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Abstrakt / Abstract
Diplomová práce se zabývá metodami

klasifikace realizací Lieových algeber
pomocí vektorových polí. Práce nejprve
shrnuje základy Lieovy teorie, poté
popisuje vztah mezi klasifikací podal-
geber a tranzitivních lokálních relaizací
a prezentuje metodu I. V. Širokova pro
konstrukci explicitního tvaru těchto re-
alizací. Tento vztah a výpočetní metoda
jsou zobecněny na případ regulárních
realizací. Dále je rigorózně formulována
rozumná klasifikační úloha pro obecné
realizace a představen algoritmus na
řešení této úlohy. Tento algoritmus je
nakonec využit ke klasifikaci realizací
nerozložitelných nilpotentních Lieových
algeber dimenze pět. Cenným mezi-
produktem tohoto výpočtu je rovněž
klasifikace podalgeber vzhledem ke gru-
pám vnitřních automorfismů a všech
automorfismů.

Klíčová slova: Lieovy algebry, reali-
zace, vektorová pole, podalgebry

Překlad titulu: Klasifikace realizací
Lieových algeber nízké dimenze

The thesis studies methods of clas-
sification of Lie algebra realizations by
vector fields. After summarizing basics
of the Lie theory, the correspondence be-
tween classification of subalgebras and
transitive local realizations is described
and a method of explicit construction
due to I. V. Shirokov et al. is presented.
This correspondence and method of
computation is generalized to the case
of regular local realizations. A reason-
able classification problem for general
realizations is rigorously formulated and
an algorithm for construction of such
classification is presented. This algo-
rithm is used to classify realizations of
five-dimensional nilpotent indecompos-
able Lie algebras. A valuable byproduct
of this computation is also a classi-
fication of subalgebras with respect
to group of inner automorphisms and
group of all automorphisms.

Keywords: Lie algebras, realizations,
vector fields, subalgebras
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Chapter 1
Introduction

In the second half of the nineteenth century a Norwegian mathematician Sophus Lie
started to investigate continuous groups of transformations similar to the Abelian the-
ory of solving algebraic equations. He found out that all the classical methods of
solving differential equations are a special case of a procedure based on invariance of
the differential equation with respect to some group of symmetries [21–22].

Lie’s work created a new branch of mathematics that is still a subject of contem-
porary research. His concept of continuous groups of transformations was generalized
to the abstract notion of so called Lie group. One of the fundamental results stating
that the group of transformations can be described by so called infinitesimal transfor-
mations gave rise to the abstract structure of a Lie algebra. Nowadays, the theory of
Lie groups and Lie algebras has a wide range of applications not only in the theory
of differential equations. Besides applications in mathematics it plays central role in
the modern physical theories describing the fundamental symmetries of spacetime that
every physical theory should respect.

One kind of problems that are studied in the theory of Lie groups and Lie algebras
are classification problems. One can, for example, try to find list of all possible Lie
groups or algebras, or to classify possible representations of the abstract structure by
linear operators on a vector space. The aim of this work is to classify realizations of
Lie algebras by vector fields.

On one hand, a realization by vector fields is just a special type of a Lie algebra
representation mapping the Lie algebra elements on a special type of linear operators in
the algebra of smooth functions on some manifold. On the other hand, this task relates
to the Lie’s original concept of local (Lie) groups of transformations since classification
of Lie algebra realizations means classification of possible Lie algebras of infinitesimal
generators of the transformation groups that realize the abstract Lie algebra structures.

Hence, it is not a surprise that this problem was for the first time considered by Lie
himself [5] and that it finds a wide range of applications in the theory of differential
equations [21–22] and many other areas of mathematics and physics (see, for example,
[26] and references therein).

There are several possible approaches to formulate the classification problem. One
possibility is to fix a manifold M and then classify all possible subalgebras of VectM .
Two-dimensional Lie algebras of vector fields on a circle were classified by Spichak [29].
However, in case of more complicated manifolds this problem would be very hard to
solve.

Much more reasonable approach is to consider realizations only locally and ignore
the global structure of the manifold. Therefore, we can try to fix a number of variables
m and classify all Lie algebras of (local) vector fields in m variables. This problem was
solved by Lie for realizations in one and two complex and real variables [5]. More recent
discussion on this topic is available, for example, in [8].

However, we will focus on another type of problem. Given a Lie algebra, we are
going to find all its realizations. Number of publications was devoted to this problem
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
as well. One of the most general result was obtained by Popovych et al. in [26], where
realizations of all Lie algebras of dimension less or equal to four were classified.

Our goal was to continue in this work an classify realizations of some Lie algebras of
dimension five. Besides that, there are also several theoretical questions our work deals
with. First of all, the classification problem in [26] is not described in much detail.
It is, therefore, necessary to describe, what the local classification of realizations of a
given Lie algebra mean. Secondly, the realizations in [26] were constructed directly by
solving the corresponding partial differential equations. However, very easy algorithm
for construction of transitive realizations were introduced by Shirokov et al. [15]. We
are going to try to generalize this algorithm to be able to use it for our classification.

In Chapter 2 we describe the basic ideas of the Lie theory. The basics of the Lie
group theory are summarized very briefly and the we focus on the theory of local Lie
groups and their action on manifolds.

In Chapter 3 we summarize methods and known results regarding properties and
classification of Lie algebras that are needed for performing the method of classification
of Lie algebra realizations.

The main theoretical results of this work are described in Chapter 4. Firstly, we bring
formal definition of realizations and their equivalence and describe the correspondence
between realizations of Lie algebras and actions of Lie groups. Then describe the well
known correspondence between classification of subalgebras of a given Lie algebra and
classification of its transitive realizations [1, 4, 12, 15]. Our main result is generalization
of this correspondence to the case of regular realizations and formulating a classification
algorithm based on this result.

These theoretical results were applied to classify realizations of five-dimensional Lie
algebras. So far, we were able to classify realizations of all nilpotent indecomposable
five-dimensional Lie algebras. Such computation involves obtaining results of other
classification problems, which are interesting by themselves. Firstly, the computation
of groups of inner automorphisms and all automorphisms (which is not our original
result, see [6]), and secondly classification of subalgebras of the considered Lie algebras
with respect to the groups of inner and all automorphisms. The resulting classification
including those interim results are listed in the Appendix A.
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Chapter 2
Lie group action and vector fields

In this chapter the basic theory closely connected to the topic of the thesis is described
and several important more recent results in this area are presented. The basic concept
are groups of transformations that were firstly studied by Sophus Lie, who laid the
foundations of the theory in the end of nineteenth century in his work [14]. In particular,
we focus on the theory of Lie algebras of vector fields, Frobenius theorem, and Lie group
action on a manifold. This chapter is based on [27, 9]. Most of the theory connected
to this topic is summarized in [21]; unfortunately, a lot of the basic theorems are left
without proof here. The author have already touched the topic of realizations by vector
fields in his research project [10] and described the foundations of Lie theory more deeply
there. Some parts of the text are, therefore, adopted from the research project.

Firstly, we would like to clarify some notions and notation. In the whole thesis,
smooth means infinitely differentiable. By a manifold we mean a smooth manifold, that
is, a topological manifold such that all transition functions are smooth. The algebra of
all smooth functions defined on a manifold M is denoted C∞(M). By a vector field we
mean a (smooth) section of a tangent bundle or, equivalently, a derivation of C∞(M).
The Lie algebra of vector fields on M is denoted VectM .

Taking a smooth map Φ:M → N , we define a derivative at p ∈ M as a linear map
dΦp:TpM → TΦ(p)N . The index p is usually omitted, so we have dΦ:TM → TN . For
Φ a diffeomorphism, the pushforward of vector fields is denoted Φ∗: VectM → VectN .
For a curve γ:R→M , the tangent vector at t ∈ R is denoted γ̇(t) = dγ

dt = dγ
ds

∣∣∣
s=t

. The
group of all diffeomorphisms M →M is denoted DiffM .

For a (Lie) group G we denote the left action of left multiplication as Lgh = gh and
the right action of right multiplication Rgh = hg. The left action of conjugation will
be denoted Cgh = ghg−1. For a subgroup H of G, we denote G/H = {gH}g∈G the
left coset space and H \G = {Hg}g∈G the right coset space. The left multiplication on
G/H and right multiplication on H \G is again denoted Lg and Rg respectively.

As the title of this chapter and the first paragraph indicate, we are going to describe
the correspondence between vector fields and Lie group action. Establishing connection
between continuous groups of transformations and vector fields describing the direction
of “infinitesimal transformations” was the basic idea of the Lie theory. Generalization of
these notions led to establishing connection between abstract structures called Lie group
and Lie algebra. Going back to transformation groups means examining the action of a
Lie group on a manifold and its relationship with vector fields. This relationship arises
as generalization of the following consideration.

Definition 2.1. Let M be a smooth manifold. A smooth map F :U → M , U = U◦ ⊂
R × M such that F (0, p) is defined and equal to identity for all p ∈ M , F (t, ·) is
a diffeomorphism for all t ∈ R, and F (t+ s, p) = F (t, F (s, p)) for t, s ∈ R and p ∈M if
at least one side is defined is called a flow.
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2. Lie group action and vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definition 2.2. Let M be a smooth manifold and F a flow. For each point p ∈M , the
flow defines a curve Fp(t) = F (t, p). A vector field X ∈ VectM satisfying

X = Ḟp(0), i.e. Xf(p) = (f ◦ Fp)′(0) for all f ∈ C∞(M) (1)

is called an infinitesimal generator of the flow F . Conversely, for a given vector field
X ∈ VectM there is at every point p ∈M uniquely defined integral curve Fp satisfying
Ḟp(t) = XFp(t). The map F (t, p) = Fp(t) is called the flow of the vector field X and it
is indeed a flow satisfying the equation above.

Those propositions have several implications. Firstly, given a vector field X, the
manifold can be divided into the integral curves (if Xp = 0 the curve is constant, so it
is actually a point) that are immersed submanifolds of dimension one or zero. Moreover,
the defining condition of a flow means that it is a local group homomorphism. Local
because U does not have to be the whole R ×M . So, the flow can be understood as
a one-parameter group of local diffeomorphisms or as a local action of one-parameter
group (R,+) on the manifold M . The integral curves are then orbits of this local action.
(See Sections 2.3, 2.5 for precise definitions of the local notions.)

2.1 Frobenius’ theorem
In this section, we generalize the first part. We give a condition for collection of vector
fields to define a foliation by immersed submanifolds.
Definition 2.3. Let M be a manifold. A function P assigning an n-dimensional sub-
space Pp ⊂ TpM to every p ∈ M is called an n-dimensional distribution on M . The
distribution is called smooth if every point p0 ∈ M has a neighbourhood U ⊂ M such
that there exist n linearly independent vector fields X1, . . . , Xn ∈ VectU that form
a basis ((X1)p, . . . , (Xn)p) of Pp at every point p ∈ U . These vector fields are called
a local basis of P at p0.
Definition 2.4. Let M be a manifold and P an n-dimensional distribution on M . An
n-dimensional manifold N immersed to M by Φ:N → M such that dΦ(TqN) = PΦ(q)
for every q ∈ N is called an integral manifold of P .

So, if an integral manifold exists, then its tangent spaces are essentially the subspaces
Pp. If an integral manifold exists for every point in M , then these submanifolds form
so called foliation of M
Definition 2.5. A smooth distribution is called involutive if, for every point p ∈M and
a local basis (X1, . . . , Xn) ∈ VectU in p, there are functions fkij ∈ C∞(M) such that
[Xi, Xj ] =

∑
k f

k
ijXk.

It can be easily checked that the property of being involutive is independent on the
chosen basis.
Theorem 2.6 (Frobenius). Let M be a manifold, P an n-dimensional involutive dis-
tribution on M and p ∈ M . Then there exists a system of coordinates (x1, . . . , xm) in
a neighbourhood of p such that the distribution has a local basis (∂x1 , . . . , ∂xn) at p.
So, the manifold M is locally foliated by so called level submanifolds xi = const. for
i = n+ 1, . . . ,m.
Proof. At first, we show that there exists a basis (X1, . . . , Xn) of P such that [Xi, Xj ] =
0. Let (y1, . . . , ym) be coordinates on M such that p lies in the origin and let Yi =∑m

j=1 Y
j
i (y)∂yj be a basis of P . Since Yi are linearly independent, the matrix Y j

i (y)
has to have n linearly independent rows. Without loss of generality, let us assume that
these are the first n rows. Then we can choose a new basis (Xi) such that Xj

i = δji for

4
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j ≤ n, so Xi = ∂yi +
∑m

j=n+1X
j
i (y)∂yj . Now, we easily see that, in the coordinate basis

∂yj , we have 0 = [Xi, Xk]j = f likX
j
l = f jik for j ≤ n.

Denote ψ:U → Rm the coordinate chart corresponding to coordinates yj .
Now, we define the coordinates xj . Let Fi(t):U → M be the flows of the vec-
tor fields Xi. Define the coordinate chart ϕ:U → Rm as ϕ−1(x1, . . . , xm) =
Fi(x1) · · ·Fi(xm)ψ−1(0, . . . , 0, xn+1, . . . , xm). The derivative of ϕ ◦ ψ−1 at zero is
the identity, so it is a local diffeomorphism in a neighbourhood of zero, so ϕ is a well
defined coordinate chart in a neighbourhood of p. Since Xi commute, the flows Φi(t)
commute as well and using this property we can easily check that Φi(t) act on U as
a translation in the coordinates xi. Hence, Xi = ∂xi . �

At least locally, it is evident that the integral submanifolds are defined uniquely. It
can be proven that, globally, there exist unique maximal integral submanifolds that
foliate M .

2.2 Lie group and its Lie algebra
In this section, we briefly recall the definition of a Lie group and the construction of
the corresponding Lie algebra.
Definition 2.7. A group G is called a Lie group if it is also a smooth manifold and both
multiplication and inversion are smooth maps.
Lemma 2.8. Connected Lie group G is generated by any open set.
Proof. Let H be generated by an open set U in G. H is a union of open sets hU , so
H is also open. Then GrH is a union of left cosets gH, g /∈ H, which are also open.
Therefore, H is also closed and hence, if G is connected, H = G.
Definition 2.9. A map ϕ of two Lie groups is called homomorphism if it preserves
both group and manifold structures, that is, if it is a smooth group homomorphism. A
bijective homomorphism whose inversion is also a homomorphism (which is not trivially
satisfied since inversion of a smooth map has not to be smooth) is called a Lie group
isomorphism. Similarly, Lie group automorphism and other morphisms can be defined.
Definition 2.10. A one-parameter subgroup of a Lie group G is a (smooth) homomor-
phism ϕ: (R,+)→ G.
Lemma 2.11. Let G be a Lie group. A transformation T :G→ G that commutes with
every left translation acts as right translation T = RT (e).
Proof. We have T (g) = (T ◦ Lg)(e) = (Lg ◦ T )(e) = gT (e) = RT (e)(g). �

Definition 2.12. Let G be a Lie group. A vector field X ∈ VectG is called left-invariant
if Lg∗X = X for all g ∈ G. Analogically, X is right-invariant if Rg∗X = X.
Lemma 2.13. Let G be a Lie group.

1. Left invariant vector fields form a Lie subalgebra of VectG.
2. Any left-invariant vector field X ∈ VectG is determined by its value at unity Xe

by relation Xg = dLgXe for g ∈ G.
3. For any tangent vector a ∈ TeG, there is a unique one-parameter subgroup ϕa of
G such that ϕ̇a(0) = a. The corresponding left-invariant vector field Xg = dLg a
is the infinitesimal generator of a one-parameter group F , Ft = Rϕa(t).

Proof. The first proposition is clear from the homomorphism property of pushforward
Lg∗. The second proposition follows directly from the definition of left-invariance

Xg = (Lg∗X)g = dLgXL−1
g (g) = dLgXe

5



2. Lie group action and vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Finally, let F be the flow of the left-invariant vector field X corresponding to a tangent
vector a. The subgroup ϕa has to be an integral curve of X, i.e., ϕ(t) = F (t, e), since

ϕ̇a(t) = d
ds (ϕa(t)ϕa(s))

∣∣∣∣
s=0

= d
ds (Lϕa(t)ϕa(s))

∣∣∣∣
s=0

=

= dLϕa(t) ϕ̇a(0) = dLϕa(t) a = Xϕa(t).

Hence, it is uniquely defined and obeys the group property. Since X = Lg∗X, we have
Ft = Lg ◦ Ft ◦ L−1

g for the flow, so it commutes with left translation and hence, from
Lemma 2.11, is right translation. �

Definition 2.14. Let G be a Lie group. According to Lemma 2.13.2 there is an iso-
morphism between the Lie algebra of left-invariant vector fields and the tangent space
TeG. This isomorphism defines a Lie bracket on TeG as [a, b] = [X,Y ]e, where X,
Y are the left-invariant vector fields corresponding to a, b ∈ TeG. The Lie algebra
(TeG, [·, ·]) is called the Lie algebra corresponding to the Lie group G and denoted g.
The one-parameter subgroup ϕa:R → G from 2.13.3 corresponding to a ∈ g is called
the exponential and denoted ϕa(t) = exp(ta) = eta. It defines a map exp: g → G
a 7→ exp(a) called the exponential map.
Remark 2.15. Since exp(0) = e and the differential of exp at 0 is the identity, the
exponential map is a local diffeomorphism, mapping a neighbourhood of zero vector
onto a neighbourhood of unity.

From the commutativity of left and right translations, we have for invariant vector
field X ∈ VectG the following relation Lg∗Rg−1∗X = Rg−1∗Lg∗X = Rg−1∗X, so Cg∗X =
Rg−1∗X and it is left invariant. Thus it defines a map on the Lie algebra Adg: g → g
called the adjoint map or adjoint representation (being indeed a representation of G on
the vector space g).
Lemma 2.16. Let G be a Lie group and g its Lie algebra. Then, for all g ∈ G and
a ∈ g, we have

Adg a = dCg a, (2)

geag−1 = eAdg a. (3)

Proof. Let X be the corresponding left-invariant vector field. Then

Adg a = (AdgX)e = (Cg∗X)e = dCgXCg(e) = dCgXe = dCg a.

According to Lemma 2.13 ea = F1(e), where Ft is the flow of the vector field X, so the
flow of AdgX = Cg∗X is Cg ◦ Ft ◦ C−1

g , so

eAdg a = (Cg ◦ F1 ◦ C−1
g )(e) = Cg(F1(e)) = geag−1.

�

Theorem 2.17. Let G be a Lie group, g its Lie algebra, a ∈ g. The linear map
ada: g → g, ada b = [a, b] is the infinitesimal generator of the one-parameter group
Adeta : g→ g. Thus, the following equations hold

Adea = eada , (4)

eaebe−a = exp(Adea b) = exp(eadab). (5)

Proof. Let us take a, b ∈ g and X,Y the corresponding left-invariant vector fields.
Since, according to Lemma 2.13, the flow F corresponding to the left-invariant vector

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Local Lie groups

field X acts as right translation Ft = Reta , we can compute the Lie bracket [X,Y ] as a
Lie derivative of Y along X, so

[X,Y ] = dReta∗Y

dt

∣∣∣∣
t=0

Using this relation for Y (t) := Reta∗Y = Adeta Y and defining b(t) = Y (t)e, we have

ada b(t) = [a, b(t)] = [X,Y (t)]e = dY (t)e
dt = b′(t).

This is a differential equation for b(t) that has a unique solution b(t) = et adab.
The second equation follows from equation (3) in the previous lemma. �

Remark 2.18. A special case of a Lie group is the general linear Lie group GL(V )
of all invertible linear operators on a given vector space V . Its Lie algebra is gl(V )
the general linear Lie algebra consisting of all operators of V . Indeed, a derivative of
a parametrized operator is of course an operator; conversely, any linear operator L is a
derivative of a curve γ(t) = I + tL in GL(V ). The exponential defined in the theory of
Lie groups corresponds to the operator exponential since it satisfies the same differential
equation deta

dt = aeta. Finally, we can compute the Lie bracket for a, b ∈ gl(V )

[a, b] = ada b = d
dt Adeta b

∣∣∣∣
t=0

= d
dtdCeta b

∣∣∣∣
t=0

=

= ∂2

∂t∂s
etaesbe−ta

∣∣∣∣
t,s=0

= d
dte

tabe−ta
∣∣∣∣
t=0

= ab− ba.

The general linear Lie group and Lie algebra are particularly important thanks to
the theorem of Ado.
Theorem 2.19 (Ado). Every finite-dimensional Lie algebra g can be embedded in
matrices. That is, for every finite-dimensional Lie algebra g over a field F of char-
acteristic zero, there exists n ∈ N and a monomorphism (injective homomorphism)
ϕ: g→ gl(n, F ).
Definition 2.20. A Lie subgroup of the general linear group is called a linear group.
Remark 2.21. Another special case of a Lie group is the group of all diffeomorphisms
DiffM of a given manifold M . Since a derivative of a one-parameter group of diffeo-
morphisms is a vector field, we can see that the Lie algebra corresponding to DiffM is
the Lie algebra of all vector fields VectM on M . (The group of all diffeomorphisms is
isomorphic to the group of the corresponding pullbacks acting on functions, which is a
linear group. Their derivatives act on functions as vector fields and from Remark 2.18
we see that the Lie bracket is indeed defined as a commutator.)

2.3 Local Lie groups
Definition 2.22. Let M be a manifold, U a domain in M , e a point in U , V a neigh-
bourhood of e and m:V × V → U a smooth map called and denoted as multiplication
satisfying ex = xe = x for all x ∈ V , (xy)z = x(yz) for all x, y, z, xy, yz ∈ V and that
the local inversion i:V → V x 7→ x−1 defined by the relation xx−1 = x−1x = e is also
a smooth map. Then the tuple (U, V, e,m) is called a local Lie group. Any local Lie
group (U1, V1, e,m1), such that U1 ⊂ U , V1 ⊂ V and m1 = m|V1×V1 is called a restriction
of the original local Lie group.

7



2. Lie group action and vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Remark 2.23. There can be defined an equivalence of the local Lie groups: two Lie
groups are equivalent if they have a common restriction. Since the size of the neigh-
bourhood of a local Lie group is irrelevant, we often identify the equivalent local Lie
groups and by the term local Lie group we mean the equivalence class. All notions
concerning local Lie groups should be formulated only locally, that is, they should not
depend on the choice of the representative of the equivalence class.
Definition 2.24. Let G1 and G2 be local Lie groups, (U1, V1,m1) and (U2, V2,m2) their
restrictions. A smooth map Φ:U1 → U2 satisfying Φ(V1) ⊂ V2, Φ(m1(x, i1(y))) =
m2(Φ(x), i2(Φ(y))) for all x ∈ V1, y ∈ W1, where W1 is the domain of the first inver-
sion i1, is called a homomorphism of the local Lie groups G1 and G2. Analogically,
one could define local Lie group isomorphism or automorphism. Local Lie groups are
called isomorphic if there exists a local Lie group isomorphism between them. A lo-
cal homomorphism of Lie groups is a homomorphism between them taken as local Lie
groups.
Definition 2.25. Let (U, V, e,m) be a restriction of a local Lie groupG, W a submanifold
embedded in U . If e ∈ W , i(W ∩ V ) ⊂ W , and m(W ∩ V,W ∩ V ) ⊂ W , then
H = (W,W ∩ V, e,m|(W∩V )2) forms a local Lie group and is said to be a local Lie
subgroup of G.
Remark 2.26. In a sufficiently small neighbourhood of unity, local Lie subgroup is
always closed. Indeed, if we restrict the neighbourhoods U and V such that W is a
slice in U and V , then W is also closed in U and V .
Remark 2.27. Even in the case of local Lie groups it makes sense to construct left- and
right-coset spaces and quotient groups since it is again a local notion. Considering a
local Lie group G = (U, V, e,m) and its subgroup H = (W,V ∩W, e,m|(V ∩W )2), we can
define an equivalence g ∼ g̃ for g, g̃ ∈ V if there exists h1, . . . , hn ∈ V ∩W such that
g̃ = gh1 · · ·hn. For a restriction G1 = (U1, V1, e,m1 = m|V 2

1
) of G = (U, V, e,m) and a

restriction of the subgroup H1 = (W ∩ U1,W ∩ V1, e,m|(W∩V1)2), it can be shown that
the equivalence classes gH, gH1 satisfy gH1 = gH ∩ V1 (thanks to the property that a
connected Lie group is generated by arbitrarily small neighbourhood of unity).

From now on, we will not distinguish between classes and representatives of local
Lie groups and will treat them as ordinary Lie groups keeping on mind that we should
always consider only elements from “small neighbourhood of unity”.

We are going to show that Lie algebras are completely equivalent to local Lie groups.
We show that for every Lie algebra there exists a unique local Lie group, that there is
a one to one correspondence between morphisms of Lie algebras and local Lie groups
and so on. A lot of these statements can be actually formulated for global connected or
simply connected Lie groups. Moreover, every local Lie group can be uniquely extended
to a simply connected global Lie group, so the notion of the local Lie group is actually
redundant. Nevertheless, in the whole thesis, we work with Lie groups only locally,
so the local approach in this section allow us to simplify the proofs and our future
considerations.
Theorem 2.28. Let G1, G2 be Lie groups and α:G1 → G2 an homomorphism. Then
dα is a homomorphism of the corresponding Lie algebras.
Proof. Denote g1 the Lie algebra corresponding to G1. Take a ∈ g1, then α(eta)
is a one-parameter subgroup of G2 that is generated by dα(eta)/dt|t=0 = dαa, so
α(eta) = etdαa. Similarly as in remark 2.18, we can write

dα[a, b] = ∂2

∂t∂s
α(etaesbe−ta) = ∂2

∂t∂s
et dαaes dα be−t dαa = [dαa, dα b].

�
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Remark 2.29. A map is locally injective or surjective in a point if and only if its
differential in the point is injective or surjective. So, for example, isomorphisms of Lie
groups correspond to isomorphisms of Lie algebras.
Theorem 2.30. Let G be a local Lie group and H its Lie subgroup. Then h = TeH =
{a ∈ g | eta ∈ H for all t in some neighbourhood of zero} ⊂ g is the Lie algebra of H.
Proof. Denote h = TeH the Lie algebra of H as a tangent space of Lie algebra of
H at unity. The identity ι:H → G is a homomorphism. The tangent space T̃eH as a
subspace of TeG is formally defined as image of TeH by differential of the inclusion map
dι, which is an injective homomorphism. So, we indeed have that h̃ := T̃eH ⊂ g is also
a Lie algebra of H. The second equation follows from the fact that homomorphic image
of one-parameter subgroup is a one-parameter subgroup, so the exponential h → H
coincide with restriction of the exponential g→ G. �

We are able to construct Lie algebras of Lie groups as tangent spaces at unity and
we are able to construct morphisms of Lie algebras by differentiating morphisms of Lie
groups. Now, we formulate the opposite direction.
Lemma 2.31. Let G be a local Lie group, g its Lie algebra, and h a subalgebra of g.
Then there exists a Lie subgroup H ⊂ G, such that h is its Lie algebra.
Proof. If we interpret h as an algebra of left-invariant vector fields on G, then it is
also an involutive distribution on G. Denote H the integral manifold at unity. If we
show that H is a subalgebra, then it will be clear that its left-invariant vector fields
are in h, so h is its Lie algebra. Take g ∈ H, Lg−1 is a diffeomorphism of G preserving
the left-invariant vector field, so Lg−1(H) has to be the integral submanifold and, since
e ∈ Lg−1(H), it is an integral submanifold at unity and from uniqueness it is equal to
H on a neighbourhood of unity. So, g−1h ∈ H for all g, h in a neighbourhood of unity
in H. �

Lemma 2.32. Let G be a local Lie group, H its subgroup, and g, h the corresponding
Lie algebras. Then H is normal in G if and only if h is an ideal of g.
Proof. The subgroup is normal if and only if for all g, h ∈ G it holds that h ∈ H ⇔
ghg−1 ∈ H. The elements of local Lie group in the neighbourhood of unity can be
uniquely represented by elements of the corresponding Lie algebra. Thus, the condition
can be equivalently represented as eb ∈ H ⇔ eaebe−a = exp(eadab) ∈ H for sufficiently
small a, b ∈ g, where we used Theorem 2.17 to rewrite the expression. This can be
expressed in terms of the Lie algebra elements themself b ∈ h ⇔ eadab ∈ h. Finally, it
is sufficient to show that this is equivalent to the implication b ∈ h ⇒ [a, b] ∈ h. The
“if” direction is trivial. To prove the opposite direction, let us assume, that b ∈ h, then

eadab = b+ [a, b] + [a, [a, b]] + . . . ∈ h,

so, since b on the right-hand side lies in h, we have

h 3 [a, b] + [a, [a, b]] + . . . = eada [a, b],

so [a, b] ∈ h. �

Theorem 2.33. Let G1 and G2 be local Lie groups, g1 and g2 its Lie algebras. For
every homomorphism ϕ: g1 → g2, there exists unique local Lie group homomorphism Φ
such that ϕ = dΦ.
Proof. Take a homomorphism ϕ: g1 → g2. Its graph h := {(a, ϕ(a)) | a ∈ g1} is a Lie
subalgebra of g1 ⊕ g2. We can check that g1 ⊕ g2 is a Lie algebra of G1 × G2. Using
Lemma 2.31, we can find a subalgebra H ⊂ G1 × G2, such that h is its Lie algebra.
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The projection π1:H → G1 of H to G1 is a homomorphism, whose derivative at unity
is a regular mapping (a, ϕ(a)) 7→ a. Hence π1 is a local isomorphism at unity. Denote
π2:H → G2 the second projection, then dπ2 at unity maps (a, ϕ(a)) 7→ ϕ(a). So,
π−1

1 ◦ π2 is the homomorphism we are looking for. �

Theorem 2.34. For a given Lie algebra g, there exists, up to isomorphisms, unique
local Lie group G such that g is its Lie algebra.
Proof. Using the theorem of Ado 2.19, we can assume that g is a subalgebra of gl(V )
for some vector space V . Using the preceding lemma, we find the local Lie group
G ⊂ GL(V ). The uniqueness follows from Theorem 2.33 (identical map of the Lie
algebra induces an isomorphism of its different local Lie groups). �

2.4 Canonical coordinates
Since we are going to work with Lie groups only locally, it is useful to define some
coordinates on Lie groups.

As we remarked in 2.15, exp is a local diffeomorphism between Lie algebra and Lie
group. We can therefore locally define the inversion of exponential map—the logarithm
ln:G → g. If we fix a basis of g, say (e1, . . . , en), it defines us coordinates on the
Lie algebra g, which induce logarithmic coordinates on G through relation xi = ei ln g,
where (e1, . . . , en) is the dual basis. The element gx with coordinates x = (xi) can be,
therefore, written as

gx = exp
(

n∑
i=1

xiei

)
. (6)

One could, however, also exponentiate multiples of the basis elements at first and
then take their product. Generally, consider a linear decomposition of g to a direct sum
of linear subspaces g = g1⊕ g2⊕ . . .⊕ gm. Then the map Φ: g→ G, a 7→

∏m
k=1 exp(ak),

where ak is a projection of a onto gk, is a local diffeomorphism of a neighbourhood of
zero onto a neighbourhood of unity too since Φ(0) = e and

dΦ0 ei = d
dtΦ(tei)

∣∣∣∣
t=0

= d
dt exp(tei)

∣∣∣∣
t=0

= ei,

where (ei) is a basis such that each basis element belongs to one of the subspaces gk, so
the derivative at zero is again identity. Such map Φ is called canonical and the induced
coordinates with coordinate functions ei ◦ Φ−1, where (ei) is the dual basis to (ei), are
called canonical coordinates.

For a trivial decomposition g = g1 we get the logarithmic coordinates, which are also
called first canonical coordinates. On the contrary, if we have m = n, so each of the
subspaces is one-dimensional, we get the second canonical coordinates

gx =
n∏
i=1

exp(xiei). (7)

Let us now look on the coordinate expression of the basic Lie group structures. Let
ψ1, . . . , ψn be arbitrary local coordinate functions of G in the neighbourhood of unity.
Denote gx = ψ−1(x) as in the preceding text. Then the basis vectors of VectM module
can be written as ∂xi = ∂iψ

−1 = ∂xigx.
Now, we can define a coordinate expression of the multiplication m(g, h) = gh as

M :Rn × Rn → Rn, M i(x, y) = ψi(m(gx, gy)) = ψi(gxgy). This map is called the
composition function.

10
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We can also explicitly express the form of left-invariant vector fields on G. Let
e1, . . . , en be a basis of the Lie algebra g of G (as an algebra of tangent vectors).
Then the corresponding basis of the algebra of left-invariant vector fields has the form
(Xi)g = dLg ei. So, the coordinate expression is

Xa
i (x) = ∂ψa(Lgx(gy))

∂yj

∣∣∣∣
y=0

eji = ∂Ma(x, y)
∂yi

∣∣∣∣
y=0

. (8)

In the rest of this subsection, we describe computation of left-invariant vector fields
in the second canonical coordinates as was proposed by I. V. Shirokov in [28].

At first, let us have a look on the differential dLg and compute its components at
unity [

(dLgy )e
]i
j

= dxi dLgy ∂xj |x=0 = dxi dLgy ∂xigx|x=0 =

= ∂

∂xj
(
ψi(Lgy (gx))

)∣∣∣∣
x=0

= ∂M i(y, x)
∂xj

∣∣∣∣
x=0

= X i
j(y).

(9)

In the following calculations, we omit the index e at dLgy . So, the differential dLgy is
a matrix, whose columns is formed by the left-invariant vector fields. This relation can
be inverted

[dLg−1
y

]ji = [dL−1
gy

]ji = ωji (y), (10)

where ωj are the dual one-forms corresponding to left-invariant vector fields Xj . These
are also called left-invariant one-forms.

Now, choose the second canonical coordinates such that

gx = gn(xn) · · · g1(x1) where gk(t) = etek . (11)

We have
d
dtgk(t) = d

dte
tek = (Xk)etek = dLgk(t) ek,

so
∂xk = ∂xkgx = ∂xk

(
Lgn(xn)···gk+1(xk+1)Rg1(x1)−1···gk−1(xk−1)−1gk(xk)

)
=

= dLgn(xn)···gk+1(xk+1) dRg1(x1)−1···gk−1(xk−1)−1 dLgk(xk) ek.
(12)

Finally, since left translations commute with right translations, we can formulate the
expression for the dL−1

gx
in terms of the adjoint map using equation (2) as

[dL−1
gx

]ji = dxj dLg−1
x
∂xi = dxj Adg1(x1)−1 · · ·Adgi−1(xi−1)−1 ei =

=
[
exp(−x1 ade1) · · · exp(−xi−1 adei−1)

]j
i
.

(13)

So, in order to calculate the coordinates of left-invariant vector fields, it is sufficient
to calculate the inversion of the matrix whose elements is given by the formula (13).

2.5 Lie group action on a manifold
Let G be a Lie group and M a manifold. Although an action of a group is usually
considered as a left action, in this case it is convenient to consider right actions. We
will also always assume smoothness of the action. So, by an action of G on M , we
always mean a smooth right action π:M × G → M . A manifold equipped with an
action of a Lie group G is called a G-manifold.

We recall the definition of action morphisms.

11
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Definition 2.35. Let G1 and G2 be Lie groups, π1 and π2 their actions on manifolds
M1 and M2. A smooth map Φ:M1 →M2 is called a morphism if there exists a homo-
morphism ϕ:G1 → G2, such that

Φ(π1(p, g)) = π2(Φ(p), ϕ(g)). (14)

If Φ is bijective, it is called a similitude. It is called an isomorphism if, in addition,
G1 = G2 and ϕ is identity.
Lemma 2.36. Let G be a Lie group, g its Lie algebra, M a manifold, and π an action
of G on M . Then the mapping g→ VectM

a = Xe 7→ X̂, X̂p = dπp a = d
dt (πpe

−ta)
∣∣∣∣
t=0

= d
dt (p · e

−ta)
∣∣∣∣
t=0

, (15)

where X is the left-invariant vector field corresponding to a tangent vector a ∈ g = TeG
and πp is the orbit map of point p, is a homomorphism.
Proof. Let us have a, b ∈ g, X,Y the corresponding left-invariant vector fields. Then

dπpXg = dπp dLg
d
dte

ta

∣∣∣∣
t=0

= d
dtpg eta

∣∣∣∣
t=0

= dπpg a = X̂pg = X̂πp(g).

Similarly, Ŷπp(g) = dπpYg, so [X̂, Ŷ ]πp(g) = dπp [X,Y ]g. Therefore,

[X̂, Ŷ ]p = [X̂, Ŷ ]πp(e) = dπp [X,Y ]e = dπp [a, b] = ̂[X,Y ]p.
�

Definition 2.37. The vector field X̂ of the previous lemma is called the fundamental
vector field of the action π corresponding to the vector field X. The homomorphism
X 7→ X̂ will be denoted as π∗.

For the map g 7→ πg, where πg(p) = π(p, g), we have πG ⊂ DiffM because we demand
the action π to be smooth. Therefore, the action of a group on a manifold can be
understood as a generalization of the notion of one-parameter group of diffeomorphisms,
i.e., a global flow. However, it is not one-parameter anymore. To complete the analogy,
we bring the following definition corresponding to the notion of a local flow.
Definition 2.38. Let G be a Lie group and M a manifold. By a local action of G on M
we mean a smooth map π:W → M , where W is an open subset of G ×M such that
{e} ×M ⊂W satisfying π(e, p) = p for all p ∈M and π(g, π(h, p)) = π(gh, p) for all g
and h for which both sides are well-defined.

If we consider an action of a local Lie group, we automatically mean a local action.
In the case of local Lie groups, one also need to consider locally the properties of the
action. For example, an action π of a local Lie group G is called (locally) transitive if for
every point p ∈M there is a neighbourhood U of p such that for all q ∈ U there exists
g ∈ G such that q = π(p, g). Formally, if we understand local Lie groups as equivalence
classes, we should define the actions of local Lie groups as equivalence classes as well.
Two local actions of a global Lie group G on a manifold M are equivalent if there exists
a local action of G on M that is their common restriction.

It can be shown that a stabilizer of a given point for a local action of a (local) Lie
group G is a local subgroup of G. The action is free if the stabilizer is trivial. Note
that in the case of local action of a global Lie group the stabilizer is again only a local
subgroup, not global.

It seems natural that a local action is described by the infinitesimal action, that is,
the differential dπp for every p ∈ M . The role of the infinitesimal generators is played
by the images of Lie algebra g of G through the mapping dπp—the fundamental vector
fields.

12
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Theorem 2.39. Let G be a Lie group, g its Lie algebra, M a smooth manifold, and
ϕ: g → VectM a homomorphism. Then there exists unique local action π of G on M
such that ϕ = π∗. This action is effective if and only if ϕ = π∗ is an isomorphism.
Proof. According to Remark 2.21 the Lie group corresponding to VectM is DiffM .
According to Theorem 2.33, Lie algebra homomorphism ϕ defines a unique homomor-
phism of local Lie groups π:G → DiffM , which is an isomorphism if and only if ϕ is
an isomorphism. �

It is again useful to be able to express these structures in coordinates. Let us have
local coordinates of a given Lie group G in a neighbourhood of unity x1, . . . , xn and
local coordinates of a given manifold M q1, . . . , qm. Then, for arbitrary action π of G
on M , we can define its coordinate representation as a function Π:Rm×Rn → Rm. Let
g be a Lie algebra of G and e1, . . . , en its basis. Then the algebra of fundamental vector
fields is generated by (X̂i)p = dπp ei. The coordinates of these vector fields are

X̂a
i (q) = ∂Πa(q, x)

∂xi

∣∣∣∣
x=0

. (16)

Given a group G acting on a set X and a point x ∈ X, the stabilizer Gx of x is
a subgroup of G. The space of right cosets Gx \ G with right multiplication of G is
isomorphic to the orbit xG of x through map Gxg 7→ xg. This can be generalized to
the case of Lie groups.

Given a smooth action of a Lie group G on a manifold M , the right coset space
Gp \ G for p ∈ M can be given a structure of a manifold through the quotient map
g 7→ Gpg. It holds that there exists a unique smooth structure on Gp \G such that the
quotient map is smooth. For us, it is sufficient to bring the construction just locally.
Let h be the Lie algebra of stabilizer Gp. It is a subalgebra of g consisting of vector
fields whose integral curves act on p trivially, so it is the kernel of dπp at unity. Let V
be a vector space complement of h in g, so g is a direct sum of vector spaces g = V ⊕ h.
Denote (e1, . . . , ek) the basis of V and (ek+1, . . . , en) the basis of h. We can define
second canonical coordinates on G in the neighbourhood of unity by relation

g(t1,...,tn) = exp(tnen) exp(tn−1en−1) · · · exp(t1e1). (17)

We can define coordinates on Gp \G as ḡt1,...,tk = Gpgt1,...,tk,0,...,0. It is evident that the
quotient map is smooth with respect to these coordinates since its coordinate represen-
tation is (t1, . . . , tn) 7→ (t1, . . . , tk). It is also clear that the right action of G on Gp \G
is smooth as well. We can introduce the map π̃p:Gp \G→M Gpg 7→ pg. It is injective
(mapping bijectively Gp \G onto pG) and its differential at unity dπ̃p is restriction of
dπp at unity on a complement of its kernel, so it is injective as well. Therefore, we
locally proved the following theorem.
Theorem 2.40. Let π be an action of G on the manifold M , p ∈M . Then the quotient
map induces a structure of a smooth manifold on Gp \ G. This manifold is immersed
in M as the orbit of p by π̃p:Gp \G→M Gpg 7→ pg.

In particular, if π is transitive, then the map π̃p is a diffeomorphism.
Corollary 2.41. Let π be a transitive action of G on the manifold M , p ∈M . Then the
G-spaces M and Gp \ G are isomorphic. In particular, it means that if π is transitive
and free, then it is isomorphic to the right translations of G.
Remark 2.42. An interesting question is, what are the fundamental vector fields for
the action of right translations. The right action of right multiplication and the left
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action of left multiplication taken as a map G × G → G are in fact both identical to
simple multiplication. The difference is only in the notation. Moreover, the orbit map
of the right multiplication is the left multiplication and vice versa. So, for a ∈ g and X
the corresponding left-invariant vector field, we have

X̂g = dLg a = Xg,

so the fundamental vector fields of right translations are the left-invariant vector fields.
As we mentioned above, we proved Theorem 2.40 only locally. To formulate the

local version of this proposition properly it is convenient to introduce the notion of
“locally defined action”. The local action, as defined in by 2.38, is defined on the whole
manifold M at least for group elements very close to unity. Consequently, it defines
global fundamental vector fields on M that realize the Lie algebra corresponding to the
Lie group. However, the action of right multiplication on a local Lie group G or a right
coset space H \G is not only local (because the group is local) but also locally defined,
because the manifold is also “only local”. Formally, we should again define the locally
defined actions as some equivalence classes.
Definition 2.43. Let G be a (local) Lie group, M a manifold p ∈ M . Let U1 and U2
be neighbourhoods of p. Then local actions of G on U1 and U2 are locally equivalent
at p if there is a neighbourhood V ⊂ U1 ∩U2 of p and an action of G on V that is their
common restriction. The classes of equivalence are called locally defined actions at p.
A locally defined action is called faithful or transitive if there exists its representative
that is faithful or transitive.
Definition 2.44. Let G1 and G2 be local Lie groups, π1 and π2 their locally defined
actions at p1 ∈ M1 and p2 ∈ M2. A morphism of their representatives Φ:U1 ⊂ M1 →
U2 ⊂M2 is called a morphism of the locally defined actions if Φ(p1) = p2. In the same
manner we define a similitude and an isomorphism.

We will now formulate the local version of Corollary 2.41 using this notion, which
will be important in Chapter 4.
Theorem 2.45. Let π be a locally defined transitive action of G on the manifold M at
p ∈M . Then the quotient map induces a structure of a smooth manifold on Gp\G. The
action π is isomorphic to right multiplication on Gp \G (locally in the neighbourhood
of unity class Gp) through π̃p:Gpp 7→ pg.

Finally, since every transitive action is, according to this theorem, isomorphic to
right multiplication of a local Lie group G on some coset space H \ G. It will be
convenient to be able to express the fundamental vector fields of such actions explicitly.
As was mentioned in Remark 2.42, the fundamental vector fields corresponding to trivial
subgroup H = E are left-invariant vector fields. Those can be explicitly computed
in second canonical coordinates by simple formula described in Section 2.4 as was
suggested in [28]. Fundamental vector fields corresponding to non-trivial subgroup H
are essentially just projection of the left-invariant vector fields on the submanifoldH\G.

The explicit computation is described in [15]. It is convenient to use second canonical
coordinates of the form (17). We can see that the right multiplication acts as

ḡt1,...,tkgx1,...,xn = Gpgt1,...,tk,yk+1,...,yngx1,...,xn = ḡM1((t,y),x),...,Mk((t,y),x) (18)

for arbitrary yk+1, . . . , yn, where M is the composition function. So, the coordinate
expression for the action is

Πi(t, x) = M i((t, y), x) (19)
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for i = 1, . . . , k. Therefore, according to equation (16) the coordinates of the funda-
mental vector fields are

X̂a
i (t) = ∂Πa(t, x)

∂xi

∣∣∣∣
x=0

= ∂Ma((t, y), x)
∂xi

∣∣∣∣
x=0

= Xa
i (t, y), (20)

where Xi are the left-invariant vector fields. So, the first k coordinates of the left-
invariant vector fields depend only on the first k coordinates of the position and coincide
with the coordinates of the fundamental vector fields.

15



Chapter 3
Classification problems of Lie algebras

In this chapter, we mention the important results regarding classification of Lie algebras.
The goal of this work is to classify realizations of five-dimensional Lie algebras. Firstly,
we have to know the list of all five-dimensional Lie algebras. Secondly, as we show
in Chapter 4, we need classification of subalgebras of the Lie algebras with respect to
some groups of automorphisms. The following sections are devoted to these problems.

Since both those problems—finding the groups of automorphisms and classification
of subalgebras—are very interesting by themselves, we publish our results together with
the classification of realizations in the Section A.2 of the appendix.

The description of general theory is based on [27, 2]. The important classification
results are cited in the text.

3.1 Classification of Lie algebras of a given
dimension

The problem of finding all Lie algebras of a given dimension was treated by
G. M. Mubarakzyanov and solved for dimensions less or equal to five [16–17].
The relevant results of the Mubarakzyanov classification are summed up in Section A.1
of the appendix.

3.2 Groups of automorphisms of Lie algebras
Given a Lie algebra g, all its automorphisms form a group that will be denoted Aut g.
Given a basis (ei) of g, the condition for a linear operator α: g→ g to be an automor-
phism α[x, y] = [α(x), α(y)] can be rewritten as∑

j

αijc
j
kl =

∑
j,m

cijmα
j
kα

m
l , (1)

where cijk are the structure constants of the Lie algebra and αij are the matrix elements
of α in the basis (ei). Solving this equation for the matrix elements αij gives the general
form of an automorphism of g.

The groups of automorphisms of all Lie algebras of dimension less or equal to five
were computed in [6]. For every Lie algebra we have been studying in our work, we have
computed independently the group of all automorphisms and checked the correctness
of those results.

Please note that when formulating the automorphisms in a form of matrices, we
interpret the upper index as row index and the lower index as column index. Some
authors use the opposite convention.

Automorphisms of algebras are closely connected their derivations.
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Theorem 3.1. Let (A,m) be a finite-dimensional algebra and D:A → A a homomor-
phism. Then etD (as an ordinary matrix exponential) is a group of automorphisms if
and only if D is a derivation.
Proof. The assertion that etD is an automorphism means that, for all x, y ∈ A,

∞∑
k=0

Dk

k! m(x, y) =
∞∑
i=0

∞∑
j=0

ti+jm

(
Di

i! x,
Dj

j! y
)
.

Comparison of the terms linear in t gives us D(m(x, y)) = m(Dx, y) +m(x,Dy).
Now, let D be a derivation. Since exponential of an operator is always invertible, we

only have to prove the homomorphism property. Using the general Leibniz rule we get

eDm(x, y) =
∞∑
k=0

Dk

k! m(x, y) =
∞∑
k=0

k∑
l=0

(
k

l

)
m(Dlx,Dk−ly) =

=
∞∑
k=0

k∑
l=0

1
l! (k − l)!m(Dlx,Dk−ly) = m

 ∞∑
i=0

Di

i! D
ix,

∞∑
j=0

Dj

j! y

 =

= m(eDx, eDy). �

In case of Lie algebras, it follows that the Lie algebra of derivations Der g is the Lie
algebra of Aut g as a Lie group. Note however that the map exp:Der g→ Aut g might
not be surjective. Moreover, exp(g) might not generate Aut g. In other words, there
may exist elements α ∈ Aut g that are not of the form eD for some D ∈ Der g and
there might also exist so called discrete automorphisms that cannot be expressed as a
product of automorphisms of such form.

An important subalgebra of Der g is the subalgebra of inner derivations adg = {adx |
x ∈ g}, where adx: g → g is the adjoint representation of x ∈ g mapping y 7→ [x, y].
The corresponding Lie group generated by elements of the form eadx , x ∈ g is denoted
Int g and its elements are called inner automorphisms of the Lie algebra.

Consider the local Lie group G corresponding to g. Then the generators of Int g can
be expressed as Adg, g ∈ G since et ada = Adeta .

Note that some authors define the group of inner automorphisms as generated only
by exponentials of such elements adx that are nilpotent. This definition is, of course,
stronger and does not correspond to the adjoint representation of the corresponding
connected Lie groups as indicated above.

Since Int g is generated by curves, it has to be path-connected and hence connected.
Therefore, it is generated by any open subset. In particular, by domain of second
canonical coordinates

(t1, . . . , tn) 7→ α(t1, . . . , tn) := et1 ade1 et2 ade2 · · · etn aden , (2)

where (en) is a basis of g. Thus, Int g is generated by et adei .
This is also the easiest way, how to explicitly compute the group of inner automor-

phisms. Very often it holds that the automorphisms of the form (2) are closed with
respect to composition, so they already form the whole group of the inner automor-
phisms. According to [6] there are only two exceptions in dimension less or equal to
five.

The group of inner automorphisms is, of course, a subgroup of Aut g (but not neces-
sarily a Lie subgroup, i.e., it does not have to be an embedded submanifold). Moreover,
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it is a normal subgroup. Taking a Lie algebra automorphism, denote α the correspond-
ing local Lie group automorphism. Then, differentiating the homomorphism property
α ◦ Cg = Cα(g) ◦ α, we get dα Adg = Adg dα, which proves the statement. We can,
therefore, compute the quotient group Aut g/ Int g, whose elements are called outer
automorphisms.

3.3 Classification of subalgebras of a given Lie
algebra

For a given algebra we can also look for a set of its subalgebras. Finding such list is
quite easy. A harder task is to divide the subalgebras into classes with respect to the
following equivalence.
Definition 3.2. Let g be a Lie algebra and A ⊂ Aut g be a group of automorphisms of
g. Subalgebras h and h′ are called A-conjugate if there is an automorphism α ∈ A such
that h′ = α(h).

Universal classification methods were introduced in [25]. They are based on induc-
tion: using classification of lower-dimensional Lie algebras, we find the classification of
a direct or semidirect sum. The authors also provided subalgebra classification for all
Lie algebras of dimension not greater than four with respect to inner automorphisms
in [24]. A classification of subalgebras of physically interesting Poincaré and Galilei Lie
algebras together with the related theory is available in [7].

As we are going to describe in Chapter 4, we are going to need a classification of
subalgebras with respect to groups of all and inner automorphisms. In this particular
work, we were able to obtain results for all five-dimensional indecomposable nilpotent
Lie algebras.

To obtain our classification, we used much simpler method than [25].
At first, we find all subalgebras of a given Lie algebra. This task is very simple and

can be done very quickly by computer. We just list all subspaces of the Lie algebra and
for each we check whether it is closed with respect to Lie bracket. Then we express the
action of the groups of automorphisms on these subalgebras and divide them into the
conjugacy classes. Practically, the easiest way to do that is to guess the answer and
then check by computer, whether it is right.

We believe that such straightforward computation is in our case better that the
inductive approach proposed in [25] for several reasons. Firstly, using computer algebra
system makes it about equally exacting and time-consuming. Secondly, it does not
depend on correctness of several previous results, so it is more reliable. And thirdly, the
results for classification of four-dimensional Lie algebras is available only with respect
to inner automorphisms, not with respect to the group of all automorphisms.
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Chapter 4
Classification of realizations

In this chapter the main theoretical results of this work are contained. Those results
are also the subject of an article in preparation, whose preprint is available on arXiv
[11].

As we have mentioned in the introduction, our goal was to continue in the work
[26], which classifies realizations of all Lie algebras up to dimension four, and try to
obtain realizations classification of five-dimensional Lie algebras. In order to do that,
we developed a simple algortithm that leads to such classification.

As we indicated in Section 2.5, there is a close relationship between realizations of Lie
algebras by vector fields and actions of the corresponding Lie group. This relationship
is studied in more detail in Section 4.2.

An important class of realizations are so called transitive realizations. Theoretical
results on classification of transitive local realizations, together with powerful methods
of explicit computation are already available in the literature [1, 4, 12, 15]. In partic-
ular, it can be shown that classification of all transitive realizations is equivalent to
classification of subalgebras. These results are summarized in Section 4.3.

On the basis of those results, our algorithm is formulated. The key correspondence
between realizations and subalgebras was generalized to the case of regular realizations
in Section 4.6. The main result formulated in Theorem 4.19 is followed by a simple
example illustrating the practical computation.

When dealing with general realizations it is actually not so clear how to choose
the classification problem to get reasonable results. As we show in Section 4.7 one of
possible classification problems could be to find a system of local realizations such that
every realization is at each point of a dense subset of its domain locally equivalent to
some realization of this system. Such a system will be called a complete system of local
realizations (see Definition 4.24) and we show that such a system can be chosen to
consist of regular local realizations.

Finally, in Section 4.8, we formulate an algorithm that solves the established classi-
fication problem (that is, to find the complete system of local realizations) and Theo-
rem 4.32 summarizing this algorithm is followed by an example illustrating this proce-
dure.
Definition 4.1. Let g be a Lie algebra and M a manifold. A realization of g on the
manifold M is a homomorphism R: g → VectM . The realization is called faithful if it
is injective.

This definition was adopted from [26]. Another approach is to consider a derivation
of the algebra of formal power series over a field F of characteristic zero DerF [[x]]
instead of vector fields (see for example [4]). This definition is more general regarding
the arbitrary field F , on the other hand it corresponds to local analytic realizations
only.

By restricting the realizing vector fields on an open subset U of M we get a restriction
of a realization on U , which we will denoteR|U . The manifold, where the realizing vector
fields are defined is called the domain of the realization and denoted DomR.
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The realizations are often considered only locally. This means that we specify a point

in the manifold M and consider the realizing vector fields only in a small neighbourhood
of this point. This is equivalent to considering the realizations on a neighbourhood of
zero at Rm. Formally, the notion of local realization can be defined as an equivalence
class, as in the case of Lie group actions (cf. Definition 2.43). The notion of a local
realization is introduced to simplify the classification problem leaving aside the global
structure of the manifold and the realizing vector fields.
Definition 4.2. Let g be a Lie algebra, M a manifold p ∈ M . Let U1 and U2 be
neighbourhoods of p. Then realizations R1 and R2 of g defined on U1 and U2, respec-
tively, locally coincide at p if there is a neighbourhood V ⊂ U1 ∩ U2 of p such that
R1|V = R2|V . The classes of locally coincident realizations at a specified point p are
called local realizations at p. A local realization is faithful if every its representative is
faithful.

We will usually not strictly distinguish between local realizations and their represen-
tatives. For a given global realization R defined on a manifold M we denote R|p the
corresponding local realization at p ∈M . For a given local realization R at p ∈M and
U a neighbourhood of p we denote R|U the corresponding representative defined on U .

4.1 Realizations equivalence
As, for example, in the case of representations by matrices, it does not make sense to find
the list of literally all the representations. We usually introduce some equivalence be-
tween representations and classify the equivalence classes. The definition of realization
equivalence is an analogy of action isomorphism and similitude (cf. Definitions 2.35,
2.44).
Definition 4.3. Let g be a Lie algebra andM1 andM2 manifolds. Let A be a subgroup of
Aut(g). Realizations R1: g → Vect(M1) and R2: g → Vect(M2) are called A-equivalent
if there exist an automorphism α ∈ A and a diffeomorphism Φ:M1 → M2 such that
R2(α(x)) = Φ∗R1(x) for all x ∈ g. If we do not consider automorphisms (so A = {id})
the realizations are called just equivalent (or strongly equivalent in case we need to
emphasise that we do not consider automorphisms). For inner automorphisms A = Int g
we will write shortly Int-equivalent and for all automorphisms A = Aut g we will say
Aut-equivalent.
Definition 4.4. Local realization R1 at p1 ∈M1 is A-equivalent to local realization R2
at p2 ∈ M2 if there exist their representatives defined in neighbourhoods U1 3 p1,
U2 3 p2 that are A-equivalent and the corresponding diffeomorphism Φ:U1 → U2
satisfies Φ(p1) = p2.

For a given global or local realization R we denote R̄ the corresponding equivalence
class. It should be clear from context which group of automorphisms A we consider.

Since faithfulness of the realization or the dimension of the realizing manifold is
invariant under the equivalence, we can assign those characteristics to the classes. In
particular, in case of local realizations, the global structure of the manifold is irrelevant
and the dimension is the only characteristic of the manifold, so we often refer to a class
of local realizations in m variables.

Every class of local realizations in m variables R̄ of an n-dimensional Lie algebra
g can be represented by a realization defined in a neighbourhood of zero in Rm, so
it is determined by n · m functions ξji , i = 1, . . . , n, j = 1, . . . ,m defined in some
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neighbourhood of zero at Rm that form one of the representatives R0 ∈ R̄

R0(ei) =
m∑
j=1

ξji (x
1, . . . , xm)∂xj . (1)

It means that for all representatives R defined a neighbourhood of a point p ∈M there
exist coordinates (x1, . . . , xm) in some neighbourhood of p such that the coordinate
expression of R coincides with (1).

This also illustrates the connection with the definition of realizations by derivations
of formal power series. In this case, we have formal power series instead of the functions
ξji and the equivalence is provided by formal coordinate change preserving zero (since
all the power series are centered at zero). Therefore, there is a one-to-one correspon-
dence between local realizations at zero that have an analytic representative and formal
realizations that have a convergent representative and also between the corresponding
classes. In the case of so called transitive realizations (see Section 4.3), it can be shown
that all classes of local realizations have an analytic representative and all classes of
formal realizations have a convergent representative.

4.2 Realizations and group actions
The fundamental result of the Lie theory described in Chapter 2 is that local transfor-
mations are completely defined by vector fields representing the infinitesimal transfor-
mations. That is, for a local Lie group and its action on a manifold we can find the
fundamental vector fields that essentially form a subalgebra of the corresponding Lie
algebra. The map π∗: g → VectM is actually a realization of g on M . On the other
hand, according to Theorem 2.34, every Lie algebra uniquely defines a local Lie group
and, according to Theorem 2.39, for every realization there exists, up to isomorphism,
a unique local action of the corresponding Lie group.

Moreover, A-classes of realizations correspond to A-classes of local actions in the
following sense. Let G a local Lie group and g its Lie algebra. We say that actions π(1)

and π(2) of G acting on M1 and M2, respectively, are A-similar for A a subgroup of
AutG if there is a diffeomorphism Φ:M1 →M2 and an isomorphism ϕ ∈ A satisfying

Φ(π(1)(p, g)) = π(2)(Φ(p), ϕ(g)). (2)

Lemma 4.5. Let G be a local Lie group and g its Lie algebra. Local actions of G on
manifolds M1 and M2 are A-similar if and only if the corresponding realizations of the
Lie algebra g are dA-equivalent, where dA = {dϕ | ϕ ∈ A} ⊂ Aut g.
Proof. Let π(1) and π(2) be actions of G on M1 and M2 and denote the corresponding
realizations R1 = π

(1)
∗ and R2 = π

(2)
∗ . Denote π̃(i):G → DiffMi π̃

(i)(g)(p) = π(i)(p, g).
The condition (2) can be rewritten as

Φ ◦ π̃(1)(g) ◦ Φ−1 = π(2)(ϕ(g)).

Note that the expression on both sides of the equation is a local Lie group homomor-
phism in g mapping G→ DiffM2. Differentiation of this equation in g leads to

Φ∗R1(a) = Φ∗ ◦R1(a) ◦ (Φ−1)∗ = R2(dϕa),

which means that R1 is equivalent to R2 through diffeomorphism Φ and automorphism
dϕ. This proves the left-right implication and thanks to Theorem 2.33 it also proves
the opposite direction. �
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We can do the same for local realizations that correspond to locally defined actions

(Definition 2.43). We can again define the A-similitude for locally defined actions by
generalizing Definition 2.44. Then A-classes of local realization correspond to A-classes
of locally defined actions.

4.3 Classification of transitive realizations
Definition 4.6. Let R be a realization of a Lie algebra g on a manifold M . The rank of
the realization R at point p ∈M is the rank of the linear map Rp: g→ TpM , v 7→ R(v)p,
that is, rankRp = dimR(g)p = dim{R(v)p | v ∈ g}. If the function p 7→ rankRp is
locally constant at p0 we say that R is regular at p0. Local realizations at p are called
regular if their representatives are regular at p.
Lemma 4.7. Let R be a realization of a Lie algebra g on a manifold M . Let G be a
local Lie group of g and π a local action on M corresponding to R. The local action π
is (locally) transitive if and only if the rank of R is constant and equal to m = dimM ,
i.e., the map Rp: g → TpM is surjective for every p ∈ M . A locally defined action
is (locally) transitive if the corresponding local realization in m variables has rank m.
Realizations satisfying this property are called transitive as well.
Proof. The map Rp is in fact identical to dπp. Therefore, it is surjective if and only if
πp is “locally surjective”, i.e., there exists a neighbourhood V of p such that πp(G) ⊃ V .
Equivalently, for every q ∈ V there is a g ∈ G such that q = π(p, g). �

According to Theorem 2.45, every locally defined transitive action at p ∈ M of a
local Lie group G is isomorphic to the right multiplication of G acting on Gp \ G.
Hence, any locally defined transitive action of G is, up to isomorphisms, described by
the subgroup H representing a stabilizer of a given point in G. On the other hand, for
a given subgroup H we can easily construct such an action as the right multiplication
of G on H \G.

In the language of Lie algebras it means that every strong class of local transitive
realizations of a Lie algebra g is uniquely determined by a subalgebra h.

This correspondence can be formulated purely algebraically without need of intro-
ducing (local) Lie groups and their action. For a local realization R at p ∈M of a Lie
algebra g the corresponding subalgebra h ⊂ g can be defined as the kernel of the linear
map g→ TpM , a 7→ R(a)p. On the other hand, to prove that every subalgebra defines
uniquely a strong class of local realizations is not so simple. In the case of realizations
by formal power series over general field F , the correspondence was proven by Guillemin
and Sternberg [12]. Later, Blattner [1] came with even more abstract proof of corre-
spondence between subalgebras and certain classes of representations. These works are
valuable not only because they are very general in the definition of realization, but they
are also obtained purely algebraically.

Moreover, we can easily see that A-classes of local realizations correspond to A-
conjugacy classes of subalgebras. Indeed, taking a local realization R and the corre-
sponding subalgebra h = kerRp, the subalgebra that corresponds to R ◦ α for α ∈ A is
simply kerRp ◦ α = α(kerRp) = α(h). So, we have the following.
Lemma 4.8. Let g be a Lie algebra and A ⊂ Aut g a group of automorphisms. Local
transitive realizations correspond to A-conjugate subalgebras of g if and only if they
are A-equivalent.

Finally, the faithfulness of the realization can be characterized by property of the
subalgebra. From the theory of group actions we know that the kernel of an action of
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right multiplication on H \ G is the largest normal subgroup contained in H. Using
Lemma 2.32 we can transfer this relation to Lie algebras and realizations and formulate
the following propositions.
Lemma 4.9. The kernel of a local transitive realization of g is the largest ideal contained
in the corresponding subgroup of g.
Lemma 4.10. A transitive realization of a Lie algebra g is faithful if and only if the
corresponding subalgebra of g does not contain any non-trivial ideal of g.

An algebraic proof of these propositions is presented for example in [4]
To sum up, classification of all local transitive realizations with respect to a group of

automorphisms A is equivalent to classification of subalgebras with respect to A. The
corresponding representatives of those classes are fundamental vector fields of right
multiplication of G on H \ G, where G is a local Lie group corresponding to the Lie
algebra g and H is its subgroup corresponding to a subalgebra h considered. The
explicit form of those realizations can be computed by algorithm of Shirokov et al. [15]
described at the end of Section 2.5.

This method was already used to classify transitive realizations of low-dimensional
Poincaré algebras [19] and Galilei algebras [20].
Remark 4.11. In [14] Lie conjectured that any local transitive realization can be ex-
pressed (after a suitable change of coordinates) by entire functions of coordinates and
exponentials of linear functions in coordinates (over C). Over R (or arbitrary other field)
it can be reformulated as follows. Any local transitive realization can be expressed in
certain coordinates (i.e., any class has such representative in Rm) as functions of coor-
dinates that are a solution of some differential equation with constant coefficients.

For certain types of realizations, this conjecture was proven by Draisma [3] but it
was not proven generally (and Draisma believes that it is generally not true). The
Shirokov’s method does not prove or disprove this conjecture. Nevertheless, we are
able to formulate weaker proposition. Every realization constructed by the Shirokov’s
method is a rational function of functions of coordinates that are a solution of a differ-
ential equation with constant coefficients. So, over C it would be a rational function of
exponentials.

4.4 Inner automorphisms
In this section, we describe, how inner automorphisms act on transitive local realiza-
tions, which will be important for classification of regular local realizations.
Lemma 4.12. Let G be a (global) Lie group and g its Lie algebra. Let H be a subgroup
of G and take g ∈ G. Then (global) realization on H \G by fundamental vector fields
of right multiplication by G is strongly equivalent to realization by fundamental vector
fields on the manifold H̃ \G, H̃ = g−1Hg.
Proof. Take the action π of right multiplication corresponding to the first realization.
Then H is the stabilizer of the class corresponding to unity ē = H. We can easily see
that H̃ = g−1Hg is the stabilizer of a point ēg = Hg = ḡ. According to Theorem 2.40 π
is isomorphic to the right multiplication on H̃\G, which is the action that corresponds to
the second realization. This action isomorphism being also a manifold diffeomorphism
provides the equivalence. �

This means that globally Lemma 4.8 does not hold. For different conjugated sub-
groups, which correspond to subalgebras that are inequivalent with respect to strong
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equivalence but equivalent with respect to inner automorphisms, we get strongly equiv-
alent realizations. This lemma holds locally because we cannot consider translations as
coordinate changes for local realizations, which are defined only by local behaviour in
a given point. In terms of local realizations, we can formulate the following lemma.

Lemma 4.13. Let R be a transitive realization of g on M , p ∈M . Then for every q ∈M
the local realizations R|p and R|q are equivalent with respect to inner automorphisms.
Conversely, for every neighbourhood U of p there exists a neighbourhood of unity V in
the group of inner automorphisms such that for every α ∈ V there exists q ∈ U such
that R|p and R|q correspond to α-conjugated subalgebres and hence are α-equivalent.
Proof. Denote h and h̃ the subalgebras corresponding to local realizations R|p and R|q.
Choose a local Lie group G and denote H, H̃ the corresponding subgroups. Denote π
the corresponding action of G on M . From transitivity of the realization there exist
g ∈ G such that q = π(p, g), so H̃ = g−1Hg. Thus, h̃ = Adg−1 h, so the realizations are
equivalent with respect to this inner automorphism.

The second proposition is just a local version of Lemma 4.12. �

Convention. When presenting concrete examples we will use x1, . . . , xm as coordinates
with lower indices to simplify notation and avoid confusion with powers. The partial
derivatives are denoted just ∂i instead of ∂xi .

Example 4.1. Take a Lie algebra g3,1 = span{e1, e2, e3}, [e2, e3] = e1. All one-
dimensional subalgebras and the corresponding realizations in a neighbourhood of
(0, 0) ∈ R2 are following.

span{e1}: e1 7→ 0, e2 7→ ∂1, e3 7→ ∂2

span{e2 − ae1}: e1 7→ ∂1, e2 7→ (a− x2)∂1, e3 7→ ∂2

span{e3 − be2 − ae1}: e1 7→ ∂1, e2 7→ ∂2, e3 7→ (a+ x2)∂1 + b∂2

All the subalgebras in the second row are equivalent with respect to inner automor-
phisms and, for fixed b, all the realizations in the third row are equivalent with respect
to inner automorphisms. In other words, classification of subalgebras and realizations
with respect to inner automorphisms is obtained by removing the parameter a (setting
a := 0).

All these realizations are, of course, mutually inequivalent with respect to strong
equivalence as local realizations. However, if we consider them as global realizations on
R2, then all realizations in the second row are strongly equivalent and this equivalence
is provided by simple translation in x2. The same holds for the last row for fixed b.

In other words, all inequivalent local transitive realizations with respect to strong
equivalence are obtained by restricting one of the following realizations on R2.

e1 7→ 0, e2 7→ ∂1, e3 7→ ∂2,

e1 7→ ∂1, e2 7→ −x2∂1, e3 7→ ∂2,

e1 7→ ∂1, e2 7→ ∂2, e3 7→ x2∂1 + b∂2.

At the same time, this is classification of local realizations in a neighbourhood of (0, 0) ∈
R2 with respect to inner automorphisms.
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4.5 Topology of subalgebra and realization systems
In the following section we are going to construct new realizations by interpreting
parameters of transitive realizations as new coordinates. This is, of course, possible only
in the case when the transitive realizations depend “smoothly” on those parameters.

We are going to say that a function F :Rs → VectM is smooth if a vector field
XF ∈ Vect(M × Rs) defined as XF

(p,x) = F (x)p for p ∈ M and x ∈ Rs is smooth. As
indicated for example in [18], Theorem 46.11, such a definition corresponds to compact
open topology on VectM . For further references on the vector fields topology, see e.g.
[13]. Nevertheless, we will not use any special properties of such topology here.

This induces a topology and the notion of smoothness on the space of realizations.
We also get a topology on the space of local realizations and spaces of A-classes of local
realizations as a topological quotient spaces. Note, however, that those quotient spaces
may not be even Hausdorff.

Nevertheless, we can again induce the notion of smooth map. A map between two
quotient spaces will be called smooth if it is locally a quotient of a smooth map. We
formulate it precisely in the following definition.
Definition 4.14. Let M1 and M2 be manifolds and let M̄1 and M̄2 be their quotient
spaces. A map Φ̄: M̄1 → M̄2 will be called smooth in x̄0 ∈ M̄1 if there exists x0 ∈ x̄0, its
neighbourhood U , and a map Φ:U →M2 such that for all x ∈ U Φ(x) ∈ Φ̄(x̄), where x̄
is the class corresponding to x. A smooth bijection, whose inversion is smooth as well,
will be called a diffeomorphism. A smooth injection, whose inversion is smooth as well,
will be called an embedding.

Remark 4.15. This definition is compatible with the quotient topology in a sense
that ever smooth map is continuous, so every diffeomorphism is a homeomorphism. A
composition of such smooth maps is smooth.

Let Sm be the space of all subalgebras of codimension m of a given Lie algebra
g. This is an affine subvariety of the Grassmannian Gr(g, n −m), n = dim g. A map
F :Rs → Sm will be called smooth if it is smooth as a map Rs → Gr(g, n−m). A smooth
map to the space of subalgebra A-classes is again defined in sense of Definition 4.14.
Lemma 4.16. Let g be a Lie algebra, S̄m the space of all A-classes of subalgebras of
codimension m in g and T̄m the space of all A-classes of local transitive realizations in
m variables. Then S̄m is diffeomorphic to T̄m.
Proof. It is sufficient to prove this proposition for space of subalgebras Sm and space
of strong classes T̄m. Then we only “factor” both sides.

In Section 4.3 we showed that there is a bijection between these two sets. It is clear
that the map Tm → Sm, R 7→ kerRp is smooth. Therefore, the same holds for the map
of classes. To show the smoothness of the inverse, we can make use of the Shirokov’s
computation that smoothly depends on the choice of the subalgebra. �

Therefore, the space of strong classes of transitive realizations actually is an homeo-
morphic image of an algebraic variety and therefore it is a Hausdorff space. The space
of general A-classes, however, does not have to be.

4.6 Classification of regular realizations
In this section we characterize the classification problem for regular realizations. Clas-
sification of regular realizations is very important also for general realizations since we
have the following lemma.
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Lemma 4.17. Let R be a realization of g on M . Then the regular points of R form an
open dense set in M . Hence, the set of singular points is nowhere dense.
Proof. The set is obviously open. Choose a point p0 ∈M and its neighborhood U . We
find a regular point p ∈ U .

Denote r := maxp∈U rankRp. We can easily construct a continuous function f :U →
R such that rankRp = r if and only if F (p) 6= 0 as sum of squares of some minors of
the linear map Rp. Preimage of R r 0 is open, nonempty, and contain points, where
rankRp is locally constant and equal to r. �

Now, we generalize the correspondence between transitive realizations and subalge-
bras to the case of regular realizations.

Let us have a local realization R at p ∈ U such that R has a constant rank r
on U . Then R(g) forms an involutive r-dimensional distribution so, according to the
Frobenius theorem 2.6, we can choose coordinates x1, . . . , xm on a neighbourhood U
of p, such that U is foliated by integral submanifolds given by equations xi = const
for i = r + 1, . . . ,m. These integral submanifolds are also the orbits of the action π
corresponding to the realization R. The basis elements e1, . . . , en of g are, therefore,
realized by vector fields Xi = R(ei) of the form

Xi =
r∑

a=1
Xa
i (x1, . . . , xm)∂xa . (3)

This realization induces an (m − r)-parameter set of realizations parametrized by
xr+1, . . . , xm on the submanifolds pG ' Gp \ G. These realizations are transitive, so
they are equivalent to the realizations found by the algorithm described in Section 4.3.

So, a regular realization R in a given point defines a unique transitive realization
on the integral submanifold of the point. We will call this realization a transitive
restriction of R. This relation obviously does not break by applying a diffeomorphism
or an automorphism. A local diffeomorphism of the whole neighbourhood U induces a
diffeomorphism of the orbits. An orbit of an action does not change by composing it
with an automorphism of the group. To sum up:
Proposition 4.18. Let g be a Lie algebra, A a subgroup of Aut g. Then a class of
A-equivalence of local realizations of g with constant rank r uniquely defines an A-class
of local transitive realizations of g in r variables.

To find all non-transitive regular realizations, we can proceed the other way around.
Every local regular realization in m variables is of the form

R(ej)x1,...,xm = R(xr+1,...,xm)(ej)x1,...,xr , (4)

where R(a1,...,am−r) is an (m− r)-parameter set of transitive realizations.
Now, we formulate the main theorem. In the formulation we use the term local

smooth s-parameter set of subalgebra classes with codimension r. By that we mean a
smooth map U → S̄r, where U is a neighborhood of 0 ∈ Rs considering its values only
locally at zer at zeroo (as in Def. 4.2). By a class of such maps we mean a class of
equivalence up to “regular reparametrization”, that is, S and S′ are equivalent if and
only if there exists a local diffeomorphism Ψ:Rs → Rs, Ψ(0) = 0 such that S′ = S ◦Ψ.
Theorem 4.19. Let S̄r the system of all Int-classes of subalgebras with codimension r.
For h̄ ∈ S̄r denote R̄h̄ the corresponding Int-class of transitive realizations. Then there
is a bijection between Int-classes of regular local realizations of g in m variables with
rank r and classes of local smooth (m− r)-parameter sets of Int-classes of subalgebras
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with codimension r. For any such (m− r)-parameter set S:V → S̄r, we define a local
realization R ∈ Vect(U ⊂ Rm) at zero as follows

R(ej)x1,...,xm = RS(xr+1,...,xm)(ej)x1,...,xr , (5)

where the representatives RS(xr+1,...,xm) are local realizations at 0 ∈ Rr chosen to be
smooth in the variables xr+1, . . . , xm.
Proof. At first, we prove that the map is well-defined. The smoothness of S implies
that we have indeed defined a smooth vector fields in sense of Section 4.5. Next, we
have to show that those vector fields do not depend on the choice of representative S
and representatives of the realizations RS .

Assume we chose another representatives for both RS and S, say R′(S◦Ψ)(xr+1,...,xm) =
Φ(xr+1,...,xm)
∗ R(S◦Ψ)(xr+1,...,xm) ◦ α, where Φ(xr+1,...,xm) is a smoothly parametrized set of

diffeomorphisms. Then the resulting realization would be

R′(ej)x1,...,xm = Φ(xr+1,...,xm)
∗ R(S◦Ψ)(xr+1,...,xm)(α(ej))x1,...,xr = Φ̃∗R(α(ej))x1,...,xm ,

where Φ̃:Rm → Rm is a local diffeomorphism defined as

Φ̃(x1, . . . , xm) = (Φ(xr+1,...,xm)(x1, . . . , xr),Ψ(xr+1, . . . , xm)).

The surjectivity of such a map follows from the Frobenius theorem as was described
above.

To prove the injectivity, lets assume that realizations R1 and R2 of the form (5)
corresponding to local maps S1 and S2 are equivalent so Φ∗R1 = R2 ◦ α.

The diffeomorphism Φ must preserve the integral submanifolds xj = const for j > r,
so Φj(x1, . . . , xr, xr+1

0 , . . . , xm0 ) has to be constant in x1, . . . , xr for j > r. Hence, we
can denote

Φ(x1, . . . , xm) =
(

Φ̃(xr+1,...,xm)
1 (x1, . . . , xr)
Φ2(xr+1, . . . , xm)

)
,

where Φ̃(xr+1,...,xm)
1 :Rr → Rr is an (m−r)-parameter set of local diffeomorphisms and Φ2

is a local diffeomorphism of Rm−r. Note that although Φ̃(0,...,0)
1 (0, . . . , 0) = 0, generally

Φ̃(xr+1,...,xm)
1 (0, . . . , 0) does not have to be zero, so these local diffeomorphisms at zero

translate the point zero. So, denote

Φ(xr+1,...,xm)
1 (x1, . . . , xr) = Φ̃(xr+1,...,xm)

1 (x1, . . . , xr)− Φ̃(xr+1,...,xm)
1 (0, . . . , 0)

We can write

Φ∗R1(ej)x1,...,xm = Φ(xr+1,...,xm)
1 ∗ R(S1◦Φ2)(xr+1,...,xm)(α(xr+1,...,xm)(ej))x1,...,xr ,

where α(xr+1,...,xm) is the inner automorphism corresponding (in sense of Lemma 4.13)
to translation x 7→ x+ Φ̃(xr+1,...,xm)

1 (0, . . . , 0). So, the equivalence means that

Φxr+1,...,xm

1 ∗ R(S1◦Φ2)(xr+1,...,xm) ◦ α(xr+1,...,xm) = RS2(xr+1,...,xm) ◦ α,

so R(S1◦Φ2)(xr+1,...,xm) is equivalent to RS2(xr+1,...,xm), which holds if and only if the cor-
responding classes of subalgebras coincide, so S1 ◦ Φ2 = S2, which means that S1 is
equivalent to S2. �
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Remark 4.20. The meaning of the map S is that for a realization R of the form (5), the
Int-class of subalgebras S(xr+1, . . . , xm) corresponds to the transitive restriction of R in
(x1, . . . , xm), where x1, . . . , xr are arbitrary and determine only the class representative.
Therefore, outer automorphisms act on R only by modifying these subalgebra classes.
For α ∈ Aut g we have

R(α(ej))x1,...,xm = R(ᾱ◦S)(xr+1,...,xm)(ej)x1,...,xr , (6)

where ᾱ ∈ Aut g/ Int g is the corresponding class of α. Therefore, regular realizations
corresponding to S1 and S2 are Aut-equivalent if and only if S1 = ᾱ ◦ S2.
Remark 4.21. If the map S is constant, the resulting realization is of the form

R(ej)x1,...,xm = Rh0(ej)x1,...,xr ,

so it has the same form as the original transitive realization. It is just formally defined
on larger manifold. Such a regular realization will be called trivial extension of the
transitive realization.
Lemma 4.22. The kernel of a realization of the form (5) is the largest common ideal
contained in representatives of subalgebra classes S(xr+1, . . . , xm) for (xr+1, . . . , xm)
in a small neighbourhood of zero. Thus, the realization is faithful if and only if the
corresponding subalgebras does not contain a common non-trivial ideal.
Proof. Follows from Lemma 4.9. �

Example 4.2. Let us try to classify all regular realizations of two-dimensional Abelian
Lie algebra 2g1 = span{e1, e2}. In this case, there are no non-trivial inner automor-
phisms, so Int-equivalence is the same as strong equivalence. There is of course only
one zero-dimensional subalgebra that corresponds to transitive realization

e1 7→ ∂1, e2 7→ ∂2. (7)

Since the set S2 contains only one element, all regular realizations with rank two are
obtained as trivial extension of this realization.

The set of one-dimensional subalgebras form a circle and can be parametrized by
ϕ ∈ [0, 2π) as hϕ = span{cosϕe1 + sinϕe2}. The corresponding transitive realizations
are following

Rhϕ(e1)x1 = sinϕ∂1, Rhϕ(e2)x1 = cosϕ∂1. (8)
Therefore, the set of all regular local realizations with rank one consists of following
realizations

Rf (e1)x1,...,xm = sin f(x2, . . . , xm) ∂1, Rf (e1)x1,...,xm = − cos f(x2, . . . , xm) ∂1, (9)

where f :Rm−1 → R are arbitrary functions. Such realizations Rf and Rg are equivalent
if and only if there exists a local diffeomorphism Ψ:Rm−1 → Rm−1 at zero such that
g = f ◦Ψ.

Now let us try to do this classification with respect to all automorphisms. We only
have to describe, when Rf and Rg are Aut-equivalent. In this case, Aut(2g1) consists of
all invertible linear maps. One of such map is rotation, which acts as a rotation also on
the set S1 = {hϕ}. Thus, realizations Rf and Rg, where f and g differ by a constant,
are Aut-equivalent. We can therefore fix, for example, f(0, . . . , 0) = 0.

For a general automorphism α ∈ Aut(2g1) = GL(2g1), the subalgebra α(hf(x2,...,xm))
is generated by (

α11 α12
α21 α22

)(
cos f(x2, . . . , xm)
sin f(x2, . . . , xm)

)
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Such an automorphism preserves the property f(0, . . . , 0) = 0 if and only if α11 = 1
and α21 = 0. Fixing these entries, α is an automorphism if and only if α22 6= 0.

So, the conclusion is that every regular local realization with rank one is Aut-
equivalent to Rf , where f(0, . . . , 0) = 0. Such realizations Rf and Rg are Aut-equivalent
if and only if

cos(g ◦Ψ) = cos f + α12 sin f
(cos f + α12 sin f)2 + (α22 sin f)2 , (10)

sin(g ◦Ψ) = α22 sin f
(cos f + α12 sin f)2 + (α22 sin f)2 , (11)

where α12, α22 ∈ R, α22 6= 0, Ψ is a local diffeomorphism in m− 1 variables.
Example 4.3. One should pay attention to the fact that the space S̄m does not have to
be Hausdorff. Take a non-commutative two-dimensional Lie algebra g2 = span{e1, e2},
[e1, e2] = e1. All one-dimensional subspaces of the form ha2 := span{e2 + ae1} are
equivalent to h0

2 = span{e2} with respect to inner automorphisms. Therefore, there
are only two Int-classes of one-dimensional subalgebras represented by h1 := span{e1}
and h0

2. This, however, does not mean that there are no non-constant smooth curves
S:R → S̄1. We can take, for example, map S(x) = span{e1 + xe2} that is evidently
smooth despite it is equal to h̄1 in zero and h̄0

2 everywhere else. Therefore, it leads to a
new regular local realization not equivalent to trivial extension of the transitive ones.
Remark 4.23. Similar procedure was suggested in [20] with reference to a private
letter from Shirokov (the authors suggested replacing the parameters by variables, not
functions of variables), but it was not discussed what kind of new realizations are
obtained or whether the list of realizations is complete.

4.7 Classification problem
In this section, we are going to discuss, what is the reasonable classification problem
for (possibly general) Lie algebra realizations. Our definition is inspired by article [26],
which is probably the so far most extensive result on realizations classification, where
the authors claim to classify all realizations of all Lie algebras of dimension less or equal
to four. Nevertheless, they do not specify precisely what is the actual classification
problem they were solving. They only formulate Definition 4.3 and mention that they
are working locally. Their result is not a complete classification of all local realizations
(nor classification of some suitable subclass as regular or transitive realizations). In
this section, we formulate the problem clearly and rigorously.

Sets of (local) realizations will be denoted by capital script letters R,T , . . . The sets
of corresponding A-classes will be denoted with bar R̄ = {R̄ | R ∈ R}.

Let R̄all be the system of all classes of local realizations of a given Lie algebra g
with respect to a given group of automorphisms A ⊂ Aut g. A complete classification
of local realizations would mean to find this system or, more precisely, to find a set
of representatives Rall that would contain precisely one representative of every class in
R̄all. We prefer to choose representatives defined in a neighborhood at 0 ∈ Rm. Every
global realization would be at every point locally equivalent to a realization from our
list. However, such classification would be very hard to perform. Nevertheless, the
situation will get much more simple if we only require that every global realization is
equivalent to a local realization from our list at every point from a dense subset.
Definition 4.24. Let g be a Lie algebra, A ⊂ Aut g a group of its automorphisms. Let
R̄ be a system of local realizations classes of g. We will say that R̄ is complete if for
every realization R on any manifold M there is a point p ∈M such that R̄|p ∈ R̄.
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Note that this condition consequently means that for every realization R on any

manifold M there is a dense subset of points p ∈ M such that R̄|p ∈ R̄ since the
realization R can be restricted to arbitrary open subset where the point has to exist as
well.

We can reformulate this condition for the corresponding set of representatives. A set
of local realizations R is called complete if the corresponding system R̄ is complete.
It can be easily seen that such a set R is complete if and only if and only if for every
realization R on any manifold M there is a point p ∈M and a local realization R′ ∈ R
such that R|p is A-equivalent to R′.

If we consider a complete system of local realizations R such that all elements are
defined in a neighbour of zero in Rm, then the completeness means following. For every
realization R on any manifold M there exist a point p ∈M (in fact a dense set of such
points), coordinates with origin at this point, and a realization R0 ∈ R such that the
coordinate expression for R coincides with R0 (up to automorphisms).
Example 4.4. Let us take two dimensional non-commutative Lie algebra g2 =
span{e1, e2}, [e1, e2] = e1. It can be shown that the complete system of local
realizations in one variable of g2 can be chosen to contain only zero realization and

R(e1)x = d
dx, R(e2)x = x

d
dx. (12)

In [29] Spichak classified realizations of g2 on circle. He used weaker definition of
realization and equivalence, but we can use his results as an example of global realiza-
tions

Rn(e1)ϑ = (cos(nϑ)− 1) d
dϑ, Rn(e2)ϑ =

(
cos(nϑ)− 1− 1

n
sin(nϑ)

)
d
dϑ, (13)

where ϑ ∈ [0, 2π) parametrizes the circle and n ∈ N. The completeness of the system
R = {0, R} means that for all the realizations Rn there is a dense subset of the circle
such that for all points of this subset the realization is locally equivalent to R (or
zero). Indeed, for all ϑ0 6= kπ

n , k ∈ {0, 1, . . . , n − 1}, Rn|ϑ0 is equivalent to R through
transformation

ϑ 7→ x = 1
n

(
cot
(
nϑ

2

)
− cot

(
nϑ0

2

))
. (14)

Now, we are going to formulate a condition for a subsystem of a complete system of
local realizations to stay complete.
Definition 4.25. Let R̄ be a system of classes of local realizations of a Lie algebra g
with respect to a group of automorphisms A ⊂ Aut g, R̄ ′ ⊂ R̄. We will say that R̄ ′ is
a sufficient subsystem of R̄ if for all classes R̄ ∈ R̄ and all their representatives R ∈ R̄
there exists q ∈ DomR such that R̄|q ∈ R̄ ′.
Lemma 4.26. Let R̄ be a complete system of local realizations classes of a Lie algebra
g with respect to A ⊂ Aut g. A subsystem R̄ ′ ⊂ R̄ is complete if and only if R̄ ′ is
sufficient.
Proof. The left-right implication follows directly from the definition of completeness of
the system R̄ ′.

Now let us take a realization R on a manifold M . From completeness of R̄ there is a
point p ∈M such that R̄|p ∈ R. But from the definition of sufficient subsystem, taking
R as a representative of R|p ∈ R, there exists q ∈M such that R|q ∈ R ′ �
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Again, we transfer this condition to the corresponding sets of representatives. For a
set of local realizations R, its subset R ′ ⊂ R is called sufficient with respect to a group
A ⊂ Aut g if R̄ ′ is sufficient subsystem of R̄.
Proposition 4.27. Let R be a set of local realizations of a Lie algebra g. A subset
R ′ ⊂ R is sufficient with respect to A ⊂ Aut g if for all local realizations R ∈ R
at some p ∈ DomR and for every neighbourhood U of p there exists q ∈ U and a
realization R′ ∈ R ′ such that R|q is A-equivalent to R′.
Proof. Take sets of local realizations R ′ ⊂ R and denote R̄ ′ and R̄ the corresponding
systems of A-classes of local realizations.

First we are going to prove the left-right implication, so assume that R̄ ′ is sufficient.
Take R ∈ R a local realization at p, U a neighbourhood of p. Then R|U ∈ R̄ ∈ R̄. From
completeness of R̄ ′ there exists a q ∈ DomR|U = U such that (R|U )|q = R̄|q ∈ R̄ ′, so
there exists R′ ∈ R ′ such that R|q is A-equivalent to R′.

For the right-left implication, we have to prove that R ′ is sufficient assuming the
condition on the right hand side. So, take R̄ ∈ R̄, R ∈ R̄. Choose a representative
R0 ∈ R̄ that is contained in R, so R0 is A-equivalent to R. This means that there
exists U0 ⊂ DomR0 and U ⊂ DomR, α ∈ A and Φ:U0 → U a diffeomorphism such
that R|U ◦ α = Φ∗R0|U0 . By assumption there exists q0 ∈ U0 and R′ ∈ R ′ such that
R′ is equivalent to R0|q0 = (R0|U0)|q0 , which is also equivalent to (R|U )q = R|q, where
q = Φ(q0) ∈ U . Therefore, R|q is equivalent to R′ and hence R̄|q ∈ R̄ ′. �

We claim that the reasonable classification problem is to find a “small” complete
system of local realizations. It is also more or less the classification problem that was
solved in [26]. Note however that it is, for example, not true that an intersection
of two complete systems of classes would be complete. As we are going to show in
Example 4.6, complete systems do not have to have the least element or a minimal
element with respect to ordering by set inclusion.

From Lemma 4.17 it follows that system of all regular realizations is complete. More-
over, we can formulate the following lemma.
Lemma 4.28. Let R be a complete system and R ′ its subsystem containing all regular
realizations of R. Then R ′ is complete.
Proof. According to Lemma 4.26 we have to show that for every class of singular
realizations of R̄ ∈ R̄ and every representative R ∈ R̄ there exists a q ∈ DomR such
that R̄|q ∈ R̄ ′.

Choosing an open set U ⊂ DomR of regular points of R we can define restriction
R|U , which is a regular realization, and from completeness of R there is point q ∈ U
such that R̄|q ∈ R̄ and since it is regular, it belongs to R̄ ′. �

Consequently, looking for a classification of realizations, one can deal with regular
realizations only. Looking for complete system instead of classification of all regular
realizations or even completely all realizations simplify the result as we are going to
show on simple examples.
Example 4.5. Let us take the one dimensional Lie algebra g1 spanned by one element
e1. It is evident that any realization R on any manifold M is of the form Rp(e1) = Xp,
where X is an arbitrary vector field on M . In particular, any local realization at zero
in Rm is of the form

Rx1,...,xm(e1) =
m∑
j=1

f j(x1, . . . , xm)∂xj , (15)

where f j are arbitrary smooth functions. The classification [26], however, state that
there is only one class of equivalence for every m ∈ N (except for the only unfaithful
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realization, which is zero) represented by realization

Rx1,...,xm(e1) = ∂x1 . (16)

A general realization of the form (15) taken in the neighbourhood of zero can be trans-
formed into the realization given by (16) if and only if f j(0) 6= 0 for some j. So, this is
not the solution of classification with respect to Definition 4.4.

Moreover, we can see that this problem does not have a reasonable solution, because
realizations of the form (15) can be equivalent only if the sets {x | f(x) = 0} are
diffeomorphic, so we would have to classify such functions, but there are too many
different possibilities. And the situation is, of course, even more complicated for less
trivial Lie algebras.

Nevertheless, it actually is true that for every realization R of g1 on some manifold
M there is a point p ∈ M such that R is locally equivalent to ∂x1 in p. So, the
realization (16) together with zero realization form the complete system of realizations
of the one-dimensional Lie algebra. (Actually, they form a classification of all regular
realizations.)

Now, if we are interested, for example, in analytic global realizations of g1 on a
given manifold M , we can construct them as analytic continuations of local realizations
defined in some open subset of M that are equivalent to (16).

For example, take M to be a line R. One instance of a global realization on R is
Rx(e1) = d

dx , x ∈ R. Now, by applying a diffeomorphism y = Φ(x) = expx, which
maps R→ R+, on this realization, we get

R′y(e1) = dy
dx

d
dy = ex d

dy = y
d
dy , y ∈ R+,

whose analytic continuation on R is R′′x(e1) = x d
dx , x ∈ R, which is not equivalent to

the former realization R.
Example 4.6. Now, consider two-dimensional Abelian Lie algebra 2g1 and no auto-
morphisms A = {id} = Int(2g1), which was already examined in Example 4.2, where
we presented classification of all regular realizations. The result was that every regular
realization with rank one in m variables is equivalent to following

Rf (e1)x1,...,xm = sin f(x2, . . . , xm) ∂1, Rf (e2)x1,...,xm = − cos f(x2, . . . , xm) ∂1,

where f :Rm−1 → R are arbitrary functions defined locally in a neighborhood of zero.
Here it can be shown, that the sufficient subsystem of those realizations are formed by
following

Ra1(e1)x1,...,xm = ∂1, Ra1(e2)x1,...,xm = a∂1, (17)

Ra2(e1)x1,...,xm = ∂1, Ra2(e2)x1,...,xm = (a+ x2)∂1, (18)

where a is a real parameter. So, we were able to get rid of the general function f .
However, for Lie algebras of higher dimension we will already not be able to avoid
families of realizations parametrized by functions.

Note that we could restrict the parameter a for the second realization R2 to any dense
subset of R. Therefore, there is no minimal complete system of realizations classes for
2g1 with respect to strong equivalence.
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4.8 Sufficient subsystems of regular realizations
In this section we present an algorithm for construction of complete system of local
realizations.

First of all, we need to parametrize the subalgebra classes properly. That is, to
find a decomposition of S̄r to a finite disjoint union

⋃
i S

i
r(Di), where Sir:Di → S̄r is

embedding of Di a domain in Rsi . Such a parametrization will be called proper if for
every smooth map S:U → S̄r, where U is a neighborhood of zero in Rs, there exists
x ∈ U and its neighborhood V such that S(V ) ⊂ Sir(Di) for some i.
Proposition 4.29. Considering a proper parametrization, the regular local realizations
corresponding to local S̄r-valued maps Sir ◦ F , where F :Rm−r → Rsi , form a sufficient
subsystem of all regular local realizations with rank r.
Proof. For a general map S:Rm−r → S̄r we find the corresponding neighborhood V .
Since S(V ) ⊂ Sir(Di) for some i, there exists F :Rm−r → Rsi such that S = Sir ◦ F on
V . �

Finally, we can try to simplify the map F . We formulate the result in Lemma 4.30.
Since its formulation is rather complicated, we illustrate it on an example.
Example 4.7. Take a three-dimensional Abelian Lie algebra 3g1 = span{e1, e2, e3}.
There are no inner automorphisms. Every one-dimensional subspace is a subalge-
bra. Therefore, we can present the following proper parametrization of the set of
one-dimensional subalgebras S2 and compute the corresponding transitive realizations.

span{e1} e1 7→ 0, e2 7→ ∂1, e3 7→ ∂2

span{e2 − ae1} e1 7→ ∂1, e2 7→ a∂1, e3 7→ ∂2

span{e3 − ae2 − be1} e1 7→ ∂1, e2 7→ ∂2, e3 7→ a∂1 + b∂2

According to Proposition 4.29, the following realizations form a sufficient subsystem
of local realizations in m variables with rank two

e1 7→ 0, e2 7→ ∂1, e3 7→ ∂2,

e1 7→ ∂1, e2 7→ f(x3, . . . , xm)∂1, e3 7→ ∂2,

e1 7→ ∂1, e2 7→ ∂2, e3 7→ f(x3, . . . , xm)∂1 + g(x3, . . . , xm)∂2,

where f and g are arbitrary local functions in m − 2 variables. We will try to find a
sufficient subsystem of the family of realizations in the last row.

Several cases can take place here. At first, if both f and g are constant in some
neighborhood of zero, then we get a trivial extension of the original transitive realization
only. Secondly, one of the functions may be locally constant at zero, while the other
might not be. Then it means there is a point (ε3, . . . , εm) in a neighborhood of zero,
where the first function, for example f , is locally constant equal to a, while the second
function g has a non-zero partial derivative with respect to some coordinate xi, i ≥ 3.
Without lost of generality, we can assume ∂g

∂x3

∣∣∣
(ε3,...,εm)

6= 0 (otherwise we can change
the order of coordinates in the first place). Now we present a change of coordinates

x3 7→ y3 := g(x3 − ε3, . . . , xm − εm)− c,

xi 7→ yi := xi − εi, i > 3
where c = g(ε3, . . . , εm). In those coordinates, the realization taken in the neighborhood
of (ε3, . . . , εm), which has new coordinates yi = 0, has the form

e1 7→ ∂1, e2 7→ ∂2, e3 7→ a∂1 + (c+ y3)∂2.
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Analogically, we obtain a realization

e1 7→ ∂1, e2 7→ ∂2, e3 7→ (c+ y3)∂1 + b∂2.

Finally, both functions might not be constant. Then the function f can again be
transformed into a+ y3. The function g might then depend only on y3, so we get

e1 7→ ∂1, e2 7→ ∂2, e3 7→ (a+ y3)∂1 + g̃(y3)∂2

or it can depend on other variables as well (if m ≥ 4), so it can be transformed into y4,
so we get

e1 7→ ∂1, e2 7→ ∂2, e3 7→ (a+ y3)∂1 + (b+ y4)∂2.

Lemma 4.30. Let g be a Lie algebra, S̄r be the system of all Int-classes of g subalgebras
with codimension r. Let D be an open domain in Rs, S:D → S̄r a smooth map. Then
the system of realizations of g of the form

R(ej)x1,...,xm = R(S◦F )(xr+1,...,xm)(ej)x1,...,xr , (19)

where F :Rm−r → D is a smooth function, and R(S◦F )(xr+1,...,xm) are transitive local
realizations at 0 ∈ Rr corresponding to the subalgebra class (S◦F )(xr+1, . . . , xm) chosen
in a way that they smoothly depend on the coordinates, has a sufficient subsystem with
respect to strong equivalence (so with respect to Int-equivalence as well) consisting of
the following local realizations at 0 ∈ Rm

R(ej)x1,...,xm = RS(c1+f1(xr+1,...,xm),...,cs+fs(xr+1,...,xm))(ej)x1,...,xr , (20)

where (c1, . . . , cs) ∈ D are constant numbers and f j are local functions mapping
f j(0, . . . , 0) = 0 that are of the following form. Set l0 = 0, then for all j > 0 ei-
ther f j(xr+1, . . . , xm) = xlj , where lj = lj−1 + 1, or f j(xr+1, . . . , xm) depend only on
first lj variables, where lj = lj−1. That is, either f j is equal to a “new” variable or it
depends only on “already used” variables.
Proof. We have to find a suitable local diffeomorphism Ψ:Rm−r → Rm−r mapping a
point in an arbitrarily small neighbourhood of zero onto zero such that F j ◦Ψ = cj +f j

on an even smaller neighbourhood of this point.
Let us start with F 1. If it is locally constant at zero (i.e., there is a neighbourhood

of zero such that F 1 is constant on this neighbourhood), then it does not need to be
transformed. We just have to restrict ourselves on this neighbourhood. Otherwise,
there exists at every neighbourhood of zero a point x1 and an index j ∈ {1, . . . ,m− r}
such that ∂F 1

∂xr+j

∣∣∣
x1
6= 0. Without loss of generality, assume j = 1 (otherwise, apply

diffeomorphism changing the order of variables at first). We can apply a diffeomorphism
Ψ1 mapping

xr+1 7→ yr+1 = F 1(xr+1 − xr+1
1 , . . . , xm − xm1 )− c11,

xr+j 7→ yr+j = xr+j − xr+j1 , j > 1

where c11 = F 1(xr+1
1 , . . . , xm1 ), so (F 1 ◦Ψ1)(yr+1, xr+2, . . . , xm) = c11 + yr+1.

Then we proceed by induction. Assume, we have found a diffeomorphism Ψk, such
that (F i◦Ψk)(xr+1, . . . , xm) = cik+f ik(xr+1, . . . , xm) for all i ≤ k on some neighbourhood
of zero. Then we examine F k+1◦Ψk. If it is locally constant at zero, then nothing has to
be done, so Ψk+1 = Ψk. Second possibility is that F k+1 depends only on xr+1, . . . , xlk−1.
Then, again, nothing has to be done. If it has non-zero partial derivative with respect

34



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Sufficient subsystems of regular realizations

to xj , j ≥ lk in a point xk+1 arbitrarily close to xk, without loss of generality let j = lk,
then we can introduce a diffeomorphism Ψ̃k+1 sending

xr+k+1 7→ yr+k+1 = F k+1(xr+1 − xr+1
k+1, . . . , x

m − xmk+1)− ck+1
k+1,

xr+j 7→ yr+j = xr+j − xr+jk+1, j 6= k,

where ck+1
k+1 = F k+1(xr+1

k+1, . . . , x
m
k+1). Then if we define Ψk+1 := Ψ̃k+1 ◦ Ψk, we have

(F k+1 ◦Ψk+1)(yr+1, . . . , ym) = ck+1
k+1 + yk+1. The form of F i ◦Ψk+1 for i < k+1 remains

the same, only the constants cik change to new cik+1 because of the translation. �

The functions ~c + ~f in Lemma 4.30 were constructed in such a way that they are
mutually inequivalent with respect to change of coordinates, so the set of realizations
constructed by this lemma contains mutually Int-inequivalent realizations. Moreover,
small translations in the variables x1, . . . , xr cause only a transformation of the whole re-
alization by some inner automorphism. Small translations in the variables xr+1, . . . , xm

do either nothing (if R does not depend on those variables) or essentially only changes
those parameters cj for which f j(xr+1, . . . , xm) = xr+lj . So, we have the following
proposition.
Proposition 4.31. The system of regular local realizations described by Lemma 4.30
contain mutually inequivalent realizations with respect to inner automorphisms. All
sufficient subsystems of this system with respect to inner automorphisms are obtained
by restricting those parameters cj such that f j(xr+1, . . . , xm) = xr+lj to a dense subset
of their domain of definition.

Finally, we can summarize the algorithm for construction of complete system of
realizations into the following theorem.
Theorem 4.32. Let

S̄m =
⋃
i

S̄im(Di), Di ⊂ Rsi (21)

be a proper parametrization of classes of g subalgebras with codimension m. Let Sm =⋃
i S

i
m(Di) be such set of their representatives that Sim are smooth. Let Tm =

⋃
iR

i (Di)
m

be the corresponding local transitive realizations. Let Ri
m be the sets of regular re-

alizations constructed as in Lemma 4.30 from si-parameter sets Ri (Di)
m of transitive

realizations. Then the system of local realizations R =
⋃
m

(
Tm ∪

⋃
i R

i
m

)
is com-

plete with respect to inner automorphisms and contains mutually Int-inequivalent local
realizations.
Remark 4.33. If we are doing classification with respect to strong equivalence, all we
have to do in the end is to apply the inner automorphisms to the complete system we
have found. This essentially mean putting back the parameters we have eliminated
when doing the classification with respect to inner automorphisms.
Remark 4.34. If we are doing classification with respect to all automorphism, we make
use of Remark 4.20. Often it only means to “remove the unnecessary parameters” using
automorphisms. The situation is more complicated, if we have realizations parametrized
by functions.

Finally, we are going to illustrate the presented algorithm for construction of complete
system of realizations, on a more complicated example. We illustrate classification with
respect to all strong, Int-, and Aut-equivalence.
Example 4.8. Let us consider a Lie algebra g = g2.1 ⊕ 2g1 = span{e1, e2, e3, e4},
[e1, e2] = e1. We are going to find a complete system of realizations with rank three.

35



4. Classification of realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The groups of automorphisms expressed in the basis (e1, e2, e3, e4) are following

Int g =



t̃1 t2 0 0
0 1 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣ t̃1 ∈ R+, t2 ∈ R

 (22)

Aut g =



t1 t2 0 0
0 1 0 0
0 t3 t5 t6
0 t4 t7 t8


∣∣∣∣∣ t1, t2, t3, t4, t5, t6, t7, t8 ∈ R,

t1 6= 0, t5t8 − t6t7 6= 0

 (23)

Of course, all one-dimensional subspaces are also one-dimensional subalgebras. In Ta-
ble 4.1 we classify the one-dimensional subalgebras. In the first column, parametrization
of all subalgebras is presented. In the second column we choose an Int-representative
for each subalgebra. In the third column we choose the Aut-representatives. We denote
σx = sgn x the sign of x. In the last column we express a condition for the subalgebra
to be an ideal.

Subalgebras Int-classes Aut-classes Is ideal?
h1 e1 e1 e1 Yes.
hc2 e3 + ce1 e3 + σce1 e4 + |σc|e1 If c = 0.
ha,c3 e4 + ae3 + ce1 e4 + ae3 + σce1 e4 + |σc|e1 If c = 0.
ha,b,c4 e2 + ae3 + be4 + ce1 e2 + ae3 + be4 e2 No.

Table 4.1. One-dimensional subalgebras of g

The Shirokov’s computation leads to classification of transitive realizations with re-
spect to strong equivalence listed in Table 4.2. In the second column, a realization
corresponding to subalgebra in the first column is presented. The entry consists of
images of the basis elements e1, e2, e3 and e4. In the last column the negation of last
column of Table 4.1 expresses a condition for the realization to be faithful.

Subalgebras Realizations Is faithful?
h1 e1 0, ∂1, ∂2, ∂3 No.
hc2 e3 + ce1 ∂1, x1∂1 + ∂2, −cex2∂1, ∂3 If c 6= 0.
ha,c3 e4 + ae3 + ce1 ∂1, x1∂1 + ∂2, ∂3, −cex2∂1 − a∂3 If c 6= 0.
ha,b,c4 e2 + ae3 + be4 + ce1 ∂1, (x1 − c)∂1 − a∂2 − b∂3, ∂2, ∂3 Yes.

Table 4.2. Classification of local transitive realizations of g in three variables

The classification with respect to inner or all automorphisms is obtained easily by
substituting the parameters of subalgebras by parameters of the chosen representatives.
By doing so in case of inner automorphisms and applying Lemma 4.30, we get a complete
system of realizations of g with respect to inner automorphisms and list it in Table 4.3.
The function f :R→ R is an arbitrary local function satisfying f(0) = 0. All realizations
are Int-inequivalent.

Now, let us make the classification with respect to strong equivalence. As we men-
tioned in Remark 4.33, we just have to put back the eliminated parameters. That is,
instead of listing realizations corresponding, for example, to ha,b+x4,0

4 , we list realizations
corresponding to all ha,b+x4,c

4 . The result is in Table 4.4. All realizations are strongly
inequivalent.
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Subalgebra Realization
h1 0, ∂1, ∂2, ∂3
h0

2 ∂1, x1∂1 + ∂2, 0, ∂3
h1

2 ∂1, x1∂1 + ∂2, −ex2∂1, ∂3
h−1

2 ∂1, x1∂1 + ∂2, ex2∂1, ∂3
ha,03 ∂1, x1∂1 + ∂2, ∂3, −a∂3
ha+x4,0

3 ∂1, x1∂1 + ∂2, ∂3, −(a+ x4)∂3
ha,13 ∂1, x1∂1 + ∂2, ∂3, −ex2∂1 − a∂3
ha+x4,1

3 ∂1, x1∂1 + ∂2, ∂3, −ex2∂1 − (a+ x4)∂3
ha,−1

3 ∂1, x1∂1 + ∂2, ∂3, ex2∂1 − a∂3
ha+x4,−1

3 ∂1, x1∂1 + ∂2, ∂3, ex2∂1 − (a+ x4)∂3
ha,b,04 ∂1, x1∂1 − a∂2 − b∂3, ∂2, ∂3
ha,b+x4,0

4 ∂1, x1∂1 − a∂2 − (b+ x4)∂3, ∂2, ∂3

h
a+x4,b+f(x4),0
4 ∂1, x1∂1 − (a+ x4)∂2 − (b+ f(x4))∂3, ∂2, ∂3

ha+x4,b+x5,0
4 ∂1, x1∂1 − (a+ x4)∂2 − (b+ x5)∂3, ∂2, ∂3

Table 4.3. Complete system of realizations of g with rank three with respect to inner
automorphisms

Subalgebra Realization
h1 0, ∂1, ∂2, ∂3
hc2 ∂1, x1∂1 + ∂2, −cex2∂1, ∂3
ha,c3 ∂1, x1∂1 + ∂2, ∂3, −cex2∂1 − a∂3
ha+x4,c

3 ∂1, x1∂1 + ∂2, ∂3, −cex2∂1 − (a+ x4)∂3
ha,b,c4 ∂1, (x1 − c)∂1 − a∂2 − b∂3, ∂2, ∂3
ha,b+x4,c

4 ∂1, (x1 − c)∂1 − a∂2 − (b+ x4)∂3, ∂2, ∂3

h
a+x4,b+f(x4),c
4 ∂1, (x1 − c)∂1 − (a+ x4)∂2 − (b+ f(x4))∂3, ∂2, ∂3

ha+x4,b+x5,c
4 ∂1, (x1 − c)∂1 − (a+ x4)∂2 − (b+ x5)∂3, ∂2, ∂3

Table 4.4. Complete system of realizations of g with rank three with respect to strong
equivalence

Finally, let us do the classification with respect to all automorphisms. As we men-
tioned in Remark 4.34, the first step is to remove the unnecessary parameters. For
example, all subalgebras ha,c3 for c 6= 0 are Aut-equivalent to h0,1

3 . Therefore, realiza-
tions corresponding to ha,c3 and ha+x4,c

3 are equivalent to the realizations corresponding
to h0,1

3 and hx4,1
3 . The result of such a process is listed in Table 4.5. In the last column,

we list the number of the realization in the classification [26], p. 7345 (only in case it is
faithful).

The realization corresponding to h0,x4,0
4 is Aut-equivalent to realization hx4,0,0

4 , so we
can remove it from the table. Furthermore, realizations corresponding to h

x4,f(x4),0
4

may be, for different f , also equivalent. All other realizations listed in Table 4.5 are
Aut-inequivalent.

To find the condition for the realizations corresponding to h
x4,f(x4),0
4 to be equivalent,

we have to examine, how automorphisms act on this subalgebra-valued function. The
equation

αt1,t2,t3,t4,t5,t6,t7,t8(h
x4,f(x4),0
4 ) = h

x̃4,f̃(x̃4),0
4 ,

where α is an automorphism of g parametrized as in (23), together with conditions
x̃4(x4 = 0) = 0 and f(0) = 0, leads to constraint t2, t3, t4 = 0 and then is equivalent to

x̃4 = t5x4 + t6f(x4), f̃(x̃4) = t7x4 + t8f(x4), (24)
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Subalgebra Realization No. in [26]
h1 0, ∂1, ∂2, ∂3
h0,0

3 ∂1, x1∂1 + ∂2, ∂3, 0
hx4,0

3 ∂1, x1∂1 + ∂2, ∂3, −x4∂3 7
h0,1

3 ∂1, x1∂1 + ∂2, ∂3, −ex2∂1 6
hx4,1

3 ∂1, x1∂1 + ∂2, ∂3, −ex2∂1 − x4∂3 5
h0,0,0

4 ∂1, x1∂1, ∂2, ∂3 4
h0,x4,0

4 ∂1, x1∂1 − x4∂3, ∂2, ∂3 3
h
x4,f(x4),0
4 ∂1, x1∂1 − x4∂2 − f(x4)∂3, ∂2, ∂3 3

hx4,x5,0
4 ∂1, x1∂1 − x4∂2 − x5∂3, ∂2, ∂3 2

Table 4.5. Complete system of realizations of g with rank three with respect to all auto-
morphisms

Therefore, realizations corresponding to h
x4,f(x4),0
4 and h

x4,f̃(x4),0
4 , where f(0) = f̃(0) = 0

are equivalent if and only if

f̃(t5x+ t6f(x)) = t7x+ t8f(x), (25)

where t5t8 − t6t7 6= 0 (cf. [26] p. 7351).
Remark 4.35. In [26] the authors list only faithful realizations. The reason is that the
unfaithful ones can be constructed very easily from the faithful ones. Let g be a Lie
algebra, h(S◦F )(xr+1,...,xm) parametrized set of subalgebras, and R the corresponding real-
ization. Let i be the largest ideal of g contained in all the subalgebras h(S◦F )(xr+1,...,xm).
According to Lemma 4.22 i is the kernel of R: g→ VectRm, so the unfaithful realization
R is determined by a faithful realization R̃ of g/i.

So, given a Lie algebra g, one can construct all its unfaithful realizations R by finding
all ideals i of g and then extend the faithful realizations R̃ of g/i on the whole Lie algebra
g. It is clear that such realizations R1 and R2 are A-equivalent if and only if the ideals
are A-conjugated i2 = α(i1) and the corresponding realizations on g/i1 ' g/i2 are
A-equivalent.

Very often the ideals of the Lie algebras are spanned by several generating elements,
say g = span{e1, . . . , en}, i = span{e1, . . . , ek}. Also, it is very often that the commu-
tation relations of g/i induced by canonical commutations relations of g coincide with
canonical commutation relations of the Lie algebra type of g/i. In those cases the “table
entry” is constructed very easily. It consists of k zeros representing the generators of the
ideal and then the corresponding realization of the Lie algebra g/i = span{ēk+1, . . . , ēn}.

This is the case also in our example. We have two Aut-classes of one-dimensional
ideals i1 = span{e1} and i2 = span{e4}. The quotient algebra of the first one is the
three dimensional Abelian Lie algebra g/i1 ' 3g1. The complete system of faithful
realizations of 3g1 = span{ẽ1, ẽ2, ẽ3} in three variables consists of single realization
(ẽ1, ẽ2, ẽ3) 7→ (∂1, ∂2, ∂3). Since any linear map provides the isomorphism, we can
immediately write the first row of Table 4.5. Similarly, we have g/i2 ' g2 ⊕ g1 =
span{ẽ1, ẽ2, ẽ3}, [ẽ1, ẽ2] = ẽ1. The isomorphism is provided by ei + i 7→ ẽi, i = 1, 2, 3.
Therefore, we can immediately write the second row of Table 4.5 by looking to [26] and
copying the only listed realization of g2 ⊕ g1 in three variables and adding zero that
realizes the last generating element e4 of g2 ⊕ 2g1.
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Chapter 5
Conclusion

Our motivation for this work was to study a new method for construction of Lie algebra
realizations introduced by Shirokov et al. [15] and try to use it on some class of Lie
algebras as was recently done in [19–20]. This method allows to easily construct local
transitive realizations (i.e. Lie algebras of vector fields that integrate to a transitive
transformation group), whose classification is equivalent to classification of subalgebras
of the given Lie algebra.

Our goal was to try to use this method to obtain not only classification of transitive
realizations but to solve a more general classification problem and obtain results similar
to [26]. One of the difficulties that appeared during work on this problem was that the
classification problem solved in [26] was not very clearly defined. One of the important
results of this work can be considered the definition of the complete system of local
realizations of a given Lie algebra that provides formal definition of the considered
classification problem.

A remark of Shirokov published in [20] stating that replacing a parameter in a
parameter-dependent realization by a new variable can be used to construct new real-
izations led to the most important result of this thesis, which is the generalization of the
correspondence between subalgebra classification and transitive realizations classifica-
tion to the case of regular realizations. We formulated Theorem 4.19 stating that local
regular realizations (i.e. local realizations with constant rank) are in a correspondence
with parametrizations of subalgebras (i.e. maps from Rk to the set of all subalgebras).

Since complete system of local realizations consists of regular realizations, we could
make use of this result to solve the original classification problem. Thus, the next
outcome of this thesis is a formulation of an algorithm for construction of complete
system of local realizations.

All those procedures were illustrated on simple examples. The reader may have
noticed that we often used Lie algebras with a weak Lie algebra structure for those
illustrations (very often we used Abelian Lie algebras). The reason for that is not that
the procedures would not work for more complicated Lie algebras. Quite the contrary.
Since Lie algebras with weaker structure have less inner automorphisms, they have Int-
classes of subalgebras with more parameters and one has to deal with problems like
families of realizations parametrized by functions.

We wanted to use this algorithm to produce an original classification result and since
realizations of all Lie algebras of dimension less than five were classified in [26], we have
focused on the five-dimensional ones. The last result of this thesis follows in appendix
and it is a classification of realizations of all five-dimensional nilpotent indecomposable
Lie algebras. We compute the complete systems of realizations for these Lie algebras
with respect to groups of all automorphisms (as in [26]).

The computation consists of several complicated steps, from which some of them
are interesting by themselves for other applications (namely determining the groups
of automorphisms and classifying the subalgebras with respect to these groups) and
are published in the appendix as well. There was no special reason for choosing the
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family of nilpotent algebras to start the classification with. Our goal for the future
is to continue in the computations and complete the classification for all (or at least
indecomposable) five-dimensional Lie algebras.

The author have already obtained some partial results also for other Lie algebras.
In the research project [10] the subalgebras of all five-dimensional indecomposable Lie
algebras with four-dimensional Abelian ideal were classified with respect to the group
of all automorphisms and the corresponding transitive realizations were computed. The
author have also classified subalgebras of many of those Lie algebras with respect to
inner automorphisms. Nevertheless, the subsequent computation, that is, determining
which realizations parametrized by functions are equivalent, as well as checking for
errors in all the computations and also putting the results together in reasonable tables
are all very uneasy and time-consuming work. That is the reason why we were able to
publish only the results for the nilpotent Lie algebras.
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Groups and Lie Algebras I: Foundations of Lie Theory Lie Transformation Groups.
Berlin Heidelberg: Springer-Verlag, 1993. ISBN 0-387–18697-2.

[10] Daniel Gromada. Construction of realizations of Lie algebras. Research project,
FNSPE, CTU. Prague, 2016.
http://physics.fjfi.cvut.cz/publications/mf/2016/vu_mf_16_Gromada.pdf.

[11] Daniel Gromada, and Severin Pošta. On classification of Lie algebra realizations.
2017. arXiv:1703.00808.

[12] Victor W. Guillemin, and Shlomo Sternberg. An algebraic model of transitive
differential geometry. Bulletin of the American Mathematical Society. 1964, 70
16–47. doi:10.1090/S0002-9904-1964-11019-3 .

[13] Saber Jafarpour, and Andrew Lewis. Time-Varying Vector Fields and Their Flows.
Springer International Publishing, 2014. ISBN 978-3-319-10139-2.

[14] Sophus Lie, and Friedrich Engel. Theorie der Transformationsgruppen. Leipzig:
1888, 1890, 1893.

[15] Alexey A. Magazev, Vitaly V. Mikheyev, and Igor V. Shirokov. Computation of
Composition Functions and Invariant Vector Fields in Terms of Structure Con-
stants of Associated Lie Algebras. SIGMA. 2015, 11 (066), doi:10.3842/SIGMA.
2015.066.

41

http://dx.doi.org/10.2307/1995292
http://dx.doi.org/10.2307/1995292
http://dx.doi.org/10.1007/s12346-011-0062-9
http://dx.doi.org/10.1088/1751-8113/46/22/225204
http://dx.doi.org/10.1112/plms/s3-64.2.339
http://physics.fjfi.cvut.cz/publications/mf/2016/vu_mf_16_Gromada.pdf
http://arxiv.org/abs/1703.00808
http://dx.doi.org/10.1090/S0002-9904-1964-11019-3 
http://dx.doi.org/10.3842/SIGMA.2015.066
http://dx.doi.org/10.3842/SIGMA.2015.066


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[16] Gamir M. Mubarakzyanov. Classification of real structures of Lie algebras of fifth

order. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 1963, (3), 99–106.
mi.mathnet.ru/ivm2184.

[17] Gamir M. Mubarakzyanov. On solvable Lie algebras. Izvestiya Vysshikh Uchebnykh
Zavedenii. Matematika. 1963, (1), 114–123. mi.mathnet.ru/ivm2141.

[18] James R. Munkers. Topology. Upper Saddle River: Prentice-Hall, 2000. ISBN 0-
13-181629-2.

[19] Maryna Nesterenko. The Poincaré algebras p(1, 1) and p(1, 2): realizations and
deformations. Journal of Physics: Conference Series. 2015, 621 (1), 012009. doi:10.
1088/1742-6596/621/1/012009.

[20] Maryna Nesterenko, Severin Pošta, and Olena Vaneeva. Realizations of Galilei al-
gebras. Journal of Physics A: Mathematical and Theoretical. 2016, 49 (11), 115203.
doi:10.1088/1751-8113/49/11/115203.

[21] Peter J. Olver. Applications of Lie Groups to Differential Equations. New York:
Springer-Verlag, 1993. ISBN 978-0-387-95000-6.

[22] Lev V. Ovsiannikov. Group Analysis of Differential Equations . New York: Aca-
demic Press, 1982. ISBN 978-0-12-531680-4.

[23] Jiří Patera, Robert T. Sharp, Pavel Winternitz, and Hans Zassenhaus. Invariants
of real low dimension Lie algebras. Journal of Mathematical Physics. 1976, 17 (6),
986-994. doi:10.1063/1.522992.

[24] Jiří Patera, and Pavel Winternitz. Subalgebras of real three- and four-dimensional
Lie algebras. Journal of Mathematical Physics. 1977, 18 (7), 1449–1455. doi:10.
1063/1.523441.

[25] Jiří Patera, Pavel Winternitz, and Hans Zassenhaus. Continuous subgroups of the
fundamental groups of physics. I. General method and the Poincaré group. Journal
of Mathematical Physics. 1975, 16 (8), 1597–1614. doi:10.1063/1.522729.

[26] Roman O. Popovych, Vyacheslav M. Boyko, Maryna O. Nesterenko, and Maxim
W. Lutfullin. Realizations of real low-dimensional Lie algebras. Journal of Physics
A: Mathematical and General. 2003, 36 (26), 7337. doi:10.1088/0305-4470/36/26/
309.

[27] Claudio Procesi. Lie Groups: An Approach through Invariants and Representa-
tions. New York: Springer-Verlag, 2007. ISBN 978-0-387-26040-2.

[28] Igor V. Shirokov. Constructing lie algebras of first-order differential operators.
Russian Physics Journal. 1997, 40 (6), 525–530. doi:10.1007/BF02766382.

[29] Stanislav V. Spichak. Preliminary Classification of Realizations of Two-Dimen-
sional Lie Algebras of Vector Fields on a Circle. In: Sixth Workshop Group Analysis
of Differential Equations and Integrable Systems. Nicosia: Department of Math-
ematics and Statistics, University of Cyprus, 2013. 212–218. ISBN 978-9963-700-
63-9.
http://www.mas.ucy.ac.cy/˜symmetry/GADEISVI.pdf.

42

http://mi.mathnet.ru/ivm2184
http://mi.mathnet.ru/ivm2141
http://dx.doi.org/10.1088/1742-6596/621/1/012009
http://dx.doi.org/10.1088/1742-6596/621/1/012009
http://dx.doi.org/10.1088/1751-8113/49/11/115203
http://dx.doi.org/10.1063/1.522992
http://dx.doi.org/10.1063/1.523441
http://dx.doi.org/10.1063/1.523441
http://dx.doi.org/10.1063/1.522729
http://dx.doi.org/10.1088/0305-4470/36/26/309
http://dx.doi.org/10.1088/0305-4470/36/26/309
http://dx.doi.org/10.1007/BF02766382
http://www.mas.ucy.ac.cy/~symmetry/GADEISVI.pdf


List of used symbols
⊕ . Direct sum
[·, ·] . Lie bracket, commutator
adx . Lie algebra adjoint representation of x
Adg . Lie group adjoint representation of g 6
AT . Transposition of matrix A
Aut g . Group of all automorphisms of a Lie algebra g 16
C∞(M) . Algebra of smooth functions on a manifold M 3
Cg . Conjugation multiplication by g 3
C . Set of complex numbers
DerA . Derivation of an algebra A
dΦ . Derivative of map Φ 3
DiffM . Group of all diffeomorphisms of a manifold M 3
DomR . Domain of a realization R 19
e . Group unity
exp, e• . Exponential map 6
Φ∗ . Pushforward of a vector field by a diffeomorphism Φ 3
g, h, . . . . Lie algebra (corresponding to Lie group G,H, . . .) 6
G,H, . . . . (Lie) group
G/H . Set of left cosets of G by H 3
H \G . Set of right cosets of G by H 3
gl(V ) . General linear algebra of V 7
GL(V ) . General linear group of V 7
Gr(V, k) . Grassmanian – set of all k-dimensional subspaces of a vector space V 25
I . Identity matrix
Int g . Group of inner automorphisms of a Lie algebra g 17
kerϕ . Kernel of homomorphism ϕ
Lg . Left multiplication by g 3
M,N, . . . . Manifold
N . Set of natural numbers {1, 2, . . .}
π∗X . Fundamental vector field corresponding to X 12
R . Set of real numbers
rankRp . Rank of a realization R at point p 22
Rg . Right multiplication by g 3
σx . Sign of x (1 if positive, 0 if zero, −1 if negative)
span . Linear span of a set of vectors
TM . Tangent bundle on M
TpM . Tangent space at p ∈M
V,W, . . . . Vector space
VectM . Lie algebra of vector fields on M 3
X,Y, . . . . Vector field (or a tangent vector)
X̂ . Fundamental vector field corresponding to X 12
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Appendix A
The classification results

A.1 Classification of Lie algebras
To express our results, we use the classification of real indecomposable Lie algebras of
dimension not greater than five obtained by G. M. Mubarakzyanov in [16–17]. Unfortu-
nately, the numbering of the Lie algebras is not completely consistent in the literature.
Since the original work of Mubarakzyanov was not translated to English, many authors
use the numbering chosen in [23].

The subalgebras including the defining canonical commutation relations that are
relevant for our results are listed in Table A.1. The first number n in the subalgebra
name gn,k stands for the dimension of the Lie algebra. The basis elements are always
denoted {e1, . . . , en}. We follow the numbering and bases chosen in [23]. The only
difference here with the Mubarakzyanov notation is in the algebra g5,3, where two of
the generating elements are switched. The reason for our choice was to get triangular
shape of automorphism matrices.

Type Nonzero commutation relations
g1
g3,1 [e2, e3] = e1
g4,1 [e2, e4] = e1, [e3, e4] = e2
g5,1 [e3, e5] = e1, [e4, e5] = e2
g5,2 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3
g5,3 [e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3
g5,4 [e2, e4] = e1, [e3, e5] = e1
g5,5 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2
g5,6 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3

Table A.1. Real nilpotent indecomposable Lie algebras up to dimension five.

A.2 Subalgebras and realizations classification
In this section our classification results for five-dimensional indecomposable nilpotent
Lie algebras will be presented. For every Lie algebra we give groups of inner and all au-
tomorphisms, classification of subalgebras and complete system of faithful realizations.

The automorphisms are presented in matrix form (as linear operators). Implicitly
we assume the domain of all parameters is R. If needed, additional constraints on their
domain are listed.

The classification of subalgebras is presented in a table with five columns. We present
classification with respect to both groups of automorphisms. The classification with
respect to inner automorphisms is available in the third column. The subalgebras
listed are parametrized by parameters a, b, c, d, whose domain is implicitly assumed to
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be R unless the parameter occurs in a denominator of a fraction (then maximal domain
is assumed) or other condition is explicitly stated. All the subalgebras are inequivalent
with respect to inner automorphisms. The subalgebras (or subalgebra classes) are given
name in the second row. In the first row, the type of the subalgebra is written.

The classification with respect to all automorphisms is available in the fourth column
of this table. Again, all subalgebras in this column are mutually inequivalent with
respect to the group of all automorphisms. Every subalgebra from the third column is
Aut-equivalent to the representative listed in the fourth column in the corresponding
row. Finally, the last column shows the type of the corresponding quotient algebra.
For every Aut-class h we write either dash (–) if the subalgebra h is not an ideal or the
Lie algebra type of the quotient g/h.

The classification of realizations is usually presented as the last table. For every
considered Lie algebra we bring the complete system of faithful local realizations with
respect to the group of all automorphisms. The representatives of all the local realiza-
tion classes are chosen to be defined at zero. As follows from the theory in Chapter 4,
complete system of realizations consists of regular realizations only. Every regular local
realizations in m variables with rank r is characterized by (m−r)-parameter set of sub-
algebras. In the first column of the table we list all possible subalgebra parametrizations
(h0 always stands for zero subalgebra) and for each the corresponding regular realiza-
tion is computed and the images of the generators e1, . . . , e5 are written in the second
column.

The realizations often depend on some functions f, g. Implicitly we assume that
those are arbitrary real functions in one or two variables defined in a neighbourhood
of zero mapping zero to zero (i.e. f(0) = 0, g(0) = 0). The realizations depending on
those functions may be equivalent for different functions. From the theory it follows
that they are equivalent if and only if the corresponding subalgebra parametrizations
are equivalent with respect to outer automorphisms in sense of Remark 4.20. If such
case takes place, we list those equivalences in a separate table. Usually we try to express
the function transformations explicitly, but in some cases only implicit expressions are
provided.

As an example, how to read the tables, we can have a look on the Lie algebra g5,1.
As we see in Table A.2, it has five parametrized families of one-dimensional subalgebra
classes with respect to inner automorphisms, whose representatives are denoted as h1,1,
ha1,2, ha1,3, h

a,b
1,4, and ha,b1,5. All of them are, of course, type g1. All subalgebras of the first

two families are equivalent and as a representative we can choose h1,1 = span{e1}. The
next two are also mutually equivalent and all the subalgebras in the last family are also
equivalent. From these three Aut-classes of subalgebras, only the first one is an ideal
of the Lie algebra, and the quotient algebra is of the type g3,1 ⊕ g1.

Using the information in the last column, we can easily construct classification of
unfaithful Lie algebras as we indicated in Remark 4.35. For example, all realizations
with kernel h1,1 can be constructed by extending all faithful realizations of g/h1,1 '
g3,1 ⊕ g1.

The faithful realizations of g5,1 are listed in Table A.4. Some realizations here may
be equivalent. All possible equivalences are listed in Table A.3. For example, the
family of realizations on the fifth row corresponding to curve h

x5,f(x5)
1,4 in the set of

subalgebras contain some mutually equivalent realizations. Realization parametrized
by function f is equivalent with all realizations parametrized by function f̃ defined as
f̃(x) = bx+ cf(ax).
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Lie algebra g5,1

Int g =




1 0 t3 0 t1
0 1 0 t3 t2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =




as1 as2 t5 t6 t1
as3 as4 t7 t8 t2
0 0 s1 s2 t3
0 0 s3 s4 t4
0 0 0 0 a


∣∣∣∣∣ a 6= 0,
s1s4 6= s2s3


Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 g3,1 ⊕ g1

ha1,2 e2 − ae1
ha1,3 e3 − ae2 e3 –
ha,b1,4 e4 − ae3 − be1
ha,b1,5 e5 − ae4 − be3 e5 –

2g1 h2,1 e1, e2 e1, e2 3g1
ha2,2 e1, e3 − ae2 e1, e3 g3,1
ha,b2,3 e2 − ae1, e4 − ae3 − be1
ha2,4 e1, e4 − ae3 e1, e4 –
ha2,5 e1 − ae2, e4
ha,b2,6 e2 − ae1, e3 − be4; ab 6= 1
ha,b2,7 e1, e5 − ae4 − be3 e1, e5 –
ha,b,c2,8 e2 − ae1, e5 − be4 − ce3
ha,b,c2,9 e3 − ae2, e4 − be2 − ce1 e3, e4 –

3g1 h3,1 e1, e2, e3 e1, e2, e3 2g1
ha3,2 e1, e2, e4 − ae3
ha,b3,3 e1, e2, e5 − ae4 − be3 e1, e2, e5 2g1
ha3,4 e1, e3 − ae2, e4 e1, e3, e4 –
ha,b3,5 e2 − ae1, e3, e4 − be1

g3,1 ha,b3,6 e1, e3 − ae2, e5 − be4 e1, e3, e5 –
ha,b,c3,7 e2 − ae1, e4 − ae3 − be1, e5 − ce3

4g1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
g3,1 ⊕ g1 ha4,2 e1, e2, e3, e5 − ae4 e1, e2, e3, e5 g1

ha,b4,3 e1, e2, e4 − ae3, e5 − be3
Table A.2. Subalgebras of g5,1.

h
F (x4,x5,...)
2,9 ∼ h

F̃ (x4,x5,...)
2,9 ;

(
A⊗ (AT)−1)


0
F1
F3
F2

 =


0
F̃1
F̃3
F̃2

 , A ∈ GL(2,R)
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h
x5,f(x5)
1,4 ∼ h

x5,bx5+cf(ax5)
1,4 ; a, c 6= 0 h

x3,f(x3)
3,5 ∼ h

x3,bx3+cf(ax3)
3,5 ; a, c 6= 0

h
x5,f(x5)
1,5 ∼ h

x5,f̃(x5)
1,5 ; h

x3,f(x3),ax3
3,7 ∼ h

x3,cx3+df(x3),ex3
3,7 ; b, d 6= 0

f̃(ax+ bf(x)) = cx+ df(x), ad 6= bc h
x3,f(x3),g(x3)
3,7 ∼ h

x3,bf(ax3),cx3+dg(x3)
3,7 ; a, b, d 6= 0

h
x4,f(x4)
2,3 ∼ h

x4,bx4+cf(ax4)
2,3 ; a, c 6= 0 h

x3,f(x3),x4
3,7 ∼ h

x3,bf(ax3),x4
3,7 ; a, b 6= 0

h
x4,f(x4)
2,6 ∼ h

x4,af(ax4)
2,6 ; a 6= 0 h

x3,x4,g(x3,x4)
3,7 ∼ h

x3,x4,cx3+dg(ax3,bx4)
3,7 ; a, b, d 6= 0

h
x4,f(x4),g(x4)
2,8 ∼ h

x4,bf(ax4),abg(ax4)
2,8 ; a, b 6= 0

h
x4,f(x4),x5
2,8 ∼ h

x4,bf(ax4),x5
2,8 ; a, b 6= 0

h
x4,x5,g(x4,x5)
2,8 ∼ h

x4,x5,a/b g(ax4,bx5)
2,8 ; a, b 6= 0

Table A.3. Subalgebra parametrization equivalence for g5,1

Subalgebra Realization
h0 ∂1, ∂2, ∂3, ∂4, x3∂1 + x4∂2 + ∂5
hx5

1,2 ∂1, x5∂1, ∂2, ∂3, (x2 + x5x3) ∂1 + ∂4
h0,0

1,4 ∂1, ∂2, ∂3, −x4∂2, x3∂1 + ∂4
h0,x5

1,4 ∂1, ∂2, ∂3, x5∂1 − x4∂2, x3∂1 + ∂4

h
x5,f(x5)
1,4 ∂1, ∂2, ∂3, (f(x5) + x5x4) ∂1 − x4∂2 + x5∂3, x3∂1 + ∂4

hx5,x6
1,4 ∂1, ∂2, ∂3, (x6 + x5x4) ∂1 − x4∂2 + x5∂3, x3∂1 + ∂4

h0,0
1,5 ∂1, ∂2, ∂3, ∂4, x3∂1 + x4∂2

h
x5,f(x5)
1,5 ∂1, ∂2, ∂3, ∂4, x3∂1 + x4∂2 + f(x5)∂3 + x5∂4

hx5,x6
1,5 ∂1, ∂2, ∂3, ∂4, x3∂1 + x4∂2 + x6∂3 + x5∂4

h
x4,f(x4)
2,3 ∂1, x4∂1, ∂2, f(x4)∂1 + x4∂2, x2∂1 + ∂3

hx4,x5
2,3 ∂1, x4∂1, ∂2, x5∂1 + x4∂2, x2∂1 + ∂3

hx4
2,5 x4∂1, ∂1, ∂2, −x3∂1, x4x2∂1 + ∂3

h
x4,f(x4)
2,6 ∂1, x4∂1, (−1 + x4f(x4))x3∂1 + f(x4)∂2, ∂2, x4x2∂1 + ∂3

hx4,x5
2,6 ∂1, x4∂1, (−1 + x4x5)x3∂1 + x5∂2, ∂2, x4x2∂1 + ∂3

h
x4,f(x4),g(x4)
2,8 ∂1, x4∂1, ∂2, ∂3, (x2 + x4x3) ∂1 + g(x4)∂2 + f(x4)∂3

h
x4,f(x4),x5
2,8 ∂1, x4∂1, ∂2, ∂3, (x2 + x4x3) ∂1 + x5∂2 + f(x4)∂3

h
x4,x5,g(x4,x5)
2,8 ∂1, x4∂1, ∂2, ∂3, (x2 + x4x3) ∂1 + g(x4, x5)∂2 + x5∂3

hx4,x5,x6
2,8 ∂1, x4∂1, ∂2, ∂3, (x2 + x4x3) ∂1 + x6∂2 + x5∂3

h0,0,0
2,9 ∂1, ∂2, −x3∂1 + 0∂2, −x3∂2, ∂3

h
0,f(x4),x4
2,9 ∂1, ∂2, −x3∂1, x4∂1 + (f(x4)− x3) ∂2, ∂3

h0,x5,x4
2,9 ∂1, ∂2, −x3∂1, x4∂1 + (x5 − x3) ∂2, ∂3

h
x4,f(x4),g(x4)
2,9 ∂1, ∂2, −x3∂1 + x4∂2, g(x4)∂1 + (f(x4)− x3) ∂2, ∂3

h
x4,x5,g(x4)
2,9 ∂1, ∂2, −x3∂1 + x4∂2, g(x4)∂1 + (x5 − x3) ∂2, ∂3

h
x4,f(x4,x5),x5
2,9 ∂1, ∂2, −x3∂1 + x4∂2, x5∂1 + (f(x4, x5)− x3) ∂2, ∂3

hx4,x5,x6
2,9 ∂1, ∂2, −x3∂1 + x4∂2, x6∂1 + (x5 − x3) ∂2, ∂3

h
x3,f(x3)
3,5 ∂1, x3∂1, −x2∂1, (f(x3)− x3x2) ∂1, ∂2

hx3,x4
3,5 ∂1, x3∂1, −x2∂1, (x4 − x3x2) ∂1, ∂2

h
x3,f(x3),g(x3)
3,7 ∂1, x3∂1, ∂2, f(x3)∂1 + x3∂2, x2∂1 + g(x3)∂2

h
x3,f(x3),x4
3,7 ∂1, x3∂1, ∂2, f(x3)∂1 + x3∂2, x2∂1 + x4∂2

h
x3,x4,g(x3,x4)
3,7 ∂1, x3∂1, ∂2, x4∂1 + x3∂2, x2∂1 + g(x3, x4)∂2

hx3,x4,x5
3,7 ∂1, x3∂1, ∂2, x4∂1 + x3∂2, x2∂1 + x5∂2

Table A.4. Complete system of faithful realizations of g5,1.
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Lie algebra g5,2

Int g =




1 t4

1
2 t

2
4

1
6 t

3
4 t1

0 1 t4
1
2 t

2
4 t2

0 0 1 t4 t3
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =




ab3 b2t7 bt6 t5 t1
0 ab2 bt7 t6 t2
0 0 ab t7 t3
0 0 0 a t4
0 0 0 0 b


∣∣∣∣∣ a, b 6= 0


Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 g4,1

h1,2 e2 e2 –
ha1,3 e3 − ae1 e3 –
ha,b1,4 e4 − ae2 − be1 e4 –
ha1,5 e5 − ae4 e5 –

2g1 h2,1 e1, e2 e1, e2 3g1
h2,2 e1, e3 e1, e3 –
ha2,3 e1, e4 − ae2 e1, e4 –
ha2,4 e1, e5 − ae4 e1, e5 –
ha2,5 e2, e3 − ae1 e2, e3 –
ha,b2,6 e2, e4 − ae3 − be1; e2, |σa|e3 + e4 –
ha,b,c2,7 e3 − ae1, e4 − be2 − ce1 e3 + σb−ae1, e4 –

3g1 h3,1 e1, e2, e3 e1, e2, e3 2g1
h3,2 e1, e2, e4 e1, e2, e4 –
ha3,3 e1, e3, e4 − ae2 e1, e3, e4 –
ha,b3,4 e2, e3 − ae1, e4 − be1 e2. e3, e4 –

g3,1 ha3,5 e1, e2, e5 − ae4 e1, e2, e5 –
4g1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
g4,1 ha4,2 e1, e2, e3, e5 − ae4 e1, e2, e3, e5 g1

Table A.5. Subalgebras of g5,2. We denote σx = sgn x.

h
x5,f(x5)
1,4 ∼ h

x5,a3f(x5/a2)
1,4 ; a 6= 0 h

1+x4,f(x4),g(x4)
2,7 ∼ h

1+x4,f(x4),−g(x4)
2,7

h
1+x4,f(x4)
2,6 ∼ h

1+x4,f(x4)+ax4
2,6 h

1+x4,x5,g(x4,x5)
2,7 ∼ h

1+x4,x5,−g(x4,x5)
2,7

h
x4,x4,f(x4)
2,7 ∼ h

x4,x4,a3f(x4/a2)
2,7 h

x3,f(x3)
3,4 ∼ h

x3,a3f(x3/a2)
3,4 ; a 6= 0

Table A.6. Subalgebra parametrization equivalence for g5,2
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A The classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subalgebra Realization
h0 ∂1, ∂2, ∂3, ∂4, x2∂1 + x3∂2 + x4∂3 + ∂5

h1,2 ∂1, −x4∂1, ∂2, ∂3, −x2x4∂1 + x3∂2 + ∂4

h0
1,3 ∂1, ∂2, x2

4
2 ∂1 − x4∂2, ∂3,

(
x2 − 1

2x3x
2
4
)
∂1 − x3x4∂2 + ∂4

hx5
1,3 ∂1, ∂2,

(
x5 − x2

4
2

)
∂1 − x4∂2, ∂3,

(
x2 + x5x3 − 1

2x3x
2
4
)
∂1 − x3x4∂2 + ∂4

h0,0
1,4 ∂1, ∂2, ∂3, −x3

4
6 ∂1 − x2

4
2 ∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

h0,x5
1,4 ∂1, ∂2, ∂3,

(
x5 − x3

4
6

)
∂1 − x2

4
2 ∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

h
x5,f(x5)
1,4 ∂1, ∂2, ∂3,

(
f(x5) + x5x4 − x3

4
6

)
∂1 +

(
x5 − x2

4
2

)
∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

hx5,x6
1,4 ∂1, ∂2, ∂3,

(
x6 + x5x4 − x3

4
6

)
∂1 +

(
x5 − x2

4
2

)
∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

h0
1,5 ∂1, ∂2, ∂3, ∂4, x2∂1 + x3∂2 + x4∂3

hx5
1,5 ∂1, ∂2, ∂3, ∂4, x2∂1 + x3∂2 + x4∂3 + x5∂4

h0
2,5 ∂1, −x3∂1, x2

3
2 ∂1, ∂2, 1

2x2x
2
3∂1 + ∂3

hx4
2,5 ∂1, −x3∂1,

(
x4 + x2

3
2

)
∂1, ∂2, 1

2x2
(
2x4 + x2

3
)
∂1 + ∂3

h0,0
2,6 ∂1, −x3∂1, ∂2, x3

3
3 ∂1 − x3∂2, −x2x3∂1 + ∂3

h0,x4
2,6 ∂1, −x3∂1, ∂2,

(
x4 + x3

3
3

)
∂1 − x3∂2, −x2x3∂1 + ∂3

h1,0
2,6 ∂1, −x3∂1, ∂2,

(
−x2

3
2 + x3

3
3

)
∂1 + (1− x3) ∂2, −x2x3∂1 + ∂3

h1,x4
2,6 ∂1, −x3∂1, ∂2,

(
x4 − x2

3
2 + x3

3
3

)
∂1 + (1− x3) ∂2, −x2x3∂1 + ∂3

h
1+x4,f(x4)
2,6 ∂1, −x3∂1, ∂2,

(
f(x4)− (1+x4)x2

3
2 + x3

3
3

)
∂1 + (1 + x4 − x3) ∂2, −x2x3∂1 + ∂3

h1+x4,x5
2,6 ∂1, −x3∂1, ∂2,

(
x5 − (1+x4)x2

3
2 + x3

3
3

)
∂1 + (1 + x4 − x3) ∂2, −x2x3∂1 + ∂3

h0,0,0
2,7 ∂1, ∂2, −x2

3
2 ∂1 − x3∂2, x3

3
3 ∂1 + x2

3
2 ∂2, x2∂1 + ∂3

h0,0,x4
2,7 ∂1, ∂2, −x2

3
2 ∂1 − x3∂2,

(
x4 + x3

3
3

)
∂1 + x2

3
2 ∂2, x2∂1 + ∂3

h
x4,x4,g(x4)
2,7 ∂1, ∂2,

(
x4 − x2

3
2

)
∂1 − x3∂2,

(
g(x4) + x3

3
3

)
∂1 +

(
x4 + x2

3
2

)
∂2, x2∂1 + ∂3

hx4,x4,x5
2,7 ∂1, ∂2,

(
x4 − x2

3
2

)
∂1 − x3∂2,

(
x5 + x3

3
3

)
∂1 +

(
x4 + x2

3
2

)
∂2, x2∂1 + ∂3

h1,0,0
2,7 ∂1, ∂2,

(
1− x2

3
2

)
∂1 − x3∂2,

(
−x3 + x3

3
3

)
∂1 + x2

3
2 ∂2, x2∂1 + ∂3

h1,0,x4
2,7 ∂1, ∂2,

(
1− x2

3
2

)
∂1 − x3∂2,

(
x4 − x3 + x3

3
3

)
∂1 + x2

3
2 ∂2, x2∂1 + ∂3

h
1,x4,g(x4)
2,7 ∂1, ∂2,

(
1− x2

3
2

)
∂1 − x3∂2,

(
g(x4) + (x4 − 1)x3 + x3

3
3

)
∂1 +

(
x4 + x2

3
2

)
∂2, x2∂1 + ∂3

h1,x4,x5
2,7 ∂1, ∂2,

(
1− x2

3
2

)
∂1 − x3∂2,

(
x5 + (x4 − 1)x3 + x3

3
3

)
∂1 +

(
x4 + x2

3
2

)
∂2, x2∂1 + ∂3

h
1+x4,f(x4),g(x4)
2,7 ∂1, ∂2,

(
1 + x4 − x2

3
2

)
∂1 − x3∂2,(

g(x4) + (f(x4)− 1− x4)x3 + x3
3

3

)
∂1 +

(
f(x4) + x2

3
2

)
∂2, x2∂1 + ∂3

h
1+x4,f(x4),x5
2,7 ∂1, ∂2,

(
1 + x4 − x2

3
2

)
∂1 − x3∂2,(

x5 + (f(x4)− 1− x4)x3 + x3
3

3

)
∂1 +

(
f(x4) + x2

3
2

)
∂2, x2∂1 + ∂3

h
1+x4,x5,g(x4,x5)
2,7 ∂1, ∂2,

(
1 + x4 − x2

3
2

)
∂1 − x3∂2,(

g(x4, x5) + (x5 − 1− x4)x3 + x3
3

3

)
∂1 +

(
x5 + x2

3
2

)
∂2, x2∂1 + ∂3

h1+x4,x5,x6
2,7 ∂1, ∂2,

(
1 + x4 − x2

3
2

)
∂1 − x3∂2,

(
x6 + (x5 − 1− x4)x3 + x3

3
3

)
∂1 +

(
x5 + x2

3
2

)
∂2, x2∂1 + ∂3

h0,0
3,4 ∂1, −x2∂1, x2

2
2 ∂1, −x3

2
6 ∂1, ∂2

h0,x3
3,4 ∂1, −x2∂1, x2

2
2 ∂1,

(
x3 − x3

2
6

)
∂1, ∂2

h
x3,f(x3)
3,4 ∂1, −x2∂1,

(
x3 + x2

2
2

)
∂1,

(
f(x3)− x3x2 − x3

2
6

)
∂1, ∂2

hx3,x4
3,4 ∂1, −x2∂1,

(
x3 + x2

2
2

)
∂1,

(
x4 − x3x2 − x3

2
6

)
∂1, ∂2

Table A.7. Complete system of faithful realizations of g5,2.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Subalgebras and realizations classification

Lie algebra g5,3

Int g =




1 0 t3

1
2 t

2
3 t1

0 1 t2 t1 + t2t3 − 1
2 t

2
2

0 0 1 t3 −t2
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =




Du5 Dt5 t3u5 − t5u3 t1 u1
Du4 Dt4 t3u4 − t4u3 t2 u2

0 0 D t3 u3
0 0 0 t4 u4
0 0 0 t5 u5


∣∣∣∣∣ D := t4u5 − t5u4 6= 0



Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 g4,1

ha1,2 e2 − ae1
h1,3 e3 e3 –
ha1,4 e4 − ae1 e4 –
ha,b1,5 e5 − ae4 − be2

2g1 h2,1 e1, e2 e1, e2 g3,1
h2,2 e1, e3 e1, e3 –
ha2,3 e2 − ae1, e3
ha2,4 e1 − ae2, e4 e1, e4 –
ha2,5 e1, e5 − ae4; a 6= 0
ha,b2,6 e2 − ae1, e5 − be4; ab 6= 1
ha,b2,7 e1 − ae2, e5 − ae4 − be2 e1, e5 –
ha2,8 e2, e4 − ae1;

3g1 h3,1 e1, e2, e3 e1, e2, e3 2g1
h3,2 e1, e2, e4 e1, e2, e4 –
ha3,3 e1, e2, e5 − ae4

g3,1 ha,b3,4 e1 − ae2, e3, e5 − ae4 − be2 e1, e3, e5 –
ha3,5 e2, e3, e4 − ae1

g1 ⊕ g3,1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
ha4,2 e1, e2, e3, e5 − ae4

Table A.8. Subalgebras of g5,3.

h
x5,f(x5)
1,5 ∼ h

x5,bx5+cf(ax5)
1,5 ; a 6= 0, c > 0 h

x4,f(x4)
2,7 ∼ h

x4,bx4+cf(ax4)
2,7 ; a 6= 0, c > 0

h
x4,f(x4)
2,6 ∼ h

x4,af(ax4)+ax4
2,6 ; a 6= 0 h

x3,f(x3)
3,4 ∼ h

x3,bx3+cf(ax3)
3,4 ; a 6= 0, c > 0

Table A.9. Subalgebra parametrization equivalence for g5,3
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A The classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subalgebra Realization
h0 ∂1, ∂2, ∂3, x3∂2 + ∂4, x3∂1 + 1

2x
2
4∂2 + x4∂3 + ∂5

hx5
1,2 ∂1, x5∂1, ∂2, x5x2∂1 + ∂3,

(
x2 + x5x2

3
2

)
∂1 + x3∂2 + ∂4

h1,3 ∂1, ∂2, −x4∂1 − x3∂2, ∂3, −x3x4∂1 − 1
2x

2
3∂2 + ∂4

h0
1,4 ∂1, ∂2, ∂3, −x2

4
2 ∂1 + x3∂2 − x4∂3, x3∂1 + ∂4

hx5
1,4 ∂1, ∂2, ∂3,

(
x5 − x2

4
2

)
∂1 + x3∂2 − x4∂3, x3∂1 + ∂4

h0,0
1,5 ∂1, ∂2, ∂3, x3∂2 + ∂4, x3∂1 + x2

4
2 ∂2 + x4∂3

h0,x5
1,5 ∂1, ∂2, ∂3, x3∂2 + ∂4, x3∂1 +

(
x5 + x2

4
2

)
∂2 + x4∂3

h
x5,f(x5)
1,5 ∂1, ∂2, ∂3, x3∂2 + ∂4, x3∂1 +

(
f(x5) + x2

4
2

)
∂2 + x4∂3 + x5∂4

hx5,x6
1,5 ∂1, ∂2, ∂3, x3∂2 + ∂4, x3∂1 +

(
x6 + x2

4
2

)
∂2 + x4∂3 + x5∂4

hx4
2,3 ∂1, x4∂1, (−x4x2 − x3) ∂1, ∂2, − 1

2x2 (x4x2 + 2x3) ∂1 + ∂3

h
x4,f(x4)
2,6 ∂1, x4∂1, ∂2, x4x2∂1 + ∂3,

(
x2 + x4x2

3
2

)
∂1 + x3∂2 + f(x4)∂3

hx4,x5
2,6 ∂1, x4∂1, ∂2, x4x2∂1 + ∂3,

(
x2 + x4x2

3
2

)
∂1 + x3∂2 + x5∂3

h
x4,f(x4)
2,7 x4∂1, ∂1, ∂2, x2∂1 + ∂3,

(
f(x4) + x4x2 + x2

3
2

)
∂1 + x3∂2 + x4∂3

hx4,x5
2,7 x4∂1, ∂1, ∂2, x2∂1 + ∂3,

(
x5 + x4x2 + x2

3
2

)
∂1 + x3∂2 + x4∂3

h
x3,f(x3)
3,4 x3∂1, ∂1, −x2∂1, ∂2,

(
f(x3)− x2

2
2

)
∂1 + x3∂2

hx3,x4
3,4 x3∂1, ∂1, −x2∂1, ∂2,

(
x4 − x2

2
2

)
∂1 + x3∂2

Table A.10. Complete system of realizations of g5,3.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Subalgebras and realizations classification

Lie algebra g5,4

Int g =




1 t1 t2 t3 t4
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =
{(

a ~t
0 B

) ∣∣∣∣∣ a 6= 0, B ∈ R4,4, BTΩB = aΩ
}
,

where Ω =
(

0 I
−I 0

)
is the matrix of the standard symplectic form.

Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 4g1

h1,2 e2 e2 –
ha1,3 e3 − ae2
ha,b1,4 e4 − ae3 − be2
ha,b,c1,5 e5 − ae4 − be3 − ce2

2g1 h2,1 e1, e2 e1, e2 3g1
ha2,2 e1, e3 − ae2
ha,b2,3 e1, e4 − ae3 − be2
ha,b,c2,4 e1, e5 − ae4 − be3 − ce2
h2,5 e2, e3 e2, e3 –
ha2,6 e2, e5 − ae3
ha,b2,7 e3 − ae2, e4 + ae5 − be2
ha,b,c2,8 e4 − ae3 − be2, e5 − ce3 − ae2

3g1 h3,1 e1, e2, e3 e1, e2, e3 2g1
ha3,2 e1, e2, e5 − ae3
ha,b3,3 e1, e3, e4 − ae2
ha,b3,4 e1, e3 − ae2, e4 + ae5 − be2
ha,b,c3,5 e1, e4 − ae3 − be2, e5 − ce3 − ae2

g3,1 ha,b3,6 e1, e2, e4 − ae5 − be3 e1, e2, e4 2g1

ha,b3,7 e1, e3 − ae2, e4 − be2; a 6= 0
ha,b,c3,8 e1, e3 − ae2, e5 − be4 − ce2; ab 6= −1
ha,b,c,d3,9 e1, e4 − ae3 − be2, e5 − ce3 − de2; a 6= d

g1 ⊕ g3,1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
ha4,2 e1, e2, e3, e5 − ae4
ha,b4,3 e1, e2, e4 − ae3, e5 − be3
ha,b,c4,4 e1, e3 − ae2, e4 − be2, e5 − ce2

Table A.11. Subalgebras of g5,4.
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A The classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subalgebra Realization
h0 ∂1, ∂2, ∂3, x2∂1 + ∂4, x3∂1 + ∂5
h0,0,0

1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, x3∂1
h0,0,x5

1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + x5x4) ∂1 + x5∂2

h
0,x5,g(x5)
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + g(x5)x4) ∂1 + g(x5)∂2 + x5∂3

h0,x5,x6
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + x6x4) ∂1 + x6∂2 + x5∂3

h
x5,f(x5),g(x5)
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + g(x5)x4) ∂1 + g(x5)∂2 + f(x5)∂3 + x5∂4

h
x5,f(x5),x6
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + x6x4) ∂1 + x6∂2 + f(x5)∂3 + x5∂4

h
x5,x6,g(x5,x6)
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + g(x5, x6)x4) ∂1 + g(x5, x6)∂2 + x6∂3 + x5∂4

hx5,x6,x7
1,5 ∂1, ∂2, ∂3, x2∂1 + ∂4, (x3 + x7x4) ∂1 + x7∂2 + x6∂3 + x5∂4

h0,0,0
2,8 ∂1, ∂2, ∂3, x2∂1, x3∂1

h0,0,x4
2,8 ∂1, ∂2, ∂3, x2∂1, x3∂1 + x4∂3

h
0,x4,g(x4)
2,8 ∂1, ∂2, ∂3, x2∂1 + x4∂2, x3∂1 + g(x4)∂3

h0,x4,x5
2,8 ∂1, ∂2, ∂3, x2∂1 + x4∂2, x3∂1 + x5∂3

h
x4,f(x4),g(x4)
2,8 ∂1, ∂2, ∂3, x2∂1 + f(x4)∂2 + x4∂3, x3∂1 + x4∂2 + g(x4)∂3

h
x4,f(x4),x5
2,8 ∂1, ∂2, ∂3, x2∂1 + f(x4)∂2 + x4∂3, x3∂1 + x4∂2 + x5∂3

h
x4,x5,g(x4,x5)
2,8 ∂1, ∂2, ∂3, x2∂1 + x5∂2 + x4∂3, x3∂1 + x4∂2 + g(x4, x5)∂3

hx4,x5,x6
2,8 ∂1, ∂2, ∂3, x2∂1 + x5∂2 + x4∂3, x3∂1 + x4∂2 + x6∂3

Table A.12. Complete system of realizations of g5,4.

In this case it would be very complicated to express the parametrization equivalence
explicitly, so we only express the action of Aut g on the subalgebra families h1,5 and
h2,8, which defines the reparametrizations implicitly.

ha,b,c1,5 ∼ hã,b̃,c̃1,5 ⇔ ∃B ∈ S̃p(4) B


−c
−b
−a
1

 =


−c̃
−b̃
−ã
1


ha,b,c2,8 ∼ hã,b̃,c̃2,8 ⇔ ∃B ∈ S̃p(4) ∃

(
s1 s2
s3 s4

)
∈ GL(2,R)

(
s1B s2B
s3B s4B

)


−b
−a
1
0
−a
−c
0
1


=



−b̃
−ã
1
0
−ã
−c̃
0
1


,

where S̃p(4) = {B ∈ R4,4 | ∃a ∈ R BTΩB = aΩ}. The parameters a, b, c, ã, b̃, c̃ should
be replaced by the corresponding functions used in table A.12.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Subalgebras and realizations classification

Lie algebra g5,5

Int g =




1 t4 t3 + 1

2 t
2
4 t2 t1

0 1 t4 0 t2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =




ab2 at4 − t3t8 + bt7 t6 t5 t1
0 ab t7 t3b t2
0 0 a 0 t3
0 0 t8 b2 t4
0 0 0 0 b


∣∣∣∣∣ a, b 6= 0


Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 g3,1 ⊕ g1

h1,2 e2 e2 –
ha1,3 e4 − ae2 e4 –
ha1,4 e3 − ae4 e3 –
ha,b1,5 e5 − ae4 − be3 e5 –

2g1 h2,1 e1, e2 e1, e2 3g1
ha2,2 e1, e4 − ae2 e1, e4 g3,1
ha2,3 e1, e3 − ae4 e1, e3 –
ha,b2,4 e1, e5 − ae4 − be3 e1, e5 –
h2,5 e2, e4 e2, e4 –
ha2,6 e2, e3 − ae4 e2, e3 –
ha,b2,7 e4 − ae2 − be1, e5 − ae3 e4, e5 –

3g1 h3,1 e1, e2, e4 e1, e2, e4 2g1
ha3,2 e1, e2, e3 − ae4 e1, e2, e3 2g1
ha3,3 e1, e4 − ae2, e5 − ae3 e1, e4, e5 –

g3,1 ha,b3,4 e1, e2, e5 − ae4 − be3 e1, e2, e5 2g1
ha3,5 e1, e3, e4 − ae2 e1, e3, e4 –
ha,b3,6 e1, e4 − ae2, e5 − be3; a 6= b e1, e4 − e2, e5 –

g1 ⊕ g3,1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
ha4,2 e1, e2, e4, e5 − ae3 e1, e2, e4, e5 g1

g4,1 ha,b4,3 e1, e2, e3 − ae4, e5 − be4 e1, e2, e3, e5 g1

Table A.13. Subalgebras of g5,5.

h
f(x5),x5
1,5 ∼ h

bx5+cf(ax5),x5
1,5 ; a, c 6= 0 h

x4,f(x4)
2,7 ∼ h

x4,bf(ax4)
2,7 ; a 6= 0, c > 0

Table A.14. Subalgebra parametrization equivalence for g5,5
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Subalgebra Realization
h0 ∂1, ∂2, ∂3, x3∂1 + ∂4, x2∂1 + x3∂2 + ∂5
h1,2 ∂1, −x4∂1, ∂2, x2∂1 + ∂3, −x2x4∂1 + ∂4
h0

1,3 ∂1, ∂2, ∂3, x3∂1, x2∂1 + x3∂2 + ∂4
hx5

1,3 ∂1, ∂2, ∂3, (x3 + x5x4) ∂1 + x5∂2, x2∂1 + x3∂2 + ∂4

h0
1,4 ∂1, ∂2,

(
−x3 − x2

4
2

)
∂1 − x4∂2, ∂3, x2∂1 + ∂4

hx5
1,4 ∂1, ∂2,

(
−x3 − x2

4
2

)
∂1 − x4∂2 + x5∂3, ∂3, x2∂1 + ∂4

h0,0
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4, x2∂1 + x3∂2

hx5,0
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4, x2∂1 + x3∂2 + x5∂4

h
f(x5),x5
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4, (x2 + x5x4) ∂1 + x3∂2 + x5∂3 + f(x5)∂4

hx6,x5
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4, (x2 + x5x4) ∂1 + x3∂2 + x5∂3 + x6∂4

h2,5 ∂1, −x3∂1, ∂2, x2∂1, −x2x3∂1 + ∂3
h0

2,6 ∂1, −x3∂1, 1
2
(
−2x2 + x2

3
)
∂1, ∂2, ∂3

hx4
2,6 ∂1, −x3∂1, 1

2
(
−2x2 + x2

3
)
∂1 + x4∂2, ∂2, ∂3

h0,0
2,7 ∂1, ∂2, ∂3, x3∂1, x2∂1 + x3∂2

h0,x4
2,7 ∂1, ∂2, ∂3, (x4 + x3) ∂1, x2∂1 + x3∂2

h
x4,f(x4)
2,7 ∂1, ∂2, ∂3, (f(x4) + x3) ∂1 + x4∂2, x2∂1 + x3∂2 + x4∂3

hx4,x5
2,7 ∂1, ∂2, ∂3, (x5 + x3) ∂1 + x4∂2, x2∂1 + x3∂2 + x4∂3

Table A.15. Complete system of realizations of g5,5.
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Lie algebra g5,6

Int g =




1 t4

1
2 t

2
4 − t3 1

6 t
3
4 − t3t4 + t2 t1

0 1 t4
1
2 t

2
4 t2

0 0 1 t4 t3
0 0 0 1 0
0 0 0 0 1


 ,

Aut g =




a5 a2(t7 + t4a) −t3a2 + t6a+ t7t4 t5 t1
0 a4 t7a t6 t2
0 0 a3 t7 t3
0 0 0 a2 t4
0 0 0 0 a


∣∣∣∣∣ a 6= 0


Type Name Int-class Aut-class g/h type
g1 h1,1 e1 e1 g4,1

h1,2 e2 e2 –
h1,3 e3 e3 –
ha1,4 e4 − ae2 e4 –
ha1,5 e5 − ae4 e5 –

2g1 h2,1 e1, e2 e1, e2 g3,1
h2,2 e1, e3 e1, e3 –
ha2,3 e1, e4 − ae2 e1, e4 –
ha2,4 e1, e5 − ae4 e1, e5 –
h2,5 e2, e3 e2, e3 –
ha2,6 e2, e4 − ae3 e2, e4 –

3g1 h3,1 e1, e2, e3 e1, e2, e3 2g1
h3,2 e1, e2, e4 e1, e2, e4 –

g3,1 ha3,3 e1, e2, e5 − ae4 e1, e2, e5 –
ha3,4 e1, e3, e4 − ae2 e1, e3, e4 –

g1 ⊕ g3,1 h4,1 e1, e2, e3, e4 e1, e2, e3, e4 g1
g4,1 ha4,2 e1, e2, e3, e5 − ae4 e1, e2, e3, e5 g1

Table A.16. Subalgebras of g5,6.

Subalgebra Realization
h0 ∂1, ∂2, ∂3, x3∂1 + ∂4,

(
x2 + x2

4
2

)
∂1 + x3∂2 + x4∂3 + ∂5

h1,2 ∂1, −x4∂1, ∂2, x2∂1 + ∂3, 1
2
(
x2

3 − 2x2x4
)
∂1 + x3∂2 + ∂4

h1,3 ∂1, ∂2,
(
−x3 − x2

4
2

)
∂1 − x4∂2, ∂3,

(
x2 − 1

2x3
(
x3 + x2

4
))
∂1 − x3x4∂2 + ∂4

h0
1,4 ∂1, ∂2, ∂3,

(
x3 − x3

4
6

)
∂1 − x2

4
2 ∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

hx5
1,4 ∂1, ∂2, ∂3,

(
x3 + x5x4 − x3

4
6

)
∂1 +

(
x5 − x2

4
2

)
∂2 − x4∂3, x2∂1 + x3∂2 + ∂4

h0
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4,

(
x2 + x2

4
2

)
∂1 + x3∂2 + x4∂3

hx5
1,5 ∂1, ∂2, ∂3, x3∂1 + ∂4,

(
x2 + x2

4
2

)
∂1 + x3∂2 + x4∂3 + x5∂4

h2,5 ∂1, −x3∂1, 1
2
(
−2x2 + x2

3
)
∂1, ∂2, 1

2x2
(
−x2 + x2

3
)
∂1 + ∂3

h0
2,6 ∂1, −x3∂1, ∂2,

(
x2 + 1

3x
3
3
)
∂1 − x3∂2, −x2x3∂1 + ∂3

hx4
2,6 ∂1, −x3∂1, ∂2,

(
x2 + 1

6x
2
3 (−3x4 + 2x3)

)
∂1 + (x4 − x3) ∂2, −x2x3∂1 + ∂3

Table A.17. Complete system of realizations of g5,6.
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