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Abstrakt: Formování tepelné či jakékoliv jiné rovnováhy v různých fyzikálních systémech
není dosud zcela plně pochopený jev, chceme-li jeho vznik odvodit ze základních zákonů
kvantové mechaniky. Jedním z možných přístupů, jak tento jev popsat, je využití formal-
izmu otevřených kvantových systémů. V této práci popíšeme vývoj systému náhodnou
unitární operací a za model fyzikálního systému vezmeme kvantovou síť, pro níž budeme
uvažovat tři třídy interakcí — partial swap, energy exchange a CNOT interakce. Ve všech
případech určíme analyticky asymptotický režim kvantové sítě spolu s podmínkami, za
kterých síť spěje k rovnováze. Analytická zjištění jsou podpořena numerickými simulacemi
pro obecnější režimy vývoje systému. Ukážeme, že kvantová síť spěje k rovnováze pro
libovolnou ze zmíněných interakcí, pokud jednotlivé části sítě podstupují triviální volný
vývoj. Stejné výsledky obdržíme i pro netriviální volný vývoj a CNOT interakce. Ve všech
těchto případech je nastolení rovnováhy obecnou vlastností sítě, nezávislou na konkrétních
hodnotách parametrů popisujících daný časový vývoj. Oproti tomu pro partial swap a
energy exchange interakce doplněné netriviálním volným vývojem síť již obecně rovnováhy
nenabývá.

Klíčová slova: ekvilibrace, rovnovážný stav, kvantová síť, náhodná unitární operace,
asymptotická dynamika kvantových systémů
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Abstract: Formation of thermal as well as any other kind of equilibrium in various phys-
ical systems is still not a fully understood issue when one wants to derive its emergence
from the underlying laws of quantum mechanics. One possible approach to explain this
phenomenon is to make use of the open-quantum-system formalism. We utilize a random
unitary operation to represent the system evolution and employ a quantum network as our
model of a physical system. Three classes of interactions between the network constituents
are considered—the partial swap, energy exchange and CNOT interactions. For all setups
we determine analytically the asymptotic regime of the network and conclude under which
conditions the network tends to equilibrium. Analytical findings are supported by numer-
ical simulations with more general setups. We show that a quantum network tends to
equilibrium for any of the three interactions, provided that the free evolution of individual
constituents of the network is trivial. The same results are obtained even for a non-trivial
free evolution and CNOT interactions. In all these cases the occurrence of equilibrium is
a generic property of the network, independent of specific values of parameters present in
the setup. On the contrary, for partial swap and energy exchange interactions assisted by
non-trivial free evolution the network no longer approaches equilibrium, in general.
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1 INTRODUCTION

1 Introduction

More than a century ago two immensely successful theories were born, statistical physics
and quantum theory. The former focuses on macroscopical phenomena of physical systems
expressed in terms such as heat or temperature whereas the latter is a microscopical theory
par excellence. The goal of quantum theory is to precisely describe all the physical phe-
nomena as a result of microscopic principles which the physical bodies and fields follow.
Even though both theories should lead to same predictions, as far as thermodynamical
issues are concerned, the mutual relations between the two have not been understood in
full detail until these days.

Great effort has been put to reveal exact ways how the macroscopic properties of the
matter emerge from its underlying microscopic nature and to put their description on a
solid mathematical footing [1]. The formation of a thermal equilibrium is one of the long-
standing issues whose analysis has given rise to a wealth of various questions [2, 3]. The
range of investigated problems is very broad, following recent works [4,5] it can be divided
into several key points.

Asymptotics. Many macroscopic phenomena arise as the asymptotic long-time be-
haviour of the given quantum system. Determination of such an asymptotic regime for
complex quantum systems might be a difficult problem by itself. The central question
then is what is the structure and algebraic properties of asymptotic states of the system.

Equilibration. A substantial feature of the thermalization is the occurence of the equili-
bration. The system should evolve towards some stationary state. However, this situation
might not be the case in general. The equilibration in the given system may occur only
for some initial states or for large enough systems. In the case the system does equilibrate
it is reasonable to investigate the structure of stationary states. If the set of stationary
states is sufficiently rich a strong memory effect preserving a lot of information about the
initial state is present in the system.

Independency from initial conditions and thermalization. On the contrary, when the
set of stationary states is small only few parameters suffice to describe the asymptotic
state of the system and the asymptotics of the system is almost independent of the initial
conditions. In particular, if the system tends to the Gibbs state ρth ∼ e

−βH with β being an
inverse temperature and H Hamiltonian of the system we say the given system thermalizes.

Subsystems. As the physical system consists of many microscopic constituents, one
may treat it as being composed of smaller subsystems. Even though the whole system
does not have to equilibrate, in general, equilibration of smaller subsystems may still be
observed. In such a case one expects the subsystems of the same size approach the same
equilibrium state.

As has been already mentioned we are primarily concerned with the above listed issues
from the viewpoint of underlying microscopic laws. We intend to study how the equilib-
rium of a total system establishes via mutual interactions of its numerous subsystems. To
be specific, we consider a quantum system composed of many constituents with dynamics
analogous to the dilute Boltzmann gas. Individual subsystems undergo a free evolution
interrupted by short random bipartite collisions. Such systems are well described by a
concept of a quantum network. The network nodes correspond to individual quantum sub-
systems and the set of links captures the geometry of bipartite interactions. An interplay
between the free evolution and the random bipartite interactions is responsible for the
resulting asymptotic evolution of the system.

In this work we study quantum networks with three properly chosen types of inter-
actions: the partial swap interaction, the energy exchange interaction and the controlled-
NOT-like interaction. The main goal is to explore their asymptotic regime and elucidate
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1 INTRODUCTION

the impact of actual collision times, interaction strengths, their probability distribution
and the size of the system on the structure of asymptotic states. Especially, we want to
determine which details of a quantum network dynamics are irrelevant for its asymptotic
evolution and consequently for its equilibration. Our ambition is to find closed analytical
solutions for systems of an arbitrary size. To successfully accomplish this task the attractor
theory developed in [6] for random unitary operations is employed.

In the first part of this thesis we state precisely conditions under which we explore
the quantum network asymptotic behaviour and review indispensable mathematical tools.
Three examples of interactions among the network constituents will be taken into account.
For each of these we at first examine dynamics governed solely by mutual interactions.
Afterwards we consider also the free evolution of the system and examine the dynamics
obeyed by the system when both non-trivial free evolution and mutual interactions are
present. The entire discussion is completed by numerical simulations demonstrating the
rate of convergence with which the system state evolves towards an equilibrium.

11



2 PRELIMINARIES

2 Preliminaries

Before we move to investigate the formation of equilibria in our model system let us
recall several fundamental concepts common in quantum theory together with appropriate
notation.

2.1 Mathematical Framework

At the very beginning, let us review the concept of qudits. The qudit is a quantum system
represented by a d-dimensional Hilbert state space. For d = 2 we call such systems qubits.
In this work we concentrate on systems consisting of finite number of qudits with the
same dimension d. Hilbert spaces associated with such systems are constructed as a tensor
product of d-dimensional state spaces Hd ⊗Hd ⊗ ⋅ ⋅ ⋅ ⊗Hd ≡ H . When denoting vectors
and covectors of the given space, the Dirac notation is used. A vector from H is denoted
as ∣ϕ⟩ whereas its corresponding covector reads ⟨ϕ∣. The scalar product of two vectors
∣ϕ⟩, ∣ψ⟩ ∈ H in this order is thus ⟨ϕ∣ψ⟩. The set B(H ) of all bounded operators acting on
H forms another Hilbert space. This space is equipped with the Hilbert-Schmidt scalar
product—for any two operators A,B ∈ B(H ) their scalar product is defined as

(A,B) ∶= Tr(A†B). (1)

The norm is defined accordingly as ∥A∥ ∶=
√

(A,A). Mappings taking operators to opera-
tors will be referred to as superoperators. A very important subset of B(H ) is formed by
density operators (also known as density matrices). These are unit-trace positive operators
which are used to represent the system state.

Suppose we have a quantum system composed of two subsystems. Let this system be
characterized by its density operator ρ12 ∈ B(H1 ⊗H2). The density operator ρ1 ∈ B(H1)

of the first subsystem alone then reads ρ1 = Tr2(ρ12), where Tr2 stands for the partial trace
over the second subsystem. Let {∣i1⟩}

d1
i1=1 and {∣i2⟩}

d2
i2=1 be orthonormal bases of Hilbert

spaces H1 and H2 with dimensions d1 = dimH1 and d2 = dimH2, respectively. The partial
trace acts on input operators A ∈ B(H1 ⊗H2) as follows

Tr2(A) =
d1

∑
j1,k1=1

(
d2

∑
i2=1

Aj1i2,k1i2)∣j1⟩⟨k1∣, (2)

whereAj1j2,k1k2 = ⟨j1j2∣A∣k1k2⟩ is a matrix element of the operatorA in the basis {∣i1i2⟩}i1,i2
of the composite Hilbert space H1 ⊗ H2. Moreover, suppose that H1 = H2 ≡ H with
d = dimH and we may thus choose the same basis {∣i⟩}di=1 for Hilbert spaces of both sub-
systems. If the form of the operator A is invariant under swapping of the two subsystems,
i.e. Aj1j2,k1k2 = Aj2j1,k2k1 , then the partial trace over the first subsystem is equal to the
partial trace over the second subsystem

Tr1(A) =
d

∑
j,k=1

(
d

∑
i=1

Aij,ik)∣j⟩⟨k∣ =
d

∑
j,k=1

(
d

∑
i=1

Aji,ki)∣j⟩⟨k∣ = Tr2(A). (3)

This property can be generalized for many-body composite systems and for partial traces
over arbitrarily large subsystems. Specifically, let A ∈ B(H ⊗N) be an operator acting on
a Hilbert space associated with an N -body system SN , let Hilbert spaces H of all bodies
be mutually isomorphic, and let us choose the same orthonormal basis {∣i⟩}di=1 in each H ,
d = dimH . Moreover, let Sk be a k-body subsystem of SN for a fixed 0 < k ≤ N . If
the form of A in the basis {∣i1 . . . iN ⟩}i1,...,iN is invariant under permutations of individual
bodies, then the value of the partial trace over Sk is independent of a specific choice of
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2 PRELIMINARIES 2.2 Closed versus Open Dynamics

bodies in Sk. In other words, TrSk(A) = TrS′
k
(A) for any two k-body subsystems Sk and

S ′k present in SN .
Hereafter, all the formulas related to qudits will be expressed in the computational

basis {∣0⟩, ∣1⟩, . . . , ∣d− 1⟩} where d stands for qudit dimensionality. For further calculations
it is suitable to introduce matrix element notation as follows. Having matrix X ∈ CdN×dN ,
its element in the computational basis is denoted as

Xi1...iN
j1...jN

≡ ⟨i1 . . . iN ∣X ∣j1 . . . jN ⟩, (4)

where i1, . . . , iN ∈ {0, . . . , d−1} label row indices and j1, . . . , jN ∈ {0, . . . , d−1} label column
indices. Henceforth, we will refer to the index of the form (4) as a multiindex. In some
cases it is helpful to introduce one more symbol. When there are only two pairs of indices
(il, jl), (im, jm) relevant for the current calculation the following notation is used

Xil,im
jl,jm

≡Xi1...il−1 il il+1...im−1 im im+1...iN
j1...jl−1 jl jl+1...jm−1 jm jm+1...jN

, (5)

where inequality 1 ≤ l < m ≤ N is assumed. Similar notation is used also when more than
two indices i, j are taken into consideration. In the following we will call the double (il, jl)
or (im, jm) appearing in the index notation introduced in (5) as a local index of a matrix
element.

2.2 Closed versus Open Dynamics

Taking the quantum system evolution into account two basic classes of systems can be
identified—closed quantum systems and open quantum systems. Closed systems are treated
as being completely isolated from their environment. For the study of this class of systems
many tools have been developed so far. From the Schrödinger equation it follows that
closed system evolution is fully described by the corresponding evolution operator U(t)
whose generator is the system Hamiltonian H. At time t the system, initially prepared in
the state ρ(0), evolves into the state represented by the density operator of the form

ρ(t) = U(t)ρ(0)U †
(t). (6)

As the Hamiltonian as well as the evolution operator are normal operators they are di-
agonalizable in an orthonormal basis. Determination of the system dynamics reduces to
the calculation of corresponding eigenvalues and eigenvectors. Except for Hamiltonian
eigenvectors any state of the system undergoes a periodic or quasiperiodic evolution. Con-
sequently, the equilibration in a closed system in the sense defined above is not possible.
Provided that oscillations are very quick an alternative weaker definition of equilibration is
adopted for closed quantum systems. According to this definition the system equilibrates
whenever its state remains close to an averaged state pertaining to the given evolution [3].

When we abandon the constraint that the system must not interact with its environ-
ment we arrive at systems driven by open dynamics. Supposing the system evolves from an
initial state not correlated with the environment its evolution is captured by quantum op-
erations [7]. Among these superoperators the random unitary operations form a prominent
class. A random unitary operation Φ allows for the convex decomposition in the form

Φ(A) =
M

∑
α=1

pαUαA U †
α (7)

with a set of unitary operators {Uα}
M
α=1, probability distribution {pα}

M
α=1 and an arbitrary

A ∈ B(H ). Such an operation can be understood as a weighted average of unitary evo-
lutions (6) generated by different Hamiltonians. Probabilities pα express our incomplete

13



2.2 Closed versus Open Dynamics 2 PRELIMINARIES

knowledge about which unitary evolution actually takes place. The operation Φ deter-
mines the form of the system state after the time interval ∆t. We are concerned with the
evolution arising from successive applications of Φ. For our study of equilibration it is thus
an important task to find the asymptotic behaviour of the evolution limn→∞ Φn(ρ). Unfor-
tunately, the random unitary operation cannot be diagonalized, in general. Determination
of the system evolution is therefore much harder in comparison with closed quantum sys-
tems. Nevertheless, as shown in [6] the asymptotic regime ρasymp of the system, governed
by iterations of Φ, lies in the subspace spanned by so called attractors. Hereafter we refer
to this subspace as the attractor space. Attractors are all non-trivial solutions to matrix
equations

UαXU
†
α = λX, ∀α ∈ {1, . . . ,M}, (8)

where λ is an eigenvalue of Φ for which ∣λ∣ = 1. All such eigenvalues form the attractor
spectrum σ∣1∣ of Φ. The equation above has to be satisfied for all unitaries Uα simultane-
ously. Having determined the set of attractors Bλ for each λ ∈ σ∣1∣ we can describe the
asymptotics of the system as follows. In each eigenspace Bλ we find its suitable orthonor-
mal basis {Yλ,i}

dλ
i=1, where dλ = dimBλ. It can be proven [6] that two vectors Yλ,i and Yµ,j

for different eigenvalues µ,λ ∈ σ∣1∣ are orthogonal, hence the set of all basis vectors {Yλ,i}λ,i
represents an orthonormal basis of the attractor space. The state Φn(ρ) approaches the
asymptotic regime of the evolution ρasymp(n) for increasing number of iterations n → ∞.
In the orthonormal basis of the attractor space this asymptotic regime reads

ρasymp(n) = ∑
λ∈σ

∣1∣

dλ

∑
i=1

(λn ξλ,i)Yλ,i. (9)

Coefficients ξλ,i = (Yλ,i, ρ) = Tr(Y †
λ,i ρ) store information about the initial state ρ. Note

the formula above is explicitly dependent on the number of iterations n whenever there is
λ ∈ σ∣1∣ such that λ ≠ 1. The asymptotic dynamics may thus exhibit a non-trivial behaviour
ranging from a stationary evolution to a quasi-periodic evolution. Another important
feature of the evolution asymptotics (9) is that the (nonzero) probabilities {pα}α play
absolutely no role.

The concept of attractors enables us to study the presence of equilibration in various
systems. Given a physical system we say it equilibrates whenever it evolves towards a
stationary state. From the attractor viewpoint the system equilibrates when the asymptotic
dynamics (9) is stationary. Inspection of (9) shows this situation happens when the only
eigenvalue lying in the attractor spectrum is λ = 1. Other eivenvalues λ ≠ 1 such that ∣λ∣ = 1
contribute to the asymptotic dynamics by oscillatory terms whose magnitude is directly
proportional to the overlap of the initial state ρ with the relevant eigenvectors Yλ,i.

As can be seen from (8) all the eigenvectors X1,i for λ = 1 represent fixed points of
the operation Φ, Φ(X1,i) = X1,i. Such attractors are preserved during the time evolution.
Those operators X1,i that are Hermitian thus play the role of integrals of motion. By an
integral of motion we mean a Hermitian operator whose expectation value associated with
the system state is constant during the system evolution. The overlap of such operators
with the initial state ρ of the system tells us how much information carried by ρ will survive
after long course of time.

14



3 QUANTUM NETWORKS

3 Quantum Networks

3.1 Description of Model

Thermodynamic phenomena occurring in physical systems result from collective behaviour
of their many mutually interacting constituents. Theoretical treatment of such processes
almost always poses a challenging problem and some simplifying restrictions are often
adopted. In this work we study a model system with dynamics analogous to a dilute
Boltzmann gas. Individual constituents of such systems evolve for most of the time freely,
interrupted randomly by short and in time well separated elastic two-body interactions.
These interactions will be referred to as collisions in the following. We assume that these
collisions are rare, so that within a short time interval ∆t an occurrence of two collisions is
not considered. During this time interval there is thus either no collision between individual
subsystems, in which case they all evolve completely independently and freely, or a pair of
subsystems a and b collides and then the evolution of both subsystems is linked together.
Nevertheless, our ability to determine which subsystems collide within the time interval
∆t is limited and we are led to the introduction of a probabilistic description. To each pair
(a, b) of system constituents we assign probability pab with which the given pair undergoes a
collision. No-collision case, when the system follows pure free evolution during the interval
∆t, arises with probability p0. These events cover all possibilities that may occur within
the time interval ∆t, so ∑a≠b pab +p0 = 1. Note that pab ≠ pba, in general, as the interaction
between subsystems can be asymmetric.

The complex structure of all possible collisions occurring within the interval ∆t is
naturally captured by a network. The nodes in the network are formed by individual
subsystems and edges between distinct nodes represent possible collisions. These edges are
undirected in case of a symmetric interaction and directed for an asymmetric interaction.
Each edge is weighted by an associated probability with which the corresponding pair of
subsystems collides. If the probability of a collision between a certain pair is zero, the
edge is missing. This network model thus fully describes which subsystems are allowed
to interact and how probable these interactions are. Let us emphasize again that this
description is associated with a sufficiently short time interval ∆t, in which it is not possible
for two or more collisions to happen. Throughout the whole thesis we consider only the
complete network—each subsystem may collide with any other. This setting forms a base
upon which generalizations with different topologies can be made.

So far we have not specified neither the form of individual constituents composing the
system nor their free evolution and mutual collisions. In fact, at this level the network
model can describe a classical as well as a quantum system. We primarily intent to study
the asymptotic dynamics of complex systems that results from microscopic physical laws,
which are inevitably of quantum nature. In particular, we assume that our system consists
of N qudits. The free evolution of each qudit, undisturbed by collisions, is generated by
a free Hamiltonian that has the same form for all qudits. We consider collisions that are
short compared to the time interval ∆t, but not instantaneous. It allows us to analyze how
durations of individual collisions affect the resulting asymptotic dynamics. Each collision
lasts a definite amount of time that we will henceforth call the collision time or interaction
time. Let the symbol ∆tab denote a collision time associated with a collision of qudits a
and b. Collision times ∆tab may differ for each pair of qudits (a, b), but all collision times
must satisfy ∆tab ≤ ∆t. Even though a more general setting is possible, for mathematical
convenience we also demand that all collisions are finished by the end of the time interval
∆t. A graphical representation of this setup with different collision times ∆tab and the
time interval ∆t can be found in Figure 1. Hamiltonians generating mutual collisions
are assumed to represent the same type of interaction for all colliding pairs of qudits.
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3.1 Description of Model 3 QUANTUM NETWORKS

∆t13 ∆t34 ∆t12 ∆t41

∆t ∆t ∆t ∆t ∆t

Figure 1: The time evolution of the quantum network may be thought of as a sequence of
time intervals ∆t. Within each ∆t there arises at most a single collision between randomly
chosen qudits a and b, which lasts for ∆tab units of time. In our setting the end of any
collision coincides with the end of the time interval ∆t. In the figure one can see an initial
stage of a possible time evolution of the quantum network with four nodes. Interaction
times are drawn by thick lines. In the second step of the evolution above no collision
emerges.

However, these Hamiltonians may be asymmetric with respect to the swap of the colliding
qudits. The form of Hamiltonians and corresponding unitary propagators associated with
individual events (collisions or undisturbed free evolution) that may arise during the time
interval ∆t is presented in greater detail in subsection 3.2.

We have just completed description of a quantum network and its dynamics within the
time interval ∆t. An example of a four-body quantum network is depicted in Figure 2. In
what follows the collision probabilities {pab}ab, time interval ∆t, interaction times {∆tab}ab
and free and interaction Hamiltonians will be a priori given and will therefore define the
evolution of a whole system during the time interval ∆t. The propagator describing an
evolution of the system within this time interval incorporates all our lack of knowledge as
to which event actually occurs. If the system evolves freely undisturbed by any collision, its
evolution is represented by a unitary operation U free. Similarly, with probability pab there
is the collision between qudit a and qudit b. In such a case the network follows a unitary
evolution characterized by Uab. Operator Uab encompasses not only the corresponding
collision, but also the simultaneous free evolution of all qudits. Since in fact we do not
know which pair of qudits collides or whether even any collision arises within ∆t, we are
forced to sum over all possibilities the evolution may follow to obtain propagator Φ as a
linear map

Φ(A) =
N

∑
a,b=1
a≠b

pabUabAU
†
ab + p0U

freeA (U free
)
†, (10)

where A ∈ B(H ) is an operator acting on the Hilbert space of the whole system. We see
the quantum network evolution may be rephrased in terms of a random unitary operation
(7) presented in subsection 2.2.

The propagator Φ describes a single step of a quantum-network evolution, which lasts
for ∆t units of time. The total evolution is defined iteratively as an infinite sequence
of these steps. More precisely, the evolution of a network, initially being in the state
ρ0, can be understood as a sequence {Φn(ρ0)}

∞
n=0 of successive applications of a fixed

random unitary operation (10) onto the state ρ0. Two basic setups may be identified,
either p0 = 0 with some bipartite interaction present in every interval ∆t of the evolution,
or p0 ≠ 0 with the possibility of no collision within ∆t. The latter setup allows for an
easier analysis of the network asymptotics. We have just defined the network evolution
by the sequence {Φn(ρ0)}

∞
n=0 that implicitly assumes all the interaction times {∆tab}ab,

probability distribution {pab}ab as well as the time interval ∆t are kept constant during
the evolution. In section 7 we present numerical simulations going beyond this setting.
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Figure 2: An example of a complete quantum network with N = 4 nodes. Each node
represents a d-dimensional qudit and there is a directed edge between any qudits weighted
by corresponding probability of collision pab.

3.2 Generators of Evolution

Evolution operator U free(∆t) in (10) captures the free evolution of the network within the
time interval ∆t. Let this evolution be generated by a free Hamiltonian H free. From now
on, as the trivial free evolution we call the free evolution generated by a zero Hamiltonian,
i.e. H free = 0. Since individual qudits are much of the time independent of the others, the
total free Hamiltonian H free can be expressed as a sum of local free Hamiltonians H free

i ,
each of which acts merely on the qudit Hilbert space Hd. That is

U free
(∆t) = ei ∆tHfree

, H free
=
N

∑
i=1

H free
i . (11)

Similarly, each of the unitaries Uab in (10) represents a closed evolution of the network
within the time interval ∆t, when the interaction of qudit a and qudit b occurs. First
∆t − ∆tab units of time the network evolves freely and the remaining ∆tab units of time
both qudits undergo mutual interaction. This process of collision between qudits a and b
is explicitly expressed by the unitary operation

Uab(∆t) = e
i ∆tab (Hfree+Hint

ab ) ei (∆t−∆tab)Hfree

= Uab(∆tab)U
free

(∆t −∆tab), (12)

where H int
ab stands for the corresponding interaction Hamiltonian. Interaction Hamiltoni-

ans H int
ab for all pairs (a, b) are assumed to describe the same kind of interaction. The

Hamiltonian H free +H int
ab governing the total evolution during the collision time of length

∆tab consists of its free and interaction parts as follows

H free
+H int

ab = ∑
i≠a,b

H free
i +H free

a +H free
b +H int

ab = ∑
i≠a,b

H free
i + H̃ab, (13)

where H free
i is the free Hamiltonian of the i-th qudit. Symbol H̃ab denotes the Hamiltonian

acting on the subsystem comprised of qudits a and b. The decomposition (13) ensures that

⎡
⎢
⎢
⎢
⎢
⎣

H̃ab, ∑
i≠a,b

H free
i

⎤
⎥
⎥
⎥
⎥
⎦

= 0. (14)

One can make use of this equality to simplify the expression for the evolution operator

Uab(∆tab) = e
i ∆tab (Hfree+Hint

ab ) = ei ∆tabH̃ab ei ∆tab∑i≠a,bHfree
i = Ṽab(∆tab) Ũab(∆tab), (15)
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where we defined Ṽab(∆tab) = exp(i ∆tab H̃ab) as the part of the unitary operator acting on
qudits a and b and Ũab(∆tab) stands for the part of the unitary operator associated with
a purely free evolution of remaining qudits.

In the special case when the interaction Hamiltonian H int
ab commutes with the free

Hamiltonian H free the evolution operator (12) can be rewritten in a more convenient way.
We are left with

Uab(∆t) = e
i ∆tabH

int
ab ei ∆tHfree

= Vab(∆tab)U
free

(∆t), (16)

where U free stands for a free evolution of the whole network and Vab is an operator char-
acterizing solely the interaction between qudits a and b.

So far we have not mentioned the specific form of the Hamiltonians themselves. In what
follows we will investigate an asymptotic evolution of a complete quantum network with
three different types of bipartite interactions as well as three kinds of free Hamiltonians.
All of them will be defined and presented in detail in appropriate sections.

3.3 Asymptotics of Quantum Network

In subsection 2.2 we recalled mathematical tools with help of which one determines the
asymptotic state of the system evolving according to a random unitary operation. In
the same subsection we also revealed connections between the asymptotic evolution and
conditions under which the particular system equilibrates. At this moment we finally
present attractor equations we will use in the subsequent discussion. In subsection A.1 it
is proven that for random unitary operation (10) with p0 = 0 the attractor equations read

U freeX (U free
)
†
= λV

†
abX V ab, ∀a, b ∈ {1, . . . ,N}, a ≠ b, (17)

where U free ≡ U free(∆t) and V ab ≡ Ṽab(∆tab)U
†
a(∆tab)U

†
b (∆tab). Symbol Ui(∆tab) =

exp(i ∆tabH
free
i ) stands for a free evolution operator associated with qudit i. If we addi-

tionally assume that also no collision might take place during the time interval ∆t, i.e.
p0 ≠ 0 (10), attractor equations decouple into

U freeX (U free
)
†
= λX, V

†
abX V ab =X, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (18)

The calculation of attractors is thus accomplished by solving two systems of equations.
The first system is associated with solely free evolution of the network and enables us to
compute the attractor spectrum σ∣1∣, see (8). The second system determines the structure
of all possible attractors. Both systems of equations have to be fulfilled simultaneously.

Suppose the interaction Hamiltonian commutes with the free evolution and unitary op-
erators can thus be rewritten into (16). Importantly, in such a special case we obtain
equations (17) and (18) with V ab = Vab. We have thus completely separated a pure inter-
action evolution characterized by Vab and a pure free evolution captured by U free. If we
already know, e.g. from some previously performed calculations, a solution X for the pure
interaction evolution, it is therefore easy to derive even the general case with a non-trivial
free evolution. We just plug X into the first system of equations in (18). The structure of
the attractor for a composite evolution is thus a special case of the structure of attractors
corresponding to the purely interaction evolution. This easier treatment of the network
asymptotic regime dependent on the form of Hamiltonians leads us to identify two classes
of interactions. One class is composed of unitary operations whose generating interaction
Hamiltonian commutes with the free evolution Hamiltonian, and the other class is com-
posed of the rest of Hamiltonians. In what follows, we choose a representative from either
class and study its effects on the system equilibration.
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In the upcoming discussion we will consider also the case with a trivial free evolution.
For this setting the attractor equations simplify to a remarkably simple form

Vab(∆tab)X V †
ab(∆tab) = λX, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (19)

Obviously, the above expression is independent of the time interval ∆t. Consequently,
when all interaction times are identical, we can without loss of generality put ∆tab = ∆t.
Equation (19) was obtained for p0 = 0. For the decoupled case (18) with p0 ≠ 0 (10) the free
evolution part reduces to (1−λ)X = 0 which allows for non-trivial solutions only for λ = 1.
Solving the case with p0 = 0 is thus more general and will be used in future calculations.

3.4 Outline of Analytical Approach

To make our subsequent discussion for each investigated interaction Hamiltonian clear,
let us briefly summarize the steps we take to find solutions in each case. First of all, we
consider the network evolution driven by mutual interactions accompanied by the trivial
free evolution only, i.e. H free = 0. Moreover, we keep all interaction strengths appearing in
definitions of interaction Hamiltonians identical for all pairs of qudits. The same constraint
is imposed also on interaction times ∆tab. In this setting we solve attractor equations for
λ = 1 and λ ≠ 1 independently. After these initial steps we consider more realistic scenario
with interaction times and strengths being generically different for each pair.

Having finished our investigation for the trivial free evolution we take into consideration
also the non-trivial free Hamiltonian. In this last step we already assume that interaction
times and coupling strengths might be different for distinct pairs of qudits. As the analyt-
ical treatment of all possible free Hamiltonians is in general impossible, in certain cases we
restrict ourselves to investigate only a subclass of these. In further calculations our solution
will be parametrized by several quantities such as coupling strengths and collision times.
Since we are looking for a generic form of the asymptotic evolution we sometimes inten-
tionally neglect a zero-measure set of parameter values to simplify our computations while
keeping almost full generality of our results. In an experimental realisation of the quantum
network it is effectively impossible to fine-tune parameters to lie in such a zero-measure
set and the generic case is thus not affected by these exceptional values.
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4 PARTIAL SWAP INTERACTION

4 Partial Swap Interaction

As has been demonstrated in the preceding section, when the interaction and free Hamilto-
nians commute with each other the analysis of the system asymptotic behaviour simplifies
considerably. Surprisingly, there exists an interaction which commutes with any free evo-
lution. This interaction is realized by the partial swap. The partial swap operation was
introduced for qubits in the context of thermalizing quantum machines and homogeniza-
tion of a quantum system [8, 9]. We consider a generalization of this operation for an
arbitrary dimension of qudits. In the following we examine the asymptotic evolution of
the quantum network when random partial swap interactions are present.

The partial swap (PSW) of qudits a and b is a linear combination of the identity, leaving
the qudits unaffected, and a swap operation (SW), interchanging the pair of qudits, i.e.
SW ∣x⟩∣y⟩ = ∣y⟩∣x⟩. Explicitly,

PSWab = pab Iab + qab SWab, (20)

where the coefficients pab and qab appear as parameters. Unitarity of the partial swap
restricts values of these parameters as follows

pab = cos (φab) e
iρab , qab = i sin (φab) e

iρab , (21)

where φab ∈ (0,2π) ∖ {π/2, π,3π/2} and ρab ∈ [0,2π). From the set of values for φab we
exclude those for which either PSWab ∝ I or PSWab ∝ SWab. As the global phase has no
observable effects in the context of attractor equations, we can put ρab = 0. Making use of
the involution property SW2 = I one can easily find, see subsection A.3, the Hamiltonian
for the partial swap

HPSWab
= φab SWab. (22)

Thanks to commutation relations (110) derived in subsection A.3 the evolution operators
read Uab(∆t) = Vab(∆tab)U

free(∆t), where Vab(∆tab) = exp(i ∆tab φab SWab) (16). This
form will be found useful for future calculations. For unit collision times ∆tab = 1 one
obtains Vab = PSWab. Non-unit collision times ∆tab enter relation (20) only via parameter
φab in a way φab → ∆tab φab. The form of the evolution operator is thus preserved, only
parameters pab and qab modify their values. As interaction strength and interaction time
always appear together in a product ∆tab φab, from now on we set φab = 1 for all pairs
of qudits (a, b). This condition does not affect generality of our results and reduces the
number of parameters present in our discussion.

The discussion on the network equilibration is divided into two parts. Firstly, we
consider mutual interactions between constituents together with a trivial free evolution
U free = I. We start with the case when collision times ∆tab for all qudit pairs (a, b) are
equal. Later on this constraint is relaxed. Secondly, we incorporate also a non-trivial free
evolution.

4.1 Pure Collisions

Before investigating the general setup let us focus on a network evolution when the free
part is the trivial one. For such a setting the attractor equations assume the form (19). In
this case Vab(∆tab) = PSWab (20) and the attractor equations read

pab(1 − λ)X + qab (SWabX − λX SWab) = 0, (23)

where a and b run through the set {1, . . . ,N} of all qudits in the quantum network, a ≠ b.
For convenience, we put p ≡ pab and q ≡ qab. A remark presented above on the effect of
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different collision times makes it clear that the form of these equations is general enough
to encompass all possible settings of times ∆tab and interaction strengths φab. For λ = 1
or p = 0 equations (23) reduce to

SWabX = λX SWab, (24)

i.e. equations (8) for the swap operation only. Let N ≥ 2 be a number of qudits in the
system and d ≥ 2 their dimension. In the following we provide a solution for the equations
(23) and calculate dimensionality of the corresponding attractor space. Our findings are
collected in the conclusion at the end of this subsection.

4.1.1 Identical Interaction Times

Even though equations (23) hold true for all values of collision times (and strengths), let
us first treat the case with all ∆tab being identical, ∆tab = ∆t. Generalizations will be
straightforward and presented later on.

Attractors for λ = 1. Setting λ = 1 simplifies equations (23) into relations (24). Let us
begin by recalling that SWab = SW−1

ab = SW†
ab. The swap operation acts as a swap of row

indices while applied to matrix X from the left-hand side. Similarly, it acts as a swap of
column indices while applied from the right-hand side. Equations (24) therefore reduce to
SWabX SWab =X which can be expressed in the index notation as

Xia,ib
ja,jb

=Xib,ia
jb,ja

, a, b ∈ {1, . . . ,N}, a ≠ b (25)

with ia, ib, ja, jb ∈ {0, . . . , d−1}. That is, all matrix elements which differ by a permutation
of their local indices must be equal. These elements form one equivalence class, each class
corresponds to a linearly independent attractor associated with λ = 1. Let us look for a
number S1(N,d) of equivalence classes, i.e. the dimension of the attractor space. As the
order of local indices (

ik
jk
) appearing in a matrix-element multiindex (

i1,...,iN
j1,...,jN

) is irrelevant
within a given equivalence class, one can represent each equivalence class merely by a
number of such local indices. These local indices are of any of the following forms

(
0

0
),(

0

1
), . . . ,(

0

d − 1
),(

1

0
),(

1

1
), . . . ,(

1

d − 1
), . . . ,(

d − 1

0
),(

d − 1

1
), . . . ,(

d − 1

d − 1
). (26)

There are obviously d2 such local indices which can appear in a given multiindex. The
number of equivalence classes is therefore equal to the number of ways one can distribute
local indices shown above into N -element sets (i.e. into multiindices where one does not
care about the order of local indices). Since one local index can be present in a given
multiindex more than once, we have to use the formula for a number of combinations with
repetition. Its general form is (

n+k−1
k

) for a subset of size k formed by elements from an
n-element set. In our case k = N and n = d2 and we immediately obtain the number of
equivalence classes

S1(N,d) = (
N + d2 − 1

N
). (27)

Recall local indices listed in (26) and focus on some fixed multiindex. In this multiindex
there is a certain number of local indices of the form (

0
0
). Let this number be denoted by

c0
0 and similarly for all remaining local indices from (26). Each equivalence class is thus
characterized by d2-tuple (c0

0, c
0
1, . . . , c

d−1
d−2, c

d−1
d−1). Making use of this notation we can easily
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express the general form the attractors associated with λ = 1 take on. It can be written as
a linear combination

X = ∑
c00,...,c

d−1
d−1

αc00,...,c
d−1
d−1
Pc00,...,c

d−1
d−1
, (28)

where α’s are coefficients and elements of matrix Pc00,...,cd−1
d−1

are all zeros except for those
elements lying in the equivalence class specified by numbers c0

0, . . . , c
d−1
d−1. These nonzero

elements are all identical and their value is chosen so that attractors Pc00,...,cd−1
d−1

≡ Pc⃗ are
properly normalized according to the Hilbert-Schmidt norm, i.e. ∥Pc⃗∥ = 1. Consequently,
matrices {Pc⃗}c⃗ form an orthonormal basis in the attractor space. Summation in (28) is
done over all summation indices 0 ≤ cij ≤ N satisfying additional condition ∑d−1

i,j=0 c
i
j = N .

The d2-tuple c⃗ = (c0
0, . . . , c

d−1
d−1) corresponding to a given row multiindex i and a column

multiindex j will be henceforth referred to as the joint distribution of indices for i and j.
In subsection A.5 we show the explicit form of Pc⃗ and derive the form of its partial trace
over a single qudit state space.

Attractors for λ ≠ 1. Let us focus on the case with λ ≠ 1 in this part. Since we assume
p ≠ 0 ≠ q equations (23) reduce to

X + γ (SWabX − λXSWab) = 0 (29)

with γ =
q

p(1−λ) ≠ 0. By use of the swap operation properties we can express (29) in the
local index notation as

Xia,ib
ja,jb

+ γ (Xib,ia
ja,jb

− λXia,ib
jb,ja

) = 0. (30)

In order to find solution to (30) consider the following system of equations

Xa,b
c,d + γ (Xb,a

c,d − λX
a,b
d,c) = 0,

Xb,a
c,d + γ (Xa,b

c,d − λX
b,a
d,c) = 0,

Xa,b
d,c + γ (Xb,a

d,c − λX
a,b
c,d) = 0,

Xb,a
d,c + γ (Xa,b

d,c − λX
b,a
c,d) = 0.

We can rewrite this system in the matrix form as

⎛
⎜
⎜
⎜
⎝

1 γ −λγ 0
γ 1 0 −λγ
−λγ 0 1 γ

0 −λγ γ 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

A
B
C
D

⎞
⎟
⎟
⎟
⎠

= 0, (31)

with
A =Xa,b

c,d , B =Xb,a
c,d , C =Xa,b

d,c , D =Xb,a
d,c . (32)

Unitarity conditions (21) guarantee p ≠ ±q and the determinant of the matrix in (31) is
therefore zero iff

p2
(λ − 1)2

− q2
(1 + λ)2

= 0. (33)

Expressing the eigenvalue as λ = eiω with ω ∈ [0,2π) the latter condition can be rewritten
as

q = ±i p tan(
ω

2
) , i.e. ± 2∆t ≡ ω (mod 2π). (34)

We have found out that whenever (34) is not satisfied, all matrix elements (32) are zero.
Since indices a through d were chosen arbitrarily we can conclude while (34) is not sat-
isfied the attractor matrix X vanishes. Similarly, for λ = −1 equality (33) does not hold,
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an associated matrix is thence nonsingular and the only possible solution to (31) is also
made of zero elements. That is, for λ = −1 one obtains a zero attractor matrix.

Let us investigate the case for eigenvalues λ ≠ ±1 when (34) is satisfied. Then relation
(33) is apparently equivalent to γ = ± 1

1+λ and the matrix in (31) reads

1

1 + λ

⎛
⎜
⎜
⎜
⎝

1 + λ ±1 ∓λ 0
±1 1 + λ 0 ∓λ
∓λ 0 1 + λ ±1
0 ∓λ ±1 1 + λ

⎞
⎟
⎟
⎟
⎠

.

Corresponding kernels of the matrices above are for γ = 1
1+λ and γ = − 1

1+λ of the following
form

⎛
⎜
⎜
⎜
⎝

A
B
C
D

⎞
⎟
⎟
⎟
⎠

= t

⎛
⎜
⎜
⎜
⎝

−1
1
−1
1

⎞
⎟
⎟
⎟
⎠

and

⎛
⎜
⎜
⎜
⎝

A
B
C
D

⎞
⎟
⎟
⎟
⎠

= t

⎛
⎜
⎜
⎜
⎝

−1
−1
1
1

⎞
⎟
⎟
⎟
⎠

(35)

respectively, where t ∈ C. See (32) and suppose a = b and γ = 1
1+λ . From (35) one can easily

see that all elements (32) are zero. Similarly for c = d and γ = − 1
1+λ . Therefore, if the

qudit dimension d is strictly less than the number of qudits N then the entire matrix X
of a possible attractor is zero. The reason implying this feature is simple. For N > d there
are at least two row indices and at least two column indices in a multiindex of any matrix
element which are of the same value. For γ = ± 1

1+λ given we can thus consider either of
the two doubles of indices and apply arguments presented above.

For N ≤ d we obtain nonzero solutions. Let us focus on the case γ = 1
1+λ first. From

(32) and (35) one can see that matrix elements which differ only by a permutation of their
column indices have the same value. As a consequence, one can gather such elements into
an equivalence class. Each class contains elements whose column indices are same up to
some permutation. But there is one more constraint. Two elements whose multiindices
differ by a transposition of two row indices are inverse to each other. In other words, all
elements with a column multiindex fixed have the same value if their row multiindices are
identical up to an even permutation. Elements whose row multiindices differ by an odd
permutation have opposite values. The same analysis would emerge even for γ = − 1

1+λ with
a single exception that the role of row and column multiindices is interchanged.

Let us count the number of independent elements in the attractor matrix X, i.e. the
number of degrees of freedom present in the solution to (29) for γ = 1

1+λ . As we saw in the
previous paragraph, having particular matrix element Xr

s fixed, its value determines also
the value of all other elements whose multiindices differ from r and s only by permutations.
Such elements form an equivalence class. The number of degrees of freedom is thence equal
to the number of all equivalence classes. This situation is quite similar to that for λ = 1.
Consider the column indices first. We can form an N -element multiindex where each index
assumes one of d values, i.e. there are (

N+d−1
N

) non-equivalent column multiindices for
given row multiindex. Regarding the row multiindex we have to take into account only
those multiindices with no two indices identical. These multiindices correspond to nonzero
matrix elements. Therefore, there is (

d
N
) non-equivalent row multiindices. To conclude,

the number of degrees of freedom for the non-unit eigenvalues λ = exp(±i 2∆t), see (34),
reads

S≠1(N,d) = (
N + d − 1

N
) ⋅ (

d

N
), (36)

where N is a number of qudits and d is their dimension. The current degree-of-freedom
analysis has been obviously performed for both γ = ± 1

1+λ . Since (
d
N
) = 0 whenever d < N ,

relation (36) holds for all possible values of d and N .
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Figure 3: Numerical calculation of the equilibrium state for the quantum network composed
of N = 3 qubits and governed by partial swap interactions and the trivial free Hamiltonian.
The left and right plots depict the real and imaginary parts of the equilibrium state,
respectively. Initial state was chosen randomly. Colours represent numerical values of the
matrix entries, since values themselves are irrelevant in the present discussion. Apparently,
entries whose multiindices belong to the same equivalence class share the same colour. Row
and column multiindices are shown explicitly in both plots.

4.1.2 Non-Identical Interaction Times

So far we have assumed the collision times are identical for all pairs of qudits. On the
other hand, if ∆tab vary among different pairs, obtained results do not change much. For
λ = 1 the only assumption in the above calculations was q ≠ 0. It is satisfied if and only if
∆t ≠ kπ for any k ∈ Z. (Otherwise the attractor equations (23) trivially hold.) The same
result (28) is obtained whenever ∆tab ≠ kπ for all pairs (a, b) and any k ∈ Z.

Similarly, for λ ≠ ±1 we assumed ∆t ≠ kπ/2, k ∈ Z, so that q ≠ 0 ≠ p. In this case the
situation is slightly more complicated due to explicit dependence of attractor solutions on
the eigenvalue λ. Nevertheless, even for arbitrary times ∆tab there is only a trivial solution
X = 0 for N > d. One could discuss all the remaining possibilities for diverse values of ∆tab.
In general, the solution would be also zero though. A non-trivial solution is obtained only
for a zero-measure set of parameter values. For a detailed discussion of these solutions see
Appendix B.

4.1.3 Conclusion for Pure Collisions

In the last subsection we analyzed the asymptotic regime of a quantum network governed
by the trivial free evolution interrupted occasionally by a partial-swap-type interactions
between its constituents. Provided that all interaction times ∆tab are identical, ∆tab = ∆t,
we saw that any sufficiently large quantum network tends towards an equilibrium. More
precisely, the network equilibrates whenever the number of qudits N exceeds their di-
mensionality d. This result holds for an arbitrarily large or small values of the nonzero
interaction times ∆t. In terms of attractor theory, in such a case there remain only attrac-
tors for λ = 1 generating (

N+d2−1
N

)-dimensional space (27) whose orthonormal basis can be
chosen as {Pc⃗}c⃗, see (28). In Figure 3 one can see a numerically calculated example of a
three-qubit equilibrium state (in this case N > d, so there is only a stationary part of the
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asymptotic evolution). Colours are chosen instead of numerical values for better visibility
of the state structure. Elements with the same colour belong to the same equivalence class
as is discussed in subsubsection 4.1.1.

Due to high symmetry of the partial swap Hamiltonian there are many integrals of mo-
tion present in the quantum network evolution and the equilibrium state retains significant
amount of information about the initial conditions. Equilibrium states are invariant under
permutations of individual qudits. This important observation implies that all subsystems
of the same size are described in equilibrium by the same density matrix, as follows from
partial trace properties summarized in subsection 2.1. All such subsystems therefore share
the same information about the initial state.

For small quantum networks one discovers also non-trivial attractors associated with
eigenvalues λ = e±2i ∆t. For initial states having an overlap with these attractors there
thus arise a non-stationary part of the asymptotic evolution preventing the network from
formation of equilibria. Dimension of the corresponding attractor subspace is equal to
S≠1(N,d) (36). Attractors themselves are antisymmetric under permutations of individual
qudits, as follows from discussion preceding the derivation of (36).

Let us sum up our findings when we relax original constraint and enable distinct pairs
(a, b) to have different values of interaction times ∆tab. In such a case all the attractors
for λ = 1 remain in the attractor space and the non-stationary part of the asymptotic
evolution vanishes. This conclusion is valid for almost all values of interaction times ∆tab.
The set of exceptional parameter values excluded from our discussion has a zero measure
and thence does not affect a typical behaviour of the network. However, it turns out that
attractors (28) associated with λ = 1 are present in attractor spaces even for regimes when
parameters take on such exceptional values. In this sense, equilibrium states of the form
(28) constitute a very generic set of asymptotic regimes. Indeed, in our calculations the
exceptional values of parameters were peculiar due to the fact, that fewer constraints were
imposed on the asymptotic state of the network. Attractors for non-exceptional values of
parameters thus emerge also in the attractor spaces for exceptional values of parameters.

As follows from the attractor theory, the resulting network state is completely indepen-
dent of the probabilities with which each qudit collides with any other qudit, supposing that
these probabilities do not vanish. We augment our analytical treatment of the quantum
network evolution under the influence of partial-swap interactions by numerical simulations
in section 7. It will allow us to study even more general settings with interaction times
and collision probabilities for each pair being different in each step of the evolution.

4.2 Composite Evolution

In this subsection we investigate how the non-trivial free evolution affects the asymptotic
behaviour governed by partial swap collisions. We have dealt with a trivial free evolution so
far, let the free evolution U free = U free(∆t) be arbitrary in the present case and let collision
times ∆tab be already different for each pair, in general. As emphasized in subsection 3.3
the interaction Hamiltonians commuting with the free evolution Hamiltonians make the
determination of the asymptotic behaviour much easier. Assuming there might be also no
collision present in a time interval ∆t, i.e. p0 ≠ 0 (10), the attractor equations decouple
into (18)

U freeX (U free
)
†
= λX, V †

abX Vab =X, ∀a, b ∈ {1, . . . ,N}, a ≠ b, (37)

where Vab = exp(±i ∆tab SWab) and we still keep φab = 1 without loss of generality, see the
introductory part of section 4. The second set of equations above has been already treated
in subsubsection 4.1.1 and obtained solutions are summarized in subsubsection 4.1.3. To
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4.2 Composite Evolution 4 PARTIAL SWAP INTERACTION

get rid of special non-interacting cases when PSWab ∝ I, let the collision times satisfy
∆tab ≠ kπ, k ∈ Z. It is important to note that so far our calculations have been done with
no specification of the computational basis. The invariance under permutations (25) of the
attractor multiindices is thus preserved in every local basis. As a consequence, in every
local basis the solution to the second system of equations in (37) may be expressed in the
form (28).

At this point we just plug the attractor (28) into attractor equations for purely free
evolution, i.e. into the first system of equations in (37). For convenience, let us treat this
system of equations in the eigenbasis of U free ≡ ⊗iUi. We do not impose any special re-
quirements on the one-qudit free evolution operator Ui, let {εl}l be energy levels of a corre-
sponding free Hamiltonian. Then U free(∆t) = ∑m exp(i ∆t∑k εmk)∣m1 . . .mN ⟩⟨m1 . . .mN ∣.
From this relation it follows that

U free
∣i1 . . . iN ⟩⟨j1 . . . jN ∣ (U free

)
†
= exp(i ∆t∑

k

(εik − εjk)) ∣i1 . . . iN ⟩⟨j1 . . . jN ∣

for any fixed multiindices i = (i1, . . . , iN) and j = (j1, . . . , jN). Let a joint distribution of
indices for i and j be equal to c⃗, as defined in (28). Since the exponent in the equation
above is identical for all permutations of multiindices we see that

U free Pc⃗ (U
free

)
†
= λc⃗Pc⃗, where λc⃗ ≡ exp(i ∆t∑

k

(εik − εjk)) . (38)

By comparison of (38) with the first set of equations in (37) we conclude that Pc⃗ solves
(37) for λ = λc⃗. Put another way, the free evolution only redistributes attractors Pc⃗ to
different eigenvalues λc⃗. For each of these eigenvalues the associated eigenvector is Pc⃗ and
{Pc⃗}c⃗ can be again used as the orthonormal basis of the attractor space. Except for Pc⃗
matrices there are no other linearly independent attractors. If there were such attractors,
they would have to solve the second set of equations in (37). However, as we saw, solutions
to these equations can be written in terms of Pc⃗ matrices.

Although the exact asymptotic regime of the network is directly dependent on the
spectrum of the free evolution Hamiltonian, some generally valid features may be found.
From the expression (38) for λc⃗ it is clear that eigenvalue λ = 1 is always present in
the attractor spectrum. Indeed, whenever multiindex i and multiindex j differ only by a
permutation, the sum in (38) vanishes. Such multiindices share the same distribution of
individual indices. This observation can be rephrased in terms of formula (28) as ∑k ckm =

∑l c
m
l for all 0 ≤m ≤ d− 1. The attractor space for λ = 1 thus always contains attractors of

the form
X = ∑

(c00,...,cd−1
d−1
) ∈ C

αc00,...,c
d−1
d−1

Pc00,...,c
d−1
d−1
, (39)

where C = {(c0
0, . . . , c

d−1
d−1) ∈ {0, . . . ,N}d

2
∣∑k,l c

k
l = N ∧∑k c

k
m = ∑l c

m
l ,∀m ∈ {0, . . . , d − 1}},

α’s are coefficients and for P ’s see (28). Attractors (39) lie in the attractor space associated
with λ = 1 for an arbitrary choice of the energy spectrum {εl}l of the free evolution
Hamiltonian. In this sense we may say that these attractors form a minimal attractor
space for λ = 1. The number and values of other eigenvalues λ ≠ 1 are determined by a
particular free evolution Hamiltonian via equality (38).

Let us find out when the quantum network in the present setup equilibrates. We restrict
ourselves to finding only those cases when the equilibration is guaranteed for an arbitrary
initial state of the network. Such a situation happens whenever the sum in (38) vanishes
for all multiindices i and j. This condition can be expressed as ∑d−1

k=0 εk(g
i
k − g

j
k) = 0,

where gik is defined as the number of those indices in a multiindex i, which take on value
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k (and analogously for multiindex j). Suppose the multiindices i and j are of the forms
(N,0,0, . . . ,0) and (0,N,0, . . . ,0), respectively. Then condition ∑d−1

k=0 εk(g
i
k−g

j
k) = 0 implies

ε0 = ε1. By analogous calculations we see the only free evolution Hamiltonians, for which
the network definitely equilibrates, are proportional to the identity matrix. Only when
there is a single energy level for the free evolution, the network tends toward equilibrium
for any initial state.

4.2.1 Conclusion for Composite Evolution

At this point we complete the general discussion on the quantum network evolution gener-
ated by an arbitrary free Hamiltonian and partial-swap interactions with various collision
times. Many features valid for pure collisions remain valid also in this case. The dimen-
sion of the attractor space is equal to (

N+d2−1
N

) (27), as in the trivial-free-evolution setup.
The number of degrees of freedom surviving the long-time evolution thus scales with the
size of the network and significant amount of information about the initial state is present
even in the asymptotic regime. Asymptotic states are still invariant under permutations of
individual qudits in the network. Consequently, the subsystems with the same number of
qudits have the same density operators and these are also invariant under permutations of
individual qudits, see subsection 2.1. As in the trivial-free-evolution regime, the structure
of asymptotic states is captured by Pc⃗ matrices (28) and can be therefore seen in Figure 3.
For a non-trivial free evolution the matrices Pc⃗ no longer correspond to the unit eigenvalue,
in general. Nevertheless, the unit eigenvalue is always present in the attractor spectrum
and the corresponding attractor space always contains attractors (39), regardless of the
specific energy spectrum of the free Hamiltonian.

Unlike the previous case with the trivial free evolution, in the present setting the
quantum network (with a general initial state) does not equilibrate for any number of qudits
N ≥ 2 with arbitrary dimensionality d ≥ 2. The non-trivial free evolution thus modifies
the previous case with the trivial free Hamiltonian tremendously, as far as the form of
the asymptotic regime is taken into account. Even though the interactions between qudits
suppress the non-stationary behaviour of the network, the free evolution Hamiltonians of
individual qudits do not allow the network to attain the equilibrium.

Despite the fact that the entire system does not equilibrate, one might ask a question,
whether the equilibration emerges at least in some subsystems. Nevertheless, numerical
simulations suggest that for partial swap collisions and randomly chosen free Hamiltonian
and initial state, not only the whole network, but also its subsystems do not tend to
equilibrium. This property can be also seen from our analytical findings. A general form
of the asymptotic state in the present setup reads (9), where roles of Yλ,i are played by
Pc⃗ matrices associated with different eigenvalues λ. In order for the network subsystem
to equilibrate, all the numbers cll in the joint distribution c⃗ must be equal to zero for all
λ ≠ 1, as follows from the partial trace formula (121). However, this condition is in general
never satisfied. Consider a row multiindex i = (0,0, . . . ,0,0) and a column multiindex
j = (0,0, . . . ,0,1), so c0

0 = N − 1. Multiindex j cannot be transformed into multiindex i
by any permutation and their joint distribution c⃗ thus not lies in set C defined in (39).
Attractor Pc⃗ is therefore associated with a generally non-unit eigenvalue λ (38). Since the
partial trace over a single-qudit subsystem decreases the value of c0

0 by one we see that we
must trace over (N − 1)-qudit subsystem in order to obtain c0

0 = 0. However, a tracing-out
of the (N − 1)-qudit subsystem leaves us only a single-qudit state. Even this state is in
general non-stationary. Although the subsystems do not equilibrate, their evolution gets
synchronized after long enough time. All subsystems with the same number of qudits have
the identical non-stationary asymptotic behaviour.
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In our discussion we excluded a zero-measure set of collision times and the trivial class
of free Hamiltonians, which are proportional to the identity matrix. Nonetheless, from the
viewpoint of equilibration, exclusion of such collision times was not necessary as even for
these values the quantum network still exhibits a non-stationary asymptotic behaviour.
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5 ENERGY EXCHANGE INTERACTION

5 Energy Exchange Interaction

As a transition from the partial swap commuting with any free Hamiltonian to the CNOT
not commuting with any non-trivial free Hamiltonian (see subsection A.3), in this section
we study the energy exchange interaction. This interaction is similar in its form to the
former, but its commutation relations are very limited, which is the property shared with
the latter. Throughout the section we consider qubit networks only. We define the energy
exchange interaction Hamiltonian as

HEXab =
κab
4

(σ
(a)
+ ⊗ σ

(b)
− + σ

(a)
− ⊗ σ

(b)
+ ), (40)

where κab ∈ R is the interaction strength and σ± = σX ± iσY , see subsection A.2. The
name of this operation is motivated by an observation that it can be thought of as a
Hamiltonian responsible for transfer of an excitation from qubit a to qubit b, and vice
versa. Such a viewpoint is justified whenever the energy of the system is captured by a
diagonal free Hamiltonian, which will be indeed the case in our future discussion. From
the mathematical point of view, the energy exchange interaction is to some extent similar
to the partial swap interaction discussed in the previous chapter. This statement follows
from the fact, that the Hamiltonian (40) can be rewritten in the form

HEXab = κab (∣0⟩⟨1∣ ⊗ ∣1⟩⟨0∣ + ∣1⟩⟨0∣ ⊗ ∣0⟩⟨1∣) = κab SWab − κabDab, (41)

where Dab = ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣. In a subsequent discussion we take into consider-
ation this form of the interaction Hamiltonian in addition to the trivial free Hamiltonian
H free = 0. Having obtained results for such an evolution governed merely by pure collisions,
we augment our model by considering a non-trivial diagonal free Hamiltonian later on. As
the most general form of a one-qubit diagonal Hamiltonian it suffices to choose H free

i ∝ σZ .

5.1 Pure Collisions

Before considering more complex scenarios, let us focus on the quantum network whose
evolution is governed by mutual interactions between its constituents with the trivial indi-
vidual free evolution. In subsection A.3 one can find derivation of the evolution operator
associated with the energy exchange interaction and the trivial free evolution

EXab(∆tab) = PSWab∣ρ→0,φ→∆tab κab + (1 − ei ∆tab κab)Dab. (42)

We demand ∆tab κab /≡ 0 (mod 2π) to exclude cases when EXab = PSWab covered in sec-
tion 4. Since quantities ∆tab and κab always appear together as a product ∆tabκab in the
formula above, without loss of generality we can put κab = 1. Initially, we suppose all
interaction times are identical, ∆tab = ∆t.

5.1.1 Identical Interaction Times

As was already mentioned, discussion for the energy exchange interaction will turn out to
be similar to that for the partial swap. Attractor equations (19) assume the form

p(1 − λ)X + (1 − p − q)(DabX − λXDab) + q(SWabX − λXSWab) = 0, (43)

where p ≡ cos(∆t) and q ≡ i sin(∆t). It is convenient to solve these equations in their
index-explicit form since mapping Dab affects only such elements of X for which ia = ib or
ja = jb

(p(1 − λ) + (1 − p − q)(δiaib − λδ
ja
jb
))Xia,ib

ja,jb
+ q (Xib,ia

ja,jb
− λXia,ib

jb,ja
) = 0. (44)
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5.1 Pure Collisions 5 ENERGY EXCHANGE INTERACTION

The index-form attractor equations for elements Xia,ib
ja,jb

with ia ≠ ib or ja ≠ jb reduce
to equations for the mere partial swap interaction (23). Our discussion for the energy
exchange interaction thus identifies four situations as follows:

• ia ≠ ib, ja ≠ jb – Equations (44) reduce to (23), for solution see subsubsection 4.1.3.
Specifically, for λ = 1 we obtain Xia,ib

ja,jb
= Xib,ia

jb,ja
, for λ = exp(±i 2∆t) it holds that

−X0,1
0,1 = ±X1,0

0,1 = ∓X0,1
1,0 = X1,0

1,0 and for λ ≠ exp(±i 2∆t) ∧ λ ≠ 1 all relevant matrix
elements are zero. In analogous manner to subsubsection 4.1.3 here we assumed
∆t ≠ kπ/2, and we keep this assumption in effect from now on. For ∆t = kπ the
partial swap reduces to the multiple of the identity and for ∆t = (2k + 1)π/2 it
reduces to the ordinary swap operation.

• ia ≠ ib, ja = jb – Equations reduce to (λ − p)Xia,ib
ja,ja

= qXib,ia
ja,ja

. This relation must be
valid for both situations, (ia, ib) = (0,1) and (ia, ib) = (1,0). We thus obtain a system
of two equations for two variables in the form ζX1,0

ja,ja
= X0,1

ja,ja
and ζX0,1

ja,ja
= X1,0

ja,ja

with ζ ≡ (λ − p)/q. So ζ2X0,1
ja,ja

= ζX1,0
ja,ja

= X0,1
ja,ja

and we see that for ζ ≠ ±1 we
get X0,1

ja,ja
= 0 = X1,0

ja,ja
and for ζ = ±1, i.e. λ = exp(±i ∆t), there is X1,0

ja,ja
= ±X0,1

ja,ja
,

respectively.

• ia = ib, ja ≠ jb – Analogously to the previous case the equations above simplify
into (λ⋆ − p)Xia,ia

ja,jb
= qXia,ia

jb,ja
. By following the discussion in the previous bullet we

conclude that for λ ≠ exp(±i ∆t) we get Xia,ia
0,1 = 0 = Xia,ia

1,0 and for λ = exp(±i ∆t)

there is Xia,ia
1,0 = ∓Xia,ia

0,1 , respectively.

• ia = ib, ja = jb – Equations (44) assume the form (1 − λ)Xia,ia
ja,ja

= 0, i.e. for λ = 1 the
matrix element is arbitrary, otherwise it vanishes.

Let us review our findings and put them in a more compact form. We assume inequality
∆t ≠ kπ/2, k ∈ Z, holds throughout. This condition ensures that p ≠ 0 ≠ q and we already
used it above.

Attractors for λ = 1. From the first bullet we get invariance under permutations of indi-
vidual qubits Xia,ib

ja,jb
=Xib,ia

jb,ja
. All the nonzero elements are thus distributed over equivalence

classes gathering elements whose multiindices differ only by a permutation. According to
the discussion for the partial swap, attractors associated with λ = 1 are of the form (28).
The fourth bullet tells us that there are no more constraints imposed on elements Xia,ia

ja,ja
in accordance with invariance under permutations. The second and third bullets imply

Xia,ia
0,1 =Xia,ia

1,0 =X0,1
ja,ja

=X1,0
ja,ja

= 0.

To put it another way, if in multiindices for a given matrix element there is at least one
local index of the form (

0
0
) or (

1
1
) and simultaneously at least one local index of the form

(
0
1
) or (

1
0
), then the matrix element vanishes. This restriction allows for two sets of nonzero

elements only. The first set consists of diagonal entries with all local indices of the form
(

0
0
) or (

1
1
). The second set comprises all anti-diagonal entries. These are characterized by

having all local indices of the form (
0
1
) or (

1
0
). There are apparently 2N diagonal elements

collected in N +1 equivalence classes and 2N anti-diagonal elements forming another N +1
equivalence classes.
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Attractors for λ ≠ 1. Apart from a unit eigenvalue there are only four additional eigen-
values λ = exp(±i ∆t) and λ = exp(±i 2∆t); for any other λ the resulting attractor is zero.
Assumptions ∆t ≠ kπ/2 and ∆t ≠ 2kπ/3, k ∈ Z, ensure that these four eigenvalues are
mutually exclusive. As a consequence, the determination of the associated attractors is
easy. In short, for λ = exp(±i 2∆t) we obtain

−X0,1
0,1 = ±X1,0

0,1 = ∓X0,1
1,0 =X1,0

1,0 , (45)

respectively, see the first bullet. The second and third bullets imply that for λ = exp(±i ∆t)
we have

X1,0
0,0 = ±X0,1

0,0 , X1,0
1,1 = ±X0,1

1,1 , X0,0
1,0 = ∓X0,0

0,1 , X1,1
1,0 = ∓X1,1

0,1 . (46)

Values not explicitly shown are zero. Even though it may seem there are non-trivial
solutions even for λ ≠ 1, it is true only for N = 2. As follows from the fourth bullet, for all
λ ≠ 1 we have Xia,ia

ja,ja
= 0, i.e. if there are two identical local indices in the multiindex for a

given matrix entry, then this entry vanishes. For N ≥ 3 there are always at least two local
indices of the same form so all entries are zero and we may conclude that for N ≥ 3 there
is no attractor associated with eigenvalue λ ≠ 1.

5.1.2 Non-Identical Interaction Times

This subsection is devoted to perform calculations analogous to that above, but for more
general setting when interaction times are not identical for all pairs of qubits. It is not
difficult to see that there is in fact no significant modification with respect to the preceding
situation at all. From discussion above it is enough to assume ∆tab ≠ kπ/2 and ∆tab ≠
2kπ/3, k ∈ Z, for all pairs (a, b) to obtain completely identical solution to that above, at
least for N ≥ 3. Moreover, if we assume ∆tab ≠ ±∆tab + kπ, k ∈ Z, then there are no
non-trivial attractors for λ ≠ 1 even for N = 2, which was not the case with ∆tab = ∆t.

5.1.3 Conclusion for Pure Collisions

Calculations presented for the energy-exchange-driven quantum network with the trivial
free evolution relied heavily on a discussion made for the partial swap scenario. Indeed,
some properties have both interactions in common. One of them being that the network
equilibrates whenever N > d = 2. We came to this conclusion by reasoning similar to
that we employed in the partial-swap case to conclude the network equilibrates whenever
N > d. Another significant feature of equilibrium states resulting from energy exchange
interactions is their invariance under permutations of individual qubits. That is, even
in this case we obtain the same density matrices for all subsystems containing the same
number of qubits, see subsection 2.1. Similarly to the partial swap the equilibrium state
may be expressed in the basis of Pc⃗ matrices (28). (Note that for qubit networks the
equivalence-class characterization is provided by a four-tuple (c0

0, c
0
1, c

1
0, c

1
1) and Pc⃗ matrices

have thus four parameters.) Explicitly

X =
N

∑
k=0

αk,0,0,N−k Pk,0,0,N−k +
N

∑
k=0

α0,k,N−k,0 P0,k,N−k,0, (47)

where α’s are corresponding coordinates of the state X in the orthonormal basis {Pc⃗}c⃗.
Apparently, the energy exchange interaction imposes more constraints on the asymptotic
regime of the network evolution. The only nonvanishing matrix entries are those belonging
to the diagonal and anti-diagonal of the matrix, for illustration see Figure 4. There are
thus 2(N + 1) degrees of freedom, much less than we saw in section 4.
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Figure 4: Numerical calculation of the equilibrium state for the quantum network com-
posed of N = 3 qubits and governed by energy exchange interactions and the trivial free
Hamiltonian. Interaction times ∆tab are different for each pair of qubits and the initial
state is chosen randomly. The left and right plots depict the real and imaginary parts
of the equilibrium state, respectively. Colours represent numerical values of the matrix
entries to emphasize the structure of the equilibrium state. Row and column multiindices
are shown explicitly in both plots. Invariance of matrix entries under permutations can be
seen by comparing indices associated with elements sharing the same colour.

The above conclusions are valid for both the identical and non-identical collision times.
In our discussion we also excluded a zero-measure set of exceptional values of parame-
ters, which enabled us to simplify our computation with effectively no loss of generality.
Nonetheless, apart from this zero-measure set the interaction times may have arbitrary
value. Even for immensely small values of these parameters the asymptotic behaviour of
the network tends to the state (47), after sufficiently long time. In section 7 we demon-
strate how the time-scale of such a convergence to the equilibrium state is influenced by
small interaction times.

5.2 Composite Evolution

We have investigated asymptotic evolution of the quantum network when only pure colli-
sions generate its dynamics. In this subsection, let us take a non-trivial free evolution of
individual qubits into account. Specifically, we study the case when H free

i = sσZ for sim-
plicity, since according to subsection A.3 this Hamiltonian commutes with the interaction
Hamiltonian and renders calculations easier to handle. Furthermore, we already assume
interaction times and interaction strengths are no longer identical, in general.

Suppose for a while that for some time intervals ∆t in the network evolution no collision
occurs. In other words, p0 ≠ 0 in (10). The attractor equations then decouple into (18)

U free
(∆t)X (U free

)
†
(∆t) = λX, EX†

ab(∆tab)X EXab(∆tab) =X, (48)

which must hold for all pairs of qubits (a, b). This situation is analogous to the non-trivial
free evolution scenario we study in the context of partial swap interactions in section 4.
The second system of equations above is already solved. Its solution can be seen in (47). To
complete our calculation it suffices to plug this solution into the first system of equations
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above, where U free = U free(∆t) is now a diagonal matrix. Thanks to this fact the left-hand
side of the first system of equations in (48) simplifies in an explicit index notation into

(U freeX (U free
)
†
)
i1...iN
j1...jN

= rij λX
i1...iN
j1...jN

(49)

with λ = exp(iω) and

rij = exp(iαij), αij = 2 s∆tΣij − ω, Σij = ∑
k

(jk − ik).

The free evolution equations in (48) thus reduce in the index notation into (1−rij)X
ia,ib
ja,jb

= 0
which is apparently satisfied whenever ω ≡ 2 s∆tΣij . Let us assume s∆t/π /∈ Q so that ω
is uniquely determined by a single value of s, ∆t and Σij . Non-vanishing elements of the
solution (47) for the trivial free evolution case are collected into two sets—the diagonal
and the anti-diagonal. Multiindices of entries from the diagonal apparently satisfy Σij = 0,
i.e. ω = 0, and there are thus at least N +1 linearly independent attractors associated with
λ = 1, see discussion for λ = 1 in subsubsection 5.1.1. It is not hard to see that for matrices
P0,k,N−k,0 (47), composing the anti-diagonal, we have Σij = 2k −N , where 0 ≤ k ≤ N . If
the number of qubits is even and k = N/2, it holds that Σij = 0 and there is thus one more
linearly independent attractor associated with λ = 1. Other values of k lead to emergence
of attractors for eigenvalues λ ≠ 1. The first system of equations in (48) therefore only
redistributes solutions (47) to different eigenvalues λ. We came to the same conclusion
even in the partial-swap case in subsection 4.2.

We have just finished discussion for p0 ≠ 0 (10). Let us assume the opposite, i.e. there
is always a collision occurring in each time interval ∆t. Attractor equations (17) in this
case read

U freeX (U free
)
†
= λEXab†(∆tab)X EXab(∆tab), (50)

where the left-hand side can be rewritten in the index notation into (49). In subsection 5.1
we put κab = 1 to reduce the number of parameters entering our discussion while keeping
the full generality of our results. We keep this simplification in effect even for the subse-
quent calculations. The right-hand side of (50) is expanded like PSW†XPSW + (1 − p −
q)PSW†XD+(1−p+q)D†XPSW+2(1−p)DXD with p = cos(∆tab), q = i sin(∆tab). When
we plug these expressions back into (50), we end up with index-form attractor equations
as follows

0 =Xia,ib
ja,jb

(−rij + p(p + (1 − p + q)δiaib + (1 − p − q)δjajb )) + pq (X
ia,ib
jb,ja

−Xib,ia
ja,jb

)

+Xib,ia
jb,ja

(2(1 − p)δiaib δ
ja
jb
− q(q − (1 − p + q)δiaib + (1 − p − q)δjajb )) . (51)

Similarly to subsubsection 5.1.1 we discuss four distinct situations when it comes to values
of row and column indices:

• ia ≠ ib, ja ≠ jb – In (23) we considered attractor equations in the suitable form
PSWX = λX PSW. Here, on the contrary, we have to keep them in their original
form PSWX PSW† = λX, which explicitly reads (p2 − λ)X + pq(SWX −X SW) −

q2SWX SW = 0. In the index notation this formula is identical to equation (51) up
to substitution of λ by rij . The solution to these equations can be therefore found
in subsubsection 4.1.3. Namely, for αij ≡ 0 (mod 2π) we get Xia,ib

ja,jb
=Xib,ia

jb,ja
for given

pair (a, b) and multiindices i and j. For two special values αij ≡ ±2∆tab (mod 2π)

the elements satisfy −X0,1
0,1 = ±X1,0

0,1 = ∓X0,1
1,0 = X1,0

1,0 and for all other values of αij
these elements go to zero.
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• ia ≠ ib, ja = jb – For this choice of parameters the equations (51) reduce to simple
equality (p − rij)X

ia,ib
ja,ja

= qXib,ia
ja,ja

. By analogous calculation to that in the second
bullet in subsubsection 5.1.1 we obtain X0,1

ja,ja
= ∓X1,0

ja,ja
for αij ≡ ±∆tab (mod 2π),

and Xia,ib
ja,ja

= 0 otherwise.

• ia = ib, ja ≠ jb – Such a choice of parameters reduces equations (51) into another
simple formula (rij − p)X

ia,ia
ja,jb

= qXia,ia
jb,ja

. Again, analogously to the third bullet in
subsubsection 5.1.1 we find out that for αij ≡ ±∆tab (mod 2π) we have Xia,ia

0,1 =

±Xia,ia
1,0 , otherwise these elements vanish.

• ia = ib, ja = jb – In this special case we end up with equalities (1 − rij)X
ia,ia
ja,ja

= 0.
Thence, whenever αij /≡ 0 (mod 2π) all Xia,ia

ja,ja
are zero, otherwise they may take on

arbitrary values.

Due to quantities rij and αij there are non-trivial solutions for matrix elements not only
depending on particular choice of a pair of qubits (a, b), but also on specific multiindices the
elements have. Concretely, discussion above can be summed up as follows. The attractor
matrix element Xi1...iN

j1...jN
is nonzero for given ω whenever for each pair (a, b) at least one of

the following conditions is satisfied

ω ≡ 2 s∆tΣij (mod 2π), (52)
ω ≡ 2 s∆tΣij ±∆tab (mod 2π), (53)
ω ≡ 2 s∆tΣij ± 2∆tab (mod 2π). (54)

If there exists (a, b) such that ω is not of any of these forms, the resulting matrix element
Xi1...iN
j1...jN

vanishes. We see that condition (52) is independent of any choice of a pair of
qubits and is thus satisfied for each (a, b). For such ω’s we obtain nonzero matrix ele-
ments. Moreover, eigenvalues with ω of the form (53) and (54) are almost never present in
the attractor spectrum of the appropriate random unitary operation as these eigenvalues
arise only for a zero-measure set of values ∆tab. The typical behaviour of the network
is thus unaffected by these exceptional cases and we exclude them from our subsequent
consideration, for convenience. In the parameter space of collision times we thus leave only
those values which fulfil the following conditions

∆tab /≡ s∆tm (mod π),
∆tab −∆tcd /≡ s∆tm (mod π),

∆tab −∆tcd/2 /≡ s∆tm (mod π),
(55)

for any m ∈ {−2N, . . . ,2N} and all pairs (a, b) and (c, d). The set of excluded values
of interaction times apparently has zero measure. Provided that N ≥ 3, the constraints
above ensure there are non-trivial attractors only for ω’s satisfying condition (52). This
implication can be seen as follows. If we had a fixed pair (a, b), there would be, among
others, nonzero matrix elements associated with ω ≡ 2 s∆tΣij + ∆tab (mod 2π). At the
same time, for any other pair (c, d) the same ω must be also of one of forms (52), (53) or
(54). Nonetheless, conditions (55) ensure that these forms are never attained for allowed
values of ∆tab and ∆tcd. The matrix elements under consideration are therefore zero and
such ω’s are not in the attractor spectrum. The same argumentation can be used also for
ω ≡ 2 s∆tΣij −∆tab (mod 2π) and ω ≡ 2 s∆tΣij ± 2∆tab (mod 2π).

We have found out that for almost all settings of collision times there are non-trivial
attractors associated only with eigenvalues, whose phase satisfies condition ω ≡ 2s∆tΣij

(mod 2π) (52). By inspection of bullets above we see that for such ω’s the resulting

34



5 ENERGY EXCHANGE INTERACTION 5.2 Composite Evolution

attractor-matrix elements are invariant under permutations, see the first and fourth bullets.
As a consequence, the attractors may be expressed in an orthonormal basis formed by Pc⃗
matrices (28). Furthermore, the second and third bullets imply that the non-vanishing
elements lie either in the diagonal or the anti-diagonal of the attractor matrix. All diagonal
entries fulfil equality Σij = 0 and thus constitute attractors associated with λ = 1. Anti-
diagonal entries lie in one of equivalence classes characterized by four-tuple (c0

0, c
0
1, c

1
0, c

1
1) =

(0, k,N − k,0) for some 0 ≤ k ≤ N . For these entries we obtain Σij = c
0
1 − c

1
0 = 2k −N and

they thence constitute attractors associated with eigenvalues λ = exp(i 2s∆t(2k −N)).
To conclude, the non-vanishing elements of the attractor matrix are collected in equiv-

alence classes generated by permutations of their multiindices. All elements in the same
class are of the same value. Considering only those with nonzero elements there are 2N

diagonal elements redistributed in N +1 equivalence classes and 2N anti-diagonal elements
redistributed in other N + 1 equivalence classes. Diagonal elements are associated with
λ = 1, anti-diagonal elements are, in general, associated with non-unit eigenvalues, on the
other hand.

5.2.1 Conclusion for Composite Evolution

We have completed our analytical study of the quantum network evolution generated by
the energy exchange interactions and a free Hamiltonian that is diagonal in the compu-
tational basis. From the beginning we assumed the interaction strengths and times are
different for different pairs of qubits. Concerning the formation of equilibria, the non-
trivial free evolution changes the situation occurring in subsubsection 5.1.3 considerably.
The quantum network no longer equilibrates for any N ≥ 3 and for almost any diagonal
free Hamiltonian. The only class of Hamiltonians for which the equilibration emerges ir-
respective of the form of the initial state is composed of multiples of the identity matrix.
This property was already observed in the case of partial swap interactions. The free
Hamiltonian does not allow the network to equilibrate, even though mutual interactions
between qubits tend to suppress non-stationary parts of the asymptotic evolution. The
dimension of the attractor space scales linearly with the network size, as in the trivial free
evolution setup (47). Another property that the energy exchange regime has in common
with the partial swap regime is that asymptotic states are invariant under permutations
of qubits, for both trivial and non-trivial free evolution. These states can be expressed in
terms of Pc⃗ matrices (28) corresponding to diagonal and anti-diagonal matrix entries. The
structure of the asymptotic states is analogous to that shown in Figure 4, but individual
Pc⃗ matrices are associated with different eigenvalues.

Even though the whole system does not tend to equilibrium, the opposite holds true
for its subsystems. In contrast to the partial swap case, the energy exchange interactions
allow the subsystems of the quantum network to equilibrate. Indeed, there are two sets of
nonzero entries in a general attractor matrix. The diagonal entries, which are stationary,
and the anti-diagonal entries, whose multiindices are composed of local indices (

0
1
) and (

1
0
).

Joint distributions c⃗ = (c0
0, c

0
1, c

1
0, c

1
1) associated with the anti-diagonal entries thus satisfy

c0
0 = c

1
1 = 0. Formula (121) derived in subsection A.5 for the partial trace of Pc⃗ immediately

implies that all anti-diagonal entries of the system density matrix are traced-out and there
remain only stationary diagonal entries in the subsystem density matrix.

In the discussion above we took into account two possibilities of the network evolution.
There is either a collision in every time interval ∆t, or there are some intervals when no
collision occurs. As we saw, the typical asymptotic behaviour of the quantum network
governed by energy exchange interactions and a diagonal free Hamiltonian is effectively
identical in both situations. Numerical simulations suggest that this feature arises also for
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other kinds of interactions. In the analysis above we took into consideration only diagonal
free Hamiltonians. Nonetheless, if we consider more general free Hamiltonians and perform
numerical simulations, the situation described above changes radically. The network tends
to equilibrium and the typical equilibrium state is a maximally mixed state. In this case the
loss of information about the initial state is maximal. A general free evolution Hamiltonian
has nonzero off-diagonal entries and the interaction Hamiltonian thus no longer commutes
with it. This property is apparently responsible for the emergence of stationary asymptotic
dynamics. We encounter similar situation in the next section when we investigate CNOT
interactions. Similarly to the treatment of partial swap interaction, in our investigation
we excluded a zero-measure set of values for collision times. Except for this restriction the
collision times may have arbitrary values. In section 7 we will study the role of collision
times in more detail.
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6 CNOT INTERACTION

6 CNOT Interaction

Until now we have dealt with interactions commuting with at least some class of non-
trivial free Hamiltonians. Such a feature enables us to find the asymptotic regime of the
network evolution relatively easily. In this part we focus on a different kind of interactions
related to the controlled-NOT operation. These do not commute with any free evolution
Hamiltonian different from multiple of the identity, see subsection A.3. Analogously to the
previous cases, we examine conditions under which the network equilibrates. To this end
we solve attractor equations with a trivial free evolution first. As a next step we consider
a specific form of the non-trivial free Hamiltonian. Note that decoherence properties of
quantum networks with controlled unitary operations were studied in [10].

The controlled-NOT (CNOT) is defined for qubits only. Let CNOTab denote the
controlled-NOT operation applied on the a-th and the b-th qubits in this order. The
Hamiltonian of this operation is chosen in such a way that for unit interaction time it
generates a mapping acting as

CNOTab = ∣0⟩⟨0∣ ⊗ Ib + ∣1⟩⟨1∣ ⊗ σ
(b)
X , (56)

where σX is a Pauli matrix (subsection A.2). Projectors ∣0⟩⟨0∣ and ∣1⟩⟨1∣ act on the control
qubit a while the identity and Pauli matrices act on the target qubit b. The definition
formula may be rewritten to demonstrate explicit action of CNOT. In the computational
basis {∣0⟩, ∣1⟩} we have

CNOT ∣c⟩∣t⟩ = ∣c⟩∣(c + t) mod 2⟩, (57)

where ∣c⟩ and ∣t⟩ are control and target qubits, respectively. Calculations in subsection A.3
show the Hamiltonian for CNOT may be chosen as

HCNOTab =
π

2
(2l + 1)(CNOTab − Iab), l ∈ Z. (58)

Note that other possible forms of Hamiltonian HCNOTab exist. The controlled-NOT oper-
ation satisfies CNOTab = exp(iHCNOTab) for arbitrary, but distinct, qubits a and b. This
unit-collision time scenario will be investigated first. Later on we consider also asymp-
totic regimes of the quantum network where collision times ∆tab may assume arbitrary
values and the interactions are thus generalized CNOT operations. These we will denote
as CNOTab(∆tab) ≡ exp(i ∆tabHCNOTab). Discussion in subsection A.3 tells us that

CNOTab(∆tab) =
1

2
(e−iπ(2l+1)∆tab + 1) Iab −

1

2
(e−iπ(2l+1)∆tab − 1)CNOTab. (59)

Unlike the partial swap the controlled-NOT does not exhibit nice commutation relations
with the free evolution. Therefore we have to confine ourselves to the evolution operator
decomposition as demonstrated in (15).

6.1 Pure Collisions

To begin with we consider the system evolving under CNOT-type collisions with only the
trivial free evolution of each qubit. We also take p0 = 0 (10) in order not to impose too
many constraints on the attractor spectrum. If we allowed p0 to be nonzero, there would
remain only attractors for λ = 1. Firstly, we assume all the interaction times are identical
and equal to one. Secondly, we relax this assumption and investigate how the asymptotic
regime differs from the unit collision time scenario.
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6.1.1 Unit Interaction Time

Results presented in this part have already been derived in [10]. The present discussion
is made in order to generalize them consistently in the upcoming sections. Assuming the
unit collision time for each pair of qubits the hermiticity of the CNOT operation allows us
to write the attractor equations (19) in a simplified form

CNOTab X CNOTab = λX, a, b ∈ {1, . . . ,N}, a ≠ b. (60)

When written in the elementwise fashion this equation transforms into the system of equal-
ities with i, j ∈ {0,1}

X0,i
0,j = λX0,i

0,j ,

X0,i
1,0 = λX0,i

1,1, X0,i
1,1 = λX0,i

1,0,

X1,0
0,j = λX1,1

0,j , X1,1
0,j = λX1,0

0,j ,

X1,0
1,0 = λX1,1

1,1 , X1,1
1,1 = λX1,0

1,0 ,

X1,0
1,1 = λX1,1

1,0 , X1,1
1,0 = λX1,0

1,1 ,

(61)

where the local indices refer to an ordered pair of qubits (a, b). The rest of indices has to
be the same on both sides of equations.

As the CNOT operation is Hermitian, the attractor spectrum contains real eigenvalues
only, i.e. σ∣1∣ ⊂ {1,−1}. Therefore, in the remainder of this section we focus on a solution
to equations (60) for parameters λ = ±1. At the very end we present conclusion discussing
different forms of attractors based on the eigenvalue λ and the number of qubits.

Attractors for λ = 1. Initially, we find attractors associated with the unit eigenvalue
λ = 1. Combining the system of equations (61) for two ordered pairs of qubits (a, b) and
(b, a) one obtains five sets of relations as follows

X0,0
0,0 , (62)

X0,0
1,0 =X0,0

1,1 =X0,0
0,1 , (63)

X1,0
0,0 =X1,1

0,0 =X0,1
0,0 , (64)

X1,0
1,0 =X1,1

1,1 =X0,1
0,1 , (65)

X1,0
0,1 =X1,1

0,1 = X0,1
1,1 =X0,1

1,0 =X1,1
1,0 =X1,0

1,1 . (66)

An expression (62) means there is no condition imposed on matrix element X0,0
0,0 . One

can easily verify that relations above cover all possible combinations of row and column
indices. These equalities must hold for every choice of qubit pairs and we divide all matrix
elements of a possible attractor into five disjoint sets.

The first set contains only one element whose indices are all zeros. This element is
not subjected to any constraint and its value might be arbitrary. Consider then the set
of all matrix elements with zero row multiindices and at least one nonzero column index.
These elements lie in the first row of the matrix X. Obviously, only equations (63) apply
to such elements. According to these equations all the members of the set have to equal
each other. Similar discussion can be done also for a set of all matrix elements whose
column multiindex is made of zeros and they have at least one nonzero index in their row
multiindex. Such elements represent the first column of matrix X. Equations (64) force
these elements to be equal. Moreover, no other equations apply to this set.

The fourth set is comprised of elements lying in the diagonal of the matrix X. Analo-
gously, equations (65) imply that the diagonal terms are identical. Finally, the fifth set of
matrix elements collects all remaining entries. That is, elements not lying in the first row
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or the first column or the diagonal of the matrix. These are subjected to equations (66),
which set values of these elements equal.

We have divided all the matrix X elements into five disjoint sets. From discussion in
the previous paragraphs it is straightforward to write down the solution for equations (60)
with λ = 1

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b b b . . . b b
c d e e . . . e e
c e d e . . . e e
c e e d . . . e e
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

c e e e . . . d e
c e e e . . . e d

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (67)

where a, b, c, d, e ∈ C. There is obviously five linearly independent attractors. From discus-
sion above it also follows that the attractors are invariant under permutations of individual
qubits. The above expression can therefore be rewritten in terms of Pc⃗ matrices defined
in (28). Note that for qubit networks there are only four equivalence classes (c0

0, c
0
1, c

1
0, c

1
1)

and Pc⃗’s thus depend on four indices. Solution (67) can be expressed with help of these
matrices as

X = aPN,0,0,0 + b
N−1

∑
k=0

Pk,N−k,0,0 + c
N−1

∑
k=0

Pk,0,N−k,0 + d
N−1

∑
k=0

Pk,0,0,N−k + eS, (68)

where a, b, c, d, e ∈ C correspond to coefficients in (67), Pc⃗’s are basis matrices from (28),
and S is a sum of Pc⃗’s over all remaining equivalence classes. Explicitly,

S =
N−1

∑
k=1

(P0,k,N−k,0 + P0,k,0,N−k + P0,0,k,N−k)

+
N−2

∑
k=1

N−1−k
∑
l=1

(Pk,l,N−k−l,0 + Pk,l,0,N−k−l + Pk,0,l,N−k−l + P0,k,l,N−k−l)

+
N−3

∑
k=1

N−2−k
∑
l=1

N−1−k−l
∑
m=1

Pk,l,m,N−k−l−m.

Attractors for λ = −1. From the first equality in (61) one can immediately deduce that
the matrix element of attractor X associated with λ = −1 is zero whenever it has at least
one local index of zeros in its multiindex. The remnant matrix elements have to satisfy
the following constraints. Similarly to the previous case reprocessing of equations (61) and
their twins, where the role of control and target qubits is switched, leads to these relations

−X0,0
1,0 =X0,0

1,1 = −X0,0
0,1 , (69)

−X1,0
0,0 =X1,1

0,0 = −X0,1
0,0 , (70)

−X1,0
1,0 =X1,1

1,1 = −X0,1
0,1 , (71)

−X1,0
0,1 =X1,1

0,1 = −X0,1
1,1 =X0,1

1,0 = −X1,1
1,0 =X1,0

1,1 . (72)

Recall discussion we pursued for unit eigenvalue λ = 1. Equations (69), (70) and (71)
above ensure that the first row of matrix X together with its first column and its diagonal
consists of zero entries. It is easily seen when we notice that indices appearing in all these
equations have a local index made of zeros. Let us investigate the last system of equations
(72). One can rewrite them to two sets as follows

X1,1
0,1 =X0,1

1,0 =X1,0
1,1 ≡ a (73)

X1,0
0,1 =X0,1

1,1 =X1,1
1,0 ≡ −a (74)
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for some a ∈ C. First, let the number of qubits be N ≥ 3 and consider the elements in the
form

X1 1 i
0 1 j ,

where i and j are indices with an arbitrary value from {0,1}. We demonstrate that such
elements must be zero and thus a in equations (73) and (74) is zero as well. Hence, the
only matrix X satisfying relations in the table above for N ≥ 3 is a zero matrix only.

To this end, consider all four possible forms the element in the previous formula can
take

X
1 1 0
0 1 0 , X1 1 0

0 1 1 , X
1 1 1
0 1 0 , X

1 1 1
0 1 1 .

If we apply equations (70) and (71) to the elements with underlined indices we instanta-
neously conclude the three asociated elements are zero. For the second element above see
(73). This element is equal to

X1 0 0
1 1 1 ,

which is also zero due to (69). We have proven for N ≥ 3 the corresponding attractor X is
a zero matrix. Let us treat the case for N = 2. Equations (73) and (74) entirely determine
nonzero matrix elements and the two-qubit attractor reads

X =

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 0 a −a
0 −a 0 a
0 a −a 0

⎞
⎟
⎟
⎟
⎠

(75)

with a ∈ C. Our investigation reveals the attractor subspace for λ = −1 is non-trivial only
for two qubit systems in which case it is one-dimensional.

6.1.2 Non-Unit Interaction Time

In this part we study how various values of collision times ∆tab affect the structure of
attractor space pertaining to the quantum network with random CNOT interactions. So
far we have taken collision times to be unity, ∆tab = 1. From now on let ∆tab ≠ 1, but the
same for all pairs a and b, ∆tab = ∆t. Later on we relax even this assumption and take
∆tab different for different qubits. Attractor equations (60) with CNOTab(∆t) (59) turn
into the more complex form

(p + r)X = pCNOTab X CNOTab + i q (X CNOTab −CNOTab X), (76)

where a ≠ b run through all qubits in the network, λ ∈ σ∣1∣, CNOTab is the ordinary
controlled-NOT operation (56) and we defined

p = 1 − cos(π∆t), q = sin(π∆t), r = 2(λ − 1).

Above we put l = 0 in the definition of the Hamiltonian, see (58) and (59). In the following
we split our analysis into cases λ = 1, λ = −1 and λ ≠ ±1. Let us start our examination
with the eigenvalue λ = 1.

Attractors for λ = 1. For λ = 1 we have r = 0. Let p = 0 first, implying q = 0. In this
setting the CNOT operation reduces to the identity and no collision emerges, see (58).
Equations (76) are then satisfied identically and matrix X may be arbitrary. Henceforth
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let p ≠ 0. It is convenient to write matrix X as X = XR + iXI , where XR and XI are real
matrices. Relations (76) then reduce to the system

XR = CNOTab XR CNOTab +
q

p
(CNOTab XI −XI CNOTab), (77)

XI = CNOTab XI CNOTab −
q

p
(CNOTab XR −XR CNOTab). (78)

One can multiply the first equation by CNOTab from the left and substitute it into the
second equation to obtain

(XI −CNOTab XI CNOTab)(1 +
q2

p2
) = 0 (79)

which is satisfied iff XI = CNOTab XI CNOTab. Substituting this relation back into (77)
one sees the same equation holds also for XR and we can conclude that equations (76)
reduce to

CNOTab X CNOTab =X, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (80)

We have already dealt with these equations, their solution is given by (67).
Till now all the collision times were assumed to have the same value. Let us move

one step forward and allow the collision times ∆tab to be generically different for each
pair (a, b). This general situation is easily solved by noticing that in the above discussion
parameters p and q play no role provided p ≠ 0. That is, the same solution would follow
even if the interaction times ∆tab were different for different pairs of qubits and pab ≠ 0. If
pab = 0 holds for at least one pair (a, b) then there is less constraints imposed on solution
X and thence the attractor associated with λ = 1 may have more general form compared
to (67).

Attractors for λ = −1. For λ = −1 we have r = −4. Let q = 0 first, implying p ∈ {0,2}.
Then equations (76) reduce to (p − 4)X = pCNOTabX CNOTab. For p = 0 there is only a
trivial solution X = 0. For p = 2 (i.e. ∆tab = 2k + 1, k ∈ Z) one obtains the same equation
as for ∆tab = 1

CNOTab X CNOTab = −X, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (81)

There is thus a non-trivial attractor (75) only for N = 2. Having investigated the case
for zero q, let us take q ≠ 0. One can proceed in the similar way as we did for the unit
eigenvalue to obtain

XR = β1 CNOTab XR CNOTab + β2 (CNOTab XI −XI CNOTab),
XI = β1 CNOTab XI CNOTab − β2 (CNOTab XR −XR CNOTab),

with β1 =
p
p−4 and β2 =

q
p−4 . Multiplication of the first equation by CNOTab from the left

yields

CNOTab XR − β1XR CNOTab =
− β2(1 − β1)CNOTab XI CNOTab + β2 (XI − β1 CNOTab XI CNOTab).

We plug the second equation appearing above into this expression to end up with

(1 + β2
2)CNOTab XR − (β1 + β

2
2)XR CNOTab =

− β2(1 − β1)CNOTab XI CNOTab. (82)
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Along similar lines we obtain also

(1 + β2
2)CNOTab XI − (β1 + β

2
2)XI CNOTab =

β2(1 − β1)CNOTab XR CNOTab. (83)

Multiplication by CNOTab from both sides of equation (82) yields the expression for XI .
We can substitute this into (83) and simplify the resulting relation to get

(β2
1 + 2β2

2 + 1)CNOTab XR CNOTab = 2(β1 + β
2
2)XR. (84)

Both sides of this equality have to have the same norm (1) and (the Hilbert-Schmidt)
norm is preserved under unitary operations. From this we therefore extract the necessary
condition in the form

(β2
1 + 2β2

2 + 1 − 2∣β1 + β
2
2 ∣)∥XR∥ = 0. (85)

Assuming XR ≠ 0 we are left with the constraint imposed on the β’s. It is satisfied only
for q = 0 which is excluded by assumption. That is, only XR = 0 solves (84). When we
substitute this solution back into original equations these turn into

XI = β1 CNOTab XI CNOTab = CNOTab XI CNOTab. (86)

Since β1 ≠ 1 we see immediately that for q ≠ 0 the attractor matrix is inevitably zero.
At this moment we relax the initial constraint and let collision times ∆tab be different

for various pairs of qubits. So far we have made use of a single ordered pair of qubits (a, b)
to reduce the possible form of the attractor considerably. No other pairs were necessary to
calculate X = 0 whenever qab ≠ 0. Hence in a general setting, if there is a double of qubits
such that qab ≠ 0, then X = 0. Similarly, if for all pairs qab = 0, but there is a double such
that pab ≠ 2, then the attractor is also trivial, X = 0. Otherwise we obtain zero solution
for N ≥ 3 and nonzero solution (75) for N = 2.

Attractors for λ ≠ ±1. Let us investigate the last case. For λ ≠ ±1 we make use of the
elementwise representation of equations (76). It reads

(p + r)Xia,ib
ja,jb

= pXia,i
ja,j

+ i q (Xia,i
ja,jb

−Xia,ib
ja,j

) , (87)

where we assumed that qubit a is the control one and b is the target qubit. We denoted
i = (ia + ib) (mod 2) and j = (ja + jb) (mod 2), see (57). When one interchanges roles of a
and b as control and target qubits then local indices switch their positions accordingly.

It is easy to see whenever there is a local index of zeros, i.e. (ia, ja) = (0,0) or (ib, jb) =
(0,0), relation (87) reduces to rXia,ib

ja,jb
= 0. Since r ≠ 0 in the present discussion we can

conclude
X0,ib

0,jb
=Xia,0

ja,0
= 0, ∀a, b ∈ {1, . . . ,N}. (88)

As a next step consider a local index of the form (ia, ja) = (1,1). Corresponding matrix
elements are then subjected to constraints

(p + r)X1,0
1,0 = pX1,1

1,1 + i q (X1,1
1,0 −X

1,0
1,1),

(p + r)X1,0
1,1 = pX1,1

1,0 + i q (X1,1
1,1 −X

1,0
1,0),

(p + r)X1,1
1,0 = pX1,0

1,1 + i q (X1,0
1,0 −X

1,1
1,1),

(p + r)X1,1
1,1 = pX1,0

1,0 + i q (X1,0
1,1 −X

1,1
1,0).
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These can be neatly rewritten into the matrix equation

⎛
⎜
⎜
⎜
⎝

−(p + r) −i q i q p
−i q −(p + r) p i q
i q p −(p + r) −i q
p i q −i q −(p + r)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

X1,0
1,0

X1,0
1,1

X1,1
1,0

X1,1
1,1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (89)

Determinant of the matrix in the equation above is zero iff λ = 1−p = ±1 which is in contra-
diction to our assumption. We can perform analogous calculation for a and b interchanged
to conclude

X1,ib
1,jb

=Xia,1
ja,1

= 0, ∀a, b ∈ {1, . . . ,N}. (90)

Let us focus on two last sets of possible local indices of the form either (ia, ja) = (0,1) or
(ia, ja) = (1,0). For the former case equations (87) reduce to

(p − i q + r)X0,i
1,1 = (p − i q)X0,i

1,0,

(p − i q + r)X0,i
1,0 = (p − i q)X0,i

1,1,

with i ∈ {0,1}. Subtraction of these two equations and the fact that r ≠ 0 implies equality
X0,i

1,0 = −X
0,i
1,1 for i ∈ {0,1}. Taking i = 0 the left-hand side element is of the form (88) and

both elements in the equation are therefore zero. Similarly, for i = 1 the right-hand side
element is of the form (90) and both elements are also zero. We could perform analogous
reasoning also for (ib, jb) = (0,1), (ia, ja) = (1,0) and (ib, jb) = (1,0) with the same result.

Our present investigation has been completely independent of the specific values of
the collision times. Hence, for λ ≠ ±1 one has X = 0 regardless of the actual value ∆t.
Therefore, this result is still valid even in the more general case with generically different
values of collision times ∆tab for each pair of qubits.

6.1.3 Conclusion for Pure Collisions

We have analyzed a scenario when the quantum network is governed by CNOT-like mutual
interactions and the trivial free evolution. The situation with different interaction times
∆tab is essentially identical to that with unit collision times. The quantum network with
N ≥ 3 qubits tends to equilibrium. For N = 2 and identical interaction times ∆t12 = ∆t21

there emerges a non-stationary asymptotic part (75) of the evolution and the network
does not equilibrate. Even though the CNOT operation is not symmetric—there is a clear
distinction between the control and the target qubits—the resulting equilibrium state is
invariant under permutations of qubits, see (68). This property is due to completeness of
the network. An emergence of both CNOTab and CNOTba forces the asymptotic state to
be symmetric. As a consequence, all subsystems consisting of the same number of qubits
are in the same state as is demonstrated in subsection 2.1. As was shown in [10], for not
strongly connected networks we may obtain also non-symmetric states.

Invariance under permutations is the property shared with previous types of interac-
tions. Unlike preceding cases though, the dimension of the attractor space does not scale
with the size of the network. There are five degrees of freedom for an arbitrary number of
qubits composing the quantum network. The CNOT interaction is thus much more restric-
tive with respect to the two previous scenarios. Vast majority of the information about the
initial state is lost during the evolution. These features are in effect for arbitrarily small in-
teraction times ∆tab. Even though the interactions in the system may be arbitrarily weak
the asymptotic state is still considerably affected by them. Values of interaction times
merely decelerate the convergence of the system evolution towards equilibrium, as will be

43



6.2 Composite Evolution 6 CNOT INTERACTION

000

001

010

011

100

101

110

111

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

000 001 010 011 100 101 110 111

Figure 5: Numerical calculation of the equilibrium state for the quantum network composed
of N = 3 qubits and governed by CNOT interactions and the trivial free Hamiltonian.
Interaction times ∆tab are different for each pair of qubits. The left and right plots depict
the real and imaginary parts of the equilibrium state, respectively. The initial state is
chosen randomly. These plots confirm validity of the formula (67), which characterizes
the structure of attractors. Colours represent numerical values of the matrix entries to
emphasize the structure of the equilibrium state. Row and column multiindices are shown
explicitly in both plots. Invariance of matrix entries under permutations can be seen by
comparing indices associated with elements sharing the same colour.

demonstrated in numerical simulations in section 7. The equilibrium state for N = 3 qubits
can be seen in Figure 5. Analogously to the partial swap and energy exchange interactions
the above conclusion does not hold for special values of interaction times. Nevertheless,
these exceptional values form a zero-measure set and as such are in the present discussion
negligible.

6.2 Composite Evolution

In this subsection we focus on the CNOT operation (56) acting on the multi-qubit system
simultaneously with a non-trivial free evolution. The Hamiltonian generating a free evolu-
tion is chosen as H free

i = sσZ (see subsection A.2). We consider all collision times ∆tab to
be identical and equal to the time interval ∆t, i.e. ∆tab = ∆t. We also assume p0 = 0 (10)
so there is always a collision taking place during every time interval ∆t. Recall attractor
equations (17) with operator V ab ≡ Ṽab(∆t)U

†
a(∆t)U

†
b (∆t). If we move both unitaries

U †
i (∆t) to the left-hand side we obtain equations

U †
aU

†
bU

freeX (U free
)
†UbUa = λ Ṽ

†
abX Ṽab, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (91)

Operator U †
aU

†
bU

free = exp(i ∆t ∑i≠a,bH
free
i ) is diagonal due to the form of the Hamiltonian

H free
i . It is not hard to see the left-hand side of the above formula in the elementwise form

reads λrabX
i1...iN
j1...jN

, where λ = exp(iω) and

rab = exp(iαab(i, j)), αab(i, j) = 2s∆t ∑
k≠a,b

(jk − ik) − ω. (92)

Operator Ṽab = exp(i ∆t H̃ab) (15) acts non-trivially only on the qubits a and b. Let Ṽab∣(a,b)
denote a restriction of this operator to the subsystem of a-th and b-th qubit. Similarly we
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6 CNOT INTERACTION 6.2 Composite Evolution

resctrict also matrix X as follows. Suppose a (row) multiindex (i1, . . . , ia, . . . , ib, . . . , iN)

where all indices ic pertaining to qubits c ≠ a, b are fixed and indices ia, ib are left arbitrary.
There are four such multiindices for each setting of ic’s. An analogous discussion can be
done for column indices. For each setting of ic’s and jc’s we can define a 4×4 matrix X(a,b)
composed of elements Xia,ib

ja,jb
. For every matrix X and every double (a, b) there are thus

2N−2 matrices X(a,b). These matrices satisfy equality

X = ∑
ij

Xi1...iN
j1...jN

∣i1 . . . iN ⟩⟨j1 . . . jN ∣ = ∑
i′,j′

(X(a,b))
i′

j′ ⊗ ∣i′⟩⟨j′∣, (93)

where we assume a < b and i′ = (i1, . . . , ia−1, ia+1, . . . , ib−1, ib+1, . . . , iN) (and similarly for
multiindex j′). Since the indices ic and jc are not directly present in the future calculations,
we work effectively with a single matrix X(a,b). Using the new notation the equations (91)
are reexpressed as

rabX(a,b) = (Ṽab∣(a,b))
†X(a,b) (Ṽab∣(a,b)), ∀a, b ∈ {1, . . . ,N}, a ≠ b. (94)

The problem is therefore reduced to the solution of matrix equations with effectively 4× 4
matrices. As a next step we divide expression (94) into two parts. One part consists of
equations determining how the solution X(a,b) depends on a value of αab. We will refer
to these equations as the eigenvalue equations. The other part captures the influence of a
network structure onto X(a,b).

The eigenvalue equations are obtained from attractor equations (94) when one diago-
nalizes operators Ṽab∣(a,b) = SabDabS

−1
ab and defines X̃ ≡ S−1

ab X(a,b) Sab. One ends up with

rab X̃ =D†
ab X̃ Dab, ∀a, b ∈ {1, . . . ,N}, a ≠ b. (95)

Matrix X̃ is dependent on the order in which eigenvalues are put into Dab. For our choice
of Dab the eigenvalue equations (95) are equivalent to the following relations

(rab − 1)X̃ii = 0,

(rab − e
iπβ∆t)X̃12 = 0, (rab − e

−iπβ∆t)X̃21 = 0,

(rab − e
−i π∆t

2
(1+β+b))X̃13 = 0, (rab − e

i π∆t
2
(1+β+b))X̃31 = 0,

(rab − e
−i π∆t

2
(1+β−b))X̃14 = 0, (rab − e

i π∆t
2
(1+β−b))X̃41 = 0,

(rab − e
−i π∆t

2
(1+3β+b))X̃23 = 0, (rab − e

i π∆t
2
(1+3β+b))X̃32 = 0,

(rab − e
−i π∆t

2
(1+3β−b))X̃24 = 0, (rab − e

i π∆t
2
(1+3β−b))X̃42 = 0,

(rab − e
iπ∆tb)X̃34 = 0, (rab − e

−iπ∆tb)X̃43 = 0,

(96)

where we substitute β = 2s/π and b =
√

1 + β2 and i runs through the set {1, . . . ,4}.
The matrix X is an attractor associated with λ = exp(iω) if and only if equations (96)

with a fixed ω are satisfied for all pairs of qubits (a, b) simultaneously. Since we consider
the quantum network which is represented by a complete graph, the number of these
equations is huge. However, we show that it is sufficient when equations (96) are fulfilled
simultaneously for pairs (a, b) and (b, a) only. Already for these two sets of equations the
possible form of attractors is reduced considerably and the subsequent analysis is relatively
easy. When one takes into account equations (95) for the ordered pair of qubits (b, a) one
obtains

rab Ỹ =D†
ab Ỹ Dab, ∀a, b ∈ {1, . . . ,N}, a ≠ b, (97)

where now Ỹ ≡ S−1
ab PabX(a,b) Pab Sab with Pab = SWab being a permutation matrix swapping

the a-th and b-th qubit. As we see, both equations (95) and (97) are the same and therefore
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6.2 Composite Evolution 6 CNOT INTERACTION

they have the same set of solutions, which we callM. What differs in both is how solutions
from this setM are related to the original matrix X(a,b). From definitions of X̃ and Ỹ it
can be seen that X(a,b) must lie in the intersection of the two sets as follows

X(a,b) ∈ (SabMS−1
ab ) ∩ (PabSabMS−1

ab Pab). (98)

In other words, for each X(a,b) satisfying (98) there must exist solutions X̃ and Ỹ from
M such that X(a,b) = Sab X̃S−1

ab and X(a,b) = PabSab Ỹ S−1
ab Pab. These two expressions relate

the structure of X̃ and Ỹ matrices. Moreover, this relation is independent of the actual
forms of solutions to (95) and (97), it reflects the effect of taking into account both ordered
pairs (a, b) and (b, a). We will refer to this relation as structure equations in the following.
Their explicit form reads

X̃ = (S−1
ab PabSab) Ỹ (S−1

ab PabSab). (99)

Using a vector representation of matrices this condition can be rewritten into B∣Ỹ ⟩ = ∣X̃⟩,
where B = (S−1

ab PabSab) ⊗ (S−1
ab PabSab)

T , for details see (117) in subsection A.4. Since
B2 = I we also have ∣Ỹ ⟩ = B∣X̃⟩ and the roles of X̃ and Ỹ are thus symmetric. By a
suitable permutation of basis vectors within the computational basis the B matrix can be
reexpressed in the block-diagonal form

B =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 B1 0 0
0 0 B2 0
0 0 0 B3

⎞
⎟
⎟
⎟
⎠

, (100)

where the one in the above left corner corresponds to X̃22, B1 is a 3 × 3 block associated
with elements X̃24, X̃23, X̃21, B2 is another 3× 3 block associated with X̃42, X̃32, X̃12 and
B3 is a 9×9 block corresponding to elements X̃41, X̃31, X̃11, X̃14, X̃13, X̃43, X̃34, X̃44, X̃33

in the respective order.
At this moment, we consider both eigenvalue equations (96) and structure equations

represented by matrix B to solve for X(a,b) in a straightforward way. Recalling the first
line of equations (96) we make distinction between two cases, either αab ≡ 0 (mod 2π) or
αab /≡ 0 (mod 2π). Let us focus on the former case. For αab ≡ 0 (mod 2π) we obtain rab = 1
and elements X̃ii are therefore of arbitrary value. Moreover, if we exclude a zero-measure
set of parameter values, which is defined by the following equalities

s =
πk

∆t
,

s = ±
π

4∆t

√
4k2 −∆t2,

s =
π

6∆t
(4k +∆t ±

√
64k2 + 32k∆t +∆t2),

s =
π

10∆t
(−12k − 3∆t ±

√
64k2 + 32k∆t + 9∆t2),

where k ∈ Z, then all the other elements X̃ij with i ≠ j must be inevitably zero from (96).
Thanks to the symmetry also for elements Ỹ we have Ỹii being arbitrary and Ỹij = 0 for
i ≠ j. Under such conditions the matrix B imposes constraints enforcing matrix X(a,b) to
be of the form

X(a,b) =

⎛
⎜
⎜
⎜
⎝

γ 0 0 0
0 δ 0 0
0 0 δ 0
0 0 0 δ

⎞
⎟
⎟
⎟
⎠

, (101)
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with γ, δ ∈ C. Let us move on to the case αab /≡ 0 (mod 2π). Due to symmetry of X̃ and
Ỹ it can be shown that while one puts two variables pertaining to block B1 equal to zero,
the third variable is already zero as well. The same can be shown even for block B2.

We make use of this property to force all attractors associated with λ ≠ 1 to be zero.
The prize for that is an exclusion of a zero-measure set of parameters only. From equations
(96) one can read out for which values of αab the particular matrix element is either zero or
have an arbitrary value. For instance let us consider αab such that αab ≡ πβ∆t (mod 2π).
Then X̃12 might be arbitrary according to (96). This variable is associated with block B2

whose other variables are X̃42 and X̃32. If we now allow only such collision times that

s ≠
π

6∆t
(4k +∆t ±

√
64k2 + 32k∆t +∆t2), k ∈ Z, (102)

then our choice αab ≡ πβ∆t (mod 2π) ensures αab /≡ π
2 ∆t(1+3β±b) (mod 2π). From (96) it

thus follows that X̃42 = 0 = X̃32. We can employ the property of the block B2 mentioned at
the beginning of this paragraph to conclude X̃42 = X̃32 = X̃12 = 0 provided that αab ≡ πβ∆t
(mod 2π) and (102). To conclude, even though for αab ≡ πβ∆t (mod 2π) the element X̃42

might be arbitrary due to eigenvalue equations, by suitable conditions on parameters ∆t
and s the structure equations force this element to be zero. An analogous discussion can
be made for all variables pertaining to blocks B1 and B2. As a result, elements X̃24, X̃23,
X̃21, X̃42, X̃32 and X̃12 vanish for almost all values of interaction time ∆t and the free
evolution time scaling s.

Let us treat the last block B3. For αab /≡ 0 (mod 2π) we have X̃ii = 0 = Ỹii. By
plugging these values into equation B∣Ỹ ⟩ = ∣X̃⟩, namely its part corresponding to B3,
we obtain non-trivial constraints on values of some variables X̃ij and Ỹij , i ≠ j. These
conditions effectively reduce block B3 into a 3 × 3 matrix which can be treated in the way
we did for blocks B1 and B2. Again, when two variables are set to zero the third variable
must be also zero. A discussion of parameter values similar to that above can be done. As
a consequence in the set of collision times we leave only those satisfying each of conditions

s ≠ πk
∆t , s ≠ ± π

4∆t

√
4k2 −∆t2,

s ≠ π
4∆t(2k −∆t), s ≠

kπ(k−∆t)
2∆t(2k−∆t) ,

(103)

s ≠ π
6∆t (2k ±

√
16k2 − 3∆t2) ,

s ≠ π
6∆t (±(4k +∆t) ±

√
64k2 + 32k∆t +∆t2) ,

s ≠ π
10∆t (−12k − 3∆t ±

√
64k2 + 32k∆t + 9∆t2) ,

s ≠ π
42∆t (−20k − 5∆t ±

√
64k2 + 32k∆t + 25∆t2) ,

s ≠ π
70∆t (4k +∆t ± 3

√
64k2 + 32k∆t − 31∆t2) ,

s ≠ π
18∆t (4k +∆t ±

√
64k2 + 32k∆t − 23∆t2) ,

(104)

where k ∈ Z. For these suitable parameter values we obtain a solution as follows: for
αab ≡ 0 (mod 2π) one has matrix X(a,b) as shown in (101), for any other value αab this
matrix vanishes.

Till now we have lead calculations in terms of 4× 4 matrices X(a,b), which express how
two qubits, a and b, relate to each other. Let us move back to the original problem. Since
parameters γ and δ in (101) can also be set to zero, we can without loss of generality
assume every solution X(a,b) is of this diagonal form irrespective of the actual value of αab,
see the previous paragraph. The whole attractor matrix X must be consistent with its
each restriction X(a,b). This requirement necessitates the diagonal form of the attractor
matrix. It is not hard to see that if the whole matrix X is not zero, then all its diagonal
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Figure 6: Numerical calculation of the equilibrium state for the quantum network composed
of N = 3 qubits and governed by CNOT interactions and a diagonal free Hamiltonian. The
plot depicts the real part of the equilibrium state, the imaginary part is zero. The initial
state is equal to that used in Figure 5. Colours represent numerical values of the matrix
entries to emphasize the structure of the equilibrium state. Row and column multiindices
are shown explicitly. There are apparently only two degrees of freedom present in the
equilibrium state.

entries are identical except for the very first element, which is independent of the others.
That is

X = γ ∣00 . . .0⟩⟨00 . . .0∣ + δ I (105)

with some γ, δ ∈ C. As a final step we analyze condition αab ≡ 0 (mod 2π) in terms
of attractor spectrum, collision time ∆t and the time scaling s. From the definition of
parameter αab it follows the condition αab ≡ 0 (mod 2π) is equivalent to

2∆t s ∑
k≠a,b

(jk − ik) ≡ ω (mod 2π). (106)

Nevertheless, we obtained diagonal attractors of the form (105) for which condition (106)
reads ∑k≠a,b(jk − ik) = 0. Consequently, for any nonzero ω the corresponding attractor
matrix X vanishes. The only nonzero solution (105) is associated with the only remaining
eigenvalue λ = ei 0 = 1.

6.2.1 Conclusion for Composite Evolution

We have considered a composite evolution consisting of a diagonal free Hamiltonian and
CNOT interactions with identical collision times. In contrast to the partial swap and en-
ergy exchange interactions the free Hamiltonian does not commute with the interaction
Hamiltonian in the present scenario. The entire discussion has been therefore more in-
volved. An asymptotic behaviour of the network is also tremendously different from the
other interactions investigated previously. For partial swap and energy exchange inter-
actions the free Hamiltonians redistributed attractors over different eigenvalues and thus
precluded formation of equilibria for any number of qudits. In the case of controlled-NOT
interactions the equilibration emerges also for non-trivial free Hamiltonians. The quantum
network equilibrates regardless of its size and the equilibrium state is obtained as a special
case of an attractor associated with the trivial free evolution (67), see (105) and Figure 6.
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6 CNOT INTERACTION 6.2 Composite Evolution

As a direct consequence the equilibrium state is also invariant under permutations of in-
dividual qubits. As follows from the properties of the partial trace, see subsection 2.1, the
asymptotic states of subsystems with the same number of qubits are thus identical.

The amount of information surviving the long-time evolution reduces to two degrees of
freedom only, irrespective of the number of qubits constituting the network. These results
were obtained under assumption that all collision times are equal to the time interval
∆t. Numerical simulations show that even if we choose mutually different collision times
∆tab, the asymptotic state is still of the form (105). Numerical simulations also allow
us to consider completely general free Hamiltonians, not only the diagonal ones in the
computational basis which are employed in the analytical investigation. These simulations
suggest that for general free Hamiltonians the only asymptotic (and stationary) state of
the network is the maximally mixed state. During the evolution the entire information
about the initial state is thus erased. Out of all interactions we studied in this thesis
the CNOT interaction imposes the most stringent conditions on the equilibrium state of
the system. Since for all three types of interactions we have examined we choose as a
free Hamiltonian the same operator H free

i = sσZ , one can easily compare its effect on the
equilibrium state for various kinds of the network evolution. When this free evolution
Hamiltonian commutes with the interaction Hamiltonian, the network does not tend to
equilibrium. On the other hand, as CNOT interaction suggests the opposite may be true
for interactions which does not commute with the free Hamiltonian. Similarly to preceding
types of interactions we excluded a zero-measure set of values s and ∆t, (103) and (104),
from our discussion. Expect for this set, the time interval ∆t may assume an arbitrary
value.
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7 NUMERICAL SIMULATIONS

7 Numerical Simulations

So far we have presented analytical solutions for the asymptotic dynamics of the quantum
network evolving under various conditions. Both a trivial and a non-trivial free evolution
together with three different kinds of interactions were investigated and several scenarios
were examined regarding interaction times. At first, we considered the simplest case with
all collision times being identical. Afterwards we assumed that all collision times might
have mutually different values. In some cases we simplified our discussion by excluding
physically unimportant zero-measure sets of parameters.

In this section we perform numerical simulations of the quantum-network evolution.
This approach represents an independent way of calculating the asymptotic regimes of the
network, which can be subsequently compared with our findings from preceding sections.
Numerical simulations also allow us to treat more general settings than we have investi-
gated so far. In particular, unlike in previous sections we can study the quantum network
behaviour while collision times ∆tab and probabilities pab (10) vary during the evolution.
Results from these generalized scenarios suggest that solutions to restricted cases, obtained
analytically, are also valid in these settings. However, it should be noted that the numerical
approach suffers from several drawbacks. Apart from round-off errors another disadvan-
tage is that no more than just a few-qudit networks can be examined with the power of
the present-day technology.

The numerical approach consists in successive applications of the random unitary op-
eration Φ (10), associated with the specific network evolution, to the initial network state.
Thanks to the matrix form (118) of the random unitary operation, as shown in subsec-
tion A.4, we can completely get rid of the initial-state dependence and focus on the evolu-
tion propagator itself. Apart from parameters considered in the analytical solution in the
numerical approach we also have to specify the probability distribution in (7), which plays
the role of an independent variable. In the following we are interested in the asymptotic
form Φasymp of the propagator obtained after large number of successive applications of
Φ, i.e. Φasymp = limn→∞ Φn (if the limit exists). To compare the analytical results with
numerical simulations we simply apply the asymptotic propagator to the general matrix of
appropriate size and compare the output with the attractor form we had already calculated.

We focus on two aspects of the network evolution regarding its convergence towards
equilibrium. The first aspect is the dependence of the rate of convergence on different dis-
tributions of collision times and probabilities. The second aspect is the effect of magnitude
of collision times on the rate of convergence. We show differences between the situation
when collision times are small and the situation when their magnitudes are comparable
with the time interval ∆t.

7.1 Dependence on Distributions of Times and Probabilities

Recalling the first aspect, for all three kinds of interactions we have investigated the three
evolution scenarios are considered. First two scenarios evaluate the asymptotic propagator
Φasymp as an approximate limit of the iterative sequence {Φn}∞n=1, where the random uni-
tary operation Φ is constructed out of the probability distribution and collision times that
are kept constant during the evolution. Therefore, these cases can be directly compared
with their analytical counterparts. The difference between the two scenarios is that the
first one takes the uniform probability distribution and unit collision times whereas the
second one generates both sets of values randomly before the iterations are triggered. As
a consequence, the probability distribution as well as collision times present in the second
scenario are in general non-uniform. Since we use random generation merely to produce

50



7 NUMERICAL SIMULATIONS 7.1 Dependence on Distributions

a particular probabilities and collision times we do not average over their possible values.
Averaging would be necessary if the random values of probabilities and collision times re-
sulted from our incomplete knowledge of the network setting. In the plots below the first
and second scenarios are depicted by red and blue dots, respectively. We take the quantity
dn = ∥Φn+1 − Φn∥ to assess convergence characteristics of the iterative sequence for both
scenarios. In general, condition dn → 0 is merely a necessary condition for the convergence
of the sequence {Φn}∞n=1. Nevertheless, due to intrinsic properties of the random unitary
operation Φ [6] this condition is also sufficient. Therefore, if the sequence {dn}

∞
n=0 is ap-

proximately zero from certain step n0 onward we assume the sequence {Φn}∞n=n0
is constant

and declare the element Φn0 to be the asymptotic propagator Φasymp. The third scenario
represents a generalization of the analytical approach in the sense that the probability
distribution of collisions and collision times are no longer kept constant. Instead, they are
randomly generated at every iteration step and the sequence we study in this setup is thus
{∏

n
i=1 Φi}

∞
n=1, where Φi denotes a random unitary operation generated in the i-th step.

Purple dots are used to denote this case in the figures below. Analogously to the first two
scenarios, as a convergence measure we take the quantity dn = ∥∏

n+1
i=1 Φi−∏

n
i=1 Φi∥ and the

asymptotic propagator is defined as Φasymp = limn→∞∏
n
i=1 Φi (if the limit exists). Again,

even in this case we make no averaging over all possibilities.
Each case examined below is performed on a quantum network comprised of three

qubits, that is N = 3 and d = 2. Moreover, in the present discussion we set the time
interval ∆t = 1 and the free-evolution probability p0 = 0 (7), but even for non-zero p0 one
obtains very similar results. The network asymptotic regime thus does not care whether
there is a collision in every step of its evolution or not, only the rate of convergence
is affected. In the following, by the non-trivial free Hamiltonian we always mean the
diagonal Hamiltonian H free

i = σZ . Prior to detailed discussion of the three interactions we
can already point out some general properties suggested by plots below. For instance, it
turns out that the rate of convergence of the second scenario is heavily dependent on the
initial probabilities and collision times and varies greatly among different realisations of
the network evolution. The third scenario, despite its non-monotonicity, seems to finally
converge to the relevant asymptotic state. We can also observe that its fluctuations are
more distinct during the trivial free evolution. The non-trivial free evolution smooths these
fluctuations considerably.

Let us begin our analysis with the controlled-NOT interaction as this shows quite
different properties compared to the partial swap and the energy exchange interactions.
The first setup we consider is the CNOT operation acting together with the trivial free
evolution. Results for the three scenarios can be seen in Figure 7. All scenarios including
the third one converge to the analytical solution, see subsubsection 6.1.3. The non-trivial
free Hamiltonian presented above is chosen in accordance with the analytical treatment
of the non-trivial free evolution in subsection 6.2. Results for this choice are shown in
Figure 8. We see that the free Hamiltonian decelerates the convergence for each of the
scenarios several times. Despite this fact, the network still equilibrates, which is not the
case for the two other interactions.

It turns out that behaviour of the quantum network with the partial swap interactions
is very similar to the behaviour with the energy exchange interactions. We thus present
results only for the partial swap. Unlike the controlled-NOT Hamiltonian the partial swap
and energy exchange Hamiltonians are defined with a coupling strengths φab (22) and κab
(40), respectively. These numbers represent another set of independent parameters we
can modify. However, we set all coupling strengths equal to φab = π/6 (22) for all pairs
of qubits, without loss of generality. For the trivial free evolution the coupling strengths
and collision times always appear together in a product and their roles are therefore in-
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terchangeable. The second and third scenario thus also correspond to the situation when
interaction strengths are diverse for each pair of qubits. Numerical results for the triv-
ial free evolution are shown in Figure 9. Asymptotic states of all scenarios including the
third one are identical, up to numerical error, to the analytical solution as is summa-
rized in subsubsection 4.1.3. Since N > d, there is only λ = 1 in the attractor spectrum.
The aforementioned smoothing effect of the non-trivial free evolution on the third-scenario
fluctuations is well demonstrated by comparison of Figure 9 with Figure 10, where the
situation with non-trivial free evolution is depicted. For the non-trivial free evolution and
either of the interactions the network does not equilibrate. However, even in these cases
one may study the convergence properties of the iterative sequence. We examine these
properties in the following subsection.

Examples demonstrated above suggest analytical results calculated in previous sections
are valid and the theoretical framework used for calculations captures the essence of the
asymptotic behaviour the quantum network undergoes in different scenarios. Moreover,
from the third scenario it seems that even in more general setups one obtains attractors
already emerging in the restricted cases. From the nature of numerical simulations it
is essentially impossible for generated collision times to lie in the zero-measure set of
exceptional values for which the solutions are degenerate. Hence, we are left with the
generic cases only.

7.2 Dependence on Magnitudes of Collision Times

All the simulations presented so far deal with the rate of convergence in the context of
different probability and collision-time distributions. At this moment, we analyze how the
magnitude of collision times affects the rate of convergence of the iterative sequence. The
network we consider consists of three qubits, as is the case above. We perform simulations
similar to the first scenario examined in the previous subsection, but the value of collision
times will be modified. In other words, the probability distribution is set to be uniform
and collision times for all pairs are identical. For the partial swap and energy exchange
interactions we keep all interaction strengths identical for all pairs of qubits. Specifically,
we set φab = κab = π/6. As a time interval we choose ∆t = 1 and even in this subsection
we study three scenarios. All the collision times are equal in the present setting, but we
consider three values that these collision times assume: ∆t′ = ∆t = 1, ∆t′ = ∆t/5 = 0.2
and ∆t′ = ∆t/10 = 0.1. We take into consideration all three interactions we investigated
analytically. Initially we assume the free evolution is trivial and later on we take H free

i = σZ
as a free evolution Hamiltonian. The latter is referred to as the non-trivial free Hamiltonian
in the following.

For the trivial-free-evolution case we obtained qualitatively very similar behaviour for
all three interactions. In Figure 11 one can see our results for the CNOT interaction.
As can be easily deduced from the plot, the value of collision times truly affects the rate
with which the sequence converges. The fastest convergence for our choice of parameters
is obtained for the maximum value of collision time ∆t′ = 1. In this case the dn drops
below L = 0.01 after 14 steps of evolution. For the partial swap interaction the same limit
is reached after 143 steps and for the energy exchange interaction 149 steps of evolution
are needed to reach this limit. In Figure 11 the first scenario is the fastest and the third
scenario is the slowest setting. Nevertheless, for different values of the time interval ∆t
the order in which individual scenarios converge may differ. Since the choice of collision
times and the time interval has a direct impact on the specific form of the propagator Φ,
it is not possible to draw simple conclusions about the role of collision time on the rate
of convergence. Evolution operators (12) are periodic functions of the collision time ∆t′.
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Figure 7: The controlled-NOT interaction with the trivial free evolution and with p0 = 0—
Comparison of rate of convergence for three different scenarios. Red dots correspond to the
case with uniform probability distribution and unit collision times. Blue dots correspond
to the case with non-uniform constant probability distribution and collision times. Purple
dots correspond to the case with probability distribution and collision times being updated
to random values in every step of the evolution.
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Figure 8: The controlled-NOT interaction with the non-trivial free evolution and with
p0 = 0—Comparison of rate of convergence for three different scenarios. Red dots corre-
spond to the case with uniform probability distribution and unit collision times. Blue dots
correspond to the case with non-uniform constant probability distribution and collision
times. Purple dots correspond to the case with probability distribution and collision times
being updated to random values in every step of the evolution.
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Figure 9: The partial swap interaction with the trivial free evolution and with p0 = 0—
Comparison of rate of convergence for three different scenarios. Red dots correspond to the
case with uniform probability distribution and unit collision times. Blue dots correspond
to the case with non-uniform constant probability distribution and collision times. Purple
dots correspond to the case with probability distribution and collision times being updated
to random values in every step of the evolution.
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Figure 10: The partial swap interaction with the non-trivial free evolution and with p0 = 0—
Comparison of rate of convergence for three different scenarios. Red dots correspond to the
case with uniform probability distribution and unit collision times. Blue dots correspond
to the case with non-uniform constant probability distribution and collision times. Purple
dots correspond to the case with probability distribution and collision times being updated
to random values in every step of the evolution.
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For our choice of parameters the period for partial swap, energy exchange and CNOT
interactions is equal to ∆t′p = 12, ∆t′p = 12 and ∆t′p = 4, respectively. The time interval
value ∆t = 1 we use in the present setting thus ensures that all three values of collision
times are confined to a single period for all three interactions. In this setup the typical
behaviour of the network evolution is such that for smaller values of collision times the
iterative sequence converges more slowly.

Similar observation holds true even for the non-trivial free evolution, at least for CNOT
interactions, see Figure 12. For the partial swap and the energy exchange interactions with
the non-trivial free Hamiltonian the network does not equilibrate, but we can still study
its evolution towards an asymptotic oscillatory state (9). The situation when the network
attains its asymptotic regime can be observed in the plots as a stabilized nonzero value
of dn. Such a behaviour is due to non-unit eigenvalues λ in the attractor spectrum as
follows from equation (38). By inspection of Figure 13 and Figure 14 we see that for our
choice of parameters the evolution towards asymptotic state gets faster for larger values of
collision times, as was the case in the trivial-free-evolution scenario. Nevertheless, for the
partial swap we observe different stabilized value of dn for different collision times. Such
a behaviour is not present for energy exchange interactions. Moreover, for a randomly
generated non-diagonal free Hamiltonian and energy exchange interactions the sequence
converges to zero, but in time-scales that are by several orders of magnitude larger than
that for the CNOT.

Complete numerical treatment of the convergence properties of the time evolution se-
quence {Φn}∞n=1 deserves much more attention than we are able to pay it in this section.
More detailed discussion of figures presented above is possible, of course. Nonetheless, our
main purpose is to demonstrate that in relevant cases the quantum network equilibrates for
almost all values of collision times, and that these times affect the rate of its convergence
toward equilibrium. Indeed, Figure 11 and Figure 12 demonstrate this property quite well.
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Figure 11: The controlled-NOT interaction with the trivial free evolution and with p0 = 0—
Comparison of rate of convergence for three different values of collision times. Red, blue
and purple dots correspond to the cases with collision times ∆t′ = 1, ∆t′ = 0.2 and ∆t′ = 0.1,
respectively. For the partial swap and energy exchange interactions we would obtain similar
trends of rate of convergence for respective values of collision times.
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Figure 12: The controlled-NOT interaction with the non-trivial free evolution and with
p0 = 0—Comparison of rate of convergence for three different values of collision times. Red,
blue and purple dots correspond to the cases with collision times ∆t′ = 1, ∆t′ = 0.2 and
∆t′ = 0.1, respectively.
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Figure 13: The partial swap interaction with the non-trivial free evolution and with p0 = 0—
Comparison of rate of convergence for three different values of collision times. Red, blue
and purple dots correspond to the cases with collision times ∆t′ = 1, ∆t′ = 0.2 and ∆t′ = 0.1,
respectively.
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Figure 14: The energy exchange interaction with the non-trivial free evolution and with
p0 = 0—Comparison of rate of convergence for three different values of collision times. Red,
blue and purple dots correspond to the cases with collision times ∆t′ = 1, ∆t′ = 0.2 and
∆t′ = 0.1, respectively.
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8 Conclusion

We investigated the asymptotic behaviour of a multi-qudit quantum network whose indi-
vidual constituents undergo free evolution randomly interrupted by short bipartite interac-
tions. We were especially focused on formation of equilibria for different quantum-network
setups. An interplay between the free evolution and mutual interactions possibly leading to
the network equilibration was analyzed. The quantum network was taken to be complete—
every qudit could interact with any other qudit—and partial-swap, energy-exchange and
CNOT interactions were considered. We found closed analytical solutions for these setups
with various qudit dimensions, numbers of qudits and with diverse values of time inter-
val ∆t, interaction times and interaction strengths. Finally, we confirmed our analytical
results by numerical simulations.

For pure partial-swap evolution we found out the generic asymptotic state assumes the
form described in (28). The dimension of the attractor space in this case scales with the
dimension of qudits and their number according to formula (27). The quantum network
with the trivial free evolution and partial swap interactions tends to equilibrium whenever
the number of qudits in the network is strictly greater than their dimensionality. On the
contrary, when the number of qudits does not exceed their dimensionality the asymptotic
behaviour of the quantum network is more complex and equilibration in general does not
occur. Many features present in the partial swap scenario are found also in the case of
qubit networks governed by energy exchange interactions. For the trivial free evolution
and energy exchange interactions we observe equilibration of the network for any number
of qubits N ≥ 3 and the equilibrium state (47) is a special case of that obtained for the
partial swap. The dimension of the attractor space scales linearly with the size of the
network. For pure CNOT evolution the generic asymptotic state is of the stationary form
(67) with the dimension of the attractor space being independent of the number of qubits.
A quantum network with the trivial free evolution and CNOT interactions between its
constituents thence equilibrates regardless of the number of qubits provided that N ≥ 3.

After investigation of mutual interactions we incorporated also the non-trivial free evo-
lution into our model. For the partial swap we considered general one-qudit free Hamilto-
nian. The resulting asymptotic state, and hence the equilibration property, is determined
by equation (38). Nevertheless, for a general non-trivial free evolution and an initial state
the network does not tend to equilibrium. The same result we obtained also for networks
governed by energy exchange interactions and diagonal free Hamiltonians. However, for
a general free evolution Hamiltonian and energy exchange interactions the network tends
to equilibrium and numerical simulations suggest the resulting state is a maximally mixed
state. Since the proper discussion for CNOT and general one-qubit free Hamiltonian is
difficult to complete we considered only diagonal Hamiltonians. For this setup we arrived
at the asymptotic state as shown in (105). The quantum network thus equilibrates and
the dimension of the attractor space is independent on the size of the network. Numerical
simulations suggest that for more general free evolution Hamiltonians the quantum net-
work still tends to equilibrium and the asymptotic state is maximally mixed, similarly to
the energy exchange scenario.

Some general features valid for all three interactions were found. Most notably, the
asymptotic states of the network are invariant under permutations of individual qudits.
This property is preserved even in cases when the network does not equilibrate. As a con-
sequence, all subsystems of the quantum network are in the same reduced state, provided
they have the same number of constituents. Another feature valid for all three types of
interactions is independence of equilibration on specific values of collision times and other
relevant parameters. For the trivial free evolution and any of the three interactions the
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network equilibrates for almost any setting of collision times, interaction strengths and
time interval ∆t.

As a next step in our investigation we can consider also quantum networks that are not
complete graphs. This setup is more general than we employed in this work and allows for
more regimes of the network evolution. Other free Hamiltonians and interactions except for
the partial swap, energy exchange and CNOT can be also taken into account. Especially a
composite evolution of CNOT interactions and a free evolution generated by a general one-
qubit Hamiltonian is a challenging problem. Theoretical framework could be augmented
to treat evolution having different probability distribution and collision times in every
iterative step. Numerical simulations suggest that such a generalized evolution leads to
the same asymptotic behaviour and might be analyzed within a theoretical framework
similar to that we use.
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A MATHEMATICAL CONCEPTS

A Mathematical Concepts and Proofs

In this appendix we review all necessary mathematical tools which are used extensively in
the main text.

A.1 Attractor Equations

As described in section 3 the quantum network evolution is captured by a random unitary
operation (10). In order to find out the asymptotic regime of the network evolution we
have to solve attractor equations (8), where the role of Uα is played by unitary operators
Uab from (10). In this appendix we derive the form of attractor equations that we use
throughout the whole thesis.

Assume for a while that p0 = 0 in (10). When we make use of definition (12) the
attractor equations (8) for random unitary operation Φ (10) read

U free
(∆t −∆tab)X (U free

)
†
(∆t −∆tab) = λU

†
ab(∆tab)X Uab(∆tab),

for all pairs (a, b) of qudits. To simplify this expression let us multiply both sides of these
equations by U free(∆tab) and (U free)†(∆tab) from left and right, respectively. We obtain

U free
(∆t)X (U free

)
†
(∆t) = λU free

(∆tab)U
†
ab(∆tab)X Uab(∆tab)(U

free
)
†
(∆tab).

One can utilize operator decomposition introduced in (15) to reexpress the unitary op-
erator V ab(∆tab) ≡ Uab(∆tab)(U

free)†(∆tab), appearing on the right-hand side, into more
convenient form. Specifically, we obtain V ab(∆tab) = Ṽab(∆tab) Ũab(∆tab) (U

free)†(∆tab) =
Ṽab(∆tab)U

†
a(∆tab)U

†
b (∆tab), where Ui(∆tab) = exp(i ∆tabH

free
i ) is a free evolution oper-

ator for qudit i. We end up with equations

U free
(∆t)X (U free

)
†
(∆t) = λV

†
ab(∆tab)X V ab(∆tab), ∀a, b ∈ {1, . . . ,N}, a ≠ b.

If we additionally assume that also no collision might take place during the time interval
∆t, i.e. p0 ≠ 0 (10), attractor equations decouple into

U free
(∆t)X (U free

)
†
(∆t) = λX, V

†
ab(∆tab)X V ab(∆tab) =X, ∀a, b ∈ {1, . . . ,N}, a ≠ b.

A.2 Pauli Matrices

Throughout the thesis we make use of Pauli matrices σX , σY and σZ defined in the usual
way

σX = (
0 1
1 0

) , σY = (
0 −i
i 0

) , σZ = (
1 0
0 −1

) .

A.3 Hamiltonians

In the main text we presented Hamiltonians for the partial swap, energy exchange and
controlled-NOT operations. This appendix is to show that these Hamiltonians indeed
generate appropriate operations as their associated evolution operators. After doing so we
also demonstrate explicitly how the evolution operators change their form when the collision
time ∆t is different from one. Finally, we determine which free evolution Hamiltonians
commute with the given interaction Hamiltonian.

Let us begin with the controlled-NOT operation. We claim the corresponding Hamil-
tonian is of the form

HCNOT =
π

2
(2l + 1)(CNOT − I), l ∈ Z. (107)
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Since CNOT2 = I we have (CNOT − I)2 = −2(CNOT − I). By mathematical induction one
easily proves (CNOT − I)k = (−2)k−1(CNOT − I) for k ≥ 1. Therefore

eiHCNOT =
∞
∑
k=0

1

k!
(i
π

2
(2l + 1))k(CNOT − I)k

= I +
∞
∑
k=1

1

k!
(i
π

2
(2l + 1))k(−2)k−1

(CNOT − I)

= I −
1

2
(
∞
∑
k=1

1

k!
(−i )k(π(2l + 1))k)(CNOT − I)

= I −
1

2
(e−iπ(2l+1)

− 1) (CNOT − I)

= I + (CNOT − I) = CNOT.

For partial swap we now prove its corresponding Hamiltonian assumes the form as
follows

HPSWab
= ρ I + φSWab, (108)

where ρ and φ are defined in relations (21). Since a global phase of an evolution operator
plays no role in our calculations we can put ρ = 0. Similarly to CNOT even for PSW we
utilize involution and commutation properties SW2 = I and [I,SW] = 0 to obtain

eiHPSW = eiρIeiφSW
= eiρ

∞
∑
k=0

1

k!
i k(φSW)

k

= eiρ
(
∞
∑
k=0

1

(2k)!
i 2k

(φSW)
2k
+

∞
∑
k=0

1

(2k + 1)!
i 2k+1

(φSW)
2k+1

)

= eiρ
(
∞
∑
k=0

1

(2k)!
(−1)kφ2k I + i

∞
∑
k=0

1

(2k + 1)!
(−1)2kφ2k+1 SW)

= eiρ cos(φ) I + i eiρ sin(φ)SW
= p I + q SW = PSW.

Unlike preceding interactions the energy exchange operation we specified directly by
writing down its Hamiltonian, so here we calculate corresponding evolution operator. The
energy exchange Hamiltonian is defined as

HEXab = κSW − κD, (109)

where D = ∣0⟩⟨0∣ ⊗ ∣0⟩⟨0∣ + ∣1⟩⟨1∣ ⊗ ∣1⟩⟨1∣ is a diagonal matrix. It is therefore not hard to see
its exponential reads exp(−iκD) = I + (exp(−iκ) − 1)D. Moreover, it commutes with the
swap operation and SW ⋅D =D, so we have

eiHEX = eiκSWe−iκD
= PSW ⋅ (I + (e−iκ

− 1)D)

= PSW + (e−iκ
− 1)(cos(κ)D + i sin(κ)D)

= PSW + (e−iκ
− 1)eiκD = PSW + (1 − eiκ

)D

=D + cos(κ)(I −D) + i sin(κ)(SW −D),

where we employed the formula (108) with ρ = 0 and φ = κ.
Recalling just performed calculations we can modify them by introducing non-unit

collision time ∆t. It is easy to see that the last but one line of the calculation for CNOT
changes to

ei ∆tHCNOT = I −
1

2
(e−iπ(2l+1)∆t

− 1) (CNOT − I)

=
1

2
(e−iπ(2l+1)∆t

+ 1) I −
1

2
(e−iπ(2l+1)∆t

− 1)CNOT.
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The same procedure for the partial swap operation yields

ei ∆tHPSW = eiρ∆t cos(φ∆t) I + i eiρ∆t sin(φ∆t)SW
= p̃ I + q̃ SW,

where p̃ and q̃ are p and q parameters, respectively, with angles ∆t times larger than the
original ones. That is, the value of collision time only modifies values of parameters and we
obtain partial swap again. Analogous result obviously holds even for the energy exchange
operation, different collision times only affect value of interaction parameter κ as κ→∆t κ.

Finally, let us calculate the commutator of the above Hamiltonians with the free evo-
lution Hamiltonian pertaining to the subsystem of a-th and b-th qudits. For the partial
swap we show that

[H free
a ⊗ Ib + Ia ⊗H free

b ,HPSWab
] = 0. (110)

This property can be proven for qudits with arbitrary dimensionality. Nevertheless, in here
we restrict ourselves to one-qubit Hamiltonians, whose form in a Pauli basis reads

H free
a = α

(a)
I I + α(a)X σX + α

(a)
Y σY + α

(a)
Z σZ . (111)

From relation (108) it follows that

[H free
a ⊗ Ib + Ia ⊗H free

b ,HPSWab
] ∝ [∑

i

(α
(a)
i σi ⊗ Ib + α

(b)
i Ia ⊗ σi),SWab] . (112)

In order to proceed one can demonstrate that the swap operation acting on composite
subsystem of a-th and b-th qubit takes the form

SWab =
1

2
(Ia ⊗ Ib + σX ⊗ σX + σY ⊗ σY + σZ ⊗ σZ). (113)

By substitution of this expression into the right-hand side of (112) one gets

1

2
∑

i,j∈{X,Y,Z}
α
(a)
i [σi ⊗ Ib, σj ⊗ σj] +

1

2
∑

i,j∈{X,Y,Z}
α
(b)
i [Ia ⊗ σi, σj ⊗ σj] .

Employing the commutation relations of Pauli matrices [σi, σj] = 2i εijk σk one finds out
the commutator reads

[H free
a ⊗ Ib + Ia ⊗H free

b ,HPSWab
] ∝ i∑

ijk

εijk σk ⊗ σj (α
(a)
i − α

(b)
i ) . (114)

We can conclude that the partial swap Hamiltonian commutes with the free evolution if
and only if α(a)i = α

(b)
i for all i. In other words the Hamiltonians commute iff the free

Hamiltonians for both qubits are identical, which is indeed the present case.
Similarly to (113) we can easily prove that matrix D in (109) can be reexpressed in

Pauli matrix form as
D =

1

2
(I⊗ I + σZ ⊗ σZ), (115)

which is convenient when calculating commutator of HEX with a free Hamiltonian as in
(110). From (109) we see

[H free
a ⊗ Ib + Ia ⊗H free

b ,HEXab] ∝ [∑
i

(α
(a)
i σi ⊗ Ib + α

(b)
i Ia ⊗ σi),SWab]

− [∑
i

(α
(a)
i σi ⊗ Ib + α

(b)
i Ia ⊗ σi),D] .
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The first commutator on the right-hand side above is equal to the right hand side of (114)
and the second commutator is calculated along similar lines, when instead of SW (113)
one uses D (115). The total commutator in the previous formula then vanishes if and only
if α(a)X = 0 = α

(b)
X , α(a)Y = 0 = α

(b)
Y and α(a)Z = α

(b)
Z ∈ R. In other words, only diagonal free

Hamiltonians commute with the energy exchange interaction Hamiltonian.
In the case of CNOT the resulting conditions imposed by commutators are more strin-

gent in comparison with previous cases as we demonstrate below. Let us calculate for
which parameters the following commutator vanishes

[H free
a ⊗ Ib + Ia ⊗H free

b ,HCNOTab] = 0. (116)

Since ∣0⟩⟨0∣ = (I + σZ)/2 and ∣1⟩⟨1∣ = (I − σZ)/2 one can rewrite (56) into

CNOT =
1

2
(Ia ⊗ Ib + σZ ⊗ Ib + Ia ⊗ σX − σZ ⊗ σX).

Analogously to preceding cases we plug this expression back into (116) with explicit forms of
free Hamiltonians (111). Due to commutation relations for Pauli matrices the commutator
reduces to

∑
i,j∈{X,Y,Z}

i α
(a)
i ε3ij σj ⊗ (σX − I) + ∑

i,j∈{X,Y,Z}
i α
(b)
i ε1ij (σZ − I) ⊗ σj .

When one expands this formula and puts it equal to zero, one obtains simple solution
α
(a)
X = α

(a)
Y = α

(b)
Y = α

(b)
Z = 0. Taking into account the fact the same conditions must apply

not only for pair (a, b) but also for (b, a) we see that the only free one-qubit Hamiltonian
which commutes with CNOT is a multiple of the identity operator, i.e. H free

a ∝ I.

A.4 Superoperators as Matrices

We study the evolution processes of the quantum networks whose generators are random
unitary operations, that is superoperators acting on network density matrices ρ ∈ CdN×dN ,
see (7). In order to study their properties it is suitable to represent the superoperator itself
as a matrix [11]. To that end, one can rewrite an arbitrary matrix X ∈ CdN×dN as a ket
vector ∣X⟩ ∈ Cd2N

∣X⟩ = (X1●,X2●, . . . ,XdN●) ,

where Xi● stands for the i-th row of matrix X. Suppose we are dealing with the superoper-
ator S of the form S(X) = AXB ≡ Y , with matrices A,B,X,Y ∈ CdN×dN . One can prove
the correspondence between different representations of the superoperator S as follows

AXB = Y ∼ (A⊗BT
)∣X⟩ = ∣Y ⟩. (117)

The matrix representation of the superoperator S is therefore S = A⊗BT . Relation (117)
is completely general and can be used in its own right. On the other hand, one can make
use of this correspondence to rewrite the random unitary operation (7) into the form

Φ ∣A⟩ =
N

∑
a,b=1

pabUab ⊗U
⋆
ab ∣A⟩, (118)

where the star symbol denotes the complex conjugation. After this transformation the
mapping composition Φ ○Φ reduces to matrix multiplication Φ ⋅Φ.
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A.5 Partial Trace of Pc⃗ Matrices

In section 4, where the network evolution governed by partial swap interactions and a
trivial free evolution is studied, we introduce a special class of matrices {Pc⃗}c⃗ (28). These
matrices form an orthonormal basis in an attractor space associated with λ = 1, where
all attractors are invariant under permutations of qudits comprising the network. In this
appendix we show their explicit forms and derive some properties these matrices have with
respect to the partial trace (2). From description below equality (28) it is not hard to write
down the expression for matrix Pc⃗ associated with an index joint distribution c⃗

Pc⃗ = NN ∑
π∈SN

∣π(i)⟩⟨π(j)∣, (119)

where summation is done over the symmetric group SN comprised of permutations π
that act on N -element multiindices. Row and column multiindices i = (i1, . . . , iN) and
j = (j1, . . . , jN), respectively, are any multiindices that have the joint distribution of in-
dividual indices equal to c⃗. For definition of c⃗ see subsubsection 4.1.1. The prefactor
NN = 1/

√
N !(c0

0)! . . . (c
d−1
d−1)! is chosen such that the matrix Pc⃗ is normalized according to

the Hilbert-Schmidt norm, see (1). In the following we derive a formula with help of which
the partial trace of Pc⃗ ∈ B(H ⊗N) over a single qudit Hilbert space H can be expressed
as a linear combination of Pz⃗ ∈ B(H ⊗(N−1)) matrices defined on an appropriate subspace.

Consider a matrix Pc⃗ ∈ B(H ⊗N) for a fixed number of qudits N > 2 and some joint dis-
tribution c⃗ = (c0

0, c
0
1, . . . , c

d−1
d−2, c

d−1
d−1). Expression (119) can be rewritten into two sums, where

the first sum contains permutations π for which (π(i))1 = (π(j))1, and the second sum col-
lects all the remaining permutations. That is, Pc⃗ = NN(∑π(i)1=π(j)1(. . .)+∑π(i)1≠π(j)1(. . .)).
The first sum reads explicitly

d−1

∑
l=0

∣l⟩⟨l∣ ⊗ cll
⎛

⎝
∑

π∈SN−1

∣π(i(l))⟩⟨π(j(l))∣
⎞

⎠
, (120)

where i(l) and j(l) are such (N−1)-element multiindices whose joint distribution of individ-
ual indices is equal to z⃗l = (c0

0, . . . , c
l
l−1, c

l
l−1, cll+1, . . . , c

d−1
d−1). The most significant difference

between the first and second sums is that in the second sum there appears ∣k⟩⟨l∣ with k ≠ l
instead of ∣l⟩⟨l∣. In the expression for the partial trace the second sum therefore vanishes,
as can be seen below. When we plug the expression for Pc⃗ into the formula for the partial
trace, we obtain

Tr1(Pc⃗) =
d−1

∑
k=0

⟨k∣Pc⃗∣k⟩ = NN
d−1

∑
k=0

⟨k∣
⎛

⎝
∑

π(i)1=π(j)1
(. . .) + ∑

π(i)1≠π(j)1
(. . .)

⎞

⎠
∣k⟩

= NN

d−1

∑
k=0

⟨k∣
⎛

⎝

d−1

∑
l=0

cll ∣l⟩⟨l∣ ⊗ ∑
π∈SN−1

∣π(i(l))⟩⟨π(j(l))∣
⎞

⎠
∣k⟩

= NN

d−1

∑
l=0

cll ∑
π∈SN−1

∣π(i(l))⟩⟨π(j(l))∣ = NN
d−1

∑
l=0

cll
1

N
(l)
N−1

Pz⃗l

=
1

√
N

d−1

∑
l=0

√

cll Pz⃗l , (121)

where Pz⃗l ∈ B(H
⊗(N−1)) is a matrix defined analogously to (119) with a normalization fac-

tor N (l)N−1. From the last line of equations above we see that whenever the joint distribution
c⃗ satisfy cll = 0 for all 0 ≤ l ≤ d − 1, then the partial trace of matrix Pc⃗ vanishes.
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B Discussion for Partial Swap with Pure Collisions

In section 4 we investigated the quantum network evolution governed purely by partial
swap-type interactions between individual constituents. For non-identical interaction times
we derived the form of the asymptotic state by making use of our results obtained for
identical interaction times. We emphasized only the situation when N > d and left more
detailed discussion to be summarized in this appendix.

Generically, when the number N of qudits in the network exceeds their dimensionality
d, the network equilibrates. The resulting state is then of the form (28). There is only a
zero-measure set of parameters φab and collision times ∆tab for which the system evolves
in a different way. (Without loss of generality we again put φab = 1.) Specifically

λ = 1 If for all pairs ∆tab ≠ kπ, k ∈ Z, then matrix X is of the form (28); the attractor
space dimension for given N and d is equal to S1(N,d), see (27). Otherwise
the form of X is more general.

λ ≠ 1 If there is (a, b) such that ∆tab = kπ, k ∈ Z, then X is a zero matrix. If there
is (a, b) such that ∆tab = (2k + 1)π/2, k ∈ Z, and λ ≠ −1, then matrix X is
zero; for λ = −1 we obtain more general form. Let ∆tab ≠ kπ/2, k ∈ Z, for all
pairs (a, b). If there is moreover (a, b) such that 2∆tab /≡ ±ω (mod 2π), then
matrix X vanishes. Finally, if for all (a, b) one has ∆tab ≠ kπ/2, k ∈ Z and
2∆tab ≡ ω (mod 2π) for all pairs or 2∆tab ≡ −ω (mod 2π) for all pairs, then
the dimension of the attractor space for given N and d is equal to S≠1(N,d),
see (36). If there are two doubles (a, b), (c, d) for which 2∆tab ≡ ω (mod 2π)
and 2∆tcd ≡ −ω (mod 2π), then X is of more general form.
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