
CZECH TECHNICAL UNIVERSITY IN
PRAGUE

Faculty of Nuclear Sciences and Physical
Engineering

Department of Physics

Master thesis

Generalized stochastic processes with
applications to financial markets

Václav Svoboda

Supervisor: Petr Jizba

Prague, 2016



ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ
V PRAZE

Fakulta Jaderná a Fyzikálně Inženýrská
Katedra Fyziky

Diplomová práce

Zobecněné stochastické procesy a jejich
využití na finančních trzích

Václav Svoboda

Supervisor: Petr Jizba

Praha, 2016



Prohlášení:

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem
pouze podklady ( literaturu, software, atd. ) uvedené v přiloženém seznamu.

Nemám závažný d ‌uvod proti užití tohoto školního díla ve smyslu 60 Zákona
.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským
a o změně některých zákon ‌u ( autorský zákon ).

V Praze dne



Title:
Generalized stochastic processes with applications to financial mar-
kets

Author: Václav Svoboda

Specialization: Mathematical physics

Sort of project: Masters thesis

Supervisor: Petr Jizba. Department of Physics, Faculty of Nuclear Sciences and
Physical Engineering, Czech Technical University in Prague
Consultant:
—————————————————————————————

Abstract: We introduce general concepts of the option pricing theory. Key no-
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výsledkem je zobecněná verze Itova lemma. Tato teorie je poté aplikována
na oceňování opcí v exp-Levy modelech. Koncept frakčních derivací je před-
staven ve spojitosti s anomální difusí a frakční procesy jsou aplikovány při
oceňování opcí. Demonstrujeme spojitost mezi teorií oceňování opcí a kvantovou
mechanikou s nesamosdruženými Hamiltoniany. Odvodíme jak Hamiltonovskou
formulaci teorie oceňování opcí tak i formulaci v řeči dráhových integrálů. For-
mulujeme kvantovou teorie pole úrokovćh sazeb a aplikujeme ji při oceňování
opcí na dluhopisy.

Klíčová slova: oceňování opcí, Levyho procesy, frakční procesy, kvantové finance



Acknowledgement

I would like to thank my supervisor Ing. Petr Jizba, PhD., for many consul-
tations, advice and a great deal of patience. The numerous discussions we had
have helped me greatly to get a better understanding and new perspectives on
various topics. I would also like to thank prof. Hagen Kleinert for supervising
my thesis during my stay at Freie University in Berlin.

This work was supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS16/239/OHK4/3T/14.



Contents

1 Option pricing problem 12
1.1 Black-Scholes option pricing . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Black-Scholes formula . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Models beyond Black-Scholes . . . . . . . . . . . . . . . . 16

1.2 Empirical properties . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Market completeness and martingale measures . . . . . . . . . . 21

1.3.1 Pricing rules and martingale measures . . . . . . . . . . . 22
1.3.2 Market completeness . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Pricing in incomplete markets . . . . . . . . . . . . . . . . 25

2 Jump process models 29
2.1 Basic mathematical tools . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Levy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Properties of Levy processes . . . . . . . . . . . . . . . . . 33
2.2.2 Building models from Levy processes . . . . . . . . . . . . 43

2.3 Stochastic calculus for jump processes . . . . . . . . . . . . . . . 47
2.3.1 Stochastic integral for caglad processes . . . . . . . . . . . 49
2.3.2 Generalized Ito formula . . . . . . . . . . . . . . . . . . . 54

2.4 Option pricing and hedging in exp-Levy models . . . . . . . . . . 58
2.4.1 Equivalence of measures for Levy processes . . . . . . . . 58
2.4.2 Hedging in exp-Levy models . . . . . . . . . . . . . . . . . 60
2.4.3 Risk neutral modelling in exp-Levy models . . . . . . . . 66

3 Anomalous diffusion and fractional processes 72
3.1 Generalized Fokker-Planck equation . . . . . . . . . . . . . . . . 72

3.1.1 From a continuous time random walk to fractional diffusion 76
3.1.2 Fractional Fokker-Planck equation . . . . . . . . . . . . . 79
3.1.3 Non-linear Fokker-Planck equation . . . . . . . . . . . . . 82

3.2 Fractional processes and option pricing problem . . . . . . . . . . 87
3.2.1 Double fractional diffusion . . . . . . . . . . . . . . . . . . 87
3.2.2 Black-Scholes pricing in fractional environment . . . . . . 89

7



4 Quantum finance 93
4.1 Quantum mechanical formulation of the option pricing problem . 93

4.1.1 Stochastic volatility models . . . . . . . . . . . . . . . . . 94
4.1.2 Hamiltonian formulation . . . . . . . . . . . . . . . . . . . 95
4.1.3 Path integral in the option pricing . . . . . . . . . . . . . 98

4.2 Quantum field theory of interest rates . . . . . . . . . . . . . . . 101
4.2.1 Stochastic interest rates . . . . . . . . . . . . . . . . . . . 101
4.2.2 Lagrangian formulation . . . . . . . . . . . . . . . . . . . 106
4.2.3 Hamiltonian field theory . . . . . . . . . . . . . . . . . . . 111

A Ito calculus 119

B Stable distributions 121

C Fractional differentiation 123

D Gaussian integration 127

E Propagators for linear forward rates 129



List of Figures

1.1 Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

[chapter]

9



Introduction

The theory of stochastic processes forms a very important part of both theo-
retical and applied mathematics nowadays. Possible applications of stochastic
processes range from an astrophysics, a quantum theory and diffusion related
problems to topics like a weather forecasting, insurance claims and quantita-
tive finance. The field of stochastic processes has been dominated by diffusion
processes driven by Brownian dynamics for long time. The theory of Brownian
motion has been developed by people like Einstein, Langevin, Wiener and many
others. Today, the theory of Brownian diffusion is summarized by so called Ito
calculus developed by Japanese mathematician Kiyosi Ito. However, a need
to describe complex dynamical systems with non-trivial correlations led to the
shift of a focus from Brownian diffusions to more general classes of stochastic
processes.

The main objective of this thesis is to apply continuous-time processes be-
yond the framework of Ito calculus to the option pricing problem. The option
pricing problem is one of the typical problems in quantitative finance. The first
rigorous mathematical formula for the pricing of European options was derived
by F. Black and M. Scholes in 1973. Their formula was praised for some time
but it turned out to be deeply flawed. It fails miserably in situations when mar-
ket is not in equilibrium, typically during crises. Huge swings in asset prices
occur in such situations and Brownian dynamics cannot well describe such be-
haviour. This led to a development of new models that would be able to better
describe this type of behaviour. We will focus on two possible generalizations
in particular. A generalization based on discontinuous Levy processes and one
based on processes describing an anomalous diffusion will be analysed.

In the first chapter we will introduce general ideas and concepts of the option
pricing theory. The notions like a completeness of the market and martingale
measures will be discussed. The theory will be presented in very general settings
so it can be applied to a range of models. In particular, standard Black-Scholes
theory will be presented, its limitations will be discussed and number of possible
generalizations will be outlined. We will also discuss the empirical properties of
asset returns, a self-similarity of financial markets and other related concepts.
We will conclude that models based on Brownian motion are in many ways not
optimal for description of financial markets.

In the second chapter, we will deal with Levy processes and their applica-
tions in the option pricing. Levy processes are processes with independent and
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stationary increments. The famous Levy-Ito decomposition states that every
Levy process can be written as a superposition of Brownian diffusion, a drift
and a pure jump component driven by Poison-type dynamics. The basic results
about Levy processes are reviewed and the stochastic calculus for discontinuous
processes is developed. The key result is generalized Ito lemma. This theory
is then applied for the option pricing in exp-Levy models. This generalization
of the standard theory is therefore based on adding jumps to a driving noise.
These jumps are well-suited for describing huge price swings that can be ob-
served on financial markets. We build a robust theory for the option pricing
in exp-Levy models, derive a generalized version of the Black-Scholes equation,
introduce a change of a measure technique for Levy models and discuss some
numerical methods for calculating the option prices.

In the third chapter, a more physically motivated approach is discussed. A
standard diffusion is described by Fokker-Planck equation. We introduce con-
cepts of fractional derivatives, i.e. derivatives of non-integer order and fractional
differential equations. Then we derive so called fractional Fokker-Plack equation
from the continuous time random walk. The solutions of fractional F.-P. equa-
tion are called fractional processes and they play an important role in describing
an anomalous diffusion and an anomalous transport nowadays. We obtain stable
processes as solutions of a space fractional diffusion. The fractional processes
are then applied to the option pricing.

There is a deep connection between a quantum theory and a theory of
stochastic processes [19]. The similarity between Fokker-Planck and Schroedinger
equations leads to a correspondence between standard diffusion and quantum
mechanics. We use this correspondence in the chapter 4 to reformulate the op-
tion pricing problem to the framework of a quantum mechanics with non-self-
adjoint Hamiltonians. Stochastic volatility models are discussed in particular
and analysed in this framework. The path integral formulation is also presented
in an analogy with a quantum mechanics.

The quantum field theory is also related with a theory of stochastic processes
in some sense [1]. However, the quantum field theory often goes beyond the
framework of stochastic calculus and describes systems with an infinite number
of degrees of freedom and non-trivial correlation structures. We use the frame-
work of QFT and formulate the quantum field theory of forward interest rates.
Forward interest rates will be modelled as quantum strings with a finite rigid-
ity. The standard stochastic model will be recovered in the case of an infinite
rigidity. We will apply this theory for the pricing of European bond options.



Chapter 1

Option pricing problem

In this chapter we will first define the option pricing problem and state basic re-
sults of Black-Scholes theory. We will also discuss a limitation of Black-Scholes’s
approach and empirical properties of a time evolution of asset prices. The most
important part of this chapter will be a generalization of methods used in Black-
Scholes theory to a much broader set of models. In particular, this will be useful
when we derive the option pricing formulas for exp-Levy models.

1.1 Black-Scholes option pricing
Derivatives are assets, of which prices are derived from the prices of some un-
derlying assets. The pricing of derivatives is very important in practise but it
is also a very interesting task from a mathematical point of view.

A put/call option is a derivative that gives us the right to sell/buy an under-
lying asset at certain time for an in-advance-agreed price. This price is usually
called a strike price. We also distinguish between European and American op-
tions. European options give us a right to buy/sell only at given time, which
is usually called the expiration time of an option. American options give us a
right to do so in any time between a moment we bought the option till its expi-
ration. There exist many other types of options, for example barrier or forward
start options. These options are usually called exotic, see [15] for more details.
Some of them will be discussed later in this thesis. However, we will be mainly
interested in European put and call options.

1.1.1 Black-Scholes formula
We will state basic results and notions of Black-Scholes option pricing here,
however, the reader is presumed to be already familiar with this theory.

The main assumption of Black-Scholes approach is, that the price St of an
underlying risky asset is given by a stochastic equation

dSt = µStdt+ σStdWt (1.1)

12



CHAPTER 1. OPTION PRICING PROBLEM 13

where Wt is a standard Brownian motion. The parameter µ is called a rate of
return and σ is a volatility and it is a constant in Black-Scholes model.

Using Ito lemma, see appendix A, we can easily verify

St = S0e
(µ− 1

2σ
2)t+σWt (1.2)

This process is called geometric Brownian motion. Clearly lnSt is just Brownian
motion with a linear drift. The exponential model is more desirable because we
logically want a size of changes of a value of St to depend on a total value of St.

Further we assume an existence of risk-free assets S0, which yield fixed
interests

S0(t) = S0(0)ert (1.3)

The parameter r is an interest rate.
Now we want to create a portfolio V given by a strategy φ = (φ0

t , φ
1
t ), with

a value
Vt(φ) = φ0

tS
0
t + φ1

tS
1
t ≡ φt.St (1.4)

Naturally we can work with portfolios composed of more than two components
but we will for a simplicity work with only two here.

Changes of value of this portfolio should be only given by behaviour of
St = (S0

t , S
1
t ), where the time evolution of Si is given by (1.2) and (1.3). Math-

ematically it means

dVt = φt.dSt = φ0
t .dS

0
t + φ1

t .dS
1
t (1.5)

where dS1
t is given by (1.1) and dS0

t = rertdt. The strategy fulfilling this
property is called self-financing.

We can also calculate dVt from (1.4) by using Ito lemma. We obtain the fol-
lowing partial differential equation for a function V = V (t, S) by the comparison
with (1.5)

φ1
t =

∂V

∂S
(t, St) (1.6)

and
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0 (1.7)

This is the famous Black-Scholes equation. It governs a time evolution of the
price of the self-financing portfolio.

We want to create a self-financing portfolio that will duplicate a price of the
option. It means that we want to solve Black-Scholes equation with boundary
conditions given by a particular option. We have the following boundary con-
ditions for an European call option C with an expiration time T and a strike
price K

1. C(T, S) = (S −K)+

2. C(t, 0) = 0

3. C(t, S) ∼ S for S →∞
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Black-Scholes equation with these boundary conditions has a unique analytic
solution. It is one of the reasons why Black-Scholes theory is so popular. The
solution is given by

C(T − t, S) = SΦ(g(t, S))−Ke−trΦ(g(t, S)− σ
√
t) (1.8)

where Φ is a cumulative distribution function of a normal distribution N(0, 1)
and

g(t, S) =
ln S

K + (r + (1/2)σ2)t

σ
√
t

(1.9)

so we have derived Black-Scholes price of an European call option at time t

CBS(St,K, τ = T − t, σ) = StΦ(g(τ, St))−Ke−τrΦ(g(τ, St)− σ
√
τ) (1.10)

The self-financing strategy that should perfectly duplicate a price of this option
is given by

φ1
t =

∂C

∂S
(t, St) (1.11)

and

φ0
t =

C(t, St)− φ1
tS

1
t

S0
t

(1.12)

So Black-Scholes price depends on four parameters σ, r,K, T . It is worth
noticing that it does not depend on the parameter µ. This will not change even
if we consider more general µ = µ(t, St).

We can derive a right price similarly for European put options. However,
there is a direct connection between a price of the call and put options. It is
called the put-call parity. Let us denote a price of a put option by P (t, St). Let
us presume that both of them have the same strike price K and expiration time
T , then the following relation holds

P (t, St) = C(t, St)− St +Ke−r(T−t) (1.13)

This follows from the fact that the portfolio given by

Vt = St + P (t, St)− C(t, St) (1.14)

guarantees a risk-less profit K at the time T .

Change of measure

The option pricing method we presented above is quite general. However
it usually leads to complicated differential equations, which must be solved nu-
merically. We will see in the next chapter that in a case of the jump-diffusion
models it furthermore leads to integro-differential equations.

Here we will present a very useful method for the option pricing. It can
sometime give us an analytic solution even if we cannot solve corresponding
Black-Scholes equation.
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The main idea is to change an underlying probability measure P to the
different probability measure Q. Q is chosen in the way that the discounted
price Ŝt = e−rtSt will be a martingale under it. This means that E(Ŝt|Fs) = Ŝs
will hold. See [5] or [16] for more details about martingales. We can determine
the option price by calculating a conditional expectation with use of martingale
property then. We will take a closer look at the change of a measure technique
in much more general settings later in this chapter.

First we need the following Girsanov theorem.

Theorem 1.1. Let us consider the process dXt = q(t,Xt)dt + dWt where t ∈
〈0, T 〉. Let us assume that

E (exp(
1

2

∫ T

0

q2(t, ω)dt)) <∞ (1.15)

This is known as Novikov’s condition. Now we define process M by

MT (ω) = exp (−
∫ T

0

qdWt −
1

2

∫ T

0

q2dt) (1.16)

then under the probability measure Q given by

dQ(ω) = MT (ω)dP (ω) (1.17)

is X standard Brownian motion.

This result is taken from [7].
It is clear from Radon-Nykodym’s theorem [5], that P and Q are equivalent

measures. We will call them equivalent martingale measures from now on.
With a use of Ito lemma we get

dŜt = Ŝt((µ− r)dt+ σdWt) (1.18)

if we denote
∼
Wt = Wt + µ−r

σ t we get

dŜt = σŜtd
∼
Wt (1.19)

Let Q be the probability measure given by Girsanov theorem, under which
∼
Wt

is a standard Brownian motion.
We will consider the self-financing portfolio Vt now. We will denote V̂t =

e−rtVt. We get after some calculations

dV̂t = φ1
tdŜt = σφ1

t Ŝtd
∼
Wt (1.20)

So V̂t is a martingale under Q. We can write

Vt = EQ(e−r(T−t)VT |Ft) (1.21)
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So we have for the European options with payoff h(ST ) at strike time T

Vt = EQ(e−r(T−t)h(ST )|Ft) = EQ(e−r(T−t)h(Ste
(r− 1

2σ
2)(T−t)+σ(

∼
WT−

∼
Wt))|Ft).

(1.22)
We get the following relation for European call options (so h(x) = (x−K)+)

Vt =

∫
R
e−r(T−t)(Ste

(r− 1
2σ

2)(T−t)+σy(T−t)1/2

−K)+ϕ(y)dy (1.23)

where ϕ(y) is a density of the distribution N(0, 1). If we now calculate this
integral, we obtain the same result as in (1.10). So this approach is an equivalent
alternative to Black-Scholes equation.

This idea of change of measure is very general and plays key role in derivative
pricing. We will discuss it in more general settings later.

1.1.2 Models beyond Black-Scholes
We will just outline the main approaches to generalize Black-Scholes formula
here. We will present some of these approaches later in further details.

Local and stochastic volatility models

An assumption of constant volatility σ is very restrictive in Black-Scholes
theory. Furthermore we can say that it is also incorrect from empirical obser-
vations. The main approaches beyond a constant volatility are

1. stochastic volatility
dSt = µStdt+ σtStdW

1
t (1.24)

σt = f(Yt), dYt = αtdt+ βtdW
2
t (1.25)

where σt is a positive process and we assume a correlation ρ between
W 1,W 2

2. local volatility
dSt = µStdt+ σ(t, St)StdWt (1.26)

It is interesting that the price St itself is not Markov process in stochastic
volatility models. This is caused by the assumption of two different driving
noises W 1,W 2. However (St, σt) is a two-dimensional Markov diffusion. We
can apply multidimensional Ito lemma and derive an equivalent of Black-Scholes
equation for this model. This will be properly done in chapter 4 when we will
discuss Hamiltonian formulation of the option pricing problem. The assumption
of the stochastic volatility increases a dimension of the problem, which is very
inconvenient for numerical solutions. The most famous stochastic volatility
model is Heston model [17].
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Black-Scholes equation the same form in local volatility models as in the
standard case

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2(t, S)S2 ∂

2V

∂S2
− rV = 0 (1.27)

however, a non-constant volatility makes this equation very complicated.
A local volatility can lead to heavy tailed distributions. Such behaviour is a

desired property. We will discuss this in the next section.
Local volatility models are also very effective for fitting real prices. It was

shown that any observed price evolution of a a call option can be fitted by the
unique local volatility. More precisely, if we know the value C0(T,K) of a call
option at time t = 0 with a strike price K > 0 and expiration time T ∈ 〈0, T̂ 〉,
then there exists the unique local volatility

σ(T,K) =

√
2
∂C0

∂T +Kr ∂C0

∂K

K2 ∂2C0

∂K2

(1.28)

which gives right prices Ct(T,K). For more details see [18] .
An implied volatility is a notion closely connected to a local volatility. It is

not obvious how to correctly determine the volatility of the given asset. There
are many ways to do it. One of the most popular ones is to get it by inverting
Black-Scholes formula. Black-Scholes price

CBS(St,K, τ = T − t, σ) = StΦ(g(τ, St))−Ke−τrΦ(g(τ, St)− σ
√
τ) (1.29)

in an increasing function of σ on (0,∞). So it can be inverted. Let C∗t (T,K) be a
real observed option price. Then we will define an implied volatility Σt(T,K) >
0 by

CBS(St,K, τ = T − t,Σt(T,K)) = C∗t (T,K) (1.30)

A graph of the function Σt is called a implied volatility surface. An implied
volatility as a function of a strike price forms a convex function known as the
volatility smile.

In Black-Scholes world Σt(T,K) = σ however it is well known that Σt is a
non-constant function in both parameters.

So we can see that a fitting of a local volatility to the real prices is just a
fitting of the local volatility to the implied volatility surfaces.

Beyond diffusion

All models discussed above work exclusively with continuous processes. How-
ever a continuity of sample paths is not necessarily a sound assumption.

The problem is that for the processes with the discontinuous sample paths
Ito lemma does not work! The jumps also bring other problems like an incom-
pleteness of the market. It means that in the models with jumps the prices of
options cannot be perfectly duplicated by the risk-less portfolios.

The complete and incomplete markets will be discussed later in this chapter.
The option pricing with non-continuous processes will be discussed in detail in
the next chapter.
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Figure 1.1: Implied volatility

1.2 Empirical properties
We will discuss the empirical properties of asset returns and how well they can
be fitted with the different models in this section. This problematic has a long
tradition in the financial econometrics, see for example [4], but we will only
scratch a surface here.

We will start with the discussion of the shortcomings of a normal distribu-
tion. It has been more then 50 years since B. Mandelbrot proposed the usage
of the heavy tailed distributions with a density

p(x) ∼ 1

|x|1+α

His motivation was mainly empirical. A normal distribution gives only the
marginal probabilities to the extreme events. However these events are observed
on the financial markets!

For example in Gaussian model the probability of a deviation 5σ in a unit
of the time is

P (|∆X| > 5σ) = 2(1− Φ(5)) ≈ 6.10−7 (1.31)

and for 6σ many programs round this probability to zero. But deviations of
these sizes are observed on financial markets. Especially during crises are such
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deviations regularly observed. Therefore heavy tail models are much more re-
alistic then models based on normal distributions.

Even though we will work only with the continuous time processes in this
thesis, the discrete time processes have a much longer tradition in econometrics.
The returns rt on the scale ∆ defined as

rt(∆) = St+∆ − St

are usually analysed. However methods that work for the time lag ∆ often do
not work for the different time lag ∆∗. In other words these models are not stable
under the time aggregation. There exists a number of interesting approaches to
this problematic like well-known GARCH, ARCH models or entropic methods
[40].

This implies that the continuous time processes are a more principal ap-
proach to the option pricing problem. However for analysis of asset price itself
is discrete time approach unavoidable.

Let us now get back to discussion about the proper distributions for the
modelling of financial markets. We will start with an overview of the properties
that seems to be common to almost all markets and assets. It turns out that
various assets on various markets all share some similar statistical properties.
This is a very interesting result.

1. Heavy tails: The distribution of returns has heavy tails, usually tail
index α is between two and five

2. Absence of autocorrelations: Autocorrelations of returns seem to van-
ish on larger scales then approximately 20 minutes.

3. Gain/loss asymmetry: The tails of the distribution are not same in
±∞

4. Aggregation normality: With the larger scales ∆ distribution of returns
is getting closer to normal.

5. Volatility clustering: The absolute returns |rt(∆)| are strongly and
positively correlated, this autocorrelation has a very slow decay. In other
words small changes are usually followed by small changes and big ones
by big ones.

It is hard to fit all this properties into a tractable model. For example a volatility
clustering implies that the returns are not independent. So any price process
with an independent increments will not fulfil this property. However the model
can give good predictions even if not all of these properties are fulfilled.

There is a huge amount of a theory around the estimations of parameters of
the asset return models. Besides the regular statistical methods like MLE can
be used for example the extreme value theory [15],[19].
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Scaling and self-similarity

We know that behaviour of rt(∆) significantly depends on the scale ∆. It
is interesting to analyse how will the behaviour of rt vary on different scales.

By scaling we want to determine the statistical quantities invariant under
time aggregation. We start with a definition of self-similarity.

Definition 1.1. The stochastic process (Xt, t ≥ 0) is H - self similar for some
H > 0 if all its finite dimension distributions satisfy the condition

(THXt1 , ..., T
HXtn)

d
= (XTt1 , ..., XTtn)

for every T > 0.

The parameter H is usually called Hurst index. Clearly Brownian motion is
self similar with H = 1/2.

We should also mention the notion of self-affinity. The process Xt is self-
affine ifXct = cHXt+bc(t). For example Brownian motion with drift is self-affine
but not self-similar.

The density of a self similar process has clearly the form

pt(x) =
1

tH
p1(

x

tH
) (1.32)

which implies
EXt = tHEX1, V arXt = t2HV arX1 (1.33)

But for every process X with independent and stationary increments and finite
variance it also holds V arXt = tV arX1. So we can see that every self-similar
Levy process (i.e. process with independent and stationary increments) has an
infinite variance or is Brownian motion.

Further it is well known that the self-similar Levy processes with an infinite
variance are α-stable. They are given by their characteristic function

ϕt(z) = exp (−ct|z|α) α ∈ (0, 2〉, c > 0 (1.34)

Hurst index is given byH = 1/α in this case. The stable processes will be further
discussed in the next chapter. The importance of the stable distributions lies in
their role in the generalized central theorem, see appendix B.

However the self-similarity has nothing to do with independent increments.
The typical example of a self-similar process without independent increments is
fractional Brownian motion.

Definition 1.2. Stochastic process (Xt, t ≥ 0) is called a fractional Brownian
motion (FBM) with a parameter H ∈ (0, 1) if

1. X0 = 0 a.s.

2. Xt(ω) is continuous a.s.
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3. Xt+h −Xt ∼ N(0, h2H)

Clearly FBM is H-self similar and does not have independent increments
because

EXt(Xt+h −Xt) =
1

2
(−t2H − h2H + (t+ h)2H)

H 6= 1
2

6= 0 (1.35)

For its covariance we have

Cov(Xt, Xh) =
1

2
(t2H + h2H − |t− h|2H) (1.36)

So Hurst index H does not determine the process uniquely, except of case H =
1/2. We saw that there are two ways to generate self-similarity. The first is
through the high variability and heavy tails. The other one is via strongly
correlated increments. These effects are called Noah’s and Joseph’s.

We should also mention that there is a connection between Hurst index and
the fractal dimension of the graph and of sample paths. Concretely if we denote
the graph of the process by P we have dimBP = 2−H. So determining fractal
dimension of a sample path is a way to also determine self-similarity index H.
This can be particularly useful in finance [2],[8].

Important question now is :

Are the financial markets self similar?

Many authors use the following test. Let us assume that the log-price Xt = lnSt
has stationary increments. From a self-similarity follows pt(0) = 1

tH
p1(0). First

we estimate an empirical density at zero p̂t(0). This can be done from the
histogram for example. Then we get the following relation

ln p̂t(0) ' H ln
∆

t
+ ln p̂∆(0) (1.37)

Mantegna and Stanley applied this to SP 500 and obtained H ' 0, 55. They
concluded the α-stable model with α ' 1, 75. But we already know that there
are more processes with the same Hurst index. Furthermore (1.37) is a necessary
but not sufficient condition for the self-similarity. It is complicated from the
discrete data we have to prove the self-similarity of the financial markets beyond
doubt. However it is widely believed that the financial markets are self-similar.

1.3 Market completeness and martingale mea-
sures

In this section we will take a look at general results of the option pricing theory.
Theory presented here is applicable to a very general set of models. However
we present it mainly for the option pricing in exp-Levy models, which will be
discussed in the next chapter.
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1.3.1 Pricing rules and martingale measures
Let us consider the stochastic process X as random variable X : Ω → A〈0, T 〉
where A〈0, T 〉 is a suitable set of functions f : 〈0, T 〉 → Rn. So the stochastic
process X induce measure PX = P ◦ X−1 on the path space A〈0, T 〉. Let us
consider processes X,Y which induce equivalent measures i.e.

PX(A) = 0 ⇐⇒ PY (A) = 0 ∀A ∈ F (1.38)

Where F is a σ-algebra on the path space. We will denote PX = P and PY = Q
now.

Radon-Nykodym theorem now states that dQ
dP = Z is a strictly positive

random variable. Let us consider the filtration Ft on the path space. Then we
can define process

Zt = E(Z|Ft) (1.39)

Zt is clearly P - martingale with EZt = 1.
For Zt also following holds

dQ

dP
|Ft= Zt, i.e. Q(A) = EP (ZtIA) ∀A ∈ Ft (1.40)

So equivalent measures generate martingale process in this sense. The idea
behind a change of measure technique is to find measure Q such that ŜtZt will
be P - martingale.

It is also worth noticing, that under different equivalent measures are the
path properties, in other words " almost sure properties ", invariant.

Let us get back to the option pricing now. Let us consider the process
S : 〈0, T 〉 × Ω → Rn+1 to be a price process adapted to the filtration Ft. S is
the price vector so St = (S0

t , ..., S
n
t ). We will only consider S0

t = exp (rt) as in
Black-Scholes case. We will also use a notation V̂t = Vt

S0
t
.

We will now consider set H of the possible pay-offs of an option at time T .
Technically H ∈ H can be any FT -measurable variable H : Ω→ R. We worked
with H = (ST − K)+ in Black-Scholes theory. But we can also consider for
example the path dependent options H = h(St(ω)).

Now we want to specify the pricing rule Πt : H ∈ H → Πt(H). We require
it to fulfil following conditions

1. Πt is adapted to Ft

2. H(ω) ≥ 0⇒ Πt(H) ≥ 0

3. pricing is linear: Πt(
∑n
i=1Hi) =

∑n
i=1(Πt(Hi))

One of possible pay-offs is IA where A ∈ F = FT . For A = Ω is IΩ = I and we
get

Πt(I) = e−r(T−t) (1.41)

We can define the measure Q now by

Q(A) =
Π0(IA)

Π0(I)
= er(T−t)Πt(IA) (1.42)
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We can easily see that 0 ≤ Q(A) ≤ 1 and for A,B disjoint we have Q(A∪B) =
Q(A) +Q(B) from properties of Πt. So Q is a probability measure.

Reversely let us have the probability measure Q. Pay-offs in the form H =∑
i ciIAi are dense in H in the norm ‖.‖L1 . For every H in this form we have

Π0(H) = e−rTEQ[H]

If we now assume that Πt is continuous we can broaden this statement ∀H ∈ H.
More generally we get

Πt(H) = e−r(T−t)EQ[H|Ft] (1.43)

Arbitrage free pricing

We have shown that an option pricing rule is equivalent to some new proba-
bility measure Q. We will show now that Q must be equivalent to the original
measure P and the discounted price must be martingale under Q. Otherwise
there will be an arbitrage opportunity.

Arbitrage means that there exists a self-financing strategy φ = (φ1, ..., φn)
for the trading of risky assets with prices S = (S1, ..., Sn) such that the resulting
portfolio Vt guarantees a profit

P (VT (φ)− V0(φ) > 0) = 1 (1.44)

We should note that not all self-financing strategies are admissible. We need to
work only with strategies that are proper integrands. Admissible strategies in
the case of continuous processes are given by Ito calculus, see appendix A. In
the case of Levy - type processes only predictable strategies with caglad sample
paths will be admissible. This will be further discussed in the next chapter.

Let us consider set A such that P (A) = 0 then

Π0(IA) = e−rTQ(A)
!
= 0 (1.45)

otherwise that would be an arbitrage opportunity. So we have shown that P
and Q are the equivalent measures.

P ∼ Q ⇐⇒ (P (A) = 0 ⇐⇒ Q(A) = 0)

Obviously the payoff H = SiT given by asset Si is possible. So we have

Sit = Πt(S
i) = e−r(T−t)EQ[SiT |Ft] (1.46)

So the discounted price Ŝit = e−rtSt is martingale under Q

EQ[ŜiT |Ft] = Ŝit (1.47)

The stochastic integral with respect to martingale integrator has to be martin-
gale (or at least local martingale) in every reasonable theory. This implies that
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integral
∫ t

0
φdŜ is Q-martingale for " suitable " integrands φ. Further we have

V̂t =
∫ t

0
φdŜ, so the discounted price of our portfolio is Q - martingale. This is

analogical to equations (1.19), (1.20) in Black-Scholes theory.
For the portfolio Vt we now have

EQ(Vt(φ)) = EQ(V0 +

∫ t

0

φdS) = V0 (1.48)

So we can write

Q(VT (φ)− V0 =

∫ T

0

φdS > 0) 6= 1 (1.49)

and the same holds for P because P ∼ Q. So there is not an arbitrage oppor-
tunity.

We have shown that defining of an arbitrage free pricing is equivalent to
defining the measure Q ∼ P under which is the discounted price martingale.

We will end this section with two theorems summarizing our results.

Theorem 1.2. Let us consider a market with the probability space (Ω,Ft,F , P )
and an arbitrage free linear pricing rule Πt. Then there exists a probability
measure Q that P ∼ Q, the discounted prices Ŝt are martingale under Q and
Πt can be written as

Πt(H) = e−r(T−t)EQ[H|Ft]

Theorem 1.3. Market (Ω,Ft,F , P ) with the asset prices Sit is arbitrage free if
and only if there exists an equivalent measure Q under which are the discounted
prices Ŝit martingale. Q is called equivalent martingale measure.

1.3.2 Market completeness
We consider the payoff H, then the self-financing strategy φ = (φ0

t , φ
1
t ) is called

the perfect hedge of H if

H = V0 +

∫ T

0

φ0
tdS

0
t +

∫ T

0

φ1
tdS

1
t (1.50)

This strategy is unique because otherwise there would be an arbitrage opportu-
nity. The price of H at t = 0 is obviously V0.

However there is no guarantee that every payoff can be perfectly hedged.
We will say that the market is complete if ∀H ∈ H there exists a perfect hedge.

For the complete market we get

Ĥ = V0 +

∫ T

0

φ1
tdŜ

1
t (1.51)

This is analogical to the equation (1.20) in Black-Scholes case.
For “ suitable” integrands φ is H Q-martingale so we have

EQ[Ĥ] = V0
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Because ∀A ∈ F is IA ∈ H determines this Q uniquely . So the completeness
of market implies the uniqueness of Q. The reverse implication also holds so we
have the following result.

Theorem 1.4. Market (Ω,Ft,F , P ) with asset prices Sit is complete if and only
if there exists only one equivalent martingale measure Q .

This theorem is known as the second fundamental theorem of asset pricing.
There are some problems with the mathematical rigorosity if S is for example

Levy process with infinitely many jumps. However for our purposes we will
interpret this theorem as follows

∀H ∈ H, H = EH +
∫ T

0
φ1
tdŜ

1
t ⇐⇒ ∃1Q equivalent martingale measure

where φt is self-financing strategy.
All diffusion models, in particular all local volatility models, defines complete

markets. However the stochastic volatility models and jump models are usually
incomplete. The jump models include the exp-Levy models and jump diffusion
models which will be discussed in the next chapter.

It is very important to realize that in incomplete markets the options cannot
be perfectly hedged. So options are not a redundant asset in incomplete mar-
kets. This seems to correspond to a reality much better then complete markets
do. There is always some risk that cannot be hedged away when hedging in
incomplete markets.

1.3.3 Pricing in incomplete markets
The problem with pricing in incomplete markets is that defining the stochastic
dynamics driving the stock price does not determine the option price uniquely.
We have to choose also one of possible equivalent martingale measures and
typically there are infinitely many martingale measures available.

Minimal entropy approach One of possible approaches is to choose measure
that is the “ closest” one to the original measure P in some sense. Most common
approach is minimal entropy approach. Its idea is to find such an equivalent
martingale measure Q that it minimize a relative entropy of Q to P defined as

ε(Q,P ) = EQ(ln (
dQ

dP
)) (1.52)

We will discuss this method for exp-Levy models in the next chapter.

Quadratic hedging The main idea of this approach is to minimize the hedge
risk in mean square sense. In contract with previous method we will minimize
the risk here over possible strategies not over martingale measures.

We assume a self-financing strategy (φ0
t , φ

1
t ). We want to minimize in some

sense the following term
inf
φ
E(|VT (φ)−H|2) (1.53)
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where

VT (φ) = V0 +

∫ T

0

φ0
t re

rtdt+

∫ T

0

φtdSt (1.54)

however we need to specify under which measure we calculate the expected
value in (1.53). We will choose a equivalent martingale measure Q, so we want
to minimize

inf
φ,V0

EQ(|ϑ(V0, φ)|2) (1.55)

where under Q

ϑ(V0, φ) = Ĥ − V̂T = Ĥ − V0 −
∫ T

0

φtdŜt (1.56)

We will assume that H ∈ L2(Ω,F , Q) and Ŝt is L2-integrable Q-martingale.
Further we will consider only strategies fulfilling

EQ[|
∫ T

0

φtdŜt|2] <∞ (1.57)

These assumptions guarantee that random variables A = V0 +
∫ T

0
φtdŜt fulfil

A ∈ L2(Ω,F , Q). We will denote the set of these variables by A. We can
reformulate our task now because

ϑ(V0, φ) = inf
A

∥∥∥Ĥ −A∥∥∥2

L2(Q)
(1.58)

so we are just looking for the orthogonal projection of H into A. If we assume
that A is a closed subspace of L2(Ω,F , Q) we know that the OG projection
exists. We will formulate this in the following theorem.

Theorem 1.5. Let Ŝt be L2-integrable Q-martingale, let Ĥ be L2-integrable
variable dependent on history of St. Then Ĥ can be represented as

Ĥ = EQĤ +

∫ T

0

φHt dŜt +NH (1.59)

where φHt is a L2-integrable predictable strategy and NH is orthogonal to every
stochastic integral with respect to Ŝt.

So integral
∫ T

0
φHt dŜt is the wanted OG projection. NH is a residual risk that

cannot be hedged away. Clearly in the case of the complete markets NH = 0
We omitted some technical mathematical assumptions in order to make idea

behind quadratic hedging clearer, however this idea is very general and almost
model independent. We take closer look at this method in exp-Levy models
option pricing in the next chapter.
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Generalized Black-Scholes equation We can obtain analogues of Black-
Scholes equation even in incomplete models. All we need to do so is Ito lemma.
However the exact form of the equation can depend on the concrete martingale
measure we choose.

We will discuss the form of generalized Black-Scholes equation for stochastic
volatility models in chapter 4 and for Levy models in chapter 2. However we
will first need to derive generalized Ito lemma for Levy processes in order to
derive it.

Merton approach We will know introduce simple incomplete model, we
will choose one possible martingale measure in this case and obtain closed form
solution for price of European call option. In Merton model price of risky asset
is given by

St = S0 exp (µt+ σWt +

Nt∑
i=1

Yi) (1.60)

where Nt is Poison process with intensity λ independent of Wt and Yi ∼
N(m, δ2) are iid variables.

This is in fact exp-Levy model and it is incomplete. So there exists a lot of
equivalent martingale measures Q . Here we choose Q to only change the drift
of Brownian motion as in Black-Scholes theory.

Under the new measure QM we will have

St = S0 exp (µM t+ σWM
t +

Nt∑
i=1

Yi) (1.61)

where

µM = r − σ2

2
− λE(eYi − 1) = r − σ2

2
− λ(exp (m+

δ2

2
)− 1) (1.62)

So Ŝt is martingale under Q because lnSt has independent increments and
EŜt = 1. The assumption of existence of the measure QM will be justified in
the next chapter.

This choice of Q corresponds to the belief that jumps do not bring big
premium risk. So we hedged away a diffusion component only. However this
is not always an optimal choice because jumps usually do bring up significant
risks.

For the European option with payoff H(ST ) we get

CMt = e−r(T−t)EQ[H(St exp (µMτ + σWM
τ +

Nτ∑
i=1

Yi)] (1.63)

where τ = T − t. After some straightforward calculations we obtain

CM (t, S) =
∑
n≥0

e−λτ (λτ)n

n!
CBS(τ, Sn, σn) (1.64)
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where σ2
n = σ2 + nδ2

τ and

Sn = Sexp(nm+
nδ2

2
− λτ(exp (m+

δ2

2
)− 1)) (1.65)

and Black-Scholes price is given by

CBS(τ, S, σ) = e−rτE[H(S exp ((r − σ2

2
))τ + σWτ )] (1.66)

This sum can be calculated numerically with a good proximity now.
To derive the hedging risk, an analogue of Black-Scholes equation and other

quantities we will need Ito lemma for Levy processes. Classical Ito lemma does
not work for these processes! We will return to this in the next chapter when
we have the proper mathematical tools.



Chapter 2

Jump process models

In this chapter we will thoroughly discuss the properties of Levy processes. We
will state and explain the famous Levy-Ito decomposition and other important
theorems about Levy processes. A special focus will be given to the stochastic
calculus. A fundamental result will be a generalization of Ito lemma for jump
processes. This will be essential in the last part of this chapter when we derive
the option pricing formulas in exp-Levy models.

2.1 Basic mathematical tools
We will state here some basic definitions and results needed for the theory of
Levy processes.

Definition 2.1. Function f : 〈0, T 〉 → Rd is cadlag if it is right continuous
with left limits.

So f(t+) = f(t) and limit f(t−) exists for the cadlag function. We will
denote the jump sizes by ∆f(t) = f(t)− f(t−) .

It is well-known that cadlag functions have maximally a countable number
of jumps. Furthermore for ∀ε > 0 f has only a finite number of jumps larger
than ε.

Remark. We will also consider left continuous functions with right limits. We
will call them caglad functions. We will see that that price processes will be
cadlag but our strategy will be a caglad process.

We will denote the space of all cadlag functions byD(〈0, T 〉,Rd). Continuous
functions form clearly a subspace of D(〈0, T 〉,Rd). It can also be equipped
with a topology. This topology corresponds to "weaker" version of uniform
convergence. For details see [34].

The space D(〈0, T 〉,Rd) equipped with this topology is called Skorokhod
space. We will call a process X cadlag if it has cadlag sample paths so

X : Ω→ D(〈0, T 〉,Rd) (2.1)

29
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All Levy processes in particular will be cadlag.

Random times

We will call any positive variable T (ω) ≥ 0 the random time. We say that T
is adapted with respect to the filtration Ft if

{T ≥ t} ∈ Ft ∀t ≥ 0

Adapted random time is often called the stopping time. Important class of
stopping times are so called hitting times.. For a stochastic process X we define
hitting time by

TA = inf{t > 0, Xt ∈ A}

where A = A◦. Further it can be shown that X is a martingale if for all stopping
times τ holds EXτ = EX0

Predictable processes

Let us consider a process X as a random variable X : 〈0, T 〉 × Ω → Rd.
We will introduce two important σ-algebras on 〈0, T 〉 × Ω.

Definition 2.2. Optional σ-algebra O on 〈0, T 〉 × Ω is generated by natural
filtrations of all cadlag processes. Process measurable with respect to O is called
optional.

So cadlag processes generate optional processes in some sense. However an
optional process is not generally cadlag. Similarly caglad processes will generate
predictable processes.

Definition 2.3. Predictable σ-algebra P on 〈0, T 〉 × Ω is generated by natural
filtrations of all caglad processes. Process measurable with respect to P is called
predictable.

This definitions will be very important for us. We already mentioned in the
chapter one that a process defining the self-financing strategy must be caglad
and predictable. It is so because we control our strategy process so there should
not be any “ surprising ” jumps. However the price processes are an opposite
case. We assume that the price of an asset can jump unpredictably so the price
should be a cadlag process.

Poisson process and random measures

We will briefly summarize properties of Poisson process here. We will in-
troduce a notion of the random measure and Poisson measure will be discussed
in particular.
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Definition 2.4. Let us consider iid random variables {τi}∞1 where τi ∼ exp(λ).
We will denote Tn =

∑n
i=1 τi. Then we define Poisson process Nt with intensity

λ by
Nt =

∑
n≥1

It≥Tn (2.2)

We will now review basic properties of this process.

1. P (Nt = n) = e−λt (λt)n

n!

2. Nt has independent and stationary increments

3. Nt has cadlag trajectories and is continuous in probability

4. ENt = V arNt = λt

5. characteristic function of Nt has form

ϕt(u) = exp(λt(eiu − 1))

We will also define compensated Poisson process
∼
N t by

∼
N t = Nt − λt (2.3)

It can be easily shown that
∼
N t is a martingale.

We can also consider a more general counting process Xt

Xt =
∑
n≥1

It≥Sn

where Sn is an increasing sequence of random variables and P (Sn →∞) = 1. It
can be shown that the only counting process with stationary and independent
increments is Poisson process. The main reason for that is unique property of
an exponential distribution, let V ∼ exp (λ) then

P (V > t+ s|V > s) = P (V > t) (2.4)

An exponential distribution has no memory. Moreover it is an only probability
distribution with this property.

Let us get back to Poisson process, it defines a random measure M by

M(ω,A) = #{i ≥ 1, Ti(ω) ∈ A} (2.5)

In particular Nt(ω) = M(ω, 〈0, t〉). We will formalize this notion in the following
definition.

Definition 2.5. Let us consider a probability space (Ω,F , P ), set E ⊂ Rd and
µ Radon measure on (E, E). Then Poisson measure on E with intensity µ is
M : Ω× E → N fulfilling
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1. for bounded A ⊂ E is M(ω,A) <∞ almost surely

2. M( . , A) ∼ Poi(µ(A)) ∀A ∈ E

3. for disjoint sets A1, .., An are (M(A1), ..,M(An)) independent variables

Further it can be shown that every Poisson measure can be written as

M(ω) =
∑
n≥1

δXn(ω) (2.6)

where Xn is a sequence of random variables. For more details see [15].
We will also define compensated Poisson measure

∼
M(A) = M(A)− µ(A) (2.7)

Clearly E(
∼
M(A)) = 0. However

∼
M(A) is not a positive measure.

We will take a brief look on a connection between the random measures and
jump processes now. Let us consider E = 〈0, T 〉 × Rd \ {0} and M Poisson
measure on E with intensity µ. We can write now

M =
∑
n≥1

δ(Tn,Yn) (2.8)

where Tn(ω) ∈ 〈0, T 〉 and Yn(ω) ∈ Rd. Intuitively Tn are times of the jumps
and Yn are sizes of jumps. We say that M is adapted to a filtration Ft if

1. Tn are random times adapted to Ft

2. Yn are FTn -measurable.

For any f : E → R measurable following relation holds

E(M(f)) = µ(f) =

∫ T

0

∫
Rd
f(s, y)µ(ds,dy) (2.9)

If µ|f | <∞ we can define a Ft-adapted process

Xt =

∫ t

0

∫
Rd\{0}

f(s, y)M(ds,dy) =
∑

{n,Tn∈〈0,t〉}

f(Tn, Yn) (2.10)

Moreover if we integrate with the respect to
∼
M = M − µ then the process

Xt =

∫ t

0

∫
Rd\{0}

f(s, y)
∼
M(ds,dy) (2.11)

is a martingale. This is an analogical result to martingale property of Ito inte-
gral.
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Reversely if we consider a cadlag process Xt we can define the measure

JX =
∑
n≥1

δ(Tn,Yn) =

∆Xt 6=0∑
t∈〈0,T 〉

δ(t,∆Xt) (2.12)

where set {t | ∆Xt 6= 0} is countable. We can interpret JX(〈0, t〉 × A) as the
number of jumps of X in between time 〈0, t〉 with amplitude in A. JX contains
all the information about jumps of the process. We have JX = 0 for continuous
processes. J will have for example the following form for Poisson process N

JN =
∑
n≥1

δ(Tn,1)

The meaning of these notions will become clearer in connection with Levy pro-
cesses discussed in the next section.

2.2 Levy processes
In this section we will define Levy processes and state basic theorems about
them. We will also introduce methods for building new Levy processes with
applications to financial models. We will not prove most of the statements
stated here, these proofs can be found in [15],[35] or in many other advanced
textbooks on stochastic calculus.

2.2.1 Properties of Levy processes
Definition 2.6. Cadlag stochastic process X = Xt≥0 is called Levy process, if
it satisfies following properties

1. X0 = 0 a.s

2. X has stationary and independent increments

3. lim
h→0

P (|Xt+h −Xt| > ε) = 0 ∀ε > 0, t ≥ 0

Every process fulfilling all these properties except cadlag property is called
Levy in law. It can be shown that these processes have cadlag modification.

Property (3.) guarantees that probability of jump at any fixed time t is zero.
Mathematically it implies that characteristic function of X is continuous in t.

Obviously Poisson process and Brownian motion with a drift are Levy pro-
cesses. We will see that every Levy process can be decomposed as linear super-
position, possibly uncountable one, of Brownian motion, Poisson process and
the drift.

It follows from independence and stationarity of increments

ϕt+s(u) = ϕt(u)ϕs(u) (2.13)
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where ϕt is a characteristic function of Xt. With use of the continuity of ϕt we
get

ϕt(u) = (ϕ1(u))t (2.14)

Levy processes are closely connected with infinitely divisible distributions.

Definition 2.7. Random variable X is an infinitely divisible if and only if for
every n ∈ N there exists iid random variables Xn,1, ..., Xn,n so that

X
d
= Xn,1 + ...+Xn,n

Clearly ifX is Levy process thenXt is an infinitely divisible variable. Further
the following result holds.

Theorem 2.1. A random variable Y is infinitely divisible if and only if there
exists Levy process X such as

Y
d
= X1

It also follows from (3.13) and the continuity of ϕt that a characteristic
function of Levy process has the form

ϕt(z) = exp (tψ(z)) (2.15)

ψ(z) is a cumulant generating function of X1. Clearly ψt(z) = tψ(z).

Compound Poisson process

Definition 2.8. Compound Poisson process (CPP) with intensity λ is defined
as

Xt =

Nt∑
i=1

Yi (2.16)

where Nt is Poisson process with the intensity λ and Yi are iid random variables.

Clearly CPP is Levy process with piecewise constant trajectories. CPP has
the same jump times as underlying Poisson process. It is well-known that cadlag
functions can be well approximated by piecewise constant functions. Similarly
it is possible to approximate Levy processes by CPP [15].

The following result is also very interesting.

Theorem 2.2. Every Levy process with piecewise constant trajectories is com-
pound Poisson process.

We can calculate a characteristic function of CPP Xt. Let F be a cumulative
distribution of Yi then∑
n≥0

E(eiu
∑n
i=1 Yi)e−λt

(λt)n

n!
=
∑
n≥0

(

∫
Rd
eiuxdF (x))ne−λt

(λt)n

n!
= e−λt

∫
Rd (1−eiux)dF (x)
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so we have
ϕt(u) = exp (t

∫
Rd

(eiux − 1)λdF (x)) (2.17)

We will denote dν(x) = λdF (x). ν is called Levy measure and it corresponds
to " activity " of the jumps.

There is a connection between jump measure JX and Levy measure ν. It si
given by the following theorem.

Theorem 2.3. Let Xt be CPP with Levy measure ν. Then its jump measure
JX is Poisson random measure with the intensity given by

µ(dx, dt) = dν(x)dt (2.18)

This motivates us to define Levy measure for general Levy process as follows.

Definition 2.9. For every Levy process X and Borel measurable set A ⊂ Rd
we define Levy measure ν by

ν(A) = E(#{t ∈ 〈0, 1〉, ∆Xt 6= 0, ∆Xt ∈ A}) (2.19)

Because CPP is a pure jump process it can be written using its jump measure

Xt =
∑
s∈〈0,t〉

∆Xs =

∫
〈0,t〉×Rd

xJX(ds,dy) (2.20)

We should realize that this sum is finite because CPP has almost surely a finite
number of jumps in an every finite interval.

Every finite measure ν on Rd defines Radon measure by (3.18) and this
Radon measure defines CPP. It can be shown that there is one to one corre-
spondence between finite measures ν and compound Poisson processes. However
there exist Levy processes with infinite Levy measures. We will call them infinite
activity processes and discuss them in the next section.

Levy-Ito decomposition

We can consider Levy process Xt given by

Xt = γt+Wt +X0
t (2.21)

Where W is Brownian motion independent on CPP X0. The question if all
Levy processes can be decomposed in this way? Not exactly. The problem is
with infinite activity processes. Every Levy measure ν fulfils

A compact, 0 /∈ A =⇒ ν(A) <∞

this follows directly from the cadlag property. So every Levy measure is Radon
measure on Rd \ {0}. However there is problem when an infinite number of
jumps around {0} occurs. The following result holds.
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Theorem 2.4. Let X be Levy process in Rd with Levy measure ν. Then

1. ν is Radon measure on Rd \ {0} and∫
|x|≤1

|x|2dν(x) <∞ and

∫
|x|≥1

dν(x) <∞ (2.22)

2. jump measure JX is Poisson random measure with intensity dν(x)dt

3.
Xt = γt+Bt +X1

t + lim
ε→0

∼
X
ε

t (2.23)

where γ ∈ Rd, Bt is Brownian motion with a covariance matrix A and

X1
t =

∫ t

0

∫
|x|≥1

xJX(ds,dx) and
∼
X
ε

t =

∫ t

0

∫
ε≤|x|≤1

x(JX(ds,dx)−dν(x)ds)

where a convergence is in almost sure sense and uniform on 〈0, T 〉.

We will also from now on denote
∼
JX(ds,dx) = JX(ds,dx)− dν(x)ds

So every Levy Process is uniquely determined by triplet (A, ν, γ). It means that
every continuous Levy process has the form Xt = γt+Wt. Clearly X1

t is a CPP
but also

Xε
t =

|∆Xt|>ε∑
s∈〈0,t〉

is ∀ε > 0 a compound Poisson process. However the problem at neighbourhood
of 0 must be solved by centring of Xt. It can be shown that limit in (3.23)

converges thanks to the martingale property of
∼
X
ε

t .
We can easily see now the general form of a characteristic function of Levy

process from the previous theorem.

Theorem 2.5. Let X be Levy process in Rd with triplet (A, ν, γ) then its char-
acteristic function ϕt(z) = etψ(z) is given by

ψ(z) = −1

2
(z,Az) + iγz +

∫
Rd

(eizx − 1− izxI|x|≤1)dν(x) (2.24)

where ( , ) denotes a scalar product in Rd.

The choice of the function I|x|≤1 in the last term of previous theorems is
not obligatory. There are many possible choices. If for example an additional
assumption ∫

|x|≥1

|x|dν(x) <∞ (2.25)
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holds then we can rewrite the characteristic function as follows

ψ(z) = −1

2
(z,Az) + iγcz +

∫
Rd

(eizx − 1− izx)dν(x)

where γc = γ +
∫
|x|≥1

xdν(x) is called the centre of mass because EXt = γct.
It is also important to realize that in the case of infinite activity ν(Rd) =∞,

has Levy process a countable number of jumps and its jumps are dense in 〈0,∞).

Trajectories of Levy processes

Variation of a function f on a finite interval 〈0, T 〉 is defined by

sup
τ

n∑
i=1

|f(ti)− f(ti−1)|

where supremum is over every partition of 〈0, T 〉, 0 = t0 < ... < tn = T .
We say that Levy process has a finite variation if its trajectories have finite

variation almost surely. It is well known that Brownian motion has a.s. in-
finite variation so Levy processes with finite variation do not have a diffusion
component. However that is not a sufficient condition.

Theorem 2.6. Levy process with triplet (A, ν, γ) has a finite variation ⇐⇒
A = 0 and

∫
|x|≤1

|x|dν(x) <∞

Proof. We will only show a main idea of the prove, we need to prove that

variation of process
∼
X
ε

t is finite, this means

lim
ε→0

∫ t

0

∫
ε<|x|<1

|x|JX(dx.ds) < 0 a.s.

which is equivalent to the condition
∫
|x|≤1

|x|dν(x) <∞.

Levy-Ito decomposition can be simplified for Levy processes with finite vari-
ation. Let X be a finite variation Levy process with a triplet (0, ν, γ) then

Xt = ct+

∫
〈0,t〉×Rd

xJX(ds,dx) (2.26)

where
c = γ −

∫
|x|≤1

xdν(x) (2.27)

so the characteristic function has the form

ϕt(u) = exp (t(icu+

∫
Rd

(eiux − 1)dν(x)) (2.28)

We will now introduce an important subclass of Levy processes.
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Definition 2.10. Levy process in R with non-decreasing sample paths is called
a subordinator.

Subordinators will be very useful for the building of new Levy processes.
They will be interpreted as new stochastic time. This could be useful in finance
where we can interpret this time as the market time. This idea goes back to
Mandelbrot [8].

The following theorem is very useful for the recognition of subordinators.

Theorem 2.7. The following statements are equivalent for every Levy process
X with the triplet (A, ν, γ)

1. X is subordinator

2. Xt ≥ 0 for some t > 0

3. Xt ≥ 0 for every t > 0

4. A = 0, ν((−∞, 0〉) = 0,
∫ 1

0
xdν(x) <∞ and c ≥ 0

So subordinators are processes with positive drift and jumps and also with
finite variation, this is not surprising because non-decreasing trajectories imply
finite variation.

There is an easy way to define new subordinators. Let f : Rd → 〈0,∞) be
a positive function with the behaviour f(x) = O(x2) for x → 0. Then for an
arbitrary Levy process Xt in Rd we can define

St =

∆Xt 6=0∑
s∈〈0,t〉

f(∆Xs) (2.29)

and St is subordinator. The condition f(x) = O(x2) is important because it
guarantees convergence of the sum.

We obtain the following process by the choice f(x) = x2

St =

∆Xt 6=0∑
s∈〈0,t〉

(∆Xs)
2 ≡ [X,X]d (2.30)

It is called a discontinuous quadratic variation.

Probability density of Levy processes

Clearly not all Levy processes have absolutely continuous distribution. For
example the density of Poisson process obviously does not exist.

The following result holds in one dimension.

Theorem 2.8. Levy process X in R with a triplet (σ2, ν, γ) has the continuous
density if σ > 0 or ν(R) =∞. Moreover if

∃β ∈ (0, 2) lim inf
ε→0

ε−β
∫ ε

−ε
x2dν(x) > 0
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Then pt ∈ C∞(R) and all its derivatives vanish in ±∞.

A prove is quite straight forward, see [36].
There is a connection between a density and Levy measure of Levy process.

Let us consider CPP Xt with an intensity λ and the jump size given by an
absolutely continuous distribution with a density f . We will denote

pact (x) =

∞∑
n=1

f∗n(x)e−λt
(λt)n

n!
(2.31)

where f∗n is n-th convolution. Then we can write

P (Xt ∈ A) =

∞∑
n=0

P (Xt ∈ A|Nt = n)e−λt
(λt)n

n!
= e−λtI{0∈A} +

∫
A

pact (x)dx

(2.32)
So the distribution of X is an absolutely continuous on R\{0}. We can see that
lim
t→0

1
t p
ac
t (x) = λf(x). This implies that for every bounded measurable function

f fulfilling f(0) = 0 we have

lim
t→0

1

t
E(f(Xt)) =

∫
Rd
f(x)dν(x) (2.33)

This result holds even for infinite activity processes if we consider f(x) = 0 on
neighbourhood of 0. This result implies that Levy measure determines short
time behaviour of probability density.

The connection between Levy measure and probability density demonstrated
above can be used to prove following useful theorems about existence of the
moments.

Theorem 2.9. Levy process in R with a triplet (σ2, ν, γ) fulfils E|Xt|n <∞ for
∀t > 0 or equivalently for arbitrary t > 0 if and only if∫

|x|≥1

|x|ndν(x) <∞ (2.34)

Theorem 2.10. Levy process in R with triplet (σ2, ν, γ) fulfils E(euXt) < ∞
for ∀t > 0 or equivalently for arbitrary t > 0 if and only if∫

|x|≥1

euxdν(x) <∞ (2.35)

we get in that case
E(euXt) = etψ(−iu) (2.36)

It is very convenient to calculate moments of Levy processes by differen-
tiating the characteristic or cumulant generating function. Moments cn =
1
in
∂nψ(u)
∂un (0) are especially interesting because they are linear in t. We have

explicitly

EXt = c1(Xt) = t(γ +

∫
|x|≥1

xdν(x)) (2.37)
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V arXt = c2(Xt) = t(σ2 +

∫
R
x2dν(x)) (2.38)

and cn(Xt) = t
∫
R x

ndν(x) for n ≥ 2. This in particular implies the following
scaling relation for a skewness and the kurtosis of Levy processes

s(Xt) =
c3(Xt)

(c2(Xt))3/2
=
s(X1)√

t
, κ(Xt) =

c4(Xt)

(c2(Xt))2
=
κ(X1)

t

These scaling relations can be used as indicators of how well the data can be
fitted by Levy processes.

Stable processes

Stable distributions play very important role in the probability theory as
attractors of sequences of random variables [3]. See also appendix B for a short
review of properties of stable distributions.

So we should assume that stable processes will also play an important role.
Their characteristic function has the form

lnϕt(k) = itγk − σt|k|α(1 + iβ
|k|
k
ω(k, α)) (2.39)

where

ω(k, α) =

{
−tan(πα/2) for α 6= 1
(2/π)ln|k| for α = 1

How the characteristic triplet of stable distributions looks is an important ques-
tion. An answer is given by the following theorem.

Theorem 2.11. Levy process in R with generating triplet (σ2, γ, ν) is α-stable
for some α ∈ (0, 2〉, if one of these conditions is fulfilled

1. α = 2 and ν = 0

2. α ∈ (0, 2), σ = 0 and ν = (c+I(0,∞) +c−I(−∞,0))|x|−(α+1)dx where c± ≥ 0

Nice proof can be found in [16]. For the multidimensional version of this
theorem see [15].

It holds β = c+−c−
c++c−

so c± = 0 if and only if β = ∓1. The moment generating
function EeλXt exists in these cases for λ > 0 respectively λ < 0. These are
only cases when it exists, this follows from the theorem (2.10).

Stable process is Brownian motion or an infinitely active process without a
diffusion component. It demonstrates that an infinite activity can in some sense
substitute a diffusion component.
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Martingales and Levy processes

We will state here two theorems that can help us determine if Levy process
or its exponential is a martingale.

Theorem 2.12. Let X be any process in R with independent increments then.

1. ∀u ∈ R is eiuXt

E(eiuXt )
a martingale

2. if E(euXt) <∞, ∀t ≥ 0 then euXt

E(euXt )
is a martingale

3. if EXt <∞, ∀t ≥ 0 then Mt = Xt − EXt is a martingale

4. if V arXt <∞, ∀t ≥ 0 then M2
t − EM2

t is a martingale

This theorem follows directly from the independent increments property.
The following theorem will also be very useful.

Theorem 2.13. X Levy process in R with a triplet (σ2, ν, γ) is

1. martingale ⇐⇒ γc = γ +
∫
|x|≥1

xdν(x) = 0 and
∫
|x|≥1

|x|dν(x) <∞

2. eXt is martingale ⇐⇒
∫
|x|≥1

exdν(x) <∞ and
σ2 + γ

2 +
∫
R(ex − 1− xI|x|≤1)dν(x) = 0

The first statement is obvious, we will prove the second statement later with
use of Ito lemma for Levy processes.

Levy processes and their generators

It is also worth noting that Levy processes are only Markov processes ho-
mogeneous in both the time and space. Mathematically speaking if we define

Ps,t(x,B) = P (Xt ∈ B|Xs = x) (2.40)

then it holds Ps,t(x,B) = P0,t−s(0, B − x).
Generators of Ito diffusions and corresponding Kolmogorov equations are

well known [7]. We will now briefly discuss form of generators for Levy processes,
we will see that due to jump part of Levy processes its generators will be non-
local pseudo differential operators.

For every Markov process X and every measurable, bounded function f we
can define its time evolution operator by

(Tt,sf)(x) = E(f(Xt)|Xs = x) (2.41)

We will consider only Markov processes for which is Tt,s operator on space of
bounded functions with supremum norm. These processes are called normal.
Tt,s is then clearly a linear operator, furthermore it holds Ts,rTt,s = Tt,r for
r < s < t and ‖Tt,s‖ ≤ 1.
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Markov processes with stationary increments are called time-homogeneous.
For time homogeneous processes holds

Tt,s = Tt−s,0 TsTt = Tt+s (Ttf)(x) = E(f(Xt + x)) (2.42)

Further we will call time-homogeneous Markov process Feller process if

1. Tt : C0(Rd)→ C0(Rd)

2. lim
t→0
‖Ttf − f‖ = 0 ∀f ∈ C0

where C0 denotes continuous function vanishing in infinity. It can be shown
that every Levy process is Feller [35].

Theory of semigroups gives us important result that for transition probabil-
ities Tt≥0 of any Feller process there exist a generator of this semi group

Tt = etA Af = lim
t→0

Ttf − f
t

(2.43)

A is called a generator of Feller process and it is in general unbounded, closed
operator.

Space homogeneity of Levy processes can be reformulated as follows: Levy
processes are only Feller processes with translational invariant transition prob-
abilities.

More rigorously if we define operator (Paf)(x) = f(x+ a) then [Tt, Pa] = 0
holds only for Levy processes.

The following theorem gives us form of generator for Levy process.

Theorem 2.14. Let X be Levy process with cumulant generating function ψ(z)
and triplet (B, γ, ν). Let A be generator of X and f ∈ S(Rd), where S(Rn)
denotes Schwartz space. Then it holds

1. (Ttf)(x) =
∫
Rn e

izxetψ(z)(F−1f)(z)dz

2. (Af)(x) =
∫
Rn e

izxψ(z)(F−1f)(z)dz

3. (Af)(x) = γi∂if(x)+ 1
2B

ij∂i∂jf(x)+
∫
Rn−{0}(f(x+y)−f(y)−yi∂if(x)I|y|≤1)ν(dy)

Proof. Using (Ttf)(x) = E(f(Xt + x)), rewriting f as Fourier transform and
switching order of integration yields 1.), using this result and a definition of A
yields 2.), 3.) follows from elementary properties of Fourier transform.

Kolmogorov equations for Levy processes

We define u(t, x) = (Ttf)(x). Then from definition of A holds

∂tu(t, x) = Au(t, x) u(0, x) = f(x) (2.44)

Rewriting this equation for transition density pt yields∫
Rn
f(y)∂tpt(y|x)dy =

∫
Rn
f(y)Axpt(y|x)dy (2.45)



CHAPTER 2. JUMP PROCESS MODELS 43

using the fact that A and Tt commute yields similarly∫
Rn
f(y)∂tpt(y|x)dy =

∫
Rn
f(y)A†ypt(y|x)dy (2.46)

where A†y is adjoint operator in variable y. Above equations hold for any function
f so we get following equations

(A†y − ∂t)pt(y|x) = 0 (Ax − ∂t)pt(y|x) = 0 (2.47)

If we assume no jumps i.e. ν = 0 then we got well-known forward and backward
Kolmogorov equation [6]. If we include jumps these equations are incredibly
complicated and there is no general expression for adjoint operator .

Under some additional assumptions these equations also hold for Levy-type
processes, which are broadly speaking processes we obtain by stochastic inte-
gration with respect to Levy process.

2.2.2 Building models from Levy processes
We will introduce few ways to build new Levy processes in this section. We will
also introduce few models built in this manner.

There are three main approaches to building new Levy processes - by linear
transformation, subordination and by tempering the Levy measure. Proofs of
the theorems they can be found in [15].

Linear transformation

A linear transformation of Levy process is of course also Levy. We will state
here the following general formula without going into any details.

Theorem 2.15. Let X be Levy process in Rd with a triplet (A, ν, γ), M ∈ Rn,d.
Then Y = MX is Levy process in Rn with the characteristic triplet given by

AY = MAMT , νY (B) = ν({x,Mx ∈ B}) (2.48)

γY = Mγ +

∫
Rn
y(I|y|≤1 − IS1)dνY (y) (2.49)

where S1 = {Mx, |x| ≤ 1}

Subordination

We will consider subordinator St with a triplet (0, ρ, c). Laplace exponent
l(u) given by E(euSt) = etl(u) has in this case the form

l(u) = cu+

∫ ∞
0

(eux − 1)dρ(u) for u ≤ 0 (2.50)

analogically as in (2.28).
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We want to interpret S as new stochastic time. This technique can be very
useful in finance as well as in physics. A similar technique was for example used
in [37] to prove an equivalence between a for dimensional harmonic oscillator
and Coulomb potential in the quantum mechanics.

The following result holds.

Theorem 2.16. Let X be Levy process in Rd with triplet (A, ν, γ) and the
cumulant generating function ψ. Let St be a subordinator defined above. Then
a process

Y (t, ω) = X(S(t, ω), ω) (2.51)

is Levy with a characteristic function and the triplet given by

ϕYt(u) = exp (tl(ψ(u))) (2.52)

AY = cA, νY (B) = cν(B) +

∫ ∞
0

pXs(B)dρ(s) (2.53)

and
γY = cγ +

∫ ∞
0

dρ(s)

∫
|x|≤1

xpXs(dx) (2.54)

where pXt = P ◦X−1
t

The term (2.52) makes a sense because for every Levy process <(ψ(u)) ≤ 0.
We say that Y is a subordinate to the process X by S. Stable processes

are useful subordinators. We will discuss Brownian subordination later in this
section. Here we will introduce a α-stable subordinator St with α ∈ (0, 1).
Clearly Levy measure of S must fulfil ν((−∞, 0〉) = 0 and we will assume that
a drift c = 0. Then the characteristic exponent of S has the form

l(u) = C1

∫ ∞
0

eux − 1

xα+1
dx = −C1Γ(1− α)

α
(−u)α (2.55)

If we now choose process X to be also a stable symmetric process given by
ψX(z) = −C2|z|β then the resulting process Y will be also stable and given by

ψY (u) = l(ψX(u)) = −C1C
α
2

Γ(1− α)

α
|u|αβ

Tempering the Levy measure

We will introduce the last technique for building Levy processes here - a
change of Levy measure. Let us consider Levy measure ν such that∫

|x|≥1

eξxdν(x) <∞

then
∼
ν(dx) = eξxν(dx) is also Levy measure. So we can transform process with

triplet (A, ν, γ) into the new one with (A,
∼
ν, γ). This transformation is called

Esscher transform. We can get a variety of new processes in this manner.
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We can also consider asymmetric Esscher transform in the one dimensional
case

d
∼
ν(x) = dν(x)(Ix>0e

−λ+|x| + Ix<0e
−λ−|x|) (2.56)

where λ± > 0. This transform will damp large jumps on both tails.

Models based on Levy processes

We have to make some choices when defining Levy model. The first one
should be to choose the a jump-diffusion model or an infinity activity model.

Jump-diffusion models are defined as a sum of Brownian motion and
compound Poisson process. So there are driven by diffusion and have occasional
jumps. The distribution of jump sizes is known in this models but the probability
density is not usually available in a closed form. They are also quite easy to
simulate.

Infinite activity models usually do not contain a diffusion component and
are driven only by jumps. They give realistic predictions of the price process.
The probability density in some cases is known in a closed form. However they
are harder to simulate and the distribution of jump sizes does not exist for them.

Another choice is how to specify the given model. Usual choices are by
Brownian subordination or by by specifying the probability density or Levy
measure. All of them have some advantages and disadvantages. For a further
discussion see [15].

There is a huge amount of in detail analysed models, we will mention only
few of them.

Merton model: we have already encounter this model. Process X, usually
interpreted as logarithm of the price, is given by

Xt = µt+ σWt +

Nt∑
i=1

Yi (2.57)

where Nt is Poison process independent of Wt and with the intensity λ. Yi ∼
N(m, δ2) are iid variables. X has a continuous density. This follows from the
theorem (2.8). It is given by

pt(x) = e−λt
∞∑
k=0

(λt)k

k!

exp (−(x−γt−km)2

2(σ2t+kδ2) )√
2π(σ2t+ kδ2)

(2.58)

Levy density has the form

ν(x) =
λ√

2πδ2
exp (

−(x−m)2

2δ2
) (2.59)

by an integration we can get cumulant generating function.

ψ(u) = λ(exp (
−σ2u2

2
+ imu)− 1) + icu− σ2u2

2
(2.60)
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Where c is defined by (2.27). We can easily calculate all moments now by
differentiating ψ.

In conclusion Merton model is jump-diffusion model with four free parame-
ters σ,m, δ, λ and the drift. It has heavier tails then normal distribution.

Kou model is also a jump-diffusion model. The Levy density of CPP is
given explicitly by

ν(x) = λ(pλ+e
−λ+|x|Ix>0 + (1− p)λ−e−λ−|x|Ix<0)dx (2.61)

we obtain by an integration

ψ(u) = icu− σ2u2

2
+ iuλ(

p

λ+ − iu
− 1− p
λ− + iu

) (2.62)

We can again calculate all moments from ψ. We do not have the probability
density in a closed form in Kou model. To conclude Kou model has five free
parameters λ, λ±, σ, p and the drift. It has exponential tails p(x) ∼ e−λ±x in
±∞.

Brownian subordination has a nice interpretation as Brownian motion in
“business” or deformed time. Let St be a subordinator with Laplace exponent
l(u), Levy density ρ and with a drift c. We consider a model

Xt = σW (St) + µSt (2.63)

using the theorem (2.16) we can write

ψX(u) = l(iµu− σ2u2

2
) (2.64)

We can calculate moments now, if µ = 0 we can write explicitly

EXt = 0, V arXt = σ2ESt, κ(Xt) =
3V arSt
ES2

t

(2.65)

Levy density of X has from theorem (2.16) the form

ν(x) =

∫ ∞
0

exp (
−(x− µt)2

2tσ2
)

dρ(t)√
2πσ2t

(2.66)

Tempered stable processes: We will mention this model only briefly.
They are infinitely activity processes given by Esscher transformation of α-
stable processes with α ∈ (0, 2). They do not a have diffusion component and
their Levy density is given by

ν(x) =
C−e

−λ−|x|

|x|α+1
Ix<0 +

C+e
−λ+|x|

|x|α+1
Ix>0 (2.67)

where c±, λ± > 0. They are much better known as truncated Levy flights
in physics [4]. This truncation ensures that tempered stable process has all
moments finite. This follows from the theorem (2.9). Physicists usually perform
this truncation by making cut-off of approximated probability density. However
Esscher transform is a much more elegant approach.
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2.3 Stochastic calculus for jump processes
We will introduce an integration with respect to a very general class of processes
called semimartingales in this section. We will also state the generalized versions
of Ito lemma. We will not rigorously prove most of the statements here but
we will explain the meaning and ideas behind them. See [35] for a rigorous
approach.

We will start with a brief introduction of this problematic. We want to define
an integral in the sense

∑
i

φi(STi+1 − STi) ≡
∫ T

0

φtdSt (2.68)

We will call φt = (φ1
t , .., φ

n
t ) a strategy. St = (S1

t , .., S
n
t ) will be a cadlag process.

We will consider S even more general than Levy processes later. We will see
an interesting fact that the assumptions we imposed on S and φ as on an asset
price and the strategy will be convenient even in a general theory.

We will start with a definition of the convenient class of integrands.

Definition 2.11. Process φt∈〈0,T 〉 is called a simple predictable if it has the
form

φt = φ0It=0 +

n∑
i=0

φiIt∈(Ti,Ti+1〉 (2.69)

where 0 = T0 < ... < Tn+1 = T are adapted random times and φi are bounded,
FTi-measurable random variables.

An integral with the respect to S has for simple predictable processes the
form given by (2.68).

These processes are predictable and caglad so they are viable trading strate-
gies. However they are also important for a theory of the stochastic integration.

We will denote the class of simple predictable processes by S(〈0, T 〉). Trading
strategies will usually be these processes or their limits. Let us note that non-
predictable strategies often leads to the arbitrage opportunities so they are
inadmissible.

The following result underlines the importance of these processes.

Theorem 2.17. If St is a martingale then for any simple predictable process φ
is the process

Xt =

∫ t

0

φdS (2.70)

also a martingale.

Where we assume that martingales are cadlag processes from the definition.
To prove this we only need to show E[XT |Ft] = Xt, which is equivalent to

E[φi(STi+1
−STi)|Ft] = φi(STi+1∧t−STi∧t). This follows easily from properties

of simple processes.
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If we further specify the process S then this property will hold for a much
larger class of strategies. Note that we used this property in the chapter one
where we assumed that φ is a ”reasonable” process. However we have to consider
only the caglad φ for this result to hold.

We will encounter a problem that if we start with Levy process X then the
integral

∫ T
0
φdX or the function f(t,Xt) will not be Levy in general. Moreover

even Markov processes are not stable under these operations. We will talk about
a class of processes that is stable in this sense in the next paragraph.

Semimartingales

The main idea of building the stochastic integral is to define it for simple
processes φn and then for their limits φn → φ. So we need a convergence∫ t

0
φndS →

∫ t
0
φdS to hold in some sense to define integral for all φ. This is the

main idea behind the definition of semimartingales.

Definition 2.12. Adapted cadlag process S is a semimartingale if ∀φn, φ ∈
S(〈0, T 〉) holds

φnt (ω)
Ω×〈0,T 〉

⇒ φt(ω) =⇒
∫ t

0

φndS
P→
∫ t

0

φdS (2.71)

Intuitively this means that a small change of the price S should not change
an integral, i.e. a value of the portfolio, a lot.

Semimartingales are often defined in a different way using a notion of local
martingales. However we believe that this definition is more explanatory.

It can be moreover shown that for every semimartingale the convergence on
the left side of the implication is uniform.

sup
t∈〈0,T 〉

|
∫ t

0

φndS −
∫ t

0

φdS| P→ 0 (2.72)

Every finite variation process X is a semimartingale because if we denote the
variation of X by TV (X) we get

sup
t∈〈0,T 〉

∫ t

0

φdX ≤ TV (X)sup
(t,ω)

|φt(ω)|

It can be also easily shown that every square integrable martingale is a semi-
martingale. So Brownian motion and Poisson process in particular are semi-
martingales. Semimartingales form a vector space therefore every Levy process
is also a semimartingale. Most of the processes we encounter are semimartin-
gales however for example fractional Brownian motion is not.

We should note that the stochastic integration of simple processes is asso-
ciative. It means if St =

∫ t
0
σdX then

∫ t
0
φdS =

∫ t
0
φσdX.

Semimartingales are stable under the stochastic integration i.e. integral
with the respect to the semimartingale is again a semimartingale. This follows
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from the associativity and definition of semimartingales. Definition of semi-
martingales also implies that they are the largest set of processes for which the
stochastic integral can be defined in a classical Ito or Stratonovich sense.

2.3.1 Stochastic integral for caglad processes
We want to define an integral of a caglad process with the respect to a semi-
martingale. The following theorem ensures that it is possible in natural way.

Theorem 2.18. Let us consider φ a caglad process, S a semimartingale and
πn = (0 = Tn0 < ... < Tnn+1 = T ) a random partition such that |πn| = sup

k
|Tnk −

Tnk−1|
a.s.→ 0. Then the following equation holds

φ0S0 +

n∑
k=0

φTk(STk+1∧t − STk∧t)
P→
∫ t

0

φu−dSu (2.73)

Choice of the point Tk in Riemann sum is the same as in Ito integral and
it is important for the martingale preserving property to hold. However we do
not need to bother with the caglad condition in Ito calculus due to a continuity
of Brownian sample paths.

Caglad processes can be written as limits of simple predictable processes.
This is important because the crucial martingale preserving property given by
theorem (2.17) holds only for them. This implies in particular, that if X is a
square integrable martingale and φ is caglad and bounded then

Mt =

∫ t

0

φdX (2.74)

is also a square integrable martingale.

Integral with respect to Brownian motion

The integration with the respect to BM is given by Ito calculus. We will
summarize it in the following theorem, however reader is presumed to be famil-
iar with this theory.

Theorem 2.19. Let φ be a predictable strategy fulfilling E
∫ T

0
φt2dt <∞. Then

process
∫ t

0
φdW is a square integrable martingale and the following properties

hold

1. E(
∫ T

0
φtdWt) = 0

2. isometry property: E(
∫ T

0
φtdWt)

2 = E
∫ T

0
φt2dt

Moreover such strategies can be approximated in the L2 sense by simple
predictable processes φn

E(

∫ T

0

|φt − φnt |2dt)→ 0 (2.75)
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Notice that Ito integral is well defined even for non-caglad processes that are
not admissible trading strategies. We already mention that this is due to the
continuity of Brownian motion.

Integral with respect to Poisson random measure

We will assume Poisson measure M on 〈0, T 〉 × Rn with an intensity µ. We

will as usually denote the compensated measure by
∼
M = M − µ.

Simple predictable processes φ : Ω×〈0, T 〉×Rn → R are in this case defined
by

φ(t, y) =

n,m∑
i,j=1

φijI(Ti,Ti+1〉(t)IAj (y) (2.76)

where Ti forms an increasing sequence of random times, φij are bounded and
FTi-measurable variables and Ai are disjoint sets.

An integral for simple processes is given by∫ T

0

∫
Rd
φ(t.y)M(dt, dy) =

n,m∑
i,j=1

φijM((Ti, Ti+1〉 ×Aj) (2.77)

Obviously the process∫ t

0

∫
Rd
φ(t.y)M(dt,dy) =

n,m∑
i,j=1

φijM((Ti ∧ t, Ti+1 ∧ t〉 ×Aj) (2.78)

is cadlag and adapted.
We already know that a compensated integral

Xt =

∫ t

0

∫
Rd
φ(t.y)

∼
M(dt,dy) (2.79)

is a square integrable martingale. The following isometry property for simple
processes can be shown by straightforward calculations

EX2
t = E(

∫ t

0

∫
Rd
|φ(t, y)|2µ(dt, dy)) (2.80)

The crucial point of this construction is to show that for every predictable
process fulfilling

E(

∫ t

0

∫
Rd
|φ(t, y)|2µ(dt,dy)) <∞ (2.81)

there exists a sequence φn of simple processes such that

E(

∫ t

0

∫
Rd
|φ(t, y)− φn(t, y)|2µ(dt,dy))→ 0 (2.82)
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therefore ∫ t

0

∫
Rd
φn(t.y)

∼
M(dt, dy)

L2

→
∫ t

0

∫
Rd
φ(t.y)

∼
M(dt, dy) (2.83)

So the martingale and isometry property will be preserved for such φ. This
result is summarized in the following theorem.

Theorem 2.20. Let φ be a predictable process fulfilling E(
∫ t

0

∫
Rd |φ(t, y)|2µ(dt, dy)) <

∞, then the following statements hold

1. Xt =
∫ t

0

∫
Rd φ(t.y)

∼
M(dt,dy) is a square integrable martingale

2. isometry property: EX2
t = E(

∫ t
0

∫
Rd |φ(t, y)|2µ(dt, dy))

This is a completely analogical approach to the construction of Ito integral.
See [35] for more details.

We will of course work mainly with Poisson measures given as jump measures
of Levy processes. For M = JS a jump measure of Levy process with the
intensity dν(x)dt we have

∫ T

0

∫
Rd
φ(t.y)M(dt,dy) =

∆St 6=0∑
t∈〈0,T 〉

φ(t,∆St) (2.84)

Integration with respect to martingale measures

Above we presented the heuristic idea of stochastic integration, here we will
present more general approach that will cover problems discussed above as par-
ticular examples.

We will consider random measure (not necessary positive one) on R+ ×Rn.
We will denote M((0, t〉×A) = M(t, A) and assume that M(t, A) is Ft-adapted
martingale process. We will call M (2, ρ)-measure if the following conditions
are satisfied

1. M({0}, A) = 0 a.s.

2. M((s, t〉, A) is independent of Fs

3. E(M(t, A))2 = ρ(t, A) where ρ is σ-finite measure

L2 theory: We assume integrands F : 〈0, T 〉 ×A× Ω→ R, A ⊂ Rn fulfilling

1.
∫ T

0

∫
A
E(|F (t, x)|2)ρ(dt, dx) <∞

2. F is predictable

These functions form Hilbert space with scalar product given by

(F,G) =

∫ T

0

∫
A

E(F (t, x)G(t, x))ρ(dt, dx) (2.85)
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We denote this space as H2, simple functions are defined as

F =
∑
j,k

Fk(tj)I(tj ,tj+1〉IAk

where Fk(tj) are bounded and Ftj measurable, Ak are disjoint sets of finite
measure. The standard construction of Lebesgue integral implies that these
simple functions are dense in H2.

Construction now proceeds in the same way as in Poison case, we obtain the
following result.

Theorem 2.21. Let F ∈ H2, let M be (2, ρ) measure, then for stochastic
integral defined as It(F ) =

∫ t
0

∫
A
F (s, x)M(ds, dx) holds

1. It(F ) is Ft-adapted square integrable martingale

2. E(It(F ))2 =
∫ t

0

∫
A
E(|F (t, x)|2)ρ(dt, dx)

Extended theory: The integration with respect to (2, ρ) measure can be
extended for larger class of processes fulfilling

P (

∫ T

0

∫
A

E(|F (t, x)|2)ρ(dt, dx) <∞) = 1 (2.86)

The convergence of an integral will be only in probability sense in this case and
the integral itself will be only a local martingale, see [35] for details.

This theory enables to define stochastic integral for large class of processes
called Levy type integrals

Yt = Y0+

∫ t

0

Gsds+

∫ t

0

FsdWs+

∫ t

0

∫
|x|<1

H(s.x)
∼
JX(ds, dx)+

∫ t

0

∫
|x|≥1

K(s, x)JX(ds, dx)

(2.87)
where JX is jump measure of Levy process X and integrands have to fulfil
conditions required in L2-theory or at least conditions of extended theory.

Quadratic variation and covariation

We will consider partition π = {0 = t0 < ... < tn+1 = T} then we can
define a realized quadratic variation

VX(π) =
∑
ti∈π

(Xti+1
−Xti)

2 = X2
T −X2

0 − 2
∑
ti

Xti(Xti+1
−Xti)

The last term in the previous equation reminds an integral −2
∫ T

0
Xu−dXu

where X− is a left continuous version of X.
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Definition 2.13. Let us consider a semimartingale X, X0 = 0. We define a
cadlag and adapted process

[X,X]t = X2
t − 2

∫ t

0

Xu−dXu (2.88)

called the quadratic variation

For a sequence of partitions πn such that |πn| → 0 holds

ti∈〈0,t)∑
ti∈πn

(Xti+1 −Xti)
2 P→ [X,X]t (2.89)

We will summarize the properties of quadratic variation:

1. [X,X]t ≥ [X,X]s ≥ 0 for t ≥ s

2. ∆[X,X]t = |∆Xt|2

3. if X has continuous trajectories and a finite variation then [X,X] = 0

4. if X is a martingale and [X,X] = 0 then Xt = X0

This implies that the quadratic variation of X is continuous if and only if X
is continuous. We can see that the intersection of martingales and continuous
processes with a finite variation contains only constants. A decomposition of
the process to the square integrable martingale and to the continuous process
with a finite variation is unique if exists. Martingales represents a noise and
continuous processes with a finite variation the drift in this decomposition.

It holds for every Levy process X with the triplet (σ2, ν, γ)

[X,X]t = σ2t+
∑
s∈〈0,t〉

|∆Xs|2 (2.90)

Moreover a quadratic variation of Levy process is also Levy and a subordinator.
We will briefly mention also the quadratic covariation.

Definition 2.14. For X,Y semimartingales we define the quadratic covariation
by

[X,Y ]t = XtYt −X0Y0 −
∫ T

0

(Xs−dYs + Ys−dXs) (2.91)

it can be shown similarly as above that if X0 = 0 then

ti∈〈0,t)∑
ti∈πn

(Xti+1
−Xti)(Yti+1

− Yti)
P→ [X,Y ]t
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2.3.2 Generalized Ito formula
The following relation holds for smooth function f, g in real analysis

f(g(t))− f(g(0)) =

∫ t

0

f ′(g(s))g′(s)ds (2.92)

The stochastic version of this formula is given by Ito lemma for diffusion pro-
cesses. We will derive a generalization of it for jump processes.

Let us consider a piecewise smooth function x(t) with discontinuities T1, .., Tn

x(t) =

∫ t

0

b(s)ds+
∑
Ti≤t

∆xi (2.93)

It is a cadlag function. The generalized version of (2.92) for x(t) can be easily
derived. It is given by the following theorem.

Theorem 2.22. Let us consider a function x(t) in the form (2.93) and a real
function f ∈ C1. Then we can write

f(x(T ))− f(x(0)) =

∫ T

0

b(t)f ′(x(t−))dt+

n+1∑
i=1

(f(x(Ti−) + ∆xi)− f(x(Ti−))

(2.94)

This can be directly applied to a process

Xt(ω) = X0 +

∫ t

0

bs(ω)ds+

Nt(ω)∑
i=1

∆Xi(ω)

If we combine this result with classical Ito formula we will obtain Ito lemma for
jump-diffusion processes.

Ito lemma for jump-diffusion processes

Theorem 2.23. Let us consider a process

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

Nt∑
i=1

∆Xi (2.95)

where bt, σt are continuous, E
∫ T

0
σ2
t dt <∞ and Ti are jump times of N . Then

the following holds for any function f ∈ C2

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
+ bs

∂f

∂x
+

1

2
σ2
s

∂2f

∂x2
)ds+

∫ t

0

σs
∂f

∂x
dWs+

+
∑

{i,Ti≤t}

(f(s,XTi− + ∆Xi)− f(s,XTi−))
(2.96)
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we avoided arguments f = f(s,Xs) for simplicity.
The last term can be rewritten as∑

{i,Ti≤t}

(f(XTi−+∆Xi)−f(XTi−)) =

∫ t

0

∫
R

(f(s,Xs−+y)−f(s,Xs−))JX(ds,dy)

(2.97)

The process f(t,Xt) can be decomposed as a sum of a square integrable
martingale Mt and a drift Vt. So f(t,Xt) = Mt + Vt where

Mt =

∫ t

0

∫
R

(f(s,Xs− + y)− f(s,Xs−))
∼
JX(ds,dy) +

∫ t

0

σs
∂f

∂x
dWs (2.98)

and

Vt =

∫ t

0

(
∂f

∂s
+bs

∂f

∂x
+

1

2
σ2
s

∂2f

∂x2
)ds+

∫ t

0

λds

∫
R

dF (y)(f(s,Xs−+y)−f(s,Xs−))

(2.99)
Where λdF (y)dt = dν(y)dt is the intensity of JX .

This decomposition is very convenient for calculation of the expected value.
The term (2.96) can be also rewritten as

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
+

1

2
σ2
s

∂2f

∂x2
)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs+

+
∑

{i,Ti≤t}

(f(s,XTi− + ∆Xi)− f(s,XTi−)−∆Xs
∂f

∂x
(s,Xs−))

(2.100)

You should notice that in the integrands with respect to ds,dWs does not matter
if we take the left continuous version ofX or not. That is why we omit arguments
there. However when we integrate with respect to not absolutely continuous
measures it is important. We will see that this expression is equivalent to (2.96)
in the case of the finite number of jumps, however in an infinite activity case it
will be more general.

Ito lemma for Levy processes

The situation is more complicated in the case of infinite activity Levy pro-
cesses. We cannot distinguish the time evolution given by diffusion component
and by the jumps. The approach used above is not sufficient. However with the
use of much more sophisticated methods the same result can be obtained.

Theorem 2.24. Let X be Levy process with a triplet (σ2, ν, γ) and f ∈ C2 a
real function. Then

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
+

1

2
σ2 ∂

2f

∂x2
)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs+

+

∆Xs 6=0∑
s∈〈0,t〉

(f(s,Xs− + ∆Xs)− f(s,Xs−)−∆Xs
∂f

∂x
(s,Xs−))

(2.101)
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If we consider a bounded function f ∈ C2 with both derivation also bounded
then a martingale/drift decomposition f(t,Xt) = Mt + Vt can be obtained. We
use Levy-Ito decomposition and we get

Mt =

∫ t

0

∫
R

(f(s,Xs− + y)− f(s,Xs−))
∼
JX(ds,dy) +

∫ t

0

σ
∂f

∂x
dWs (2.102)

and

Vt =

∫ t

0

ds

∫
R

dν(y)(f(s,Xs− + y)− f(s,Xs−)− yI|y|≤1f
′(s,Xs−))+

+

∫ t

0

(
∂f

∂s
+ γ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
)ds

(2.103)

The conditions imposed on f guarantee that the first integral in (3.83) converges.
It can be verified using Lagrange theorem and properties of Levy measures.

We will state for completeness also a multidimensional version of Ito lemma
for Levy processes.

Theorem 2.25. Let Xt = (X1
t , ..., X

d
t ) be Levy process with a triplet (A, ν, γ)

and let f : 〈0, T 〉 × Rd → R be a function f ∈ C2 then

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
ds+

d∑
i,j=1

∫ t

0

1

2
Aij

∂2f

∂xi∂xj
ds+

d∑
i=1

∫ t

0

∂f

∂xi
(s,Xs−)dXi

s+

+

∆Xs 6=0∑
s∈〈0,t〉

(f(s,Xs− + ∆Xs)− f(s,Xs−)−
d∑
i=1

∆Xi
s

∂f

∂xi
(s,Xs−))

(2.104)

Ito lemma for semimartingales

It is worth noticing that Ito formula only depends on trajectories of processes
not on their probabilistic structures. So generalizing Ito lemma for semimartin-
gales is not as difficult as it might seem, however we will only state the main
result. See [34] for more details.

A quadratic variation of a semimartingale X can be decomposed to a con-
tinuous and pure jump part

[X,X]t = [X,X]ct + [X,X]jumpt

Ito formula for semimartingales has now the following form.

Theorem 2.26. Let X be a semimartingale and let us consider a function



CHAPTER 2. JUMP PROCESS MODELS 57

f ∈ C2. Then

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
ds+

1

2

∫ t

0

∂2f

∂x2
d[X,X]cs +

∫ t

0

∂f

∂x
(s,Xs−)dXs+

+

∆Xs 6=0∑
s∈〈0,t〉

(f(s,Xs− + ∆Xs)− f(s,Xs−)−∆Xs
∂f

∂x
(s,Xs−))

(2.105)

It follows from this theorem that the class of semimartingales is stable un-
der all sufficiently smooth transformations f because they can be written as a
stochastic integral.

Martingale drift decomposition for semimartingales is bit more complicated.
We will consider only semimartingales in the form of Levy type integrals

Yt = Y0+

∫ t

0

γsds+

∫ t

0

σsdWs+

∫ t

0

∫
|x|<1

H(s.x)
∼
JX(ds, dx)+

∫ t

0

∫
|x|≥1

K(s, x)JX(ds, dx)

(2.106)
Then d[Y, Y ]ct = σ2

t dt. If we assume that coefficients γ, σ,K,H are "well-
behaved", then the drift term has a form

Vt = γt +

∫
|x|≥1

K(t, x)ν(dx) (2.107)

where ν(dx)dt is an intensity of JX . However if Vt = 0 then Yt is not a martingale
but only a local martingale [35], often we will not strictly distinguish martingales
and local martingales for purposes of this thesis.

Exponential of Levy processes

In the next section we will build models based on exponentials of Levy pro-
cesses. It will be convenient for us to make some calculations about them now
and have them prepared in advance.

Let X be Levy process with a triplet (σ2, ν, γ) and a jump measure JX .
Then for Yt = exp (Xt) we will using Ito lemma get

Yt = 1+

∫ t

0

Ys−dXs+

∫ t

0

σ2

2
Ys−ds+

∫
〈0,t〉×R

Ys−(ez−1−z)JX(ds,dz) (2.108)

If EYt <∞, which is according to the theorem (2.10) equivalent to
∫
|y|≥1

eydν(y) <

∞, then there exists a martingale/drift decomposition in the form

Mt = 1 +

∫ t

0

σYs−dWs +

∫
〈0,t〉×R

Ys−(ez − 1)
∼
JX(ds,dz) (2.109)

and

Vt =

∫ t

0

Ys−(γ +
σ2

2
+

∫
R

(ez − 1− zI|z|≤1)dν(z))ds (2.110)
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We can see that the condition
∫
|y|≥1

eydν(y) < ∞ guarantees the existence of
integral in (2.110).

So Yt is a martingale if and only if Vt = 0. This is equivalent to the condition
given by the theorem (2.13) γ + σ2

2 +
∫
R(ez − 1− zI|z|≤1)dν(z) = 0.

Similarly if we consider Xt to be Levy type integral in the form (2.106) we
get with use of Ito lemma for semimartingales the condition for drift term to
vanish

γt +
1

2
σ2
t +

∫
|x|<1

(eH(t,x) − 1−H(t, x))ν(dx) +

∫
|x|≥1

(eK(t,x) − 1)ν(dx) = 0

(2.111)
and Yt is a local martingale if and only if Vt = 0. Moreover it can be shown
that if EYt = 1 then Yt is a martingale.

2.4 Option pricing and hedging in exp-Levy mod-
els

In this section we will discuss concepts of equivalent martingale measures, hedg-
ing and option pricing in exp-Levy models. We have already introduced these
notions in the chapter one, here we will discuss them in this special case. The
theory of Levy processes we built in this chapter will be essential here.

2.4.1 Equivalence of measures for Levy processes
We demonstrated an importance of equivalent martingale measures in option
pricing in the chapter one. We remind that every pricing rule is connected with
the martingale measure by the following relation

Πt(H) = e−r(T−t)EQ[H|Ft]

We used Girsanov theorem (1.1) for a recognition of equivalent measures in
Black-Scholes case. We will need a similar result for Levy processes. We will
state a general result for Levy process, this result is due to Sato [36].

Theorem 2.27. Let (X,P ), (Y, P ′) be Levy processes in R with triplets (σ2, ν, γ)
and (σ2′ , ν′, γ′) respectively. Then P |Ft∼ P ′ |Ft for any or equivalently every
t > 0 if and only if the following conditions hold

1. σ = σ′

2. ν ∼ ν′ and
∫
R(eφ(x)/2 − 1)2dν(x) <∞

3. if σ = 0 then γ′ = γ +
∫ 1

−1
xd(ν′ − ν)(x)

where φ = ln dν′

dν .
Radon-Nikodym derivative has the form then

dP ′

dP
|Ft= eMt (2.112)



CHAPTER 2. JUMP PROCESS MODELS 59

where

Mt = αXc
t−αγt−

α2σ2t

2
+lim
ε→0

(

∫ t

0

∫
|x|>ε

φ(x)JX(ds, dx)−t
∫
|x|>ε

(eφ(x)−1)ν(dx))

(2.113)
where Xc

t is continuous part of X and α is given by

ασ2 = γ′ − γ −
∫ 1

−1

xd(ν′ − ν)(x) (2.114)

if σ > 0 and α = 0 if σ = 0.

It can be easily shown by some rearranging of terms thatMt is Levy process
with characteristic triplet given by

σ2
M = σ2α2 (2.115)

νM = νφ−1 (2.116)

γM = −σ
2α2

2
−
∫
R

(ey − 1− yI|y|≤1)(νφ−1)(dy) (2.117)

We can easily verify that eMt is a martingale using result (2.110).
A very interesting fact is that we cannot change the drift term in the absence

of a diffusion component. However we can temper the Levy measure, which leads
to a great variety of models.

This theorem allows us to define new equivalent measure Q by defining
Radon-Nykodym derivative. We define dQ

dP |Ft= eMt where

Mt = γtdt+ σtdWt +

∫
R−{0}

H(t, x)
∼
JX(dt, dx) (2.118)

eMt must be a martingale, this determines the coefficient γt, using (2.111) yields

γt = −1

2
σ2
t −

∫ t

0

∫
R−{0}

(eH(s,x) − 1−H(s, x))ν(dx)ds (2.119)

This is actually more general form of Mt then given by theorem (2.27), so this
change of measure can define models driven by processes with non-stationary in-
crements (case of deterministic, time dependent coefficients) or even by processes
without independent increments (random coefficients). The case γt, σt = const.
and H(t, x) = φ(x) leads to exp-Levy models.

Under new measure Q is

WQ(t) = W (t)−
∫ t

0

σsds (2.120)

standard Brownian motion. This follows from Girsanov theorem. Moreover if
we define νQ(t, A) =

∫ t
0

∫
A
eH(s,x)ν(dx)ds then the random measure

∼
JQ(t, A) =

∼
JX(t, A)− νQ(t, A) + ν(t, A) A ∈ B(R) (2.121)
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is a martingale under Q. To prove this we need to show that eMt
∼
JQ(t, A) is

P -martingale. Using Ito lemma yields

d(eMt
∼
JQ(t, A)) =

∼
JQ(t, A)deMt + eMt

∼
JQ(dt, A) + deMt

∼
JQ(dt, A) (2.122)

using JX(dt, dx)JX(dt, dy) = JX(dt, dx)δ(x− y) yields

d(eMt
∼
JQ(t, A)) =

∼
JQ(t, A)deMt + eMt

∼
JQ(dt, A) +

∫
A

(eH(s,x) − 1)JX(ds, dx)

(2.123)
so inserting for JQ yields

d(eMt
∼
JQ(t, A)) =

∼
JQ(t, A)deMt +

∫
A

eMt
∼
JX(dt, dx) +

∫
A

(eH(s,x)−1)
∼
JX(dt, dx)

(2.124)

this proves our statement because both eMt and
∼
JX are P -martingales.

Useful way to obtain new equivalent Levy measures is Esscher transform,
which we already discussed in section 2.2.2. Let us consider Levy process X
with a triplet (σ2, ν, γ) and let assume

∫
|x|>1

euxν(dx) < ∞. Then we can
define Radon-Nykodym derivative by

dQ

dP
|Ft=

euXt

E(euXt)
= euXt−tψ(−iu) (2.125)

where ψ is a cumulant generating function given by (2.24), clearly euXt−tψ(−iu)

is a positive martingale so this defines equivalent measures. Moreover this new
measure is obtained by tempering of Levy measure νQ(dx) = euxν(dx) and the
drift is changed according to γQ − γ −

∫ 1

−1
x(eux − 1)ν(dx) = σ2. This follows

directly from theorem (2.27). We will see that Esscher transform is a very useful
tool in the next section.

An important question is if exp-Levy models St = expXt, X Levy, are
arbitrage free. So question is if there always exists equivalent measure Q under
which is a discounted price Ŝt = e−rtSt a martingale. Answer is given by the
following theorem.

Theorem 2.28. Model St = eXt arbitrage free for every Levy process X with
neither increasing nor decreasing trajectories.

The proof of this theorem is quite straightforward but bit technical, it uses
the general result (2.27) and Esscher transform. It can be found in [15].

This theorem in particular implies that every Levy process with a diffusion
component defines an arbitrage free exp-Levy model.

2.4.2 Hedging in exp-Levy models
We have already discussed hedging in incomplete markets in the chapter one.
We know that models with jumps usually generate incomplete markets. We will
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now revisit general methods described in the chapter one in the framework of
exp-Levy models.

We will consider the set of all equivalent martingale measures denoted by
M{C}, it is important that the incomplete model is not fully defined by a choice
of the historical price process but we also need to choose a concrete martingale
measure.

Merton approach revisited

We discussed Merton approach thoroughly in the chapter one. We remind
that a price of the risky asset is given by

St = S0 exp (µt+ σWt +

Nt∑
i=1

Yi) = eXt (2.126)

equivalently we can write

dSt = (µ+
σ2

2
)Stdt+ σStdWt +

∫
R
St−(ey − 1)JX(dt, dy) (2.127)

We chose an equivalent martingale measure QM under which only the drift term
changed. The theorem (2.27) ensures validity of this choice. We also derived in
the chapter one the price of the call option in this model given by (1.64).

We will now make a few more calculations with the use of generalized Ito
lemma. We know that under QM is a discounted option price ĈMt = CMt e−rt a
martingale. So we can write under QM

ĈMT −ĈM0 =

∫ T

0

∂CM

∂S
ŜuσdWM

u +

∫ T

0

∫
R

(CM (u, Su−+z)−CM (u, Su−))
∼
JX(du,dz)

(2.128)
This follows from Ito lemma and the martingale/drift decomposition. We hedged
only a diffusion component so we will obtain the same self-financing strategy
(φ0
t , φt) as in Black-Scholes case

φt =
∂CM

∂S
(t, St−) (2.129)

and
φ0
t =

C(t, St−)− φtSt
S0
t

(2.130)

The strategy did not change but Black-Scholes equation has a different form
here. We will discuss the form of B.-S. equation in exp-Levy models in the next
section.

We can also write the discounted hedging error i.e. the risk we did not
neutralize as

ĤT − e−rTVT (φ) = ĈMT − ĈM0 −
∫ T

0

∂CM

∂S
(u, Su−)dŜu (2.131)



CHAPTER 2. JUMP PROCESS MODELS 62

Incompleteness of exp-Levy models

We talked about exp-Levy models being incomplete, we will prove this state-
ment in this section.

We will consider model
dSt = St−dXt (2.132)

where Xt is Levy process with characteristic triplet (σ̂2, γ, ν). Further we will
assume

∫
R max(|x|, x2) <∞, so in particular Xt has finite second moment.

It can be shown that equation (2.132) with initial condition S0 = 1 has
unique solution in the form [35]

St = εX(t) = exp (Xi −
1

2
[X,X]ct)

∏
s≤t

(1 + ∆Xs)e
−∆Xs (2.133)

Using Ito lemma it can be verified that εX(t) solves (2.132). εX(t) is called
stochastic exponential and it can be written as exponential of Levy process
when X is Levy.

εX(t) is clearly positive only if jumps ∆Xt > −1, so we will assume ν{(−∞,−1)} =
0. We will consider Xt in the form

Xt = mt+ σ̂Wt +

∫ ∞
−1

x
∼
JX(t, dx), m = γ +

∫ ∞
1

xν(dx) (2.134)

Using Ito lemma for a discounted price Ŝt = e−rtSt yields

d(ln Ŝt) = σ̂dWt+(m−r+ σ̂2

2
)dt+

∫ ∞
−1

ln(1+x)
∼
JX(dt, dx)+

∫ ∞
−1

(ln(1+x)−x)ν(dx)dt

(2.135)
We will now consider equivalent measure Q given by dQ

dP |Ft= eMt where Mt is

given by (2.118). Rewriting (2.135) in terms of WQ,
∼
JQ given by (2.120),(2.121)

yields

d(ln Ŝt) = σ̂dWQ(t) + (m− r +
σ̂2

2
+ σ̂σt +

∫ ∞
−1

x(eH(t,x) − 1)ν(dx))dt+∫ ∞
−1

ln(1 + x)
∼
JQ(dt, dx) +

∫ ∞
−1

(ln(1 + x)− x)νQ(dx)dt

(2.136)

We know that under Q are WQ,
∼
JQ martingales.

d(ln Ŝt) can be under Q decomposed as d(ln Ŝt) = d(ln Ŝmt )+d(ln Ŝdt ), where

d(ln Ŝmt ) = σ̂dWQ(t)+
σ̂2

2
+

∫ ∞
−1

ln(1+x)
∼
JQ(dt, dx)+

∫ ∞
−1

(ln(1+x)−x)νQ(dx)dt

(2.137)
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and
d(ln Ŝdt ) = (m− r + σ̂σt +

∫ ∞
−1

x(eH(t,x) − 1)ν(dx))dt (2.138)

We can rewrite (2.137) and (2.138) as

dŜmt = σ̂Ŝ1
t dWQ(t) +

∫ ∞
−1

xŜ1
t

∼
NQ(dt, dx) (2.139)

d(Ŝdt ) = (m− r + σ̂σt +

∫ ∞
−1

x(eH(t,x) − 1)ν(dx))Ŝdt dt (2.140)

We have dŜt = Ŝmt dŜ
d
t + Ŝdt dŜ

m
t (because dŜdt dŜmt = 0) so for Ŝ to be a (local)

martingale is required Ŝdt = 0. This implies the following condition

m− r + σ̂σt +

∫
R
x(eH(t,x) − 1)ν(dx) = 0 (2.141)

where m, r, σ̂ are parameters of a model and σt, H(t, x) are parameters deter-
mining the new martingale measure. If we do not want to go beyond exp-Levy
models we can consider only σt = const.,H(t, x) = φ(x).

The equation above has infinitely many solutions because if we assume
(σt, H) to be a solution then also (σt +

∫
R f(x)ν(dx), ln(eH − σ̂f

x )) is a solu-
tion for any integrable function f .

There are only two cases where this equation has unique solution

1. ν = 0 Black-Scholes model

2. σ̂ = 0, ν(x) = λδ(x− a) Poison process with a drift

all other Levy models are incomplete.

Quadratic hedging in exp-Levy models

We introduced the idea of the quadratic hedging in the chapter one. We
will now consider exp-Levy model

St = exp (rt+Xt) (2.142)

where X is Levy process with a triplet (σ2, ν, γ). Let us assume that Q is a risk
neutral measure under which is Ŝt a martingale. Moreover we want ES2

t < ∞
to hold. It is equivalent to the condition∫

|y|≥1

e2ydν(y) <∞

We will consider only quadratically integrable strategies (so the L2-theory ap-
plies)

EQ[|
∫ T

0

φtdŜt|2] <∞ (2.143)
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We will denote the set of them by L2(S).
We will consider self-financing strategy (φ0

t , φt). The discounted portfolio
price V̂t(φ) = V̂0 +

∫ t
0
φdŜ is clearly a martingale under the new measure.

We want now to find a strategy that minimizes the following term

inf
φ∈L2(S)

|V̂T (φ)− V̂0 − Ĥ|2 (2.144)

Obviously an expected value of the hedging error is V0 − EQĤ. The following
theorem states when this problem can be solved explicitly.

Theorem 2.29. Let us consider exp-Levy model with a risk neutral measure Q

dŜt = ŜtdZt

where Z is Levy process with a diffusion coefficient σ and Levy measure ν.
Let C be an European option with a payoff H fulfilling

|H(x)−H(y)| ≤ K|x− y|, K > 0

so a price of the option can be written as

C(t, S) = e−r(T−t)EQ[H(ST )|St = S]

then the optimal strategy given by (3.112) is

φt = θ(t, St−) (2.145)

θ(t, St) =
σ2 ∂C

∂S (t, S) + 1
S

∫
R z(C(t, S(1 + z))− C(t, S))dν(z)

σ2 +
∫
R z

2dν(z)
(2.146)

Clearly this theorem is applicable for put/call options.
The assumption about pay off function H is important because it implies

that the option price will be smooth enough for Ito lemma to apply. When Ito
lemma applies then we can prove this statement as follows:

The value of the portfolio is a martingale under Q so we have

V̂T =

∫ T

0

φtdŜt =

∫ T

0

φtσŜt−dWt +

∫ T

0

∫
R
φtŜt−z

∼
JZ(dt, z) (2.147)

Notice that if we consider Ŝt = expXt then the form of dŜt will be given by a
martingale drift decomposition (3.97) so

V̂T =

∫ T

0

φtdŜt =

∫ T

0

φtσŜtdWt +

∫ T

0

∫
R
φtŜt−(ex − 1)

∼
JX(dt, x) (2.148)

We get similarly

Ĉ(t, St)−Ĉ(0, S0) =

∫ t

0

∂C

∂S
σŜudWu+

∫ t

0

∫
R

(C(u, Su−(1+z))−C(u, Su−))
∼
JZ(du,dz)

(2.149)
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or in the terms of X

Ĉ(t, St)−Ĉ(0, S0) =

∫ t

0

∂C

∂S
σŜudWu+

∫ t

0

∫
R

(C(u, Su−e
x)−C(u, Su−))

∼
JX(du,dx)

(2.150)
We want to minimize a residual risk now

RT (φ) = Ĉ(T, ST )− Ĉ(0, S0)− V̂T (φ) (2.151)

in the mean square sense. We now obtain the strategy (3.114) by calculating
E(RT (φ))2 with use of isometry property and minimizing it then with respect
to φt.

Minimal entropy hedging

We mentioned minimal entropy approach already in the chapter 1, its idea is
to minimize relative entropy of original measure P and new martingale measure
Q. The relative entropy is defined as

ε(Q,P ) = EQ(ln (
dQ

dP
)) = EP (

dQ

dP
ln (

dQ

dP
)) (2.152)

This reminds standard standard definition of Shannon entropy. Function f(dQ
dP ) =

dQ
dP ln (dQ

dP ) is convex, therefore it is easy to show using Jensen inequality that
ε(Q,P ) ≥ 0.

It can be shown that in the case of exp-Levy models the entropy ε(Q,P )
only depends on the Levy measures under P and Q [15]. Therefore we should
obtain the minimal entropy measure Q by only tempering the Levy measure.

Moreover it turns out that when we consider model St = eXt and Xt is Levy
process then it is sufficient to consider Esscher transform νQ(x) = euxνP (x). It
leads to the new measure given by (2.125)

eMt(u) ≡ dQu
dP
|Ft=

euXt

E(euXt)
(2.153)

Let us assume that X is Levy process with a triplet (σ̂2, γ, ν) given by (2.134).
Ito lemma combined with a fact that EMt is a martingale then gives

deMt(u) = Mt−(u)(σ̂udWt + (eux − 1)
∼
JX(dt, dx)) (2.154)

Comparison to the general form of Mt (2.118) gives H(t, x) = ux and σt = σ̂u.
The equation (2.141) has to be satisfied for Qu to be a martingale measure, it
has the following form

m− r + σ̂2u+

∫
R−{0}

x(eux − 1)ν(dx) = 0 (2.155)

where m is defined by (2.134) and r is an interest rate. Above equation can be
rewritten as

z(u) = r −m (2.156)
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where
z(u) = σ̂2u+

∫
R−{0}

x(eux − 1)ν(dx) (2.157)

clearly z′(u) ≥ 0 so z(u) is invertible and the above equation has a solution.
The solution yields an equivalent martingale measure Qu which minimizes the
entropy (2.152).

2.4.3 Risk neutral modelling in exp-Levy models
In this section we will assume that the stochastic dynamics under risk-neutral
measure is known and we will talk about possible ways to calculate the option
prices then.

We will assume an exp-Levy model

St = S0 exp (rt+Xt)

where X is Levy process. We assume that a risk neutral dynamics is given by
measure Q, so discounted price Ŝt is a martingale under Q.

We assume call options with payoff H(ST ) = (ST −K)+. We can write the
option price under Q as

C(t, S, T = τ + t,K) = e−rτE((ST −K)+|St = S) (2.158)

it can be rewritten as

C(t, S, T = τ + t,K) = Ke−rτE(ex+Xτ − 1)+ (2.159)

where x = ln S
K + rτ . We used the independence a stationarity of increments to

essentially reduce the problem to two degrees of freedom. This is consequence
of the time and space homogeneity of Levy processes.

The option price can be also written as convolution

C(t, S, T = τ + t,K) = Ke−rτ
∫
R
pτ (y)h(x+ y) = Ke−rτ (qτ ∗ h)(x) (2.160)

where h(x) = (ex − 1)+ is modified pay off function, pτ is transition density
and qτ (y) = pτ (−y). This implies that the option price is often continuous
even when the pay off function is discontinuous, which is important because Ito
lemma can be used then.

Fourier transform methods

We very rarely obtain a closed form solution of the option price in exp-Levy
models. We usually do not have a density in a closed form but we have the gen-
eral form of a characteristic function (2.24). We will assume that risk-neutral
dynamic is given i.e. we know the characteristic function of process Xt under
martingale measure Q. Methods we introduce here will enable as to find Fourier
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transform of the option price in this case. We need to perform a numerical in-
verse transformation then to obtain option price, however numerical approaches
to Fourier transformation are very well developed. The typical approach is well-
known FFT method [38].

Carr-Madan method: We will assume here that we calculate the option
price in the time t = 0 and S0 = 1. We also denote k = lnK. We will require
the following condition to hold

∃α > 0,

∫
R
pT (y)e(1+α)ydy <∞ (2.161)

where pt is a density of Xt under a risk neutral measure. Equivalently we can
write

∫
R e

(1+α)ydν(y) <∞. We will also denote a characteristic function of Xt

under Q by ϕt.
We can write the price of a call option as

C(k) = e−rTE(erT+XT − ek)+ (2.162)

The problem is that C(k) is not integrable because lim
k→−∞

C(k) > 0. So we

cannot calculate Fourier transform of C directly. We will define

zT (k) = e−rTE(erT+XT − ek)+ − (1− ek−rT )+ (2.163)

zT is integrable and we will calculate its Fourier transform ψT (v) = FzT (v).
We can rewrite zT with use of EeXt = 1

zT (k) = e−rT
∫
R
pT (x)(erT+x − ek)(Ik≤x+rT − Ik≤rT )dx (2.164)

We can now calculate Fourier transform of zT . We obtain after some calculations

ψT (v) = FzT (v) = eivrT
ϕT (v − i)− 1

iv(1 + iv)
(2.165)

We used the condition (2.161) that enables us to change the order of integration.
We obtain zT as

zT (k) =
1

2π

∫
R
e−ikxψT (x)dx (2.166)

and from zT we get the price of the option. So we only need to perform numer-
ically an inverse Fourier transform to obtain the option price.

Lewis method: We will formulate this method more generally. Let us
consider a payoff function h and denote s = lnS0. We can write the price of the
general European option as the function of the initial price

C(s) = e−rT
∫
R
h(es+x+rT )pT (x)dx (2.167)

We first need to summarize some results from the theory of complex Fourier
transform.
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We call the function h Fourier integrable in the strip (a, b) if the following
condition holds ∫

R
(e−ay + e−by)|h(y)|dy <∞ (2.168)

Fourier transform is defined for such h and for z ∈ C, a < Imz < b as

Fh(z) =

∫
R
eiyzh(y)dy (2.169)

It exists and is analytical when above conditions are satisfied. Moreover we can
write the inverse transform for such z as

h(x) =
1

2π

∫ iv+∞

iv−∞
e−izxFh(z)dz, a < v < b (2.170)

We will require the following conditions for Lewis method

1. pT (x) is Fourier integrable in the strip S1

2.
∼
h(x) = h(ex+rT ) is Fourier integrable in the strip S2

3. S = S1 ∩ S2 6= ∅ where S1 denotes a complex conjugate

We want to calculate Fourier transform of the option price now

FC(z) = e−rT
∫
R
pT (x)dx

∫
R
eizsh(es+x+rT )ds (2.171)

using a substitution s = y − x we obtain a formula

FC(z) = e−rTϕT (−z)F
∼
h(z), ∀z ∈ S (2.172)

This can be applied to any option. We will show the concrete application for
call options now.

The form of the payoff function for the call option is h(x) = (x − K)+ =

(x − exp k)+. It means that
∼
h(x) is Fourier integrable in the strip (1,∞). We

can calculate Fourier transform of
∼
h(x) and obtain

F
∼
h(z) =

ek+iz(k−rT )

iz(iz + 1)
, Imz > 1 (2.173)

We need the density pT (x) to be Fourier integrable in some strip (a, b) where
a < −1. The conditions of Lewis method will be satisfied then. This is clearly
equivalent to the condition of Carr-Madan method (2.161).

We can use (2.172) when this condition is satisfied and we obtain

FC(z) =
ϕT (−z)e(1+iz)(k−rT )

iz(iz + 1)
, 1 < Imz < 1 + α (2.174)
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We get with the use of the inverse formula (2.170)

C(x) =
exp (vx+ (1− v)(k − rT ))

2π

∫
R

exp (iu(k − x− rT ))ϕT (−iv − u)

(iu− v)(iu− v + 1)
du

(2.175)
where 1 < v < 1 + α.

Lewis method is obviously more complicated than Carr-Madan’s. However
provided we make a good choice of the parameter v this method is more conve-
nient for numerical purposes.

Black-Scholes equation in exp-Levy models

We will discuss the form of Black-Scholes equation for models with jumps
here. However we will first discuss a connection between Black-Scholes equa-
tion and a change of measure technique in the local volatility models.

We remind that in the local volatility models has the option pricing equation
the form

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2(t, S)S2 ∂

2C

∂S2
− rC = 0 (2.176)

where C = C(t, S) is the option price. Solving this equation with boundary
conditions given by the particular option yields the option price. The case
σ = const. is just Black-Scholes case.

We also know that under the risk neutral measure we can write the option
price with the payoff H as

C(t, S) = e−r(T−t)E(H|S = St) (2.177)

We will demonstrate that a connection between these two approaches is given
by the famous Feynman-Kac formula. It states that if we consider parabolic
equation for function u = u(t, x) in the form

∂u

∂t
+

1

2
σ2(t, x)

∂2u

∂x2
+ µ(t, x)

∂u

∂x
− V (t, x)u(t, x) + f(t, x) = 0 (2.178)

with the boundary condition u(x, T ) = ψ(x) then the solution can be written
as the conditional expectation

u(t, x) = EQ(

∫ T

t

e−
∫ s
t
V (τ,Xτ )dτf(s,Xs)ds+ e−

∫ T
t
V (τ,Xτ )dτψ(XT )|Xt = x)

(2.179)
where under Q

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.180)

Feynman-Kac formula is often written in the terms of path integration due to its
connection with the quantum theory and Feynman integral. This formula has
an importance in a quantum mechanics in a connection with Schrödinger equa-
tion and in the theory of stochastic processes in the connection with parabolic
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equations and a diffusion. It also has an importance in a theory of the option
pricing.

The Black-Scholes equation for local volatility models is clearly parabolic
and has the form (2.178) so Feynman-Kac formula can be applied. It also has a
boundary condition in the required form. We can write the solution of (2.176)
for European options with a payoff H(ST ) using Feynman-Kac formula as

C(t, S) = EQ(e−r(T−t)H(ST )|St = S) (2.181)

and under Q
dSt = rStdt+ σ(t, St)StdWt (2.182)

So we can see that the discounted price Ŝt = e−rtSt is a martingale under Q as
required by no-arbitrage argument.

Everything becomes much more complicated when we consider jump models.
They are incomplete. So the unique connection between the equation and the
measure under which the solution can be written as an expectation does not
exist. However Feynman-Kac formula for Levy processes can be found in the
literature [35]. It is fairly complicated and the connection between it and integro-
differential equations of the form (2.47) is not well understood.

The analogue of Black-Scholes equation for exp-Levy models has the follow-
ing form

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
− rC +

∫
(C(t, Sey)− C(t, S)−

− S(ey − 1)
∂C

∂S
(t, S))dν(y) = 0

(2.183)

It is an integro-differential equation. The integral term makes it non-local equa-
tion. Numerical methods for such equations are being extensively developed
lately. However they are still extremely difficult to deal with.

We will derive the equation (2.183) now.
Let us consider exp-Levy model St = exp(rt+Xt). The discounted price

Ŝt has the form given by the martingale decomposition (2.109) under the risk
neutral measure. We have for the price itself

St = S0 +

∫ t

0

rSudu+

∫ t

0

σSudWu +

∫
〈0,t〉×R

Su−(ex − 1)
∼
JX(du,dx) (2.184)

We will now derive the equation (2.183) in a standard way by calculating dĈt =
d(e−rtCt) and setting the drift term to zero. We need to use Ito lemma for
semimartingales. We obtain with a use of [S, S]ct =

∫ t
0
(σSu)2du the following

dĈt = e−rt((
∂C

∂t
+

1

2
σ2S2

t

∂2C

∂S2
− rC)dt+

∂C

∂S
(t, St−)dSt)+

+ e−rt((C(t, St−e
∆Xt)− C(t, St−))−∆St

∂C

∂S
(t, St−)))

(2.185)
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Where ∆St = St−(e∆Xt − 1). By taking a drift term now and setting it to zero
we obtain the desired equation (2.183).

There is a problem we ignored, the option price Ct might not be smooth
enough for Ito lemma. However if we consider the payoff function H = H(ST )
fulfilling

|H(x)−H(y)| ≤ c|x− y| c > 0 (2.186)

and if process X has a diffusion component σ > 0 or fulfils condition

lim inf
ε→0

ε−β
∫ ε

−ε
x2dν(x) > 0

then the above derivation is completely rigorous.
Solving generalized Black-Scholes equation with appropriate boundary con-

ditions is probably the most general approach to the option pricing, however
the equation (2.183) is extremely difficult to solve numerically. Overview of
numerical methods for this type of equations can be found in [15].

The role of Levy processes in finance became significant in past years. We
built a compact mathematical apparat for the option pricing in exp-Levy models.
However we did not pay much attention to one of the key steps in the option
pricing process - to a calibration of models. We have to calibrate models not
only with respect to the historical price process in incomplete markets but also
with respect to the option price itself given by a market at time t = 0. This
is a huge difference compared to complete markets. The calibration theory will
certainly be one of the subjects of our future research.



Chapter 3

Anomalous diffusion and
fractional processes

In this chapter we will use a more physical approach to stochastic processes.
It will be in the contrast with the previous chapter where we approached this
problematics with more rigorosity.

In the first section of this chapter we will derive a fractional diffusion equation
from a continuous random walk model. We will obtain stable processes as a
special solution of these equations. Our approach will be very intuitive however
it will well demonstrate an important role of fractional processes. We will also
briefly present an anomalous diffusion represented by non-linear Fokker-Planck
equation as another approach to systems beyond the central limit theorem and
Boltzmann-Gibbs statistics.

In the second part of this chapter we will take a closer look at the double-
fractional equation and then introduce possible applications for the option pric-
ing.

Throughout this chapter we will use a notation and facts about the stable
distributions and fractional derivatives stated in appendixes B and C.

3.1 Generalized Fokker-Planck equation
A diffusion is one of the most important processes observed in the nature. It
occurs in every natural science. It was first observed by biologist Robert Brown,
it was further developed by Einstein, Wiener and many others. It also has
deep connection with non-relativistic quantum mechanics [19]. A diffusion is
mathematically usually described by Fokker-Planck equation or a corresponding
Ito stochastic equation.

A classical diffusion is described by Markov processes with Brownian driving
noise. This corresponds to the belief that the central limit theorem works. It

72
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leads to a linear scaling relation for the variance

〈x2(t)〉 ∼ Kt (3.1)

However in many systems different behaviour can be observed. Fractional pro-
cesses are typical by a non-linear scaling

〈x2(t)〉 ∼ Kαt
α (3.2)

Fractional behaviour can be found for example in fractal systems, a connection
between the fractal geometry and fractional processes is very interesting [22].
Furthermore fractional behaviour can be derived from an ordinary Langevin
equation when a trapping or memory effects occur. See [21] for more thorough
discussion.

Continuous time random walk

We will briefly introduce a classical diffusion and the basic notions of a con-
tinuous time random walk (CTRW) in this section. This formalism will be later
useful for a derivation of the fractional diffusion equations.

We will consider random walk on discrete lattice with jumps of sizes ∆x and
jump times ∆t, in classical case master equation has the form

W (x, t+ ∆t) =
1

2
W (x+ ∆x, t) +

1

2
W (x−∆x, t) (3.3)

Where W (x, t) is the density of being at the position x = j∆x in time t = k∆t.
Using Taylor expansion

W (x, t+ ∆t) = W (x, t) + ∆t
∂W

∂t
+O(∆t)2 (3.4)

and

W (x±∆x, t) = W (x, t)±∆x
∂W

∂x
+

(∆x)2

2

∂2W

∂x2
+O(∆x)3 (3.5)

We obtain the following equation by sending ∆x,∆t→ 0 and assuming standard
Brownian scaling

∂W

∂t
= K1

∂2W

∂x2
(3.6)

where

K1 = lim
∆x,∆t→0

(∆x)2

2∆t
(3.7)

Th equation (3.6) is the simplest form of Fokker-Planck equation. The density
of Brownian motion is the solution of this equation with the initial condition
W (x, 0+) = δ(x)

W (x, t) =
1√

4πK1t
exp (− x2

4K1t
) (3.8)
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W can be considered as a diffusion propagator of a free particle. Its Fourier
image can be easily obtained

F(W (x, t))(k, t) = exp(−K1k
2t) (3.9)

and the equation (3.6) will have the form

∂(FW )

∂t
= −K1k

2FW (3.10)

From now on we will denote Fourier transform only by a change of an underlying
variable x→ k. So F(W (x, t))(k, t) ≡W (k, t). Similarly Laplace transform de-
fined as L(W (x, t))(x, u) =

∫∞
0
e−utW (x, t)dt = W (x, u) will change a variable

t→ u.
We will now move to a CTRW. It can be described by a joint density function

ψ(x, t) where

λ(x) =

∫ ∞
0

ψ(x, t)dt (3.11)

is a density of the jump lengths and

w(t) =

∫
R
ψ(x, t)dx (3.12)

is a density of the waiting time in between jumps. We will usually consider
the case ψ(x, t) = λ(x)w(t). However waiting times and jump sizes can be also
considered correlated for example ψ(x, t) = λ(x|t)w(t). An important quantity
is a waiting time T

T =

∫ ∞
0

tw(t)dt (3.13)

and the jump variance

Σ2 =

∫
R
x2λ(x)dx (3.14)

Both of these quantities can be finite or infinite. We will discuss possible cases
and their consequences a bit later.

There are many approaches to describing CTRW. We will consider the den-
sity η of arriving at x at the time t, then we can write

η(x, t) =

∫
R

dx′
∫ t

0

dt′η(x′, t′)ψ(x− x′, t− t′) + δ(x)δ(t) (3.15)

We can rewrite this equation applying Fourier and Laplace transform and using
properties of a convolution. We have in Fourier/Laplace image

η(k, u) =
1

1− ψ(k, u)
(3.16)

We can write the density W of being in x at the time t as follows

W (x, t) =

∫ t

0

η(x, t′)Ψ(t− t′)dt′ (3.17)
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where Ψ(t) is the probability of not jumping up to time t so

Ψ(t) = 1−
∫ t

0

w(t′)dt′ (3.18)

we can write in Laplace image

Ψ(u) =
1− w(u)

u
(3.19)

If we now apply Fourier and Laplace transform in the equation (3.17) we obtain

W (k, u) =
1− w(u)

u

W0(k)

1− ψ(k, u)
(3.20)

where W0(k) is Fourier image of the initial condition W0(x) = W (x, 0+).
We will first derive a classical diffusion equation (3.6) using this formalism.

Let us consider ψ(x, t) = λ(x)w(t) where w has Poisson density

w(t) =
exp(−t/τ)

τ
(3.21)

and λ is normally distributed

λ(x) =
1√

4πσ2
exp(− x2

4σ2
) (3.22)

So clearly both T and Σ2 are finite. We can calculate Laplace respectively
Fourier image of w and λ, up to first order in u respectively k2. We obtain

w(u) = 1− τu+O(u2) u→ 0 (3.23)

and
λ(k) = 1− σ2k2 +O(k4) k → 0 (3.24)

It is worth noting that if T and Σ2 are both finite then every choice of w and λ
leads to the same result in lowest orders and to the same behaviour for t→∞.
See [21],[23] for more details.

We will consider the initial condition W0(x) = δ(x). We obtain by inserting
w and λ to (3.20) and neglecting terms of higher orders the equation

W (k, u) =
1

u+K1k2
(3.25)

where K1 = σ2

τ . We can easily see that this is Fourier/Laplace image of the
equation (3.6) so we will obtain the free propagator (3.8) by the inverse trans-
form.
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3.1.1 From a continuous time random walk to fractional
diffusion

We will now consider the case T =∞ and Σ2 <∞. This is often called fractal
time random walk. The concrete form of w, λ is again not very important. We
will consider normally distributed λ with Fourier image given by (3.24). We will
assume that w has the following behaviour

w(t) ∼ Cα(τ/t)1+α α ∈ (0, 1), t→∞ (3.26)

asymptotics in Laplace image is

w(u) ∼ 1− (τu)α u→ 0 (3.27)

where the factor 1 ensures proper normalization Ψ(u = 0) =
∫
R Ψ(t) = 1.

We now obtain by using (3.20) and neglecting the terms of higher order

W (k, u) =
W0(k)/u

1 +Kαu−αk2
(3.28)

where Kα = σ2

τα . With the use of a property (C.8) of Laplace transform of
Riemann-Liouville derivative we can write

W (x, t)−W0(x) = 0D
−α
t Kα

∂2

∂x2
W (x, t) (3.29)

We can now differentiate this equation and with the use of a composition rule
(C.4) we get

∂W

∂t
= 0D

1−α
t Kα

∂2

∂x2
W (x, t) (3.30)

This is a fractional diffusion equation. Because Riemann-Liouville derivative is
an integral operator this equation is non-local. This implies that the resulting
process is not Markov.

We can easily derive a variance. We can see from the equation (3.30) that

d

dt
〈x2(t)〉 = 0D

1−α
t 2Kα = 2Kα

tα−1

Γ(α)
(3.31)

so we have
〈x2(t)〉 =

2Kα

Γ(1 + α)
tα (3.32)

This can be equivalently derive by the calculation of lim
k→0
− d2

dk2W (k, u) and by
performing an inverse Laplace transform. We can get more generally

〈x2n(t)〉 = (2n)!
2Kn

α

Γ(1 + nα)
tnα (3.33)

We can rewrite the equation (3.29) into the form

0D
α
t W (x, t)− t−α

Γ(1− α)
W0(x) = Kα

∂2

∂x2
W (x, t) (3.34)
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So we can see that the decay of the initial condition is proportional to t−α. This
is the case of sub-diffusion for α ∈ (0, 1), the case α = 1 is a standard diffusion.

The solution of a fractional diffusion equation (3.30) can be found in the
terms of Fox functions. Further by inverse Fourier transform of (3.28) we can
obtain the closed form solution in Laplace image. We will only state the solution
in Fourier image. If we perform Fourier transform in (3.30) we can find the
solution in the terms of Mittag-Leffler function. We can use (C.23) and obtain

W (k, t) = Eα(−Kαk
2tα) (3.35)

Behaviour of Eα is discussed in appendix C. We know that W (k, t) starts with
exponential behaviour and stretches its tails with the time to the heavy tails in
a limit. This behaviour was observed for example in polymer systems [21].

We did not include the case of super diffusion α ∈ (1, 2). All calculation
above would be in principle also valid in this case, but asymptotic relation
(3.27) would not allow proper normalization Ψ(u = 0) = 1 in this case .

Long jumps - stable case

We discussed the case T = ∞ i.e. long rests. We will now take a look at
the case Σ2 =∞. We will see that these long jumps lead to stable distributions.
We will assume usual w(t) given by (3.21) and λ given by its Fourier image

λ(k) = exp(−σµ|k|µ) ∼ 1− σµ|k|µ µ ∈ (0, 2) k → 0 (3.36)

this leads to the well-known asymptotic behaviour of stable distributions

λ(x) ∼ Aµ
|x|1+µ

x→ ±∞ (3.37)

Inserting into (3.20) and neglecting higher order terms leads to

W (k, u) =
W0(k)

u+Kµ|k|µ
(3.38)

where Kµ = σµ

τ . We obtain a fractional equation

∂W

∂t
(x, t) = 0Dµ

xK
µW (x, t) (3.39)

where 0Dµ
x is Riezs-Weyl operator with a skewness 0. We can easily see the

solution in Fourier image now

W (k, t) = exp(−Kµt|k|µ) (3.40)

So we have obtained a symmetric stable process. This should further justify
their importance. It is worth noting that a fractal dimension of trajectories is
max{1, µ}. It means that in the case Σ2 =∞ trajectories cannot fill the space
completely. They create clusters instead.
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The last case T,Σ2 =∞ leads to the double fractional equation

∂W

∂t
(x, t) = 0D

1−α
t Kµ

α
0Dµ

xW (x, t) (3.41)

Where Kµ
α = σµ

τα . We will discuss the double fractional equation in a slightly
different form later in this chapter. However this should demonstrate its physical
importance.

Fractional diffusion-advection equation

Another advantage of a fractional diffusion is a straightforward generaliza-
tion for a presence of external fields. If we consider a constant external field we
obtain in the standard case the following Fokker-Planck equation

∂W

∂t
+ v

∂W

∂x
= K1

∂2W

∂x2
(3.42)

We will assume that in the fractional case will the joint density have Galileo
invariant form

φ(x, t) = ψ(x− vt, t) (3.43)

where ψ(x, t) is a joint density of a free particle. We can write in Fourier/Laplace
image

φ(k, u) = ψ(k, u− ivk) (3.44)

We will consider the case T = ∞ and Σ2 < ∞ now. Once again we use (3.20)
and obtain

W (k, u) =
W0(k)

u(1 +Kαu−αk2)− ivk
(3.45)

this leads to the following equation

∂W

∂t
+ v

∂W

∂x
= 0D

1−α
t Kα

∂2

∂x2
W (x, t) (3.46)

This is called a fractional diffusion-advection equation i.e. fractional diffusion
in constant external field. We can easily verify that the solution fulfils Galileo
invariance

W (x, t) = Wv=0(x− vt, t) (3.47)

whereWv=0 is a propagator of the free particle with an initial conditionWv=0(x, 0+) =
δ(x).

We can calculate moments in the same way as before and we obtain

〈x(t)〉 = vt (3.48)

and
〈x2(t)〉 = v2t2 +

2Kα

Γ(1 + α)
tα (3.49)
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We will also consider the case T <∞ and Σ2 =∞. We obtain in an analogous
way the following equation

∂W

∂t
+ v

∂W

∂x
= 0Dµ

xK
µW (x, t) (3.50)

This leads to Markov process. Galileo invariance again holds

W (x, t) = Wv=0(x− vt, t) (3.51)

where in this case Wv=0(x, t) is a symmetric stable process.

3.1.2 Fractional Fokker-Planck equation
Physicists usually consider standard Fokker-Planck equation in the form

∂W

∂t
= (

∂

∂x

V ′(x)

mρ1
+K1

∂2

∂x2
)W (x, t) ≡ LFPW (x, t) (3.52)

where ρ1 is a friction coefficient and V (x) is a potential.
We will denote eigenvalues of an operator LFP by −λn. We can now write

individual modes of this equation as

Tn(t) = exp(−λnt) (3.53)

Further it is well known that stationary solution has the form

lim
t→∞

W (x, t) = Wst(x) = N exp(−βV (x)) (3.54)

where N is a normalization factor and β = 1
K1ρ1m

reminds Boltzmann factor
from equilibrium thermodynamics.

We will now consider a fractional F.-P. equation in the form

∂W

∂t
= 0D

1−α
t (

∂

∂x

V ′(x)

mρα
+Kα

∂2

∂x2
)W (x, t) ≡ 0D

1−α
t LFPW (x, t) (3.55)

We will denote eigenvalues of operator LFP by −λn,α. Individual modes can
now be written using (C.23) and Mittag-Leffler function

Tn(t) = Eα(−λn,αtα) (3.56)

We want to find a stationary solution, it leads to the equation

0D
1−α
t LFPWst(x) = 0 (3.57)

A fractional derivative of a constant is not a zero so we have to consider a
stationary solution in the form LFPWst(x) = 0. So we can write a stationary
solution in the same form as in the non-fractional case

Wst(x) = N exp(− V (x)

mKαρα
) (3.58)
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Separation of variables

We will try to find a solution of FFPE in the form

Wn(x, t) = Tn(t)ϕn(x) (3.59)

where ϕn are eigenfunctions of LFP .
The equation (3.55) can now be rewritten into two decoupled equations

dTn(t)

dt
= −λn,α 0D

1−α
t Tn(t) (3.60)

and
LFPϕn(x) = −λn,αϕn(x) (3.61)

The solution of the first equation is given by (3.56). We can write a general
solution by summing over eigenvalues. We will write it in a bit different form
with the initial condition W (x, 0|, x′.0) = δ(x− x′)

W (x, t|, x′.0) = e
−Φ(x)−Φ(x′)

2

∑
n

ψn(x)ψn(x′)Eα(−λn,αtα) (3.62)

where Φ(x) = V (x)
mKαρα

and ψn(x) = eΦ(x)/2ϕn(x).
It is easy to see that ψn are eigenfunctions of a hermitian operator L =

Kα( ∂2

∂x2 − (Φ′)2). Moreover LFP and ϕn have the same eigenvalue as L and ψn.
Because L has negative eigenvalues we can order them 0 ≤ λ0,α ≤ . . . . The
condition LFPWst(x) = 0 is equivalent to λ0,α = 0. So there exists a positive
stationary solution Wst(x) = lim

t→∞
W (x, t) if the first eigenvalue is zero.

Smearing kernels

We will derive Laplace image of the solution of the equation (3.55). We
will for simplicity consider ρα = ρ1,Kα = K1 We will show that we can write

Wα(x, u) = uα−1W1(x, uα) (3.63)

To verify this we will first rewrite (3.55)

W (x, t)−W0(x) = 0D
−α
t LFPW (x, t) (3.64)

It is not an equivalent form to (3.55). However when we considered the case of
long rests we first derived an analogous equation (3.29). Then by differentia-
tion we rewrote it to the form (3.30). So this form can be considered a more
fundamental form of fractional F.-P. equation.

We will perform Laplace transform in (3.64) and insert ansatz (3.63). We
get

uα−1

∫ ∞
0

e−u
αtW1(x, t)dt− W0(x)

u
=

1

u

∫ ∞
0

e−u
αtLFPW1(x, t)dt (3.65)
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We obtain Laplace image of standard F.-P. equation (3.52) by a substitution
z = uα and W1 solves this equation. This proves our statement.

We can rewrite (3.63) back to (x, t)

Wα(x, t) =

∫ ∞
0

dsA(s, t)W1(x, s) (3.66)

where
A(s, t) = L−1{uα−1 exp(uαs)}(s, t) (3.67)

A(s, t) is called a smearing kernel. This result demonstrates connection between
fractional processes and super-statistics [24].

It can be shown with a use of properties of Fox functions that [21]

A(s, t) =
1

s

∞∑
n=0

(−1)n(s/tα)1+n

Γ(1 + n)Γ(1− α− nα)
(3.68)

This function is closely connected to Wright functions [25] and to and stable
distributions [25],[27]. Moreover in some cases the solution can be found in a
closed form. For example for α = 1/2 Wolfram Mathematica gives

A(s, t) =
1√
πt

exp(−s
2

4t
) (3.69)

Some remarks on origin of fractional F.-P. equation

We derived fractional F.-P. equation (FFPE) from a continuous time ran-
dom walk. Naturally there are many alternative approaches. We will mention
few of them here. See [21] for more details.

It is possible to derive FFPE directly from the master equation if we consider
non-local and non-isotropic jumps. The master equation has the form

Wj(t+ ∆t) =

∞∑
n=1

(Aj−n,nWj−n(t) +Bj+n,nWj+n(t)) (3.70)

where Aj.n, Bj,n denote probabilities of jumps of size n from a position j, with
a normalization

∑∞
n=1(Aj,n +Bj,n) = 1.

We can derive the FFPE (3.55) from this model. Moreover we obtain a
double-fractional F.-P. equation in the case of the infinite jump variance Σ2

∂W

∂t
= 0D

1−α
t (

∂

∂x

V ′(x)

mρα
+Kµ

α
0Dµ

x)W (x, t) (3.71)

Similarly if we consider an ordinary master equation

Wj(t+ ∆t) = Aj−1Wj−1(t) +Bj+1Wj+1(t) (3.72)

where jump probabilities Aj , Bj fulfil Aj +Bj = 1, we will get standard Fokker-
Planck equation. However if we incorporate a trapping, i.e. some random time
for which the particle cannot jump, we once again obtain FFPE (2.55).
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FFPE equation can be also derived form standard Langevin equation when
we consider trapping or memory effects. In general we can say that we obtain
fractional equations when we somehow deform the time or space component
which leads to non-Brownian scaling.

We derived stable processes as solutions of space fractional diffusion equa-
tions. We derived these equations from CTRW with jumps of infinite variance.
On the other hand in chapter two we introduced stable processes as processes
driven by infinitely many jumps and without diffusion component. Combina-
tion of this two views gives us an interesting inside into the origin of these
processes. However in chapter 2 we considered only Levy processes i.e. pro-
cesses with independent increments so we did not encounter a deformation in
the time component there.

It is also worth noticing that Kolmogorov equation (2.47) for stable processes
is equivalent to the fractional equation (3.39). Comparing these two equation
gives us spatial representation of Riezs-Feller derivative, it is same representation
as the one given by theorem (2.14) for a characteristic operator of Levy process.

3.1.3 Non-linear Fokker-Planck equation
In this section we briefly introduce a different approach to the anomalous dif-
fusion. We will consider generalized non-linear Fokker-Planck equation in the
form

∂pµ

∂t
= − ∂

∂x
(K(x, t)pµ(x, t)) +Q

∂2

∂x2
pν(x, t) (3.73)

where µ, ν ∈ R. The case µ = ν = 1 is the standard case.
We will remind a well-known connection between Ito stochastic differential

equation
dXt = −µ(Xt, t)dt+D(Xt, t)dWt (3.74)

and a dual equation for the density p(x, t) of Xt

∂

∂t
p(x, t) =

∂

∂x
(µ(x, t)p(x, t)) +

1

2

∂

∂x2
(D2(x, t)p(x, t)) (3.75)

If we now consider the case µ = 1 in (3.73) we can write a corresponding
stochastic equation

dXt = K(Xt, t)dt+
√
Q(p(Xt, t))

ν−1
2 dWt (3.76)

A generalization for µ 6= 1 is straightforward by a substitution
∼
p = pµ. So we

will consider µ = 1 for now.
We can interpret (3.76) as Langevin equation with a new driving noise

(p(Xt, t))
ν−1

2 dWt. If we consider a special case K = 0 we will have

dXt = p(Xt, t)
ν−1

2 dWt (3.77)

Processes in this form are usually called statistical feedback processes. They
combine both microscopic level, presented by dXt, and a macroscopic level
presented by p(x, t) in a one equation. This unusual connection leads to non-
linear diffusion equations and also to heavy tails as we will see.
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Solution of non-linear F.-P. equation

Solving non-linear equations is no easy task however if we consider an equation
in the form

∂pµ

∂t
= − ∂

∂x
(F (x)pµ(x, t)) +D

∂2

∂x2
pν(x, t) (3.78)

where F (x) = k1 − k2x, k2 ≥ 0 then explicit solution can be found [30].
The standard case µ = ν = 1 was solved using ansatz we get by maximizing

Shannon entropy

S1[p] = −
∫
R
p(x) ln p(x)dx (3.79)

with constraints ∫
R
p(x)dx = 1 (3.80)∫

R
xp(x)dx = xM (3.81)∫

R
(x− xM )2p(x)dx = σ2 (3.82)

we obtain maximizer by straightforward calculations

p1(x) =
e−β(x−xM )2

Z1
(3.83)

the normalization factor is

Z1 =

∫
R
e−β(x−xM )2

dx = (π/β)1/2 (3.84)

Boltzmann factor β = 1
2σ2 in this case. The ansatz for standard F.-P. equation

with µ = ν = 1 is now

p1(x, t) =
e−β(t)(x−xM (t))2

Z1(t)
(3.85)

Mean value can be easily calculated as a solution of the equation

dxM (t)

dt
= k1 − k2xM (t) (3.86)

so we get

xM (t) =
k1

k2
+ (xM (0)− k1

k2
)e−k2t (3.87)

We can insert our ansatz into (3.78) and compare coefficients of x2, we get
equation

β′(t)− 2k2β(t) + 4Dβ2(t) = 0, β(t) =
β(0)

(1− 2Dβ(0)
k2

)e−2k2t + 2Dβ(0)
k2

(3.88)
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relation (3.84) implies standard Brownian scaling of time and space

Z2(t)β(t) = Z2(0)β(0) = π (3.89)

We will now consider a general case µ, ν ∈ R. The correct ansatz for non-linear
Fokker-Planck equation is given by Tsallis entropy

Sq[p] =
1

q − 1
(1−

∫
R
(p(x))qdx) q ∈ R− {0} (3.90)

We can easily see that in the case q = 1 it is just Shannon entropy.
We will maximize Sq with constraints

〈x− xM 〉q =

∫
R

(x− xM )(p(x))qdx = 0 (3.91)

〈(x− xM )2〉q =

∫
R

(x− xM )2(p(x))qdx = σ2 (3.92)

The resulting maximizer has the form

pq(x) =
1

Zq
(1− β(1− q)(x− xM )2)

1
1−q (3.93)

It is called Tsallis distribution.
Notice that pq is not normalized so for example 〈x〉q = 〈xM 〉q 6= xM . The

idea of these generalized moments lies in the heart of non-extensive thermody-
namics [10]. The Tsallis entropy itself is non-extensive. It fulfils for independent
systems A,B, i.e. pA∗B(x, y) = pA(x)pB(y), the following condition

Sq(A ∗B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) (3.94)

Mathematically this formalism lies in the framework of q-calculus [31]. The q-
central limit theorem was formulated in [13] and the limiting distribution there
is Tsallis distribution. Recently also generalizes q-stable central limit theorem
was introduced [11].

We will get back to solving the equation (3.78) now. The ansatz derived
from Tsallis entropy has the form

pq(x, t) =
1

Zq(t)
(1− βq(t)(1− q)(x− xM (t))2)

1
1−q (3.95)

The main result is that if we now choose

q = 1 + µ− ν (3.96)

then we get the following scaling of the time and space

Z2µ
q (t)βq(t) = Z2µ

q (0)βq(0) = const. (3.97)

The case q > 1 corresponds to a super-diffusion, q < 1 a sub-diffusion.
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The equation for the normalization Zq was also found [30]

Zq(t) = Zq(0)

(
(1− 1

K2
)e−t/τ +

1

K2
)

)1/(µ+ν)

(3.98)

where
K2 =

k2

2νDβ(0)(Zq(0))µ−ν
(3.99)

and
τ =

µ

k2(µ+ ν)
(3.100)

This completely solves the equation (3.78). It is remarkable how closely the
right choice (3.95) of q connects the classical diffusion and non-linear diffusion.

Application to the option pricing

We will briefly mention how the formalism presented above can be applied to
the option pricing problem. We assume the following model of asset returns

dSt = µStdt+ σStdΩt (3.101)

where the process Ωt is q-Brownian motion, given by

dΩt = P (Ωt, t)
1−q

2 dWt (3.102)

where P (Ω, t) is a density of Ωt. It is given by non-linear Fokker-Planck equa-
tion.

∂

∂t
P (Ω, t|Ω′, t′) =

1

2

∂2

∂Ω2
P 2−q(Ω, t|Ω′, t′) (3.103)

We can see that it is equation of the type (3.78) with F ≡ 0, µ = 1 and ν = 2−q.
So (3.96) implies that Ωt corresponds to q-dynamics. That is the reason behind
this definition.

The solution of this equation has the form (3.94)

Pq(Ω, t|Ω′, t′) =
1

Z(t− t′)
(1− β(t− t′)(1− q)(Ω− Ω′)2)

1
1−q (3.104)

by the choice
β(t) = c

1−q
3−q ((2− q)(3− q)t)

−2
3−q (3.105)

and
Z(t) = ((2− q)(3− q)ct)

1
3−q (3.106)

with constant c = βZ2 we ensure the initial condition Pq(Ω, t|Ω0, 0) = δ(Ω−Ω0)
to hold. We can see that time/space scaling (3.97) also holds. An unconditional
density Pq(Ω, t) corresponds to standard q-Brownian motion.
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We will consider only 1 < q < 5/3 for our purposes. The lower bound is
given by the fact that for smaller q Tsallis distribution has only a bounded
support. The upper bound is given by a requirement of a finite variance

EΩ2
t =

1

(5− 3q)β(t)
(3.107)

This approach is in fact a local volatility model and leads to the following
generalized Black-Scholes equation

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2P 1−q

q S2 ∂
2V

∂S2
− rV = 0 (3.108)

We will now use an equivalent martingale measure approach. It is clear from
the theory we presented in the chapter 1 that this model is arbitrage-free and
complete. So there exists only one equivalent martingale measure Q under which
will St have the form

dSt = rStdt+ σStP
1−q

2
q dWt = rStdt+ σStdΩt (3.109)

where Wt is standard Brownian motion under Q. Equivalently we can write

St = S0 exp

(
σ

∫ t

0

P
1−q

2
q dWt +

∫ t

0

(r − σ2

2
P 1−q
q )dt

)
(3.110)

We have to realize that the following holds to calculate integrals in (3.110)

Ωt =

√
β(s)

β(t)
Ωs (3.111)

so an integration of β(t)Ω2
t is the same as of a constant. This follows from

the fact that under linear transformation of random variable X → aX density
function changes to p(x)→ 1

ap(
x
a ).

We obtain by an integration

St = S0 exp (σΩt + rt− σ2

2
αt

2
3−q (1− (1− q)β(t)Ω2

t )) (3.112)

where
∫ t

0
1

Z(s)1−q ds = αt
2

3−q and

α =
1

2
(3− q) ((2− q)(3− q)c)(q−1/(3−q)) (3.113)

We can write the option price using martingale property

Ct = EQ(e−r(T−t)h(ST )|Ft) (3.114)

where h is a pay off function, so we can write

C0 =
e−rT

Z(T )

∫
R
h(ST )(1− β(T )(1− q)Ω2

T )
1

1−q dΩT (3.115)

If we consider European call option with a payoff H(ST ) = (ST −K)+ then by
inserting (3.112) into (3.115) the closed form solution is obtained. It seems to
fit empirical data quite well, see [9] for details.
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3.2 Fractional processes and option pricing prob-
lem

In this section we will first take a closer look at the double fractional diffusion
equation. Properties of fractional derivatives and stable distributions stated in
appendixes B and C will be frequently used. Applications of fractional processes
to the option pricing will be introduced then. In particular we will briefly
introduce approach based on fractional Brownian motion. The option pricing
based on asymmetric stable processes and double fractional diffusion will be
discussed at the end of this section.

3.2.1 Double fractional diffusion
We introduced double fractional diffusion equations in the first part of this
chapter. We demonstrated their origin and physical importance. We will now
take a closer look at them from a mathematical point of view.

We will consider a double-fractional diffusion equation in the form

(∗Dβ
t − θDα

x )p(x, t) = 0 (3.116)

where ∗Dβ
t is a Caputo derivative and θDα

x is Riezs-Feller derivative with the
skewness θ.

Ranges of parameters are restricted as follows

0 < α ≤ 2, 0 < β ≤ 2, θ ≤ min{α, 2− α} (3.117)

However not all ranges of parameters allow probabilistic interpretation of p(t, x).
It was shown that we have to consider only one of the following cases

1. 0 < β ≤ 1

2. 1 < β ≤ α ≤ 2

We will consider only the first case 0 < β ≤ 1. The second case also allow
probabilistic representation in the terms of Mellin-Barnes integrals. See [27] for
thorough analysis.

Slow diffusion case β ≤ 1

We can easily find Fourier-Laplace image of the equation (3.116). We use
a notation where Fourier/Laplace image is denoted only by a change of the
variable x → k respectively t → u. We can write with the use of (C.13) and
(C.16)

uβp(k, u)− uβ−1p0(k) = Hα,θ(k)p(k, u) (3.118)

where
Hα,θ(k) = −|k|αeisgn(k)θ π2 (3.119)
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is a log-characteristic function of a stable variable, see appendix B. We will
consider initial condition p0(x) = p(x, 0) = δ(x) so p0(k) = 1.

We can rewrite the equation (3.118) if <
(
uβ −Hα,θ(k)

)
> 0 as

p(k, u) =

∫ ∞
0

uβ−1e−lu
β

p0(k)elHα,θ(k)dl =

∫ ∞
0

p1(u, l)pα(l, k)dl (3.120)

in (x, t) we have

p(x, t) =

∫ ∞
0

p1(t, l)pα(l, x)dl (3.121)

Notice the similarity with the equation (3.66). The smearing kernel is in Laplace
image given by

p1(u, l) = uβ−1e−lu
β

(3.122)

The inverse Laplace transform has the form

p1(t, l) =
1

tβ
Mβ(

l

tβ
) (3.123)

where Wright type function Mβ is defined by

Mµ(z) =

∞∑
n=0

(−z)n

Γ(n+ 1)Γ(−µn+ (1− µ))
(3.124)

This function is connected with the stable laws Lα,β by the following relation

1

a1/µ
Lµ,1(

z

a1/µ
) =

aµ

zµ+1
Mµ(

a

zµ
) µ ∈ (0, 1) a, z > 0 (3.125)

The proof and other properties of Wright functions can be found in [25]. We
can now write the solution of a double fractional diffusion equation in the form

pθα,β(x, t) =

∫ ∞
0

1

tβ
Mβ(

l

tβ
)pα(l, x)dl =

∫ ∞
0

t

lβ

1

l1/β
Lβ,1(

t

l1/β
)pα(l, x)dl

(3.126)
Where pα(l, x) = F−1(elHα,θ(k))(x) = ( 1

l1/α
)Lθα( x

l1/α
) is a stable distribution in

the parametrization given by (B.2). We considered initial condition p0(x) =
δ(x).

This will be useful later when we apply this theory to the option pricing
problem.

We should note that finding the fundamental solution with initial condition
p(x, 0) = δ(x) is sufficient. If we denote it by Gθα,β we can write an arbitrary
solution of the equation (3.116) with the the initial condition pθα,β(x, 0) = ϕ(x)
as

pθα,β(x, t) =

∫
R
Gθα,β(p, t)ϕ(x− p)dp (3.127)

Where we also have to consider a boundary condition pθα,β(±∞, t) = 0. We
have to add another condition ∂p

∂t (x, 0) = 0 in the case 1 < β ≤ 2.
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3.2.2 Black-Scholes pricing in fractional environment
We will introduce some applications of fractional processes into finance now.
First we will discuss fractional Brownian motion. We demonstrate its connection
with a fractional calculus and outline a possible generalization of Black-Scholes
equation.

At the end of this chapter we will generalize Black-Scholes formula with the
use of asymmetric stable distributions. This will be done in the framework of
double fractional diffusion equations presented above.

Fractional Brownian motion

We have already introduced FBM with regards to its self-similarity in the
chapter one, see the definition (1.2). It can be shown that FBM is only H-
self similar centred Gaussian process with stationary increments. Its covariance
function is given by

Cov(BHt , B
H
h ) =

1

2
(t2H + h2H − |t− h|2H) (3.128)

also following holds

EBHt (BHt+h −BHt ) =
1

2
(−t2H − h2H + (t+ h)2H)

H 6= 1
2

6= 0 (3.129)

This equation in particular implies that for H > 1/2 has FBM positively cor-
related increments which implies super-diffusive behaviour. On the other hand
it is kept oscillating around its mean for H < 1/2 which corresponds to a sub-
diffusion.

Fractional Brownian motion with Hurst index H > 1/2 has a long range
dependence. It means that for r(n) = Cov(BH1 , B

H
n+1 −BHn ) holds

∞∑
n=1

r(n) =∞ (3.130)

The fractional nature of these correlations can be seen from a well-known inte-
gral representation of FBM

BHt =
1

Γ(H + 1/2)

(∫ 0

−∞
(t− s)H−1/2 − (−s)H−1/2dWs +

∫ t

0

(t− s)H−1/2dWs

)
(3.131)

where Ws is a standard Brownian motion.
We can recognise Riemann-Liouville integral operator it the second term.

This clearly demonstrates a connection of the fractional calculus with FBM. The
first term is also important because without it FBM would depend significantly
on the initial condition [32].
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We now want use FBM for a generalization of Black-Scholes theory. A
natural approach is to assume that the price of the risky asset is given by

dSt = µStdt+ σStdB
H
t (3.132)

However it is unclear how this equation should be interpreted. We developed
stochastic calculus for huge class of stochastic processes called semimartingales
in the previous chapter. A problem is that FBM is not a semimartingale so a
standard approach cannot be used.

There are few approaches to integration with respect to FBM. The most
convenient one for applications seems to be developed in [28]. Wick-Ito stochas-
tic integral developed there for 1/2 < H < 1 was applied in [29] to the option
pricing problem. We will state without going into details that in this framework
solution of equation (3.132) has the form

St = S0 exp

(
σBHt + µt− σ2t2H

2

)
(3.133)

Moreover they have shown that this leads to a complete and arbitrage free
market. Generalized Black-Scholes formula for 1/2 < H < 1 and European call
options has the form [29]

C0 = e−rT
∫
R

1√
2πT 2H

(
S0 exp(σy + rT − σ2T 2H

2
)−K

)+

exp

(
− y2

2T 2H

)
dy

(3.134)
Clearly the classical model is recovered for H = 1/2.

Fractional equations and option pricing problem

We will introduce another generalization of Black-Scholes approach now. We
will use probability densities obtained as solutions of fractional equations as
driving noises instead of Brownian motion.

We can rewrite a classical Black-Scholes option pricing formula (1.23) for
call options into the form

Ct =

∫
R
e−rτ (Ste

rτ+y −K)+ 1√
2πτσ2

exp

(
−

(y + σ2

2 τ)2

2τσ2

)
dy (3.135)

where τ = T − t.
We integrate over the density N(−σ

2τ
2 , σ2τ) in (3.135). We now want to

replace this normal density by a density of the fractional process.
We are motivated by the generalized central limit theorem to use a stable

process. We will assume a model

St = S0 exp ((r + λ)t+ σLα,β(t)) (3.136)

where Lα,β is a stable process.
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We want Ŝt = e−rtSt to be a martingale under new equivalent measure. We
will assume β = −1, α > 1. Let the risk neutral dynamic be given by

St = S0 exp ((r + µ)t+ σLα,−1(t)) (3.137)

with µ = σα sec πα
2 . It can be verified that Ŝt is a martingale with a use of the

relation (B.1).
We made the choice β = −1 because for β 6= ±1 the moment generating

function EeσLα,β(t) does not exist. However stable processes do not have diffu-
sion component. The theorem (2.27) then implies that we cannot change a drift
so strictly speaking we cannot obtain model (3.137) from (3.136) by changing
measure. To be mathematically rigorous we should assume that risk neutral
dynamics is given by (3.137).

We will now assume that risk neutral dynamics is given and we will derive
the option pricing formula. We can write the call option price using martingale
property as

Ct = e−rτ
∫
R

dy (Ste
rτ+y −K)+

∫
R

dk
e−iky

2π
eτ(ikµ+σαψα,−1(k)) (3.138)

where ψα,β is given by the theorem (B.2). ψα,−1(k) can be easily calculated
with the use of (ik)α = iαsgn(k)|k|α. We obtain ψα,−1(k) = − sec πα

2 (ik)α. A
substitution y = x+ µτ now yields

Ct = e−rτ
∫
R

dx (Ste
rτ+rµ+x −K)+

∫
R

dk
e−ikx

2π
e−τµ(ik)α (3.139)

We will now denote pα(x, t) =
∫
R dk e

−ikx

2π e−τµ(ik)α so we can write the option
price as

Ct = e−rτ
∫
R

dx (Ste
rτ+rµ+x −K)+pα(x, τ) (3.140)

Notice that pα(x, t) is a density of the stable process σLα,−1(t). It fulfils the
following fractional equation with a maximal skewness θ = 2−α corresponding
to β = −1

∂pα
∂t

(x, t) = −µ{θDα
xpα(x, t)} (3.141)

with the initial condition pα(x, 0) = δ(x). This can be easily verified. It holds
−µHα,2−α(k) = σαψα,−1(k) where Hα,2−α is given by (B.2). So in Fourier
image we have

∂pα
∂t

(k, t) = σαψα,−1(k)pα(k, t) (3.142)

which holds obviously from the definition (C.13). The standard diffusion equa-
tion is now recovered in the case of Black-Scholes model.

We want now to generalize this model for both the space and the time
fractional diffusion. We have everything we need already prepared. We can
write our double fractional diffusion model as

Ct = e−rτ
∫
R

dx (Ste
rτ+rµ+x −K)+ 1

σ
pθα,β(

x

σ
, τ) (3.143)
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where pθα,β(x, t) is given by (3.126). It is more convenient for numerical purposes
to present pθα,β in the terms of Mellin-Barnes integrals. This was done in [33]
and the calculated option prices seemed to fit the real data quite well.



Chapter 4

Quantum finance

In the first part of this chapter we will reformulate the option pricing problem
to the framework of quantum mechanics. Both Hamiltonian and a path integral
formulation will be discussed. We will see that various path dependent op-
tions can be modelled by adding a potential to Hamiltonian. Special attention
will be given to stochastic volatility models, we will see that the path-integral
formulation will turn out to be very convenient for these models.

The second part of this chapter will deal with a modelling of interest rates.
The standard stochastic approach will be reviewed. We will then introduce a
way to model interest rates as a quantum field theory. Both Hamiltonian and
Lagrangian formulation will be discussed. The goal of quantum field formulation
will be to incorporate non-trivial correlations and to go beyond the standard
stochastic formulation.

4.1 Quantum mechanical formulation of the op-
tion pricing problem

The Black-Scholes equation (1.7) has a similar form to Schroedinger equation
i}∂tψ = Hψ [19]. The difference is in the factor i, also Hamiltonians in QM are
self-adjoint while in finance they are not because the drift term is present. This
motivates us to formulate option pricing in terms of non-self-adjoint Hamiltonian
operators. We will also, in analogy with QM, present the path-integral approach.

We will first take a closer look at stochastic volatility models in the first sec-
tion. We will derive generalized version of Black-Scholes equation and demon-
strate incompleteness of stochastic volatility models.

We will also find corresponding Hamiltonians for both Black-Scholes model
and stochastic volatility model. The form of the no-arbitrage condition will
be derived in Hamiltonian formulation. We will introduce Hamiltonians with
potential terms as a way to model path-dependent options.

In the last section the path integral for the option pricing will be derived
and applied to both Black-Scholes and stochastic volatility model.

93
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4.1.1 Stochastic volatility models
The stochastic volatility models were briefly mentioned in the chapter one, here
we will discuss them in detail. We will consider a model

dSt = γStdt+ σtStdW1(t) (4.1)

dVt = (λ+ µVt)dt+ ηV αdW2(t), Vt = σ2
t (4.2)

where we assume correlation between Brownian motions E(W1(t)W2(t′))
E(W 2

1 (t))E(W 2
2 (t))

= ρ ∈
〈−1, 1〉 and γ, λ, µ, η, α are constants.

A change of a measure technique in stochastic volatility models is bit tricky.
We can change drifts of both Brownian motions which leads to infinite number
of possible martingale measures. There is a lot of mathematical subtleties to
deal with when changing measure in stochastic volatility models [42], however
we will employ a bit more straight forward approach here.

We will consider a change of a measure under which

dSt = rStdt+ σtStdW1(t) (4.3)

and Vt is unchanged. Clearly Ŝt is a martingale under this new measure.
We will derive generalized Black-Scholes equation now. We will consider an

option C(St, Vt, t). The discounted price of this option Ĉt(St, Vt, t) = e−rtC(St, Vt, t)
should be a martingale under the new measure. We can calculate dĈt with a
use of multidimensional Ito lemma, localize the drift term (a term proportional
to dt) and set it to zero. We get the following equation

∂C

∂t
+(λ+µV )

∂C

∂V
+rS

∂C

∂S
+
V S2

2

∂2C

∂S2
+ρηSV α+1/2 ∂2C

∂S∂V
+
η2V 2α

2

∂C2

∂V 2
−rC = 0

(4.4)
this is a generalized Black-Scholes equation for our stochastic volatility model.
It is often called Merton-Garman equation

We made a concrete choice of the martingale measure in our derivation,
however the incompleteness of the market can be presented by introducing a
premium risk function θ(S.V, r, t) and rewriting Merton-Garman equation as

∂C

∂t
+(λ+µV )

∂C

∂V
+rS

∂C

∂S
+
V S2

2

∂2C

∂S2
+ρηSV α+1/2 ∂2C

∂S∂V
+
η2V 2α

2

∂C2

∂V 2
−rC = θ(S.V, r, t)

A problem is that the premium risk is almost impossible to determine from
markets.

When we consider θ = 0 and uncorrelated driving noises, i.e. ρ = 0, then
the solution can be written in an elegant form [41]

Ct =

∫ ∞
0

CBS
σ2=

∼
V
p(
∼
V )d

∼
V (4.5)

where
∼
V = 1

T−t
∫ T
t
V (t′)dt′, CBSσ2=V is Black-Scholes price derived in the first

chapter and p(
∼
V ) is a density function of the random variable

∼
V .



CHAPTER 4. QUANTUM FINANCE 95

4.1.2 Hamiltonian formulation
Black-Scholes equation has a form

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
− rC = 0 (4.6)

after a substitution S = ex we get an equation for the function C = C(x, t)

∂C

∂t
= HBSC HBS = −σ

2

2

∂2

∂x2
+ (

σ2

2
− r) ∂

∂x
+ r (4.7)

The similarity with Schroedinger equation is obvious. We can see that the
volatility plays a role of an inverse mass from QM, σ2 ∼ 1

m . The difference is
the drift term which makes HBS non-self-adjoint. So the Black-Scholes option
pricing is in some sense equivalent to a one dimensional quantum mechanical
system.

The Merton-Graman equation (4.4) can be by a substitution S = ex, V = ey

rewritten to the equation for a function C(t, x, y) in the form

∂C

∂t
= HMGC (4.8)

where

HMG = −e
y

2

∂2

∂x2
− (r − ey

2
)
∂

∂x
− (λe−y + µ− η2

2
e2y(α−1))

∂

∂y
−

ρηey(α−1/2) ∂2

∂x∂y
− η2e2y(α−1)

2

∂2

∂y2
+ r

(4.9)

This means that stochastic volatility models correspond in some sense to a two-
dimensional quantum system.

Propagators in option pricing

We want to define pricing kernel in this section - analogue of propagator from
QM. We will assume an European path independent option C with a pay off in
time T given by a function f(x, y). We define a pricing kernel as a conditional
probability density by

C(τ = T − t, x, y) =

∫
R
p(x, y, τ, x′, y′)f(x′, y′)dx′dy′ (4.10)

with a boundary condition in time t = T

p(x, y, 0, x′, y′) = δ(x− x′)δ(y − y′)

A difference from QM is that we have a boundary condition instead of an initial
condition.
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We will use bra-ket notation as in QM, we consider equation ∂tC = HC.
The solution can be written as

C(t, x) = etHC(0, x), |C, t〉 = etH |C, 0〉 (4.11)

using the boundary condition |C, T 〉 = |f〉 yields

|C, t〉 = e−(T−t)H |f〉 C(t, x) = 〈x|e−τH |f〉 (4.12)

where τ = T − t. The equation above can be rewritten as

C(t, x) =

∫
R
〈x|e−τH |x′〉f(x′)dx′ (4.13)

a comparison with (4.10) now yields

p(x.τ, x′) = 〈x|e−τH |x′〉 (4.14)

This propagator determines the time evolution of the option price, notice that
this propagation is backwards in time. This is in a contract with QM.

We will calculate a propagator for Black-Scholes Hamiltonian (4.7) now. We
will use a standard notation 〈x|p〉 = eipx√

2π
. We can calculate

HBS
eipx√

2π
= 〈x|HBS |p〉 = (

σ2p2

2
+ ip(

σ2

2
− r) + r)eipx (4.15)

notice that HBS is not self-adjoint so

〈p|HBS |x〉 = (〈x|H†BS |p〉)
∗ = (

σ2p2

2
+ ip(

σ2

2
− r) + r)e−ipx

The Black-Scholes propagator can be written as

pBS(x, τ, x′) =

∫
R
〈x|e−τHBS |p〉〈p|x′〉dx′ = e−rτ

∫
R
eip(x−x

′+τ(r−σ2/2))e−τσ
2p2/2

(4.16)
performing Gaussian integration, see Appendix D, yields

pBS(x, τ, x′;σ) = e−rτ
1√

2πτσ2
exp

(
(x− x′ − τ(r − σ2/2))2

2τσ2

)
(4.17)

The price of European call option can now be written as

Ct =

∫
R

(ex −K)+pBS(x, τ, xt;σ)dx (4.18)

where asset price St = ext . This result corresponds to the previous result (1.23).
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Martingale condition

We derived in the chapter one that a non-arbitrage condition is equivalent
to an existence of a martingale measure under which is the discounted price a
martingale.

We will now derive under which conditions Hamiltonian generates an arbitrage-
free market. We will choose a pay-off function f(x) = S(x) and insert it into
(4.13), this yields

S(x) =

∫
R
〈x|e−(T−t)H |x′〉S(x′)dx′ (4.19)

It can be rewritten with use of S(x) = 〈x|S〉 as

e−(T−t)H |S〉 = |S〉 (4.20)

which is equivalent to
H|S〉 = 0 (4.21)

This means that the risk neutral measure exists if and only if S(x) = ex is an
eigenfunction of Hamiltonian with an eigenvalue 0. It is easy to verify that both
Black-Scholes and Merton-Graman Hamiltonians satisfy this condition.

Potentials and path dependent options

We will assume Black-Scholes Hamiltonian in this section, we want to de-
scribe prices of path dependent options by adding a potential term to HBS

H = HBS + V (x) (4.22)

Various path dependent options can be modelled in this way [41]. We will
demonstrate this method on an example of a double-knock out option.

Example: Double knock-out barrier options - are options similar to European
options with one difference - the price of the risky asset S = ex must stay inside
given interval

ea < ext < eb t ∈ (0, T ) (4.23)

otherwise the option becomes worthless.
We will model this option with a potential

V (x) =

{
∞ x /∈ (a, b)
0 x ∈ (a, b)

Black-Scholes Hamiltonian can be rewritten as

HBS = eαx(−σ
2

2

∂2

∂x2
+ λ)e−αx ≡ eαxHefe

−αx (4.24)

where

λ =
1

2σ2
(r +

σ2

2
)2 α =

1

σ2
(
σ2

2
− r) (4.25)



CHAPTER 4. QUANTUM FINANCE 98

This is a useful transformation because Hef is self-adjoint.
Solving this problem for H = Hef +V (x) is equivalent to a well-known prob-

lem from QM - particle in an infinite potential well. We can write eigenvalues
and eigenvectors of this Hamiltonian as

(Hef + V (x))ϕn(x) = (En + λ)ϕn(x) (4.26)

where

ϕn(x) =

√
2

b− a
sin (pn(x− a)) En =

1

2
σ2p2

n =
1

2
σ2(

nπ

b− a
)2 (4.27)

We can calculate the pricing kernel for this problem, we will denote HD =
eαx(Hef +V (x))e−αx. We can use the fact that functions ϕn form an orthonor-
mal basis, which implies

∑∞
n=1 |ϕn〉〈ϕn| = 1 to calculate

〈x|e−τHD |x′〉 = e−λτ+α(x−x′)
∞∑
n=1

e−τEnϕn(x)ϕ∗n(x′) (4.28)

This kernel can be used to price various options, for European call options the
closed form solution can be obtained [41].

4.1.3 Path integral in the option pricing
The idea of path integration in the option pricing is the same as in QM. We can
write the propagator as

p(x, τ, x′) = lim
N→∞

〈x|(e−εH)N |x′〉 ε =
τ

N
(4.29)

It can be further rewritten as

p(x, τ, x′) =

N−1∏
i=1

∫
dxi

(
N∏
i=1

〈xi|e−εH |xi−1〉

)
(4.30)

where xN = x, x0 = x′.
We can define a Lagrangian now by

〈xi|e−εH |xi−1〉 = Ni(ε)eεL(xi,xi−1,ε) (4.31)

We can use that ε is infinitesimal to calculate the above matrix element, typically
we can use e−εH = e−εH0e−εV +O(ε2).

We can now write the pricing kernel as

p(x, τ, x′) =

∫
DXeS (4.32)

where ∫
DX = NN (ε)

N−1∏
i=1

∫
Ni(ε)dxi S = ε

N∑
i=1

L(xi, xi−1, ε) (4.33)
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The normalization constant N is very often x-independent. Factor S is called
action in theoretical physics.

The path integral defined in this manner is called Wiener integral and it is
mathematically rigorous. The reason why the path integral in QM does not
have a solid mathematical basis is the extra factor i in Schroedinger equation.

Black-Scholes Lagrangian

We have already derived the Black-Scholes propagator (4.17), using this result
we can write

〈xi|e−εHBS |xi−1〉 = e−rε
1√

2πεσ2
exp

(
(δxi − ε(r − σ2/2))2

2εσ2

)
= NBS(ε)eεLBS

(4.34)
where δxi = xi − xi−1. We can write the Black-Scholes Lagrangian as

LBS = − 1

2σ2
(
δxi
ε

+ r − σ2/2)2 − r NBS(ε) =
1√

2πεσ2
(4.35)

We can now write the propagator as

pBS(x, τ, x′) =

∫
BS

DXeSBS (4.36)

where ∫
BS

DX =

(
1

2πεσ2

)N/2 N−1∏
i=1

∫
dxi (4.37)

We implicitly assumed that x(0) = x′ and x(τ) = x and omitted it in our
notation of path integration.

The integral (4.36) can be explicitly evaluated in the same manner as a
propagator of free particle in QM. Naturally the result (4.17) is again obtained.

Lagrangian for stochastic volatility models

We will consider Merton-Graman Hamiltonian with α = 1 and λ = 0, so
it has a form

HMG = −e
y

2

∂2

∂x2
−(r− e

y

2
)
∂

∂x
−(µ− η

2

2
)
∂

∂y
−ρηey/2 ∂2

∂x∂y
− η

2

2

∂2

∂y2
+r (4.38)

The Merton-Graman Lagrangian can be easily calculated in momentum space
and with use of multidimensional Gaussian integration, see appendix D. After
straight forward calculations we get

〈xi, yi|e−εHMG |xi−1, yi−1〉 =
1

2πε
√
η2ey(1− ρ2)

eεLMG(i) (4.39)
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where

LMG = − 1

2ε2(1− ρ2)
(e−yΦ2 +

1

η2
Ω2 − 2ρ

η
e−y/2ΦΩ) + r +O(ε) (4.40)

with

Φ = xi − xi−1 + εr − εey

2
Ω = yi − yi−1 + εµ− η2ε/2 (4.41)

We define action SMG = ε
∑N
i=1 LMG(i). We can write option price now as

p(x, y, τ, x′) =

∫
R
p(x, y, τ, x′, y′)dy′ =

∫
DXDY eSMG (4.42)

where ∫
DX =

e−yN/2√
2πε(1− ρ2)

N−1∏
i=1

∫
R
dxi

e−yi/2√
2πε(1− ρ2)

(4.43)

and ∫
DY =

∫
R
dy0

N−1∏
i=1

∫
R

dyi√
2πεη2

(4.44)

where in DY is contained an extra integration over y0.
The Lagrangian can be written as

LMG(i) =
−e−yi

2(1− ρ2)

(
δxi
2

+ r − eyi

2
− ρ

η
eyi/2(µ− η2/2 +

δyi
ε

)

)2

−

1

2η2
(µ− η2/2 +

δyi
ε

)2 + r ≡ LX + LY

(4.45)

The propagator can be written as

p(x, y, τ, x′) =

∫
DY eSY (

∫
DXeSX ) (4.46)

The integration over x can be done analytically because LX is quadratic in x.
The calculations are quite straightforward because LX can be by a substitution
rewritten to the form of Lagrangian of free particle in QM. We obtain∫

DXeSX =
eK√

2πε(1− ρ2)
∑N
i=1 e

yi

(4.47)

where

K = −

(
x− x′ + ε

∑N
i=1(r − eyi

2 −
ρ
η e
yi/2(µ− η2/2 + δyi

ε ))
)2

2πε(1− ρ2)
∑N
i=1 e

yi
(4.48)

The integration over y has to be done numerically, these numerical methods are
studied in [103] and the results obtained seem to fit the real option prices quite
well.
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4.2 Quantum field theory of interest rates
We will discuss modelling of interest rates in this section. We considered bonds
in previous sections, risk free assets that pay interests

P (t, T ) = e−(T−t)rP (T, T ) (4.49)

where r is an interest rate and P is a so called zero coupon bond. We will
consider P (T, T ) = 1 from now on. We considered r to be a constant, but we
can also consider r = r(t, ω) to be time dependent and random. Then we can
write

P (t, T ) = E(e−
∫ T
t
r(t′)dt′) (4.50)

This stochastic approach will be discussed in the first part of this chapter.
However it is a bit problematic to model bonds in this way, when we consider
bonds P (t, T ) with different maturities T then it is complicated for function
r = r(t) of only one variable to consistently describe the set of bonds with
different starting times and maturities.

This is reason to define forward interest rates f = f(t1, t2), the price of
bonds is then defined as

P (t, T ) = e−
∫ T
t
f(t,x)dx (4.51)

or equivalently we can define forward rates from observed prices of zero coupons

f(t, T ) = − ∂

∂T
lnP (t, T )

The forward interest rates are connected with a spot interest rate by a relation
r(t) = f(t, t).

The forward rates can be also model stochastically. But when we want
both starting times and maturity times of a bond to be independent vari-
ables, then we have to choose another approach. We want to model a system
{f(t, T ), t ∈ (0, t∗), T ∈ (t, t + TF )} where every f(t1, T1) is a random variable
and all these variables are non-trivially correlated. This means that we want to
model system with infinitely many degrees of freedom and non-trivial correla-
tions among them. We will see that the framework of quantum field theory is a
perfect tool for such a modelling.

4.2.1 Stochastic interest rates
Spot interest rates are modelled by stochastic equations in the form

dr(t) = a(r, t) + σ(r, t)dWt t ∈ (t0, T ) (4.52)

if we assume initial condition r(t0) = r0 the we have forward Kolmogorov equa-
tion for the density of r(t)

∂tPf (r, t, r0) = (
1

2
∂2
rσ

2(r, t)− ∂ra(r, t))Pf (r, t, r0) := HfPf (r, t, r0) (4.53)
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in the case of a boundary condition r(T ) = R we get backward Kolmogorov
equation

∂tPb(R, t, r) = −H†fPb(R, t, r) := HbPb(R, t, r) (4.54)

We can also calculate corresponding backward and forward Lagrangians. We
will consider only the case σ = σ(t). We can easily calculate the following
matrix element then

〈r|eεHf |r′〉 =
e(− ε

σ2 (r−r′−εa)2−ε∂ra)

√
2πεσ2

(4.55)

so using (4.31) we can write forward Lagrangian as

Lf = − 1

2σ2(t)
(
dr

dt
− a(r))2 − ∂a(r, t)

∂r
(4.56)

Similarly we get backward Lagrangian

Lb = − 1

2σ2(t)
(
dr

dt
− a(r, t)) (4.57)

and the action has the form

Sb = −1

2

∫ T

t0

1

σ2(t)
(
dr

dt
− a(r, t))dt (4.58)

Vasicek model

Probably the most famous model for spot interest rates is Vasicek model.
The spot interest rate is given by the following equation

dr(t) = a(b− r) + σdWt r(t0) = r0 (4.59)

where a, b, σ are constants.
We want to calculate the bond price

P (t0, T ) = E(e
−

∫ T
t0
r(t)dt|r(t0) = r0) (4.60)

with a boundary condition P (T, T ) = 1. We have a boundary condition so we
have to use a backward action

Sb = − 1

2σ2

∫ T

t0

(
dr

dt
− a(b− r))2dt (4.61)

We will now define a probability density by

E〈t0,T 〉(f(r(t))) =
1

Z

∫
Dr eSbf(r) (4.62)
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where

Z =

∫
Dr eSb

∫
Dr =

∫
R

T∏
t=t0

dr(t) (4.63)

where the uncountable product is just a short-hand notation for a countable
product on the lattice and sending the lattice distance to zero.

This means that eSb/Z is a properly normalized probability distribution. We
can now write

P (t0, T ) =
1

Z

∫
Dr eSbe−

∫ T
t0
r(t)dt (4.64)

where we consider an initial condition r(t0) = r0 and an open end condition
dr
dt (T ) = 0.

We can use a substitution r → r + b and rewrite an above equation

P (t0, T ) =
1

Z

∫
Dr eS S = − 1

2σ2

∫ T

t0

(
dr

dt
+ar)2dt−

∫ T

t0

(r(t)+b)dt (4.65)

We need to perform another substitution now

v(t) =
dr

dt
+ ar(t) =⇒ r(t) = e−a(t−t0)r0 + e−at

∫ t

t0

eat
′
v(t′)dt′ (4.66)

Jacobian Dv = det(a + d
dt )Dr is a constants so it cancels with the same term

from a normalization 1/Z. We can write now

P (t0, T ) = e−b(T−t0)e−f(t0,T )r0
1

Z

∫
Dve−

1
2σ2

∫ T
t0

(v2(t)+2σ2f(t,T )v(t))dt (4.67)

where f(t, T ) = 1−e−a(T−t)

a .
Performing infinite dimensional Gaussian integration, see appendix D, yields

P (t0, T ) = e−b(T−t0)e−f(t0,T )r0e
σ2

2

∫ T
t0
f2(t,T )dt (4.68)

We can now also easily derive corresponding forward rates by using the equation
(4.51).

HJM model

Heath-Jarrow-Morton model or HJM model describes behaviour of forward
rates. We assume the following stochastic dynamic for forward rates f(t, x)
where t < x < TF

df(t, x) = α(t, x)dt+

N∑
i=1

σi(t, x)dWi(t) (4.69)

where Brownian motions Wi are independent. We will analyse this model in
detail because the quantum field theory approach will be a direct generalization
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of this model in a sense. We have N independent driving noises in this model
which corresponds to N degrees of freedom. The idea of next sections will be
to build a quantum fields theory for forward rates i.e. a theory with infinitely
many degrees of freedom.

Martingale condition in HJM model:
The drift coefficient α(t, x) is actually not arbitrary but it is fully determined
by the martingale condition

P (t0, T ) = E(e−
∫ t1
t0
r(t)dtP (t1, T )|P (t0, T )) (4.70)

Moreover this condition in the case of bonds holds under the original measure
so we do not need to change to an equivalent martingale measure. This is so
because interest rates have to fluctuate around the drift term proportional to
ert otherwise there would be an arbitrage opportunity.

The equation above can be rewritten as

P (t0, T ) =
1

Z

∫
DW e−

∫ t1
t0
r(t)dtP (t1, T )eS[W,t0,t1] (4.71)

We integrate directly over Brownian sample paths in this case, this means that
action has the simplest Gaussian form

S[W, t0, t1] = −1

2

N∑
i=1

∫ t1

t0

Wi(t)dt (4.72)

We can rewrite the integrand as

e−
∫ t1
t0
r(t)dtP (t1, T ) = e

−
∫ t1
t0
r(t)dt−

∫ T
t1
f(t1,x)dx (4.73)

with use of

f(t, x) = f(t0, x) +

∫ t

t0

α(t′, x)dt′ +

∫ t

t0

N∑
i=1

σi(t
′, x)Wi(t

′)dt′ (4.74)

and equation r(t) = f(t, t) we can rewrite the integrand after some calculations
as

e−
∫ t1
t0
r(t)dtP (t1, T ) = e

−
∫ T
t0
f(t0,x)dx−

∫ t1
t0
dt

∫ T
t
dxα(t,x)−

∑N
i=1

∫ t1
t0
dt

∫ T
t
dxσi(t,x)Wi(t)

(4.75)
The solution (4.74) of Ito equation (4.69) is written in different form then we are
used to. We used there a notation dWi(t) = Wi(t)dt where Wi(t) is a Gaussian
noise, the path integration is then performed with respect to this noise.

We will from now on denote
∫ t1
t0
dt
∫ T
t
dx =

∫
A
. The equation (4.71) can now

be rewritten as

P (t0, T ) = P (t0, T )e−
∫
A
α(t,x) 1

Z

∫
DW e−

∑N
i=1

∫
A
σi(t,x)Wi(t)eS[W ] (4.76)
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performing infinite dimensional Gaussian integration and rearranging terms
yields a condition

e
∫
A
α(t,x) = e

1
2

∫ t1
t0

∑N
i=1(

∫ T
t
σi(t,x)dx)2dt (4.77)

This condition can be equivalently rewritten as

α(t, x) =

N∑
i=1

σi(t, x)

∫ x

t

σi(t, x
′)dx′ (4.78)

This condition is equivalent to a martingale condition (4.70) so this is in fact
the martingale condition which uniquely determines the drift term α(t, x).

Bond options in HJM model :
We will consider a call option on a zero bond P (t1, T ) with the expiration time
t1 and a strike price K. The price of this option at time t0 < t1 is

C(t0, P (t1, T ),K) = E(t0,t1)(e
−

∫ t1
t0
r(t)dt(P (t1, T )−K)+|P (t0, T )) (4.79)

Using the definition of zero bonds (4.50) and the formula δ(a) = 1
2π

∫
R e

ipadp
allows us to write

(P (t1, T )−K)+ =
1

2π

∫
R

∫
R
e
ip(y+

∫ T
t1
f(t1,x)dx)

(ey −K)+dp dy (4.80)

We will now denote

φ(y, t1, T ) =
1

2π

∫
R
E(e−

∫ t1
t0
r(t)dte

ip(y+
∫ T
t1
f(t1,x)dx)

)dp (4.81)

so the option price can be written as

C(t0, P (t1, T ),K) =

∫
R
φ(y, t1, T )(ey −K)+dy (4.82)

we can rewrite formula for φ

φ(y, t1, T ) =
1

2π

∫
R

1

Z

∫
DW (e−

∫ t1
t0
r(t)dte

ip(y+
∫ T
t1
f(t1,x)dx)

eS[W.t0,t1])dp (4.83)

We now have to insert (4.74), use r(t) = f(t, t) and perform the path integration.
The calculation are lengthy but in principle completely analogical to calculations
done above. We get

φ(y, t1, T ) = P (t0, t1)
1

2π

∫
R
e
ip(y+

∫ T
t1
f(t0,x)dx+

∫ t1
t0
dt

∫ T
t1
dxα(t,x))

e
−(

∫ t1
t0
dt

∫ T
t1
dxα(t.x))p2

dp

(4.84)
Performing Gaussian integration now yields

φ(y, t1, T ) = P (t0, t1)N

(
−
∫ T

t1

f(t0, x)dx−
∫ t1

t0

dt

∫ T

t1

dxα(t.x), 2

∫ t1

t0

dt

∫ T

t1

dxα(t.x)

)
(4.85)

Where N(µ, σ2) denotes a density function of a normal distribution with a mean
equal to µ and a variance σ2. together with (4.82) this determines the option
price.
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4.2.2 Lagrangian formulation
We want to formulate a quantum field theory of forward interest rates now.
The problem with the HJM model is that bonds with different maturities are
exactly correlated which is clearly an oversimplification. The idea is to consider
set of random variables {P (t, T ), t0 < t, t < T < t+TF }, where TF is maximum
time for which we can buy the bond. It is usually 30 years or more so we can
typically send TF →∞. Variables P (t, T ) should be non-trivially correlated. It
is beyond standard stochastic calculus to describe such a complicated structure.
We need to describe a system with infinite number of degrees of freedom and
non-trivial correlations. The quantum field theory was developed exactly for
purpose of describing such systems so it is natural to use it also for modelling
of forward interest rates.

Action for forward interest rates

We need to define action as a functional of the field f(t, x)

S[f ] =

∫ t1

t0

dt

∫ t+TF

t

dxL[f ] :=

∫
P

L[f ] (4.86)

We will consider mostly actions quadratic in f because then the path integration
can be done analytically. Theories with non-quadratic actions are called non-
linear or non-Gaussian. We will briefly introduce such theories later in this
chapter.

It can be shown that Lagrangian has to contain the term ∂2f
∂t∂x otherwise

the martingale condition will not be fulfilled. The proposed Lagrangian has the
form [41]

L[f ] = Lkin[f ] +Lrigidity[f ] = −1

2

(
∂f
∂t − α(t, x)

σ(t, x)

)2

− 1

2µ2

(
∂

∂x

∂f
∂t − α(t, x)

σ(t, x)

)2

(4.87)
This is an action of a quantum string - the term α is a drift, 1/σ2 corresponds
to the mass and the term 1/µ2 is a rigidity. The HJM model is recovered in
limit of infinite rigidity µ → 0. The drift term α(t, x) is uniquely determined
by the martingale condition so only σ, µ are free parameters of this model.

We also need to consider some boundary conditions. We can assume Dirich-
let conditions and fix f(t, x) for t = t0 and t = t1.

We will assume Neumann boundary conditions. They require the surface
term to vanish i.e.

∂

∂x
(
∂tf(t.x)− α(t, x)

σ(t, x)
) = 0 for x = t or x = t+ TF (4.88)

This condition allows us to rewrite the action

S = −1

2

∫
P

(
∂tf − α

σ
)(1− 1

µ2

∂2

∂x2
)(
∂tf − α

σ
) (4.89)
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We will use a standard notation

Z =

∫
DfeS[f ]

∫
Df =

∏
(t,x)∈P

∫
R
df(t, x) (4.90)

where the uncountable product is just a short-hand notation for a countable
product on the lattice and sending the lattice distance to zero.

This definition implies that the term eS[f ]/Z is a properly normalized prob-
ability distribution.

Autocorrelation functions for velocity field

We will define a drift less velocity field A(t, x) by

∂f(t, x)

∂t
= α(t, x) + σ(t, x)A(t, x) (4.91)

the Neumann boundary conditions have now the form

∂A

∂x
|x=t=

∂A

∂x
|x=t+TF = 0 (4.92)

The action can be rewritten as

S = −1

2

∫
P

A(t, x)(1− 1

µ2

∂2

∂x2
)A(t, x) (4.93)

Jacobian of a transformation
∫
Df →

∫
DA is just a constant so it cancels

with the same term from the normalization 1/Z.
The velocity field itself cannot be observed, but we can observe autocorre-

lation functions

〈A(t, x)A(t′, x′)〉 =
1

Z

∫
DA A(t, x)A(t′, x′)eS[A] (4.94)

Autocorrelation functions can be also calculated in a different way, we define a
moment generating function

Z[J ] =
1

Z

∫
DAe

∫∞
t0
dt

∫ t+TF
t dxJ(t,x)A(t,x)

eS[A] (4.95)

where we set t1 =∞ in the definition (4.86).
We can calculate this integral with use of rules for infinite-dimensional Gaus-

sian integration, see appendix D

Z[J ] = exp

(
1

2

∫ ∞
t0

dt

∫ t+TF

t

dxdx′J(t, x)D(x, x′, t, TF )J(t, x′)

)
(4.96)

where the propagator D(x, x′, t, TF ) is given by the equation

(1− 1

µ2

∂2

∂x2
)D(x, x′, t, TF ) = δ(x− x′) (4.97)
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The autocorrelation function can now be obtained by a functional differentiation

〈A(t, x)A(t′, x′)〉 =
δ2Z[J ]

δJ(t, x)δJ(t′, x′)
|J=0= δ(t− t′)D(x, x′, t, TF ) (4.98)

The form of propagators D(x, x′, t, TF ) for different boundary conditions is re-
viewed in appendix E. We obtain the following result from (E.3) when consid-
ering Neumann conditions

D(x, x′, t) = lim
TF→∞

D(x, x′, t, TF ) =
µ

2
(e−µ|x−x

′| + e−µ(x+x′−2t)) (4.99)

Martingale condition

The drift term α(t, x) is determined by the martingale condition. The deriva-
tions are the same as in the case of HJM model. The martingale condition
requires

P (t0, T ) = E(e−
∫ t1
t0
r(t)dtP (t1, T )|P (t0, T )) (4.100)

or equivalently

P (t0, T ) =
1

Z

∫
DAe−

∫ t1
t0
r(t)dtP (t1, T )eS[A] (4.101)

where S[A] is given by (4.93).
We get an analogical equation to (4.75) in the same way as in HJM model

P (t0, T ) = P (t0, T )e−
∫
A
α(t,x) 1

Z

∫
DAe−

∑N
i=1

∫
A
σi(t,x)Wi(t)eS[A] (4.102)

where
∫
A

=
∫ t1
t0
dt
∫ T
t
dx.

Performing an infinite dimensional Gaussian integration now yields

e
∫
A
α(t,x) = exp

(
1

2

∫ t1

t0

dt

∫ T

t

dxdx′σ(t, x)D(x, x′, t, TF )σ(t, x′)

)
(4.103)

rewriting this yields the martingale condition

α(t, x) = σ(t, x)

∫ x

t

D(x, x′, t, TF )σ(t, x′)dx′ (4.104)

We will introduce a useful technique of discounting the price by a zero bond. We
usually consider the discounting factor e−

∫ t1
t0
r(t)dt so for example e−

∫ t1
t0
r(t)dtP (t1, T )

is a martingale. However the bond P (t0, t1) = e−
∫ t1
t0
f(t0,x)dx can be used as a

discounting factor also. We want e−
∫ t1
t0
f(t0,x)dxP (t1, T ) to be a martingale un-

der the new measure so

P (t0, T ) = EQ(e−
∫ t1
t0
f(t0,x)dxP (t1, T )|P (t0, T )) (4.105)
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or equivalently

P (t0, T ) = P (t0, t1)EQ(P (t1, T )|P (t0, T )) = P (t0, t1)

∫
1

Z
DAP (t1, T )eSQ[A]

(4.106)
We can easily obtain the form of SQ[A] by comparing the above formula with a
standard martingale condition (4.70)

eSQ =
e−

∫ t1
t0
r(t)dt

P (t0, t1)
eS (4.107)

It is easy to verify now that SQ has the form (4.87) with the same parameter σ
and with a drift term

αQ(t, x) = σ(t, x)

∫ x

t1

D(x, x′, t, TF )σ(t, x′)dx′ (4.108)

So this change of measure is just a change of a drift reminding the Girsanov
theorem. This technique will be later used for a pricing of bond options.

Non-Gaussian forward interest rates

We will briefly mention non-Gaussian models here, i.e. models with a non-
quadratic action. A problem with these models is that we cannot calculate the
path integrals analytically in most of the cases. Moreover this means that it is
problematic to determine the drift α(t, x) from the martingale condition. Also
other problems known from the quantum field theory appear in these non-linear
theories as for example problems with a renormalization. These problems are
still not very well understood in the connection with finance [41].

We did not explicitly assumed f(t, x) > 0 so far. However this assumption
is almost always realistic. We will define a new field φ

f(t, x) = f0e
φ(t,x) > 0

∂f

∂t
= f0φ

∂φ

∂t
' f0

∂φ

∂t
+O(φ2) (4.109)

The Lagrangian has now the form

L[φ] = −1

2

(
f0
∂φ
∂t − α(t, x)

σ(t, x)

)2

− 1

2µ2

(
∂

∂x

f0
∂φ
∂t − α(t, x)

σ(t, x)

)2

(4.110)

We can define the velocity field

A(t, x) =
f0
∂φ
∂t − α(t, x)

σ(t, x)
(4.111)

The integration over A now leads to fermion path integral and problems with
renormalization [41].
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If we consider σ(t, x) = σ0 = const. then the drift term can be determined
uniquely from the martingale condition

α(t, x) = − σ2
0

2f0
D(x, x, t, TF ) + σ2

0

∫ x

t

D(x, x′, t, TF )eφ(t,x′)dx′ (4.112)

We will prove this statement in the next section with a use of Hamiltonian
formulation of a quantum field theory for the forward interest rates.

Pricing of bond options

We will derive a price of an European call bond option in this paragraph.
The derivation follow similar steps as a derivation in HJM model, however cal-
culations become much easier when we use bonds as a discounting factor.

The price of a bond option can be written using (4.106) as

C(t0, P (t1, T ),K) = P (t0, t1)EQ((P (t1, T )−K)+|P (t0, T )) (4.113)

or equivalently

C(t0, P (t1, T ),K) = P (t0, t1)
1

Z

∫
DA(P (t1, T )−K)+e

SQ[A] (4.114)

the integrand can be rewritten as

(P (t1, T )−K)+ =
1

2π

∫
R

∫
R
e
ip(y+

∫ T
t1
f(t1,x)dx)

(ey −K)+dp dy (4.115)

The price of a call option can now be written as

C(t0, P (t1, T ),K) =

∫
R
φ(y, t1, T )(ey −K)+dy (4.116)

where

φ(y, t1, T ) = P (t0, t1)
1

2π

∫
R

1

Z

∫
DA(e

ip(y+
∫ T
t1
f(t1,x)dx)

eSQ[A])dp (4.117)

inserting for f from the definition (4.91) and calculating a path integral

1

Z

∫
DAeip

∫ t1
t0
dt

∫ t1
t dxσ(t,x)A(t,x)eSQ[A] = exp

(
−p

2

2

∫ t1

t0

dt

∫ T

t1

dxdx′σ(t, x)D(x, x′, t, TF )σ(t, x′)

)
(4.118)

we will for brevity denote

Ω =

∫ t1

t0

dt

∫ T

t1

dxdx′σ(t, x)D(x, x′, t, TF )σ(t, x′) (4.119)
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then we can write

φ(y, t1, T ) =
1

2π

∫
R
e
ip(y+ Ω

2 +
∫ T
t1
f(t0,x)dx)

e−
Ωp2

2 (4.120)

performing Gaussian integration now yields

φ(y, t1, T ) = N

(
−Ω

2
−
∫ T

t1

f(t0, x)dx, Ω

)
(4.121)

where N(µ, σ2) denotes a density of a normal distribution with a mean µ and a
variance σ2.

Using the martingale condition we can rewrite Ω as

Ω = 2

∫ t1

t0

dt

∫ t1

t

dxαQ(t, x) (4.122)

after inserting this into (4.121) we can clearly see the similarity with the result
(4.85) for HJM model.

4.2.3 Hamiltonian field theory
We will formulate a Hamiltonian field theory of forward interest rates in this
section. The Hamiltonian formulation will be equivalent to Lagrangian formu-
lation presented in the previous section. However it is very convenient to have
different formulations of the same theory because each of them might be better
suited for different problems. We will see that Hamiltonian formulation is better
suited to deal with non-linear forward rates where the path integration is not
Gaussian so it cannot be performed analytically.

From Lagrangian to Hamiltonian formulation

We need to obtain Hamiltonian - the infinitesimal generator of a time evo-
lution, from the knowledge of Lagrangian. The way to do it is to invert the
procedure presented in the section (4.1.3) where we derived Lagrangian from
the knowledge of Hamiltonian. However we cannot use the simple relation

〈fin|e−(Tfin−Tin)H|ffin〉 =

∫
DfeS[f ]

because our Hamiltonian is time dependent H = H(t).
Hamiltonian has to be time dependent because the space of state vectors

|ft〉 =
⊗

t≤x≤t+TF

|f(t, x)〉 (4.123)

changes a form for different times t. This presents some technical difficulties,
which we will address in this paragraph.
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We will consider a discrete lattice

(t, x)→ ε(n, l) f(t, x)→ fn,l TF = εNF (4.124)

The action has the form

S[f ] =
∑
n

S(n) =
∑
n

(ε
∑
l

Ln[fn,l, fn+1,l]) (4.125)

We will denote the state space at time t = εn by Πn, the state vectors have the
form

|fn〉 =
⊗

n≤l≤n+NF

|fn,l〉 (4.126)

We can now define Hamiltonian as an operator Hn : Πn → Πn+1. It is defined
by the following relation

ρne
ε
∑
l Ln[fn,fn+1] = 〈fn|e−εHn |fn+1〉 (4.127)

This means that the time evolution operator is acting on the initial state 〈fin|.
A factor ρn can be field dependent, however for linear forward rates it is just a
constant.

We get the following formula in the case of the continuous time

Z =

∫
DfeS[f ] = 〈fin|T exp (−

∫ Tfin

Tin

H(t)dt)|ffin〉 (4.128)

Where T is a time ordering operator placing the operator with the earliest time
in a argument to the left.

The formula above reminds the solution od Schroedinger equation with time
dependent Hamiltonian, however the time ordering operator in a quantum me-
chanics places operators in reverse order. The difference is that the evolution
operator in the finance applications is used for discounting the price and hence
it propagates backwards in time. This is also the reason why the time evolution
operator in finance acts on the initial state.

Hamiltonians for (non)-linear forward rates

In this paragraph we will derive Hamiltonians for linear forward rates de-
fined by Lagrangian (4.87) and for non-linear forward rates defined by (4.110).

The linear forward rates are presented by Lagrangian

L[f ] = −1

2

(
∂f
∂t − α(t, x)

σ(t, x)

)2

− 1

2µ2

(
∂

∂x

∂f
∂t − α(t, x)

σ(t, x)

)2

Using definition (4.125) of S(n) and considering a variable t = εn to be discrete
and x to be continuous yields

S(t = εn) = ε

∫ t+TF

t

Lndx = − 1

2ε

∫ t+TF

t

A(t, x)(1− 1

µ2

∂2

∂x2
)A(t, x)dx (4.129)
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where
A(t, x) =

ft+ε(x)− ft(x)− εα(t, x)

σ(t, x)
(4.130)

This definition is similar to (4.91) but A is rescaled by ε and a discrete form of
differentiation ∂f

∂t = ft+ε−ft
ε is used.

We can write eS(n) as a path integral now

eS(n) =

∫
Dpe−

ε
2

∫ t+TF
t dxdx′p(x)D(x,x′,t)p(x′)+i

∫ t+TF
t dxp(x)A(x) (4.131)

where a propagator D(x, x′, t) is given by (4.99), form of D(x, x′, t) for different
boundary conditions is reviewed in the appendix D.

We can perform a substitution p(x)→ σ(t.x)p(x) in the above integral. We
get up to the constant, which cancels with the same term from the normalization,
the following

eS(n) =

∫
Dpe−

ε
2

∫ t+TF
t dxdx′p(x)σ(t,x)D(x,x′,t)σ(t,x′)p(x′)+i

∫ t+TF
t dxp(x)(ft+ε(x)−ft(x)−εα(t,x))

(4.132)
With use of (4.127) we get

ρne
S(n) = 〈ft|e−εHn |ft+ε〉 (4.133)

Hn acts on the initial state so we can consider Hn = Hn( δ
δft

). Using an identity∫
Dp|p〉〈p| = 1 yields

〈ft|e−εHn |ft+ε〉 =

∫
Dp〈ft|e−εHn |p〉〈p||ft+ε〉 = e−εHn( δ

δft
)

∫
Dpei

∫ t+TF
t p(x)(ft(x)−ft+ε(x))

(4.134)
Comparing this result with (4.132) (and ignoring the multiplication constant)
yields the form of Hamiltonian for linear forward rates

Hf (t) = −1

2

∫ t+TF

t

dxdx′σ(t, x)D(x, x′, t)σ(t, x′)
δ2

δf(x)δf(x′)
−
∫ t+TF

t

dxα(t, x)
δ

δf(x)
(4.135)

We briefly introduced non-linear forward interest rates f(t, x) = f0e
φ(t,x) in the

previous section. However we were unable to make any calculations for them
because the non-Gaussian path integration could not be performed analytically.
We remind the form of Lagrangian for non-linear forward rates

L[φ] = −1

2

(
f0
∂φ
∂t − α(t, x)

σ(t, x)

)2

− 1

2µ2

(
∂

∂x

f0
∂φ
∂t − α(t, x)

σ(t, x)

)2

(4.136)

It is easy to see that we can derive Hamiltonian for non-linear forward rates in
the same way we did in the linear case. We obtain the following result

Hφ(t) = − 1

2f2
0

∫ t+TF

t

dxdx′σ(t, x)D(x, x′, t)σ(t, x′)
δ2

δφ(x)δφ(x′)
− 1

f0

∫ t+TF

t

dxα(t, x)
δ

δφ(x)
(4.137)
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Martingale condition in Hamiltonian formulation

We will derive a general condition for Hamiltonian to satisfy the martin-
gale condition in this paragraph. This general result will be then used to derive
a form of the drift term α(t, x) for both linear and non-linear forward interest
rates.

The martingale condition for zero bonds has the form

P (t, T ) = E〈t,t1〉(e
−

∫ t1
t r(t)dtP (t1, T )|P (t, T )) (4.138)

or equivalently

P (t, T ) =
1

Z

∫
Dfρ[f ]e−

∫ t1
t r(t)dtP (t1, T )eS[f ] (4.139)

where a factor ρ[f ] is typically field independent, in that case it just cancels
with the same term from the normalization 1/Z.

We obtain be setting t1 = t+ ε, where ε is infinitesimal, the following

P (t, T ) =

∫
Dft+ερ[ft+ε]e

−εf(t,t)eεL[ft,ft+ε]P [f, t+ ε, T ] (4.140)

where
P [f, t, T ] = e−

∫ T
t
f(t,x)dx = 〈ft|P (t, T )〉

We can rewrite the equation (4.140) as

〈ft|P (t, T )〉 =

∫
Dft+ε〈ft|e−εf(t,t)e−εH(t)|ft+ε〉〈ft+ε|P (t+ ε, T )〉 (4.141)

or equivalently

〈ft|P (t, T )〉 = 〈ft|e−εf(t,t)e−εH(t)|P (t+ ε, T )〉 (4.142)

which is equivalent to

e−εf(t,t)|P (t, T )〉 = e−εH(t)|P (t+ ε, T )〉 (4.143)

It holds e−εf(t,t)|P (t, T )〉 = |P (t+ε, T )〉 from the definition of zero bonds. This
means that the above condition is equivalent to

H(t)|P (t, T )〉 = 0 ∀t, T (4.144)

It is interesting that we have obtained the same martingale condition for Hamil-
tonian as the condition (4.21) from the section about a quantum mechanical
formulation of the option pricing problem.

We will now use the derived formula (4.144) the calculate the drift α(t, x)
for both linear and non-linear forward rates.

The condition (4.144) for linear forward rates has the form

Hf (t)|P (t, T )〉 = Hf (t) exp(−
∫ T

t

f(t, x)dx)
!
= 0 (4.145)
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Using the relation

δnP (t, T )

δf(t, x)n
= (−1)nP (t, T )Θ(T − x) (4.146)

and the definition of Hf (4.135) yields

(−1

2

∫ T

t

dxdx′σ(t, x)D(x, x′, t)σ(t, x′) +

∫ T

t

dxα(t, x))P (t, T ) = 0 (4.147)

or equivalently

α(t, x) = σ(t, x)

∫ x

t

D(x, x′, t)σ(t, x′)dx′ (4.148)

which is the martingale condition (4.104) we have already derived in Lagrangian
formulation.

We will now similarly derive the form of α(t, x) for non-linear forward rates.
We were unable to make these derivations in the Lagrangian formulation, how-
ever to do so in Hamiltonian formulation is quite easy.

The derivation for non-linear interest rates proceeds in same steps as the
previous calculations

Hφ(t)P (t, T ) = Hφ(t)e−f0

∫ T
t
eφ(t,x)dx !

= 0 (4.149)

using the relations

δP (t, T )

δφ(x)
= −f0e

φ(x,t)P (t, T )Θ(T − x)

and

δ2P (t, T )

δφ(x)δφ(x′)
= −f0e

φ(x,t)P (t, T )δ(x−x′)Θ(T−x)+f2
0 e
φ(x,t)eφ(x′,t)P (t, T )Θ(T−x)Θ(T−x′)

and the definition (4.137) of Hφ yields after straight forward calculations the
martingale condition in the form

α(t, x) = −σ
2(x, t)

2f0
D(x, x, t) + σ(x, t)

∫ x

t

σ(x′, t)D(x, x′, t)eφ(t,x′) (4.150)

The knowledge of Hamiltonian enables in principle to calculate the pricing kernel

p[t0, t1, f ] = 〈ft0 |T exp (−
∫ t1

t0

HQf (t)dt)|ft1〉 (4.151)

Where the drift term of HQf (t) is given by equation (4.108), in other words it is
adjusted for discounting by a zero bond P (t0, T ).
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We can now in principle calculate a price of any path independent bond
option. We will consider an option with a pay-off function g, then the option
price is given as

C(t0, P (t1, T ), g) = P (t0, t1)EQ(g(P (t1, T ))|P (t0, t1)) = P (t0, t1)〈ft0 |T exp (−
∫ t1

t0

HQf (t)dt)|g〉

(4.152)
which can be rewritten as

C(t0, P (t1, T ), g) = P (t0, t1)

∫
Dft1p[t0, t1, f ]〈ft1 |g〉 (4.153)

where 〈ft1 |g〉 = g(ft1).



Conclusion

This thesis had two main objectives. The first one was to introduce the theory of
stochastic processes beyond a traditional framework of Brownian motion and Ito
calculus. The other one was to apply this theory to the option pricing problem.

In the first chapter, we focused on a general theory of the option pricing. We
introduced standard Black-Scholes theory and talked about its limitations. We
derived the two fundamental theorems of asset pricing, defined a completeness of
the market, introduced a change of measure technique and discussed incomplete
markets.

In chapters 2 and 3, we focused mainly on two approaches to go beyond
Brownian motion and a standard diffusion in particular. The first one was physi-
cally motivated by an anomalous diffusion observed in many systems nowadays.
The main idea was to generalize a standard Fokker-Planck equation to cover
the memory effects and other non-standard effects not considered in Brownian
models.

We mainly focused on a generalization to fractional Fokker-Planck equation,
i.e. a differential equation containing derivatives of a non-integer order. We
derived it from a continuous time random walk model and demonstrated its
physical significance. We obtained stable processes as a special solution of a
space-fractional diffusion. The solutions of both the space and the time frac-
tional diffusion equations yielded non-Markovian processes. The type of mem-
ory effects they possess can occur for example in systems with a trapping or
in fractal systems. This gave an interesting inside into the origins of fractional
processes.

We have also discussed non-linear Fokker-Planck equation. A physical moti-
vation is less clear in this case however we demonstrated a connection between
the powers in a non-linear diffusion equation and Tsallis q-entropy.

We also applied both of these approaches to the option pricing problem and
derived generalized versions of Black-Scholes formula.

The second class of processes we have discussed were Levy processes, i.e.
Markov processes with stationary and independent increments. We showed
that they can be interpreted as a superposition of standard Brownian diffusion
with Poisson type jumps. We developed a stochastic calculus for these processes
including a generalized Ito lemma. We also discussed ways to build Levy models
applicable in finance.

An application of Levy processes to the option pricing yielded very interest-
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ing results. We calculated option prices in some particular models. However we
cannot typically obtain the solutions analytically and we have to use numeri-
cal methods. We built a mathematical apparatus to deal with a change of the
measure technique in Levy models, we derived generalized Black-Scholes equa-
tion and we discussed Fourier transform methods for numerical calculations of
option prices.

Levy models bring a lot of new notions into the option pricing theory. Due
to their non-diffusion nature Levy analogue of Black-Scholes equation is not a
differential but an integro-differential equation. An integral term is due to their
jumps. This complicates the situation from a numerical point of view but it
also leads to non-uniqueness of an equivalent martingale measure. Such models
are called incomplete. We demonstrated a connection of a completeness of the
market with Feynman-Kac formula.

While these complications may seem mathematically inconvenient it turns
out that the incomplete models describe a reality better than the complete ones
do. This is supported mainly by the fact that options are redundant assets in
complete markets - they can be perfectly hedged. This does not correspond
to the reality, there is a remaining risk that cannot be hedged away in both
incomplete models and in a reality .

In the last chapter, we reformulated the option pricing theory in the for-
malism of the quantum mechanics. We introduced both Hamiltonian and path
integral formulation. We derived Hamiltonians and Lagrangians for both Black-
Scholes and stochastic volatility model. We also discussed modelling of path-
dependent options by adding a potential term. We derived a pricing kernel for
a double-knock out barrier option using this method. This problem turned out
to be equivalent to a problem with an infinite potential well from the quantum
mechanics.

We introduced forward interest rates. A standard way to model them is
by stochastic equations. We built a theory to model them as a quantum field
then. We chose Lagrangian of the quantum string for this purpose and derived
a no-arbitrage condition for linear forward rates and also the price of European
bond options. The standard stochastic model was recovered when considering a
string with an infinite rigidity. We mainly discussed the Lagrangian formulation
of this theory. However, Lagrangian formulation based on a path integration
was not convenient for dealing with non-linear forward interest rates. We were
unable to perform the path integration for non-linear forward rates analytically,
because they have a non-quadratic action. We also introduced the Hamiltonian
field formulation and using it we were able to derive the no-arbitrage martingale
condition even for non-linear forward rates. The quantum field theory formula-
tion is more general than any model based on stochastic calculus. It turned out
that especially the non-linear theory is beyond any standard model.



Appendix A

Ito calculus

We will very briefly summarize some results of Ito calculus. For a thorough
review see [7].

We want to define an integral

It(C) =

∫ t

0

CsdWs (A.1)

for processes fulfilling

1. C is adapted to Brownian motion

2.
∫ t

0
EC2

sds <∞

It can be done similarly as in the Riemann case. However we need to choose
the left points in each interval of every partition and a convergence must be
considered in the L2 sense. The integral defined in this manner has the following
properties

1. It(aC1 + C2) = aIt(C1) + It(C2) a ∈ R

2. It(C) is a martingale with respect to a natural filtration of Brownian
motion

3. EIt(C) = 0

4. E(It(C))2 =
∫ t

0
EC2

sds

5. It has continuous trajectories

Another key result of Ito calculus is Ito lemma - an analogue of the chain rule
from classical calculus.

Let us consider a process in the form

Xt = X0 +

∫ t

0

A(1)
s ds+

∫ t

0

A(2)
s dWs (A.2)

it is called Ito process or diffusion. We can state Ito lemma now.
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Theorem A.1. Let us consider Ito process Xt and a function f(t, x) ∈ C2 .
Then the following formula holds

f(t,Xt)− f(s,Xs) =

∫ t

s

(
∂f

∂y
+

1

2
(A(2)

y )2 ∂
2f

∂x2
+A(1)

y

∂f

∂x
)dy +

∫ t

s

A(2)
y

∂f

∂x
dWy

(A.3)
where for the lucidity we omitted arguments f = f(y,Xy)

It can be formally proven by Taylor expansion with the use of (dWt)
2 = dt

and by neglecting the terms of higher order than dt.
We will also state the multidimensional result.

Theorem A.2. Let Xt = (X1
t , ..., X

d
t ) be a n-dimensional Brownian motion

with a covariance matrix A and a zero mean. Let a function f : 〈0, T 〉×Rd → R
be f ∈ C2. Then the following holds

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
ds+

d∑
i,j=1

∫ t

0

1

2
Aij

∂2f

∂xi∂xj
ds+

d∑
i=1

∫ t

0

∂f

∂xi
dXi

s

(A.4)



Appendix B

Stable distributions

We will summarize basic properties of stable distributions in this appendix.
Stable distributions have densities invariant under a convolution. It implies

that if we consider iid stable variables Xi then it holds

n∑
i=1

Xi = aX + b

where X has the same stable distribution.
An importance of stable distributions lies in the following theorem.

Theorem B.1. (Levy, Khintchin) A probability density can only be a limiting
distribution of a sum of iid random variables, if it is stable.

Levy and Khintchin have also found the most general class of stable distri-
butions. This class is often called Levy distributions or α - stable distributions.

Theorem B.2. A probability density pα,β(x) is stable ⇔ a logarithm of its
characteristic function has the form :

ψα,β(k) = lnϕα,β(k) = iγk − σ|k|α(1 + iβ |k|k ω(k, α))

where γ ∈ R, σ ≥ 0, α ∈ (0, 2〉 and β ∈ 〈−1, 1〉 and a function ω has the form:

ω(k, α) =

{
−tan(πα/2) for α 6= 1
(2/π)ln|k| for α = 1

The logarithm of the characteristic function lnϕα,β is usually called Hamil-
tonian operator in physics and a cumulant generating function in mathematics.
We will denote by ϕα,β the version with γ = 0 and σ = 1 from now on.

Meaning of parameters α, β, γ and c can be easily understood. We have a
normal distribution with the expected value µ = γ and variance 2σ for α = 2
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regardless of the parameter β.
The α is a tail exponent or an index of stability for α ∈ (0, 2). The following
holds if β 6= ±1

pα,β(x) ∼ 1
|x|1+α for |x| → ∞

The parameter γ gives a peak position or an expected value, if it exists. β
determines how asymmetric a probability density is. The probability density is
specially for γ = β = 0 an even function. The distribution is on the other hand
for β = ±1 very asymmetric and if at the same time α ≤ 1 one tail vanishes
completely. The support of pα,β will be bounded to 〈γ,∞) respectively (−∞, γ〉
in this case. The parameter σ is a scale factor that determines a width of a
distribution.

The moment generating function exists only in the case β = ±1. We have
for β = 1 and k > 0

lnE(e−kX) = −γk − σkα sec
πα

2
(B.1)

where sec = 1
cos . The case β = −1 and k < 0 is analogical.

We will also need another parametrization of ϕα,β

Hα,θ(k) = lnϕα,θ(k) = iγk − c|k|αeisgn(k)θ π2 (B.2)

Where |θ| ≤ min {α, 2− α}. The extreme value od θ always corresponds to
β = ±1. For example the case θ = 2 − α corresponds to β = 1 for α > 1.
Analogically θ = α− 2 corresponds to β = −1. This parametrization will be in
particular useful for the fractional differentiation where θ will be interpreted as
a skewness.

We will also state the generalized central limit theorem for stable laws.

Theorem B.3. (generalized CLT) Let Xi be a sequence of iid random variables,
with asymptotic behaviour of densities given by

pXi(x) = C±|x|−(1+α) for x→ ±∞ , α ∈ (0, 2)

Let us define the parameter β = C+−C−
C++C−

then γ ∈ R exists such as

∑n
i=1(Xi−γ)

n1/α

D→ X ∼ pα,β(x)

The proof of this theorem can be found in [3].



Appendix C

Fractional differentiation

We will discuss the concept of fractional calculus i.e. differentiation of non-
integer order. There exists many non-equivalent definitions of fractional deriva-
tives. We will mention few of them well applicable to an anomalous diffusion.
See for example [39] for more details.

The main idea is to generalize well-known Cauchy integral formula for any
α > 0

x0
Iαx f(x) ≡x0

D−αx f(x) =
1

Γ(α)

∫ x

x0

(x− y)α−1f(y)dy (C.1)

We will omit here the discussion about an appropriate domains of these opera-
tors. We will consider sufficiently smooth functions only.

It can be easily verified that operators x0
Iαx form an abelian semi-group .

We can write for α, β > 0

x0
Iαx ◦x0

Iβx =x0
Iα+β
x (C.2)

It can be also easily seen that d
dx (x0

Iα+1
x ) =x0

Iαx . The idea now is to define an
operator x0

Dα
x for positive α by

x0D
α
xf(x) =

ddαe

dxdαe
(Idαe−αx f(x)) (C.3)

Where d e denotes the ceiling function. We will now discuss properties of these
derivatives for certain choices of x0.

Riemann-Liouville derivative

We obtain fractional Riemann-Liouville derivative by the choice x0 = 0. We
will from now on denote 0D

α
x ≡ Dα

0 .
The composition rule (C.2) does not hold for R.-L. derivative. However it

holds in certain cases

Dq
0 ◦D

Q
0 = Dq+Q

0 Q < 0, q ∈ R (C.4)
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It also holds for Q < 1 if we consider bounded functions. It can be formulated
even in other cases but it has much more complicated form then [21].

An interesting question is how a derivative of power function xn looks. We
can obtain by straightforward calculation

Dα
0 x

p =
Γ(1 + p)

Γ(1 + p− α)
xp−α (C.5)

This seems to correspond to a classical derivation of the power function however
it implies that a non-integer order differentiation of a constant function does not
yield a zero!

R.-L. derivative is very convenient to treat with Laplace transform. We can
look at equation (C.1) with x0 = 0 as Laplace convolution. So we can easily
obtain for α > 0

L(Dα
0 f(x))(u) = uα(Lf)(u)−

bαc∑
j=0

uj [Dα−1−j
0 f(x)]x=0 (C.6)

This can be seen as a direct generalization of the classical rule

L(f (n)(x))(u) = un(Lf)(u)−
n∑
j=1

un−jf j−1(0) (C.7)

Laplace transform has a very nice form for the operator D−α0 = Iα0 where α > 0

L(D−α0 f(x))(u) = u−α(Lf)(u) (C.8)

This follows directly from properties of a convolution and from L(xp)(u) =
Γ(p+1)
up+1 for p > −1.

Riezs-Weyl operator

Another interesting choice x0 = −∞ yields Riezs-Weyl operator also known
as Riezs-Feller derivative. We will denote −∞Dα

x ≡ Dα.
One of the desired properties of R.-W. operator is a preservation of the

classical differentiation rule for the exponential function

Dα exp (ax) = aα exp (ax) (C.9)

This can be easily verified for a > 0, however eax is not in the domain of Dα

for a < 0. The domain of R.-W. operator differs from the domain of R.-L.
derivative for this reason - we have to consider only functions with a sufficient
decay in x→ −∞.

Fourier transform is more convenient for treating R.-W. operator then Laplace
transform. We can by a straightforward calculation verify that for sufficiently
smooth functions holds

F(−∞I
α
x f(x))(k) = (−ik)−αFf(k) (C.10)
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We can now easily derive a similar relation for Dα

F(Dαf(x))(k) = (−ik)αFf(k) (C.11)

This is again just a direct generalization of the classical rule for Fourier trans-
form of a derivative.

A very convenient property is the composition rule for R.-W. operator, it
holds for any α, β ∈ R in the form

Dα ◦Dβ = Dα+β (C.12)

This can be easily verified using the composition rule (C.2) and the rule for
Fourier transform of a derivative.

Riezs-Weyl operator is often generalized by adding a skewness parameter θ,
then it is define by its Fourier image

F(Dα
θ f(x))(k) = Hα,θ(k)Ff(k) (C.13)

where Hα,θ(k) = −|k|αeisgn(k)θ π2 is a log-characteristic function of the stable
distribution defined in (B.2). We discussed the possible ranges of (α, θ) pa-
rameters in appendix B. The choice θ = 0 corresponds to the stable symmetric
distribution. The extreme choice θ = min{α, 2 − α} corresponds to an asym-
metric stable distribution with β = ±1. Naturally stable distributions are given
as the solutions of a space fractional equation

∂u

∂t
(x, t) = xD

α
θ u(x, t) (C.14)

Caputo fractional derivative

The Caputo derivative is defined in a little bit different manner by

∗Dα
0 f(x) =

1

Γ(dαe − α)

∫ x

0

fdαe(y)

(x− y)1−dαe+α dy (C.15)

We can also consider a more general ∗Dα
x0
, however we will limit ourselves only

to the case x0 = 0.
Laplace image can be easily obtained using properties of convolution

L(∗Dα
0 f(x))(u) = uαLf(u)−

bαc∑
j=0

uα−j−1f (j)(0) (C.16)

This is a very convenient form because we can use classical initial conditions.
Caputo and Riemann-Liouville derivatives can be connected via a relation

∗Dα
0 f(x) = Dα

0 (f(x)−
bαc∑
j=0

xj

j!
f (j)(0)) (C.17)
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Using this relation and relation (C.4) we can easily see that

∗Dα
0 x

n = Dα
0 x

n n ∈ N, α < n (C.18)

and
∗Dα

0 x
n = 0 n ∈ N, α > n (C.19)

if we now define Mittag-Leffler function

Eµ,ν =

∞∑
n=0

xn

Γ(µn+ ν)
(C.20)

we can easily see that the function f(x) = Eµ,1(axµ) ≡ Eµ(axµ) solves the
equation

∗Dα
0 f(x) = af(x) (C.21)

Mittag-Leffler function is in the way generalized exponential, clearly E1 = exp
and E2(−x2) = cosx. It also belongs to a more general class of Wright type
functions [25].

It is also often defined as inverse Laplace transform [21]. We will only state
its asymptotic properties that will be useful in a connection with the fractional
diffusion. It has the following behaviour for t >> τ

Eα(−(t/τ)α) ∼ c(t/τ)−α (C.22)

and for t << τ we get

Eα(−(t/τ)α) ∼ exp (c(t/τ)α) (C.23)

So it starts with exponential behaviour and gets heavier tails in the time.
It is also worth noting that for ν > 0 the equation

f(x)− f(0) = −cνD−ν0 f(x) (C.24)

has the solution in the form f(x) = f(0)Eν(−cνtν). See [26] for the proof.



Appendix D

Gaussian integration

We will state basic results of multi-dimensional and infinite dimensional Gaus-
sian integration in this appendix. These results are frequently used throughout
the fourth chapter of this thesis.

Multidimensional Gaussian integration

We want to calculate Gaussian integral

Z[J ] =
1

Z

∫
R
eSdx1 . . . dxn S = −1

2

n∑
i,j=1

xiAijxj +

n∑
i=1

Jixi (D.1)

where the normalization 1/Z is chosen so it would hold Z[0] = 1.
Strictly speaking the above integral converges only if the matrix A is posi-

tively definite. In that case we can diagonalize matrix A and then by substitu-
tion transform the integral into n 1-dimensional Gaussian integrals. We obtain
the following result

Z[J ] = exp (JA−1J)
1

Z
=

√
detA

(2π)n/2
(D.2)

Infinite dimensional Gaussian integration

The infinite dimensional Gaussian integration is a path integration with a
quadratic action. We consider an action in the form

S = −1

2

∫
R
dtdt′x(t)D−1(t, t′)x(t′)dtdt′ +

∫
R
J(t)x(t)dt (D.3)

We can now calculate the following integral by generalizing the formula (D.2)
to infinite dimension

Z[J ] =
1

Z

∏
t∈R

dx(t)eS =
1

Z

∫
DxeS[x] = exp

(
1

2

∫
R
J(t)D(t, t′)J(t′)dtdt′

)
(D.4)
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where D(t, t′) is defined by∫
R
D−1(t, s)D(s, t′)ds = δ(t− t′) (D.5)

and the normalization 1/Z is chosen so Z[0] = 1. This is mathematically far
from rigorous because the normalization diverges. However this result is fre-
quently used in the quantum field theory and it leads to right results despite
the problems with mathematical rigorosity.

The formula (D.4) is used frequently in the chapter 4. We will demonstrate
its use on a typical example from the theoretical physics - on a linear oscillator.
Let us consider the action of a harmonic oscillator

S = −m
2

∫
R

(ẋ2(t) + ω2x(t))dt = −m
2

∫
R
x(t)(− d2

dt2
+ ω2)x(t)dt (D.6)

This means

D−1(t, t′) = m(− d2

dt2
+ ω2)δ(t− t′) (D.7)

This formula can be rewritten with a use of (D.5) as

δ(t− s) = m(− d2

dt2
+ ω2)D(t, s) (D.8)

This equation has a simple form in Fourier space, the inverse Fourier transform
then yields

D(t, s) =
1

2πm

∫
R

eik(t−s)

k2 + ω2
dk =

e−ω|t−s|

2mω
(D.9)



Appendix E

Propagators for linear
forward rates

We will state a form of the propagator D(x, x′, t, TF ) for different boundary
conditions in this appendix. This propagator plays a key role in a quantum
field theory of forward interest rates. We will omit any derivation, it can be
found in [41].

The propagator for forward interest rates is given by an equation

(1− 1

µ2

∂2

∂x2
)D(x, x′, t, TF ) = δ(x− x′) t ≤ x ≤ t+ TF (E.1)

When we consider Neumann boundary conditions

∂D

∂x
|x=t=

∂D

∂x
|x=t+TF = 0 (E.2)

then the propagator has a form

D(x, x′, t, TF ) = µ
coshµ(x− t) coshµ(Tf + t− x)

sinhµTF
x > x′ (E.3)

When we consider Dirichlet boundary conditions

D |x=t= D |x=t+TF = 0 (E.4)

then the propagator has a form

D(x, x′, t, TF ) = µ
sinhµ(x− t) sinhµ(Tf + t− x)

sinhµTF
x > x′ (E.5)
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