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Supervisor: Ing. Petr Jizba, Ph.D.

Prague, 2017









Acknowledgement

I would like to thank my supervisor, Ing. Petr Jizba, Ph.D., for his support
and bottomless patience. I am also grateful to Ing. Václav Kůs, Ph.D. for his
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Key words: Shannon entropy, Rényi entropy, Information flow, Causality, Su-
perstatistics



Název práce:
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lita, Superstatistika



Contents

Introduction i

1 Information theory according to Shannon 1

1.1 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Coding theory and Huffman code . . . . . . . . . . . . . . . . . 2

1.2.1 Huffman code . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Entropy interpretation in statistical physics . . . . . . . . . . . 5

1.4 Basic properties of entropy . . . . . . . . . . . . . . . . . . . . 7

1.5 Joint entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Conditional entropy . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Relative entropy and mutual information . . . . . . . . . . . . 10

1.7.1 Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . 12

1.8 Entropy rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Differential entropy . . . . . . . . . . . . . . . . . . . . . . . . . 14
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B.3 America, heat map of Rényian transfer entropy q=1.5 . . . . . 70
B.4 Asia, heat map of Shanonian transfer entropy . . . . . . . . . . 70
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Introduction

Although the origin of entropy comes from thermodynamics and statistical
physics, the very same formula was later derived by Shannon when study-
ing capacity of noisy channel. Thus relation between information theory and
physics was suggested which gave mathematical justification for Maximum-
entropy principle. Since then, there have been many advances in both informa-
tion theory and statistical physics with, if any, not very clear relation between
each other. Therefore, it is plausible to distinguish methods originating from
rigorous information theory and methods coming from statistical physics with
less firm foundations. In the present thesis we concentrate on applications to
time series analysis and we pick up one representative from each of the two
groups of methods. The one from information theory is Transfer entropy, and
method originating in statistical physics, related to Tsallis entropy, is Super-
statistics. These two methods are discussed in details and also applied on time
series. A brief summary of each chapter follows.

In the first chapter Shannon entropy is introduced and its main properties
are discussed. Our aim is to motivate abstract notation of information and
also to give intuitive interpretation of the actual number which naturally leads
to a glance at coding theory. A short note on a relation between Shannon
information entropy and Boltzmann thermodynamic entropy is also found here.

The second chapter follows the steps taken by Rényi to generalize Shannon
entropy into one-parametric class of entropies. The important issue here is
arbitrariness of definition of generalized conditional entropy which plays a cen-
tral role in generalizing Transfer entropy in the fourth chapter. As in the case
of Shannon entropy the interpretation of Rényi entropy is also provided via
coding theorem.

The first applications are encountered in the third chapter. The foremost
intention is to suggest a replacement of auto-correlation function by mutual
information which takes into account also nonlinear dependence. Next, Granger
test for causality is reviewed, and its inappropriate use for nonlinear systems
is pointed out. Main difficulties emerging from using information theoretical
quantities are briefly presented as well.

i



The key concept of the thesis, Transfer entropy, is defined in the fourth
chapter. Two versions of Transfer entropy are presented. The first original and
mostly used Transfer entropy based on Shannon information entropy, and the
second generalized version exploiting Rényi information entropy. Both of them
are estimated from financial time series, and the final results may be found in
the appendix B.

Finally, the last chapter sets theoretical background for the second cen-
tral topic which is Superstatistics. After introducing Superstatistics, the new
broader Superstatistical model which allows transition of Superstatistics at dif-
ferent times scales is discussed, and quantitative method for testing this new
model is proposed. The result is that we can partially confirm conclusions
made in [30].

ii



Chapter 1

Information theory
according to Shannon

Information theory was founded by Shannon in 1948, see [1], and it was orig-
inally intended to solve problem of reliable communication over an unreliable
channel. Then it gradually spread to many fields. And now, after more than a
half century, we can see broad applicability of information theory not only in
communication theory, but even in physics, statistics or machine learning.

1.1 Shannon entropy

The main question of information theory is how we can measure information
or uncertainty of random variable. First attempt to quantify information was
performed by Hartley in 1928, see [2]. According to him, we need log2N units
of information to describe (encode) particular element from some set consisting
of N elements. The logarithmic measure provides additivity property, i.e. to
select arbitrary element from two sets withN andM elements we need log2NM
units of information. But this is just sum of necessary information to select
element from the first set and then from the other.

Shannon extended this idea for sets with given probability distribution, i.e.
provided we have additional knowledge about the set, and thereby proposed to
measure the information by entropy.

Definition 1.1. Let X be a discrete random variable with distribution p(x).
Then we define entropy of X as

H(X) = −
∑
x∈X

p(x) log p(x),

where X denotes set of all possible outcomes of X. For events x with probability
p(x) = 0 we define summand by lim

p→0
p log p = 0.

1



Chapter 1. Information theory according to Shannon

From definition it can be readily seen that entropy can be rewritten as ex-
pected value

H(X) = E

[
log

1

p(X)

]
.

The expression − log p(x) is sometimes called measure of surprise of event
x. It measures the uncertainty of the event before experiment or equivalently
information that may be yielded by observing the event. The surprise is large
for very unusual events due to logarithm around zero. On the other hand,
observing of almost certain event does not surprise us so much (it gives us
little information) since it is in some sense anticipated. Hence we can say that
entropy is an expected value of measure of surprise.

1.2 Coding theory and Huffman code

According to Shannon, the entropy is the average number of bits needed
to optimally encode random variable X with its probability distribution p(x).
It means that entropy is average number of yes/no questions which bring us
from absolute randomness to complete knowledge of random variable X, i.e.
its occurred value. Proceeding with the following example we demonstrate this
interpretation and also basic ideas of coding theory.

Let X be a random variable defined as

X =


1 with probability 1/2
2 with probability 1/4
3 with probability 1/8
4 with probability 1/8

Then there is at least log2 4 = 2 yes/no questions that completely determine
actual value of random variable X. We can follow this diagram to determine
the value of X.

”Is
X > 2?”

”Is
X > 1?”

X = 1NO

X = 2YESNO

”Is
X > 3?”

X = 3NO

X = 4YES

YES

2



Chapter 1. Information theory according to Shannon

In this case the number of questions does not depend on the actual value
of X, and hence the averaged number of questions is E[Q] = 2 which would
correspond to uniform distribution of X.

We can also simply ask: ”Is X = 1?”, ”Is X = 2?” and so on. This approach
will require three questions in order that we can determine the arbitrary value
of random variable X, but the actual number of questions depends on value of
X. The averaged number of questions will be (notice we on purpose started
asking from the most probable value that will turn up as a crucial aspect)

E[Q] = 1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
=

7

4
. (1.1)

Thus, we reduced the average number of questions by involving the additional
information in the form of known probability distribution.

In order to encode the random variable X, we transfer this questionnaire into
binary code with leading zeros followed by one on the i-th place representing
yes for the i-th question. For example, the value 3 for X is encoded by 001.
Generally every sequence of yes/no questions can be encoded in binary code,
therefore finding the least average number of questions is equivalent to finding
the shortest average binary code.

1.2.1 Huffman code

The main question in coding theory is how much we can shorten the code.
The code should be instantaneous i.e. no code contains prefix of some other
code. This requirement ensure instantaneous decoding i.e. we can decode every
bit immediately without waiting for transmission of the whole code. Such a
code is already uniquely decipherable. The existence of such a code is guaran-
teed by Kraft’s inequality, see [3].

Theorem 1.1. (Kraft’s inequality)
Let {x1, . . . , xN} be possible outcomes that are encoded by sequences of char-
acters from alphabet {0, . . . , D − 1}. Then there is an instantaneous code with
the lengths of sequences {l1, . . . , lN} iff

N∑
i=1

D−li ≤ 1. (1.2)

Shannon solved the problem of redundancy when he proved the most signif-
icant theorem in coding theory.

Theorem 1.2. (Shannon’s noiseless coding theorem 1948)
Let the lengths of codes {l1, . . . , lN} satisfies inequality 1.2. Then the averaged
length of code is bounded from below

E[L] ≥ H(X).

3



Chapter 1. Information theory according to Shannon

Unfortunately the theorem claims nothing about construction of the code.
It only states theoretical boundary for averaged length under which we cannot
get. Lately Huffman published the construction of optimal code i.e. code
that minimize average length

E[L] =

N∑
i=1

pili.

For fixed source, an analogy of random variable X, we readily find the op-
timum lengths l∗i by minimizing E[L] as a function of li subject to the Kraft
inequality constraint. By Lagrange multipliers we derive

l∗i = − logD pi,

hence, the minimum average length is

E[L∗] =

N∑
i=1

pi(− logD pi) = HD(X),

and from Shannon theorem it follows that E[L∗] is minimum, and thus lengths
{l∗1, . . . , l∗N} corresponds to optimal code. Since lengths must be integers, we
generally achieve minimum lengths only for D-adic probability distributions
i.e. for ∀i ∃n ∈ N such that pi = D−n

We may take li = dlogD
1
pi
e these lengths satisfies Kraft inequality too be-

cause of the property of Ceiling function x ≤ dxe ≤ x + 1, and this choice of
code lengths is called Shannon-Fano code. The averaged length then satisfies
well known inequality

HD(X) ≤ E[L] < HD(X) + 1. (1.3)

In order to get closer to the boundary, we do not code only individual symbols
but all sequences of say M symbols. Due to independence of symbols we get the
entropy of sequence H(X1, . . . , XM ) = MH(X) (we will state the properties
of entropy later). The inequality 1.3 holds even for composed sequences thus,
we have

H(X) ≤ L

M
< H(X) +

1

M
,

and L
M represents average length per symbol. We see that by coding longer

sequences we can get arbitrarily close to the theoretical boundary even for non
D-adic probability distribution.

Let us now discuss the construction of Huffman code. Huffman assumed in-
stantaneous code and then derived optimal code by reasoning about properties
of such code.

4



Chapter 1. Information theory according to Shannon

1. The length of more probable message must not be greater than length of
less probable one. Hence after rearrangement of messages the following
condition holds

p1 ≥ p2 ≥ . . . ≥ pN ,

l1 ≥ l2 ≥ . . . ≥ lN .

2. Due to definition of instantaneous code, namely the prefix restriction, the
two longest codewords must have the same length

lN−1 = lN .

3. At least two and not more than D of the codewords with length lN must
differ only in the last bit/digit.

4. Each possible sequence of lN −1 digits must be used either as a codeword
or must have one of its prefixes used as a codeword.

From these properties we can simply construct the optimal code. In what
follows we assume D = 2 i.e. binary code. The construction is:

1. Assign to the two less probable messages 0 and 1. It will be their last
digit in the codeword.

2. Combine these two messages into one with probability equal to sum of
their probabilities.

3. Repeat all procedure with new set consisting of N −1 messages until you
have only one message.

We see that the codeword is created from the end to the beginning. It is
worth illustrating the procedure by example. Recall the random variable X
from the beginning of this section and encode it by Huffman optimal code.

codeword X

0 1 1/2 1/2 1/2 1

10 2 1/4 1/4 1/2

110 3 1/8 1/4

111 4 1/8

5



Chapter 1. Information theory according to Shannon

The entropy of random variable X is

H(X) =
1

2
· log2 2 +

1

4
· log2 4 +

1

8
· log2 8 +

1

8
· log2 8 =

7

4
,

and according to Shannon there is no code with average length less than H(X).
Let us see what expected length of Huffman code is

E[L] = 1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
=

7

4
.

This result do not surprise us because we already know that Huffman code
is optimal, and since probability distribution of X is 2-adic we reach the lowest
boundary.

At the conclusion of coding procedure, let us note the connection between
code and questions which bring us to complete knowledge about some sys-
tem (random variable). We have already seen that every questionnaire can be
rewritten into codeword and vice versa so that E[Q] = E[L]. And therefore
since 1.1 we can say that we have by chance guessed the most effective ques-
tions. If we compare the way how we encoded the questions and Huffman code,
we see that after swapping ones by zeros the codes exactly match.

Hence, we can ask whether looking for the most probable value in each step
is generally the most effective way of determining the random variable. The
answer is no. The proper questions may be obtained from Huffman code by
determining the successive digits in the code (starting from the most significant
bit i.e. from left to right). Thus after the first question: ”Is X in a set A?” we
must know what the first digit in the code is, and this is the requirement for
appropriate choice of the set A.

1.3 Entropy interpretation in statistical physics

This section shows brief evolution of the word ”entropy” as it emerges in two
cognate fields of physics, namely thermodynamics and statistical physics. At
the end, we will intimate connection with definition in information theory.

The term entropy was firstly introduced in thermodynamics by Clausius as
a state function of thermodynamical system. More precisely only a differential
of entropy was defined

dS =
dQ

T
. (1.4)

The definition was motivated by the fact that heat received by a system
during any reversible process depends on a path in a state space i.e. dQ is
not a total differential of some state function. Luckily, for reversible processes
there is always an integrating factor 1

T that changes Pfaff’s form dQ into exact

6



Chapter 1. Information theory according to Shannon

differential and corresponding state function S is then called entropy. From
relation 1.4 we also see that increase in entropy is associated with adding heat to
the system. Since only differential was defined, the actual value of S depends on
initial value S0 independent of temperature and external parameters. However,
it is proved that this initial value have to be function of number of particles
otherwise Gibbs paradox arises.

Second law of thermodynamics states that for reversible (quasi-static) adi-
abatic process the entropy is conserved. However, for fast (irreversible also
called dissipative) processes the entropy increases, and the difference dS > 0
can be regarded as a measure of irreversibility or, in other words, the loss of
information that is necessary for tracing the process back.

For isolated system entropy increases for non-static processes. Consider sys-
tem at equilibrium state and by sudden change of external parameters shift it
to new state (1) which is a non-equilibrium state due to the abrupt change.
Then, provided the system is further isolated, it will aim to new equilibrium
state (2) corresponding to new set of parameters. In this state the entropy
takes maximum value, and the difference δS = S(2) − S(1) > 0 may represent
distance of state (1) from equilibrium state (2).

Other interpretation of entropy comes from statistical physics, where it is
considered to be a measure of the extent to which a system is disordered.
And the value of entropy is logarithm of number of allowable configurations or
micro-states of the system satisfying given constraint ( observed macroscopic
state ), such as specific energy level. The Boltzmann equation expresses this
interpretation

S = k ln Γ. (1.5)

Here Γ is number of micro-states also called thermodynamical probability of
state, and thus maxim-entropy principle in the form of equation 1.5 says that
system in equilibrium is in the most probable state 1.

In other words, every physical system is incompletely defined. We only know
some macroscopic quantities and cannot specify the position and velocity of
each molecule in the system. This lack of information is entropy i.e. entropy
may be thought of as an amount of information about the system that is needed
for description of microscopic structure.

Using equation 1.5 we may give more quantitative meaning to distance from
equilibrium mentioned above. Imagine again system in equilibrium with max-
imum entropy Seq = k ln Γeq. If the system is driven out of equilibrium into
new state by fluctuations, then this new state is bound to have lower entropy

1lnx is a monotone function so that maximizing S is equivalent to maximizing Γ.

7



Chapter 1. Information theory according to Shannon

and from 1.5 also less available micro-states Γ < Γeq. If we define probability
of such fluctuation by p = Γ

Γeq
, then we see that

p = exp
S − Seq

k
,

i.e. the probability is exponentially damped by decrease in entropy.

Let us note that there were no clues that entropy defined by Shannon and
that from statistical physics should be somehow related. Its the work of
Jaynes who connected the information view of entropy with that from sta-
tistical physics or thermodynamics.

1.4 Basic properties of entropy

Firstly, someone may notice that we have not specified the base of logarithm.
It is a common habit not to write the base as it is almost always assumed to
be 2 in which case the entropy is measured in unit bits, which was adduced by
J. W. Tukey. Nonetheless, we can sometimes encounter with natural logarithm
which corresponds to unit called nat. For special purposes one is allowed to
use arbitrary units (base of the logarithm). Fortunately, there is a simple rule
for converting entropy between different basis D and D′. The rule reads

HD′(X) = logD′ DHD(X).

Secondly, entropy of random variable X is independent of its possible values.
It is only a function of probability distribution of X. Therefore entropy is
often denoted by H(p1, . . . , pn), where p1, . . . , pn is the distribution of X, and
the random variable is omitted. We can note that entropy is symmetric. It is
intuitive requirement that measure of information should not depend on order
of probabilities.

Entropy of random variable X is bounded. From definition it is evident that
entropy is always positive since it is a sum of only positive values. On the other
side, one can prove that entropy is also bounded from above, it is always less
or equal than logarithm of number of possible outcomes of X.

Theorem 1.3. Let X be discrete random variable and |X | denotes number of
possible outcomes. Then

0 ≤ H(X) ≤ log |X |

One may ask when these inequalities become equalities. The following the-
orem gives us the answer.

Theorem 1.4. Let X be discrete random variable and |X | denotes number of
possible outcomes. Then

H(X) = 0 ⇔ ∃x ∈ X p(x) = 1, and

8



Chapter 1. Information theory according to Shannon

H(X) = log |X | ⇔ p(x) =
1

|X |
∀x ∈ X .

The theorem claims that the entropy is equal to zero if and only if random
variable X is deterministic constant i.e. X is distributed by Dirac distribution
(p(i) = 1 for some i) also called degenerate random variable. The other equality
is valid if and only if the distribution of X is uniform. It means that there is
no outcome which we can somehow anticipate thus the system is completely
unpredictable. Any non-uniform distribution may be understood as additional
information, and therefore leads to decrease of entropy (or uncertainty).

According to theorem 1.4, we can imagine random variable X, that may
represent some system, with entropy H2(X) (2 denotes units i.e. bits) as a
system with 2H(X) equally probable outcomes.

We have not justified the option for functional form of surprise h(p) =
− log p(x). Clearly it satisfies two intuitive conditions required for measure
of information, namely:

h(p) is nonnegative for ∀p ∈ (0, 1〉 (1.6)

h(p) is additive for independent events i.e.

h(pq) = h(p) + h(q), p, q ∈ (0, 1〉
(1.7)

Someone may ask whether there is another function satisfying these two
conditions (axioms). The answer is in the following theorem, see [4].

Theorem 1.5. The only function satisfying conditions 1.6 and 1.7 is

h(p) = −c log p, c ≥ 0.

Here c corresponds only to different units used for measure of information
(uncertainty). It is common to assume in addition to 1.6 and 1.7 also normal-
ization

h

(
1

2

)
= 1

which sets the units to bits and h(p) = − log2 p.

1.5 Joint entropy

Similarly to the definition of entropy for one random variable we can define
joint entropy for n random variables.

Definition 1.2. Let X1, . . . , Xn be n discrete random variables with joint dis-
tribution p(x1, . . . , xn). Then we define joint entropy of X1, . . . , Xn as

H(X1, . . . , Xn) = −
∑

(x1,...,xn)∈X1×...×Xn

p(x1, . . . , xn) log p(x1, . . . , xn).

9



Chapter 1. Information theory according to Shannon

The relation between joint entropy and entropy of individual random vari-
ables states the following theorem which finds great applicability in data com-
pression.

Theorem 1.6. Let X1, . . . , Xn be n discrete random variables with joint en-
tropy H(X1, . . . , Xn). Then

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi)

and the equality holds iff the random variables X1, . . . , Xn are mutually inde-
pendent.

1.6 Conditional entropy

Let X and Y be random variables. Then for all y from possible outcomes
of Y p(X|Y = y) is a probability distribution of X. Therefore we can define
entropy of X given Y = y

H(X|Y = y) = −
∑
x∈X

p(x|Y = y) log p(x|Y = y).

Then the conditional entropy is defined as averaged entropy of random vari-
able X under the assumption that the value of Y is known.

Definition 1.3. Let X and Y be discrete random variables. Then the condi-
tional entropy is defined as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y). (1.8)

After inserting the definition of H(X|Y = y) into expression 1.8 we get

H(X|Y ) = −
∑

(x,y)∈X×Y

p(x, y) log p(x|y).

Conditional entropy may bring a little bit of insight into difference between
yielded information and uncertainty. Imagine we have event A that occurs
with probability p, and after observing another event B, the probability of A
changes to q. Thus, before happening B we get log2 1/p bits of information
from A, and provided B happened it changes to log2 1/q, and we can say that
difference log2 1/p− log2 1/q represents information gain.

We already know that joint entropy of two independent random variables is
sum of individual entropies, and for dependent variables there is an inequality.
With the help of conditional entropy we are able to write so-called chain rule.

10



Chapter 1. Information theory according to Shannon

Theorem 1.7. (Chain rule)
Let X and Y be discrete random variables then

H(X,Y ) = H(X) +H(Y |X). (1.9)

The relation 1.9 is valid also for conditional joint entropy, i.e.

H(X,Y |Z) = H(X|Z) +H(Y |Z,X).

Later we will use generalization for more than two random variables.

Theorem 1.8. Let X1, . . . , Xn be discrete random variables then

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1, . . . , X1),

where a notation H(X1|X0, . . . , X1) = H(X1) is used.

1.7 Relative entropy and mutual information

In what follows, we will define relative entropy also called Kullback diver-
gence which is considered as a distance between probability distributions, even
though neither triangle inequality nor symmetry property holds.

Definition 1.4. Let p(x) and q(x) be two probability distributions and q(x) 6= 0
for ∀x, then relative entropy is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

In analogy to conditional entropy, we may define also conditional Kullback
divergence since

D(p(X|Y = y)||q(X|Y = y) =
∑
x∈X

p(X = x|Y = y) log
p(X = x|Y = y)

q(X = x|Y = y)

is well defined Kullback divergence for all y ∈ Y, and therefore it is plausible
to define conditional Kullback divergence as an average over all possible
values of Y

D(p(X|Y )||q(X|Y )) =
∑
y∈Y

p(y)D(p(X|Y = y)||q(X|Y = y) =
∑

(x,y)∈X×Y
p(x, y) log p(x|y)

q(x|y) .

(1.10)
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It is worth mentioning that relative entropy is only a special case of general
f -divergence.

Definition 1.5. Let p and q be a discrete probability distributions with the
same support S and f be a convex function defined for t > 0 and satisfies
f(1) = 0 then f-divergence is defined as

Df (p||q) =
∑
x∈S

q(x)f

(
p(x)

q(x)

)
.

Hence we see that relative entropy emerges for f(t) = t log t. General f -
divergences are important in statistics where they are used as a different mea-
sures of distinction between probability distributions and are convenient mini-
mizing functionals for testing quality of estimators of some unknown probability
distribution.

In coding theory operational definition of relative entropy can be given as
follows. D(p||q) represents average number of unnecessarily bits used in encod-
ing of random variable X if we use bad distribution q(x) instead of underlaying
probability distribution p(x). That is instead of inequality 1.3 we have

H(X) +D(p||q) ≤ E[L] < H(X) +D(p||q) + 1 (1.11)

where expectation is taken with respect to p(x), and the subscript denoting
base of logarithm was dropped.

Relative entropy is used for defining mutual information of two random vari-
ables as a distance from total independence.

Definition 1.6. Let X and Y be two discrete random variable with probability
distributions p(x), p(y) respectively. Then mutual information is defined as

I(X;Y ) = D(p(x, y)||p(x)p(y)).

The mutual information represents amount of information about random
variable X included in Y . Symmetry of mutual information is clear from
definition and can be paraphrased as information about X in Y is equal to
information about Y in X. It is useful to think of mutual information as an
intersection of entropy (information) H(X) and H(Y ) as is depicted in the
figure 1.1.

Thus mutual information is convenient measure of dependence of random
variables (or time series as we will see later). In fact, mutual information
specifies how many bits in average we could predict about X from Y and vice
versa. Due to symmetry it is not applicable to detect information flow between
two time series because that should be directional.

12
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Figure 1.1: Relations between entropies

After some treatment we get rela-
tion between mutual entropy and en-
tropy of random variable

H(X) = I(X;Y ) +H(X|Y ). (1.12)

It flows from this equation that
mutual information is the reduction
in uncertainty after observing Y .
Other relations between mutual in-
formation, conditional entropy and
joint entropy may be figured out from
figure 1.1.

The following expression is clear form 1.12 (since H(X|X) = 0) and intu-
itively reasonable as well

I(X;X) = H(X).

Generalization of 1.12 for more random variables is straightforward

I(X1, . . . , Xn;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y ).

From equation 1.12 we express the mutual information, and by conditioning
both sides we get so-called conditional mutual information

I(X;Y |Z) = H(X|Z)−H(X|Y,Z). (1.13)

This quantity is the reduction in the uncertainty of X due to knowledge of
Y when Z is given, i.e., amount of information about X contained only in Y
excluding possible intersection of I(X;Y ) and I(X;Z) that may be thought of
as a redundancy in variables X and Y given Z.

With the help of conditional mutual information we may obtain chain rule
for mutual information analogous to one for joint entropy 2

I(X1, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, . . . , X1). (1.14)

For more variable we cannot depict the situation in a Venn diagram because
it would be indecipherable. But it is still possible to imagine that this relation
just says:

”Common information about n random variables in Y is a disjoint
union of individual information about Xi in Y .”

2The same notation as in theorem 1.8 applies here.
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Another useful quantity which captures predictability property of mutual
information and may be regarded as a redundancy can be defined as

R(X1; . . . ;Xm) =

m∑
i=1

H(Xi)−H(X1, . . . , Xm)

which represents number of saved bits when group of m events are encoded
with one codeword instead of encoding events separately. Clearly redundancy
is 0 when all events are independent.

1.7.1 Jensen’s inequality

Many important inequalities follow from Jensen’s inequality which is valid
for convex functions. Let us recall the definition.

Definition 1.7. Let f be a real-valued function defined on 〈a, b〉. Then f is
called convex if for ∀x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

f is called strictly convex if equality holds only if λ = 0 or λ = 1.

It is good to note that f is convex iff −f is concave (definition of concave
function differs only in opposite inequality). We will use this remark for log-
arithm, that is concave, in order to derive useful inequalities with the help of
Jensen’s inequality.

Theorem 1.9. (Jensen’s inequality)
Let f be a convex function and X a random variable. Then

E[f(X)] ≥ f(E[X])

and if f is strictly convex then the equality implies that random variable X is
degenerate (i.e. X = c with probability 1).

The following theorem is the key point for many important inequalities in
information theory.

Theorem 1.10. Let p(x) and q(x) be probability distributions and q(x) 6= 0
for ∀x ∈ X then

D(p||q) ≥ 0

with equality iff p(x) = q(x) ∀x ∈ X .

Corollary 1.1. For any two random variables

I(X;Y ) ≥ 0

with equality iff X and Y are independent.
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With this corollary it is easily seen from 1.12 that

H(X) ≥ H(X|Y ). (1.15)

This means that knowing another random variable Y cannot increase uncer-
tainty of X. But it is valid only on average, in special cases H(X|Y = y) may
be greater than H(X).

1.8 Entropy rate

Entropy rate is defined for a stochastic processes to measure increase of joint
entropy H(X1, . . . , Xn) with respect to n.

Definition 1.8. Let X = {Xn} be stochastic process. Then entropy rate of
stochastic process X is

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn),

provided the limit exists.

Let us calculate entropy rate for some stochastic processes:

1. Let X be a random variable with m equally distributed outcomes and
consider stationary stochastic process Xn = X ∀n. Then the sequence
(X1, . . . , Xn) has mn equally probable results. Thus

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn) = lim

n→+∞

1

n
logmn = logm.

2. Consider sequence (X1, . . . , Xn) of i.i.d random variables. Then the en-
tropy rate is

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn) = lim

n→+∞

1

n
nH(X1) = H(X1).

These two examples are very simple, and the second one is just generalization
of the first one. The resulting entropy rate can be guessed immediately without
any calculation if we consider that entropy rate of stationary process charac-
terizes measure of dependence in the process. Therefore, for every stationary
process we have

H(X) ≤ H(X1).

Next we define conditional entropy rate of stochastic process that is very
helpful quantity in forecasting of future evolution of stochastic process (time
series) because it tells us the uncertainty about the next step given all history.
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Definition 1.9. Let X = {Xn} be stochastic process. Then conditional en-
tropy rate of stochastic process X is

H ′(X) = lim
n→+∞

H(Xn|Xn−1, . . . , X1)

provided the limit exists.

The entropy rate represents entropy per symbol (or step in time series)
whereas conditional entropy rate is conditional entropy of the last symbol given
the past. These two quantities are generally distinct and even not necessarily
exist. But for stationary processes the following theorem holds.

Theorem 1.11. Let X = {Xn} be stationary stochastic process. Then H(X)
and H ′(X) exist and

H(X) = H ′(X).

We will not show prove of this theorem, but we should mention the interesting
properties of stationary process that the prove takes advantage of.

Theorem 1.12. Let X = {Xn} be stationary stochastic process. Then

H(Xn+1|Xn, . . . , X1) ≤ H(Xn|Xn−1, . . . , X1).

This means that for stationary processes the uncertainty of the next step
given the past never increases.

1.9 Differential entropy

We shortly mention generalization of Shannon entropy for continuous random
variables that is called differential entropy.

Definition 1.10. Let X be random variable with probability density function
f(x) with support S then differential entropy is defined as

h(X) = −
∫
S

f(x) log f(x)dx,

if the integral exist.

Likewise for discrete case the differential entropy is function only of prob-
ability density. But not every properties of discrete entropy are necessarily
valid for continuous one. For instance, consider uniform distribution on in-
terval 〈0, a〉. Then we easily calculate h(U) = log a, and for a < 1 we have
negative entropy. Note also that differential entropy cannot be defined for δx0

distribution because log δx0 is not well defined.
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Entropy of Normal distribution Let us compute entropy of Normal dis-
tribution. We use convenient units (nats) and utilize known expression for
Gauss integral

+∞∫
−∞

x2n exp (−αx2)dx =

√
π

α

(2n− 1)!!

(2α)n
.

Then after little manipulation we get

H(X) =
1

2
ln (2πσ2) +

1

2
.

Unfortunately, this is not very useful because for small variance we get neg-
ative value of entropy.

Remark on Normal distribution We should mention that Normal dis-
tribution is the least biased distribution given mean and variance, in other
words, it maximizes entropy constrained to fixed average value and standard
deviation, i.e. it does not involve any other information and corresponds to
maximum ignorance about the system. Similarly for n random variables and
given covariance matrix entropy is maximized for n dimensional Gaussian dis-
tribution.

Exponential distribution Exponential distribution takes over the maxi-
mality property for positive random variables. The maximum entropy is

H(X) = log (eλ).

The joint, conditional and other entropies are defined similarly to discrete
ones, i.e. the sum is just replaced by integral.

Calculating entropy For calculating entropy of continuous random variable
other approach can be used. We divide range of the random variable into N
boxes of size ε and compute probabilities of these boxes

pj =

∫
Bj

ρ(x)dx.

Thus we get discrete random variables with N possible outcomes and may
calculate its entropy. The entropy diverges with finer partitioning (ε 7→ 0), see
[3] as it represents amount of information needed for specifying the state of the
system with an accuracy ε. Consider easy example of uniform distribution on
〈0, 1〉. Entropy of such random variable would mean average number of bits
necessary to encode, in other words determine, arbitrary number from interval
〈0, 1〉 and that is infinite ( imagine any irrational number ). Since in real world,
i.e in real experiment, we are not able to distinguish all small details and any
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measuring device can provide values only in some finite interval [x − ε, x + ε],
this infinity does not have to scary us.
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Chapter 2

Rényi entropy

In this chapter we will generalize Shannon information measure according
to Rényi, see [5]. We will follow intuitive way of Rényi to introduce new in-
formation measure, and furthermore, explore quantities related to information
measure like relative information, conditional entropy or mutual information
from other point of view in order to generalize them.

2.1 Information quantities

2.1.1 Entropy

To motivate Rényi entropy, we should have a look at the way how Shannon

extended work of Hartley. Let E =
n⋃
k=1

Ek and Ek contains Nk elements. Then

information necessary to characterize one of N =
n∑
k=1

Nk equiprobable elements

is log2N . If we would like to know only the set in which the particular elements
is, we can proceed as follows: Choosing arbitrary element can be done by first
selecting Ek and then particular element from Ek. Since these two steps are
independent, the additivity property of Hartley information measure claims

log2N = Hk + log2Nk,

where Hk represents information needed to specify set Ek. From this equation
Hk can be readily obtained, and then it is reasonable to define H, information
needed to specify the set which particular element belongs to, as a weighted
sum of Hk and introduce probabilities pk = Nk

N . Aforementioned procedure
leads to already known Shannon’s formula.

From above generalization of Hartley information measure we can see that
Shannon information measure is based on two postulates (first of them was
introduced by Hartley):
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• Additivity - information gained from observing two independent events
is the sum of the two partial ones

• Linear averaging - information gained from experiment that has n possible
outcomes Ak with probabilities pk k = 1, . . . , n is equal to linear average

n∑
k=1

pkH(Ak),

where H(Ak) denotes information gained from experiment when event
Ak occurs.

Rényi was aware that there is no reason for restricting to linear average used
by Shannon and considered Kolmogorov–Nagumo generalized mean

Ef [X] = f−1(
∑

pif(xi)), (2.1)

where f is continuous and strictly monotone (i.e. invertible). It represents the
most general mean compatible with Kolmogorov axioms of probability theory.
We may also encounter with name quasi-linear mean.

Hence, every continuous and strictly monotone function may define various
measures of information i.e. various entropies. However, additivity postulate
puts some constraints on possible functions f , namely it restricts f to only two
options, linear f(x) = cx and one-parametrized family of exponential functions
chosen for later purposes in the form f(x) = c(2(1−α)x − 1), α 6= 1, proof may
be found in [6]. The linear function leads to already known Shannon entropy,
and exponential function gives Renyi entropy

Hα(P) =
1

1− α
log2

N∑
i=1

pαi . (2.2)

Though, the left hand of 2.2 is defined for all α 6= 1 we should disable non-
positive values since for α < 0 2.2 becomes very sensitive to small probabilities.
In other words, adding new event with zero probability makes Hα(P) infinite,
and it is undesirable property because information measure should be function
only of probability distribution and that remains unchanged after adding event
with zero probability. For the same reason, α = 0 is excluded since we get
again value independent on probability distribution H0(P) = log2N . Since
the limit of 2.2 for α tends to 1 is well defined and equals to Shannon entropy1,
we may conclude that 2.2 defines eligible measure of information for α > 0.

1It can be readily proven by L’Hopital rule
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It is easily seen that Hα is non-negative and equals to 0 if and only if the
probability distribution is degenerate, consider that pαi ≤ pi for ∀i and α > 1
where pi ∈ 〈0, 1〉 with equality iff pi = 0 or pi = 1 and opposite inequality for
α < 1. Using method of Lagrange multipliers, we may find that Hα ≤ log2N ,
and thus we have the same boundary conditions as we have already seen for
Shannon entropy

0 ≤ Hα ≤ log |X | α > 0.

By differentiation of 2.2 with respect to α and as a consequence of Jensen’s
inequality 1.9 applied to convex function− log x and random variableX = p1−α

k

with probability distribution
pαk∑
pαk

, we find that Rényi entropy is decreasing

function of α. This means that Shannon entropy may be regarded as a lower
and upper boundary for Rényi’s information measure of order α < 1 and α > 1
respectively.

2.1.2 Relative entropy revised

In preceding chapter we defined relative entropy without any motivation.
Now we should have a look at this quantity in more detail to generalize it for
Rényi’s α information measure.

Relative entropy is connected with the idea of gain of information as can be
seen from following example. Consider an experiment with A1, . . . , An possible
outcomes which occur with probabilities p1 = P (A1), . . . , pn = P (An). Now
we observe event B, and the probabilities change to q1 = P (A1|B), . . . , qn =
P (An|B). It is legitimate to ask how much information about the experiment
we gained from observing event B. To answer this question, we first imag-
ine only one outcome, say A1. Before observing event B the outcome would
give us log2 1/p1 bits of information or equivalently the uncertainty of the
outcome is log2 1/p1. After occurring B, the uncertainty and possible infor-
mation received from observing event A1 change to log2 1/q1. Hence we need
log2 1/p1 − log2 1/q1 bits of information less than before and this decrease in
uncertainty is equal to gain of information about A1 observing B.

If we take into account all outcomes, we get n partial gains of information,
and it is reasonable to assign the average of these gains to overall gain of
information about experiment after observing event B. Notice that gain of
information may be considered also as minus increase of uncertainty, and this
brings us two possibilities to calculate overall gain of information. Either we
take average of partial gains log2

qk
pk

or average increases of uncertainty log2
pk
qk

and the result multiply by (−1).

In Shannon’s case of linear averaging both approaches leads to the same
already known relative entropy. However, for generalized average, i.e. E[X] =

1
1−α log2

(∑
p(x)2(1−α)x

)
, we get different results, see [5]. The first method
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leads to undesirable properties of information gain, and hence the other method
is used. Note that averaging is done with respect to q ≡ {qk} since we assume
that B occurred, and hence qk is the appropriate weight of event Ak.

Definition 2.1. Let p and q be probability distributions on the same discrete
probability space. Then gain of information of order α when p is replaced with
q is

Dα(q||p) =
1

α− 1
log2

(
n∑
k=1

qαk
pα−1
k

)
. (2.3)

The properties of ordinary relative entropy are conserved and are again
rooted in Jensen’s inequality. We state one more property of Dα valid for
all α > 0

Dα(q||u) = Hα(u)−Hα(q).

This relates gain of information with decrease of uncertainty after replacing
the most ignorant distribution, i.e. uniform one u, with arbitrary distribution
q. The prove is just inserting uniform distribution of size n to the definition.

2.1.3 Conditional entropy

Here we follow the same idea as in the first chapter only linear averaging
is replaced by generalized mean. Having two random variables X and Y the
remained uncertainty about X or information still gained from observing X
after knowing that Y = yk is

Hα(X|Y = yk) =
1

1− α
log2

(
n∑
h=1

pαh|k

)
.

Then generalized averaging gives us conditional information of order α.

Definition 2.2. Let X and Y be two discrete random variables with distribu-
tion p and q then conditional information of order α is defined as

Hα(X|Y ) =
1

1− α
log2

∑
h,k

rαhk
qα−1
k

,
where rhk denotes joint probability distribution.

The inequality valid for Shannon conditional entropy is easily broaden to
Rényi conditional entropy so we have

0 ≤ Hα(X|Y ) ≤ Hα(X) (2.4)

with the same conditions for equality as in Shannon’s case, i.e. Hα(X|Y ) = 0
iff there is such a function g that X = g(Y ) and Hα(X|Y ) = Hα(X) iff X and
Y are independent, see [5].

22



Chapter 2. Rényi entropy

We remark another definition of conditional information that is based on the
additive property of Shannon entropy for dependent variables, equation 1.9.
We can postulate this equation also for Rényi entropy and define conditional
entropy as

H̃α(X|Y ) = Hα(X,Y )−Hα(Y ) =
1

1− α
log2


n∑
k=1

qαk

(
m∑
h=1

pαh|k

)
n∑
k=1

qαk

, (2.5)

where Hα(X,Y ) is Rényi entropy of joint probability distribution.

Escort distribution

Imagine arbitrary probability distribution p then we can construct another
probability distribution ρ called escort distribution

ρqk =
pqk
n∑
k=1

pqk

.

This new probability distribution has interesting property that it emphasizes
probable events and suppresses rare ones for q > 1. The greater q, the more
pronounced is the accentuation of probable events, i.e by choosing large q we
restrict our interest on the center of probability distribution. On the other
hand, 0 < q < 1 highlights rare events and covers up most likely ones. As an
example consider original distribution N(0, 1) then escort distribution corre-
sponds to N(0, 1

q ) and depending on value of q bell curve get either narrower
or more flatten.

Due to monotony of exponential function inequalities among probabilities
remain unchanged and for q close to zero escort distribution tends to uniform
distribution. This feature can be violated by allowing negative values of q which
actually changes tails to peaks in probability distribution and vice versa.

Since escort distribution deforms original distribution, it is used in statistical
physics for ”zooming” in different regions of probability distribution. We shall
note that escort distribution of escort distribution is also escort distribution
with parameter q = q1q2, i.e. escort distribution may be consider as a one-
parametric group of transformations on probability distributions. Thus another
”zooming” does not give us any new information.

We should also mention relation of Rényi entropy of escort distribution and
entropy of original distribution

H1/q(ρq) = Hq(p).
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Chapter 2. Rényi entropy

With the help of escort distribution we can rewrite equation 2.5 to

H̃α(X|Y ) =
1

1− α
log2

(
n∑
k=1

ραk2(1−α)Hα(X|Y=yk)

)
, (2.6)

which means that to fulfill condition 1.9 we have to average with respect to
escort distribution instead of original distribution.

It can be shown, see [6], that H̃α(X|Y ) = 0 iff outcome of Y uniquely
determines X and for independent random variables H̃α(X|Y ) = Hα(X), but
the opposite implication does not generally hold. H̃α(X|Y ) = Hα(X) must
hold for all α > 1 or 0 < α < 1 to imply independence of X and Y , see [7].

2.1.4 Mutual information of order α

There are more ways how to define mutual information of order α. All of
them are motivated by some relation valid for Shannon mutual information.
The ambiguity is caused by the fact that all relations valid for Shannon mu-
tual information cannot be simultaneously satisfied by any definition of Rényi
mutual information. Hence, in application we should pick up such a definition
that best fits our requirements.

The Shannon mutual information was defined in first chapter as a gain of
information after replacing total independence by the joint distribution. Ana-
logically, we could use equation 2.3 and define generalized mutual information
in the same way. Unfortunately, this definition would violate desirable property
of mutual information, namely

Iα(X;Y ) ≤ Hα(X), (2.7)

which states that the information on X yielded by Y must not exceed uncer-
tainty of X.

Mutual information may also be defined by the property of Shannon mutual
information

I(X;Y ) = H(X)−H(X|Y ). (2.8)

This would give us generalized mutual information in the form

Iα(X;Y ) =
1

1− α
log2


m∑
h=1

pαh

m∑
h=1

n∑
k=1

rαhk
qα−1
k

. (2.9)
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However, Rényi preferred in his paper [5] another way of defining mutual
information. He noticed that Shannon mutual information can be written as
an average of information gain

I(X;Y ) =

n∑
k=1

qkD(P (X|Y = yk)||P (X)).

Using equation 2.3 and generalized mean instead of linear averaging results
in

Iα(X;Y ) =
1

1− α
log2

 n∑
k=1

qk
m∑
h=1

pα
h|k

pα−1
h

 (2.10)

which satisfies 2.7 with the same conditions for equality as in Shannon’s case.
The drawback is that neither 2.10 nor 2.9 is symmetric, i.e. information on X
gained from observing Y is generally distinct from information on Y from X.

It should be noted that 2.10 and 2.9 are different. First of them represents
decrease of uncertainty while the second one is average information gain on X
from observing Y .

In chapter 4 we will use different definition of mutual information that is
based on property of Shannon mutual information

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

By inserting Rényi entropies we arrive to the formula

Iα(X;Y ) =
1

1− α
log2

∑
h,k

(phqk)α∑
k,h

rαhk
. (2.11)

This quantity is symmetric and might have been obtained also by using
equation 2.8 and the second definition of conditional entropy, equation 2.5.

Rényi rejected this definition because for Rényi information measure inequal-
ity

Hα(X) +Hα(Y ) ≥ Hα(X,Y )

does not always hold. Hence, 2.11 can be negative, and according to Rényi it is
inappropriate to have negative mutual information. However, it was examined
in [7] that mutual information defined in 2.11 is negative if marginal events of
X obtain higher probability at the cost of decrease of probability of central part
of the distribution after observing Y . Such a feature can be handy in various
applications, for example in finance as we will see in chapter 4.
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2.2 Operational definition

Renyi entropy is information measure as well as Shannon entropy. Now we
should address some possible ways how to interpret its actual value. This gives
us basic view to particular problems in applications.

We already know that Shannon entropy emerged from coding theory where
it represents the shortest average length of optimal code

H1(p) ≤ L(p) =

N∑
i=1

lipi,

and the optimal lengths of individual symbols are related with their probabili-
ties as

l∗i = − log2 pi.

That means highly improbable symbols corresponds to very long codewords
in order to save short lengths for frequently transmitted symbols. Such a be-
havior is convenient for linear cost function occurring in transmitting where the
bits are send one by one, hence, sending n bits takes n-times longer than send-
ing one bit. Nevertheless, in some situations it is reasonable to use convenient
cost function, for example, in storing data when exponential cost function may
be used for ”pricing” allocated free space. Thus, we are not interested in the
shortest code but the cheapest one.

Campbell dealt with the problem of exponential weighting in his paper [8].
He proposed to minimize

C =

N∑
i=1

piD
tli

with respect to lengths li where t is some parameter related to the cost and D
is number of symbols used for encoding messages. However, further analysis
suggested to minimize logarithm of C

L(t) =
1

t
logD

(
N∑
i=1

piD
tli

)
(2.12)

so that an elegant connection with generalized mean 2.1 would emerge, i.e. 2.12
corresponds to Kolmogorov-Nagumo generalized mean with f(x) = Dtx.

The following theorem is the analogy of well-known Shannon noiseless chan-
nel theorem.

Theorem 2.1. Let l1, . . . , lN satisfy Kraft inequality

N∑
i=1

D−li ≤ 1,
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then averaged length of optimal code with exponential cost is bounded from below

Hα ≤ L(t), (2.13)

where α = 1/(t+ 1).

According to this theorem we must lengthen the code for highly probable
symbols in order to be able to shorten improbable ones which would be other-
wise strongly penalized by exponential cost function.

We have equality in 2.13 if

li = − logD ραi

where ρα is escort distribution, but this is actually the same result that we
obtained for linear averaging except we replaced original distribution with es-
cort distribution. For t > 0 we have α < 1, and escort distribution properly
enhances rare probabilities and suppresses likely ones so that we can use Shan-
non formula for optimal lengths. On the other hand, −1 < t < 0 corresponds
to α > 1 and probable events receives even shorter code. This may be helpful
in the case when finite buffer is used for transmitting and we are interested in
maximizing probability of sending message in one snapshot.

Aforementioned connection with classical coding procedure is also advantage
in applicability of new coding theorem because we do not have to invent some
new coding method which approaches the optimal lengths. We can just use
Huffman code with escort distribution.

2.3 Axiomatization of information measure

Renyi compares information with energy because there was considered many
different kinds of energy, and it took many years to discover that all of them are
just one ’thing’, the same discovery may come even for information, but in order
to define different information measures, it is convenient to postulate some basic
requirements that suitable information measure should fulfill. Fadeev proposed
the following set of postulates:

1. Information measure is function only of probability distribution and has
to be symmetric - H(p1, . . . , pn) = H(pπ(1), . . . , pπ(n)) for any permuta-
tion π.

2. H(p, 1− p) is a continuous function for p ∈ 〈0, 1〉.

3. normalization - H( 1
2 ,

1
2 ) = 1.

4. H(p1, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H( p1
p1+p2

, p2
p1+p2

).
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The last axiom states that overall information needed for identification of par-
ticular message is independent on grouping of messages. That means that we
can combine, say, two messages with probabilities p1 and p2 into one message,
thus information needed for selecting one of these n− 1 messages corresponds
to the first term on the right side. When this new message occurs we examine
which of the original two messages was actually sent, information necessary to
this identification is the second term on the right side. The axiom demands
that information needed for this procedure is equal to information needed for
directly selecting particular message.

It can be shown, see [9], that these axioms holds if and only if Shannon
information measure is used.

Theorem 2.2. Let p1, . . . , pn be a probability distribution and H be an arbi-
trary function fulfilling postulates 1 to 4 above, then

H(p1, . . . , pn) = −
n∑
j=1

pj log2 pj .

The fourth axiom is somewhat too restrictive and precludes information mea-
sure of order α (Rényi’s entropy). Therefore, Rényi weakened the fourth ax-
iom by assuming only additivity of entropy for independent experiments and
introduced new set of axioms that characterizes both Shannon and Rényi infor-
mation measure. These new axioms are formulated for generalized probability
distributions, i.e. including incomplete distributions for which

∑
pi ≤ 1.

1. H is a symmetric function of the elements of generalized distribution .

2. H({p}) is a continuous function of p for p ∈ (0, 1〉.

3. normalization - H({ 1
2}) = 1.

4. additivity -

H({p1q1, . . . , pnq1, p1q2, . . . , pnq2, . . . , p1qm, . . . , pnqm}) =

H({p1, . . . , pn}) +H({q1, . . . , qm}).
(2.14)

5. averaging - There exists a strictly monotone and continuous function
g(x) such that for two generalized probability distributions {pi} and {qk}
denote W ({pi}) =

∑
pi, W ({qk}) =

∑
qk and if W ({pi})+W ({qk}) ≤ 1,

then

H({pi} ∪ {qk}) = g−1

[
W ({pi})g [H({pi}] +W ({qk})g [H({qk}]

W ({pi}) +W ({qk})

]
.
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Characterization of Shannon and Rényi entropy is then given by the following
theorem.

Theorem 2.3. Let H({pi}) be defined for all generalized probability distribu-
tions and satisfies axioms 1 to 4 and axiom 5 with gα(x) = 2(α−1)x, α > 0, α 6=
1 and g(x) = ax+ b, a ≤ 0, then

H({pi}) =
1

1− α
log2

[∑
pαi∑
pi

]
and

H({pi}) =
−
∑
pi log2 pi∑
pi

respectively.

We mention one more set of axioms characterizing both Shannon and Rényi
entropy that define also an conditional entropy in the form 2.6 which will be
used in chapter 4.

1. Let X be a discrete random variable with probability distribution {pi},
then H(X) is a function only of {pi} and is continuous with respect to
all its arguments.

2. For a given integer n H(X) takes its maximum for {pi = 1/n, i =
1, . . . , n} with the normalization H(X) = 1 for distribution {1/2, 1/2}.

3. For a given α ∈ R and two random variables X,Y H(X,Y ) = H(X) +
H(Y |X) with

H(X|Y ) = g−1

(∑
i

ραig
(
H(Y |X = xi)

))
,

where ραi is escort distribution of probability distribution of X.

4. g is invertible and positive in 〈0,+∞).

5. Let X be a random variable and {p1, . . . , pn} its distribution, and if X ′

has probability distribution {p1, . . . , pn, 0} then H(X) = H(X ′). That is,
adding an event of probability zero we do not gain any new information.

These axioms are generalization of Khinchin’s axioms [10] in order to include
Rényi entropy. It can be shown that the only possible functions in axiom 3 are
either linear or exponential function which corresponds to Shannon and Rényi
entropy, see [6].
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Chapter 3

Correlation, memory and
causality

In this chapter basic measures of correlation and memory are reminded,
and their contemporary replacements from information theory are introduced.
After correlation, term causality is discussed, and at the end of this chapter
primary problems of information-theoretical approach are pointed out.

3.1 Characterizing and measuring correlation

The most known characterization of correlation is by Pearson correlation
coefficient

R =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]√
E[(X − µX)2]E[(Y − µY )2]

,

usually called just correlation coefficient which may lead to confusion. The rea-
son for possible confusion is due to the fact that generally correlation should
refer to any kind of relation, but Pearson coefficient measure just linear depen-
dence.

Auto\Cross-correlation function measures exactly this coefficient between
different values in stochastic process lagged in time or anything the index set
refers to. The definition of auto-covariant function is

cov(t1, t2) = E[(Xt1 − µ(t1))(Xt2 − µ(t2))], (3.1)

and auto-correlation function is obtained by dividing 3.1 by σt1σt2 . In cross-
covariant function the second time would refer to seres Yt.

Such a characterization of dependence in stochastic process is sufficient for
Gaussian processes for which all kind of dependence is included in auto-corre-
lation function. This is due to the fact that Gaussian random variable is fully
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specified by given mean and variance, and, in analogy, Gaussian process ( its
distribution ) is completely defined by mean function µ(t) and auto-covariant
function cov(t, s) or instead of auto-covariant function, we may specify variance
function γ(t) and auto-correlation function cor(t, s), see [11]. Since Gaussian
processes showed fruitful applicability in practice mainly as a result of widely
used ARIMA models, which are generally defined without reference to Gaussian
noise, but in concrete application other noises used to be very rare, the auto-
correlation function was long considered as a perfect measure of dependence in
time series.

Nowadays it is generally accepted that neither linear ARIMA nor Gaussian
process are satisfactory models for many phenomena one can encounter in biol-
ogy, physics, finance or many other fields. Therefore, it is desired to generalize
the Pearson correlation coefficient, and then auto\cross-correlation function,
in an appropriate way so that it could incorporate all higher order dependence
and thus would be a plausible measure of correlation.

In information theory context very promising candidate for such a measure is
mutual information which takes advantage of information theoretical approach
which means that it can capture all kinds of dependence because I(X,Y ) = 0
iff X and Y are independent, see 1.1.

Figures 3.1 and 3.2 demonstrate this benefit of information approach. Figure
3.2 shows lagged mutual information of log-returns of London stock exchange
index AIM100, and we see that unlike auto-correlation it detects nontrivial
correlation even on one-hour time lag. The figure 3.2 nicely shows that original
hypothesis by Bachelier that successive returns of stock prices are perfectly
independent is wrong for empirical high frequency data and confirms Mandel-
bort’s claim about history in returns or log-returns.

For another comparison of mutual information with conventional correlation
coefficients, namely Pearson, Spearman and Kendall, see [12]. In that paper
three examples were considered:

a) Y = ε, ε ∼ N(0, 1) and X ∼ Uniform([−3, 3])

b) Y = X + ε and X ∼ Uniform([−3, 3])

c) Y = X2 + ε and X ∼ Uniform([−3, 3])

In the paper is shown by simulating 10000 data points that all four quantities
can detect no correlation in case a) and strong correlation in case b). How-
ever, in case c), i.e. non-linear correlation, all conventional coefficients fail in
detection of correlation except mutual information.
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3.1.1 Correlation vs Regression

These terms are very closely related but prone to confusion. Correlation
means that there is some relation between two events or random variable,
nevertheless, do not contain any information about a particular relation. This
is the object of regression, i.e, to find appropriate functional relation, e.g. linear
( Y = F (X) = aX + b ), between X and Y which minimizes suitable measure
of error in regression. The most widely used error measure is sum of squares of
errors also called residuals ri = Yi − F (Xi). Method using such a minimizing
function is called method of least squares, and its popularity is due to the
mathematical well behaved square function which may be differentiated, and
thus easily minimized in contrast to absolute value error.

Note that term linear regression does not refer only to linear function F but
to all functions which lead to linear optimizing equations, i.e. equations for
parameters of regression. Linear regression is very favorable in practice since
system of linear equations is well understood, and there are many methods how
to solve them.

Pearson correlation coefficient is closely related to linear regression Y = aX+
b which may be seen from QQ-plot of realizations {xi} and {yi}. According to
sign of R we may better predict value of Y provided we know realization of X
by simple rule, that when xi > E[X] then yi is more likely to be also above
the mean E[Y ], and a strength of this relation is proportional to |R|. That is
R contains some extra information in contrast to mutual information. Since
provided we know only mutual information, we have no clue how to improve
prediction of yi based on known value xi. All we know is that there is in
principle some possibility to better predict Y .
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3.2 Memory in time series

Memory in a time series is classified according to auto-correlation function

Definition 3.1. Stochastic process {Xt} is said to have short memory if

+∞∑
τ=−∞

|cor(t, τ)| < +∞ for all t,

and if the series diverges then the process is said to have long memory.

Generalization were proposed in [13] which would take into account also
non-linear dependency. The generalization is defined with help of mutual in-
formation as follows.

Definition 3.2. Stochastic process {Xt} is said to have short memory in
information if

+∞∑
τ=−∞

I(Xt, Xt+τ ) < +∞ for all t,

and if the series diverges then the process is said to have long memory in
information.

Another kind of stochastic process related with memory is mean reverting
process.

Definition 3.3. Stochastic process {Xt} is called mean reverting process if

lim
τ→+∞

cor(t, τ) = 0, for all t

Trajectories of such process have tendency to fluctuate around the mean
function, i.e. function Xt − E[Xt] changes sign infinitely often. The most
known example which does not possess mean-reverting property is Brownian
motion. Even infinitely lagged values are still correlated. Its trajectories are
”persistent”, i.e. if any trajectory happens to be above mean then it is likely
that it stays above the mean for ever.

Definition of mean reverting process is in [13] generalized to mean reverting
process in information analogously as has been done for short\long memory
process in information.

3.3 Granger causality

At first, let us highlight the difference between correlation and causality. Cor-
relation is necessary condition for causality but by no means implies causality.
So there may be correlated random variables which has absolutely no cause-
effect relation.
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There is no general definition of causality. The promising definition in case
of deterministic causality may be given by two conditions:

1. if event A occurs then event B must occur

2. if event B occurs then event A must have occurred

Drawback of this deterministic causality is lack of their applicability since in
real world strict determinism is very rare if not impossible. Thus adjustment
is to be made to cast this defining properties into realm of probability.

Definition 3.4. An event A is a cause to the event B in a probabilistic sense
if two conditions are satisfied:

1. event A precedes event B

2. P (A) 6= 0 and P (B|A) > P (B)

The imperfection of this definition resides in practical difficulties how to
precisely state events A and B.

Wiener attempted to define causality in two signals as follows, see [14].

For two simultaneously measured signals, if we can predict the first
signal better by using the past information from the second one
than by using the information without it, then we call the second
signal causal to the first one.

Granger, inspired by Wiener, slightly improved the above definition by re-
quiring two conditions to be satisfied for cause effect relation.

1. the cause occurs before the effect

2. the cause contains information about the effect that is unique, and is in
no other variable

Requirement concerning uniqueness of the information eliminates possible
effect of the third hidden driving variable. On the other hand, it makes the
causality generally uncheckable since in practice we will never be able to dis-
tinguish all hidden variables and exclude their effect.

The way how to overcome this seemingly hopeless causality detection is by
checking both aims of causality. For instance, in case of stochastic process,
when Granger’s definition reduces to Wiener’s one complemented by uniqueness
of information, we should check whether

a) {Xt} causes {Yt}

b) {Yt} causes {Xt}
and only if just one test is positive we may say that one process causes the
other.
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3.3.1 Granger test

The last and the most practical point in testing causality between stochastic
processes is question how to incorporate the abstract information in definition
into forecasting. Granger proposed simple linear model

Yt = a0 +

L∑
k=1

b1kyt−k +

L∑
k=1

b2kXt−k + ξt. (3.2)

So it is assumed that information from {Xt} induces only linear change
in process {Yt}. Granger test is then based on testing null hypothesis of no
causality, i.e. b2k = 0 k ∈ {1, . . . , L} which leads to Granger-Sargent statistics

GS =
(R2 −R1)/L

R1/(N − 2L)
,

where R1 is residual sum of squares under assumption of model 3.2, R2 is
residual sum of squares under assumption of null hypothesis and N is number
of observed data points. The GS statistics has Fisher–Snedecor distribution
with L and N − 2L degrees of freedom.

An advantage of Granger test is that it is rigorous statistical test, hence,
it gives us significant results. Furthermore, it is computationally quite unde-
manding. However, the test has little meaning when a priory chosen model 3.2
cannot be properly justified.

The problem with parametric Granger test streams from the fact that Granger
test actually tests Wiener version of causality in sense of better predictability
and not Granger version in sense of information. In chapter 4 we will see that
information-theoretical quantity called transfer entropy may indeed measure
this abstract information and hence may serve as a replacement for Granger
causality test.

Similar note as in case of regression and correlation may be added to causality
which simply says that there is in principle some possibility to use data from
cause series to make better prediction about the effect series than without
them. However, exact form of this dependence is another more difficult and
more practically useful question which cannot be addressed by information-
theoretical approach. Thus in situations when linear model is fairly plausible
Granger test is invaluable.

3.4 Problems with information-theoretical ap-
proach

To motivate essential disadvantage of using information-theoretical quanti-
ties in time series analysis, we briefly bring up problem of inference of statistical
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quantities from observed time series.

From time series auto-covariance function is estimated by

ck =
1

N − |k|

N−|k|∑
i=1

(Xi − X̄)(Xi+|k| − X̄), (3.3)

where X̄ is sample mean. This estimator is unbiased provided we know the
mean µ, but when mean is estimated by X̄ then 3.3 becomes biased. We may
also encounter estimator with prefactor 1

N instead of 1
N−|k| which has larger

bias than 3.3, but on the other hand it has a smaller Mean square error, see
[11]. Short discussion about bias and MSE is mentioned in Appendix A. Notice
that 3.3 does not involve time thus at least weak stationarity is assumed.

Unfortunately, in contrast to auto\cross-correlation function which may be
easily estimated by 3.3 whose properties are well-known and rigorously proven
the estimation of mutual information from experimental data is more difficult.
A compendium of available methods for estimating mutual information may
be found in [14].

Let us briefly mention here method that was used in calculating mutual infor-
mation of London stock index returns in figure 3.2. The method originated in
theory of dynamical systems and was invented by Fraser and Swinney [15] who
were interested in finding optimal time delay into reconstruction theorem, the
cornerstone of dynamical systems, for more details about analysis of dynamical
systems see [16].

They used simple plug-in estimator which means that only appropriate es-
timation of joint probability of two random variables is needed. The sophisti-
cated technique of constructing proper partition for estimating joint probability
makes it very robust, though difficult for implementation.

It is worth mentioning that in paper [15] random variables X and Y are
considered continuous, however, mutual information is calculated for their dis-
cretization, and then

lim
n→+∞

in(X,Y ) (3.4)

is claimed to be a right value for mutual information of two continuous random
variables. Where in(X,Y ) is a plug-in estimator of mutual information of
discretized random variables in the n-th recursive step. Such a procedure would
not give a correct value for differential entropy as was noted in section 1.9, but
for mutual information the limit 3.4 indeed converges to I(X,Y ).
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The iterative procedure for discretization is as follows:

1. Split support of X into two parts so that each part contains the same
number of data points. Do the same for Y which gives the first partition
G1 of (X,Y ) plane.

2. Create Gn+1 from Gn by splitting each interval in discretization of X
into two parts so that each box contains the same number of data points.
Do the same for Y which as a result splits each element in Gn into four
parts, see figure 3.3.

This approach gives for all n marginal distribution of X and Y equal to 2−n

independently on particular box which leads to significant simplification.

Figure 3.3: Successive steps in partitioning sup-
port of X and Y (adapted from [15])

The described algorithm of
making finer partition seems
to proceed in all parts of
(X,Y ) plane, but the key
task is performed in recursive
calculation of I(X,Y ) which
stops whenever the element
currently processing is flat,
i.e. it does not have any finer
structure, and it would not
contribute anymore to total
mutual information, see de-
tails in the paper [15].

The only remaining question is how to decide whether there is any further
structure. Authors have chosen simple χ2 test for testing flat multinomial
distribution of two next iteration of finer partition on 20% confidence level.
The recursion stops also when few points remains in the element, but the
concrete number of points to stop is not stated.

Final remark about estimating mutual information concerns amount of data
typically used. In dynamical systems when studying known system of equa-
tions, e.g. Lorentz attractor, no problem with data arises because we may
simulate as much data as necessary, see [15] where 1 000 000 data points were
generated. Therefore errors in estimating information-theoretical quantities
are usually neglected. However, in finance analyzing real data we are more
restricted by available ”clean” data, even at high frequency acquisition.
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Chapter 4

Transfer entropy

In this chapter we will see how the basic concepts of information theory can
be exploited in time series analysis. In particular, we will measure information
flow between two time series in order to detect any causality between them.

Transfer entropy was firstly introduced by Schriber [17] who applied it to
biological data, and now we see applicability in many distinct fields. In this
work we aim to financial time series likewise in [18] and [19]. Transfer entropy is
very useful tool for cross-correlation and causality analysis of two time series.
The huge advantage of transfer entropy is an independence on model used
for modeling time series, i.e. model-free. Thus transfer entropy has broader
applicability than Granger’s method that assumes linear regressive model. In
addition, transfer entropy is able to quantify information flow and not only
reveal existence of causality.

Transfer entropy takes into account also higher order correlations, i.e. any
kinds of dependency, and thus may show that two series are intertwined even
if cross-correlation analysis points out no correlation.

4.1 Shannonian transfer entropy

We introduce transfer entropy in the similar way as was done in [18] and in its
extended version [20] with slight modification in the form of time dependency.

Having discrete stochastic process X = {Xt} (time series), we define block
entropy of order m and at time t as

HX(t,m) = −
∑

p(xt, xt−1, . . . , xt−m+1) log2 p(xt, xt−1, . . . , xt−m+1) =,

where sum is over all possible m-tuples (xt, xt−1, . . . , xt−m+1) which we denote

x
(m)
t for the sake of brevity. We see that block entropy of stochastic process is
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just joint entropy of m successive random variables Xt, . . . , Xt−m+1 ≡ X
(m)
t ,

i.e.
HX(t,m) = H(X

(m)
t )

Block entropy represents, depending on point of view, either averaged un-
certainty of next m values at time t−m provided we have no extra knowledge
about the process or information capacity about the process stored in m suc-
cessive observation as a function of time. The difference

hX(t,m) = HX(t+ 1,m+ 1)−HX(t,m) = H(Xt+1, X
(m)
t )−H(X

(m)
t )

is very important for predicting because it represents conditional entropy, see
chain rule in 1.8 in chapter 1, at time t of the next step provided we know all
m preceding values of the process. According to basic properties of conditional
entropy 1.15 stated in chapter 1 we have inequality

0 ≤ hX(t,m) = H(Xt+1|X(m)
t ) ≤ H(Xt+1),

where H(Xt+1) is uncertainty of the next step without any extra information,
for instance history of the process. The limit lim

t 7→∞
hX(t − 1, t − 1) is already

known conditional entropy rate, definition 1.9.

For quantitative characterization it is convenient to introduce relative ex-
planation that indicates percentage of predictability i.e. how much percent of
information about the next step is stored in m preceding values

REX(t,m) = 1− hX(t,m)

H(Xt+1)
=
I(Xt+1;X

(m)
t )

H(Xt+1)
. (4.1)

The relative explanation, especially its dependence on m, may also be used
for characterizing stochastic processes. Imagine REX(t,m) remains zero in-
dependently on m for ∀t this situation indicates totally random process since
observing history of the process does not give us any new information about the
next step. Such process is sometimes called White noise. Similarly, increase
of REX(t,m) with respect to m until some fixed value M in which REX(t,m)
levels off at value less than 1 suggests Markov process of order M . The third
special case that can be detected by relative explanation is periodic process for
which REX(t,m) reaches 1 for some M and ∀t, this value then corresponds to
period of the process.

With conditional entropy in hand we can easily extend it for two stochastic
processes X, Y and get transfer entropy in the form

T
(m,l)
Y 7→X(t) = hX(t,m)− hXY(t,m, l), (4.2)

where the conditional entropy for two processes is

hXY(t,m, l) = H(Xt+1, X
(m)
t , Y

(l)
t )−H(X

(m)
t , Y

(l)
t ) = H(Xt+1|X(m)

t , Y
(l)
t ) (4.3)
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where X
(m)
t and Y

(l)
t substitutes history in X and Y respectively, i.e. X

(m)
t ≡

Xt, . . . , Xt−m+1 and similarly Y
(l)
t ≡ Yt, . . . , Yt−l+1. Thus,

T
(m,l)
Y 7→X(t) = H(Xt+1|X(m)

t )−H(Xt+1|X(m)
t , Y

(l)
t ). (4.4)

From equation 4.4 we see that transfer entropy is always nonnegative since
any extra knowledge about random variable never increase uncertainty, see
inequality 1.15, and transfer entropy vanish if and only if the next step in X
process is independent on history of Y up to t− l+1, i.e. independent of block

of random variables Y
(l)
t .

For numerical evaluation of transfer entropy, we need to plug definition of
conditional entropy into 4.4 so we get

T
(m,l)
Y 7→X(t) = −

∑
xt+1,x

(m)
t

p(xt+1, x
(m)
t ) log2 p(xt+1|x(m)

t ) +
∑

xt+1,x
(m)
t ,y

(l)
t

p(xt+1, x
(m)
t , y

(l)
t ) log2 p(xt+1|x(m)

t , y
(l)
t )

and using property of joint distribution p(xt+1, x
(m)
t ) =

∑
y
(l)
t

p(xt+1, x
(m)
t , y

(l)
t )

we arrive to final explicit formula for transfer entropy

T
(m,l)
Y 7→X(t) =

∑
p(xt+1, x

(m)
t , y

(l)
t ) log2

p(xt+1|x(m)
t , y

(l)
t )

p(xt+1|x(m)
t )

, (4.5)

where sum is taken over all possible outcomes of (xt+1, x
(m)
t , y

(l)
t ). In fact, in

the form 4.5 Schreiber [17] originally defined Transfer entropy as a conditional

Kullback divergence, i.e. deviation of p(xt+1|x(m)
t ) from the generalized Markov

property p(xt+1|x(m)
t , y

(l)
t ) averaged over all possible realizations of (x

(m)
t , y

(l)
t ).

It is convenient to state even in words what transfer entropy means.

T
(m,l)
Y 7→X(t) = Uncertainty about the next step in X knowing the history of X

− Uncertainty about the next step in X knowing the history of X and Y

By using definition of conditional mutual information 1.13 1 we may rewrite
4.4 in the form of flow of information from process Y to X

T
(m,l)
Y 7→X = I(Xt+1;Y

(l)
t |X

(m)
t )

= I(Xt+1;X
(m)
t , Y

(l)
t )− I(Xt+1;X

(m)
t ),

(4.6)

where in the second equality we used chain rule 1.14 and symmetry of both
mutual information and conditional mutual information.

1Note that conditioning is independent on order H(X|Y, Z) = H(X|Z, Y ).
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The causality or directionality of transfer entropy is provided by non-symmetry
property of conditional mutual information 2. So we can measure flow from
Y to X and vice versa, and according to sign of difference between these two
flows, we may conclude which of them is superior and which of them is sub-
ordinate in sense of information production which actually means cause/effect
detection.

We see that transfer entropy depends on two parameters (m and l). These
parameters should correspond to order of Markov process, i.e. X and Y should
be Markov process with order m and l respectively. The advantage of Markov
process is that we can calculate the genuine transfer entropy that is only bur-
dened with statistical error while for non-Markov process we should take all
history in both series to obtain true value of transfer entropy, but that is in
practice impossible. Consequently, by taking only limited history in target
series we may erroneously regard information from the rest of the history of
target series as incoming from source series, see equation 4.6. Thus generally
speaking, low m overestimates transfer entropy while low l, i.e. short history in
source series, underestimates transfer entropy. To avoid spurious information
flow from target series, it is common to set l = 1 and m as large as possible.

Interpretation of actual number To get a better understanding of the
actual value of transfer entropy, it is convenient to examine ratio of transfer
entropy and conditional entropy, which Marchinski called relative explana-
tion added

REA(m, l, t) =
T

(m,l)
Y 7→X(t)

hX(t,m)
. (4.7)

This quantity tell us how many percent of information about the next step in
process X can be gained from history of Y provided we already know history
of X.

Stationarity assumption As for now we have seen that there is no problem
with generalization of transfer entropy to time dependent quantity. The reason
for stationarity assumption, mentioned in almost all papers dealing with trans-
fer entropy, arises in practical application since we have to somehow obtain the
probability distribution in equation 4.5. This is done by observing one long
realization of process and next computing the relative frequencies, hence, the
processes in consideration should be strictly speaking also ergodic.

4.2 Rényian transfer entropy

Generalization of Shannonian transfer entropy for Renyi entropy may be done
according to information representation of transfer entropy, i.e., equations 4.4

2I(X;Y |Z) = I(Y ;X|Z) but I(X;Y |Z) 6= I(X;Z|Y )
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and 4.6, see [7],

T
(m,l)
q;Y 7→X(t) = Hq(Xt+1|X(m)

t )−Hq(Xt+1|Y (l)
t , X

(m)
t )

= Iq(Xt+1;X
(m)
t , Y

(l)
t )− Iq(Xt+1;X

(m)
t ).

(4.8)

Using definition of conditional entropy in equation 2.5 and mutual informa-
tion in form 2.11, we can rewrite aforementioned equation to

T
(m,l)
q;Y 7→X(t) =

1

1− q
log2

∑
ρq(x

(m)
t )pq(xt+1|x(m)

t )∑
ρq(x

(m)
t , y

(l)
t )pq(xt+1|x(m)

t , y
(l)
t )

=
1

1− q
log2

∑
ρq(x

(m)
t )pq(y

(l)
t |x

(m)
t )∑

ρq(xt+1, x
(m)
t )pq(y

(l)
t |xt+1, x

(m)
t )

.

(4.9)

As we know from chapter 2, more definition of mutual information and con-
ditional entropy exists, hence, different generalization of Shannonian transfer
entropy may be received. Our choice is motivated by attractive properties of
Rényian transfer entropy defined by 4.9 for financial time series.

Namely, it can be interpreted as a rating factor which quantifies a gain/loss
in the risk concerning the behavior of the next step in X after we take into
account the historical values of a time series Y . The positive value means
decrease of risk, and negative value occurs when the knowledge of history in
series Y broadens the tail part of distribution of the next step in X more
than does only knowledge of history in X. This perception flows from already
mentioned properties of mutual information defined in 2.11.

4.3 Simulated data

In this section we mention basic features of plug-in estimator of transfer
entropy used in later analysis. To test the estimator, we simulated simple
linear coupling

X(t) = r(t) + εY (t− 1), (4.10)

Y (t) = s(t), (4.11)

where r(t) and s(t) are two uncorrelated white noise processes, i.e. its distri-
bution is N(0, 1).

4.3.1 Shannonian flow

Firstly, we derive analytical solution for Shannonian transfer entropy using
S = 3 bins in coarse graining of both continuous time series X and Y . The
decision for only three bins is due to lack of real data used in later analysis
and the fact that for more bins one needs huge amount of data for reasonable
results. On the other hand, three bins is the minimum that can incorporate
non-linear dependency.
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We use the same notation as above, i.e., x
(m)
t = (xt, . . . , xt−m+1) and due

to stationarity we get x
(m)
t

d
= (xm, . . . , x1), and from now on we will omit

redundant time subscript. In our analysis we use l = 1 as it is common practice
when limited amount of data are available, see [18], hence we can write y0

instead of y(l). Then transfer entropy 4.5 may be written as

T
(m,1)
Y 7→X =

∑
xm+1

∑
x(m)

∑
y0

p(xm+1, x
(m), y0) log2

p(xm+1, x
(m), y0)p(x(m))

p(x(m), y0)p(xm+1, x(m))
. (4.12)

From equation 4.10 and 4.11 we see that successive values of X process
are mutually independent and identically distributed, this is clearly valid also
for Y and its distribution is N(0, 1 + ε2) and N(0, 1) respectively. Due to

independence of x
(m)
t on y0 we may rewrite joint probabilities in equation 4.12

p(xm+1, x
(m), y0) = p(xm+1, y0)p(x(m)), (4.13)

p(x(m), y0) = p(y0)p(x(m)), (4.14)

p(xm+1, x
(m)) = p(xm+1)p(x(m)). (4.15)

After inserting equations 4.13, 4.14 and 4.15 into 4.12 and simplification of the
fraction, we arrive at

T
(m,1)
Y 7→X =

∑
xm+1

∑
x(m)

∑
y0

p(xm+1, y0)p(x(m)) log2

p(xm+1, y0)

p(y0)p(xm+1)
. (4.16)

Next, we can sum over all m-tuples x(m), and owing to identical distribution
of both X and Y , we can use just x and y instead of xm+1 and y0. Finally, we
get transfer entropy in the form

T
(m,1)
Y 7→X =

S∑
x,y=1

p(x, y) log2

p(x, y)

p(y)p(x)
. (4.17)

We see that in this special case transfer entropy does not depend on parame-
ter m, and all variations are caused only by chosen partitioning. In what follows
we derive transfer entropy for equiprobable bins and discretization obtained by
standard deviation.

We will need joint probability density function to calculate probabilities oc-
curring in equation 4.17. The density may be written in the form

ρ(x, y) =
1

2π
exp

{
− (x− εy)2 − y2

2

}
, (4.18)

which follows from definitional equations 4.10 and 4.11 3. Then, necessary
probabilities are obtained by integrating over appropriate limits depending on
chosen partition.

3Note that x and y represents X(t+ 1) and Y (t) respectively.
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Figure 4.1: Transfer entropy

1 2 3 4 5

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Effective Shanon transfer entropy 10000 sample

History m

E
ff
 t
ra

n
s
fe

r 
e
n
tr

o
p
y

equprob

s_equdist

stn_deviation

Figure 4.2: Effective transfer entropy

Equiprobable partition For equiprobable partition, i.e. p(x) = p(y) = 1
S

for all bins, we get after simple manipulation

2 log2 S +

S∑
x,y=1

p(x, y) log2 p(x, y). (4.19)

Standard deviation partition Partitioning to three bins distinguishing be-
tween high drop, high rise and slight change, where high drop is considered de-
crease of more than one standard deviation and similarly the high rise, results
in

3∑
x,y=1

p(x, y) log2 p(x, y)−
3∑

x=1

p(x) log2 p(x)−
3∑
y=1

p(y) log2 p(y). (4.20)

Numerical evaluation of equations 4.19 and 4.20 gives theoretical values 0.010
bits and 0.009 bits respectively.

Now we want to examine convergence of our estimator for these two partitions
and estimate its standard errors. For this purpose, we generated time series X
and Y of length 10000 data points and calculated transfer entropy from X to Y
as a function of history length m for both partitioning. The results are depicted
in figure 4.1 along with straight lines denoting precise theoretical values and
errorbars obtained by bootstrap method when we set bootstrap sample length
only 20 because of huge computation time demand, for a short introduction to
Bootstrap method see Appendix A.

From figure 4.1 we can see that transfer entropy increases with m, but in our
example whatever partitioning we use it should remain constant for all m. This
spurious increase is caused by finite sample effect and is much more emphasized
for larger alphabet, i.e. more number of bins. In [18] the same example was
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History m equprob equdist stn deviation
1 0.0027 0.0016 0.0023
2 0.0032 0.0029 0.0042
3 0.0060 0.0054 0.0046

Table 4.1: Standard errors

studied as a function of sample length, and it was shown that transfer entropy
approaches its theoretical value very slowly. Therefore, Marchinsky introduced
Effective transfer entropy

TEffY→X = TY→X − TYsh→X , (4.21)

where Ysh means that original time series Y was shuffled, and hence all possible
correlation between X and Y vanished. Thus, no information flow should be
detected. However, numerical calculation shows increase with m of transfer
entropy from Ysh to X similar to one observed in case of transfer entropy from
Y to X. Marchinsky then assigned TYsh→X to finite sample effect and suggested
to use Effective transfer entropy 4.21 instead of 4.5.

Estimation of Effective entropy is depicted in figure 4.2. Though it is clear
that Effective entropy is much closer to theoretical values for both partitions
than transfer entropy estimation (notice different scale on y axis) it still con-
siderably fluctuates for different values of m even for relatively large sample
size used N = 10000, see also [18] where comparison between transfer entropy
and Effective transfer entropy was done for sample size up to 60000.

Due to statistical fluctuation we would like to pick up such a partition that
is the most robust with respect to finite sample effects. For this reason, we
estimated transfer entropy and Effective transfer entropy even for one other
partition which have drawback that its theoretical value cannot be calculated,
and thus its consistency is not justified by simulation. Nevertheless, after expe-
rience with relative consistency for equiprobable and standard-deviation coarse
graining we assume that our transfer entropy estimator should be consistent
for any partitioning.

The extra partition mentioned above is equidistant one, i.e. it divides range
of time series to S equidistant bins (in our example S = 3). In figure 4.2 can be
seen that this partition is rather stable with respect to m and therefore should
be used in later application. In order to more advocate the choice of equidistant
partition, we performed the same calculation as above for N = 2500 which is
the minimum length of time series that we analyzed. This calculation showed
that equidistant partition had the lowest standard error see table 4.1 for small
m ∈ {1, 2}.
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Figure 4.3: Rényian effective trans-
fer entropy, q = 0.8
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Figure 4.4: Rényian effective trans-
fer entropy, q = 1.5

4.3.2 Rényian flow

The same linear coupling was analyzed even with help of Rényian transfer
entropy. Here, instead of struggling with explicit formula 4.9 that is suitable for
unknown systems, we profit from symbolic representation of transfer entropy,
equation 4.8. Using the same argumentation about independence as used in
Shannonian case we get

T
(m,l)
q;Y 7→X(t) = Hq(Xt+1) +Hq(Yt)−Hq(Xt+1, Yt)

=
1

1− q

(
log2

∑
y

pq(y) + log2

∑
x

pq(x)− log2

∑
x,y

pq(x, y)

)
.

(4.22)

We can use already obtained probabilities and get results for equprobable
bins and standard deviation partitioning for two different values of parameter
q = 1.5 and q = 0.8. Consequently the same simulation was performed, but
now equidistant partitioning does not look as the best option, and it seems
that equprobable partitioning is the most suitable one, see figures 4.3 and 4.4.

In order to compare Shannonian and Rényian transfer entropy, it is conve-
nient to calculate them with the same partitioning, and from preceding sim-
ulation example we see that it is impossible to determine one universal parti-
tioning that would fit to all cases. Hence, more careful analysis is necessary to
get plausible results especially with real data as we will see in the next section.

Symbolic representation of time series The problem how to make a
proper discretion of some system is dealt in mathematical branch called Sym-
bolic dynamics. Generally, symbolic dynamics deals with problem how to
assign symbols to continuous variable, i.e. discretization, in such a way that
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new symbolic variable would contain as much information about original one as
possible. In the case of time series, we get new series of symbols, and we then
examine this discretized version and want to infer some statistical properties
of original one. In fact, time series are usually already discretized in time so
we can say that every time series analysis use some kind of symbolic dynamics
approach even though it may not be apparent. Unfortunately, no general rule
exist, and thus in practice we have to find ”quasi-optimal” discretization with
help of trial and error.

4.4 Real markets analysis

We have obtained minute data of 11 biggest stock exchanges in period from
1st July 2012 to 1st October 2012. Before any numerical analysis we have
to appropriately prepare the data. That is done by excluding any no-trading
periods (holidays, nighttime) in both series. After this we obtain different
time series where time axis become so-called trading time. The drawback is
that separated points in original time series may become close neighbors in
new time series. Nevertheless small number of such points precludes statistical
significant errors.

Due to different time zones and trading hours of particular stock exchanges, it
is impossible to exploit minute data to measure information flow between Asia
and the other continents. Unfortunately, later analysis showed non-stationarity
which spoiled also possibility to measure interrelatedness between Europe and
USA. Hence, we measure information flow only within continents.

We would like to analyze information flow in whole period, however, first look
at data reveals non stationarity of time series, see figure B.10 in appendix B
depicting variances calculated in individual blocks along with its error bars and
with variance taken from the whole series of London index AIM100. Similar
behavior was observed for the other indices. Note that we transformed series
of minute closure prices sn to log-returns

Xi = log si − log si−1

before analysis, and this new series still preserves non-stationarity. Since our
basic analysis assumes stationarity of time series, we had to select only part of
data where all indices in particular continent have at least approximately the
same mean and variance within their blocks.

In the case of Europe we analyzed three indices, namely AIM100 of London
stock exchange, DAX and EURO STOXX 50 which is composed of 50 largest
stocks in Eurozone and should represents summary for all Europe. Due to
stationary issue we had to select only data in time period from 23rd of August
to 7th of September in which all three idices may be considered stationary. Only
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two weeks may seem rather short, but acquisition at high frequency assures
sufficient amount of data ' 5000.

In America the biggest stock indices were selected DJI - Dow Jones Industrial
Average, NYA - New York Stock Exchange and CCMP - NASDAQ Composite
Index. These indexes appeared to be approximately stationary at the end of
our examined period, and we could pick up larger data set composed of ' 6000
data points from 7th to 29th of August.

Many big stock exchanges are situated in the east coast of China and in
Japan. Five indices were available, namely, Shenzhen, Korea, Hong Kong,
Shanghai and Tokyo. Unfortunately, Asia stock exchanges close around lunch
time for one and half hour, and moreover, there is different time zone in China
and Japan and thus after filtration little data have left. It was impossible to
find common time period in which all fife Asian idices had been simultane-
ously stationary. Hence, we had to restrict ourselves to only Shanghai Stock
Exchange Composite Index, Korea Stock Exchange KOSPI 200 Index and HSI
- The Hang Seng Index Hong Kong in time period from 13th of August to 6th
of September. This time period gave us over 3000 data points.

4.4.1 Choice of parameters

Due to non-stationarity we have quite small amount of ”clean” data therefore
actual values of transfer entropy are subject to huge statistical errors. Thus
it is difficult to compare flows from different stock exchanges. The errors are
more enhanced for larger m and l, and we have to trade off between statistical
errors and bias caused by underestimation of history parameter m.

Effective transfer entropy has higher errors (twice the error of transfer en-
tropy) because it is sum of two transfer entropies. Moreover, for small m the
correction of transfer entropy is not very significant, and for this reason we
decided to use only transfer entropy and parameters m = l = 1 as had been
done in [19] where similar amount of data had been analyzed.

This approach leads to slight overestimation of actual values but allows sig-
nificant comparing between both directions and various indexes that is crucial
in our case since we analyze flow only inside continents, and these systems are
rather close to equilibrium, thus, small flows appear. Hence, we should inter-
pret calculated results more in qualitative sense, for instance detecting major
(leading) stock exchange, than quantitative description like a precise number
of bits that flows from one series to another.

After careful examination of errors for three mentioned partitioning for all
indexes we decided to use equiprobable partitioning that was used also in [18].
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4.4.2 Numerical results

Numerical results are presented in appendix B. q parameter of transfer en-
tropy selects the part of distribution in which we are interested, so we see that
more information is exchanged in central part of distribution q = 1.5 than tail
part q = 0.8. We can also see that the highest information flow is in Asia
followed by America, and in Europe the analyzed stock exchanges are only
slightly coupled. (Note that different scales are used in heat maps.)

In order to determine major stock exchange in each continent, we calculate
net flow

Tnet = TY 7→X − TX 7→Y.

According to sign of this quantity, we find out which of these two series
produces more information which is a typical feature of leading markets. For
conclusion see figures B.11, B.12 and B.13 in appendix B where only significant
differences are depicted, i.e. |Tnet| > errorX 7→Y + errorY 7→X.

Note that net flow characterizes the causality since if there is non-zero flow in
each directions it may correspond to the existence of common driving process,
but that would imply that the information flow should be the same in both
directions. Therefore, if the flow is asymmetric, i.e. |Tnet|, then one series may
be the cause of the other.

4.4.3 Time dependent information flow

For DAX and SX5E where the biggest amount of data are available, we
calculate information flow as a function of time. The whole series is divided
into 12 blocks corresponding roughly to one weak. In each block data are
considered stationary, and transfer entropy is calculated.

We can see from figure 4.6 that information flow from SX5E to DAX indeed
changes during examined period. Nevertheless, we cannot say that it changes
in the form depicted in the figure because errors of our estimator overlaps for
successive weeks. All we can say is that there is significantly higher influence
at the beginning of examined period than around 5th week which is period
of lower interrelatedness and is followed by another time period of stronger
correlation around 8th week. At the end of examined period we see restoration
of previous lower connected state.
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SX5E −> DAX
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Figure 4.5: Heat map of Shan-
nonnian information flow from Eu-
ropian index SX5E to DAX as a
function of time.
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mation flow from Europian index
SX5E to DAX as a function of time.
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Chapter 5

Superstatistics

In this chapter we introduce Superstatistics which is a concept devised by
Beck for systems with fluctuating intensive parameter, e.g. temperature, which
are therefore in non-equilibrium state. The idea first appeared in the paper [21],
and the term Superstatistics was coined later in the successive paper [22].

The assumption is that the system is in non-equilibrium steady state and
is composed of many cells which are locally in equilibrium but with different
values of intensive parameter, e.g. temperature. This intensive parameter in
each cell changes on a long time scale T much larger than relaxation time of
the cell.

5.1 Illustrative example

In the original paper [21] Beck’s aim was to provide a reason for fruitful
applications of Tsallis statistics, which describes non-extensive systems, on a
microscopic level, i.e. to give a dynamical explanation for Tsallis statistic.
He succeeded in his goal for systems with fluctuating intensive parameter ( in
[21] for statistical validation energy dissipation rate was used as an intensive
parameter).

The reasoning is as follows. Consider Brownian particle whose velocity u is
a solution of Langevin equation

m
du

dt
(t) = −γu(t) + L(t), (5.1)

where γ > 0 is a friction constant, m is a mass of the Brownian particle and L(t)
is White noise, i.e. Gaussian process with correlation function E[L(t)L(t′)] =
σ2δ(t − t′) and E[L(t)] = 0. σ is a strength of the random force and from
microscopical point of view is the property of tiny particles composing the
surroundings, e. g. liquid, of Brownian particle.
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Solution of the equation 5.1 can be found in [23], and the result is

u(t) = u0 exp

(
−γt
m

)
+

1

m

t∫
0

L(t′) exp

(
−γ(t− t′)

m

)
dt′ (5.2)

where the integral of White noise need to be interpreted as an Ito integral which
is motivated by formal definition of White noise as a derivative of Brownian
motion1, see [24].

Y (t) =
1

m

t∫
0

L(t′) exp

(
−γ(t− t′)

m

)
dt′ =

σ

m

t∫
0

exp

(
−γ(t− t′)

m

)
dB(t′)

It is known, see e.g. [24], that Ito integral of non-random function f(t, t′)
is a Gaussian stochastic process with zero expectation value and covariance
function given by

Cov(Y (t), Y (t+ h)) =

t∫
0

f(t, t′)f(t+ h, t′)dt′ (5.3)

which in our case for

f(t, t′) =
σ

m
exp

(
−γ(t− t′)

m

)
gives after short calculation

Cov(Y (t), Y (t+ h)) =
σ2

2mγ

(
1− exp

(
−2γt

m

))
e−

γ
mh (5.4)

Thus, probability distribution of u(t) is N(µ,D2), where

µ = u0 exp

(
−γt
m

)
,

D2 =
σ2

2mγ

(
1− exp

(
−2γt

m

))
We see that on the time scale larger than τ = m

γ , dependent on parameters m

and γ, we may consider e−
2γt
m ≈ 0 and the process u(t) may be regarded as

strictly stationary because for Gaussian processes weak stationarity2 implies
strict stationarity. This stationary solution corresponds to equilibrium state,
and τ can be identified with relaxation time needed by the system to reach
equilibrium.

1Vaguely L(t′) =
dB(t′)

dt
, therefore L(t′)dt′ = dB(t′).

2Recall that weak stationarity means that a mean function µ(t) = E[u(t)] is independent
on time, and covariance function is a function only of time lag cov(t, t′) = cov(t− t′).
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With the help of Equipartition theorem

1

2
mE[u2] =

1

2
kΘ

we may relate variance of the velocity of the Brownian particle to temperature
Θ of the heat bath with which the system is in equilibrium3 and consequently
introduce inverse temperature

β =
1

kΘ
=

2γ

σ2
.

The probability distribution for u is then

p(u|β) =

√
β

2π
exp

(
−1

2
βmu2

)
, (5.5)

which we write as a conditional probability distribution on purpose since the
idea of Superstatistics is to elevate the parameter β to a random variable.
Henceforth we set m = 1 in order to get the same result as Beck.

As the next step we imagine either lots of Brownian particles in separated en-
vironments with inverse temperature distribution f(β) from which data about
their velocities are collecting for time period T . Or equivalently one Brown-
ian particle in a changing environment when the inverse temperature β takes
different value, taken as a realization of a random variable with probability
distribution f(β), in each non-overlapping time window of length T . In this
case the data are collecting over much longer period of time. The overall effect
is that we obtain data from mixture of Gaussian distributions with different
variance.

It is worth noting that we assume the data acquisition to occur in discrete
time as is often the case in practice. For instance, we may perform n mea-
surements of each particle’s velocity during time T which means the time
elapsed between consecutive measurements is T/n. This time must be suf-
ficiently longer than relaxation time in order to ensure that the particle has
reached equilibrium when the second method for data acquisition is used. In
either cases the result is that we end up with N times n values for velocities,
where N is number of examined Brownian particles or number of time periods
T during which one particular Brownian particle was observed.

Distribution of velocities acquired in such a way is given by continuous mixing
of 5.5

p(u) =

∫
p(u|β)f(β)dβ. (5.6)

3Note that equilibrium is reached after t > τ when average velocity is consider to be zero,
therefore E[u2] = V ar[u].
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Beck pointed out in [21] that a particular choice4 for probability distribution
f(β) of intensive parameter

f(β) =
1

Γ(n2 )

(
n

2β0

)n
2

β
n
2−1 exp

(
− nβ

2β0

)
, β > 0 (5.7)

leads to Tsallis statistics. It is easily seen since integration5 in 5.6 gives

p(u) =
Γ
(
n
2 + 1

2

)
Γ
(
n
2

) (
β0

πn

) 1
2 1(

1 + β0

n u
2
)n+1

2

, (5.8)

and after identification

q =
n+ 3

n+ 1
, β̃ =

β0(n+ 1)

n
, (5.9)

we end up with Tsallis distribution 5.11 derived in [25] also called q-Gaussian
distribution.

Short clarification is in order at this point. Tsallis entropy would lead to
distribution of energy, but when we identify temperature according to Equipar-
tition theorem in local equilibrium we actually consider the Brownian particle
as a free particle. Hence the energy which would lead to distribution 5.8 from
maximum entropy principle is 1

2mu
2.

5.2 Generalized Boltzmann factor

This rather surprising result that a statistical mixing of systems with vary-
ing Gamma-distributed intensive parameter leads to probability distribution
which may also be obtained by using maximum entropy principle with respect
to Tsallis non-extensive entropy and canonical ensemble, i.e. averaged en-
ergy constraint, motivated Beck to a bold proposal for generalizing standard
Boltzmann-Gibbs statistics. For such generalization Beck suggested name Su-
perstatistics, which emphases the fact that it is statistics of statistics as will
be seen later, and it includes both Tsallis and Boltzmann-Gibbs as a special
cases.

The above mentioned example with particle in changing environment is not,
of course, the only driving force which motivated Beck to introduce new statis-
tics. The major compulsion comes from experiments. There have been never
ending discussions about foundations of Boltzmann-Gibbs entropy and its uni-
versal applicability, see e.g. [26], and indeed it has been shown that some sys-
tems, in particular non-extensive systems, are not well described by Boltzmann

4Gamma probability distribution but referred to as χ2 distribution in Beck’s papers.

5The only step in integration is to recall definition of Γ function Γ(n) =
+∞∫
0

xn−1e−xdx.
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distribution pi ∝ e−βEi . Therefore Tsallis in [25] defined his non-extensive en-
tropy

Sq = k
1−

∑
i p
q
i

q − 1
(5.10)

which after extremalization procedure subjected to constraint ( the same result
is obtained if the standard average is used with q′ = 2 − q, see [27] for more
details )

W∑
i=1

pqiEi = U

gives power-law probability distribution on states

pi ∝
1(

1 + β̃(q − 1)Ei

) 1
q−1

. (5.11)

Although this one-parametrized generalization, which for q → 1 recovers
Boltzmann distribution 6, correctly characterizes many systems which violate
Boltzmann distribution, there are systems for which even Tsallis distribution
seems inadequate as highlighted in [22]. Therefore another generalization is
needed.

Generalized Boltzmann factor or effective Boltzmann factor is de-
fined in [22] as

B(E) =

+∞∫
0

f(β)e−βEdβ, (5.12)

where now β can be any intensive parameter not necessarily temperature. The
definition is motivated by the example with Brownian particle discussed earlier
where Hamiltonian was that of free particle 1

2u
2 ( m = 1 ) and f(β) Gamma

distribution. Here comes the name Superstatistics as explained in [22] since
B(E) is obtained as a statistics of a statistics ( averaging Boltzmann statistics
e−βE with respect to f(β) - statistics of β ).

One may think that any distribution f(β) would be possible. However, some
reasonable constrains need to be put on conceivable distributions in order to
get physically relevant statistics, i.e. distribution on phase space.

• The new statistics must be normalizable, i.e.
+∞∫
0

ρ(E)B(E)dE < +∞,

where ρ(E) is density of states.

• The standard Boltzmann factor should be recovered when β becomes
constant, i.e. no fluctuation of intensive parameter.

6 lim
q→1

(
1 + β̃(q − 1)Ei

) 1
1−q

= exp

(
lim
q→1

ln (1+β̃(q−1)Ei)
1−q

)
LH
= exp

(
lim
q→1

−β̃Ei
1+β̃(q−1)Ei

)
= e−β̃Ei
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5.3 Simple examples of Superstatistics

When β is to relate to any physical intensive parameter it has to be positive,
therefore f(β) needs to be zero for negative β. The list of the most common
Superstatistics and their corresponding generalized Boltzmann factor follows.

1. uniform distribution - Uniform on interval [a, a+ b]

f(β) =
1

b
,

β0 = E[β] = a+
b

2
, σ2 = V ar[β] =

b2

12
,

B(E) =
1

bE

(
e−(β0−0.5b)E − e−(β0+0.5b)E

)
.

2. 2-level distribution - two possible values a and a+b with equal probability

f(β) = 0.5δ(a) + 0.5δ(a+ b),

β0 = E[β] = a+
b

2
, σ2 = V ar[β] =

b2

4
,

B(E) =
e−β0E

2

(
e0.5bE + e−0.5bE

)
.

3. Gamma distribution7 - Gamma(a, b), a = n
2β0

, b = n
2

f(β) =
1

Γ(n2 )

(
n

2β0

)n
2

β
n
2−1 exp

(
− nβ

2β0

)
,

β0 = E[β], σ2 = V ar[β] =
2β2

0

n
,

B(E) =

(
1 +

2β0

n
E

)−n2
.

4. Log-normal distribution -

f(β) =
1

β
√

2πs2
exp

(
− (log β − logµ)2

2s2

)
,

β0 = E[β] = µe0.5s2 , σ2 = V ar[β] = µ2es
2

(es
2

− 1),

B(E) does not have analytical expression.

7Beck often refers to χ2 distribution which is strictly speaking only special case for a =
1
2

, b = n
2

. Nevertheless, we will here, for better orientation in Beck’s papers, regard χ2

distribution as a synonym for Gamma distribution.
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5. Inverse-χ2 distribution8 -

f(β) =
1

Γ(n2 )

(
b0n

2

)n
2

β−
n
2−1 exp

(
−nb0

2β

)
,

β0 = E[β] =
nb0
n− 2

, σ2 = V ar[β] =
n2b20

(n− 2)2(n2 − 2)
, n > 4

B(E) does not have analytical expression.

Interesting remark is that for low energy E and small fluctuation of intensive
parameter β all Superstatistics with finite variance σ2 = V ar[β] are indistin-
guishable in a sense that they have the same first-order correction to ordinary
Boltzmann factor.

This universal property may be easily proven by moment expansion which is
just Taylor expansion about the mean.

E[g(X)] = E[g(µX) + g′(µX)(X − µX) +
1

2
g′′(µ)(X − µX)2 +O(X3)],

therefore

E[g(X)] ≈ g(µX) +
1

2
g′′(µX)V ar[X]. (5.13)

Since B(E) is expectation value of e−βE , we apply 5.13 for g(x) = e−x and
random variable X = Eβ.

B(E) ≈ e−β0E +
1

2
e−β0Eσ2E2 = e−β0E(1 +

1

2
σ2E2) (5.14)

valid for small fluctuations of β and low energy.

Due to this universal property maximum entropy principle was suggested
for Superstatistics in [22]. Since extremalisation of Tsallis entropy leads to
Gamma Superstatistics, we may by Taylor expansion in 5.11 identify entropic
parameter q.

Note that Boltzmann factor is given without normalization, thus B(E) is
just Tsallis distribution without normalization constant ( partition sum Zq )

B(E) =
1(

1 + β̃(q − 1)E
) 1
q−1

= exp

(
− 1

q − 1
ln (1 + β̃(q − 1)E)

)
,

and using expansion of logarithm9

B(E) ≈ e−β̃E exp

(
1

2
β̃2(q − 1)E2

)
≈ e−β̃E

(
1 +

1

2
β̃2(q − 1)E2

)
. (5.15)

8The same note that was mentioned in connection with χ2 and Gamma distribution
applies here, i.e. strictly speaking this is called Inverse-Gamma distribution.

9log (1 + x) = x− x2

2
+O(x3), x→ 0
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Next β0 = β̃ and after comparing with 5.14 we get

(q − 1)β2
0 = σ2

and equivalently

q =
E[β2]

E[β]2
. (5.16)

Maximum entropy principle for general Superstatistics f(β) is then simply
extremalization of Tsallis entropy with parameter q given by 5.16 and should
yield approximately good predictions for low energies. Note that from 5.16
follows q ≥ 1, i.e. entropic parameters q < 1 cannot be easily realized by
Superstatistic approach.

5.3.1 Universality classes

After extensive application of Superstatistical models to various physical and
nonphysical systems, three Superstatistics appeared to be highly successful.
These are χ2 Superstatistics, Log-normal Suprestatistics and Inverse χ2 Super-
statistics. Their respective outstanding agreement with experimental measure-
ments are departure delay on British rail network data, velocity difference of a
test particle in Lagrangian turbulence and cancer survival data, see [28], [29]
and references therein for more details.

Inspiration and partial justifications for these universal Superstatistics may
come from microscopic point of view as discussed in [28]. Let us consider three
different ways how fluctuation in β may arise.

1. Gamma distribution
Imagine large number of small independent random variables ξj . If prop-
erly normalized their sum is standard normal random variable

Xi =

∑J
j ξj − dJ
cJ

∼ N(0, 1).

Since β needs to be positive, simple model may be β ∝ X2
i , and if there

are n such independent random variables all contributing to fluctuation
of β, we may write

β =
β0

n

n∑
i=1

X2
i =

1

n

n∑
i=1

(
√
β0Xi)

2,

i.e. β is equal to average contribution of degrees of freedom and propor-
tionality constant β0 may be interpreted as a variance of one degree of
freedom Yi =

√
β0Xi.
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Probability density function of β is easily found when we recall that
sum of n squares of N(0, 1) random variables is χ2 random variable with
n degrees of freedom which is just the special case of Gamma distribution
Gamma( 1

2 ,
n
2 )

f(y) =
1

Γ(n2 )

(
1

2

)n
2

y
n
2−1e−

x
2 ,

and after rescaling 10

f(β) =
1

Γ(n2 )

(
n

2β0

)n
2

β
n
2−1 exp

(
− nβ

2β0

)
,

we end up with Gamma( n
2β0

, n2 ) distribution.

2. Inverse χ2 distribution
Similarly as in case the of Gamma distribution the inverse Gamma dis-
tribution may emerge when

β = β0
1

1
n

n∑
i=1

X2
i

=
1

1
n

n∑
i=1

(
Xi√
β0

)2 ,

where now 1
β0

is variance of one degree of freedom.

We get probability density function using the definition of Inverse χ2

distribution, i.e. if Z ∼ χ2 then Y = 1
Z ∼ Inv-χ2 with density

f(y) =
1

Γ(n2 )

(
1

2

)n
2
(

1

y

)n
2 +1

e
1
2y ,

and rescaling gives

f(β) =
1

Γ(n2 )

(
β0n

2

)n
2

β−
n
2−1e−

nβ0
2β

which is Inverse-Gamma distribution.

3. Log-normal distribution
Consider again small independent random variables ξj which are now
assumed to be positive. If these variables contribute as a multiplicative
precess Xi =

∏J
j ξj , then for large J lnXi−dJ

cJ
is standard normal random

variable, and by definition Xi is Log-normal random variable. β is now
assumed in the form

β =

n∏
i=1

Xi.

10Note Y ∼ fY (y) then Z = aY ∼ fZ(z) = fY ( z
a

) 1
a

.
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Company Sector Stock exchange
AA Alcola Inc. basic materials NYSE
KO The Coca-Cola Company consumer goods NYSE

BAC Bank of America Corporation financial NYSE
JNJ Johnson & Johnson healthcare NYSE
GE General Electric Company industrial goods NYSE

WMT Wal-Mart Stories Inc. services NYSE
INTC Intel Corporation technology NASDAQ

Table 5.1: List of companies used in analysis

Hence lnβ is a sum of normal random variables and thus also normal
random variable. Therefore β is Log-normal random variable with prob-
ability density 11

f(β) =
1

β
√

2πs2
exp

(
− (log β − logµ)2

2s2

)
.

The above mentioned reasoning not only gives possible idea about micro-
scopic dynamics responsible for fluctuation of intensive parameter but also
makes fitting Superstatistical models much easier. Since by restricting to three
possible functional forms of f(β), we arrive in fact to parametric statistics
which is much more tractable than non-parametric one. We will later take
advantage of these universality classes.

5.4 Transition between Superstatistics

Superstatistics is definitely a great idea which has justifiable motivation,
and furthermore, it has been successfully fitted on empirical data. Therefore,
there is little doubt about usefulness of Superstatistics, however, new broader
model was recently introduced by father of Superstatistics in [30]. It is claimed
that transition of Superstatistics is possible when we look at the time series at
different time scales. It is questionable if this new model is valid. Although
this new idea was also tested in the same paper, the crude method used is not
very convincing. Thus new method is needed.

In this section we use the same dataset as in [30], i.e. stock prices of seven
companies from different sectors recorded on the minute-tick basis during pe-
riod from the 2nd Jan, 1998, to 22nd May, 2013, see table 5.1, and propose
finer quantitative method for testing transition of Superstatistics.

11Simply derived using Y ∼ fY (y) then Z = F (Y ) ∼ fZ(z) = fY (F−1(z))|(F−1)′|(z) for
F regular map.
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5.4.1 Data preprocessing

When analyzing financial time series of stock prices {Si}, the typical quantity
worth of attention is series of so-called log-returns

ri = log
Si+1

Si
.

Hence, instead of {Si} we analyze {ri}. ri is an increment of logarithm of stock
price during sampling time τ , in our case τ = 1 minute, which corresponds to
time scale at which we observe the system ( stock price ). It is important
that the time scale is fixed, in other words the time series must be sampled
equidistantly in time.

Deeper data examination shows various errors in data, which occurred prob-
ably during acquisition since some values are missing, and hence data are not
spaced equidistantly in time. These errors were eliminated by selecting only
increments occurred during one minute which also effectively removes problem
with overnight jumps.
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Figure 5.1: Artificial structure in log-returns time series, in particular company
KO.

Another problem was occurrence of quite artificial structure likely due to
very fine recording of data when liquidity of individual stocks, even of large
companies used in analysis, is in question. The artificial structure is shown
in figure 5.1 for company KO. The figure shows kernel density estimate of
probability density for the first 2000 log-returns at various time scales. Note
that 2000 data points are clearly enough in order that the discrete levels could
be considered significant. This artificial structure does occur also at different
time positions in the time series, i.e. not necessarily at the beginning, and all
studied time series possess the same flaw.

It is worth noting that discovery of this structure happened rather inciden-
tally since the probability density estimate of log-returns for the whole series
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does not show any discreteness in log-returns. The explanation may be that
the discrete levels are slightly shifted after some time period. From a physical
point of view, we may say that for minute scale system has not yet reached
equilibrium in the cell, i.e. assumption τ > τr, where τr is relaxation time of a
cell, does not hold.

One feasible solutions is to aggregate data into higher time scale in which sin-
gle stock becomes liquid and log-returns continuous up to recording precision.
By successive aggregation we find out that as a convenient sampling interval
may be considered 20 minutes as can be seen in figure 5.1 since artificial struc-
ture vanishes. This 20−minutes sampling is adequate also for time series of the
other companies. So we consider new time series constructed as 12

r
(20)
j =

20∑
i=1

r
(min)
i+(j−1)20 j ∈ {1, . . . , bN

20
c}, (5.17)

where N is the length of the original series sampled every minute. In what
follows we for brevity suppress the superscript indicating scale of the time
series and use only 20-min scale data unless stated otherwise. In paper [30]
such adjustments were not done, and it may be the reason for slightly different
conclusions.

5.4.2 Optimal window width

When we have reliable data then the next step is to determine time interval in
which intensive parameter stays constant. We proceed with the same method
as in [30], that is estimating kurtosis of log-returns for various length T of
window, and then select optimal Top for which average kurtosis κ̄T over all
windows is the closest to one of normal distribution, κ = 3. Biased so-called
moment estimator for kurtosis was used

κ̂ =
m4

m2
2

=

1
T

T∑
i=1

(ri − r̄)4

(
1
T

T∑
i=1

(ri − r̄)2

)2 , (5.18)

where r̄ is sample mean of log-returns in given window. It is standard estimator,
and moreover, according to [31] has the lowest mean square error for normal
sample.

Slight modification was made in favor of further analysis. Since we are even-
tually interested in distribution of variances, we prefer more data points for
variance, and the accuracy of estimated variance in each block is secondary
because the errors cancel each other out in density estimation. Therefore, we

12 Note that log-returns r are additive when changing to higher time scale.
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introduce a small threshold ε, and consider the optimal T as the lowest one for
which average kurtosis κ̄T over n = bNT c blocks satisfies

|κ̄T − 3| < ε, (5.19)

where the threshold is chosen ε = 0.1. This ensures the longest possible series
of sample variances without significant departure form κ = 3, see figure 5.2.
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Figure 5.2: Finding optimal block
width, ε = 0.1.

For subsequent comparison of vari-
ance distribution on different time
scales, it is convenient to normalize
log-returns to zero mean and unit
variance.

ui =
ri − r̄
s

, (5.20)

where r̄ and s2 is sample mean and
sample variance of the whole series,
respectively.

Having optimal window width and normalized log-returns, we estimate vari-
ance in each block with unbiased estimator

s2
j =

1

Top − 1

Top∑
i=1

(ui+(j−1)Top − µj)
2 j ∈ {1, . . . , b N

Top
c}, (5.21)

where N is the length of the new series sampled every 20 min, and µj denotes
sample mean in a particular block

µj =
1

Top

Top∑
i=1

ui+(j−1)Top . (5.22)

By this procedure we obtain b NTop c values for variance or temperature in

physical jargon, however, in Superstatistics we need β which is inverse temper-
ature

βj =
1

s2
j

. (5.23)

In the figure 5.3 the procedure for obtaining values for inverse temperature
is depicted.
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5.4.3 Selecting proper Superstatistics
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Figure 5.3: Illustrative figure for temperature
estimation procedure

Next step would be to find
probability distribution of β.
This task is in general very
difficult, nevertheless, in Su-
perstatistic there are univer-
sality classes, and therefore
we may greatly simplify our
problem by restricting ourself
to three two-parametric fam-
ilies of probability distribu-
tions. These are Gamma dis-
tribution, Log-normal distri-
bution and Inverse Gamma
distribution.

In case of parametric fitting we need to choose method for parameters es-
timation. There are many of them, e.g. minimum distance method, moment
method or maximum likelihood method. We use maximum likelihood method
so that it will not interfere with distance measures used for subsequent goodness
of fit.

Once we have optimal parameters, we can ask which of the three considered
distributions is the best fit for inverse temperatures β. Goodness of fit is usually
measured by various distances between fully specified distribution function, i.e.
all its parameters have to be given, and empirical distribution function. We
use three distances, namely, Kolmogorov-Smirnov distance

Dn = sup
x
|Fn(x)− F (x)|, (5.24)

Cramér-von Mises distance

Cn = n

+∞∫
−∞

(Fn(x)− F (x))2dF (x) (5.25)

and Anderson–Darling distance

An = n

+∞∫
−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x), (5.26)

where F (x) is fully specified distribution function and Fn(x) is empirical dis-
tribution function

Fn(x) =
1

n

n∑
i=1

I(ui ≤ x). (5.27)
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Log-norm Gamma Inv-Gamma
Kolmogorov-Smirnov 0.032 0.050 0.117
Cramer-von Mises 1.26 3.04 22.06
Anderson-Darling 8.57 16.18 121.88

Table 5.2: Values for various distance measures for different probability distri-
butions, company AA, scale 20 min.

Corresponding statistical tests for goodness of fit make use of these distances
in order to test the hypothesis that data comes from given distribution F (x).
Therefore, one may feel the temptation to exploit one of the goodness of fit test.
It is, however, important to note that due to high dependence in β, equivalently
in volatility, as seen in the figure 5.4 of autocorrelation function, we cannot use
standard procedure and test goodness of fit by these tests. Not mentioning
complications which arise when parameters are estimated from data, as is our
case, and proper p-value of the tests would have to be calculated by simulations.
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1.0

∝ t
−γ

t − time lag

Figure 5.4: ACF of inverse tem-
perature of AA company at
scale 20 min, γ = 0.377.

Nevertheless, even for dependent data we
consider distances as a convenient way to dis-
tinguish between the three probability dis-
tributions. Thus, we calculate distances for
each company at a particular time scale and
claim the distribution with the lowest dis-
tance as an optimal Superstatistics of β.

However, each distance has specific prop-
erties, e.g. Cramér-von Mises distance, eq.
5.25, measures quadratic errors between dis-
tribution function and empirical distribution
function without any weighting factor so all
discrepancies are equal while in the case of
Anderson-Darling distance, eq. 5.26, squared
errors are weighted by 1

F (x)(1−F (x) which

gives higher importance to tail discrepancies.
Therefore, there should be no wonder that different distances may point out dif-
ferent results. Yet in spite of distance characteristics later analysis shows that
conclusions more or less coincide regardless of distance measures employed.

In the table 5.2 values for considered distance measures are shown for the
three universality-classes probability distributions and dataset corresponding
to company Alcola Inc. Values corresponds to time scale 20 minutes which is
the smallest reliable scale. We can conclude from the table 5.2 that for small
time scales the best Superstatistic for β from the three distributions taken
into account is Log-normal distribution. This is in agreement with the claim
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Log-normal Gamma Inv-Gamma
Kolmogorov-Smirnov 0.077 0.045 0.133
Cramer-von Mises 0.153 0.032 0.770
Anderson-Darling 1.151 0.255 4.590

Table 5.3: Values for various distance measures for different probability distri-
butions, company AA, scale 390 min, i.e. 1 trading day.

made in [30] where the statement was supported only by visual inspection of
histogram and fitted distribution.

5.4.4 Addressing the transition

The main point of the article [30] was to show that it is possible to observe
different Superstatistics at different time scales, i.e. transition of Superstatistics
may occur. The idea was demonstrated by fitting probability distribution of β
at two outlying time scales, namely, minute scale and daily scale. Tables 5.2
and 5.3 advocate the idea in a quantitative way. We see that transition indeed
occurs, at least for company AA, from Log-normal distribution at small time
scale to Gamma distribution at daily scale.

To get a better picture of the transition, it is worth calculating statistical
distances for more than two time scales and see how the distances behave
with respect to time scale. We calculated distances for scales ranging from 20
minutes to 1000 minutes ∼ 3 days ( for higher time scales more data would be
necessary ). Results for short time scales are depicted in the figure 5.5 from
which we see that only for very short time scales Log-normal regime prevails.

Unfortunately, using this crude method to find transition point is not very
reliable because when individual distance measures approach each other their
characteristics may need to be taken into account, and simple comparison of
actual values cannot be considered as a definite criteria. Nevertheless, in the
figure 5.6 which shows distance measures behavior on higher time scales we see
that around 400 minutes, i.e. around one trading day, we can claim change
of Superstatistics as quite significant, if Kolmogorov distance is disregarded as
being the least relevant due to its instability in the presence of outliers.

The discussion above confirms observation made in the article [30] for com-
pany AA. However, according to [30] transition of Superstatistics applies also
to the other companies. That it is not true can be seen in the figure 5.9 and 5.8
where the same distance measures are shown for company BAC. Log-normal
regime appears to continue even on long time scales, and no transition of Super-
statistics is observed. This naturally does not exclude existence of transition on
much longer time scales but clearly reveals drawback of visual examination of
fitted histogram. In truth, authors of [30] admit that it is by no means easy to
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Figure 5.5: Three statistical distance measures for considered probability dis-
tributions are shown as a function of time scale in interval from 20 minutes
to 2.5 hours (150 min), dataset Alcola Inc. Blue: Inv-Gamma distribution,
Green: Gamma distribution, Red: Log-normal distribution.

distinguish between different Superstatistics, and this is also slightly indicated
in figures 5.6 and 5.8 where we need to ”zoom” in order to distinguish between
different Superstatistics. It is also due to the fact that for higher time scales
we have less data points for inverse temperature β, and therefore statistical
distances has less statistical power to distinguish between two probability dis-
tribution. Note that for larger time scales even Inverse Gamma Superstatistics
becomes plausible, but it is only because of lack of data.

We analyzed all seven companies and can conclude that for four of them,
namely AA, INTC, KO and WMT, the transition between Superstatistics can
be confirmed by using distance measures. On the other hand, companies BAC,
GE and JNJ do not exhibit transition of Superstatistics at least at time scales
less then one trading day.
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Figure 5.6: Three statistical distance measures for different probability dis-
tributions are shown as a function of time scale in interval from 2.5 hours
(150 min) to 500 minutes, dataset Alcola Inc. Blue: Inv-Gamma distribution,
Green: Gamma distribution, Red: Log-normal distribution.
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Figure 5.7: Three statistical distance measures for different probability distri-
butions are shown as a function of time scale in interval from 20 minutes to
2.5 hours (150 min), dataset Bank of America Corporation. Blue: Inv-Gamma
distribution, Green: Gamma distribution, Red: Log-normal distribution.

70



Chapter 5. Superstatistics

0.05

0.10

0.15

0.20

Kolmogorov−Smirnov distance, company BAC

150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

0

1

2

3

4

5

Cramer−von Mises distance, company BAC

150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

0

5

10

15

20

25

30

Anderson−Darling distance, company BAC

150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

1

3

5

7

150 190 230 270 310 350 390 430 470

0.0

0.4

0.8

1.2

150 190 230 270 310 350 390 430 470

Figure 5.8: Three statistical distance measures for different probability distri-
butions are shown as a function of time scale in interval from 2.5 hours (150
min) to 500 minutes, dataset Bank of America Corporation. Blue: Inv-Gamma
distribution, Green: Gamma distribution, Red: Log-normal distribution.

0.04

0.06

0.08

0.10

0.12

0.14

Kolmogorov−Smirnov distance, company WMT

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

0

5

10

15

20

Cramer−von Mises distance, company WMT

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

0

20

40

60

80

100

Anderson−Darling distance, company WMT

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

5

10

15

20

20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

1

2

3

20 30 40 50 60 70 80 90 100 110 120 130 140 150

Figure 5.9: Very illustrative example of transition.
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Estimators, errors and
Bootstrap

A.1 Estimators

From measured data (x1, . . . , xN ) we want to infer some feature A of the
whole population, for example population mean µ or variance σ2. The proper
estimator ÂN (x1, . . . , xN ) of some parameter A should have the following prop-
erties.

• consistency - lim
N 7→∞

ÂN = A in probability

• unbiasedness - Bias(Â) = E[ÂN ]−A = 0 for all N

• efficiency - Any other estimator of A fulfilling the conditions above must
have higher variance.

For example, biased estimator of variance is

σ̂2 =
1

N

N∑
i=1

(xi − x̄)2. (A.1)

This is so called plug-in estimator since we plug in empirical distribution
function into expression for variance instead of proper unknown one, this is a
common practice in estimating parameters. However, this estimator is biased
and the unbiased one is

s2 =
N

N − 1
σ̂2 =

1

N − 1

N∑
i=1

(xi − x̄)2, (A.2)

where x̄ is sample mean and so-called Bessel’s correction was used. Neverthe-
less, since for large data sample N prefactor N

N−1 ≈ 1 the relation A.2 shows
that A.1 is asymptotically unbiased.
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Since every estimator is a random variable we would like to know variance
of our estimator. The square root of the variance (standard deviation) is then
called standard error and is used for error bars in plotting.

It is worth taking a look at the simples case, i.e. population mean. Its

variance, provided data are independent, is σ2
x̄ = σ2

N . We see that it depends
on unknown population variance σ2, therefore we are forced estimate both
population mean and its standard error. In order to correctly estimate standard
error of x̄ we need to find suitable estimator σ̂ of population standard deviation
σ. Such an estimator is, see [32],

σ̂ = KNs =

√
N − 1

2

Γ
(
N−1

2

)
Γ
(
N
2

) s. (A.3)

Nevertheless, asymptotic behavior shows that for N > 10 it is reasonable
to use KN = 1, as it is very common in practice, i.e. σ̂ = s and thus σ̂x̄ =
s/
√
N which is just square root of A.2. The expression A.3 demonstrates the

important feature of estimators:

Unbiased estimator of a function of some parameter may not be,
in general, obtained by simply plugging unbiased estimator of the
parameter into the given function.

The standard error of variance estimator is

σs2 = σ2

√
2

N − 1
, (A.4)

which is easily obtained from A.2 when we notice that (N−1)s2

σ2 has chi-squared
distribution with N − 1 degrees which has variance 2(N − 1).

The same trick leads to standard error of estimator A.1

sd(σ̂2) =

√
2(N − 1)σ2

N
. (A.5)

Comparing A.4 and A.5 we see that biased version has lower standard error. In
order to judge which estimator is better we introduce another quantity so-called
Mean square error (MSE)

MSE(θ) = E[(θ̂ − θ)2].

MSE is convenient because it may be written in the following form 1

MSE(θ) = V ar[θ̂] +Bias(θ̂)2

1Just add and subtract E[θ̂]
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which properly incorporates both standard error and bias of the estimator.

Since Bias(σ̂2) = −σ
2

N we can calculate

MSE(σ̂2) =
σ4(2N − 1)

N2

which is smaller than MSE(s2). Thus in sense of Mean square error estimator
A.1 seems to be better choice.

Aforementioned discussion demonstrates general problem in selecting suit-
able estimator and shows that biased estimators are also important, i.e. unbi-
asedness is not the only adequate criterion.

A.2 Bootstrap

These two examples are specific because there is analytically derived standard
error of the estimator. In practice we need to estimate other, much more
difficult, parameters, i.e. function of hidden probability distribution θ = t(F ).

For this purpose, we suggest some estimator θ̂ of θ and then we would like
to know its standard error. In many cases we are not able to derive exact
probability distribution of estimator θ̂ and in these situations bootstrap method
may be helpful. Bootstrap has been using since 1979 when computers power
became capable of processing huge amount of data in reasonable time, see [33].

The main idea behind bootstrap is very simple but demands immense com-
putational effort that is why it emerged quite recently. Let sample values
x = (x1, . . . , xn) are given from experiment. Then for this values we calculate

estimate θ̂(x) of our desired parameter and in order to find out standard error
of the estimator we resamle the data to get so-called bootstrap sample x∗, i.e.
we draw n values with replacement from original dataset x. Thus some values
may repeat in the new sample and other ones may be missing.

As a next step, we evaluate the estimator for this new sample to get new
estimate θ̂(x∗). We repeat the same procedure many times until we get suffi-

cient number of values {θ̂(x∗1), . . . , θ̂∗(x∗m)} for statistical inference. The boot-
strap estimate of standard error is just standard deviation calculated from
{θ̂(x∗1), . . . , θ̂∗(x∗m)} . The length m of bootstrap sample is usually taken in
range 25− 200, see [33].

A.2.1 Problem with bootstrap

Unfortunately, some problems emerge when we try to apply bootstrap method
in time series analysis since bootstrap method assumes that data in original
sample are i.i.d. The identically-distributed restriction may be satisfied for
stationary time series but the independence is general problem in most time
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series, in fact dependence of successive values is the reason for introducing time
series.

The simplest solution is differencing time series and hope that new time series
of differences is already independent, as it is the case, e.g. for random walk.
The differencing of a time series is based on some a priori known structure or
model of the system. Hence, provided we have faithful model of data we may
bootstrap only the extracted random already independent noise or residuals
and then reconstruct new resampled time series. However, in many cases the
model is unknown and we are left with nonparametric bootstrap.

We analyze financial data, particularly stock indexes which are, more pre-
cisely its logarithm, according to obsolete theory motivated by Bachelier re-
garded as a random walk. Therefore, someone would expect there is no problem
since we know the model, nevertheless, empirical analysis shows that this the-
ory is not satisfactory and even the differences are dependent. The dependence
may not be obvious since auto-correlation function suggests uncorrelated data
but as we have already seen auto-correlation cannot detect nonlinear correlation
and more precise analysis with mutual information points out non-negligible
dependence. Thus it is clear that simple bootstrap sample loses the correlation
structure and hence cannot faithfully represent original data.

For dependent data with unknown structure we have to use improved boot-
strap method called moving blocks bootstrap. Instead of resampling bare
data we resample all blocks of given length l. The procedure is as follows:

1. From original data we construct n− l + 1 overlapping blocks.

B1 = (X1, . . . , Xl), B2 = (X2, . . . , Xl+1), . . . , Bn−l+1 = (Xn−l+1, . . . , Xn)

2. Then, provided l divides n, we generate b = n/l random numbers uni-
formly distributed on n− l+ 1 and accordingly select blocks from which
we consequently compose new series.

When l does not divide n we ”circle” original data, i.e. at the end we
take also blocks Bn−l+2 = (Xn−l+2, . . . , Xn, X1) and so on. This procedure
is recommended even in case when l divides n because otherwise data points
at the beginning and at the end of the series would occur less frequently in
bootstrapped time series.

Note that the longer the block the more dependency of original time series
is preserved in bootstrapped one. On the other hand, the longer blocks means
less variety which leads to underestimation of standard error calculated from
bootstrap sample. Hence a trade off must be done in choosing right block
length l.
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Figure B.1: America, heat map of
Shanonian transfer entropy

NYA CCMP DJI
0 0.0117 0.0128

NYA
0 ± 0.0027 ± 0.0022

0.0022 0 0.0040
CCMP ± 0.0010 0 ± 0.0012

0.0041 0.0022 0
DJI ± 0.0011 ± 0.0013 0

Table B.1: America, Shanonian transfer en-
tropy

CCMP

DJI

NYA

C
C
M

P
D
JI

N
Y
A

Source

D
e
s
ti
n
a
ti
o
n

0.000

0.004

0.008

0.012

0.016
Information flow

America, q=0.8

Figure B.2: America, heat map of
Rényian transfer entropy q=0.8
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Table B.2: America, Rényian transfer entropy
q=0.8
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Figure B.3: America, heat map of
Rényian transfer entropy q=1.5
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Table B.3: America, Rényian transfer entropy
q=1.5
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Figure B.4: Asia, heat map of Shanon-
ian transfer entropy
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Table B.4: Asia, Shanonian transfer entropy
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Figure B.5: Asia, heat map of Rényian
transfer entropy q=0.8
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Table B.5: Asia, Rényian transfer entropy q=0.8
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Figure B.6: Asia, heat map of Rényian
transfer entropy q=1.5
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Table B.6: Asia, Rényian transfer entropy q=1.5
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Figure B.7: Europe, heat map of
Shanonian transfer entropy
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Table B.7: Europe, Shanonian transfer entropy
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Figure B.8: Europe, heat map of
Rényian transfer entropy q=0.8
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0 ± 0.0008 ± 0.0011

0.0028 0 0.0022
AIM100 ± 0.0009 0 ± 0.0006

0.0013 0.0021 0
DAX ± 0.0010 ± 0.0009 0

Table B.8: Europe, Rényian transfer entropy
q=0.8
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Figure B.9: Europe, heat map of
Rényian transfer entropy q=1.5
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Table B.9: Europe, Rényian transfer entropy
q=1.5
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Figure B.10: The whole time series of London stock index was divided into
20 non-overlapping blocks and in each block variance of log-returns was calcu-
lated. For weak stationary time series all values should stay within a standard
deviation around overall variance ( the green line ). Depicted behavior suggests
non-stationarity.
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Figure B.11: Detected causality relations in European stock indices.
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Figure B.12: Detected causality relations in American stock indices.
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Figure B.13: Detected causality relations in Asian stock indices.
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