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Abstrakt

V préci jsou nejprve shrnuty dilezité
casti teorie Lieovych algeber a grup,
poté se prace zabyva samotnym pro-
Je zde
popsan vztah klasifikace tranzitivnich
realizaci a klasifikace podalgeber dané
Lieovy algebry, dale je zde shrnuta me-
toda konstrukce lokédlnich tranzitivnich
realizaci na zékladé [1]. Tato metoda je
vyuzita ke konstrukci realizaci nerozlo-
zitelnych Lieovych algeber dimenze pét
se Ctyrrozmérnym abelovskym idedlem.

Klicova slova: Lieovy algebry, reali-
zace, podalgebry

Pteklad titulu: Konstrukce realizaci
Lieovych algeber

blémem konstrukce realizaci.

/ Abstract

Vi

This work summarizes the important
part of the theory of Lie algebras and
groups and then it treats the prob-
lem of realizations construction itself.
The relationship between classification
of transitive realizations and classifi-
cation of subalgebras of a given Lie
algebra is described and the method for
construction of local transitive realiza-
tions on the basis of [1] is summarized.
This method is then used for construc-
tion of realizations of five-dimensional
indecomposable Lie algebras with four-
dimensional Abelian ideal.

Keywords: Lie algebras, realizations,
subalgebras
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Chapter ].
Introduction

This research project studies one of the most natural ways of representing the structure
of an abstract Lie algebra—so called realizations by vector fields. The problem of
classifying all realizations satisfying some property for a given Lie algebra was first
considered by S. Lie himself. Since that time, few additional results were obtained by
other authors. Nevertheless, all classification results were so far obtained only for low-
dimensional Lie algebras or for small fixed number of variables. Currently, the most
general result is probably the work of R. O. Popovych et al. [2].

This problem has variety of applications especially in group analysis of differential
equations. For further references on applications of this theory, see e.g. [2-3].

Our aim is to use a method of construction of Lie algebra realizations proposed by
I. V. Shirokov et al. in [1]. There is a special type of so called transitive realizations,
whose classification is completely equivalent to subalgebra classification of the given Lie
algebra. This well-known idea is described in [1] together with very simple formula for
computing the explicit form of the realizations.

In our work, we tried to describe this method in clear, well arranged and more precise
way. We have also decided to apply this method on Lie algebras of dimension five. Our
interim results, summarized in Section A.2 of the appendix, contain classification of five-
dimensional Lie algebras that have a four-dimensional commutative ideal. We plan to
complete the classification of transitive realizations of all five-dimensional Lie algebras
in the Master’s thesis.

The structure of this paper is following. After this introduction, the most extensive
chapter about Lie algebras and Lie groups follows. This chapter contains mostly the
basic knowledge about those topics to recall the necessary definitions and theorems
and clarify the notation. However, few subsections of Chapter 2 contain more recent
findings closely related to the main topic (Subsections 2.3.1, 2.3.2, 2.6.2). In Chapter 3,
the problem of realizations construction is discussed. As mentioned earlier, the explicit
results are contained in the appendix. Finally, the last chapter is the conclusion, which
contains not only summary of our work, but also several interesting questions that have
arisen during the work and serve as a direction for further research.



Chapter 2
Lie groups and Lie algebras

In this chapter, necessary definitions and theorems about Lie groups, Lie algebras,
and their connection is provided. The basic definitions and propositions of the group
theory, Lie algebras, and differential geometry is presented briefly and without proofs.
The relationship between Lie groups and Lie algebras and the topics closely connected
to the main subject of this work are concerned more deeply. Most of the information
were adopted from chapters 1 and 4 of [4]. Sections about Lie algebras are rather based
on [5]. The information about Lie groups as a transformation groups and their action
on manifolds come from [6].

I 2.1 Groups

In this section, we recall the very basic definitions concerning groups. Subsequently, we
focus on the theory of group actions.

Definition 2.1. A group is an algebraic structure consisting of a set G and a binary
operation on G that is associative, has a unity e, and an inverse g~! for every element
g € G. The binary operation will be usually denoted as multiplication. A commutative
group is called Abelian. A subset H C G that forms a group with respect to the
multiplication of G is called a subgroup of G and denoted H CC G.

Definition 2.2. A map ¢: G — H between two groups preserving the group structure
(p(gh) = v(g)e(h) for all g,h € G) is called a group homomorphism. A bijective
homomorphism is called an isomorphism and an isomorphism of a group onto itself is
called an automorphism. The set of all automorphisms of a given group G form a group
with respect to composition and is denoted Aut G.

Definition 2.3. Let G be a group and H its subgroup. Then we can define an equivalence
relation on G as g ~ ¢ if there exists h € H such that § = gh. The equivalence classes
gH = {gh | h € H} are called left cosets, the quotient set is denoted G/H. Analogically,
for g ~ § < g = hg we have classes Hg called right cosets and a quotient set H \ G.
If left cosets coincide with right cosets, i.e. gH = Hg for all g € G, the subgroup H
is called normal. The set of left or right cosets then possesses a group structure with
respect to multiplication g1 H - goH = g19oH and is called a quotient group of G by H.

Definition 2.4. The inverse image of unity by a homomorphism ¢ is called a kernel
and denoted ker ¢. It can be easily shown that it is a normal subgroup in the domain
of .

In the following text, we will use some important examples. The set of real numbers
with respect to addition (R, +) form a group. For any set X, the set of all bijections of
X (i.e. permutations if X is finite) form a group Sx called the symmetric group of X.
For any vector space V', the set of all invertible linear transformations is a group called
the general linear group of V and denoted GL(V).

Definition 2.5. Let G be a group. A one-parameter subgroup of G is a group homo-
morphism ¢: (R, +) — G.



Definition 2.6. Let G be a group. An action of a group G on a set X is a map
m G x X — X satisfying

w(e,z) =2 and mw(gh,z)=n(g,n(h,z)) (1)

for all g,h € G and x € X.

The action is often denoted as multiplication 7(g,z) = ¢ - . The defining relations
then become ex = = and (gh)z = g(hz), so e has to be a (left) unity and the multi-
plication has to be associative. A set X with an action of a group G is called a G-set.
Alternatively, one could consider a map G — Sx, g — 7y, my(z) = 7(g,x) = gx. The
equations (1) are equivalent to the condition that this map is a homomorphism. Such
homomorphism is sometimes called a permutation representation. The kernel of the
action is the kernel of the corresponding permutation representation kerm = {g € G |
Vr € X gx = x}. We say that the action is effective if the kernel contains only the
unity.

An important example of a group action is an action on the group itself by left
multiplication. This action is called left translation and denoted L,x = gz for g,z € G.
We also have right translations Ryz = xzg~'. The inversion is necessary to satisfy
the associativity condition. Finally, we have the conjugation action Cy; = Ly o Ry,
x — gxrg~'. The left translation can be generalized for a coset space. Let H be
a subgroup of G, then the left action of G on G/H is defined as Ly(xH) = gxH for
g,z € G. Analogically, we can define the action of right multiplication of a group on
the space of right cosets H \ G as R,(Hz) = Hzg .

If we assumed that the group element acts “from the right side” instead of the left
side, the associative law would look differently. A right action of a group G on a set X
is a map m: X X G — X satisfying for all g,h € G and z € X

m(x,e) =z and w(x,gh)=n(m(x,g),h). (2)

The action defined by the former definition is then called a left action. Nevertheless,
in this chapter, we will use mostly left actions and call them just actions if there is no
risk of misunderstanding.

Every assertion about left actions can be easily reformulated for the right actions

since there is a one-to-one correspondence between left and right actions g-z = z-¢~*.

Lemma 2.7. The kernel of left multiplication of G on G/H is (,cqxHz ™! and it is
the largest normal subgroup contained in H.
Proof. Let us have g € ker L, so for every x € G we have grH = xH, so choosing
a representative e € H on the left hand side, there must exist an h € H, such that
gr =xh,so g=xhx™' € xHx L.

Conversely, let us take y € (), .o rHx ™!, so for every # € G there is an h € H such
that y = zha~!. Now we see that yrH = vha 'xH = xH, so y € ker L.

Finally, the subgroup is certainly normal because it is a kernel of a homomorphism.
Take another normal subgroup K of G contained in H. Then K = 2Kz~ ! C zHx ™!
forall z € G, s0 K C (\,cqeHa™'. O

Definition 2.8. Let G be a group and X,Y G-sets. A map &: X — Y is called G-
equivariant or a morphism if

P(gz) = g®(x)

for all z € X and g € G. If ® is bijective, we call it isomorphism. An isomorphism of
a G-set onto itself is called a symmetry of the action of G.



Definition 2.9. Let G and H be groups, X a G-set, and Y an H-set. A map &: X — Y
is called a morphism if there exists a homomorphism ¢: G — H, such that

(gz) = p(g)®(x).

If @ is bijective, it is called a similitude. If a similitude between X and Y exists, then
the sets are called similar.

Definition 2.10. Let G be a group and X a G-set. Then we can define an equivalence
relation on X as x ~ Z if and only if there exists a g € G such that £ = gx. The
equivalence classes Gx = {gz | g € G} are called G-orbits. The quotient set of all orbits
is denoted X/@G. If there is only one orbit, so, for all z,y € X, there exists g € G such
that y = gz, we say that the action is transitive or that X is a homogeneous space of
G. The map m,: G — Gx g — gz is called the orbit map.

Definition 2.11. Let G be a group and X a G-set. For any x € X we denote G, =
{g € G | gv = x} the stabilizer of x. The action is called free if all stabilizers contain
only unity. We say that a subset Y C X is stable if it is invariant under the action of
G. Equivalently, it means that Y is a union of stabilizers.

Lemma 2.12. Let G be a group, X an G-set, and x € X. Then G, is a subgroup of G
and a map 7,: G/G, — Gz gG, — gx is an G-set isomorphism (for G acting on G/G,
by left multiplication).

Proof. By inspection. O

I 2.2 Lie algebras

Definition 2.13. Let V be a vector space over a field F' and let m:V x V — V be
a bilinear operation. An ordered couple A = (V,m) is called an algebra. If m is
associative or commutative, then A is also called associative or commutative. If there
exists e € V such that m(e,z) = 2 = m(x,e) for all z € V, then e is called a unity and
A is called an algebra with unity.

Definition 2.14. An algebra L = (V,[-,]) is called a Lie algebra if the corresponding
operation is bilinear, antisymmetric and the so called Jacobi identity

[, 1y, 2]l + [y, [z, 2]] + [z, [#, 9] = O 3)

holds for all z,y,z € V. The operation [-, -] is called Lie bracket.

Lemma 2.15. Let A = (V,-) be an associative algebra. Then the operation of commu-
tation defined for all z,y € V as

[z,y] = 2y — yx (4)

satisfies the axioms of a Lie bracket. Therefore, L = (V. [-,-]) forms a Lie algebra.
Proof. By inspection. O

The space of all linear operators acting on vector space V' together with composition
operation forms an associative algebra with unity. Therefore, linear operators with
commutator form a Lie algebra. This Lie algebra is called the general linear algebra
and denoted gl(V). This structure can be also expressed by means of matrices; Lie
algebra of n x n matrices over a field F' is denoted gl(n, F').

After bringing a definition of an algebraic structure it is natural to recall definition
of substructure and morphisms.



Definition 2.16. A linear subspace W CC V of a given algebra A = (V, m) closed under
the algebra operation also forms an algebra B = (W, m) called a subalgebra and denoted
B CC A. A linear map ¢ of two algebras A = (V,m) and A = (V) preserving the
algebraic structure, i.e. @(m(z,y)) = m(p(z),p(y)) for all z,y € A, is called an
algebraic homomorphism. If it is also a bijection it is called an isomorphism. If A = A
it is called an endomorphism. If both conditions hold, it is called an automorphism.
If there exists an isomorphism between algebras A and B, we say that A and B are

isomorphic and denote A ~ B.

For the sake of simplicity in notation, we will follow the common convention to
denote identically any algebraic structure and its underlying set. However, it could
cause an ambiguity of the symbols and notions defined above. If not stated otherwise,
by A CC B we will always mean that A is a subalgebra of B not only a subspace, and
when talking about morphisms of A and B we will always mean morphism of algebras.

Definition 2.17. Let L be a Lie algebra, x € L. A linear map ad,: L — L defined for
all y € L as ad,(y) = [z,y] is called an adjoint map.

Definition 2.18. Let A be an algebra. A linear map D: A — A is called derivation if it
satisfies the Leibniz rule, i.e., for all z,y € A,

D(m(z,y)) = m(Dz,y) + m(z, Dy). ()

Lemma 2.19. Linear space of all derivations of a given algebra A forms a subalgebra
of gl(A4)
Proof. By inspection. O

The importance of such mappings will arise many times in this chapter. First obser-
vation is that the axiom of Jacobi identity is equivalent to requirement that all adjoint
maps are derivations. In contrast, not all derivations correspond to an adjoint map.
Those derivations that are adjoint maps are called inner derivations and form only
a Lie subalgebra of the derivation algebra.

In linear algebra any regular operator P induces an automorphism of the algebra of
linear operators through similarity transformation A — PAP~!, which preserve not
only the algebraic structure, but also important properties such as trace or spectrum.
The same holds here. We can, for example, easily check that for a derivation D and an
automorphism ¢ the map pDy~! is also a derivation.

One of the very important problems arising in the theory of (Lie) groups and (Lie)
algebras is to find a way how to represent such structure by means of another concrete
well-known mathematical structure. That is, to find a homomorphism to such structure.
This homomorphism is then called a representation. A lot of information can be,
however, lost by a homomorphism. It is, therefore, often desirable to ask only for
faithful representations that are injective, so they do not lose any information.

In Section 2.1 we brought one example of a group representation—the permutation
representation. In the theory of (Lie) groups and (Lie) algebras when talking about
a representation we often mean another particular type of representation—a linear rep-
resentation, that is a homomorphism to the group of regular linear operators GL(V') or
to the algebra of linear operators gl(V'), respectively. An example of such representation
is the adjoint representation of a Lie algebra ad: L — gl(L), x — ad,.

In this work, we examine yet another type of representation— a realization, that is,
a homomorphism to the Lie algebra of vector fields. A proper definition is provided in
Chapter 3



I 2.3 Classification problems

In this section, we describe how a Lie algebra can be decomposed to several lower-
dimensional algebras and, conversely, how bigger Lie algebras can be constructed of the
smaller ones. This can be helpful if we look for the list of all non-isomorphic algebras
or, given a particular Lie algebra, the list of its subalgebras. These particular problems
are very important for our work and are discussed in separate subsections. Another
classification problem is, of course, finding all representations or realizations, which is
the main subject of this work and is discussed in Chapter 3.

Since two linear spaces are isomorphic if and only if they have the same dimension,
it is clear that the structure of a given Lie algebra depend only on the dimension of
underlying linear space and the Lie bracket. Because of bilinearity, the Lie bracket is
determined by its “coordinates” in a chosen basis.

Definition 2.20. Let L be a finite-dimensional Lie algebra and (eq,...,e,) its (linear
space) basis. Then the numbers ij such that

leivej] =) Chiex (6)
k=1

are called the structure constants of L in the basis (e;). If all structure constants are
zero (equivalently, [z,y] = 0 for all z,y € L), the Lie algebra is called Abelian.

It is clear that the structure constants are antisymmetric in 4, j, so it is sufficient to
know them only for 7 < j.

In the following paragraphs, we bring the concept of direct sums and quotient spaces
to the theory of Lie algebras. To make things clear, we recall these definitions for vector
spaces at first.

Definition 2.21. Let V' be a vector space and W its subspace. A quotient space V/W
is a linear space of affine subspaces of V parallel to W.

VIW ={a+W|zeV}, @+W)+y+W)=@+y)+W, alz+W)=ax+W.

Definition 2.22. Let L be a Lie algebra. A Lie subalgebra I satisfying [I, L] C I (i.e.
[x,y] € [ for all z € [ and y € L) is called an ideal of L. The linear quotient space L/I
with Lie bracket defined naturally as [z + I,y + I] = [z,y] + I for all z,y € L form so
called quotient algebra.

Theorem 2.23 (Isomorphism theorems).

1. Let ¢: L1 — Lo be a homomorphism. Then ker ¢ is an ideal of L; and
L1/ ker ¢ =~ ¢(Ly).

2. Let I and J be ideals of a Lie algebra. Then (I +J)/J ~1/(INJ).
3. Let I and J be ideals of a Lie algebra L such that I C J. Then J/I is an ideal of
L/I and (L/I)/(J/I)~L/J.

Proof. The definition of corresponding isomorphisms is straightforward:
Yi(z +kerp) =), Yolaz+J)=z+INJ, Ys(x+I+J/I)=z+J

It is also clear that they are all homomorphisms and that they are surjective. One
only needs to check that they are well-defined and injective, so it is really a one-to-one
correspondence. O



Definition 2.24. Let W; and W5 be subspaces of V' such that W; + Wy = V and
Wy N Wy = {0}. We say that V is an (internal) direct sum of subspaces W7 and Ws
and denote V = W7 @& Ws.

Definition 2.25. Let W7 and W5 be vector spaces. A Cartesian product Wy x Wy with
coordinate-wise addition and scalar multiplication is called an (external) direct sum of
spaces W7 and W5 and denoted W7 & W,

Remark 2.26. The first definition allows us to decompose a vector space to smaller
parts, whereas the second does the opposite. The correspondence between these defi-
nitions is simple: an external direct sum W; @ W5 can be decomposed to an internal
direct sum (W;,0) @ (0, Ws). Usually, it is clear from context which definition is used
and we call it just a direct sum.

Now, it is time to generalize these definitions to Lie algebras.

Definition 2.27. Let L be a Lie algebra such that there are ideals I, J C L satisfying
I+ J=Land INJ={0}. Then we say that L is an (internal) direct sum of ideals I
and J and denote L =1 @ J.

Definition 2.28. Let I and J be Lie algebras. An external direct sum of vector spaces
I and J with Lie bracket defined for all z1,22 € I and y1,ys € J as

(@1, 1), (T2, y2)] = ([21, 22], [Y1,y2])

is called an (external) direct sum of Lie algebras I and J and is denoted I & J.

It is evident that the Lie bracket is well-defined.

In contrast with vector spaces, there does not have to exist a nontrivial decomposition
into direct sum of two ideals. Moreover, there does not have to exist any nontrivial ideal
of a Lie algebra. Here we require two ideals that sum up to whole algebra. Particularly,
it means that the algebra splits into two subspaces such that Lie bracket of elements
belonging to different subspaces is zero. To remove the latter restriction, we present
more general definition.

Definition 2.29. Let L be a Lie algebra, I its ideal, and S its subalgebra such that
INS ={0} and I +S = L. Then we say that L is an (internal) semidirect sum of ideal
I and subalgebra S and denote L =1 & S.

Definition 2.30. Let I and S be Lie algebras and D a derivation of S. An external
direct sum of vector spaces I and S with Lie bracket defined for all 1,22 € I and
$1,89 € S as

(w1, 81), (T2, 52)] = ([71, T2] + D(s1)22 — D(82)21, [81, 82])

is called an (external) semidirect sum of algebras I and S with respect to the derivation
D and denoted I &p S.

Here, it is again evident that the defined Lie bracket is bilinear and antisymmetric.
The Jacobi identity holds thanks to the derivation property of D.

Remark 2.31. According to the second Isomorphism theorem (2.23.2) is I & J/I ~ J.
We can easily check that it also holds for a semidirect sum I & S/I ~ S. Particularly,
S is an algebra of representatives of L/I classes. However, for a given Lie algebra L
and its ideal I, there does not have to exist a subalgebra S CC L such that L =1 & S.
If it does exist, we say that L splits over I.



B 2.3.1 Classification of Lie algebras of a given dimension

The primary goal of this work is to classify realizations of five-dimensional Lie alge-
bras. The problem of finding all Lie algebras of a given dimension was treated by
G. M. Mubarakzyanov and solved for dimensions less or equal to five [7-8]. So far, we
were able to bring the results for five-dimensional indecomposable Lie algebras with
four-dimensional Abelian ideal. The relevant results of the Mubarakzyanov classifica-
tion are summed up in Section A.1 of the appendix.

B 2.3.2 Classification of subalgebras of a given Lie algebra

This problem is considered, for example, in [9], where two methods of classification
and a lot of examples and applications is provided. Let us begin with definition of the
classification problem itself.

Definition 2.32. Let L be a Lie algebra and G CC Aut L be a group of automorphisms
of L. Subalgebras S and S’ are called G-conjugate if there is an automorphism ¢ € G
such that S = ¢(S5).

The classification problem is to find all non-conjugated subalgebras with respect
to a given group G. We are usually trying to find subalgebras with respect to all
automorphisms, so called inner automorphisms or we are trying to find completely all
subalgebras (i.e. G = {e}).

Universal classification methods were introduced in [10]. They are based on induc-
tion: using classification of lower-dimensional Lie algebras, we find the classification of
a direct or semidirect sum. The authors also provided subalgebra classification for all
Lie algebras of dimension not greater than four in [11].

We have decided to classify realizations of five-dimensional realization with respect
to both weak and strong equivalence (see Chapter 3). In order to do that, we need to
find all subalgebras and then classify them into equivalence classes with respect to the
group of all automorphisms. Since we are not interested in classification with respect to
inner automorphisms we cannot make use of the results [11] and proceed inductively. In
order to obtain desired results, we can actually follow a much more primitive method,
than those described in [10].

Finding the list of all subalgebras is very easy. We just need to take all subspaces
of the given Lie algebra and eliminate those that are not closed under the Lie bracket.
It is particularly easy in our case of Lie algebras with four-dimensional Abelian ideal
L =14« S, where [ is the ideal spanned by e, eg, e3, e4 and S spanned by e;. The set
of all subalgebras here consists of all subspaces J of the ideal I and subspaces of the
form span(J U {e5 + aeq + beg + cea + dey }), where J is a subspace of I and a,b, ¢, d are
coefficients such that [J, e5 + aeq + beg + ces + dey] C J.

The classification of the Aut L-conjugacy classes can be done simply by identifying
those subalgebras that are Aut L-conjugated in the list of all subalgebras. To do that we
can use results presented in [12], where the groups of all automorphisms of Lie algebras
of dimension less or equal to five are listed. To simplify the computation and, above
all, to reduce amount of mistakes, we performed those computations using computer
algebra program Mathematica.

The results obtained are listed in Section A.2 of the appendix.

I 2.4 The operator exponential

In this section, we recall the definition and basic properties of the exponential map.
Then an application to the theory of Lie algebras is presented.



Definition 2.33. Let V' be a finite-dimensional vector space, L € Lin V' a linear operator
on V. Then the infinite sum

k

A

exp(A) = et 1= Z o (7)
k=0

is called the exponential of A. The map exp:LinV — Lin V' A — exp(A) is called the

exponential map.

It can be easily checked that the series is convergent for any linear operator A (gen-
erally for any bounded operator on an infinite-dimensional vector space). Since all
norms on a finite-dimensional vector spaces are equivalent, the result does not depend
on the norm chosen. Therefore, the operator exponential can be defined on an arbitrary
finite-dimensional vector space, without need of defining a norm.

Now, let us summarize the basic properties of the exponential.

Lemma 2.34. Let V be a vector space and A, B € Lin V' linear operators on V. Then

AB — oA+B

1.if A and B commute, then e
detd _ tA
o = Ae™,
Ap-1 _ ,BAB™!
.Be?B™' =e ,
.dete? =eTr 4,

e = (M)

TUR W N

From 1., it follows that ee 4 = e~4e? = I, so the exponential is invertible. The
exponential map can be, therefore, treated as a map from the Lie algebra gl(V') of linear
operators on V to the (Lie) group GL(V) of invertible linear operators on V. In the
following sections, we bring a generalization of such map.

Definition 2.35. The smooth map R — GL(V) t + €' is called a one-parameter
subgroup of GL(V') generated by A. The operator A is called the infinitesimal generator
of the subgroup.

From the uniqueness of solution of linear differential equations, it follows that the
exponential ¢ — e is determined by the differential equation 2. in the previous lemma
with the initial condition €’4 = I. Two corollaries follow from this fact.

Lemma 2.36. All one-parameter subgroups of GL(V), i.e. group homomorphisms
¢: (R, +) — GL(V), are generated by an operator A € Lin V' in the form () = e'4.
Proof. Denote A = ¢/(0). From the one-parameter group properties we get the initial
condition ¢(0) = I and differential equation

¢'(t) = lim é(@(f +8) = o(t) = lim —(p(s) = De(t) = ¢'(0)p(t) = Ap(t). -

Theorem 2.37. Let V be a vector space and vy € V. The differential equation v'(t) =
Av(t) with initial condition v(0) = vy has a unique solution v(t) = e*4vy.

In the theory of Lie algebras the exponential map is important because it provides
us a connection between derivations and automorphisms.

Theorem 2.38. Let (A, m) be a finite-dimensional algebra and D: A — A a homomor-
phism. Then e'” is a group of automorphisms if and only if D is a derivation.
Proof. The assertion that e!” is an automorphism means that, for all =,y € A,

ﬁm(x,y) = ZZt tim <Z,!x, j'y> .

k=0 i=0 j=0



Comparison of the terms linear in ¢ gives us D(m(x,y)) = m(Dz,y) + m(z, Dy).
Now, let D be a derivation. We already know that e'? is a bijection, so we only have
to prove that it is a homomorphism. Using the general Leibniz rule we get

00 Dk oo k k -
Pinte) =3 i) = 33 (§)m0ta, 0y -
k=0 k=0 1=0

]~

1 l k—1 _ - DZ % - Dj _

ol

=01

I
=)

= m(ePx,ely). O

Note that although we can find all one-parameter groups of automorphisms by ex-
ponentiating derivations, there may exist discrete automorphisms that does not belong
to any one-parameter group and hence cannot be expressed in the form e”.

In the case of Lie algebras, we have found a particular class of derivations called inner
derivations represented by adjoint maps. Automorphisms of the form e*d« corresponding

to inner derivations are called inner automorphisms.

I 2.5 Notions of differential geometry

Definition 2.39. A topological manifold M of dimension n is a Hausdorff space with
countable base of topology that is locally homeomorphic to R™. The corresponding
homeomorphisms are called coordinate charts and the set of such homeomorphisms
covering the manifold is called an atlas. On a set covered by two charts, a transition
map is defined as a composition of one chart and the inversion of the other chart. The
manifold is called smooth if all transition maps are smooth (i.e. all derivatives exist).
A map of two manifolds ®: M — N is called smooth if its coordinate representation
is smooth, i.e. for all coordinate charts ¢ of M and all coordinate charts 1) of N the
composition 9 o ® o =1 € C°(R). The algebra of all smooth functions f: M — R
with pointwise multiplication is denoted C*°(M). A bijection ® of smooth manifolds
such that both ® and ®~! are smooth is called a diffeomorphism of manifolds. If
a diffeomorphism between two manifolds exists, the manifolds are called diffeomorphic,
denoted M ~ N. The set of all diffeomorphisms of M onto itself is denoted Diff M.

Definition 2.40. Let M be a smooth manifold. A tangent vector at point p € M
is a linear map X:C*(M) — R satisfying Leibniz rule and dependent only on the
function values in a neighbourhood of p, i.e., for all f,g € C*(M),

X(fg9) = X[fg(p)+ f(p) Xy,
flu =glv for U a neighbourhood of p = X f = Xg.

Remark 2.41. An equivalent definition of a tangent vector is following. Let us define
an equivalence of smooth curves (i.e. maps v:R — M) satisfying v(0) = p

v~F e (foy)(0)=(f9)(0)

Then each equivalence class represented by curve v defines a linear map X: C*°(M) — R
as Xf = (f ov)(0). We denote X = 4(0). Replacing the zero by an arbitrary
t € Dom(y) we can define a tangent vector 4(¢) at point ~y(¢).
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Any tangent vector can be represented in a given coordinate chart i as a linear
combination of partial derivatives X f = >"7" | X'0;(f o ¢p=1)(¢0(p)). If the coordinates
are denoted z', we write X = Y"1 | X'0yi|,mp(p) = Doty X Ouilp. Therefore, a tangent
space T, M of tangent vectors on a manifold M at point p is a linear space of dimension
n equal to the dimension of the manifold. Using the definition of curve derivative, we
can express the basis tangent vectors as 9,:|, = v~ (¢ (p)).

Definition 2.42. A disjoint union of tangent spaces at all points of a given manifold M
is called a tangent bundle and denoted T'M. A section of a tangent bundle, i.e. a map
X:M —=TM, p— X, € T,M, is called a vector field. A set of all vector fields on M is
denoted Vect M.

The coordinate representation is naturally the same as for tangent vectors, except
for the coefficients being smoothly dependent on the position on the manifold: X =
S X2t ..., 2™)0,:, where 8,, = 9;9p~!. Thus, the tangent bundle can be, at least
locally, treated not only as a infinite-dimensional vector space, but also as a finite-

dimensional C'"*°-module. Following lemma brings us an alternative definition of vector
fields.

Lemma 2.43. Let M be a manifold. Let X € Vect M, then X, taken as a map
C>®(M) — C*°(M) such that (X f)(p) = X, f for all p € M, is a derivation of C>°(M)
algebra. Conversely, every derivation of C°°(M) defines a vector field on M.

Definition 2.44. Let M and N be smooth manifolds and ®: M — N a smooth map. A

derivative or a differential or a tangent map of ® at p € M is a linear map d®,: T, M —
Ty N satisfying for all X € T,M and f € C*(N)

(d,X)f = X(f 0 D).

Naturally, we can define the derivative as a map d®:TM — TN as d®X, = d®,X,,.
In our work, we will use mostly the latter, simpler, notation. If ® is bijective (so it is
a diffeomorphism actually), the derivative induces a map of vector fields ®,: Vect M —
Vect N called pushforward as

(©.X)g = AP Xg1 ().

Remark 2.45. This definition of derivative corresponds to the definition of ordinary
calculus. If we take coordinate functions ¢ on M and ) on N and denote the coordinates
', i=1,...,mand 3/, j =1,...,n and denote coordinate expressions X = > X'0,.,
f=foy e C®R"), d=1podoyp L:R™— R" we have

3 x of 0% 0P
oyl ozt | &~ Ogt

1/7.7

(A X)f(®(p) = Y X'0ui(f 0 ®) () = X0y | f(p)-
( ,J

Thus, the matrix of the derivative is indeed the Jacobi matrix. We can, therefore,

use the local theorems of ordinary calculus here too. For instance, if the map ® is

regular, i.e. the differential d® as a linear map is regular, we have that ® is a local

diffeomorphism and so we can define the pushforward ®, at least locally.

Remark 2.46. Another consequence is that the chain rule can be used here as in
ordinary calculus. This property can be expressed in a compact form d(®; o ®9) =
d®; dP, for suitable maps ®; and ®,. Particularly, if we take R for the first manifold,
where T;R = {zD; | x € R}, where D; is the operator of differentiation at point ¢, we
have for v:R — M

(dyDy)f = Di(fovy) = (f O’Y)/(t) =9()f,

11



so this definition of diffeomorphism differentiantion corresponds to the former definition
for curves: 4(t) = dy D;. Using the chain rule, we see that for ®: M — N and v: R — M
we have

d

dt
Definition 2.47. Let M be a manifold. The dual space to the tangent space at point
p € M is called the cotangent space at p and is denoted T; M. Disjoint union of all
cotangent spaces is called the cotangent bundle and denoted T™M. Elements of Ty M
are called cotangent vectors or tangent covectors at p and sections of T*M are called
differential one-forms on M.

((4(£))) = d(® 0 7) D, = db dy D; = dD ().

If we take a point p € M, coordinates z° in the neighbourhood of p, we have a basis
Oyi|p of the tangent space T, M and we can construct the dual basis for ;M. The
dual basis elements are, in fact, derivatives of the coordinate functions and that is why
they are denoted dz‘|,: T,M — R =~ TyipR or dz: TM — R for the corresponding
one-forms.

Thus, any covector w € Ty M can be represented as w = ), w;dz?|,. Now we can

also represent any linear map L: T)M — TyN as L =}, , L Dyilq dz'|,, where 2 are
the coordinates on M in the neighbourhood of p € M and 3’ are the coordinates in the

neighbourhood of ¢ € N. In particular, we have d®, =3, ; %if , Dyilq dz'|,, where &I

is the coordinate expression of ®.

Theorem 2.48. Let M and N be manifolds, ®: M — N. Let X;,Xy € Vect M,
Y1,Ys € Vect N be vector fields such that, for all p € M,

(Y1)<I>(p) =do (Xl)pv (Y2)<I>(p) =do (XQ)p'
Then, for all p € M, we also have
[Yla Yé]@(p) =do [Xh X2]p-
Proof. Let f € C*°(N). By assumption, we have

Xi(fo®@)(p) =d® (X1), = V1)ap) = Y1f(®(p) = (Y1f) o ®)(p),
s0 Xi(f o®) =Y1f o ®. The same holds for Xy and Y5. Finally,

d® [ Xy, Xofpf = X1 (Xa(f 0 ®))(p) — Xo(Xa(f 0 ®))(p) =
= X, (Yaf 0 ®)(p) — Xo(Y1f 0 ®)(p) =
= V1Yo f(®(p)) — VoY1 £(B(p)) = [Y1, Yala(y)- =

Corollary 2.49. Let &: M — N be a diffeomorphism. Then ®, is an isomorphism of
Lie algebras Vect M and Vect N.

Definition 2.50. Let M be a smooth manifold. A smooth map F:U — M, U =
U° C R x M such that F(0,p) is defined and equal to identity for all p € M, F(t,-) is
a diffeomorphism for all ¢t € R, and F(t+s,p) = F(t, F(s,p)) fort,s € Rand p € M if at
least one side is defined is called a flow. It can be understood as a group homomorphism
(R,4+) — Diff(M) t — F, and it is, therefore, also called a one-parameter group of
diffeomorphisms on M.

According to the definition, a flow has not to be defined for all t € R. However, if
there exist € > 0 such that (—¢,e) x M lies in the domain of definition of the flow, then
the domain can be extended to whole R x M thanks to the group property as follows

t
Fy = F)y, N>

12



Definition 2.51. Let M be a smooth manifold and F a flow. The flow, for each point
p € M, defines a curve F,(t) = F(t,p). A vector field X € Vect M satisfying

X = F)(0), ie. Xf(p)=(foF,)(0) forall feC®(M)

is called an infinitesimal generator of the flow F. Conversely, for a given vector field
X € Vect M there is at every point p € M uniquely defined integral curve F, satisfying
Ey(t) = Xp, 1) The map F(t,p) = Fp(t) is indeed a flow satisfying the equation above.

The uniqueness of the integral curve follows from the uniqueness of the solution of
differential equations.

Definition 2.562. Let M and N be manifolds. Then any smooth map ®: M — N defines
a homomorphism ®*: C*(N) — C*(M)

O*(f) =fo® e (2°f)(p) = f(2(p))

for f € C°(N) and p € M called pullback.

A pullback can be defined also for differential one-forms (generally for differential
k-forms) or, if ® is a diffecomorphism, for vector fields as well (generally for any tensor
fields). Analogically, we could define a pushforward of any tensor fields by a diffeomor-
phism ®. In our work, however, @, will always mean a pushforward of vector fields and
®* a pullback of smooth functions.

If @ is a diffeomorphism, then ®* is an algebra isomorphism (so if ® € Diff M, then
®* € Aut C>*(M)). Consequently, for X € Vect M as a derivation of C*°(M) algebra
(@)t o X o ®*: C®(M) — C*(M) is a derivation of C°>°(M) as well. Moreover, it is
the pushforward of X.

Lemma 2.53. Let M be a smooth manifold, ® € Diff M, and X € Vect M.

1. &,X = (1) 0 X 0 &, ) N
2.if F' is the flow of the vector field X, then F' defined as F'(t,p) = ®(F (¢, d~1(p))),
ie. F; =®oF,o® ! isthe flow of the vector field ®,X.

Proof. Take arbitrary f € C*>°(M) and p € M, then

(@) Xe") f)(p) = (@) (X (1)) (p) = (X(f o ®))(®" ()
= X<I>*1(p)(f © (I)) =do X<I>*1(p)f = ((I)*X)pf = ((‘ID*X)f)(p)

As for the second proposition, F' is indeed a flow since
Fiyy=00F, ;00 '=0oF,o0F,0d '=dcF,od lodoF,od ! =FoF,.
Finally, we have

d - d _
gl ®p)| =de ZF(E® @) =d® Xp-1() = (2. X),.
t=0 t=0

Theorem 2.54. Let M be a smooth manifold, X,Y € Vect M. Let F be the flow of
the vector field X, denote F'(t,p) = Fi(p) and consider following parameter-dependent
vector field

Y(t) = (F).Y.
Then Y (t) satisfies following differential equation

()
O (X, Y (1)].
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Proof. For an arbitrary flow F' generated by a vector field X, a function f € C*°(M),
and a point p € M, the map ¢ — f(Fi(p)) = (F} f)(p) is an ordinary smooth function
R — R and can be approximated by a Taylor polynomial

(F N)p) = (f o Fi)(p) =

=(foFo)(p) +t %(f o F)(p)|  +O(t?) = f(p) + (X f)(p) + O%).
t=0

Here, we have

Y(O)f = (Ff oY o (F7 ) )f = BY(f —tX[+0(?) =
=Yf+tXYf+O) —t(YXf+tXYXF+O®))+ 0 =
=Y f+tX,Y])f+0(t?)

Consequently, since Y (t + s) = Fy ;oY o (FLL)* = FF oY (t) o (F;1)* = (@71).Y (1),
we have
dY (¢)

e (FoDe — 7| = (FE[X Y] = [(F7)X, (F7).Y] = [X, Y (5)).

t=s dt |2 (]
The tangent vector dY,(t)/dt|,_, = [X,Y], from the previous theorem is called the
Lie derivative of Y along X in p. The idea is that we want to differentiate a vector field
Y as a function of ¢ along an integral curve F,(t) of another vector field X. To calculate
the derivative, it is necessary to pull back the tangent vectors Y}, in the neighbourhood
of p into the point p. The pullback of a vector field is computed as inverse of the
pushforward.
Corollary 2.55. The flows of given vector fields X,Y € Vect M commute if and only if
[X,Y]=0.
Proof. The vector Y (¢) from the previous theorem generates the flow o= (FX) 1o
FYoFX. If[X,Y] = 0, then Y (¢) is constant and F¥® = F' hence the flows commute.
Conversely, if the flows commute, Y (¢) has to be constant. O

Lemma 2.56. Let X, Y be vector fields on manifold M and FX and FY their flows. If
[X,Y] = 0, then for any «, 8 € R the linear combination X + Y generates the flow
F,=FXoF}.

Proof. Since commuting vector fields have commuting flows, we see that F' is indeed
a flow as well. Finally, we show that o X + Y is its infinitesimal generator, i.e. aX, +
BY,, is the tangent vector of Fi(p) for ¢t = 0, by means of Taylor approximation.

(foFoFy)(p) = (Fy )" (f(p)+btY f(p)+O(t%)) = f(p)+atX f(p)+btY f(p)+O(t*).
0

B 2.5.1 Distributions and Frobenius theorem

An integral curve of a given vector field can be interpreted as a one-dimensional sub-
manifold generated by the vector field. This subsection describes the same proces for
general dimension.

Definition 2.57. Let M and N be manifolds. A smooth map ®: M — N such that
it is injective and d®, is also injective for every p € M is called an immersion. The
manifold M is called an immersed submanifold.

14



Definition 2.58. Let M be a manifold. A function P assigning an n-dimensional
subspace P, CC T,M to every p € M is called an n-dimensional distribution on M.
The distribution is called smooth if every point pg € M has a neighbourhood U C M
such that there exist n linearly independent vector fields X, ..., X,, € Vect U that form
a basis ((X1)p,...,(Xy)p) of P, at every point p € U. These vector fields are called
a local basis of P at py.

Definition 2.59. Let M be a manifold and P an n-dimensional distribution on M. An
n-dimensional manifold N immersed to M by ®: N — M such that d®(T,N) = Py
for every q € N is called an integral manifold of P.

So, if an integral manifold exists, then its tangent spaces are essentially the subspaces
P,. If an integral manifold exists for every point in M, then these submanifolds form
so called foliation of M

Definition 2.60. A smooth distribution is called involutive if, for every point p € M
and a local basis (Xi,...,X,) € VectU in p, there are functions Z»’} € C*(M) such
that [X“X]] = Zk flI;Xk

It can be easily checked that the property of being involutive is independent on the
chosen basis.

Theorem 2.61 (Frobenius). Let M be a manifold, P an n-dimensional involutive
distribution on M and p € M. Then there exist a system of coordinates (x!,..., 2™)
in a neighbourhood of p such that the distribution has a local basis (9,1, ...,0.n) at p.
So, the manifold M is locally foliated by so called level submanifolds x* = const. for
i=n-+1,...,m.

Proof. At first, we show that there exist a basis (X1,...,X,) of P such that [X;, X;] =
0. Let (y%,...,y™) be coordinates on M such that p lies in the origin and let Y; =
> ity Y/ (y)0,; be a basis of P. Since Y; are linearly independent, the matrix Y7 (y)
has to have n linearly independent rows. Without loss of generality, let us assume that
these are the first n rows. Then we can choose a new basis of the form X; such that
Xij = 5f for j < n, so X; = 0, + Z;.":nH Xij(y)f)yj. Now, we easily see that, in the
coordinate basis d,;, we have 0 = [X;, X}/ = LX) = fl for j <n.

Denote :U — R™ the coordinate chart corresponding to coordinates 7.
Now, we define the coordinates x/. Let F;(t):U — M be the flows of the vec-
tor fields X;. Define the coordinate chart ¢:U — R™ as @ l(z!,... ,2™) =
Fy(zb) -+ Fy(2™)y~40,...,0,Zpy1,---,Zm). The derivative of ¢ o =1 at zero is
the identity, so it is a local diffeomorphism in a neighbourhood of zero, so ¢ is a well
defined coordinate chart in the neighbourhood of p. Since X; commute, the flows ®;(t)
commute as well and using this property we can easily check that ®;(¢) act on U as
a translation in the coordinates x*. Hence, X; = O,:. O

It is clear that, at least locally, the integral manifold is defined uniquely.

I 2.6 Lie groups

Definition 2.62. A group G is called a Lie group if it is also a smooth manifold and
both multiplication and inversion are smooth maps.

Lemma 2.63. Connected Lie group G is generated by any open set.

Proof. Let H be generated by an open set U in G. H is a union of open sets hU, so
H is also open. Then G ~\ H is a union of left cosets gH, g ¢ H, which are also open.
Therefore, H is also closed and hence, if G is connected, H = G.
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Definition 2.64. A map ¢ of two Lie groups is called homomorphism if it preserves both
group and manifold structures, i.e. it is a smooth group homomorphism. A bijective
homomorphism whose inversion is also a homomorphism (which is not trivially satisfied
since inversion of a smooth map has not to be smooth) is called a Lie group isomorphism.
Similarly, Lie group automorphism and other morphisms can be defined.

Definition 2.65. A one-parameter subgroup of a Lie group G is a (smooth) homomor-
phism ¢: (R, +) — G.

B 2.6.1 The Lie algebra of a Lie group

Since every topological group is homogeneous (through the left translation), it is suffi-
cient to examine a neighbourhood of unity to examine its local properties. An important
role here is played by the tangent space at unity. This space can be given a structure
of a Lie algebra through so called left-invariant vector fields.

Lemma 2.66. Let G be a Lie group. If a transformation 7:G — G commutes with
every left translation, then T' = Ryp)-1.
Proof. We have T'(g) = (T'o Ly)(e) = (Lyo T)(e) = gT'(e) = Ryp(e)—(9)- O

Definition 2.67. Let GG be a Lie group. A vector field X € Vect G is called left-invariant
if Ly, X = X for all g € G. Analogically, X is right-invariant if Rg. X = X.

Lemma 2.68. Let G be a Lie group.

1. Left invariant vector fields form a Lie subalgebra of Vect G.

2. Any left-invariant vector field X € Vect G is determined by its value at unity X..
We can compute X, = dL, X, for any g € G.

3. For any tangent vector a € T.(G), there is a unique one-parameter subgroup ¢, of
G such that ¢,(0) = a. The corresponding left-invariant vector field X, = dL, a
is the infinitesimal generator of the one-parameter group Fy, F,(t,g) = gp.(t) of
right translations by ¢, ().

Proof. The first proposition is clear from the homomorphism property of pushforward
Lg.. The second proposition follows directly from the definition of left-invariance

Xy = (LgeX)g = dLy X, 10y = dLy X

)

Finally, let F' be the flow of the left-invariant vector field X corresponding to a tangent
vector a. The subgroup ¢, has to be an integral curve of X, i.e. ¢(t) = F(t,e), since

falt) = Lleulpe)| = Lllawenls)| =

= dLﬂoa(t) Sba (0) = dLSDa(t) a= X‘)Oa(t).

s=0

Hence, it is uniquely defined and obeys the group property. From Lemma 2.53 we see
that F' commutes with left translation. Therefore, according to Lemma 2.66, F' has to
be right translation F(t,g) = R;(lt 09 = gp(t) = Ox(t,9). O

Definition 2.69. The one-parameter group ¢, from the previous lemma is called the
ezponential and denoted ¢, (t) = exp(ta) = e'®. The map exp: T,G — G a + exp(a) is
called the exponential map.

Remark 2.70. Since exp(0) = e and the differential of exp at 0 is the identity, the
exponential map is a local diffeomorphism, mapping a neighbourhood of zero vector
onto a neighbourhood of unity. Therefore, according to Lemma 2.63, if G is connected,
it has to be generated by exp(T.G).
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Definition 2.71. The Lie algebra of left-invariant vector fields on G is called the Lie
algebra of G and denoted Lie G or g.

This definition is correct thanks to Lemma 2.68. Moreover, this lemma brings us
important isomorphism between the Lie algebra g of G and the tangent space T.G.
Through this isomorphism, we can endow T,G with the Lie algebra structure as [a, b] =
[X,Y]. for a,b € T,G and X,Y the corresponding left-invariant vector fields.

Remark 2.72. Instead of the left-invariant vector fields, we could have defined the
Lie algebra of G by means of the right-invariant vector fields. We have, for example,
Xg = ng_1 X, for any right-invariant vector field X. We can consider the inversion
diffeomorphism i: g ++ ¢g~!, which provides us the relationship between left and right-
invariant vector fields. For any a € g, we have

d d

dia = —ie® = —e
o dt

= —a
t=0

dt

t=
Since R, = iLyi~!, we have
X, =dR,'a=didLydia = —di X,,

so the Vect G automorphism i, is actually, in addition, an isomorphism of left-invariant
vector fields onto the right-invariant. Finally, for tangent vectors a, b and [a,b] of g,
corresponding left-invariant vector fields X, Y, [X,Y] and right-invariant vector fields
X,Y,[X,Y] we have

[X,V]. = [~dia, —dib] = di[a,}] = —[X,Y],.
Definition 2.73. Let G be a Lie group and g its Lie algebra. For every g € GG, we define
the adjoint map Ady:g — g as

Adg = Rg*‘g = Cg*|g-

The second equation holds thanks to the left-invariance and commutativity of left
and right translations: LgRgX = RgLg X = Ry X for X € g. The same equation
also proves that the image is left-invariant as well.

Through the isomorphism mentioned above, we can define the adjoint map for tan-
gent vectors Adgy: T.G — T.G as Adya = (Ady X)., where X is the left-invariant vector
field corresponding to a. From now on, we will identify the Lie algebra g of a Lie group
G with the space of tangent vectors T.G and denote its elements by small letters a, b, . . .
In proofs of some of the following theorems, it will be, however, necessary to return
back to the left-invariant vector fields.

Lemma 2.74. Let G be a Lie group and g its Lie algebra. Then, for all ¢ € G and

a € g, we have
Adyja =dCyq, (8)

geag—l — eAdga‘ (9)
Proof. Let X be the corresponding left-invariant vector field. Then
Adya = (Ady X). = (Cgu X)e = dCy X, (e) = dCy X = dCy a.

According to Lemma 2.68 e* = Fj(e), where F}; is the flow of the vector field X.
According to Lemma 2.53 the flow of Ady X = Cy, X is Cyo0 Fi o C;l, SO

Mo = (Cyo Fy o O ) (e) = Cy(Fi(e)) = geg ™"

17



The preceding lemma gave us the connection between adjoint maps and inner auto-
morphisms of the Lie group. Exponentiation of this relation gives us the connection
between adjoint maps and inner automorphism of the Lie algebra.

Theorem 2.75. Let G be a Lie group, g its Lie algebra, a € g. The linear map ad,:g — g
is the infinitesimal generator of the one-parameter group Adet:g — g. In other words,
Adgta is a one-parameter group of inner automorphisms. Thus, the following equations
hold

Adea = €™, (10)
e®e’e™® = exp(Ade b) = exp(e®eb). (11)

Proof. Let us take a,b € g and X,Y the corresponding left-invariant vector fields.
Since, according to Lemma 2.68, the flow F' corresponding to the left-invariant vector
field X acts as right translation F; = Reji, we can define a parameter-dependent vector
field Y (¢) as in Theorem 2.54 Y (t) = RetasY = Adeta Y satisfying

dYe(t) d
ad, b(t) = [a,b(t)] = [X,Y ()] = e a(Adem b),
so according to Theorem 2.37 we have Adg. b = e??dep,
The second equation follows from equation (9) in the previous lemma. O

Remark 2.76. As we remarked in 2.45, the definition of differentiation in case of linear
spaces corresponds to the ordinary differentiantion. The Lie algebra of a linear Lie
group as a tangent space at unity is, therefore, formed by all possible derivatives of one-
parameter operators. In the case of general Lie group GL(V') the Lie algebra consists
of all linear operators on V. Indeed, a derivative of a parametrized operator is of course
an operator; conversely, any linear operator L is a derivative of a curve y(t) = I +tL in
GL(V). The exponential defined in the theory of Lie groups corresponds to the operator
exponential since it satisfies the same differential equation de® _ geta, Finally, we can

i

compute the Lie bracket for a,b € Lie(GL(V))

d d
[a,b] =ad, b= — Adeta b = —dCeta b =
dt o dt =0
2
_ 9 eetbe i = iembe*t“ = ab — ba.

O0tos temo dt o

As a consequence, the Lie algebra of GL(V) is gl(V).

The general linear Lie group and Lie algebra are particularly important thanks to
the following theorem. We do not bring its proof because it would require to build a lot
of extra theory we do not need.

Theorem 2.77 (Ado). Every finite-dimensional Lie algebra g can be embedded in
matrices. That is, for every finite-dimensional Lie algebra g over a field F' of char-
acteristic zero, there exists n € N and a monomorphism (injective homomorphism)

0:g — gl(n, F).

Definition 2.78. A Lie subgroup of the general linear group is called a linear group.
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B 2.6.2 Lie group coordinates

Now, we proceed to examination of the local properties of Lie groups. As we remarked
in 2.70, exp is a local diffeomorphism between Lie algebra and Lie group. We can
therefore locally define the inversion of exponential map—the logarithm In: G — g. If
we fix a basis of g, say (e1,...,ey), it defines us coordinates on the Lie algebra g, which
induce logarithmic coordinates on G through relation ! = e'In g, where (el,... e") is

the dual basis. The element g, with coordinates x = (2%) can be, therefore, written as

gr = exp <Z a:@) : (12)

One could, however, also exponentiate multiples of the basis elements at first and
then take their product. Generally, consider a linear decomposition of g to a direct sum
of linear subspaces g = g1 ® g2 ® ... ® gp. Then the map ®:g — G, a — [[,-, exp(ax),
where ay, is a projection of a onto g, is a local diffeomorphism of the neighbourhood
of zero onto the neighbourhood of unity too since ®(0) = e and

d d
dPge;, = —D(te; = — exp(te; = ¢
06 dt (te;) . dt p(te;) o is
where e; is a basis such that each basis element belongs to one of the subspaces gy, so
the derivative at zero is again identity. Such map @ is called canonical and the induced
coordinates with coordinate functions e’ o ®~1, where e’ is the dual basis to e;, are
called canonical coordinates.
For a trivial decomposition g = g1 we get the logarithmic coordinates, which are also
called first canonical coordinates. On the contrary, if we have m = n, so each of the
subspaces is one-dimensional, we get the second canonical coordinates

9o = [ exp(a'e;). (13)
i=1

Let us now look on the coordinate expression of the basic Lie group structures. Let
Pl ...,9Y" be arbitrary local coordinate functions of G in the neighbourhood of unity.
Denote g, = 9~!(z) as in the preceding text. Then we can define a coordinate expres-
sion of the multiplication m(g,h) = gh as M:R" x R" — R", M (z,y) = ¢*(gz, gy)-
This map is called composition function.

Now, the basis vectors of Vect M module can be written as 9, = 0;1 ! = 0,i9,.

We can also explicitly express the form of left-invariant vector fields on G. Let
€1,...,€e, be a basis of the Lie algebra g of G (as an algebra of tangent vectors).
Then the corresponding basis of the algebra of left-invariant vector fields has the form
(Xi)g = dLge;. So, the coordinate expression is

xo(z) = WLl |y M @y)| g OMMy)| gy

ayj y=0 ’ 6:1/] y=0 8yz y=0

In the rest of this subsection, we describe computation of left-invariant vector fields
in the second canonical coordinates as was proposed by I. V. Shirokov in [13].
At first, let us take a look on the differential dL, and compute its components at
unity _
[(dLgy)e]; =dz’ dLg, Opilz—0 = da’ dLyg, Oyigz|e—0 =
B OM(y, ) . (15)

o0xJ o0 - Xj ().

o .
= (¥ (Lo, (92)))

=0
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In the following calculations, we omit the index e at dL,,. So, the differential dL,, is
a matrix, whose columns is formed by the left-invariant vector fields. This relation can
be inverted

AL} = [AL'T] = wl(y), (16)
where w’ are the dual one-forms corresponding to left-invariant vector fields X;. These
are also called left-invariant one-forms.

Now, choose the second canonical coordinates such that
Ge = gn(z") ---g1(x')  where gp(t) = e, (17)

We have
d d e,
agk(t) = Ee = (Xk)etek = dLgk(t) €L,
SO .
8Ik = awkgx = ark (Lg"(z”)---ngrl(zk+1)Rg1(z1)—1---gk.,l(azk‘l)—lgk(x )) = (18)
= ALy, o) gip (@r+1) ARy 1) =1gy (a4-1)1 ALg, (o) €
Finally, since left translations commute with right translations, we can formulate the
expression for the dL;ﬂ1 in terms of the adjoint map using equation (8) as

[dLg_ml]g = da’ dLg;1 i = da? Adgl(ml)fl s Adgiil(xifl)fl e; = (19)
= [exp(—:t:1 ade, ) - -+ exp(—:L'i_1 adeH)]Z .

So, in order to calculate the coordinates of left-invariant vector fields, it is sufficient
to calculate the inversion of the matrix whose elements is given by the formula (19).

B 2.6.3 Local Lie groups

In this work, we inspect Lie algebras, not Lie groups and our aim is to find their
realizations by local vector fields. The local properties of Lie groups are, therefore, the
main properties of our interest, so we can proceed in a coordinate way as in the previous
subsection. Hence, it is convenient to bring formal definition of a local Lie group.

Definition 2.79. Let M be a manifold, U an open domain in M, e a point in U,
V' a neighbourhood of e and m:V x V. — U a smooth map called and denoted as
multiplication satisfying ex = ze = z forallx € V, (xy)z = x(yz) for all x, y, z, zy, yz €

V and that the local inversion i:W — W x — 2~ ! defined by the relation zz~! =

x7 'z =efor all z € W, W C V neighbourhood of e is also a smooth map. Then the
tuple (U, V,e,m) is called a local Lie group. Any local Lie group (Uy, Vi, e, my), such
that Uy € U, Vi C V and m; = m|y, is called a restriction of the original local Lie
group.

There can be defined an equivalence of the local Lie groups: two Lie groups are
equivalent if they have a common restriction. Since the size of the neighbourhood of
a local Lie group is irrelevant, we often identify the equivalent local Lie groups and by
the term local Lie group we mean the equivalence class. In this sense, we also define
the notion of local Lie group homomorphism.

Definition 2.80. Let G; and G2 be local Lie groups, (Uy, Vi, mq) and (Us, Vo, m2) their
restrictions. A smooth map ®:U; — U, satisfying ®(Vy) C Vi, ®(my(x,ii(y))) =
ma(®(x),i2(P(y))) for all x € Vi, y € Wy, where W is the domain of the first in-
version i1, is called a homomorphism of local Lie groups G; and Gs. Analogically,
one could define local Lie group isomorphism or automorphism. Local Lie groups are
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called isomorphic if there exists a local Lie group isomorphism between them. A local
homomorphism of Lie groups is a homomorphism of them as local Lie groups.

We are able to construct Lie algebras of Lie groups as tangent spaces at unity and
we are able to construct morphisms of Lie algebras by differentiating morphisms of Lie
groups. The following theorems prove that we are, at least locally, able to do it the
other way around.

Lemma 2.81. Let G be a local Lie group, g its Lie algebra, and h a subalgebra of g.
Then there exists a Lie subgroup H CC G, such that b is its Lie algebra.

Proof. If we interpret b as an algebra of left-invariant vector fields on G, then it is
also an involutive distribution on G. Denote H the integral manifold at unity. If we
show that H is a subalgebra, then it will be clear that its left-invariant vector fields
are in b, so b is its Lie algebra. Take g € H, L1 is a diffeomorphism of G preserving
the left-invariant vector field, so L,-1(H) has to be the integral submanifold and, since
e € Ly1(H), it is an integral submanifold at unity and from uniqueness it is equal to
H on a neighbourhood of unity. So, g~*h € H for all g, h in a neighbourhood of unity
in H. U

Lemma 2.82. Let G be a local Lie group, H its subgroup, and g, b the corresponding
Lie algebras. Then H is normal in G if and only if b is an ideal of g.

Proof. The subgroup is normal if and only if for all g,h € G it holds that h € H <
ghg™' € H. The elements of local Lie group in the neighbourhood of unity can be
uniquely represented by elements of the corresponding Lie algebra. Thus, the condition
can be equivalently represented as e’ € H < e%e’e™® = exp(e®d«b) € H for sufficiently
small a,b € g, where we used Theorem 2.75 to rewrite the expression. This can be
expressed in terms of the Lie algebra elements themself b € h < e*deb € h. Finally, it
is sufficient to show that this is equivalent to the implication b € h = [a,b] € h. The
“if” direction is trivial. To prove the opposite direction, let us assume, that b € b, then

e®eh =b+ [a,b] + [a,[a, D] +... €,
S0, since b on the right-hand side lies in b, we have
b5 [a,6] + [a, [0 8] + ... = ™ [a, b],

so [a,b] € b. O

Theorem 2.83. Let GG and G5 be local Lie groups, g; and go its Lie algebras. For
every homomorphism ¢: g; — go, there exists unique local Lie group homomorphism ¢
such that ¢ = d®.

Proof. Take a homomorphism ¢:g; — go. Its graph I' := {(a,¢(a)) | @ € g1} is a Lie
subalgebra of g1 & go. We can check that g; & go is a Lie algebra of G; x G5. Using
Lemma 2.81, we can find a subalgebra H CC G; X Gg, such that b is its Lie algebra.
The projection on G restricted on H m1: H — G is a homomorphism, whose derivative
at unity is regular mapping (a, ¢(a)) — a. Hence 7 is a local isomorphism at unity.
Denote mo: H — G4 the second projection, then dms at unity maps (a,p(a)) — ¢(a).
So, m; 16 79 is the homomorphism we are looking for. O

Remark 2.84. It is clear that we have a one-to-one correspondence not only between
homomorphisms, but also between isomorphisms of local Lie groups and their Lie al-
gebras because a smooth map has a regular differential if and only if it is a local
diffeomorphism. Consequently, given a group of automorphisms of a Lie group G, we
can construct the corresponding group of automorphisms of its Lie algebra g and vice
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versa. In particular, according to Lemma 2.74 and Theorem 2.75 the differentiation
maps bijectively the group of inner automorphisms of a Lie group onto the group of
inner automorphisms of its Lie algebra.

Theorem 2.85. For a given Lie algebra g, there exists, up to isomorphisms, unique
local Lie group G such that g is its Lie algebra.

Proof. According to the theorem of Ado 2.77, there exists a vector space V such that
g € gl(V). Using the preceding lemma, we find the local Lie group G CcC GL(V).
The uniqueness follows from Theorem 2.83 (identical map of the Lie algebra induces
an isomorphism of its different local Lie groups). U

In fact, these theorems hold globally: for a given Lie algebra g, there exists, up
to isomorphisms, unique simply connected Lie group G such that g is its Lie algebra.
Thus, the notion of a local Lie group is actually redundant since we see that every local
Lie group can be uniquely extended to a simply connected Lie group. Nevertheless, this
stronger proposition is harder to prove and the local approach can simplify our further
considerations.

B 2.6.4 Lie group action on a manifold

Let G be a Lie group and M a manifold. By an action of G on M, we always mean
a smooth action, that is, the map m: G x M — M is always considered smooth. The
G-set M is then called a G-manifold.

Lemma 2.86. Let GG be a Lie group, g its Lie algebra, M a manifold, and 7 an action
of G on M. Then the mapping g — Vect M

_d
de

A

R d
a=Xem X, Xy =—dma= L (me ™) e™-p)| (20)

t=0

t=0

where X is the left-invariant vector field corresponding to a and m, is the orbit map of
point p, is a homomorphism.

Proof. At first, we show that negative right-invariant vector fields satisfy the assump-
tions of Theorem 2.48. Let X be a right invariant field such that X, = a, then

s d d
dm, (—X,) = —dm, dR," &em =— a((wp oR e =
t=0 t=0
d, . N .
== a(et gp) o = —dmgpa = Xgp = Xz ()

Now, we have according to Theorem 2.48

(X, V], = dmp[- X, =Y]. = dmp[b,a] = [X,Y],,. -

Definition 2.87. The vector field X of the previous lemma is called the fundamental
vector field of the action m corresponding to the vector field X. The homomorphism
X +— X will be denoted as Tk

For the map g — m,, which we called permutation representation in Section 2.1, we
have g C Diff M C S); because we demand the action 7 to be smooth. Therefore,
the action of a group on a manifold can be understood as a generalization of the
notion of a global flow or one-parameter group of diffeomorphisms. However, it is not
one-parameter anymore. To complete the analogy, we bring the following definition
corresponding to the notion of a local flow.

22



Definition 2.88. Let G be a Lie group and M a manifold. By a local action of G on M
we mean a smooth map m: W — M, where W is an open subset of G x M such that
{e} x M C W satistying n(e,p) = p for all p € M and (g, 7(h,p)) = w(gh,p) for all g
and h for which both sides are well-defined.

If we consider an action of a local Lie group, we automatically mean a local action.
In the case of local Lie groups, one also need to consider locally the properties of the
action. For example, an action 7 of a local Lie group G is called (locally) transitive if,
for every point p € M, there is a neighbourhood U of p such that, for all ¢ € U, there
exists g € G such that ¢ = 7(p, g).

It seems natural that a local action is described by the infinitesimal action, that is,
the differential dm, for every p € M. The role of the infinitesimal generators is played
by the images of Lie algebra g of G through the mapping dm,—the fundamental vector
fields. From the uniqueness of the flow for a given vector field, we see that the local
action is uniquely defined by the infinitesimal action. Nevertheless, the existence of
a local action corresponding to an infinitesimal action is not so trivial to prove.

Theorem 2.89. Let G be a Lie group, g its Lie algebra, M a smooth manifold, and
p:g — Vect M a homomorphism. Then there exists a local action m of G on M such
that ¢ = m,.

Proof. The map ¢ induce a distribution ¢(g) on Vect M. The homomorphism property
implies that the distribution is involutive. Recalling the Frobenius theorem 2.61 we can
define the action 7 as translation in the adapted coordinates z’. Finally, we can check
that the fundamental vector fields are indeed 0. O

It is again useful to be able to express these structures in coordinates. Let us have
local coordinates of a given Lie group G in a neighbourhood of unity z!,...,z" and
local coordinates of a given manifold M ¢',...,¢™. Then, for arbitrary action m of G
on M, we can define its coordinate representation as a function II: R® x R™ — R™.
Let g be a Lie algebra of G and ey, ..., e, its basis. Then we can define a basis of the
algebra of fundamental vector fields as (Xi)p = dm, e;. The coordinates of these vector
fields are

7 (Q) = O % ot

=0

=0

Morphisms, in the case of action on manifold, are defined in the same way as in the
case of ordinary action except we demand them to be smooth. Isomorphisms have to
be diffeomorphisms.

Now, we present a stronger variant of Lemma 2.12 for a Lie group action on manifold.
The homogeneous space G/G, can be given the structure of differentiable manifold
induced by the quotient map g — ¢G)p. It holds that there exists a unique smooth
structure on G/G, such that the quotient map is smooth. For us, it is sufficient to
bring the construction just locally. Let h be the Lie group of stabiliser G,. It is
a subalgebra of g consisting of vector fields whose integral curves act on p trivially, so
it is the kernel of dm, at unity. Let V be a vector space complement of h in g, so g
is a direct sum of vector spaces g = V @ h. Denote (ey,...,ex) the basis of V and
(€k+1,---,€n) the basis of h. According to Subsection 2.6.2, we can choose canonical
coordinates on G in the neighbourhood of unity by relation

k n
g¢1,....tn) = €XP (Z tiel) exp ( Z tiei> .
i=1

i=k+1
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We can define coordinates on G/Gp as g & = g 4o oGp. It is evident that the
quotient map is smooth with respect to these coordinates since its coordinate represen-
tation is (t!,...,t") — (¢',...,t*). It is also clear that the left action of G on G/G), is
smooth as well. We can again introduce the map 7,: G/G, - M gG, — gp, that was
examined by Lemma 2.12. It is injective (mapping bijectively G/G, onto pG) and its
differential at unity d7, is restriction of dm, at unity on a complement of its kernel, so
it is injective as well. Therefore, we locally proved the following theorem.

Theorem 2.90. Let 7w be an action of G on the manifold M, p € M. Then the quotient
map induces a structure of a smooth manifold on G/G,. This manifold is immersed in
M as the orbit of p by 7,: G/G, = M gG, — gp.

In particular, if 7 is transitive, then the map 7, is a diffeomorphism.

Corollary 2.91. Let 7 be a transitive action of G on the manifold M, p € M. Then the
G-spaces M and G/G) are isomorphic. In particular, it means that if 7 is transitive
and free, then it is isomorphic to the left translations of G.

Remark 2.92. Thus, an interesting question is: what is the fundamental vector field for
the action of left translations. For a € g and X the corresponding left-invariant vector
field, we have

Xg = —diL(e,g)a=—dRy1a = —Xg =di X,

where X is the right-invariant vector field corresponding to a and 7 is the group inver-
sion.

Remark 2.93. We have formulated this section for left actions of a group on a manifold
for the sake of consistence with the rest of this chapter, where we considered left actions
only. Another reason is that it is formulated this way essentially in every literature.
However, if we consider right actions, things get a little simpler in some ways.

The particular changes are following. The fundamental vector field is defined without
the minus sign: Xp = dmpa, where m,(g9) = 7(p,g). We will again denote X = ma.
Thus, the coordinate expression is

ary — M(g2)

o) = =1 (22

=0

Theorem 2.90 would state that the right coset space G, \ G is immersed to the manifold
M. Therefore, the corollary is that every transitive right action on a manifold M is
isomorphic to the right action of right multiplication on G,\ G. The fundamental vector
fields of right translations are left-invariant vector fields (this was basically already
stated in Lemma 2.68.3).
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Chapter 3
Classification of realizations

Definition 3.1. Let g be a Lie algebra and M a manifold. A realization of g on the
manifold M is a homomorphism R:g — Vect M. The realization is called faithful if it
is injective.

Definition 3.2. Let g be a Lie algebra and M; and M manifolds. Let A be a subgroup
of Aut(g). Realizations Ry: g — Vect M; and Ry:g — Vect My are called A-equivalent
if there exist an automorphism o € A and a diffeomorphism ®: M; — Ms such that
Ry(a(x)) = @, Ry () for all = € g. If the group of automorphisms A contains only the
identity, the realizations are called strongly equivalent. In contrast, Aut(g)-equivalent
realizations are called weakly equivalent.

The tangent map ®, can be viewed as a coordinate change, so strong equivalence is
equality up to a coordinate change.

In this work we consider realizations only locally, i.e. the vector fields realizing the
Lie algebra are defined only locally. Since every manifold is, by definition, locally
diffeomorphic to R"™, we can take a neighborhood of zero U C R" for the manifold M.
Note that we could, without loss of generality, fix the neighborhood of zero or even take
the whole set R" to be our manifold since all neighborhoods in R™ can be transformed
one onto another by a diffeomorphism.

This definition was adopted from [2]. Other authors may take more general definition
considering the Lie algebra of vector fields to be a derivation of the algebra of formal
power series over a field F' of characteristic zero Der F'[[z]] (see for example [3]).

The classification of realizations is usually performed with respect to the weak equiv-
alence. It is reasonable beacuse even in this case the list is usually quite long. The
classification is, however, harder to perform in this case because one needs to know
explicitly the whole automorphism group to exclude the equivalent realizations and
to prove that two realizations are equivalent. Nevertheless, it is not completely clear
what is the reasonable definition of the classification problem for applications. This is
probably going to be one of the subjects of study in the authors Master’s thesis. We
have, therefore, decided to provide classification with respect to both the strong and
the weak equivalence.

To classify realizations of a given Lie algebra in a most direct way, it is neccesary to
solve a complicated system of non-linear partial differential equations. Another way is
to proceed inductively. To classify realizations of a given Lie algebra, we classify the
realization of its subalgebras at first. Nevertheless, it still requires solving a system
of partial differential equations. By this method all realizations of Lie algebras of
dimension not greater than four was obtained in [2]. To test the inequivalence with
respect to the weak equivalence a new method of so called megaideals (subalgebras
invariant with respect to all, not only inner automorphisms) was invented.

Nevertheless, there is also another way how to search for and classify realizations.
There is a one-to-one correspondence between Lie algebra subalgebras and so called
transitive realizations. For the general case of realization by vectors of Der K[[z]] the
theorem was formulated and proven by Guillemin and Sternberg [14]. In our case the
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correspondence follows very simply from the theory of Lie algebra actions described in
section 2.6.4.

A simple purely algebraic method for computation the explicit form of the corre-
sponding realizations was proposed in [1] by I. V. Shirokov et al. Eventually, if we want
to find all transitive realizations of a given Lie algebra, the need of complete subalgebra
classification turns out to be the hardest part of the task. The subsequent computa-
tion is very simple and can be performed by a computer. The proposed method was
already used to classify the realizations of low-dimensional Poincaré algebras [15] and
Galilei algebras [16]. We were so far able to classify the transitive realizations of all
five-dimensional indecomposable Lie algebras with four-dimensional Abelian ideal.

On the other hand, the classification of non-transitive realizations is very hard to
perform and there is no effective algorithm as for the transitive case. The transitive
realizations will also be the subject of our further research.

I 3.1 Realizations, group actions and subalgebras

In this section the correspondence between realizations and actions of the corresponding
Lie group will be stated. Then the methods of classification of realizations will be
described.

The important thing to be noticed is that a realization R:g — Vect M can be equiv-
alently described by a local group action. According to Theorem 2.85, there exists
(up to isomorphisms) unique local Lie group G for a given Lie algebra g. In addition,
according to Theorem 2.89 and Remark 2.93, there exists a unique local right action 7
of G on M such that m, = R. Thus, we can construct the realizations as fundamental
vector fields of various actions.

As one would expect, there is a kind of one-to-one correspondence between local
actions and realizations. To state the proposition precisely, we generalize the definition
of similitude 2.9. Because we use right actions in this chapter, we will formulate the
definition for right action as well. Let G; and G2 be isomorphic local Lie groups and
g their Lie algebra. We say that actions 71 and 7@ of G and Gs acting on M; and
M, respectively, are A-similar for A a subgroup of Aut g if there is a diffeomorphism
®: M; — M, and an isomorphism ¢:G; — Gy such that dp € A sattisfying the
similtude relation

e (M (p, 9) = 7 (@(p), p(9))- (1)

Proposition 3.3. Let G; and G2 be local Lie groups of Lie algebra g. Local actions
of G; and G5 on a manifold M; and M, are A-similar if and only if the corresponding
realizations of the Lie algebra g are A-equivalent.

Proof. Let 7)) and 73 be local actions of Gy and G5 on M; and M, corresponding to
realizations R; and Rs, respectively. Let ® be a diffeomorphism M; — Ms and ¢ an
isomorphism G; — G5 such that dp € A. Then for all p € My, a € g, and t € (—¢,¢)
we have

d
d®R;(dLea a), = d® dr') dLeww a = a<1>(7r<1>(p, '),

d .
Ry(dp dLes a)agy) = dmg(,) dpdLos a = =7 (@(p), p(e")),

so we have ®,R;(a) = Ry(a(a)) for all p € M, and a € g if and only if ®(7(V(p, g)) =
72 (®(p), ¢(g)) for all p € M; and g € Gy, where o = dyp € A. O
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Proposition 3.4. A realization is faithful if and only if the corresponding local action
is effective.

Proof. Let R be a realization of g on M, G the corresponding local Lie group, and 7
the corresponding local action. The realization R is unfaithful if and only if

d
0 = R(Lun ), = <r(p, ')
dt
foralla € g, p € M, and t € (—¢,¢), which is equivalent to 7(p,g) = 0 for all g € G
and p € M, meaning 7 is ineffective. O

B 3.1.1 Classification of the transitive realizations

In the following lemma, we define and characterize transitive realizations. In the rest of
this subsection the correspondence with subalgebras of the concerned Lie algebra will
be stated and the explicit computation of the transitive actions based on [1] will be
described.

Lemma 3.5. Let g be a Lie algebra and R its realization on a manifold M. Let G be
a local Lie group of g and 7 a local action on M corresponding to R. The action 7
is transitive if and only if {R(x), | x € g} = T,M for all p € M, ie. R,:g = T,M
x — R(z), is surjective at every p € M. If so, we call R transitive as well.

Proof. The map R, is in fact identical to dm,. Therefore, it is surjective if and only if
mp is “locally surjective”, i.e. there exists a neighbourhood V' of p such that m,(G) D V.
Equivalently, for every ¢ € V' there is a g € G such that ¢ = 7(p, g). ([

We can reformulate this lemma for local realizations.

Lemma 3.6. Let g be a Lie algebra and R its realization on U a neighborhood of zero
in R™, let G be local Lie group of g and 7 a local action on U corresponding to R. The
action 7 is transitive if and only if {R(z)o | z € g} = Ty M, i.e. R at zero is surjective.

According to Corollary 2.91 and Remark 2.93, every transitive action is isomorphic
to the right multiplication of G acting on G, \ G, p € M. Hence, any transitive action
of GG is, up to isomorphisms, described by the subgroup H representing a stabilizer of
a given point in G.

As a consequence of Proposition 3.3, we can move to Lie algebras. We see that every
strong class of transitive realizations of a Lie algebra g is determined by a subalgebra
h. Moreover, if we look for a weaker classification of transitive realizations, we do not
have to go through all subalgebras of g. The following proposition tells us that the
realization class is determined by the subalgebra class uniquely.

Proposition 3.7. Let g be a Lie algebra and A CC Autg. Transitive realizations
correspond to A-conjugate subalgebras of g if and only if they are A-equivalent.
Proof. Denote G a local Lie group of the Lie algebra g, h; and b arbitrary subalgebras
of g, and H; and H, the corresponding subgroups. Denote 7(1) and 7(? the right mul-
tiplication of G acting on H; \ G and Hs\ G, respectively, and Ry, Ry the corresponding
realizations. Let ¢ be an automorphism of G, so dy is an automorphism of g and let
®: H; \ G — Hy \ G be a local diffeomorphism at H; (such that ®(H;) = Hs).

According to Proposition 3.3, the realizations R; and Ry are equivalent with respect
to the Lie algebra automorphism d¢ and diffeomorphism @ if and only if

®(High) = ®(H19)p(h)

for all g, h € G.
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If the Lie algebras h; and b, are A-equivalent, so there is an o € A such that
ha = a(h1), we just have to choose ¢ and ® such that dp = a and ®(H,9) = p(H1g9) =
Hsp(g). Conversely, if the realizations R; and Ry are equivalent, so the equation above
is sattisfied, we have for every h € H;

Hy = ®(Hy) = ®(H1h) = ®(H1)p(h) = Hyp(h),

so ¢(Hy) = Hs. Thus, the Lie groups H; and Hs as well as the Lie algebras h; and by
are A-equivalent. O

Proposition 3.8. A transitive realization of a Lie algebra g is faithful if and only if the
corresponding subalgebra of g does not contain any non-trivial ideal of g.

Proof. According to Proposition 3.4, the realization is faithful if and only if the corre-
sponding action is effective. Here, we consider the right multiplication of G on H \ G.
The kernel of this action is, according to Lemma 2.7, the largest normal subgroup
contained in H. The action is, therefore, effective if and only if H does not contain
nontrivial normal subgroup. This is, according to Lemma 2.82, equivalent to the propo-
sition that h does not contain any nontrivial ideal. U

The choice h = {0}, so H = E corresponds to transitive free action, which is accord-
ing to Corollary 2.91 and Remark 2.93 isomorphic to the action of G on itself by right
multiplication. The corresponding realization on M ~ E \ G ~ G is by left-invariant
vector fields. Such realization is called generic. Other realizations are then just a re-
striction of the generic realization on a submanifold H \ G. To compute them locally,
it is sufficient to choose suitable coordinates on G.

As was shown in [1], the most convenient are the second canonical coordinates. Let
bh be a subalgebra of g and p its complement. We choose a basis (eq, ..., ey) of g such
that (e1,...,en—m) is a basis of h and (€,—m41,. .., €mn) is a basis of p. Then the group
element g, with coordinates z° is computed as

Oz = H exp(z'e;).
i=1

We can also define induced coordinates on the subgroup H and the quotient group
H\G as

hy = H eXp(yﬁeﬂ) 9qg = Hg(O,q) =H H exp<qaen7m+a)-
a=1 a=1

Notice that the representatives of a class in H \ G are determined by the last m co-
ordinates: g, = Hg(y,q) for all y. Therefore, coordinates of product of the action of
right multiplication g, - g. are the last m coordinates of product of a representative, say
900,9)> and g,:

(g, 2) = M"™"7((0, q), ).

Recall equations (14) and (22) of chapter 2 saying, that the components of left-
invariant vector fields or fundamental vector fields are given by partial derivatives of
the composition function or the action function, respectively. Thanks to the preceding
relation (2), the components have to be identical in these coordinates. Therefore, for a
generic realization

3

en 9 a a . a
RE™(e3)g,, ., = Xi(q,y) = ZXi (q) ¢ + Z Xf(q,y)w (2)
a=1 p=1
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on M ~ G, which can be computed in those coordinates by an algorithm described in
Section 2.6.2, we have constructed a realization

)
- (3)

R(ei)g, = Xi(q) = ZX?((])(?

on M~ H\QG.

As we mentioned earlier, this computation is very simple and can be performed
purely by some computer program. We used a script in Mathematica kindly provided
by supervisor doc. Severin Posta who used it earlier in a joint work [16]. The results of
classification of transitive realizations of five-dimensional indecomposable Lie algebras
with four-dimensional Abelian ideal are listed in Section A.2 of the appendix.
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Chapter 4
Conclusion

Our aim, in this research project, was to study possible algortithms for construction
realizations of Lie algebras. We focused on the work of I. V. Shirokov et al. [1,13]. We
summarized his method and made more clear, what kind of realizations are classificated
by this method, providing rigorous description of relationship with classification of
subalgebras.

The main result of this work is both weak and strong classification of transitive
realizations of all five-dimensional indecomposable Lie algebras with four-dimensional
Abelian ideal. As an intermediate result, we obtained lists of subalgebras of these Lie
algebras and classification of these subalgebras with respect to group of all automor-
phisms, which is a useful result by itself and it was actually the most difficult part of
the computation.

Nevertheless, as the most interesting results, one may consider the questions that
arose during the study of this topic. Namely, how to construct the non-transitive
realizations, what is the reasonable classification problem for applications, how to con-
struct realizations globally on a given non-trivial manifold, etc. Moreover, the so far
most general classification of Lie algebra realizations [2] seems to have either a lot of
non-transitive realizations missing or inaccurate definition of the classification problem.
These are interesting problems for further research and the author would like to treat
most of them in his Master’s thesis. It would be also nice to complete the classification
of subalgebras and realizations for all five-dimensional Lie algebras.
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Appendix A
The classification results

I A.1 Classification of Lie algebras

To express our results, we use the classification of real indecomposable Lie algebras of
dimension not greater than five obtained by G. M. Mubarakzyanov in[8,7]. With a
few exceptions listed below, we use the same numbering and bases for the Lie algebras.
For the sake of completeness, we quote those results in the following tables A.1 and
A.2. We denote the one-dimensional Abelian Lie algebra g; and the two-dimensional
non-Abelian Lie algebra g, with basis satisfying commutation relation [eq, e3] = e;.
The exceptions in notation are related only to the range of the parameters. The
formal expressions for the Lie brackets will always correspond to the tables. Sometimes,
we get a Lie algebra from other family by substituting parameters out of their domain.
For example, by g},,A we mean gz 3. This will simplify the description of the subalgebra
types in our tables. The second thing is that the range of parameters is chosen in a
way that the Lie algebras with different parameter are nonisomorphic. For example,
the Lie algebra g§, is well-defined also for |a| > 1, but it is isomorphic to the cases
with |a| < 1. We will sometimes use these isomorphic representatives of the Lie algebra

types.

Type Nonzero commutation relations

93,1 le2, €3] = e1

932 le1,e3] = e1, [e2,e3] = €1 + e

93,3 le1, e3] = e1, [ea, €3] = €2

954 [e1,e3] = e1, ez, e3] =aey; —1<a<l,a#0

055 le1,e3] = ae; —eg, [e2,e3] = €1 +aer; a >0

936 le1, e2] = e1, [e1, e3] = 2e2, [e2, 3] = e3

3,7 le1,e2] = e3, [e3,e1] = ea, [e2, €3] = €1

941 [62, 64] = €1, [637 64] = €2

950 le1,e4] = aeq,[ea, eq] = ea,[e3,e4] =2+ €35 a#0

943 [61, 64] = €1, [637 64] = €2

944 le1,e4] = €1, [e2, e4] = €1 + €2, [e3,e4] = €2 + €3

93,’56 [e1,ea] = €1, [e, 4] = aeg, [e3,e4] = Beg; —1<B<a<1,aB #0
a5y le1, eq] = aey, [ea, e4] = Bea —e3, [es, eq] = €2 + Pez; a#0,8>0
g477 [62, 63] =e€q, [61, 64] = 261, [62, 64] = €9, [63, 64] = €9 + €3

918 [e2, €3] = e1, [e1, ea] = (1 + ey, [e2, e4] = €2, [e3,e4] = aes;  |a| <1
999 [ea, e3] = e, [e1, e4] = 2aveq, [ea, e4] = aeg — €3, [e3,e4] = €2 + e3; @ >0
94,10 [61, 63] = €1, [62, 63] = €9, [61, 64] = —€9, [62, 64] = €1

Table A.1. Real three- and four-dimensional indecomposable Lie algebras [8].
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A The classification results

Type Nonzero commutation relations

95,1 le3, e5] = e1, [es, e5] = €2

052 [e2, e5] = €1, [e3, €5] = e, [e4, €5] = €3

ggfv le1, e5] = e1, [ea, e5] = aey, [e3, e5] = Pes, [eq, e5] = veu;

958 [e2, 5] = €1, [es, es5] = €3, [es, e5] = veq; 0 <|y[ <1
9?3 [e1,e5] = e1,[ea, e5] = e1 + ea, [e3, e5] = Bes, [ea,e5] =veq; 0#y < B
95,10 le2, e5] = €1 [63,6 | =ea,[es,e5] = ey
Qg,n [e1,e5] = e1,[ea, e5] = €1 + €2, [e3,e5] = €2 +e3,[eq, e5] = ves; Y H#O
95,12 le1,e5] = e1, [ea, e5] = e1 + €2, [e3,e5] = ez + €3, [es, e5] = €3 + ¢4
ggfgf le1,e5] = e1, [ea, €5] = e, [e3, €5] = pes — seu, [eq, 5] = ses +pes; |y <1,y #0
90 14 le2, €5] = ea, [e3, e5] = pes — ey, [e4, e5] = e3 + pey
95 15 [e1, e5] = e1, [ea, e5] = €1 + ea, [e3, e5] = yes, [es, e5] = ez +veqy; -1 <y <1
95 16 le1,e5] = e1, [e2, e5] = e1 + e, [e3, e5] = pes — sey, [ea, e5] = sez + pes; s#0
915) (1178 le1, e5] = pe1 — ez, [e2, e5] = €1 + pea,
les, e5] = qes — sey, [eq, 5] = se3 +qes; s#0
92718 [e1, e5] = pe1 — ez, [e2, e5] = e1 + pea,
[e3, e5]

es,es5] = e +pes —eq, [es, 5] = e +e3 —pes; p>0

Table A.2. Real five-dimensional indecomposable Lie algebras [7] with four-dimensional
Abelian ideal.

I A.2 Subalgebras classification and corresponding
realizations

In this section subalgebra classification of the five-dimensional indecomposable Lie al-
gebras with four-dimensional Abelian ideal and a list of corresponding realizations will
be presented. For every Lie algebra, there will be a separate table. The tables are
arranged in the following way. The column captioned “Subalgebra” (usually second)
contains list of all subalgebras. In each row, there is a list of the subalgebra generators.
The following column contains realizations corresponding to these subalgebras. As a
complementary basis to the Lie subalgebra generators we usually take suitable subset of
the Lie algebra basis {ej,...,e,}. The column captioned “Aut g class’ brings subalge-
bra classification with respect to the whole group of automorphisms. Each subalgebra
belongs to the class of equivalence in the corresponding row. The first column of the
table states the type of the subalgebra.

The subalgebras are parametrized as follows. Letters a,b,c,d,e, f denote real pa-
rameters and ¢ is a discrete parameter (usually ¢ € {—1,1}). We denote o, := sgna
the sign of parameter a, 1,,,. 4, = sgu(|ai| + ... + |an|), i.€. Moy, q, is zero if all the
parameters ai, ..., a, are zero and one otherwise, and g, 4, := (1 — 1a,,.a,), Which
is one if all parameters are zero and zero otherwise.

Finally, we describe, how to read the tables, that is, how to obtain results of the con-
sidered classification problems. The list of all subalgebras is simply in the “Subalgebra”
column. The strong classification of transitive realizations is in the “Corresponding re-
alization” column. The classification of subalgebras with respect to the whole group
of automorphisms is essentially in the “Aut g class” column. Except the fact that one
class can be listed more than once; nevertheless, it is always represented by the same
representative. To get the weak classification of realizations, one needs to go through
the “Corresponding realization” column and pick only one realization for each class by
substituting the parameters of the class representative.
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Every Lie algebra listed has only two families of faithful realizations since every Lie
algebra with four-dimensional ideal has only two families of subalgebras not containing
a non-trivial ideal of the Lie algebra. Namely, it is the zero subalgebra and a family of
subalgebras generated by a vector of the form es + aeq + bes + cea + de; not lying in
the four-dimensional ideal.
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Type Subalgebra Corresponding realization Aut g class
0 0 01, 02, 03, 04, O5 + 301 + 402 0
g1 e1 0, 01, 02, 03, 04 + w301 e1
e2 + ael 01, —adh, 02, 03, 014 + (x2 — ax3)oh
e3 + aez + bex 01, 02, —ad2 — (b+ x4)01, 03, 04 + 2302 e3
e4 + aesz + bea + cer 01, 02, 03, —ad3 — (b+ x4)02 — (¢ + ax4)O1, Os + 2301
es + aeq + besz + ce2 + dey 01, O2, O3, 04, —b03 — ads + (—d + x3)01 + (—c + x4)02 es
2g1 e1, €2 0, 0, 01, 02, 03 e1,e2
e1, ez + aes 0, 01, —adh, 02, O3 + 2201 €1,€e3
e2 + aei, e4 + aes + bex o1, —aal, (92, —ady + —b(31, 03 + 201
e1, eq + aes + bes 0, 01, B2, —ad2 — (b+ x3)01, O3 e1,eq
e2 + aey, e3 + bey o, —aodh, —(b + :C3)81, 02, 03 — ax201
ez + ae1, eq + bes +ce1; a £ b 01, —ad1, 02, —bO2 + (—c+ (a — b)x3)01, J3 + x201
es3 + aez + b617 e4 + ces + dey 01, 827 —aly — (b + Ig)ah —do1 — (C + x3)82, 03 €3, €4
e1, es + aeq + bes + cea 0, 01, 2, O3, —bO2 — ad3 + (—c + x3)01 e1,es
e2 + aei, es + bes + ces + dey 01, —a0d1, 02, 03, —cdy — bOs + (—d + 12 — ax3)81
301 e1, €2, e3 0, 0,0, d1, 02
e, ez, e4 + aes 0, 0, 01, —ad1, O2 e1,es,eq
e1, ez + aez, eq + bea 0, 01, —ad1, (—b— x2)01, 02 €1, €2,€3
e2 + ae1, e3 + be1, eq + ce1 01, —ad1, (—b— 12)01, (—c + ax2)dr, 2
e1, ez, €5 + aeq + bes 0, 0, 91, 02, —b01 — ad2 el,e2,es
93,1 e1, ez + aez, es + beq + cez 0, 01, —ad1, 02, —bda2 + (—c + x2)01 e1,es, es
e2 + aey, eq + aes + beq, o1, —a81, 627 —bo1 — a82, —cOo + (—d + 562)81
es + ce3 + dex
41 e1, €2, €3, €4 0,0,0,0, 01 e1,€e2,e3,6e4
93,1 D g1 e1, e2, €3, e5 + aeq 0,0, 0, 81, —ad: e1,e2,es3,es5

e1, ez, e4 + aes, es + bes

0, 0, 01, —ad1, —b01
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Type Subalgebra Corresponding realization Aut g class
0 0 01, 02, 03, Oa, Os5 + w201 + 302 + 1403 0
g1 e1 0, 01, O2, 03, 04 + 1201 + 302 e1
ez + aey 01, (—a — x4)01, 02, 03, 04 + x302 — w2(a + x4)01 ()
es + aea + bey 81, 82, —(a + 334)(92 — (b + axq + %xﬁ)@l, 83, es
01 — x3(a + x4)02 + (2 — bz — axsxa — %xgzi)&
e4 + aes3 + bez + cex o1, 02, 03, —(a + x4)03 — (b+ azs + $23)02 — (¢ + baa + Sazi + %xi)ah e4
04 + 2201 + x302
es + aeq + bes + cea + dey 01, 02, 03, 01, —als + (—d + x2)01 + (—c+ x3)02 + (—b+ x4)03 es
291 ey, e2 0, 0, 01, 02, O3 + x201 e1, e
e1, ez + aez 07 (91, (70, - 1'3)(91, 82, 83 - xg(a —+ 1’3)81 €1, €3
e1, e4 + aes + bes 0, 01, 02, —(a =+ :1,’3)82 — (b + axs + %x%)c’h, 03 + 201 e1, e4
e2 + aey, ez + bey 01, —(a+x3)01, (—b+ax3 + %x%)fh, 02, 03 + (—bx2 + axaxs + %xgx%)@l e2, €3
e2 + ae1, e4 + bez + cex O, —(a+x3)01, 02, —(b+ x3)02 + (—c + abxs + 5 (a + b)a3 + $23)01, €2, €4 + Naes
O3 — mg(a + :Eg)al
e3 + aez + ber, es + cex + dey o, 02, —(a+ x3)02 — (b + azs + £23)01, €3+ 0_g24p_cC€l,
(—c+ azs + £23)02 + (—d + (b — ¢)z3 + az3 + $23)01, O3 + 2201 €4
e1, es + aeq + bes + cez 0, 01, 02, 03, —a03 + (—c+ x2)01 + (=b+ x3)02 e1, es
391 e, €2, €3 0, 0, 0, 01, 02 e1, €2, €3
e1, es + aea, eq + bea 0, o1, (—a — m2)817 (—b + axr2 + %I%)al, 0o e1, €3, €4
e1, €2, e4 + aes 0, 0, &1, —(a+ x2)0h, O2 e1, €2, e4
ez + ae1, e3 + be1, eq + cex 01, —(a+ z2)01, (=b+ aza2 + %xg)al, (—c+ bxa — %aac2 — %m%)@l, o e, €3, €4
93,1 e1, €2, es + aeq + bes 0, 0, 01, 92, —ad2 + (—b+ x2)01 e1, €2, €5
401 e1, €2, €3, e4 0,0,0,0, 01 e1, €2, €3, €4

94,1

e1, e2, €3, es + aeq

0,0, 0, 01, —al1

€1, €2, €3, €5
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Type Subalgebra Realization Aut g class Aut g class
(a=B=~v=1) (a=B=1,v#1)
0 0 O1, 02, 03, 04, 05 + 101 + ax202 + Bx303 + Yx404 0 0
g1 el 0, 01, 02, 03, 04 + ax101 + Br202 + Y2303 e1 el
e + aex o1, 70,6(170‘)1481, 02, 03, 01 + 101 + Bx202 + yx303
es + aea + bey 01, O2, —be(l_ﬁ)z481 — ae<a_6)z482, 03,
04 + 101 + ax202 + Y2303
e4 + aes + bez + cex A, B, B3, —ce1™M219; — pela=M21g, _ geF=NT1g, e4 + Nab,c€1
014+ 2101 + ax202 + fx303
es + aes + bes + cea + dey 01, O2, 03, O4, es es
(—d+x1)01 + (—c + ax2)02 + (b + Bx3)d3 + (—a + Yx4)O4
2g1 e1, €2 0, 0, 01, 02, 03 + Bx101 + yr202 e1, €2 €1, e2
e1, e3 + aeg 0, 01, —ae(a_ﬁ)%al, 02, 03 + ax101 + yx202
e1, e4 + ae3 + bez 0, A1, B2, —be @ M739; — qeBF=1T9, 95 4 w101 + 202 €1, €4 + Nq,pe2
e2 + ae1, e3 + bex 1, —ael =Ty _be1=A239, 9y 95 + 2101 + Y1202 e1, e2
e2 + aey, eq + bes + cex o1, fae(lfo‘)”@l, 02, —cel=Mws g, be(ﬁfv)”ag, e1, €2 + My ce2
03 + 1101 + Bx202
es + aes + beq, o1, 02, —be(1=PFzs g9, _ gela—Bzsg, €1, €4 + Nec,dMbe2
eq + cea + dey —de(t=MTag, ce(o‘_'”“ag, 03 + 2101 + ax202
g2 e1, es + aeq + bes + cez 0, 01, 02, 03, (—c+ ax1)01 + (=b+ Br2)02 + (—a + yx3)0s e1, es e1, es
e2 + aei, O, =01, 02, 03, (—c+ Bx2)02 + (—b+ ~vx3)03 + (—d + x1)01
es + beq + ces + dex
63+&62+l~)61, 817 82, —581 —&827 83,
es + ceq + dez + ee1 (—c+~23)03 + (—e + 21)01 + (—d + ax2)02
€4+&€3+B€2+E€1, 01, 02, 03, —¢01 — bd2 — ads, €4, €5

es + des + eea + fer

(=f +21)01 + (=d + Bx3)03 + (—e + ax2)02
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o=Kk-12=(¢-1)

Type Subalgebra Aut g class Aut g class
(a=B=v=1) (a=p=1,~v#1)
3g1 e, €2, €3 0, 0, 0, 81, 0o +fy$181 e1, €2, €3 e1, €2, €3
e1, e2, e4 + aes 0,0, 81, —aeP="%29, 8y + Bx101 e1, e2, e4 + Nqe3
e1, es + aea, eq + bes 0, 01, —ae(“‘ﬂ)“ah —be(“‘”“@l, 02 + ax101 e1, ez, e4 + npes
ez +aer, e3 +ber, ea+cer 01, —ael"N™29; —pe(1=AT29,  _ce(1MT28, 9y 4 216, e1, e2, e4 + nces
034 e1, €2, e5 + aeq + bes 0, 0, 81, 92, (—b+ Bx1)01 + (—a + yx2)02 e1, €2, €5 e1, €2, €5
g§74 e1, es + aez, es + beq + cea 0, 81, —ao1, 62, (—b + 7@2)82 =+ (—C + 05271)61
gg,4 e1, e4 + aes + bea, 0, 81, B2, —bO1 — aba, (—c+ Bx2)02 + (—d + ax1)oh e1, €4, €5
es + ces + dez
ng/f ez + dey, es + beq, o1, —ad1, —bor, 02, (—c+yx2)02 + (—d + 21)01 e1, €2, €5
es + ceq + dex
gg,/f e2 + ae1, e4 + aes + cex, 01, —ad1, 02, —¢01 — ada, (—e + x1)01 + (—d + Bx2)02 e1, €4, €5
es + des + ee1
0’y es + aea + bex, D1, D2, —bO1 — ad2, —01 — b, (—e + £1)01 + (—d + awa)ds
€4 + b€2 + 6617
es + dez2 + eex
491 e1, e2, €3, €4 0,0,0,0, 01 e1, €2, €3, €4 e1, €2, €3, €4
92:56 €1, €2, €3, €5 + aeq 07 O, 07 817 (—U,+’Y$1)81 €1, €2, €3, €5 €1, €2, €3, €5
gZ;Q e1, e2, e4 + aes, es + bes 0, 0, 91, —ad, (—b+ Bz1)01 e1, €2, €4, €5
Elf,’s7 e1, es + Gea, es + bea, 0, &1, —adr, —boh, (—c+ azx1)or
es + ce2
gl ey e, es + b, ea+éer, D1, —ady, —bdi, —0h, (—d+ x1)d

es + dex
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Subalgebra Aut g class Aut g class Autg class (e =1, Autgclass (—1 =1, Aut g class
(=1, (=1, B#~y#1) B=-a#l) (-l<y<pB<ac<l)
B=vy=-1) B=r~#=+1)

0 0 0 0 0 0

e1 e1 e1 el €1 €1

e2 + aex €2 + Nae1 e2 + Nae1

es + aez + bey €1 + Na,b€3 €3 + Nq,pe1 €3 + Na,b€1 €2 + Nge3 + Myes €3 + Nae2 + Mpe1

e4 + ae3z + bez + cex e1+ Mp,ces e3 + My cel €4 + Na€3 + Np,c€1 e1 + Na€2 + Npe3 + Nced eq4 + Na€3 + Npe2 + nces

es + aes + bes + cea + dex es es es es es

€1, e2 e1, e2 e, e2 e, €2 €1, €2 €1, €2

e, e3 + aez

e1, e4 + aes + bez

e2 + ae1, e3 + bey
e2 + aey, eq + bes + cex

e3 + aea + bei,
eq + cea + dey

e1, es + aes + bes + cez
ez + aex,

es + bes + cez + der

e3 + aea + 561,

es + ceq + de2 + eeq

eq + aes + bes + cex,

es + des + eea + fer

€1, €4 + Nae2

€1, e4 + npe2

e1, e4 + Mpe2
€1, €4 + nce2

€1 + Nad—bcE3,
€2 + Na,b,c,d€4

€1, €5

€3, €5

€1, e4 + Nae2

e1, e4 + npe2

e1, e4 + Mpe2
e1, e4 + 1ce2

€3 + Na,b,c,d€1,
€4 + Nad—bc€2

€1, €5

€3, €5

€1, ez + Nae2

€1, €4 + nNae3 + npe2

e1, €3 + npe2
€1, 4+ Mpe3 +1ce2

€3 + Mg, be1, €4 +
Nad—bc€2 + Ne,d€1

€1, €5

€3, €5

€4, €5

e1, €3 + Nae2

e1, e4 + nge3 + Nue2

ez + Naei1, €3 + Npe1
e3 + nNa€4, €1 + Npe2 + Nceq

€2 + Naq€3 + MNpea,

e1 + nees + naes if abd =0
e2 +e3+teq, €1 +%63+64
if abd # 0

€1, €5

€2, €5
€2, €5

€1, €5

e1, ez + Nae2

€1, e4 + Nqe3 + Npe2

e2 + Na€1, €3 + Npe1
€2 + Na€l1, €4 + Npe3 + Ncel

e3 + Nac2 + Mpe1,
e4 + neea + nger if abd =0

@3+62+€1,64+%62+61
if abd # 0

€1, €5

€2, €5
€3, €5

€4, €5
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Subalgebra Aut g class Aut g class Autg class (e =1, Autgclass (—1 =17, Aut g class
(=1, (=1, B#y#1) B=—-a#1) (-l<y<B<a<l)
B=y=-1) B=rv#=+1)

€1, €2, €3 €1, €2, €3 €1, €2, €3 €1, €2, €3 €1, €2, €3 €1, €2, €3

e1, €2, e4 + aes

e1, e + aez, eq + bea
e2 + ae1, e3 + be1, eq + cex

e1, €2, s + aeq + bes

e1, ez + aea, es + bes + cez
e1, e4 + aes + bez,

es + ces + dea

ez + de1, e3 + beq,
es + ces + dex

ez + aei, eq4 + aes + ce1,
es + des + ee1
es + aez + bex,
e4 + bez + Cex,
es + dez2 + ee1

€1, €2, €3, €4
€1, €2, €3, e5 + aeq
e1, ez, e4 + aes, es + bes

e, es + deg, eq + beg,
es + ce2

ez + ae1, e3 + be1, eq + ey,
es + dex

e1, €2 +1q,€4, €3 €1, €3,
€1, e2 + Mp,c4, €3 €1, €3,
e1, €2, €5 e1, ez,
e1, €3, es5 €1, €3,
e1, €2, 5 es, €4,
e1, €2, €3, e4 e1, €2,
e1, €2, €3, €5 e1, ez,

€1, €3,

€4 + Na,b€2
eq4 + My, ce2

€5

€5

€5

€3, €4

€3, €5

€4, €5

€1, €2, €4 + 1Nqe3

€1, e3 + ng€2,
eq + npe2

e1, €3 + mpez,
€4 + Nce2
€1, €2, €5
e1, €3, €5

€1, €4, €5
e1, €3, €5
€1, €4, €5
€3, €4, €5
€1, €2, €3, €4
€1, €2, €3, €5

€1, €2, €4, €5

€1, €3, €4, €5

€1, €2, €4 + 7Nqe3

e1, €2 + Nqes,
€4 + Mpe2

€2 + na€i, €3 + Mpel,
€4 + 1ncel
€1, €2, €5
€1, €3, €5

€1, €4, €5
€2, €3, €5
€2, €4, €5
€1, €2, €5
€1, €2, €3, €4
€1, €2, €3, €5

€1, €2, €4, €5

€1, €2, €4, €5

€1, €2, €3, €5

€1, €2, €4 + 1Nqe3

€1, ez + nqe2,

eq4 + Mpe2

e2 + na€l1, €3 + Muel,

e4 + 1ncel

€1,
€1,

€1,

€2,

e2,

€3,

€1,

e1,

€1,

€1,

€2,

€2,
€3,

eq,

€3,

eq,

€4,

€2,

e2,

€2,

€3,

€3,

€5
€5

€5

€5

€5

€5

€3, €4

€3, €5

€4, €5

€4, €5

€4, €5
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0 0 01, O2, 03, 04, O5 + w201 + 303 + Y1404
g1 e3 01, 02, 0, 03, 04 + 2201 + 2303
e4 + aes O, Do, B3, —ae V193 Oy 4 w201 + 2303
e1 + aes + bes —ae® 0y — be"*10s, 01, D2, O3, Os + (—ae“ml + 1’2)82 + (_beW$4m1 + ’yx3)63
ez + ae1 + bes + ceq 01, —be® 02 — 7103 — (a + x4)0h, O2, O3, O + 202 + Y2303
es + aeq + bes + cea + dey 01, 02, 03, 04, —cO2 4 (—d + 22)01 + (=b+ ©3)03 + (—a + y4)04
2g1 e1, e2 0, 0, 01, 02, 03 + 2101 + Y202
e1, es + aez 0, 01, —ae™ ¥301, 02, O3 + yx20-2
e1, es + aes + bes 0, 01, B2, —be~ 738 — ae' =39, 95 + 1205
e2 + aex, es + bey 01, —(a+ x3)01, —be™ %201, D2, O3 + Y1202
e2 + aey, eq + bes + cex 01, —(a + x3)01, 02, —ce” 7*30; — be(1_7)1382, 03 + 1202
es + aea + bei, es + cea + dey 01, 02, —ae™ %392 — e~ "3 (b+ ax3)d1, —ce” 202 — e Y*3(d + cw3)01, O3 + 2201
e1, es + aeq + bez + cea 0, 01, 02, 03, —cO1 + (—b+ x2)02 + (—a + yx3)03
92 e3, es + aes + bea + ce1 01, 02, 0, 93, —bO2 + (—c + x2)01 + (—a + yx3)03
e4 + Ces, es + aez + bez + dey 01, 02, 03, —€03, —b02 + (—d + x2)01 + (—a + 3)03
391 e1, €2, €3 0, 01, —ae~*201, —be 7291, 02
e, e2, e4 + aes 0, 0, 0, 01, 02 + ’yxlal
e1, es + aea, e4 + bea 0, 0, 01, fae(lf"’)“(%, 02 + 1101
e2 + aey, es + bei, eq + ceq 01, —(a+ x2)01, —be™ %201, —ce” 77201, D2
93,1 e1, e2, es + aeq + bes 0, 0, 1, D2, (—b+ 1)01 + (—a + yz2)02
g1 D g2 e1, €3, es + aeq + bea 0, 01, 0, 92, —bO1 + (—a + yx2)d2
e1, eqa + ¢es, es + aes + bez 0, 01, 02, —€02, —bO1 + (—a + x2)02
gg’4 es, e4, €5 + aez + bex o1, 02, 0,0, —ad2 + (—b + $2)81
491 e1, €2, €3, €4 0,0,0,0, 01
04,3 e1, €2, €3, es + aeq 0, 0,0, 01, (—a+yx1)oh
e1, €2, e4 + Ces, es + aes 0,0, 01, —¢oh, (—a+m1)81

g1 @gg,él e1, e3, e4, e5 + cea 0, 61, 0, 0, —ad
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Subalgebra Aut g class (y = 1) Aut g class (y = —1) Aut g class (y # 1)
0 0 0 0

es €3 €3 €3

€4 + aes €3 + Na€4 €4 + Na€3

e1 + ae3 + bey e1 + Na,p€3 €1 + Na,p€3 + Nabes e1 + naes + Mpea
e2 + ae1 + bes + ceq €2 + 1My, ce3 €2 + 1Mp,ce3 + Npcea e2 + Mpe3 + Nces
es + aeq + beg + cez + dey es es €5

e1, e2 e1, e2 e1, e2 e1, €2

e1, e3 + aez

e1, e4 + aes + bea

e2 +ae1, e3 + bex

e2 + ae1, es + besz + ce1

e3 + aez + be1, eq + cez + dex

e1, es5 + aeq + bes + ce2

e3, es + aeq + bea + cey

e4 + Ces, e5 4 aes + bea + dey
e1, €2, €3

€1, €2, €4 + aes

e1, es + aez, e4 + bea

ez + ae1, ez + bei, eq + cer
e1, €2, es + aeq + bes

e1, €3, es + aeq + bea

e1, e4 + Ces, es5 + aes + bea
e3, e4, es + aez + bey

ey, e2, €3, €4

e1, €2, €3, e5 + aeq

e1, e2, ea + ces, e5 + aes

e1, es, e4, es5 + cez

e1, €3 + Naqe2
€1, €3 + npe2
e2, €3 + Mpel

€2, e3 + ncel

€3 + Na,ce2 + 'F]ac"]b,dely

€4 + Nbc—ad€l

€1, €5

€3, €5

€1, €2, €3

€1, €3 + Nq,be2, €4
€2, €3, €4 + My, c€1
e1, e2, es

€1, €3, €5

€1, €4, €5

€3, €4, €5

€1, €2, €3, €4

€1, €2, €3, €5

€1, €3, €4, €5

€1, €3 + Nae2
€1, e4 + Nae3 + Mpe2
€2, €3 + Mpe1
€2, e4 + Mpe3z + Ncel

es + Naflae2 + fa(MTe + nec)e,
€4 + Na,cMpae1 if ac=0

es3 + es + ‘bc_c"d‘el, es+exifac#0

a

€1, €5

€3, €5

er, €2, e3

e1, €2, €3 + Nae4

€1, €3 + Nq,b€e2, €4 + Nabe2
€2, €3 + Nb,c€1, €4 + Npc€l
e1, €2, €5

€1, €3, €5
€3, €4, €5
€1, €2, €3, €4

€1, €2, €3, €5

€1, €3, €4, €5

€1, €3 + Nae2
e1, €4 + Nage3z + MNpe2
€2, e3 + Mpe1
€2, e4 + npe3 + ncer

€3 + Na€2 + NaMpe1, €4 + nNcez + Nenger if

ac=10
e3 +e2 +

€1, €5

bc—ad
ac

€3, €5
€4, €5
€1, €2, €3

€1, €2, e4 + Nge3

e1, €3 + Nae2, e4 + Mpe2

€2, e3 + Mpe1, e4 + nce1

€1, €2, €5
€1, €3, €5
€1, €4, €5
€3, €4, €5
€1, €2, €3, €4
€1, €2, €3, €5
€1, €2, €4, €5

€1, €3, €4, €5

e1, ea + ez ifac#0
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Type Subalgebra Aut g class
B=~v=1)

0 0 01, 02, 03, 04, 05 + 1202 + (1 + x2)01 + B33 + Y2404 0
g1 €1 0, 01, 02, 03, 04 + 101 + Br202 + Y2303 el

es + ae1 O, 2, D3, —ael =TIy By + 2282 + (21 + w2)01 + Ba3ds es

e3 + aey + bey 01, B2, —ae 119y — peTATNTIG; G5 Oy + 2080 + (21 + 22)01 + Y2303

e2 + ae1 + bes + ces o1, —be(_1+6)z482 — ce”_l)“c’)g — (a + I4)81, 02, 03, 04 + 101 + Bx202 + Y303 €2

es + aeq + bes + cea + dex 01, 02, 03, 04, (—c+ x2)02 + (—d + x1 + 22)01 + (—b+ B23)03 + (—a + yx4)04 es
2g1 e1, e4 0, 01, 02, 0, 03 + 2101 + Bx202 e1, €3

e1, es + aeq 0, 01, 7&6(75+7)x382, 02, 03 + 2101 + Y2202 e1, €3

e1, e2 + aes + bey 0, —ae(T1tPrag, be(w_l)’”az7 01, 02, 03 + Bx101 + Y202 e1, €2

es + ae1, eq + bey 01, 02, fae(l’ﬁ)%al, fbe(lf'y)m'*@l, 03 + 202 + (21 + 22)01 es, €4

ea + aes + bei, eq + cex o1, —ae(_l"'ﬁ)“{b — (b + .Tg)al, O, —ce(l‘””al, 03 + 1101 + Bx202 ez, €3

e2 + aeq + ber, e3 + ceq + dey o1, —ae D3y, (b+ x3)0n, —de1 =Pz g, — ce(fﬁJﬂ)“az, 02, 03 + 101 + Y2202
g2 e1, es5 + aeq + bes + cea 0, 01, B2, 93, (—c+x1)01 + (—b+ Bx2)d2 + (—a + vx3)D3 e1, €5

eq + Ce1, es5 + ae3 + bez + dex 01, 02, 03, —€01, (—b+ 22)02 + (—a + Bx3)03 + (—d + 21 + x2)01 es, es

e3 +aeq + 561, es + ceqa + dea + eeq o1, 02, —531 —ads3, 03, (—d+ x2)02 + (—e + z1 + 22)01 + (—c + yx3)03
301 e1, es, e4 0, 01, 0,0, 02 + 101 e1, €3, e4

e1, e2 + aes, eq 0, fae(71+5)1231, o1, 0, O2 + Bx101 e1, €2, €3

e1, ex + aeq, es + bey 0, —ae“_l)“c’h, —be(_6+7)z281, O, 02 +yr101

ez + ae1, es + be1, eq + cex o1, (—a — x2)0, —be(1=B)229,  _ce(1=M%29, 9, 4+ 216, e2, €3, €4
ggA e1, e4, €5 + aez + bes 0, 01, 02, 0, (—a+ x1)01 + (—b+ Bx2)02 €1, €3, €5
g§74 e1, €3 + aeq, es + beq + cea 0, 01, —ad2, O, (—c+ x1)01 + (—=b+ yx2)02
93,2 ey, ez + 663 + Cea, es5 + aez + des 0, —bo; — €02, 01, 02, (—a+ Bx1)01 + (—b+ yx2)02 e1, ez, es
01/l estber, eatéer, es+aestder  Oi, By, —bo, —E01, (—a+w2)0 + (—d + w1 + 22)01 es, €4, €5
41 e1, €2, €3, e4 0,0,0,0, 01 e1, €2, €3, €4
9572 e1, e + Ceq, €3 + aes, es + bey 0, —¢d1, —adh, 01, (—b+ yx1)h €1, €2, €3, €5
912 e1, e2 + bes, es, e5 + aes 0, —bdy, 81, 0, (—a + Bx1)01

By

U4,

e1, €3, €4, €5 + aez

0, 01, 0, 0, (—a+x1)81

€1, €3, €4, €5




Ly

5B jo sexqaS[eqng gI'V 21qeL

0=Kk—-—gwo=Kk-T120=(d-1)q0#LdS

Subalgebra Autgclass (v #B8=1) Autg class (B=~ #1) Autgclass (1#£B#~v#1)
0 0 0 0

el el el €1

e4 + aey e4 + Nael1 €3 + nae1 €4 + Na€l

e3 +ae1 + bes e3 + Mpes e3 + Nael €3 + Nae1 + Mpes

ea + ae1 + bes + ceq €2 + nces e2 + Mp,ce3 €2 + Mpe3 + 1Nce4

es + aeq + beg + cez + dex es es €s

e1, eq e1, eq e1, e3 e1, e4

e1, €3 + aeq €1, €3 + Naes e1, €3 €1, €3 + Na€4

e1, e2 + aes + bey

e3 + ae1, e4 + bex

e2 + ae3z + bei, es + ce1

ez + aeq + bei, e3 + ceq 4 de

e1, es + aeq + bes + cea

e4 + Ce1, es + ae3 + bea + dex

e3 +aes + ber, es + cea + dea + eeq
e1, e3, €4

e1, e2 + aes, e

e1, e2 + aeq, e3 + bey

ez + ae1, ez + be1, eq + cex

e1, e4, €5 + aea + bes

e1, e3 + aes, es + bes + ce

e1, e2 + bes + e, es + aes + dea
e3 + be1, eq + Ge1, es + aea + dey
e1, ez, €3, €4

e1, ez + Ceq, e3 + aeq, e5 + bes
e1, ez + bes, es, e5 + aes

€1, €3, €4, €5 + ae2

€1, €2 + MNpeq
es, e4 + Mpe1
ez, e4 + Ncel

€2 + NcNatd, €3 + Ncea

€1, €5
€3, €5
€4, €5
€1, €3, €4

€1, €2, €4

e1, €2 + MpNats, €3 + MNpeq

€2, €3, e4 + 1Nce1

€1, €4, €5
€1, €3, €5
e1, €2, €5
€3, €4, €5
€1, €2, €3, €4
€1, €2, €3, €5
€1, €2, €4, €5

€1, €3, €4, €5

e1, ez + Mg bpe3

€3, €4 + Nq,pe1

€2 + Na€4, €3 + Ncel

€1, €5

€3, €5

€1, €3, €4

e1, €2 + 7Nqe4, €3
e1, ez + Na€4, €3

€2, €3, €4 + My, c€1

e1, €3, €5

€1, €2, €5
€3, €4, €5
€1, €2, €3, €4

€1, €2, €3, €5

€1, €3, €4, €5

€1, €2 + Na€3 + Npes
e3 + Nae1, €4 + Mpe1
€2 + nNa€3, €4 + Ncel

€2 + Ngea, €3 + necea + nger if ad =0
e2 + e4, egfd—cae4+el if ad #0

€1, €5

€3, €5

€2, €5

€1, €3, €4

€1, e2 + 1q€3, €4

e1, e2 + Nae4, €3 + Mpes
ez, ez + Mpe1, e4 + Ncel
€1, €4, €5

€1, €3, €5

€1, €2, €5

€3, €4, €5

€1, €2, €3, €4

€1, €2, €3, €5

€1, €2, €4, €5

€1, €3, €4, €5

suoizezijeas Suipuodsaliod pue uoileslyissed seiqasSieqns gy



8y

-0T'SH Jo suoryezifeal pue seiqad[eqng €1y d|qel

Type Subalgebra Corresponding realization Aut g class
0 0 01, 02, 03, 04, 05 + 0172 + O2x3 + 0ax4 0
g1 ea 01, 02, 03, 0, 04 + O1z2 + D273 e4
e1 + aeq —ae® 93, 01, O2, 03, Oa + D12 + O3(—ae™x1 + x3) e1 + Naea
ez + aey + bey 01, —be™ 03 — 01 (a+x4), O2, O3, Os + D3(—be™xo +x3) — D1z2(a+T4) €2+ mpea
e3 + aes + bey + ceq O, 02, —ce™ 93 — D2 (a+xa) — O1(b+ awa + 323), O3, 04+ D12+ O3x3 €3 + Ncea
es + aeq + besz + ce2 + dey 01, O2, O3, Oa, —b03 + 01(—d + z2) + O2(—c + x3) + Ja(—a + x4) es
291 €1, €4 0, 81, 82, 0, O3 + 0112 e1, e4
es +ae1, es o1, —61(a+x3), 02, 0, 83—81332((14-%’3) ez, e4
es + aez + bei, e o1, 02, 782(a+x3)781(b+am3+%x§), 0, 03 + 122 es, €4
e1 + aeq, ea + bey —ae®? 0y, 61382(—6 + a;r:g), O1, O2, 03 + 82(—be$3331 + x2 + aexsmlxg) e1 + Naes, €2 + NaNpes
e1 + aeq, e3 + bea + ceq —ae® 9o, 01, —01(b+ x3) + e**2(—c + abxs + %aw%), 02, e1 + neea, €3 + Nancea
03 + O2(—ae™x1 + x2)
e2 + ae1 + bey, 01, —be®302 — O1(a + x3), €"392(—d + bx3) +81(fc+am3+%x§), 02, ex+mpea,ezifab+d=0
e3 + ce1 + des 03 + a2 e2 + #‘Mezx, e3 + ey if
ab+d#0
e1, es + aeq + bes + cea 0, 01, 2, O3, —bO2 + O1(—c+ x2) + I3(—a + x3) e1, es
g2 e4, es + ae3 + bez + cey 01, 02, 03, 0, —a0d3 + O01(—c + x2) + O2(—b + x3) €4, €5
391 e1, €2, e4 0, 0, 81, O, 0o e1, €2, €4
e1, ez + aez, e4 0, 91, —01(a + x2), 0, D2 e1, €3, e4
e2 + aei1, es + bei, e 01, —(a+ x2)0h, (a2—b+ax2—|—%z§)81, 0, 02 e2, €3, e4
e1 + aes, e2 + bes, es + ceq —ae®20q, €"201(—=b + ax2), €201 (—c + bxa — %ax%), 01, 02 + 011 e1 + neea, €2 + Nanpea,
€3 + NaMpces
93,1 e1, ez, es + aeq + bes 0, 0, 01, B2, —b01 + O02(—a + x2) e1, €2, €5
g1 @ g2 el eq, e5s + bes + ce2 0, 01, 02, 0, =bO2 + O1(—c+ x2) e1, e4, €5
4g1 e1, €2, €3, €4 0,0,0,0, 01 e1, ea, €3, €4
94,1 e1, €2, €3, e5 + ae4 0,0, 0, 01, Oh(—a+ 1) e1, €2, €3, €5

94,3

€1, ez, e4, €5 + aes

0, O, 81, 0, *aal

€1, €2, €4, €5
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Type Subalgebra Corresponding realization Aut g class
0 0 01, B2, O3, O, O5 + (x1 + 12)01 + 1305 + (2 + 73)I2 + Y2404 0
g1 el 0, 01, 2, 03, Oa + 2202 + (1 + x2)01 + Y2303 o1
es4 + aer O, Do, D3, —ae VD Oy + (z1 + x2)1 + 2303 + Do (w2 + 23 eq + faer
c2 a1 + bes 01, —be™1%495 4 (—a — 24) 01, D2, 05, e2 + Mpes
D4 + 1202 4+ (—be(T ™D 0 4 ya2) 4 (21 — 22(a + 24)01)
€3 +aez +bey + ces 91, B2, —ce VD405 + (—a — 24)02 + (—b — azs — 123)01, 35, e3 + 7jceq
04 + 2202 + (z1 + 22)01 + Y2303
es + aeq + bes + cea + dey 01, &, O3, O4, ..
(=d+z1 4+ 22)01 + (=b+ 23)03 + (—c+ z2 + 23)02 + (—a + y24)04
201 el, €4 0, 01, 02, 0, 03 + 2202 + (x1 + 22)01 o1, es
e, cataca 0, —ac"V38y, 91, B2, 05 + 101 + (—ac V%2 4 yas) e1, €2 + Naea
e1, €3 + aez + bes 0, 01, —beV ™V, 4 (—a — 23)81, 2, D3 + 2101 + YT202 e1, e3 + Mpes
ez +ae1, ea + bey A1, (—a — x3)81, B2, —be1 V9 95 + 2200 + (x1 — ax2 — zox3)On €2, e4 + Mper
€3 +aez + bey, e +cer 01, 2, (—a — w3)02 + (=b — aws — 323)01, —ce' 730y, e, e4 + fcer
03 + 202 + (x1 + x2)01
e2 +ae1 + bes, e3 + ce1 + des 01, —beV V™30 4 (—a — w3)0r, €TV (—d + bwg) 02 + (—c+ aws + £23)01, ea + o€, €3+ eq if
02, O 01 7202 ab+d#0andy#1
e2 + Mpea, e3 otherwise
g2 e1, es + aeq + bes + cez 0, 01, 02, 83, (—b+ 22)02 + (—c+ x1 + x2)01 + (—a + yx3)03 e1, €5
€1+ Ce1, €5 + aes + bea + des 01, 02, 03, —¢01, (—a+ x3)03 + (=b+ x2 + x3)02 + (—d + =1 + x2)01 e, €5
391 e1, e2 + aeq, e3 + bey 0, —ac~V729, =D (_p 4 qa9)8y, 01, Oz + y2161 e1, €3 + Naed,
e3 + (1 — fa)jpes
e1, €2, e4 0,0, 01,0, 02 + 101 o1 e, o4
e1, ez + aez, €4 0, 01, (—a — x2)01, 0, 92 + 101 er. 6. 64
€2+ ae1, 3 + bey, &4 + cer 01, (—a —a2)01, (=b+awz + %x%)al, —06(1_7)”81, 02 + x101 e2, €3, e4 + ce1
93,2 e1, e4, es + aez + bea 0, 01, 02, 0, (—a+ x2)02 + (—b+ x1 + x2)01 o1 ea 5
05,4 e1, ez + Ceq, e5 + aeq + bes 0, =02, 01, 02, (—b+x1)01 + (—a + o2 — ér1)02 e1, €2 + fjzea. es
4g1 e1, e2, €3, e4 0,0, 0,0, 01 o1 ca. e 4
94,4 e1, e2, ez + Ceq, €5 + aeq 0, 0, —¢01, 01, (—a + yx1)oh o1 cn. en o5

-
942

e1, €2, €4, €5 + aes

0? 07 817 03 (—(l + a:1)81

€1, €2, €4, €5
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Type Subalgebra Corresponding realization Aut g class
0 0 01, 02, 03, 04, 05 + (x1 + 22)01 + (2 + x3)02 + 404 + (T3 + 24)03 0
g1 e1 0, 01, 02, 03, 04 + (x1 + x2)01 + 2303 + (w2 + 3)D2 e1
ez + ae1 01, —(a + x4)01, 02, 03, 04 + 2303 + (w2 + 23)02 + (1 — ax2 + x224)01 €2
e3 + aez + bey 01, 02, —(a+ x4)02 — (b+ aza + %xi)al, 03, e3
O4 + 2303 + (1'2 —ars — $3l‘4)(92 =+ (1‘1 + 22 — bxrs — axsxrs — %1‘333421)81
e4 + aes + bes + cey 01, 02, 03, —(a+ x4)03 — (b+ axs + %xﬁ)@z — (c+ bza + %axﬁ + %xi)@l, es
04 + (w1 4 22)01 + 2303 + (w2 + 3)02
es + aeq + bes + ce2 + dex 01, 02, O3, O, €s
(—d+ 14+ 22)01 + (—c+ 22+ 23)02 + (—a + £4)0s4 + (—b+ x3 + 24)03
2g1 e, e2 0, 0, 01, O2, O3 + 1202 + (ml + 122)81 €1, €2
e1, es + aea 0, 01, —(a + x3)01, D2, O3 + x202 + (21 — axe — r2x3)01 e1, €3
e1, es + ae3 + bea 0, 01, 02, —(a+ x3)02 — (b + axs + %363)81, 03 + 2202 + (z1 + x2)01 e1, €4
e2 + aey, e3 + bey o, —(a + I3)81, (—b + axrs + %x%)@l, 02, €2, €3
03 + 202 + (x1 — bx2 + axaxs + %-’62:13;2;)31
e2 + aer, eq + bes + cex 01, —(a + x3)01, 02, —(b+m3)82+(—c+abaz3+%(a—i—b)x%—i—%mg)(%, e2, es+ (b—a)es
03 + 2202 + (1 — awa — x223)01
es + aez + bei, 01, 02, —(a+ x3)02 — (b+am3+%x§)81, es, e4+(a2 —b+c)ea
e4 + cea + dex (—c+azxs+ %x%)(’b +(=d+ (b—c)x3 +azxi + %x%)c’h, 03+ 2202 + (1 + 2)01
g2 e1, es + aeq + bes + cea 0, 01, 02, 03, (—c+ 1+ x2)01 + (—a+ x3)03 + (—b+ z2 + x3)02 e1, €5
391 e1, €2, e3 0,0,0, 01, 02+ 101 e1, €2, €3
e1, €2, e4 + aes 0, 0, &1, —(a+ x2)01, O2 + 101 e1, €2, €4
e1, ez + aez, es + bea 0, 01, —(a+x2)01, (—b+ awa2 + 123)01, 92 + 2101 e1, €3, e4
e2 + ae1, es + be1, es + cex 01, —(a+x2)01, (=b+ axa2 + %x%)ﬁl, (—c+bx2 — %am% — %m%)ah O + 2101 e2, €3, €4
93,2 e1, €2, €5 + aeq + bes 0, 0, 01, 02, (—a+ Z‘Q)aQ + (—b +x1 + 432)81 €1, €2, €5
491 ey, e2, €3, €4 0,0,0,0, 01 ey, e2, €3, €4
04,4 e, ez, €3, €5 + aey 0, 0, 0, 61, (—a + 1‘1)81 e, ez, €3, €5
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Type Subalgebra Corresponding realization
0 0 01, 02, 03, 04, 05 + 101 + yx202 + (—sz3 + pr4a)ds + (pr3 + sx4)03
g1 e1 0, 01, 02, 03, 04 + yx101 + (—sz2 + px3)ds + (px2 + sx3)02
e2 + aex 01, —ae 19, By, O3, Oa 4+ 2101 + (—sx2 + pr3)0s + (pra + s23)02
e3 + aes + bey 01, 02, _l::?)(;(;::; o1 — ‘Z‘Z:(;::; 02 + tan(sw4)0s, 05,
04 + (p + stan(szs))x3d3 + (yr2 — %)(% + (1 — %)&
s +aes + bes + cen 01, B, O, 0y 4 e, e,
es5 + aeq + bes + cez + dex 01, 02, 05, 04, (—d + x1)01 + (—c+y22)02 + (—a — sx3 + pra)0s + (—b + pr3 + 574)05
g2 e1, e 0, 0, 01, 02, 03 + (—sx1 + px2)d2 + (px1 + sx2)01
o en t acs 0, 01, 55501+ tan(sea)Oa, O a4+ stan(omn))aadn + (o1 — 250 )
e1, e4 + aes + bez 0, 81, Do, be' O ™PITs / cs(s3; —1,a)01 + %8%
0y ez fusesannlord gy, 4 (ya + LT ) O
ez + ae1, €3 + bey o, —aet=MT3g, —bcisl(;:;; 01 + tan(sz3)d2, 02, 03 + x2(p + stan(szs))d2 + (m1 - %) o1
ez + ae1, eq + bes + cel o1, —ae(l_”’)“al, 02, ce(1—P)za cs(szs; —1,b)01 + %827
O+ 2y R, (014 2P ) 0
es + aez + bei, 01, B, —eV7P)3 cs(sxs;a, 0282 — e1=P)ws cs(szs; b, d)on,
e4 + cea + dey ey —P)zs cs(szs; —c,a)d2 + e 1=p)zs cs(szs; —d, )01, 03 + x101 + yx202
g2 e1, es5 + aeq + bes + cea 0, 01, B2, 03, (—c+yx1)01 + (—a — sx2 + px3)O3 + (—b + px2 + sx3)02
e2, e5 + beq + ce3 + dex 01, 0, 02, 03, (—=d + x1)01 + (—b — sw2 + px3)d3 + (—c + pxr2 + sx3)02
301 e1, €2, €3 0, 0, tan(sz2)01, O1, O2 + z1(p + stan(szz2))o1
e1, e2, eq4 + aes 0,0, &1, %7824_“%&
e1, €3 + aez, eq + bea 0, 01, —ae(r—P)T2 cs(sz2; a,b)oh, (Y —P)z2 cs(sz2; —b,a)01, 02 + yx101
e2 + ae1, es + be1, eq + cex o1, fae(lfv)“al, —ell-p)z2 cs(sz2; b, ¢)0h, e(1—p)z2 cs(sw; —c, b)01, 02 + 2101
9;4 e1, €2, es + aeq + bes 0, 0, 01, 02, (—a — sz1 + pr2)d2 + (—=b + pr1 + sw2)01
gﬁ{; e3, €4, €5 + aez + bey 01, 02, 0,0, (=b+ x1)01 + (—a + yx2)02
491 e1, €2, €3, €4 0, 0,0, 0, 01
gi{s’p/s e1, €3, €4, €5 + aea 0, 61, 0,0, (—a + yx1)01
v/s,p/s

94,6

ez + ¢, es3, e4, €5 + ael

o1, —¢01, 0,0, (—a + z1)01
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Type Subalgebra Aut g class (y =1) Aut g class (y = —1, p=0) Aut g class (v # 1)
0 0 0 0 0
g1 €1 €1 el el
e2 + aey e1 + Na€2 €2 + Nae1
es + aez + ber €3 + Nq,pe1 €3 + 7Mab€2 + Na b€l e3 + nae2 + Mpe1
es +aes + bez + cex €3 + Mp,ce1 €3 + Npce2 + Np,ce1 e3 + mpe2 + nce1
es +aeq+bes +cez+der  es es es
g2 e1, €2 e1, €2 el, e2 €1, €2
e1, €3 + aez €1, €3 + Naqe2 €1, €2 + Nqe3 €1, €3 + Naqe2
e1, e4 + aes + bea e1, e3 + Mpe2 e1, e2 + Mpes e1, e3 + npe2
e2 + ae1, e3 + bex e1, es + Mpe1 ez + Naci1, €3 + Mpe1 €2 + Na€i1, €3 + Npel1
e2 + ae1, es + besz + ce1 e1, €3 + Nce1 e2 + Nq€1, €3 + nNcel e2 + Nq€1, €3 + Nce1
e3 + aez + be1, €3 + Nad—bc€2, €4 + Nab,c,d€1 €3 + Na,cNb,de2 + Nab,c,d€1, €4 if ad =bc ez + Na,cez + ny,qe1, e4 if ad = be
e4 + cea + dey e3 +es + thi‘iel, e4 + e1 otherwise e3 +eo + gg‘*_‘i‘iel, e4 + e1 otherwise
g2 e1, es + aeq + bes + cea e1, es €1, es e1, es
e2, es + beq + ce3z + dex ez, es5
391 €1, €2, €3 €1, €2, €3 €1, €2, €3 €1, €2, €3
e1, e2, e4 + aes
e1, ez + aez, e4 + bea e1, €3 + Na,be2, €4 €1, €3 + Nq,be2, €4 €1, €3 + Nq,be2, €4
e2 + ae1, e3 + beq, €1, €3 + Np,c€2, €4 e1 + na€2, €3 + Ny ce2, €4 €2 + Na€l1, €3 + Ny c€2, €4
eq4 + cel
gg,4 e1, €2, e5 + aeq + bes e, €2, €5 e, e2, €5 e1, €2, e5
gf;/; es, €4, €5 + aez + ber €3, €4, €5 es, €4, €5 es, €4, €5
491 €1, €2, €3, €4 €1, €2, €3, €4 €1, €2, €3, €4 €1, €2, €3, €4
gi{és’p/s e1, €3, €4, €5 + aez e1, €3, €4, €5 e1, €3, €4, €5 e1, €3, €4, €5
v/s,p/s

Y46

ez + ¢, es, e, €5 + ael

€2, €3, €4, €5
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Type Subalgebra Corresponding realization Aut g-class
0 0 01, 02, 03, 04, 05 + w201 + (px3 + 24)03 + (—x3 + pr4)Os 0
g1 es 01, 02, tan 403, 03, Os + 2201 + x3(p + tanx4)03 es
e4 + aes 01, B2, 03, 7(;?(&111’2)33, 01 4 w201 + w3 letr) COCSSZD;L(}:Q”)F) SREL g
e1 + aes + bey eP® cs(xy4; —b, a)03 — eP¥ cs(z4; a, b)02, 01, D2, O3, e1 + Na,pe3
01 + (—x1€P%* cs(xa; a,b) + pr2 + x3)02 + (x16P7* cs(xa; —b, a)d3 — x2 + px3)
ez + aey + bes + ceq 01, eP®* cs(wa; —c, b)03 — eP® cs(wa; b, ¢)02 — (a + x4)01, D2, O3, €2 + np,ce3
01 + (px2 + x3)02 + (—x2 + px3)ds
es + aeq + bes + cez2 + dex 01, 02, 03, 04, —cO2 + (—d + 22)01 + (=b+ px3 + £4)03 + (—a — x3 + pxa)0s es
201 es, €4 01, 02, 0,0, 05 + 2201 €3, €4
e1 + aes, e3 —ZS:;Z 02, 01, tanx302, 02, 03 + (—% + px2 + T2 tanwg) 02 e1 + naea, €3
e1 + aes, eq + bes CS(%%BQ, 81, 32, %82, O3 + —aze? 3:.;(5;;3?1(7@_3;;-%?,1)1)—1)82
e2 4 ae1 + bea, e3 O, =202 — (a+ x3)01, tan w302, B2, O3 + w2(p + tan x3)de e1 + mpea, e3
e1 + aez + bes, es + ces - 1+(;z3 O + (1+a13§)iz13;7176) 02, 01, 02, %627 Na€1 + Na€2 + Mpe4, €3
O3 — —9%1_g, 4 —bx,eP*3 4wy (14-axs) cs(xz;e+p,cp—1)
3 T+azs Y1 (14ax3) cs(zs;1,—c)
e1 + aes + beq, eP¥3 cs(x3; —b, a)d2 — eP73 cs(ws; a,b)o1, €1+ Na,b€3, €2 + Na,bMc,d€3
ea + ces + deg el (cs(ws; —d, ) + x3 cs(w3; b, —a)) 2 + P2 (cs(w3; —c¢, d) + x3 cs(w3;a,b))01, A1, D2, if ad = be; e1 + 7361—32647
93 + (pr1 + 22)01 + (—21 + pr2)02 es + e3 otherwise
e1, es + aeq + bes + cea 0, 01, O2, 03, —cO1 + (=b+ px2 + x3)02 + (—a — x2 + px3)ds e1, €s
391 e1 + aeq, ea + bey, e3 —gs:z o1, — (b,:()?z)jprz o1, tanx201, 01, O2 + :L‘1(p + tan $2)81 e1 + Naes, e2 + Nanpes, €3
e1+aes, ez +bes, ea+ces 250, (f;;‘j?iif 01, 01, %ah 02 + %81 e1 + Naea, €2 + MaMpea, €3
e1, €3, €4 0, 01, 0, 0, 02 el, €3, €4
ez + aei, es, e4 01, (—a —x2)01, 0, 0, 92 €2, €3, €4
03,1 e1, €2, es + aeq + bes 0, 0, 01, D2, (=b+ pz1 + 22)01 + (—a — z1 + px2)d e1, €2, es
gg’5 es, e4, e5 + aea + bey o1, 02, 0, 0, —ad2 + (—b+ x2)01 es, e4, €5
491 €1, €2, €3, €4 O, 07 07 O, 81 €1, €2, €3, €4

019055

€1, e3, e4, es + aez

0, 01, 0, 0, —al:

€1, €3, €4, €5
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subalgebra corresponding realization

0 01, 02, 03, 01, 05 + 1202 + (1 + w2)01 + Y1404 + (yx3 + 74)03

€1 0, 61, B2, O3, Oa + 101 + Y2303 + (Y22 + T3)02

es + aey o1, 02, —ae(lfw)“&, 03, 04 + 1202 + Y2303 + (1 + 72 — ae<177)x4x3)81

e2 + aes + bey

e4 + aes + bea + cer

es + aeq + bes + cea + dey

€1, €3

e1, ez + aes

e1, e4 + aes + bea

e2 + ae1, e3 + bey

es + ae1, eq + bea + cey

e2 + aes + bey, eq + ces + dey
e1, es + aeq + bes + cez

e3 + Ce1, es5 + aeq + bea + dex
e1, €2, €3

e1, €3, e4 + aez

e1, e2 + aes, e4 + bes

ez + ae1, e3 + bei, eq + cer
e1, es, es + aeq + bea

e1, ez + ces, es + aeq + bes

e3 + cie1, es + c1ea + caeq,
es + aez + bex

€1, €2, €3, €4
ei, e2, €3, es + aey

e1, €3, e4 + Cea, es + aea

A1, —ae "V TVTGy 4 (b — 24)01, D2, O3, Oa + 101 + ya303 + (Y2 + 3)Da

O, D2, 03, —be1 ™19y 4 (—a — 24)03 — XTI (¢ 4 brg)D1, s + 2202 + (21 + 22)01 + Y2303
01, D2, 03, 04, (—c+ x2)02 + (—d + 1 + 2)01 + (—b+ vw3 + 4)03 + (—a + y24)0s

0, 01, 0, 02, 03 + 101 + Y2202

0, —aeV"V%29, 91, Do, B3 + w202 + (Y1 + 22)h

0, &1, B2, —be'=VT39) 4 (—a — 23)Da, O3 + 101 + Y2202

01, (—a — x3)01, —be! =130y, 0y, O3 + w202 + (21 — bel "2 20)0y

o1, 02, 7ae(177)m3a1, 7be(17'7)z332 — (=723 (c+ (b—a)x3)01, 03 + 2202 + (1 + x2)01
o1, —aeT T3, 4 (=b— x3)0h, O2, —det= M3y, 4 (—c—23)02, 93 + 101 + Y202

0, 01, 02, 03, (—c+ x1)01 + (=b+ yw2 + 23)02 + (—a + yx3)03

01, 02, —€01, 03, (—b+ x2)02 + (—a + yx3)03 + (—d + x1 + w2 — ¢x3)01

0,0,0, 01, 02 +yx101

0, 91, 0, —ael' =120y, 9 + 2101

0, —ae”_l)“ah o1, (—b — 1‘2)81, 02 + yx101

A1, (—a — x2)81, —be(= 1729, (=2 (¢ 4 bro)dy, B2 + 2101

0, o1, 0, 827 (—b + x1)51 =+ (—a =+ 73:2)82

0, —€01, 01, 02, (—a +yz2)02 + (—b+ x2 + yr1)o1

01, O2, —¢101, —C201 — €102, (—a+ x2)02 + (=b+ z1 + z2)01

0,0,0,0, 01
07 07 07 817 (_a+7$1)81
Oa 817 07 76817 (704 + xl)al
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Type Subalgebra Aut g class. Aut g classification v = —1 Aut g classification (y+1)(y—1) #0
y=1
0 0 0 0 0
g1 el el e1 e1
es3 + ael e1 + naes e3 + Na€l
e2 + ae3 + ber €2 e2 + 1naqe3 e2 + naes3
e4 + aes + bea + ce1 €2 + Mpea + MpNces €4 + Mpe2 + MpNce1
es + aeq + beg + cez + dex €5 €5 €5
291 e1, €3 e1, €3 e1, €3 e1, €3
e1, e2 + aes e1, €2 €1, e2 + Naees e1, €2 + Nqe3
e1, e4 + aes + bea e1, e4 es3, €2 + npeq €1, e4 + Mpe2
e2 + aei, ez + bey ez, ez + Mpe1 ez, e3 + Mpe1
e3 + aei1, eq + aez + cex e1, €2 €1+ Na€3, €2 + Naea + NaNces €3 + Na€l, €4 + Na€2 + NaNcel
es + ae1, eq + bea + ceq; e1, €4 63+ﬁ61,€4+ﬁ62 if a € [~b,b] or 63"‘%61’64"‘%62
a#b b= 0;
es + ﬁel, e4 + ﬁeg otherwise
ea + aes + bei, eq + ces + dey e2, €4 e2 + ades, e4 + nee€1 e2 + ades + NaMd€3, €4 + Nadel
g2 e1, es + aes + bes + cez e1, es5 e1, es €1, es
e3 + ¢e1, es + aeq + bea + dey es, €5
391 e1, e2, €3 e1, €2, e3 e1, e2, e3 e1, €2, e3
e1, e3, e4 + aez e1, €2 + Nae4, €3 €1, €3, €4 + Nage2
e1, es + aes, eq + bes e1, €2, €4 e1, €2 + nqes, €4 e1, €2 + Nqes, €4
ez + ae1, e3 + ber, es + cey e1 + mpes, ez + Mpnces, €4 €2, €3 + mpe1, €4 + MpNcel
9;4 e1, €3, e5 + aeq + bea e, e3, €5 e1, es, €5 €1, €3, €5
93,2 e1, ez + Ces, e5 + aeq + bes e1, €2, €5 e1, €2, €5 ei1, €2, €s
93,2 (g3,1) es+ cier, ea + Grea + oe1, es, €4, €5
es + aez + bey
491 el, €2, €3, e4 e1, €2, €3, €4 e1, €2, €3, €4 e1, €2, €3, €4
912 e1, ez, €3, €5 + aes e1, €2, €3, €5 €1, €2, €3, €5 €1, €2, €3, €5
2141;,/27 (94,3) e, e3, ea + Cez2, e5 + aea e1, €3, €4, €5
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Type Subalgebra Corresponding realization Aut g-class
0 0 01, 02, 03, O4, 05 + x202 + (x1 + 22)01 + (—sx3 + pr4)0s + (pr3 + 574)03 0
g1 es 01, 02, tan(sza)ds, 03, Oa + 1202 + (z1 + x2)01 + (p + stan(sza))x303 es
€4 + aes 01, 02, 0s, %3& 04 + w202 + (x1 + 22)01 + 333%83
e1 + aez + bey eP—1za cs(sza; —b,a)d3 — eP—1)za cs(sza;a,b)02, 01, O2, 03, Os + 101 + e1 + 7q,pe3
(1'16(1)71)14 cs(sza; —b,a) — sx2 + pr3)ds + (—:cle(pfl)z“ cs(sz4; a,b) + pra + sx3)02
ez + ae1 + bes + ceq o1, e(P— 1w cs(sza; —c, b)03 — e(P—Dza cs(sza; b, )02 — (a + x4)01, D2, O3, €2 + Mp,ce3
04 + 2101 + (—sz2 + pr3)ds + (px2 + sx3)02
es + aeq + bes + cea + dey 01, 02, 03, O4, es
(—c+x2)02 + (=d + 1 + 22)01 + (—a — sx3 + pr4)0s + (=b + px3 + s14)03
291 e3, e4 01, 02, 0,0, O3 + 2202 + ($1 + :L‘2)81 es, ed
aeP—Dz (p—1)=
e1 + aeq, €3 —%5;3)382, 01, tan(sxz3)02, 02, 03 + 2101 + (—% +(p+ stan(sxg))m) O2  es3, €1+ naea
e1 + aes, es + bes o1, —%82 + (—a — x3)0h, tan(sx3)d2, 2, O3 + £101 + x2(p + stan(szs3))d
(p—1)m . . N . _ _geP—1z
e2 + ae1 + bey, e3 &7;1;,)82, o1, 32(7 c%iii’;%ﬁi)az, 03 + 2101 + 2 Cb(sws’i&i:;;lf)f?,) ael 2 9 e3, ez + mpeq
—1)a: a: —
e1 + aez + bes, e4 + ces — 1+‘(’H3 o+ (1+MIS ZS(M:;_LC) 02, 01, 02, %8@( ) Na€1 + Nae2 + Mpes, €3
. _ _ p—1)x
05+ (1 — 35 ) w101 + UFemlGlstuptess i pner 25,
e1 + aes + bey, eP—Dzs cs(sz3; —b,a)d2 — e(P—1Dzs cs(szs;a, b)o1, _eP=Dzs (cs(szs;c,d) — e1 + %63, es + ey if
e2 + cesz + dea z3 cs(sr3;a,b))or + e(P—Dzs (cs(sz3; ¢, —d) + x3 cs(sz3; —a, b))d2, 01, O, ad # be; e1 + nqpes,
03 + (—sz1 + px2)02 + (px1 + sx2)01 €2 + 7a,bNec,a€4 otherwise
g2 e1, es + aeqa + bes + ce 0, 01, G2, 93, (—c+ x1)01 + (—a — sz2 + px3)d3 + (—b + px2 + sx3)02 e1, es
weP—17 _ (-1 _
391 e1 + aesq, e2 + bey, €3 — Ci:(slz)z 01, _ ‘zﬁs()s;) 2 O, tan(sz2)01, 01, O2 + z1(p + stan(sz2))o: e1 + Naea, €2 + faNpea, €3
e1+aes, e2 +bes, ea +ces 0, 01,0,0, 02+ 101
e1, e3, €4 31, (—a — 332)81, 0, 0, 0o + 2101 €1, €3, €4
(r—1)= azs)er— 1 . . _
ez + aei, €3, €4 cs?ia:;;l—l%c) 1 (bcs((lsx;g);e—pl,c) . 81’ 61’ cZ?gimz?fil,z) 81’ 82 + xlwal €2, €3, €4
03,2 e1, ez, es + aeq + bes 0, 0, 81, 02, (—a — sx1 + px2)d2 + (—b + px1 + sx2)01 e1, ez, e
95,/55 es, ea, es5 + aez + bex 01, 02, 0,0, (—a+ x2)02 + (—b+ x1 + x2)01 €3, e4, €5
491 e1, ez, €3, €4 0,0,0,0, 01 €1, €2, €3, €4

gi{g,p/s

e1, €3, €4, e5 + ae2

0,01,0,0, (—a+x1)01

€1, €3, €4, €5
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Type Subalgebra Corresponding realization
0 0 O, O2, O3, O4, 05 + (pr1 + 72)01 + (—21 + pr2)d2 + (—5T3 + qT4)04s + (qT3 + 574)03
g1 e1 tanx401, 01, O2, 03, 1 + x1(p + tanxa)O1 + (—sw2 + qx3)03 + (g2 + s23)02
ez + aey O, (22'2547,&(113))317 02, 03, 04 + %75’:;”31 + (—sz2 + qz3)03 + (qr2 + 573)02
P cs(wyibia) P G (w430,—b)
es + aea + bey 01, 02, =% COS(C:z:)“ Yo — < Cosc(ss;:)a (pf?ij_ tan(sz4)03, O3, o
s + z3(q + s tan(sz4))ds + (pxl 4 g, — Sz3¢ Cos(s;i()u;b,a)) A1 + (—x1 + pag + 5Z° cos(;;ir)cufa,b)aZ)
(P— D)4 og(g,— (P-4 og(g,: (am
ea + aes + bea + cer 01, B, 05, izt g, 4y © ”C;s;;iffg(’“?l + lrial) gy, -
. — P—q)x . P—q)x .
04+ 2 Csé:&;j:?ﬁ; aq)a?, + (p:m + x2 + Sw3ecs(sx:ﬁs_(z§’c’b)) o+ (—1’1 + pxo + Sw3ecs(sx4f1is£za§’c’b)> 02
es + aeq + bes + cez + der 01, 02, 03, O, (—d + px1 + 22)01 + (—c — 1 + px2)02 + (—a — sx3 + qxa)0s + (b + qr3 + 5T4)03
g2 e1, €2 0, 0, 01, 02, 03 + (—sx1 + q2)02 + (qz1 + sw2)01
{pma)=: (—a)z:
e1, e3 + aez tan 2301, 01, 7%81 + tan(sx3)d2, 02, J3 + x2(q + stan(sxs))O2 + (p:nl + x1tanxs — %) o1
(r—a)= (5235
€1, €4 +aes + b€2 tan .1’3617 81, 827 cos x:i:(sng;;sfl,a) 61 + c(s:zk(csztffi,lg) 827
. — se(P—a)zs
05 + = CS(E:(ESSw’ZH?j’;) aq) 02 + (p +tanzs + cosl;zzczsek:w:;l,:a))
. (p—q)x
e2 + aey, es + bey o1, CZ?iszl’z)ah Cos(sxb:)iSngjfl,a)al + tan(sxg)az, 02, o
R
(z33a,1) poa)rs (sz3;b,1)
ez t+aei, €4 + b63 +cer 81’ Cg?xt:;s—al,a) 81’ az’ 7cs(z3;1,c—ea) cs(sz3;1,—b) 81 + cZ?sszz::—l,b) az(’ )
g cs(sxz;q+bs,s—bq) T (z3;a+p,1—ap) cs(sxg;l,—b)tcswae'P VT3
83 + = cs(ssxg;l,fb) 4 02 + e (i(mylzjfca) cs(ssxs;l,fb) 2 2
es + aez + be1, eq +ce2 +der 01, O2,
—e(P=D%s (sin x5 cs(sx3; a, ¢) + cos 23 cs(sxa; b, d))1 + eP~DT3(— cos x5 cs(sx3; a, ¢) + sin z3 cs(sz3; b, d))da,
—eP=D3 (gin x5 cs(sw3; ¢, —a) + cos 3 cs(sz3; d, —b))d1 — e P~V cos(x3 cs(sx3; ¢, —a) + sin z3 cs(sz3, —d, b)),
03 + (px1 + x2)01 + (—x1 + pr2)d
301 e1, €2, €3 0, 0, tan(sx2)d1, 01, 02 + z1(q + tan(sxz2))o1
1, €2, €1+ aes 0,0, 01, SHEE DO, On + SgpLT),
p—q)x . pP—q)we b
e1, e3 + aez, eq + beo tan x201, 01, — ( z()f:izzz’a’b) o1, —e( )i(f;((j:)z’b’ a) 01, 02 + z1(p + tanx2)01
. r—q)x . P—q)x PO . —
s es tber, eabeer O, Sl gy STt S alenany, g, | sl
a5 5 e1, ez, es + aeq + bes 0, 0, 01, 02, (—a — sx1 + qw2)02 + (—b + gx1 + sx2)01
gg(; es + cez + Je1, Oh, 02, —dO1 — cO2, csO1 — dsOa, (—a — 1 -l—pr)@Q + (—b + pr1 + Iz)al
eq + sdea — sceq,
es + aez + bey
491 e1, e2, €3, €4 0,0,0,0, 01
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Type Subalgebra Aut g class (p=¢q, s = £1) Autgclass (p=¢ =0, s # +1) Aut g class (otherwise)
0 0 0 0 0
g1 el el el €1
ez + aey
e3 + aez + ber e1 + Na,pe3 e3 + Na,pe1
e4 + ae3 + bez + ce1 e1+ My, ce3 €3 + My, ce1
es +aeq +bes +cea +der  es es es
g2 €1, €2 e1, e2 e1, €2 e1, €2
e1, e3 + aez e1, €3 €1, e3 + Nae2 e1, €3 + Nae2
e1, e4 + aez + bes €1, ez + Mpe2 e1, ez + Mpe2
e2 + ae1, es + bey e1, e3 + Mpe2 e1, es + npe2
ea + aei1, eq + bes + cex e1, ez + necez €1, €3 + Nce2
es + aez + beq, e1, e2 if a =0 and b = ¢ el,e2ifa=b=c=d=0; e, e3,eaifa=b=c=d=0; es,
eq + cea + deq e1, ez otherwise ea +eq if bc =ad, a, b, c or d is eq4 + ez if be = ad, a, b, c or d is
nonzero; ez + (A + v A% — 1)ey, nonzero; ez + (A =A% — 1)ey,
e4 + ea otherwise* e4 + ez otherwise*
391 e1, e2, €3 e1, e2, e3 e1, e2, €3 e1, €2, €3
e1, ez, e4 + aes
e1, e3 + aez, eq + bez e1, e3, €2 + 1q,pe4 €1, €3, €4 + Na,p€2
e2 + ae1, e3 + beq, e1, €3, ez + 1My ce4 €1, €3, €4 + Mp,ce2
e4 + cex
955 e1, e2, es + aeq + bes e1, €2, €5 e1, €2, €5 e1, €2, €5
gg,/; es + cez + d_el7 es, e4, €5
eq4 + sdeg — sceq,
es + aez + bey
491 e1, €2, €3, €4 e1, €2, €3, €4 e1, €2, €3, €4 e1, €2, €3, €4
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Type Subalgebra Corresponding realization Aut g class
0 0 01, 02, 03, 04, 05 + 01(px1 + 22 + 23) + O2(—21 + pr2 + x4) + O3(pr3 + x4) + Oa(—23 +pra) 0
g1 e1 tan 401, O1, O2, 03, 01 + O2(pr2 + x3) + (px1 + (T1 + x2) tanxy + x3)01 + O3(—x2 + pr3) el
ez + aey o1, %5‘17 02, 03,
04 + O2(pz2 + 23) + O3(—x2 + pr3) + CS(M’(p+a>w1+I§J§:€i?f}l)—amwl_a“_“)81
e3 + aez + bey 01, O2, tanx403 — (b+atanxa +x4)01 + (—a+ (b+z4) tanx4)02, 93, s +x3(p+tanza)ds + e3
(pr1 + 2 — brs — axstanxy — x324)01 + (—x1 + pr2 + 23 — ax3 + x3(b+ x4) tan x4)d2
ea + aes + bea + cex 01, Oa, O3, lititd) gy — celeaptepctans g, 4 cs(aisbosnctany) g,
Oy + 22 csc(sazi;aizzi)—ap)as + CS(M,pxl+wz+(1+0)w3+;a€;a:?£;a£x1—awz+(b—a)w3+w3w4)al +
CS(M;—$1+pwz+w3+bxax4,aw1—apacz—(a+c)ac3—aac3x4)a
cs(zg;l,—a 2
es +aeq +bes + cex +der 01, B2, O3, 04, €5
O1(—d+px1 + x2 + x3) + 02(—c — 1 + pr2 + x4) + 03(—b+ pr3 + x4) + 0s(—a — x3 + px4)
92 e1, e2 0, 0, 01, 02, O3 + O1(pr1 + z2) + O2(—x1 + pr2) e1, e2
e1, €3 + aez tan 2301, 01, 7m81 + tan 302, 02, e1, e3
O3 + xo (p + tan :C3)82 + pri+(1—2a)zo+z, Szi:(()igci)s-i'(?ﬂ?l-ﬁ-wz) cos(2z3) o1
e1, es + aes + bes tanz301, 01, 02, cix?fl’z)az + —i¥a ts:i;) cosT 7 o1, €1, e4 + aes
O3 + 2 Ci(sﬂzi,;-lﬁ-’zli)—ap)a2 + (G—P)ml+(a—2b)$2—221(2jiizst(a2§3;5((;:'212:1—a0027(ap—1)901—932)81
ez +ae1, e3 + bey o, %5‘1, tan x302 + (_Hatgﬁ;g)mz -; 01, 02, e1, e4 — aes
93 + z2(p + tan x3)92 + _(a+p)zl+(a+2b)z2+§fﬁi§:ﬁg‘3’)—cﬁiiizl+M2’(ap_1>xl+m2)
. i e L L L L !
(a—b+p+abp)zi+(1+ab+2c)zo+2(b—a)zazz+cs(2z3;(at+b+p—bp)zi+(1—b)zs,(1—bp—ab—ap)z; —(a+b)zs) e1, €3 ifa=bAab ;ﬁ —1;
2cs(xg;l,—a) cs(zz;1,—b) e1, eq + 1—',-abb63 if a 7{ b
) a—
es + aez + bey, 01, 02, %(d—a—l—cs(?a:g;—a—d,b—c))@g—l—%(—b—c—2973+cs(2x3;—b+c,—a—d))81, e3, e4 +
es + cez +dey L(a—d+cs(2zs;—a—d,b—¢))01 + 2(—b—c— 223 + cs(223;b — ¢, a + d)) 02, V(a+d)2+ (c—b)2er
03 + 01(px1 + w2) + O2(—x1 + pr2)
3g1 e1, e2, €3 0, 0, tan x201, 01, 02 4 x1(p + tanx2)01 e1, €2, €3
e1, e2, e4 + aes 0, 0, o1, %61 9 + %&
e1, e3 + aes, eq + bea tanx201, 01, (—a — (b + x2) tanx2)01, (—b — 2 + atanz2)01, d2 + z1(p + tanx2)d1 e1, €3, €4
ez +ae1, e3+ber, es+cer 01, cjg?fﬂi)ﬁl, CS(M;C_SE)z_ZTf,’:(f)-’_WZ)ah Cs(zzc;s_(;:(fffilb)-"w”@h Oy 4 TLET2IOED, ZAD) Cs&iﬁi’fi)—a’)) 01
055 e1, e2, es + aeq + bes 0, 0, 01, 02, O1(—b+ pr1 + x2) + J2(—a — x1 + px2) e1, e2, es

491

€1, €2, €3, €4

0,0,0,0, 01

€1, €2, €3, €4
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