, e8] = —es, [er,es] = e 2(e1eq — ege5) — €3
Pro22  les,es) =e1, [ea,e7] =e1, [ea,es] = ez, [e5,e6] = e3, [er,es] =es [17,19,9,10,8,18] 4 ey, e, 2ere5 — €3, 2(eres — egeq) + €3
Proos  les,er] =e1, [ea,es] =e2, [e5,es] =e4, [e,€7] =e3, [es,e5] =e1  [17,21,9,12,8,17] 4 eq,e, 2ege5 — €3, 2e1(e1e4 — eae6) + €263
(840)(8420)(258) Pig,z(a) [es,es] = e1, [es,es] = e2, [eq,e7] = ea, [ea,es] =e1, [e5,e6] = €2, [16,19,9,11,8,17] 2 e, ey
[es, er] = e1, [eq,es] =es, [er,es] = —aeq, a € Cqg
Pi7.9 [es, e6] = e1, [es,es] =ea, [eq,e7] = e, [eq,es] = €1, [es,e7] = €1, [16,19,9,11,8,17] 2 e, ey
[ee, es] = e3, [e7,es] = eq
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DS,CS,US Name Commutation relations dim, g, 7 Casimir operators T

Pi7.12 [es, e6] = €1, [e3,es] = ea, [es,e7] = ea, [e5,e6] = €2, [es,e7] = €1, [16,19,9,11,8,17] 2 e, e D
[e6, es] = e3, [er,es] = eq

P1s.12 [es, eq] = €1, [e3,e8] = ea, [eq,e7] = €2, [es,er] =e1, [es,es] =e3, [17,19,9,11,9,18] 4 ey, ea, ereq — e2es, D
[e7, e8] = eq 2e1eqe8 + 165 — 2€3e6 + a6’

Pis,14 [es, e6] = €1, [ea,er] = ea, [es,es] =e1, [es,e7] =e1, [es,es] =e3, [17,20,9,12,9,18] 2 e, ey D
[e7,es] = €4

Pis a7 [es,er] = e1, [es,es] =ea, [e5,e7] =ea, [e5,es] =e1, [es,e7] =e3, [17,21,9,12,8,17] 4 ey, ey, eley + ejeses — e3es, D
[es, e8] = eq 2e1e2e6 — €165 — €963

Pi9.15 les,e7r] = e1, [ea,es] =ea, [es,es] =e1, [es,er] =es, [es,es] =es [18,21,9,12,9,18] 4 eq,ea, €164 — €365, 2e160e6 — e1€5 —ege3 D

Pirq(a) [es,es] =e1, [es,er] =e1, [eq,es] = €2, [e5,e6] = e1, [es,e7] = €2, [19,20,9,12,8,17] 2 e, ey D
[es, es] = es, [er,es] = —aeq, a € C§
a=1 C

Pis.6 [es, es] = e1, [eq,e7] = €1, [eq,es] = €2, [es,er] = ea, [eq,es] =e3, [19,21,9,13,8,17] 4 ey, es, 2eie6 — €3, D
[e7, e8] = eq e2es — e1eaeq + e3e3

Pis,7 les, es] = e1, [ea,e7] =e1, [ea, e8] = €2, [es,e6] = €1, [es,es] =e3, [20,22,10,13,9,18] 2 eq, eo D
le7,es] = €4

Pigas(a) [es,es] =e1, [es,es] =ea, [e5,e7] =e1, [es,es] = es, [20,22,10,13,9,18] 4 €1, €2, ejes — ezes, D
les, e7] = —aea, [es,es] = eq, a € C 2e1(e1e6 + aeges — ezeq) + (1 — a)eged
a=1 €1, €2, €1e4 — €2€3, €1€g + €265 — €3€4 C
a=-1 22,22,10,13,9, 18]
a=0 [21,23,10,14,9, 18] e1, €2, €164 — €ge3, 2€9e6 — €3

(840)(8420)(368) P1s.19 [es, e6] = €1, [ea,es] = ea, le5,e7] =es, [es,es] =e1, [es,e7] =ea, [16,24,13,12,12,25] 4 e1, eq, e3, 2e1(erer + ezeq — ezeg)+ D

[es, e5] = eq +2e5(ezeq — ezes) — ezed

Pis,16 [es, e6] = €1, [ea,es] = ea, [es,e7] =e1, [es,es] = e3, [es,e7] =ea, [19,24,13,12,12,25] 4 e, eq, e3, 2e1(eres — ezeg — ezer)+ D
[es, es] = eq +ere? + 2ex(ezes — ezeyq)

P19.20 [eq,e6] = €1, [eq,es] = ea, [es,e7] = e3, [es,es] =e1, [es,es] =eq [19,25,13,13,12,25] 4 ey, eq,e3, 2(e?er — erezes + esezes) — ezed D

Pio,11 [es,e7] = e1, [ea,es] = ea, les,e6] = e1, [es,es] = e3, [er,es] =eq [21,25,13,13,12,25] 4 e1, e, e3, 2(eres — exer + e3ze5) + €3 D

P19.10 [eq,e7] = e1, [es,es] = €2, [es,e7] = e, [es,es] =e3, [er,es] =eq [21,27,13,15,12,25] 4 €1, eq, e3, ereses + eeq — eaezey C
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B.1: Nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim a5, 7 Casimir operators
(840)(84310)(1368) Pig,1(a) [e2, es] = €1, [es,er] =e1, [es,e7] = €2, [eq,es] =es3, [e5,e6] = €1, [16,15,6,11,5,10] 2 ey, ejeq — ezes
[es, es] = ea, [es,e7] = aes, [e7,es] = ey,
a € Cj
a=1
Pi7.a [e2,es] = e1, [es,er] = e1, [ea,er] = ea, [es,es] = €3, [es,e7] =e3, [16,15,6,11,5,10] 4 €1, eres — ese3, 2eies — €3,
[es, e8] = ea, [e7,e8] = eq4 2eie6 — €3
(840)(84310)(1468) Pi7.3 [ea, e8] = €1, [es,e7] =e1, [eq,e7] = ez, les,eg] =e3, [e5,e6] = €1, [17,16,6,12,7,12] 2 ey, ejeq — eze3
[ee, es] = ez, [e7,es] = €4
(840)(84310)(1568) Pis.a [ea, e8] = €1, [es,e7] =e1, [eq,e7] = ez, les,es] =e3, [e5,e6] = €1, [19,18,6,14,10,15] 2 ey, ejeq — eze3
[e7,es] = eq
(850)(8520)(258) Piss5(a,b) les,es) = €1, [es,er] = ea, [es,es] = ea, [es,es] =bey, [es,e7] =e1, [16,19,7,9,6,17] 2 e, ey
[es,es] = ea, [es,e7] = es, les,es] = —aey, [er,es] =e5, a #0
a=-—1, bZO [17,19,7,9,6,17]
a=1,b=1 [18,19,7,9,6,17]
Pi7,s [e3,er] = e1, [es,es] = ea, [es,e7] = ea, [es,es] =e1, [es,er] =e3, [16,20,7,10,6,17] 4 e1, ea, €3eq — ejeses + e3es,
[es, e8] = eq, [e7,e8] = e5 2e1e0e6 — €165 — eged
Pi7.10 les,er] = e1, [eq,e6] = €1, [ea,es] = e, [es,es] =e1, [es,er] =e3, [16,20,8,10,7,18] 2 ey, e
e, es] = €4, [e7,es] = e5
Pi713(a)  [es,es] = e1, [es,er] = e2, [eq, e8] =e1, [es,es] = e, [es,e7] = €3, [17,19,8,9,7,18] 4 ey, eg, e1e5 — egeq, (1 —a)egel
[es, e8] = —aeq, [e7,es] =e5, a € CF, +e1e3 + 2e;(e1er — eaeq — eqes)
a=-—1 [19,19,8,9,7,18]
Pisg,11 les,er] = e1, [eq,es] = ea, [es, e8] =e1, [es,e7] = e3, [es,es] =eq, [17,20,8,10,7,18] 4 ey, ea, ereq — ezes,
le7,es] = es5 2e1e0e6 — €165 — €263
(850)(8520)(358) Pi7.11 [eq, e6] = €1, [eq,es] = ea, [es,e7] = ea, [es,es] = €1, [es,er] =e3, [16,24,10,9,9,25] 4 ey, ea, e3, 2e1(erer — ezeg + e3e4)
[es, es] = eq, [e7,e5] =e5 +2e3(ege — ezes) — e1e2 — ezer
Pis,15 [e4,e6] = €1, [ea,es] = ea, [es,e7] = ea, [es,e7] = e3, [es e8] =eq, [17,25,10,10,9,25] 4 ey, ea, e3, 2eieqeg + €162
[e7,es] = e5 —2e2eq + 2eze3e5 + egel
P19,16 les, e7] = e1, [es,e8] = ea, les,e7] =eq, [es, e8] = €5, [e7,es] =e3 [18,26,10,11,9,25] 4 ey, e, e3, 2ereaes — e1e2 — eged
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B.1: Nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim(q, 5, 7 Casimir operators T
Piss lea, e8] = e1, les,er] =e1, [es,es] = ea, [es,er] = es, [20,26,10,11,9,25] 4 e1, ea, €3, C
les, es] = eq, [er,es] =e5 2e1(e1eq — ezes) — e1e2 + 2eqe3ey
Proga  les,es] =e1, [es,es] = ea, [es,e7] = €3, [es,es] = eq, [er,es] =e5  [22,26,10,11,9,25] 4 ey, es, e3, eres — ezeq C
(850)(8520)(468) Prog2  les,er] =e1, [es,es] = ea, [es,e7] = €3, [es,es] = eq, ler,es] =e5  [22,32,13,12,12,33] 4 ey, eq, €3, €4 C
(850)(8530)(358) Piss lea,e7] = €1, [ea,es] =ea, [es,e6] = e1, [es,es] =es, [es,es] =eq, [19,24,10,9,9,25] 4 ey, e, es, C
[€7> 68] = €5 €1e8 — €267 — €366 + €465
(8510)(85310)(1358) Pire [ea, e7] = e1, [es,eq] =e1, [e,e5] =e1, [es,es] =e2, [e5,es] =e3, [16,11,4,6,4,10] 2 e1, eleg — eges + esey C
les, es] = eq, [e7,es] = —e5
(8510)(854210)(12468) P15 [e2,e7] = e1, [es,es5] =e1, [es,es] = ea, [eq,e6] = €1, [ea,e7] =e€a, [13,10,4,5,3,9] 2 eq, ereg — eses + ezey C
[es,e7] = es, [es,es] = eq, [eg,es] =e3, [er,es] = —e5
(8620)(865320)(23568) P15,3 [es,e7] = e1, [es,es] = ea, [es,e5] = —e1, [eq,e5] = €3, [14,16,6,4,4,18] 4 eq, ez, 2eie5 + 2eqeq4 — €3, C
[es,e6] = ea, [es,er] =es, [eq,er] = eq, [es,es] =e5, [er,es] = es e1eg — eser + e3eg — e4€s

B.1: Solvable non—nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name  Commutation relations dim(qa,5,9) 7 Nilradical T AN
(430)(43)(0) Pho  len,ea = en, lez eal = €3, [eses] = 641,301 2 34 D Ay
(530)(53)(0) Pilg.34 [e1,e4] = ea, [e1,e5] = e3, [e2,e4] =e3, [ea,e5] =e1, [e3,eq] =e1, [e3,e5] = €2 [6,4,1,3,0,1] 1 3A; D Aé}ﬁ;‘”
(640)(643)(12) P56 [e2, e6] = €3, [e3,e6] = €4, [es,e6] = €2, [e5,e6] = €1 [10,11,3,6,2,7] 4 5A1 D
(740)(743)(12) Pirar [ea, e6] = e3, [ea,e7] = eq, [es,eq] = ey, [e3,e7] = eq, [11,12,4,7,3,8] 3 5A; D

[eq, e6] = ea, [eq,e7] =e3, [e5,e6] = €1
(750)(7543)(123)  Pig a9 [ea,e7] = e1, [es,er] =es5, [ea,e7] =es, [es,e7] = eq, [e6,6€7] = €2 [12,13,3,7,2,8] 5 6.4, D
(760)(76)(0) Pigaola) le1,er] = —aea, [ea,e7] = e5, [e3,er] = eq, [es,e7] = e3, 12,7,1,6,0,1] 5 6.A4; D

[es, er] = e1, [es,er] =eq, a € CHy

a=-—1 [18,7,1,6,0,1]

a=1 C
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B.1: Solvable non—nilpotent graded contractions for Pauli graded sl(3,C)

DS,CS,US Name Commutation relations dim, g,+) 7 Nilradical T
(7630)(76)(0) Plsa le1,e7] = —e3, [e2,e7] = €1, [e3,e7] = —ea, [ea,e5] = €1, [es, e6] = €2, [es,e7] = €6, [9,6,1,3,0,1] 3 As 3 C
les, es] = e3, [es5,e7] = —eu, [eg,e7] = €5
(840)(843)(13) P17 [ea, e7] = e1, [e3,es] = e1, les,e7] =es, [eq,es] = €6, [e5,e7] = €6, [es,es] = e, [14,15,5,10,5,10] 4 6.4, D
lee, e7] = ea, [es, e8] = es5
(840)(843)(14) P1o.32 [ea,e3] = e1, [ea,es] =e1, les,es] = es, [e6,e3] = €7, [er,es] = e5 [17,18,5,13,7,12] 4 A3;®4A4; D
(850)(853)(23) Pi6,5 [es,er] = e1, [es,es] = ea, [eq,e7] = e, [eq,es] =e5, [e5,e7] = eq, [e5,es] = eq, [13,20,7,9,6,17] 4 6.4 D
les, e7] = e5, [es, e8] = €4
(850)(853)(24) P19,27 [es,es] = es, [es,es] =es, [e5,es] =eq, [es,e7] =e1, [er,es] = e [16,21,7,10,6,17] 4 4A,®A3;1 D
(850)(8543)(123) Pis,6(a) [e2, es] = €1, [es,er] = aeq, [es,es] = —eq, [eq,e7] =e5, [e4,e8] = eg, [es,e7] =6, [13,14,4,8,3,9] 4 6.A; D
[es,es] = eq, [es,er] =eq, [es,e8] =e5, a € C
(850)(8543)(124) P1s,28 [e2,e4] = €1, [e3,e4] = ea, [e3,es] =e1, [e5,es] =es, [es,es] = er, [er,es] =e5 [13,14,4,8,3,9] 4 A1 ®34; D
(850)(8543)(134) Pisor [e2,e3] = e1, [es,es] =eq, [eq,es] = €1, [e5,es] =er, [es, e8] =es5, [e7,€8] = €6 [15,16,5,10,4,10] 4 As;®44; D
(860)(86)(0) Piaa(a,b) le1,e7] =es, [e1,es] = aeg, [e2,e7] =es5, [e2,es5] = —eu, [e3,e7] =g, [e3,es] =aer, [12,7,1,6,0,1] 4 6.4, D
[es, e7] = —bea, [eq,es] = es5, [e5,e7] = beq, [e5,es] = bea, [es, e7] = €1,
[es, es] = aes, Re(b) >0 V (Re(b) = 0AIm(b) > 0)
a=b=+i 18,7,1,6,0,1]
a=b=1 C
(8630)(86)(0) Po1 le1,e7] = ea, [e1,es] = —e3, [ea,e7] = e3, [e2,e8] = €1, [e3,e7r] = —e1, [es,es] =e2, [9,3,1,3,0,1] 2 As 3 C
[ea, e5] = €1, [e, e6] = €2, [ea,e7] = €5, [ea, e8] = €6, [e5,e6] = €3, [e5,e7] = e,
[e5, e8] = eq, [eq, e7] = €4, [es, e8] = €5
(8710)(87)(1) Pi5.4 [e2,e5] = e1, [es,es] =eq, [e3,e6] =e1, [es,es] =er, |eq,e7] = €1, [eq, e8] = €6, [11,8,2,1,1,9] 2 P31.20 C
[e5, es] = e3, [es, es] = €2, [e7,e5] = —e5
(8740)(87)(1) Pi21 [ea,e5] = e1, [ea,es] =es, [es,eq] = e1, [es,es] = —eq, [ea,e7] = €1, [eq,es] = €2, [10,8,2,1,1,9] 2 Pis.13 C
le5, e6] = €2, [es,e7] = e, [e5,es] = —e7, [eq, e7] = €3, [es, e8] = —e5, [er,es] = ep




B.2: Non—solvable graded contractions for Gell-Mann graded sl(3,C)

DS,CS,US Name Commutation relations dim(q,5,) 7 Nilradical T Levi dec.
(3)(3)(0) Gis.s [e1,ea] = e3, [e1,e3] = ea, [ea,e3] = €1 (3,0,1,0,0,1] 1 {0} D sl(2,C)
(6)(6)(0) Gla.o [e1,eq] = ea, [e1,e6] = —es, [ea,e4] = —e1, [e2,e5] = —es3, [e3,e5] = ea, [7,0,2,0,0,2] 2 3A; D 3A; «sl(2,C)
[es,eq] = e1, [es,e5] = eq, [ea,e6] = —es5, [e5,e6] = eq
(8)(8)(0) Ge,2 le1,e6] = e3, [e1,es8] = es, [e2,e7] = —eq, [ea,e8] = €5, [e3,e6] = 4e1 — 2e2, [9,0,1,0,0,1] 2 5A, C 5A; <sl(2,C)
[es,er] = es5, [es,es] = eq, [ea,eq] = e5, [eq,er] = 2e1 — dea, [eq,eg] = —es,
[es, e6] = eq, [e5,e7] =es3, [e5,es] = —2e1 — 2ea, [es,e7] = es, [es, e8] = er,
[e7, es] = —es
(87)(8T)(0)  Gea [e1,e5] = €1, [e1,e6] = €2, [e1,es] = e1, [e2,e5] = €2, [e2,e7] = €1, 9,0,1,0,0,1] 2 1A, ¢ ALY as1(2,0)
[e2, e8] = —e2, [e3,e5] = —e3, [e3,e6] = €4, [e3,es] = e3, [es, e5] = —eu,
lea, 7] = €3, [eq, €3] = —eq, [eg,e7] = es, [es, €3] = —2e6, [e7, €3] = 2e7
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B.2: Nilpotent graded contractions for Gell-Mann graded sl(3,C)

DS,CS,US Name Commutation relations dima 5, 7 Casimir operators T AN
(310)(310)(13) QQOJ [e2,e3] = e1 [6,6,3,5,3,4] 1 e C As 1
(510)(510)(15)  Glou  lea,ea] = €1, [es, 5] = €1 [15,15,5,14,10,11] 1 e C As,
(520)(520)(25) Glo3 [es, es5] = e1, [eq,e5] = e [13,13,7,9,7,11] 3 e, €2, exe3 —e1ey C A5,
(620)(620)(26) Gis.7 [es, es5] = e1, [eq,e6] = €1, [e5,e6] = €2 [17,18,10,14,10,14] 2 ey, ey C Asa
(630)(630)(36) Gisi6  [ea,e5] = e1, [ea,e6] = ea, [e5,e6] = €3 [18,18,10,9,10,19] 4 e, ea, e3, ereg —eges +ezes C Ags
(630)(6310)(136) G173 [ea,e5] = e1, [e3,e6] = e1, [es,e5] =e3, [es,e6] = ea [11,10,4,6,4,8] 2 ey, ege3 —e1ey D Agh
(710)(710)(17) Gisis  [e2,e5] = e1, [e3,eq] = e1, [es,e7] = €1 [28,28,7,27,21,22] 1 e C
(720)(720)(27) G175 [e3,e6] = e1, [es,e7] = ea, [es,e6] = ea, [es,e7] =e1 [19,19,11,15,11,15] 3 ey, es, eleq — ejeses + e3e3 C

Gis.5 [es,eq] = e1, [es,e7] =e1, [es,e7] = e [21,22,11,18,14,18] 3 e1, ea, e1e5 — €264 C
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B.2: Nilpotent graded contractions for Gell-Mann graded sl(3,C)

DS,CS,US Name Commutation relations dima, 5, 7 Casimir operators T
(730)(730)(37) G17.16 [es,e6] = €1, [es,e7] = ea, les,e6] = ea, [es,e7] = e3 [19,24,13,15,13,22] 3 e, e, €3 C
Gl6.12 [es,e6] = €1, [es,e7] = ea, les,e7] = e3 [20,24,13,15,13,22] 3 e1, e, €3 C
Gi7.12 [es, e7] = e1, [es,es] = €1, [es,e7] = ea, [es,e7] = €3 [22,24,13,15,13,22] 3 ey, ea, €3 C
Gis.6 [es, e7] = e1, [es,er] =ea, [es,e7] =e3 [25,25,13,16,13,22] 5 ey, ea, e3, ejes — egeq, €16 —ezeqy O
(730)(7310)(147) Gigs [e2,e5] = e1, [es,es] =e1, [eq,e7] = €1, [e5,e7] =e3, [es,€7] = €2 [15,16,7,10,7,11] 1 e D
(740)(7410)(147)  Gi56(a) le2,e5] = (a+1)er, [es,es] = e1, [es,e7] = €1, [es, es] = —aeq, [15,13,7,9,6,11] 1 e D
les,e7] = es3, [es,er] =ea a € Chy
a=-3~a=1 [17,13,7,9,6,11] C
(740)(7410)(247)  Gig7 [es, es] = e1, [eq,e7] =e1, [es,e6] = eq, [e5,e7] =e3, [es,€7] = €2 [15,17,8,9,7,16] e1, ea, €15 — €3€y D
(820)(820)(28) G18,23 les, e6] = €1, |ea,e7] = ea, [es,es] = €1 + €2 [22,25,13,21,15,19] e1, € C
(830)(830)(38) Gis,3 [es,e6] = €1, [ea, e8] = ea, [es,e7] =es, [es,es] = ea, [es,er] =ea, [19,24,16,15,16,25] e1, e, es, ej(eres — eger + eseg) C
[es, es] = e3, [er,es] = e1 +e3(e5 — e4) — eaezeq + edey
G16,2 [es, e6] = €1, [eq,es] = ea, [e5,e7] =e3, [es,es] = ea, [es,e7] = €2, [20,24,16,15,16,25] 4 ey, ea, e3, ei1(ezer — eses) C
[es, es] = e3 +e3(eq — e5) + eaezes — e2ey
Gi73 les, e6] = €1, [es,e7] = ea, les,es] =es, [es,es] =es, [er,es] =e1  [21,25,16,16,16,25] 4 e, e, es, C
e1(eres + egeg — eszer) + esesey
Gis [es, e7] = e1, [es,e7] = ea, [es,es] = ea, [es, e8] = €3 [22,28,16,19,16,25] 4 ey, ea, e3, e1(eaes — ezes) + eqezeqy O
G16,6 [eq,e7] = e1, [es,es] = ea, [es,e7] = ea, [es,es] = €1, [er,es] =e3  [26,28,16,19,16,25] 4 e1, ea, e3, eles — e1eaeq + €3e4 C
Gi7a les, e7] = e1, [es,es] =ea, [es,es] =e1, [er,es] =e3 [27,30,17,21,17,26] 4 e, ea, e3, e1e5 — €2ep C
(840)(840)(48) Gis,9 les, e7] = e1, [es,es] = ea, [es,e7] = es, [eq,es] = eq [24,33,17,17,17,33] 4 e1, €2, €3, €4 C
G16,9 [es, er] = e1, [es,es] =ea, [es,e7] = ea, [es,es] =e3, [er,es] =es [25,33,17,17,17,33] 4 ey, ea, €3, €4 C
Gi7.15 les,e7] = e1, [es,e7] = ea, les,es] =es, [er,es] =es [27,33,17,17,17,33] 4 €1, ea, €3, €4 C
(840)(8410)(148) Gis.4 [ea, e6] = €1, [es,er] =e1, [eq,es] =e1, [es,er] = e, [e5,es] =e3, [18,16,6,10,7,12] 2 e1, ejes — eseq C
[es, e8] = es, [er,es] = ea
(850)(8520)(258) G55 [es, e6] = e1, [es,e7] =e1 +ea, [es,es] = ea, [es,er] = es, [18,19,7,9,6,17) 2 ey, e C
lee, e8] = ea, [e7,es] = e3
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B.2: Solvable non—nilpotent graded contractions for Gell-Mann graded sl(3, C)

DS,CS,US  Name Commutation relations AN dim(q, 5, 7 Nilradical T
(320)(32)(0) Gl le1,e3] =eq, [e2,e3] = —ea As 4 [4,3,1,2,0,1] 1 24, D
(530)(532)(12) Gig g [e2,e5] = e1, [es,e5] =es3, [eq,e5] = —ey Aéjgl) [8,9,3,5,2,6] 3 4A, D
(540)(54)(0)  Girii(a)  [er,es]) = ea, [ea,es] = e1, [es,es] = eq, [ea,es] = aes, a € Chy ANTYO T 18,5,1,4,0,1] 3 44 D
a= [12,5,1,4,0,1]
(640)(64)(0) Gis.7 [e1,e6] = ea, [e2,e6] = €1, [e3,e5] =e1, [es,es] = eq, [eq,e5] = €2, [eq,€6] = €3 [9,6,2,4,0,2] 2 As 1 D
(6510)(65)(1) G55 [e2,e4] = €1, [e2,e6] = e5, [e3,e5] =e1, [es,es] = ea, [ea,e6] = €3, [es5,eq] = €2 [10,6,2,1,1,7] 2 As 4 D
(740)(742)(24) G756 [es, e7] = e1, [eq,e7] = ea, [es,e7] = eq, [es,€7] = €5 [16,19,7,10,6,15] 5 6.4, D
(750)(754)(1)  Gias [ea, e6] = e3, [e2,e7] =eq, [e3,e6] = €2, [es,e7] = e5, [eq,e6] = e5, [eq,e7] = €2, [e5,e6] = €4, [10,12,3,6,2,8] 3 5A, D
[es, e7] = e3, [es,er] = €1
Gla1 [e2, e7] = e3, [es,e7] = ea, [ea,e6] = €2, [eq,e7] = €5, [e5,€6] = €3, [e5,€7] = e, [es,e7] =€1  [11,12,3,6,2,8] 3 A @®As1 D
(750)(754)(12)  Gig 4(a) [ea, 7] = aes, [es,er] = ea, [ea,er] =es, [es,e7] =eq, [es,e7] = €1, a € Cy [12,13,3,7,2,8] 5) 6.4, D
a=1 [16,13,3,7,2,8]
(7510)(75)(12) {4,2 [e2,e4] = €1, [e2,e7] =e5, [e3,e5] =e1, [es,er] =eq, leq,e7] =e3, [es,e7] =e2, [es,e7] = €1 [12,12,3,3,2,8] 1 Ai@Asy D
(760)(76)(0) Gi5.2(a,b) le1,e7] = daey, [ez,e7] = bes, [es,er] = eq, [ea,e7] = e1, [es,e7] = e2, [es,e7] = €3, a,b#0  [12,7,1,6,0,1] 5 6.4, D
a:i xor b=1 xor b=4a [16,7,1,6,0,1]
a=iNb= [24,7,1,6,0,1]
a=b=1 C
(840)(842)(25) Gira [es,es5] = e1, [es,es] = —e1, [eq,e5] = €2, [eq, e8] = €2, [es, e8] = €7, [er,es] = eg [16,21,9,12,8,17] 4 24, ®A51 D
(850)(854)(12) Gig,1(a) [e2, e8] = aes, [es,es] = ea, [es,e7] =e1, [eq,es] =e1, [e5,e7] =es, [es,€7] = €5, a € Cyp [13,14,4,8,3,9] 4 6.4, D
(860)(86)(0) Gis1(a,b) [e1,es] = aeq, [e2, e8] = €1, [es,e7] = beq, [ea,e7] = e3, [es,e7] = e, [e5,€5] = eg, [12,7,1,6,0,1] 4 6.4, D
[es, e7] = es5, [eq,es] =e5, a,b#0
a=b=1 C
(8620)(86)(0) G112 [e1,e7] = e1, [e1,es] =e1, [ea,e3] =e1, [ea,e7] = e, [e3,e8] = €3, [ea,e7] = —ey, [10,2,1,2,0,1] 2 Az10A3; C
[ea, e8] = —eu, [es,e6] = eq, [e5,e7] = —es5, [es, €8] = —e6
g11,1 [61768] = ea, [62768] = e1, [63766] = €1, [63768] = €5, [64,67] = €2, [64768] = €5, [117772727()’2] 2 g{7,5 C
[es,e6] = ea, [es,e7] = e1, [es,es] = 2es + 2eq4, [es, e8] = —er, [er,es] = —eg
(8730)(87)(1) G113 [e2, e8] = 2e3, [es, es] = 2e2, [e4,e6] = €1 + €3, [eq,e7] = €2, [eq, e8] = €5, [12,10,2,3,1,9] 2 G716 C
les,e6] = €2, [es,e7] = ez — ey, [es,es] = eq, [es,e8] = e7, [e7,e5] = €6




B.3: Non—solvable graded contractions for Cartan graded sl(3,C)

Nilradical T Levi dec.

DS,CS,US Name Commutation relations dimq,5,9) T

(3)(3)(0) T/ 7 [e1,ea] = e3, [e1,e3] = —2e1, [e2,e3] = 2eq, [3,0,1,0,0,1] 1 {0} D sl(2,C)

(65)(65)(0) T4 [e1,e3] = e1, [e1,eq] =e1, [e1,e5] = ea, [ea,e3] = ea, [ea,e4] = —eq, [6,0,1,0,0,1] O 2A, D Asz 3 <sl(2,C)
[e2, e6] = €1, [ea,e5] = 2e5, [eq,e6] = —2eq, [e5,€6] = €4

BN)BT)(0) Tax  ler.es] =e1, |er,es] = ea, [er,es] =e1, |eaes] = ea, |ea,er] = e, 9,0,1,0,0,1] 2 44, o ALY asl2,0)
[e2, e8] = —e2, [e3,e5] = —e3, [ea,e6] = €4, [e3,es] = e3, [eq, e5] = —eu,
[es, e7] = e3, [eq,es] = —eyq, [es,€7] = es, [es, e8] = —2eg, [e7,es] = 2er
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B.3: Nilpotent graded contractions for Cartan graded sl(3, C)

DS,CS,US Name Commutation relations dim, 5. 7 Casimir operators T

(310)(310)(13) Ty, [62, e3] — el [6,6,3,5,3, 4] 1 e C

520)(520)(25 K = €1, |€4,€5] = €2 13, 13, 7, 9, 7, 11 3 €1, €2, €2€3 — €1€4 C
13,6

630)(630)(36 K eq4,e5] = e1, [eq,eq] = e, les,eq] = e3 [18,18,10,9,10,19] 4 e1, ea, e3, ereg — €265 + 364 C
12,9

(730)(730)(37) 7'1/2710 [(347 66} = e, [65, 67] = €2, [66, 67] = €3 [20, 24, 13, 15, 13, 22] 3 €1, €3, €3 C

71/2,8 [647 67] = €1, [65a 67] = €2, [€67 67] = €3 [257 257 137 167 137 22] 5 €1, €2, €3, €1€5 — €2€4, €1€5 — €3€4 C

(820)(820)(28) ,]-12,11 [637 66} = €1, [64a 67] = €2, [657 68] =e1t+ ez [227 257 137 217 157 19] 2 €1, €2 c

(840)(840)(48) Ti16 les, e7] = e1, [es,es] = ea, [es,e7] = e3, [eq,es] = €4 [24,33,17,17,17,33] 4 e1, ea, €3, €4 C

(850)(8520)(258) 794 [es, e6] = e1, [es,e7] =e1 +ea, [e5,es] =ea, [es,e7] =e5, [18,19,7,9,6,17) 2 ey, e C

les, e8] = e, [e7,es] = e3




Lyl

B.3: Solvable non—nilpotent graded contractions for Cartan graded sl(3,C)

DS,CS,US  Name Commutation relations dim(q, 5. 7 Nilradical T AN
(210)21)(0)  T{s, [e1,e2] = €1 2,3,1,1,0,1 0 A D Ay,
(320)(32)(0)  T/34(a) [e1,e3] = ae1, |es, es] = —ea, a € Cy [4,3,1,2,0,1] 1 24, D ALY
a=—1 [6,371723())1] A33
T
(530)(53)(0)  T{54(a,b) [e1,eq] = bey, [ea,e5] = aea, [e3,eq] =e3, [es,e5] =€z, a,b#0 6,4,1,3,0,1] 1 3A; D Asy
(5310)(53)(0) 7{; 4 le1,e4] = €1, [e1,e5] = €1, [ea,e3] = e1, [e2,e5] = €2, [e3,e4] = €3 5,1,1,1,0,1] 1 Az 1 D As 36
(640)(64)(0)  T{; 1(a,b,c) [e1,e5] = bey, [e1,es] = bey, [ea,eq] = cea, [e3,e6] = —e3, les,e5] = —aeq, a,b,c#0 [8,5,1,4,0,1] 2 44, D
c=—1 [10,5,1,4,0, 1]
(6410)(64)(0) Ty 3(a) [e1, e5] = ae1, [e2,e6] = €2, [e3,e4] = €2, [e3,e5] = —e3, [ea, e5] = ey, 7,2,1,2,0,1] 0 A1 ®A3; D
[es, 6] = €4, a € C§
a=-—1 [8,271,2,0,1]
Tio,2(a) le1,e6] = —ae1, [ea, e6] = €2, [e3,e4] = €2, [e3,e5] = €3, [eq,e5] = —eu, 7,2,1,2,0,1] 2 A1 @Ay D
[64,66] — €4, Q S (CO
a=-—1 [8,2,1,2,0,1]
(750)(75)(0) ,T1,0,1(a7 b, c, d) [elﬂ € ] = aeq, [617 67} = aey, [627 66] = —beg, [637 66] =e3, [10, 6,1,5,0, 1] 3 5A; D
[645 €7] = Cé4, €5, 67] = —d€57 Cl,b, c, d ?é 0
b=-1 xor ¢c=—d [12,6,1,5,0,1]
b=—-1Nc=—d [14,6,175,0,1]
(7510)(75)(0) 773’72((1, b) [61, 86] = aeqy, [62, 67} = —beg, [63, 67] = €3, [647 65} = €3, [64, 66] = —€4, [9, 3, 1, 3, 0, 1] 1 2./41 b .A371 D
[es,e6] = €5, [es,e7] =e5, a,b#0
a=-—1 xor b= -1 [10,3,1,3,0,1]
a=b=-1 [11,3,1,3,0,1]
/T9/73(a7 b) [ela 66] = —aeq, [627 67] = _b62a [63766] = €3, [837 67] = €3, [645 65] = €3, [9737 17 3a 07 1] 1 2-’41 S AS,l D
[ea, e6] = €, [es,e7] = €5, a,b#0
a=-1 xor b= -1 [10,3,1,3,0,1]
a=b=-1 [11,3,1,3,0,1]
(7520)(75)(0) 7g, e1,e7] = e1, [ea,e6] = ea, [e3,e5] =e1, [e3,es] = —e3, [es,e5] = ea, 8,2,1,2,0,1] 1 As.1 D

64,67] = —€y4, [65766] = €5, [65767] = €5




V1

B.3: Solvable non—nilpotent graded contractions for Cartan graded sl(3,C)

Nilradical T

DS,CS,US  Name Commutation relations dim(q, 5, T
(860)(86)(0)  Tg1(a,b,c,d, f) [e1,er] =ae, [e1,es] = —aeq, [ez,e7] = —beq, [es,es] = —ces, [12,7,1,6,0,1] 4 6.4, D
lea, es] = dey, [es,e7] = fes, [es,e7] = —es, [es, e8] = €6, a,b,c,d, f #0
a=—-1 xor b=—f xor ¢=—d [14,7,1,6,0,1]
(a=-1Ab=—f) xor (a=—-1Ac=—d) xor (b=—fAc=-d) [16,7,1,6,0,1]
a=—-1Ab=—fAc=—d 18,7,1,6,0,1]
a=b=c=d=f= c
(8610)(86)(0) 7g.1(a,b,c) le1, e7] = aey, [e1,es] = aey, [ea,e7] = bea, [e3,es] = —ces, [eq,e7] = —eq, [11,4,1,4,0,1] 2 3A1®A31 D
les,eq] = ea, [es,e7] = —es5, [es5,e8] = —es5, [es,es] = €6, a,b,c #0
a=—-1 xor b=—-1 xor ¢c=—1 [12,4,1,4,0,1]
a=b=—-1xor a=c=-1 xor b=c=—1 [13,4,1,4,0,1]
a=b=c=—1 [14,4,1,4,0,1]
a=b=c=1 C
(8620)(86)(0) T7.2(a) [e1,e7] = ae1, [e1,es] = ae1, [ea,e3] = e1, [e2,e7] = aea, [es,es] = aes, [10,2,1,2,0,1] 2 As;®A31 D
[es, e7] = —euq, [eq,e5] = —e4, [e5,€6] = €4, [e5,e7] = —es5, [eq,e5] = —ep, a € CY
a=1 C
T7.1(a) le1,e7] = aeq, [e1,es] = aer, [ea,e7] = —ea, [e3,es] = —es, [eq,e6) = €2, [es e8] =eq, [10,3,1,3,0,1] 2 A dAs; D
[es, e6] = es, [es,er] =es, [es,e7] = —eq, [es, e8] = —eg, a € C§
a=—1 [11,3,1,3,0,1]
a=1 C
9,3,1,3,0,1] 2  Ags C

(8630)(86)(0) Tg.1 le1,e7] = e1, [ea, e8] = e, [e3,er] = —es, [es,es] = —e3, [eq,e5] = 1,
[

e4,e6] = €2, [es,e7] = e4, [e4,e8) = €4, [e5,e6] = e3, [e5,es] = —es5, [es,e7] = —e
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B.4: Non—solvable graded contractions for 'y graded sl(3,C)

DS,CS,US Name Commutation relations dim(qa,5,9) 7 Nilradical T Levi dec.

(3)(3)(0) Lig a7 [e1,ea] = es, [er,e3] = —2e1, [ea, e3] = 2ey, [3,0,1,0,0,1] 1 {0} sl(2,C)

(5)(5)(0) la7r  len,ea] = ez, [er,e5] = —eq, [ea,e3] = e1, [e2,e5] = €2, [e3,e4] = e5, [6,0,1,0,0,1] 1 2A, D 241 <151(2,C)
[es, e5] = —2e3, [eq,e5] = 2e4

(6)(6)(0) Liss  [e1,ea] = es, [e1,e6] = €1, [e2,e5] = e3, [ea, 6] = —e2, [e3,e4] = e2, [7,0,2,0,0,2] 2 3A; D 3A; <sl(2,C)
les, e5] = e1, [eq, e5] = eq, [eq,e6] = —e4, [e5, 6] = €5

(6)(6)(1) L5355 [e2,e3] =e1, [ea,eq] =e3, [e2,e6] = €2, [e3,e5] = €2, [e3,e6] = —e3, [6,6,1,0,0,7] 2 2A; D Az 1 <1s1(2,C)
[ea, 5] = eq, [eq,e6] = —2e4, [e5,€6] = 2€5

(M) (7)(0) loa le1,e5] =eq, [e1,e7] = e1, [ea,e5] = e3, [e2,e7] = ea, [e3,e6] = €2, [e3,e7] = —e3, [11,0,1,0,0,1] 1 44, D 44, <sl(2,C)
[es, e6] = €1, [ea,e7] = —eq, [e5,e6] = €7, [es,e7] = —2e5, [es, 7] = 2e4

(8)(8)(0) Le1 [e1,e7] = 2eq, [e1,e8] = —2e1, [ea,e6] = 2e5, [ea,es] = 2eq, [e3,e6] = ey, [9,0,1,0,0,1] 2 5A; C 5A; <1sl(2,C)
[es, e7] = 3es, [eq,es] = €1, [eq,e7] = e3, [eq,es] = —e4, [es,e6] = €3,
[e5, e7] = ea, [es,es] = e5, [es,e7] = es, [es, e8] = —eq, [er,es] = e7

L71 [e1,er] = ea, [e1,es] = —e1, [ea,e6] = €1, [ea, e8] = €2, [e3,e4] = e, [9,0,1,0,0,1] 2 As 3 C As 3 <181(2,C)

[e3, e5] = e1, [es,e5] = e3, [eq,e6] = e5, [es,es] = €4, [e5,e7] = ey,
[es,es] = —es, [es,e7] = es, [es,es] = —2eq, [er,es] = 2er

(8)(8)(1) Ls3 [e2,e4] = €1, [e2,e6] = eq, [ea,e8] = ea, [es,e5] =e1, [es,er] = es, [9,8,1,0,0,9] 2 As 4 C As 4 <181(2,C)
le3, eg] = —e3, [es,e7] = ea, [eq, e8] = —eq, [e5,e6] = €3, [es,es] = es,
[es, e7] = es, [eq,es] = —2eq, [er,es] = 2e7

(8)(8)(1) Lo.6 [e1,e6] = ea, [e1,es] =e1, [ea,e7] =e1, [ea,es] = —e2, [ea,e5] = €3, [e4,eq] = €5, [10,8,1,0,0,9] 2 241 A31 C (241 @ A;31) <s1(2,C)
[ea, e8] = eq, [e5,e7] = eq, [e5,es] = —es, [es,e7] = es, [es, e8] = —2egq, [e7,es] = 2ey

(86)(86)(13) L1250 [e2,eq] =e1, [e3,e5] =e1, [es,e7] =e5, [es,es] = —e3, [es5,e6] = e, [11,11,3,5,3,10] 2 As 4 D As 4 <181(2,C)
[es, es] = es5, [eq,er] = es, [es,es] = —2eq, [er,es] = 2er

(87)(87)(0) Loz e es5) = e1, [e1,e6] = €2, [e1,es] = €1, [e2,e5] = €2, [e2,e7] = €1, 9.0,1,0,0,1] 2 44, C ALY a62,0)
lea, e8] = —ea, [e3,e5] = —es, [es, es) = €4, [e3,es] = e3, [eq,e5] = —eq,
[es, e7] = e3, [eq,e8] = —eu, [es,e7] = es, [es, e8] = —2eq, [er,es] = 2er

(87)(87)(0) Lo [e1,e6] = ea, [e1,es] =e1, [ea,e7] =e1, [ea,es] = —ea, [es,e5] = eq, [10,0,1,0,0,1] 2 As 1 C As 1 <1s1(2,C)
le3, e6] = eq, [e3, e8] = e3, [eq,e5] = €2, [eq,e7] = €3, [es, 5] = —eq,

lee, e7] = es, [eq, e8] = —2e6, [e7,es] = 2er




Appendix C: Invariant functions

Appendix C contains the invariant functions 1, ¢ and ¢° for one-parametric graded con-
tractions of sl(3,C). The listing for any contraction contains its name, original restriction
of parameter, isomorphism (if it was found), invariant functions and final restrictions of pa-
rameters. Combining isomorphisms and the invariant functions, the following sets of allowed

parameters were found:

Co =C\ {0},
C, ={z€C||z| <1} U{z € C||z| =1AIm(z) >0},
Coo={z€Cl|0< |z <1}U{z€C||z| =1AIm(z) > 0},
Cy={2€Cl0<|z4+1] <1ARe(z) > -1} U
{zeCllz+1=1ARe(z) > =3 Alm(z) >0} .
We use the superscript * for any of the listed sets if there are no isomorphisms among Lie
algebras corresponding to different parameters in the given set.
In the tables of the invariant functions the blank space stands for general complex number,
different from all previously listed in given table, and +/a denotes the roots of equation

a? = 1. Let us note that the function ¢ was omitted, whenever its computation was too

laborious and its knowledge was not necessary.

C.1 Pauli graded sl(3,C)

° 7716,3(@)7 a# 0, 7)16,3(61) = PlG,B(%) — a € Cyy
a#0 a=1 a#0,1 a#0
Q 0 Q 0 1 o 0 1 1 0

wa) [ 19116 ] | pa) |96 ] 78172 ] | o) |88 77|71 | ¢°a) | 22]18] 16

150



o 011
P(a) || 20 | 19 | 18
a=1 a=—1
a 0| 1]-1 a 0| 1]-1
o(a) || 112 | 83 | 81 | 80 @(a) || 104 | 83 | 81 | 80
a=}- L o=t |
a 0 |1 |-+ a 0 |1]|-1-¥n
o(a) || 104 | 82 82 80 (a) || 104 | 82 82 80
— Vi
a=g3 a#0,£1,1 140
0 |1|-1 a 0 |1 |—-a|l—3+5
@(a) || 104 | 83 | 81 | 80 ¢(a) || 104 | 82 | 81 81 80
a=1 a#0,1
o} 110 Q 110 ]1-a
o) || 25 | 19 | 17 Ola) || 25 | 19| 18 |17
o Pigos(a), a #0, Pis25(a) = Pisos (1) — a € (]
a=—1 a=1 a 7£ 0,+1
o 01 o 0-1]1 o 01 |—a|—-2
Y(a) || 22 122 | 19 P(a) |22 21 |20 | 19 P(a) 122120 20 | 20 |19
a=1 a=-—1
a 0| 1]-1 a 0 | 1]-1
o(a) || 112 | 88 | 84 | 82 o(a) || 104 | 87 | 87 | 81
a=+1 a#0,£1, 44
o 0 1] ¢ | —t o 0 1 |a/|—a % —%
o(a) || 104 | 85 | 83 | 83 | 81 (o) || 104 | 85| 82| 82 | 82| 82 | 81
a=1 a=—1
1102 1121]0
o) || 28 | 22 |20 | 19 Olar) || 28| 24 | 22 | 19
a#0,%£1
o 1102 |1-a|l—1¢
Ola) || 28 |22 |20 | 20 20 |19

151




Pis.25(0) := P26
o Pigi(a), a#0 — a€C}

a+#0
a 110 2
Y(a) || 16 | 15 | 15 | 14
a=1 a=—1
a O | 1]-1]5 o} O] 1 |-1]3
o(a) || 104 | 77 | 73 | 71| 70 (o) | 88|75 71 | 71|70
—— 0= i
a 0|1 |-11+2 a O] 1 |-11-2
ela) | 88| 75| 71 71 170 e(a) || 88| 75| 71 71 |70

, 5 a#0
a 0 1 -1 4a+1—+20a?+4a+1 | 4a+14+v20a%+4a+1 1
2a 2a
o(e) | 88|75 | 71 71 71 70 () || 25| 11

o 7717713((1), a 7£ O, P17,13(af) = 7)17,13 (%)

a=1
o 1710 7-1 o -110 (1
P(a) | 1919 | 17| 16 Y(a) || 19119 | 17| 16
a+#0,£1
o 0|—a|—2|-1]1
Y(a) || 19 17 | 17 | 17 | 17 | 16
a#0
o
o) || 15

® Pigag(a), a#0, Piso(a) = Pig oo (1)

e G’GCTO
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Q _ X _1+;/§i 1
() 19 19 187
a=1
o -1 1+£/§i 1—5/31‘ _1—5/31' _1+5/§i 1
P(a) || 13 13 13 13 13 12| 7
a#0,+1
o _175/@' _1+2\/§i 1 ad = —a ad = _%
() 13 13 12110110110 (101010 |7
a = —1 a = 1
2 1+v3i | 1=/3i 1+v3i | 1=v3i | 3+v3i | 3—V3i
2 2 2 2 2 2
0(04) 18 12 12 0 O(a) 6 6 6 6 6
a#0,£1
a 1+§/§z 1—;/?)2 (a_1)3:_a (@—1)3:—1
gpo(a) 6 6 313 3 313 3 0
e Pisg(a), a#0 — acC
a#0 a#0 a#0
« 0 1 Qo 0] 1]-1 o 1|2
Y(a) || 14 | 13 | 10 o(a) || 72 ] 63 | 53 | 49 O(a) 13 |8
Pi56(0) == P
C.2 Gell-Mann graded sl(3,C)
e Giri(a), a#0, Gir1i(a) = Gir (%) — a€C,
a=1 a=-—1
«Q -1 1 «Q —1 |2 ]-111
Y(a) | 1311215 )| 9 19985
a#0,£1
a 11 % —%a Va | —/a
()| 98] 7 7 7 7 5
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a=1
« 01]-2 « O | —-1—2|—-1+41
o(a) || 40 | 24 | 20 o(a) || 30 24 24 20
a#0,£1
1 1
0| —-1++va|-1—+a|— ~ _1+75
o(a) || 30 22 22 22 22 20
a=1 a=-—1
o 2 14+2|11—1 2
goo(oz) 12 0 0(04) 4 4 410
a+#0,+1
1 1
0 I—vVa|l+ya|l- NG 1+ 7a
O(a) 4 2 2 2 2 0
e Gigala), a#0, Gleala) = Gig,y (%) — a€(Cy,
a=1 a=-—1
o —1] 110 o O—2] ¢ |—-1|1
Y(a) || 17 116 | 13 19 Ya) |13 13|13 | 13 |12 |9
a#0,+1 a=1
a 0|-1|1|g|-%|Ve|—Va a 0 |—-1]1/|=2
P(a) || 13 13 [ 12| 11 11 11 11 9 e(a) || 77 | 55 | 54 | 51 | 47
a=—1
« O|—2|12 |—-1—2|—-142]—-1]|1
o(a) || 63 | 49 | 49 49 49 49 | 48 | 45
q — _ 1EV3i
2
o 0 _1+5/§i _1f§/§i 1] 1 1+£/§i 17;/51‘ _3+£/§i _33/51'
o(a) || 63 49 49 49 | 48 47 47 47 47 45
a = 3£/6
o 0 _1+2\/5 _ 1—2\/5 ~-111 1+2\/5 1—2\/5 _3+2\/5 _3—2\/5
(o) || 63 49 49 49 | 48 | 47 47 47 47 45
a=4,1/4
o 01 |-1 —% % -2 2 |-=-3 —%
o(a) || 63 |50 | 49 | 49 | 47 | 47 | 47 | 47 | 47 | 45




oY 0 |-1|1 |+Va|-1£ya|£x|-1+L
o(a) || 63| 49 | 48 | 47 47 47 47 45
a=1 a=—1
« 210 « 2 1|1—2|1+2
W) || 14 [ 10 |6 | 2 o) || 6 6| 6 6 |2
a+#0,+1
1 1
L 1+va|l-Va|l+5|1-—
o) || 6 6 4 4 4 4 2
b glG,I(OJ)? a % O, g16,1<a) = g{G,l (%) — ac CIO
a#0 a#0 a#0
« 0-1]1 « 01 |-1 « 1 2
Y(a) || 14 | 14 | 13 | 10 o(a) || 88 1 65| 63 | 55 O) | 13 4
hd giB,G(a% a 7& Oa _1a — ac C;O
1 —1 —a a+1
! o / - (Y / _ 1 o / ~ !/ o /
g15,6(“) 915,6 < ) g15,6( a ) 15,6 (a T 1) 15,6 (—a n 1) 15,6 <——a )
a=—3%-21 a= —lig/gi
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C.3 Cartan graded sl(3,C)
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C.4 TI'y-graded sl(3,C)
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