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zákonů (autorský zákon).

Praha, 7.7.2016 Kateřina Zahradová
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Autor: Kateřina Zahradová

Obor: Matematické inženýrství
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Abstrakt: Tato práce je věnována zobecnění repéru definovaného paralelním přenosem do vyš-
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Abstract: This thesis is devoted to the generalisation of the relatively parallel adapted frame
to higher dimensions. Firstly, the fundamentals of curves, differential geometry and differen-
tial equation are provided, followed by an overview and comparison of three different moving
frames in three dimensions is given. Then the generalisation of the relatively parallel adapted
frame with the modification of the fundamental theorem of curves is presented. Lastly, one
of possible applications of the relatively parallel adapted frame, the construction of quantum
waveguides, is discussed.
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Introduction

The history of framing curves can be traced back as far as 1847 [28], when Jean Frenet sub-
mitted his doctoral thesis [9] in which he proposed the idea of attaching a frame to each point
of a curve, and also included six of the Frenet-Serret formulas. Later, in 1852, this part of his
thesis was published as a paper [10]. In 1853, he proposed the aplications in [11]. Although
Frenet may not be the first to publish the Frenet formulas, as suggested in [12], the formulas
are named after him and Joseph Serret, who independently derived all nine formulas in 1851.
According to [31], the modern history of moving frames starts with Élie Cartan who elabo-
rated a completely different theory of looking at curves in [3], namely the method of the repère
mobile, by generalising the Darboux kinematical theory. This theory of moving frames for-
malised previous approaches to curves. For a long time, the use of Frenet frame remained the
mostly preferred tool for examining the properties of curves, until Richard L. Bishop pointed
out that there are more ways to frame a curve, namely he advocated the usage of the relatively
parallel adapted frame in 1975 [1]. From that point, the newly proposed frame was treated in
Eucledian space (e.g. [34]), in Minkowski space [16] and in dual space [17]. Until now, the
approach taken by Bishop was generalised mostly with respect to the requirements on the curve
(e.g. [21]). The generalisation to higher dimension, despite the fact that Bishop himself hinted
the requirements in the previously mentioned article, was considered only in the last couple of
years. The generalisation to R4 is presented in [13] and [19]. The proof of existence of the rel-
atively parallel adapted frame in higher dimensions is hinted in [18]. However, to the extent of
author’s knowledge, no proper proof of the generalisation to an arbitrary dimension for curves
of minimal regularity, as presented in this thesis, is known.

Moving frames have a whole range of applications, ranging from theoretical use in the study
of (quantum) waveguides (see e.g. [21, 6, 14]) to more practical use in computer graphics, CNC
planning [8] or biology and medical science. The practical applications in computer graphics
include the generation of ribbons and tubes from 3D space curves, the generation of a new
way to control virtual cameras, or rotating the camera orientations relative to stable forward-
facing frame [15]. The relatively parallel adapted frame found very interesting applications in
biology – such as in a model of protein folding or the DNA (e.g. [25, 27]), in real-time path
planning for drug delivery robots [24] or in the study of geometrical risk factors of vascular
problems [2]. In many of these applications, the relatively parallel adapted frame is preferred
over the Frenet frame, as it has more appropriate behaviour and methods based on it are more
robust (cf. [2, 15]).

This thesis is organized as follows. In the first chapter, an overview of curves is given. The
second chapter is devoted to a small revision of differential geometry in order to define parallel
transport. A recapitulation of solving first order differential equations for an unknown matrix
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is presented in the third chapter. The fourth chapter explains three different moving frames
used in three dimension, two of which are adapted, and provides their comparison. In the fifth
chapter, the generalisation of the relatively parallel adapted frame to higher dimension with a
modification of the fundamental theorem of curves is given. The last chapter presents one of
many possible application of the generalised relatively parallel adapted frame – the construction
of waveguides based on the relatively parallel approach in higher dimensions.
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Chapter 1

Curves

This chapter is devoted to a small recapitulation of the theory of curves. Most of the results are
from [29], while some are also from [20].

Definition 1.0.1. A curve in Rn is a continuously differentiable mapping c : I → Rn from any
open interval I := (a, b), i.e. a, b ∈ R ∪ {−∞,∞}, into Rn.

Remark. Note that the only restriction on the interval I is its openness – the interval can be
bounded or unbounded.

Definition 1.0.2. A curve c : I → Rn is said to be of class Ck(I) if the derivatives c′, . . . , c(k)

exist and are continuous on the interval I. The curve c can also be of class C∞(I), or smooth, if
it has derivatives of all orders on I. Further more, the curve c is of class Cω(I), or analytic, if
c is smooth and if its Taylor series expansion around any point in its domain converges to the
function in some neighbourhood of the point. Lastly, the curve c is of class Ck,α(I) if c ∈ Ck(I)
and c(k) satisfies the following condition:

(∃C > 0) (∀x, y ∈ I)
(
|c(k)(x) − c(k)(y)| ≤ C|x − y|α

)
.

More specifically, c ∈ C1,1(I) if c′ is continuous and if it satisfies the Lipschitz1 condition.

Stopping here for a moment, let us introduce two examples of curves which will guide us
throughout this thesis – a helix η and the (so-called) Spivak2 curve σ.

Example. A helix η is defined as

η(t) := (R cos(t),R sin(t), ut), (1.1)

where u,R ∈ R, u , 0, R > 0 are constants characterizing the helix. R sets its radius and u
defines the rate at which the curve rises (or falls), therefore the helix reduces to a straight line
for R = 0 and to a circle for u = 0. An example of a helix can be found on Fig. 1.1.

1Rudolf Lipschitz (1832-1903), German mathematician who contributed to many areas of mathematics, mainly
to mathematical analysis and differential geometry. This historical remark, as well as the other ones, were found
in [28].

2Michal Spivak (*1940), American mathematician specializing in differential geometry. Because of his interest
in some properties of the curve σ in [31], we named the curve after him for the purposes of this thesis.
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Figure 1.1: A helix η. Figure 1.2: The Spivak curve σ.

Example. A Spivak curve σ (Fig. 1.2) is defined as

σ(t) :=


(t, e−

1
t2 , 0) if t > 0

(t, 0, e−
1
t2 ) if t < 0

0 if t = 0

. (1.2)

It is easy to see that σ ∈ C∞(R), however, it can be shown that σ is not analytical. It will be
clear later that the sudden change of planes in which the curve lives at t = 0 makes its analysis
harder.

Remark. The variable t ∈ I is called the parameter of the curve.

Definition 1.0.3. Let c : I → Rn be a curve in Rn with its components c = (c1, . . . , cn). For each
point t ∈ I, the velocity vector of c at t is a tangent vector

c′(t) :=
(
dc1

dt
(t),

dc2

dt
(t), . . . ,

dcn

dt
(t)

)
at the point c(t) in Rn. The speed |c′| of the curve c is defined as

|c′| =
(dc1

dt

)2

+ · · · +

(
dcn

dt

)21/2

.

Definition 1.0.4. Let I and J be open intervals in R. Let c : I → Rn be a curve and let h : J → I
be a differentiable (real-valued) function. Then the composite function

c̃ := c ◦ h : J → Rn

is a curve and is called the reparametrization of c by h. For h′ ≥ 0 the reparametrization c̃ is
called orientation-preserving, resp. orientation-reversing for h′ ≤ 0.
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Lemma 1.0.1. If c̃ is a reparametrization of c by h, then

c̃′(s) = c′(h(s))
(
dh
ds

(s)
)
.

Proof. Using the chain rule for individual components of c ◦ h we obtain

ci(h)′(s) = c′i(h(s)) · h′(s).

Therefore, by the definition of velocity,

c̃′(s) = (c(h(s)))′ = (c′1(h(s)) · h′(s), . . . , c′n(h(s)) · h′(s)) = c′(h(s)) · h′(s).

�

Definition 1.0.5. Let c : I → Rn be a curve. It is called regular if and only if its velocity c′ is
non-zero on the interval I.

Remark. Sometimes, regular curves are called immersions [31]. Note that the condition of
regularity for a curve ensures that the curve will not have any corners or cusps and that it does
not “stop”.

Definition 1.0.6. The arc-length function s of a regular curve c ∈ C1, c : I → Rn is a real-valued
function s : I → R. The arc-length function is said to be based on ξ ∈ (a, b), if it is defined as

s(t) :=
∫ t

ξ

|c′(u)|du.

Definition 1.0.7. The curve c is said to be parametrized by its arc-length if |c′(t)| = 1, ∀t ∈ I.
Such curves are also called unit-speed curves.

Theorem 1.0.2. If c is a regular curve in Rn, then there exists a reparametrization c̃ of c such
that c̃ has unit speed.

Proof. Let c : I → Rn be any regular curve. Fixing a number ξ ∈ I, we can consider the
arc-length function based at t = ξ

s(t) =

∫ t

ξ

|c′(u)|du.

The derivative ds/dt is the speed function |c′| of c and since c is regular, |c′| , 0. Hence
ds/dt > 0 and by the inverse function theorem, there exists s−1 which we will denote as t = t(s).
Letting c̃ = c ◦ s−1 = c ◦ t, we get

c̃′(t(s)) =
dt
ds

(s)c′(t(s)).

The speed of c̃ then is

|c̃′(s)| =
dt
ds

(s)|c′(t(s))| =
dt
ds

(s)
ds
dt

(t(s)) = 1.

�
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Figure 1.3: Example of a vector field Y on curve c.

Having a unit-speed curve allows us to simplify the mathematical manipulations later on,
however, the process of reparametrization can turn a pleasant looking curve into an awful one.
Therefore, we will try to give the option for any parametrization when possible.

Example. After the arc-length reparametrization, the helix η will look like

η(t) =

(
R cos

(
t

√
u2 + R2

)
,R sin

(
t

√
u2 + R2

)
, u

t
√

u2 + R2

)
. (1.3)

The earlier equation (1.1) is much easier to work with even though it is not unit speed.

Now we shift focus towards vectors and finally assign our curve some frame. We will start
with the definition of a vector.

Definition 1.0.8. A tangent vector Yt in Rn consists of two points of Rn – its vector part Y and
its point of application t.

Remark. Two tangent vectors are equal if and only if they have the same vector part and the
same point of application. Tangent vectors Yt,Yq with the same vector part but with different
points of applications are said to be parallel. Any Yt,Yq are different if t , q.

Definition 1.0.9. A vector field Y on a curve c : I → Rn is a function that assign each t ∈ I a
tangent vector Y(t) at the point c(t).

Remark. A velocity of a curve is an example of such a vector field. Note that a tangent vector
field does not need to be tangential to c – cf. Fig. 1.3.

However, we can define a vector field tangent to a curve:

Definition 1.0.10. A tangent vector field of c : I → Rn is a vector field along c defined by
t 7→ c′(t) f (t), where f is arbitrary scalar function.

Once we have a tangent vector field along a curve, the opportunity for another vector fields
along c arises. We would like to assign each curve a collection of such vector fields satisfying
special conditions.
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Definition 1.0.11. Let c : I → Rn be a curve. A moving n-frame along c is a collection of n
differentiable mappings

ei : I → Rn, i = 1, . . . , n,

such that for all t ∈ I, ei(t) · e j(t) = δi j, where · denotes the scalar product and δi j is Kronecker3

delta. Each ei(t) is a vector field along c. The parameter t can sometimes be called time as it
corresponds to the path taken by the curve and the fields.

Definition 1.0.12. A moving n-frame along a curve c is called adapted if all its components are
either tangential or normal to the curve.

Remark. Surely, all moving frames incorporating a tangent vector field are adapted and vice
versa.

Theorem 1.0.3. Let c : I → Rn be a curve and (e1, . . . , en) its moving n-frame. Then the time
development of the frame can be written as

e1

e2
...

en


′

= A


e1

e2
...

en

 ,
whereA is a skew-symmetrical matrix of dimension n with entries dependent on t and ′ denotes
a differentiation with respect to the parameter.

Proof. Considering the scalar product ei · e j = δi j and differentiating it with respect to the curve
parameter, we obtain the following

e′i · e j = −ei · e j.

From that it is clear thatAi j = −A ji and thus the matrixA is skew-symmetric. �

Definition 1.0.13. The skew-symmetrical matrixA from the previous theorem is called a Car-
tan4 matrix.

Remark. The reason why skew-symmetrical matrices are called Cartan matrices will be clear in
the next chapter.

Knowing what an adapted moving frame is, we can ponder further on some of its possible
properties. A natural question is about the spinning of its components, which is resolved by the
following definition.

Definition 1.0.14. The moving frame e1, . . . , en minimizes rotation along ei, if e′j can be written
as e′j = k jei, ∀ j = 1, . . . , n, for some functions k j, j = 1, . . . , n.

3Leopold Kronecker (1823-1891), German mathematician who worked on the algebraic number theory and
logic. He believed that mathematics should only deal with integers and finite number of operations.

4Élie Joseph Cartan (1869-1951), French mathematician who made significant contributions to the group the-
ory, mathematical physics and differential geometry.
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Remark. The rotation minimizing property for some moving frame effectively means that some
entries of its Cartan matrixA are permanently zero.

Focusing only on R3, one quickly arrives to the conclusion that there are only three different
options, due to the skew-symmetry, for rotation minimizing frames with entries a, b:0 a 0

∗ 0 b
0 ∗ 0

 as Frenet frame,

0 a b
∗ 0 0
∗ 0 0

 as the relatively parallel adapted frame, and

0 0 a
0 0 b
∗ ∗ 0

 as the rotation minimizing osculating frame,

where ∗ denotes entries which could be determined using the skew-symmetry.

16



Chapter 2

Differential geometry

In this chapter, some essential results from differential geometry are presented, with the focus
of those needed later on. This chapter derives from [22] and some results are adopted from
[30, 26, 29]. As only the smooth manifolds are usually discussed, we adopted this strategy for
our thesis. This, however, does not restrict us as explained later on.

Definition 2.0.15. A k-dimensional differentiable manifold (a k-manifold) is a set M together
with a family (Mi)i∈I of subsets such that

1. M = ∪i∈I Mi

2. for every i ∈ I there is an injective map ϕi : Mi → R
k so that ϕi (Mi) is open in Rk, and

3. for Mi ∩ M j , ∅, ϕi(Mi ∪ M j) is open in Rk and the composition

ϕ j ◦ ϕ
−1
i : ϕi(Mi ∪ M j)→ ϕ j(Mi ∪ M j)

is differentiable for arbitrary i, j.

Each ϕi is called a chart, ϕ−1
i is referred to as the parametrization, the set ϕi(Mi) is called

the parameter domain, and (Mi, ϕi)i∈I is called an atlas. The maps ϕ j ◦ ϕ
−1
i : ϕi(Mi ∪ M j) →

ϕ j(Mi∪M j), defined on the intersection of two such charts, are called coordinate transformations
or transition functions. We may assume, without loss of generality, that the atlas is the maximal
with respect to adding more charts satisfying the conditions 2 and 3 above. A maximal atlas in
this sense is then referred to as a differentiable structure.

Definition 2.0.16. Given a k-manifold, we can get additional structure by placing additional
requirements on the transformation functions ϕ j◦ϕ

−1
i , which belong to the atlas of the manifold.

There are many different possible requirements; however, we will only use the following: if
all ϕ j ◦ ϕ

−1
i are C∞-differentiable, the manifold is called a C∞-manifold. Note that there is a

convention that by the term “manifold” we always mean the C∞-manifold.

Remark. Whitney proved in [33] that every C1-manifold has a compatible C∞ atlas, effectively
resulting in that every C1-manifold is a C∞-manifold. Therefore, our restriction on smooth
manifolds is, in fact, not a restriction at all.

17



Assumption: Our manifold satisfies the Hausdorff separation axiom (T2-axiom), which
states that that for every two distinct points on the manifold p, q, there exist disjoint open neigh-
bourhoods Up,Uq.

The important thing is that locally the topology of the k-manifold is the same as that of an
Rk. In particular, images of open ε-balls in Rk are open in M. However, as we have yet to define
a metric on the manifold, we cannot make sense of a ball in M.

Definition 2.0.17. Let M be an m-manifold, N be an n-manifold and F : M → N a given map.
F is said to be differentiable if for all charts ϕ : U → Rm, ψ : V → Rn with F(U) ⊂ V the
composite function ψ ◦ F ◦ ϕ−1 is also differentiable.

Next, we need to define tangent vectors. There are three equivalent definitions – geometric,
algebraic and physical. These are brief versions, for a full definitions see e.g. [22].

Geometric definition: Tangent vectors are tangent to curves lying on the manifold.
Algebraic definition: Tangent vectors are derivations acting on scalar functions.
Physical definition: Tangent vectors are elements of Rn with a particular transformation

behaviour.
Regardless of our definition, every tangent vector at point p ∈ M can be expressed in a form

X =

n∑
i=1

Xi ∂

∂xi

∣∣∣∣∣
p
,

where Xi = Xϕi = d
dt

(
ϕi ◦ γ

)
t=0 for some curve γ from the geometrical definition and ∂

∂xi |p

are basis vectors corresponding to the coordinates xi. From now on, the Einstein5 summation is
used: sums are formed over indices which occur in formulas both as a subscript and superscripts.

Definition 2.0.18. The tangent space TpM of M at p is defined as the set of all tangent vectors
at the point p. By definition, TpM and TqM are disjoint it p , q. By T M we mean a disjoint
union of TpM, ∀p ∈ M, i.e.

⊔
p∈M TpM.

Definition 2.0.19. A differentiable vector field X on a differentiable manifold is a mapping
M 3 p 7→ Xp ∈ TpM, (X : M → T M), defined as X(p) = Xi(p) ∂

∂xi , where Xi are differentiable
functions. The set of vector fields on M is denoted by X(M).

Remark. Note that this definition agrees with the previous one, (1.0.9).

Definition 2.0.20. Let X,Y be vector fields on M. We define a vector field [X,Y] through the
relation

[X,Y] = X ◦ Y − Y ◦ X =
(
X(Y j) − Y(X j)

) ∂

∂x j .

[X,Y] is called the Lie6 bracket of X,Y and it is also the Lie derivative LXY of Y in the direction
X.

5Albert Einstein (1879-1955), German-born theoretical physicist who developed both the special and the gen-
eral theory of relativity and much more.

6Marius Sophus Lie (1842-1899), Norwegian mathematician who contributed to the group theory, differential
equations and geometry.
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Remark. The Lie bracket measures the non-commutativity of the derivatives.

Definition 2.0.21. The dual space T ∗pM to the tangent space TpM at the point p of a manifold
is called the cotangent space. The members of the cotangent space are called 1-forms at point
p and usually denoted by small Greek letters, i.e. ω : TpM → R, ω(aX + Y) = aω(X) + ω(Y).
The cotangent space T ∗M is defined as T ∗M =

⊔
p∈M T ∗pM.

In order to properly define 1-forms, we need to introduce a whole new structure to our
manifold, a fibre bundle.

Definition 2.0.22. A fibre bundle is a manifold E, called the total manifold, equipped with the
following additional structures:

1. a manifold M, which is called the base manifold, with a surjective mapping called the
projection π : E → M and a open set covering Uα

2. a manifold F called the typical fibre with a diffeomorphisms ψα : π−1(Uα) → Uα × F
called local trivializations, fulfilling that for the projection π1 onto the first component of
the set product, π1 ◦ ψα = π π−1(Uα).

Definition 2.0.23. A (cross) section of the fibre bundle E is a differentiable map σ : M → E,
such that π ◦ σ is an identity on M. The set of all sections of E is denoted by Γ(E).

Remark. Both the tangent space T M and the cotangent space T ∗M can be understood as exam-
ples of fibre bundles. Therefore, we may introduce their cross sections – vector fields are cross
sections of the tangent space. We used the other definition instead as it is more illustrative.

Definition 2.0.24. A differential 1-form ω defined on a manifold M is a cross section of the
cotangent fibre bundle, i.e. ω ∈ Γ(T ∗M).

After defining vector fields and 1-forms, we have something which we can measure, how-
ever, we do not have anything to measure it with. Hence, we continue with the definition of a
metric.

Definition 2.0.25. A Riemannian7 metric g on M is an association p 7→ gp ∈ L2(TpM,R) = {α :
TpM × TpM → R α bilinear} such that the following conditions are satisfied:

1. gp(X,Y) = gp(Y, X) for all X,Y ∈ TpM; (symmetry)

2. gp(X, X) > 0 for all X , 0; (positive definiteness)

3. the coefficients gi j in every local representation (i.e., in every chart)

gp := gi j(p) · dxi |p dx j |p

are differentiable functions. (differentiability)

7Georg Friedrich Bernhard Riemann (1826-1866), German mathematician who made revolutionary contribu-
tions to analysis, number theory and differential geometry.
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The pair (M, g) is called a Riemannian manifold. The Riemannian metric is also called the
metric tensor and in local coordinates is given by the matrix (gi j).

Remark. The metric tensor g defines an inner (scalar) product gp at every point p on the tangent
space TpM. Therefore, the notation gp(X,Y) =: 〈X,Y〉 is sometimes used.

Definition 2.0.26. The inverse g−1 to the metric g is given by its coefficients gil such that

gilglk = δi
k,

where δi
k behaves like the normal Kronecker delta.

The question whether a Riemannian metric exists on an arbitrary manifold M is not trivial
and it will not be discussed here.

So far we have defined what a manifold is, what a tangent vector is, what a vector field
is and we have a scalar product. Nevertheless, we would like to be able to differentiate the
vectors as we do with functions in Rn. There are multiple ways how to proceed with this task
on a manifold. We can use either the Lie derivative L, the exterior derivative d or the covariant
derivative ∇. Our goal is to find the nearest possible way of differentiation to the one known in
Rn and the key is to understand how differentiation actually works. When taking a derivative
of a function of one variable, one essentially subtracts values of the function in two different
points. This cannot be just mindlessly done for a vector field. We already established that
tangent vectors at different points may not be compared in between, so there arises a question
how to move vectors on a manifold. It is easy to move vectors in a straight space using a ruler
and knowledge from elementary school. However, we are not in a straight space any more – we
do not even know how the space looks like or how it behaves, so we cannot just translate the
vectors in any arbitrary way. One way to solve that is by means of a connection.

Definition 2.0.27. The affine connection ∇ on a manifold M is a mapping ∇ : X(M)×X(M)→
X(M) : (X,Y) 7→ ∇(X,Y) =: ∇XY that is uniquely defined by the following properties:

1. ∇ f X+Y(Z) = f∇X(Z) + ∇Y(Z), (linearity and additivity in the subscript)

2. ∇X(aY + Z) = a∇X(Y) + ∇X(Z), (additivity and R linearity in the argument)

3. ∇X( f Y) = f∇X(Y) + (X f )Y, (Leibniz8 rule)

∀ f ∈ C∞, ∀a ∈ R, X,Y,Z ∈ X(M).

Remark. Note that, due to the third property, the affine connection is not a tensor. However, the
difference of any two affine connections is.

8Gottfried Wilhelm von Leibniz (1646-1716), German polymath who contributed to philosophy and mathe-
matics. He developed the differential and integral calculus independently of Isaac Newton. His another major
mathematical work was on determinants.
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When we find ourselves on a Riemannian manifold, then there exists a special affine con-
nection, the Levi-Civita9 connection, which satisfies the following additional properties:

4. X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ), (compatibility with the metric)

5. ∇XY − ∇Y X − [X,Y] = 0. (symmetry)

Definition 2.0.28. The Levi-Civita connection can also be called a covariant derivative.

We can write out the components of Levi-Civita connection using the Christoffel10 symbols

Γi
jk =

1
2
gil

(
g jl,k + glk, j − g jk,l

)
,

where gi j,k := ∂
∂xk gi j as

∇ ∂

∂xi

∂

∂x j = Γk
i j
∂

∂xk .

Using the properties listed above we obtain for a general vector Y = η j ∂
∂x j and a special choice

of X = ∂
∂xi

∇X(Y) = (
∂ηk

∂xi + Γk
i jη

j)
∂

∂x j .

The Levi-Civita connection is sometimes called the Riemann connection as well as the covariant
derivative. Knowing what it is, we may proceed with the following definitions:

Definition 2.0.29.

1. A vector field Y is said to be parallel if ∇XY = 0 for every vector field X.

2. A vector field Y along a regular curve c is parallel along the curve c if ∇c′Y = 0.

3. A regular curve c is called a geodesic if ∇c′c′ = λc′ for some scalar function λ.

Understanding what a parallel vector field is does not answer the burning question if there
exists such field along any curve. The following lemma will answer that.

Lemma 2.0.4.

1. Along an arbitrary regular curve c there is for every Y0 ∈ Tc(t0)M a vector field Y along c
which is parallel along c and which satisfies Y(t0) = Y0. This vector field Y is called the
parallel displacement of Y0 along c.

2. Parallel displacement preserves the Riemannian metric, i.e., 〈Y1,Y2〉 is constant for any
two parallel vector fields Y1,Y2 along c.

9Tullio Levi-Civita (1873-1941), Italian mathematician mostly known for his work on tensor calculus and its
applications to the theory of relativity.

10Elwin Bruno Christoffel (1829-1900), German mathematician and physicist focused on differential geometry
and tensor calculus.
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Proof. 1. Let c be a regular curve, denoting the vector field Y as Y(t) = η j ∂
∂x j , where ∂

∂x j

are local charts. Using the relations of ∇ mentioned above and using the chain rule, the
expression reads

∇c′Y =

(
c′i(t)

∂ηk(t)
∂xi + c′i(t)η j(t)Γk

i j(c(t))
)
∂

∂xk .

The requirement that Y should be parallel is thus equivalent to the system of ordinary
differential equations

η′k(t) + c′i(t)η j(t)Γk
i j(c(t)) = 0

for the functions ηk(t), k = 1, . . . , n. This system is linear, hence there exists exactly one
solution in the given interval for given initial condition η1(t0), . . . , ηn(t0) [23].

2. Follows directly from the definition of the Levi-Civita connection, more specifically from

∇c′〈Y1,Y2〉 = 〈∇c′Y1,Y2〉 + 〈Y1,∇c′Y2〉 = 0,

for any vector fields Y1,Y2 parallel along any regular curve c.
�

Lemma 2.0.5. The parallel displacement of Y0 along c is unique.

Proof. Let us consider two parallel displacements of Y0 along c: Y1,Y2; Y ′i = kic′, i = 1, 2
with the initial condition Y1(t0) = Y2(t0) = Y0. Denoting the difference of those two fields as
∆Y := Y1 − Y2, we can write (∆Y)′ = (k1 − k2)c′. Then we have

0 = 〈∆Y, (∆Y)′〉 =
1
2

(|∆Y |2)′,

from which follows that ∆Y is constant along c. However, the initial condition at t0 yields
∆Y(t0) = 0, implying that Y1 = Y2 along the whole curve. �

Now we will look on the Fermi11-Walker12 transport which is a generalisation of the co-
variant derivative. It is used in the theory of general relativity for the definition of orthonormal
frames in such way that the whole curvature of the frame is given only by the presence of energy
(or mass) and not by the rotation of the frame.

Definition 2.0.30. Let (Rn+1, g) be a manifold with a metric g := diag(−1,+1, . . . ,+1). Then g
is called the Minkowski13 metric and is denoted as η := g. The manifold is called Minkowski
space. We can differentiate between vectors of the Minkowski space though their norms as:

η(X, X) > 0 if X is a time-like vector,
= 0 if X is a light-like vector,
< 0 if X is a space-like vector.

A regular curve c : I → Rn+1 is called space-like (resp. time-like or light-like) if its tangent
vector is space-like (resp. time-like or light-like) everywhere.

11Enrico Fermi (1901-1954), Italian physicist, creator of the first nuclear reactor, contributor to the development
of the quantum theory, nuclear and particle physics, statistical mechanics.

12Arthur Geoffrey Walker (1909-2001), British mathematician who made important contributions to physics and
cosmology, especially general relativity.

13Hermann Minkowski (1864-1909), Polish-German mathematician best known for his geometrical interpreta-
tion of special relativity.
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Definition 2.0.31. Let Aµ be a vector in the Minkowski space and γ be time-like curve. Then
we define the Fermi-Walker derivative of Aµ as

δAµ

δs
:=

DAµ

ds
− (aµuν − uµaν) Aν,

where DAµ
ds denotes the parallel transport of the vector Aµ, uµ is the 4-velocity of γ and aµ = Duµ

ds
is its acceleration. The Fermi-Walker transport of the vector Aµ along a time-like curve γ is then
given as the solution of

δAµ

δs
= 0.

The Fermi-Walker derivative of a space-like vector with respect to a time-like vector defines
non-inertial but non-rotating frames (under the condition that their Fermi-Walker derivatives
vanishes). When applied to inertial frames, the Fermi-Walker behaves just like the normal
covariant derivative.

Finally, the reason why the skew-symmetric matrices determining the time evolution of
moving frames are called Cartan matrices will be illuminated. Using [31] and [29] as our
guides and recalling the moving frames from the previous chapter, we will now study them in
more abstract form. Constricting ourselves to a plain Euclid space Rn with the Euclid metric
g := diag(1, . . . , 1), we may simplify the notations to the one normally used in Rn. The scalar
product, for example, will be denoted as g(X,Y) := X · Y .

Definition 2.0.32. Vector field E1, . . . , En on Rn constitute a frame field on Rn provided

Ei · E j = δi j, 1 ≤ i, j ≤ n

where δi j is the Kronecker delta.

The immediate advantage of having a frame field is the possibility to express its covariant
derivative in the terms of itself.

Lemma 2.0.6. Let E1, . . . , En be a frame field on Rn. For each tangent vector V to Rn at the
point p, let

ωi j(V) = ∇V Ei · E j(p), 1 ≤ i, j ≤ n.

Then each ωi j is a 1-form and ωi j = −ω ji. There 1-forms are called connection forms of the
frame field E1, . . . , En.

Proof. For ωi j to be a 1-form, it needs to be a linear real valued function on the tangent vectors.
Therefore we must only check the linearity:

ωi j(aV + bW) = ∇aV+bW Ei · E j(p)
= (a∇V Ei + b∇W Ei) · E j(p)
= a∇V Ei · E j(p) + b∇W Ei · E j(p)
= aωi j(V) + bωi j(W).
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The only remaining thing is to check the skew-symmetry. To prove that, we need to show
that ωi j(V) = −ω ji(V). Using the definition of the frame field and the constant value of the
Kronecker delta, we get

0 = V[δi j] = V[Ei · E j] = ∇V Ei · E j(p) + Ei(p) · ∇V E j.

Therefore, due to the symmetry of the dot product, 0 = ωi j(V) + ω ji(V). �

To address the geometrical significance of the connection forms, let us have a closer look at
the definition: ωi j(V) = ∇V Ei · E j(p). It shows that ωi j(V) is the initial rate at which Ei rotates
to E j as p moves in the direction of V .

Theorem 2.0.7. Let ωi j, 1 ≤ i, j ≤ n be the connection forms of the frame field E1, . . . , En on
Rn. Then for any vector field V on Rn,

∇V Ei = ωi jE j, 1 ≤ i, j ≤ n.

We call these the connection equations of the frame field E1, . . . , En.

Proof. For any fixed i, both sides are vector fields. Therefore we must show that at each point
p,

∇V(p)Ei = ωi j(V(p))E j(p).

But as the E1, . . . , En is a frame field, we can ∇V(p)Ei write out in the terms of itself and it is a
consequence of the definition of ωi j. �

From studying the connection forms, we find that, thanks to the skew-symmetry, the number
of independent ones reduces greatly. Writing them out in a form of a skew-symmetric matrix
of 1-forms, we have

ω =


0 ω12 . . . ω1n

−ω12 0 . . . ω2n
...

. . .

−ω1n −ω2n . . . 0

 .
These connections are sometimes also called Cartan connections and hence the name for the
skew-symmetric matrices associated with the frame fields.
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Chapter 3

Differential equations

It this chapter, a quick summary of [35] is given on the first order systems of differential equa-
tions in matrix form, since these differential equations are not that common. The results are
essential later on in Chapter 5 for proving the existence and uniqueness of a relatively parallel
adapted moving frame for regular C1,1 curve in any dimension.

Notation: Let J ⊂ R be any interval, open, closed, half open, bounded or unbounded. Then
by L1(J;R)14 we denote the linear manifold of real valued Lebesgue measurable functions y
defined on J for which ∫

J
|y(t)|dt =:

∫
J
|y| < ∞.

The linear manifold of locally integrable functions is denoted by L1
loc(J;R). A function y is lo-

cally integrable on an interval J if and only if y is integrable on any compact interval [α, β] ⊆ J.
The collection of functions ywhich are absolutely continuous on all compact intervals [α, β] ⊆ J
is denoted by ACloc(J).

For any given set S , Mn,m(S ) denotes the set of n × m matrices with entries from S . If
n = m we write Mn(S ) := Mn,n(S ). A matrix function is absolutely continuous (resp. (locally)
integrable) if each of its components are absolutely continuous ((locally) integrable).

Definition 3.0.33. Let J be any interval, n,m ∈ N. Let P : J → Mn(R), F : J → Mn,m(R). By a
solution of the equation

Y ′ = PY + F on J

we mean a function Y : J → Mn,m(R) which is absolutely continuous on all compact subinter-
vals of J and satisfies the equation above on J.

The theorem about the existence and uniqueness of the solution follows.

Theorem 3.0.8. Let J be any interval, n,m ∈ N. If

P ∈ Mn(L1
loc(J;R)) and F ∈ Mn,m(L1

loc(J;R))

then every initial value problem (IVP)

Y ′ = PY + F,
Y(u) = C, u ∈ J, C ∈ Mn,m(R)

(3.1)

14Originally, Zettl uses C instead of R. However, we work only in real numbers.
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has a unique solution defined on all of J.

Proof. There are two possible proofs of this theorem, both included in [35]. Here, the standard
successive approximations proof is given. First note that if Y is a solution of IVP (3.1), then an
integration yields

Y(t) = C +

∫ t

u
(PY + F), t ∈ J. (3.2)

Conversely, every solution of the integral equation (3.2) is also a solution of the IVP (3.1).
To prove the existence of the solution we construct a solution of the integral equation (3.2)

by the method of successive approximations. Define

Y0(t) := C,

Yn+1(t) := C +

∫ t

u
(PYn + F)

for n = 0, 1, 2, . . . and some t ∈ J. Then Yn is continuous on J for each n ∈ N0. We will show
that the sequence {Yn}

∞
n=0 uniformly converges to a function Y on each compact subinterval of J

and that the limit function Y is the unique solution of the integral equation (3.2) and hence also
of the IVP (3.1).

Choose b ∈ J, b > u and define

p(t) =

∫ t

u
|P(s)|ds, t ∈ J

and
Bn(t) = max

u≤s≤t
|Yn+1(s) − Yn(s)|, u ≤ t ≤ b.

Then

Yn+1(t) − Yn(t) =

∫ t

u
P(s) [Yn(s) − Yn−1(s)] ds, t ∈ J, n ∈ N.

From this we get, for u ≤ t ≤ b,

|Y2(t) − Y1(t)| ≤ B0(t)
∫ t

u
|P(s)|ds = B0(t)p(t)

≤ B0(b)p(b),

|Y3(t) − Y2(t)| ≤
∫ t

u
|P(s)||Y2(s) − Y1(s)|ds ≤

∫ t

u
|P(s)|B0(s)p(s)ds

≤ B0(t)
∫ t

u
|P(s)|p(s)ds ≤ B0(b)

p2(t)
2!

≤ B0(b)
p2(b)

2!
.

Using mathematical induction we get

|Yn+1(t) − Yn(t)| ≤ B0(b)
pn(b)

n!
, u ≤ t ≤ b.
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Hence for any k ∈ N

|Yn+k+1(t) − Yn(t)| ≤ |Yn+k+1(t) − Yn+k(t)| + |Yn+k(t) − Yn+k−1(t)| + · · · + |Yn+1(t) − Yn(t)|

≤ B0(b)
pn(b)

n!

[
1 +

p(b)
n + 1

+
p(b)

(n + 2)(n + 1)
+ . . .

]
.

Choose m large enough so that for n > m, p(b)/(n+1) ≤ 1/2, and so p2(b)/[(n+1)(n+2)] ≤ 1/4,
etc. Then the term [. . . ] has the upper bound of 2. Therefore the sequence {Yn}

∞
n=0 converges

uniformly to some Y on [u, b]. From this follows that Y satisfies the integral equation (3.2) and
hence also the IVP (3.1) on [u, b]. There is a similar proof for the case when b < u.

To prove the uniqueness of the solution Y , assume another solution Z. Then Z must be also
continuous and therefore |Y − Z| ≤ M for some M > 0 on [u, b]. Then

|Y(t) − Z(t)| =
∫ t

u
P(s) [Y(s) − Z(s)] ds ≤ M

∫ t

u
|P(s)|ds ≤ Mp(t), u ≤ t ≤ b.

Following the same practice as above,

|Y(t) − Z(t)| ≤ M
pn(t)
n!
≤ M

pn(b)
n!

, u ≤ t ≤ b, n ∈ N.

Therefore Y = Z on [u, b]. It can be proven similarly for b < u. Overall, the theorem holds. �

We will later use this theorem to show that there exists a rotation matrix R ∈ Mn(L1
loc(I;R))

with some special properties.
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Chapter 4

Frames in three dimensions

This chapter provides a summary of the moving frames in three dimensions that are already
known. First, the Frenet15 frame is discussed, followed by the relatively parallel adapted frame
and the rotation minimizing osculating frame. Following the approach of Spivak in [31], we
will only consider curves c : (a, b) → R3 which are immersions, i.e. their first derivative is
non-vanishing on the whole interval. This demand is very natural as only for these curves the
tangent can be constructed at all points. For such curves the arc-length s : (a, b) → R based at
ξ ∈ (a, b), defined as

s(t) =

∫ t

ξ

|c′(u)|du,

is a bijection from (a, b) to (L1, L2), where L1 = s(a), L2 = s(b). As seen in Chapter 1, the
arc-length can be used to reparametrize the original curve c so that the final curve Γ = c ◦ s−1

has its derivative equal to one, |Γ̇| ≡ 1. From now on, any curve with arbitrary parametrization
is denoted by small Latin letters (generally by c), the parameter will be usually denoted by t
and the derivative will be indicated as c′. On the other hand, for curves parametrized by arc-
length, capital Greek letters (Γ), parameter s and derivative Γ̇ are used. With the conventions
established, we can continue with the Frenet frame.

4.1 The Frenet frame
Starting with the Frenet frame is very natural – this frame is the oldest and also the most widely
used among the three frames discussed in this thesis. The Frenet-Serret formulas were deter-
mined by Frenet in 1847 and independently by Serret16 in 1851 [29]. As the Frenet frame is
adapted, we must start by identifying the tangent vector.

Definition 4.1.1. Let Γ : (L1, L2)→ R3 be a C2 curve. Then the unit tangent vector field on Γ is
defined as T := Γ̇.

Remark. Note that the arc-length parametrization ensures that the tangent has unit length, i.e.
|T (s)| = |Γ̇(s)| = 1.

15Jean Frédéric Frenet (1816-1900), French mathematician, astronomer and meteorologist. Best known for
discovering the Frenet-Serret formulas.

16Joseph Alfred Serret (1819-1885), French mathematician.
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Next, the “straightness” of a curve will be inspected. As easy as it is to conclude that a
straight line is straight and that the smaller the circle the more it curves, the generalisation is
not obvious. By following our intuition that the curvature of a circle is the reciprocal of its
radius, as smaller radius means that the cicrle is more curved, we can define the curvature of an
arbitrary curve using the same approach as [31]. Nevertheless, our approach inspired by [29]
will be less intuitive, but much quicker. Using analogy with mechanics, T represents the speed
of a voyager along the curve and hence Ṫ stands for the curve acceleration. Since we are dealing
with unit-speed curves, the derivative of T indicates how much the curve is curving.

Definition 4.1.2. The curvature function κ : (L1, L2)→ [0,+∞) of a unit-speed curve Γ ∈ C2 is
defined as

κ(s) := |Ṫ (s)| = |Γ̈(s)|.

Remark. In Chapter 5 we will use the curvature for C1,1 curves. In that case we consider κ as
the weak derivative of Γ̇. Also, it is easy to see from the physical analogy that the curvature
indicates how much the curve differs from a straight line.

For the rest of this section we have to consider only curves with non-vanishing curvatures
(i.e. κ > 0). This restriction is due to the definition of the Frenet frame and can be very
restrictive – any curve which is only partially linear is excluded!

Definition 4.1.3. For any unit-speed curve Γ, we define its principal normal vector field as
N = 1

κ
Ṫ .

Remark. Now let us verify that the normal vector field is really normal. Considering the unit
length of T , differentiating we conclude that Ṫ · T = 0, therefore Ṫ is indeed orthogonal to the
tangent T . Also, by using the curvature κ to normalize Ṫ , the normal N defined as above has
unit length and thus is orthonormal to T .

Definition 4.1.4. The binormal vector field B is defined via vector product: B := T × N.

Remark. The binormal is due to the properties of the vector product orthogonal to both T and
N. Also, |B| = 1.

Lemma 4.1.1. Let Γ be a unit-speed curve in R3 with κ > 0. Then the unit vector fields T, N, B
on Γ are mutually orthogonal at each point.

Proof. Can be easily seen from the definitions. �

Definition 4.1.5. A regular C3 curve in R3 is called a Frenet curve if and only if Γ̈ , 0 every-
where.

For a Frenet curve we can construct an adapted moving frame, called the Frenet frame,
consisting of a tangent T , a principal normal N and a binormal B as defined above. This frame
contains full information of the curve Γ and therefore can be used for studying it. Before we
can prove that though, we first need to focus on the derivatives of these. We already know that

Ṫ = κN,

and we would like to deduce similar equations for Ṅ and Ḃ. We claim that Ḃ is a scalar multiple
of N.
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Lemma 4.1.2. Let Γ be a unit-speed curve in R3 with Frenet frame T,N, B. Then there exists a
real-valued function τ such that Ḃ = −τN.

Proof. It is sufficient to prove that Ḃ · T = Ḃ · B = 0. The latter holds since |B| = 1. To prove
the former, let us consider the equality B · T = 0. Differentiating we get Ḃ · T + B · Ṫ = 0 and
substituting for Ṫ ,

Ḃ · T = −B · Ṫ = −B · κN = 0.
�

Definition 4.1.6. The real-valued function τ from the previous lemma is called torsion.

Remark. The minus sign from the definition is a historical convention. Torsion represents how
much the curve twists, i.e. how much the curve differs from a plane curve.

Theorem 4.1.3 (Frenet-Serret formulas). Let Γ : (L1, L2) → R3 be a unit-speed curve with
curvature κ > 0, torsion τ and with Frenet frame T,N, B. Then

Ṫ = κN,
Ṅ = −κT +τB,
Ḃ = −τN.

Proof. The first and last formulas are the actual definitions of curvature and torsion. For the
proof of the second one, let us consider the following

T · N = 0,
N · N = 1,
N · B = 0.

Differentiating we obtain

Ṅ · T = −N · Ṫ = −N · κN = −κ,

Ṅ · N = 0,
Ṅ · B = −N · Ḃ = −N · (−τN) = τ.

�

The Frenet-Serret formulas give us the evolution of the Frenet frame along the curve Γ.
They are often written in a matrix formT

N
B


·

=

 0 κ 0
−κ 0 τ
0 −τ 0


T
N
B

 .
It is then clear that the Frenet frame is a special moving 3-frame with a Cartan matrix (cf.
1.0.13). Further more, as can be seen from the following theorem [32], the Frenet-Serret for-
mulas give us the full information about the curve.

Theorem 4.1.4 (The fundamental theorem of curves). Let κ and τ be continuous functions on
some interval (L1, L2), with κ(s) > 0 for all s ∈ (L1, L2). Then there exists a curve parametrised
by its arc-length s with its curvature being κ and its torsion being τ. For any two such curves
holds that they differ only by a proper Euclidean17 motion (a translation followed by a rotation).

17Euclid (around 300 BC), Greek mathematician known as the “father of geometry”, author of the “Elements”.
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Proof. When confined only to analytic curves, the theorem can very simply be proven by writ-
ing our the curve out as its Taylor series and substituting for its derivatives. We will, however,
present the proof in the more general way.

Firstly, we write out the differential equations, the Frenet-Serret formulas, which the Frenet
frame needs to fulfil:

dT
ds

= κN,
dN
ds

= −κT + τB,
dB
ds

= −τN.

This represents a system of linear homogeneous differential equations and as κ and τ are con-
tinuous, there exists a unique set of continuous solutions for a given initial condition [23]. We
can put the initial condition at s0 as

T (s0) =

100
 , N(s0) =

010
 , B(s0) =

001
 ,

ensuring that the vectors are orthonormal at s0. Using the Frenet-Serret formulas we get the
following relation between the vectors:

1
2

d
ds

(T 2
1 + N2

1 + B2
1) =

1
2

d
ds

(1 + 0 + 0) = 0.

Similarly, we find
T 2

2 + N2
2 + B2

2 = 1, T 2
3 + N2

3 + B2
3 = 1

and three additional relations:

T1T2 + N1N2 + B1B2 = 0
T1T3 + N1N3 + B1B3 = 0
T2T3 + N2N3 + B2B3 = 0.

Now we will integrate T to obtain the original curve Γ.

Γ(s) =

∫ s

s0

T (u)du

gives us a curve not only with a tangent vector field T , but thanks to the Frenet-Serret equation,
with the Frenet frame consisting of T,N, B with its curvature κ and torsion τ, parametrised by
its arc-length s. Hence we showed the existence part of the theorem.

Moving on to the uniqueness of the curve up to a proper Euclidean motion. We will show
that if there are two curves Γ and Γ̄ with the same curvature and torsion, then they are congruent.
Let us move Γ̄(0) to Γ(0) in such way that the Frenet frames T̄ , N̄, B̄ and T,N, B coincide. Then
as the frames have the same κ and τ,

T̄
dT
ds

+ T
dT̄
ds

+ N̄
dN
ds

+ N
dN̄
ds

+ B̄
dB
ds

+ B
dB̄
ds

= κT̄ N + κT N̄ − κN̄T + τN̄B

− κNT̄ + τNB̄ − τB̄N − τBN̄ = 0,
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or
TT̄ + NN̄ + BB̄ = const s=0

= 1.

Also for the individual components the following equations hold:

TiT̄i + NiN̄i + BB̄i = 1, T 2
i + N2

i + B2
i = 1, T̄ 2

i + N̄2
i + B̄2

i = 1.

This is equivalent to T,N, B and T̄ , N̄, B̄ making a zero angle with one another. Hence T = T̄ ,
N = N̄ and B = B̄ for all s. Also, as Γ(0) = Γ̄(0), the two curves Γ and Γ̄ must coincide, so the
proof is completed. �

4.2 The relatively parallel adapted frame
In the original article [1] from 1975, Bishop introduced a new way of looking on framing a
curve – the relatively parallel adapted frame (RPAF). A recapitulation of his original approach
and the generalisation onto merely C1,1 curves as presented in [21] is given here. Later, in
Chapter 5, a generalisation for a regular C1,1 curve in any dimension is presented.

The Frenet frame is a standard instrument for examining curves, even though it is very
restrictive on the possible curves. Therefore, a search for an alternative approach brought us a
new possible way to frame a curve – the relatively parallel adapted frame. While both RPAF
and Frenet frame are adapted, meaning that they contain a tangent, their main difference is
the choice of the other two normal vector. The normal vectors in Frenet frame are directly
dependent on the tangent and therefore on the curve, whereas in RPAF the choice of the normal
vectors is more open.

In line with the definition 2.0.29, we say that a normal vector field M along a curve is
relatively parallel if its derivative is tangential. Note that this matches the idea that such a vector
field turns as little as possible while still being normal. Furthermore, as the field derivative is
perpendicular to the field, the length of any relatively parallel normal field remains constant.
The idea behind the RPAF is to introduce an adapted frame in which both normals are relatively
parallel along the whole curve (and hence they minimize rotation along the tangent vector field).
To construct such frame we need some adapted frame (e.g. the Frenet frame, if it exists) to start
with. This adapted frame can be (locally) constructed using the Gram18-Schmidt19 process on
the tangent T and two parallel fields. Denoting the frame T,M1,M2, we can write

Ṫ = p01M1 + p02M2, Ṁ1 = −p01T + p12M2, Ṁ2 = −p02T − p12M1.

Now we will inspect the condition for a normal field to be relatively parallel. Let θ be a smooth
angle function, then we can construct two normal fields N1,N2 from the normal fields M1,M2

using rotation R :=
(
cos θ − sin θ
sin θ cos θ

)
:(

N1

N2

)
=

(
cos θ − sin θ
sin θ cos θ

) (
M1

M2

)
.

18Jorgen Pedersen Gram (1850-1916), Danish mathematician who contributed mainly to invariant theory and
number theory.

19Erhard Schmidt (1876-1959), Baltic German mathematician who greatly contributed to mathematics, e.g. to
the theory of integral equations and to functional analysis.
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The rotation matrix R can be arbitrary as long as it is a rotation matrix, i.e. RRT = 1, detR = 1
and R is differentiable. Differentiating we get

Ṅ1 = −T (p01 cos θ − p02 sin θ) + (p12 − θ̇)(M2 cos θ − M1 sin θ)
Ṅ2 = −T (p01 sin θ + p02 cos θ) + (p12 − θ̇)(M2 sin θ − M1 cos θ).

Therefore the condition for N1,N2 to be relatively parallel to the curve reduces to θ̇ = p12

and since there is a solution θ satisfying any initial condition, we can locally construct the
relatively parallel adapted frame T,N1,N2. For the global existence we connect together the
locally defined RPAFs on overlapping intervals. Since we have shown in Chapter 2 that for
any given initial vector M0, the constructed relatively parallel vector field M(t) satisfying that
M(t0) = M0 is uniquely determined, we obtain the overall smoothness of the global RPAF.

To examine the uniqueness of the parallel curvatures k1, k2 we can consider a different choice
of the initial vectors. Let M1

0 ,M
2
0 be the original vectors and M̃µ

0 := RµνMν
0, µ, ν = 1, 2 be the

new initial vectors. Then the parallel curvatures change as k̃µ = Rµνkν. Therefore the parallel
curvatures are not unique to the curve. However, when we examine the curvature κ, we have

κ2 = |Ṫ |2 = |k1N1 + k2N2|
2 = k2

1 + k2
2

and so the magnitude of the vector (k1, k2) is independent of the choice of the initial vectors and
hence the RPAF. Also, if the curve is unit-speed20 and possesses the Frenet frame, the angle
function θ can be written as

θ(s) = θ0 +

∫ s

s0

τ(u)du (4.1)

and one choice for the parallel curvatures can be

(k1, k2) = (κ cos θ, κ sin θ). (4.2)

This nicely illustrates that while the Frenet frame (if it exists) is unique, we can construct
a relatively parallel adapted frame from any initial choice of two mutually orthogonal normal
vectors and the resulting frames will be considerably different.

4.3 The rotation minimizing osculating frame
Another interesting moving frame, the rotation minimizing osculating frame, will be discussed
here to include an example of a non-adapated frame. This frame, which closely follows from
the Frenet frame, can be found for example in [7]. The idea behind it enables it to be used in
aeronautics where it specifies the so called yaw-free rigid-body motion along a curved path.

The idea behind the rotation minimizing osculating frame (RMOF) is very similar to the
one behind RPAF. We start with the Frenet frame on a curve c and instead of rotating N and B
along T so that the new frame minimizes rotation along T , we make our reference vector to be
the binormal B and we rotate T and N along the B to obtain a new frame F,G, B, where

F = cos θ T − sin θ N, G = sin θ T + cos θ N,
20If the curve is not parametrised by its arc-length, then we need to integrate τ|ċ| instead of just τ.
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for some function θ. Similarly as above, we find the condition on the angle function θ to be

θ̇ = κ|ċ|.

Then we can write the time evolution of the RMOF asF
G
B


·

=

 0 0 t1

0 0 t2

−t1 −t2 0


F
G
B

 ,
where t1 = −τ sin θ and t2 = τ cos θ. While the RPAF can be constructed for curves lacking the
Frenet frame, from the construction of the RMOF it is clear that it can be applied only to the
Frenet curves. This last frame discussed here minimizes rotation about the last missing vector,
the binormal B.

4.4 The case study
Here a short comparison of the behaviour of the three different frames will be given for the two
curves introduced in the first chapter.

4.4.1 Helix
Firstly, we will start with a helix in R3, as everything is nice and well defined there. Let us
consider the helix η (1.3) from the first chapter,

η(t) = (R cos (vt) ,R sin (vt) , uv) , (4.3)

where R, u, v ∈ R, R > 0 and v = 1
√

R2+u2
. It is easy to check that the Frenet frame T,N, B is given

by

T (t) = (−Rv sin (vt) ,Rv cos (vt) , uv) ,
N(t) = (− cos (vt) ,− sin (vt) , 0) ,
B(t) = (uv sin (vt) ,−uv cos (vt) ,Rv) ,

with the (Frenet) curvature and torsion given as

κ = Rv2 =
R

R2 + u2 ,

τ = uv2 =
u

R2 + u2 .

Using the formulas (4.2), (4.1) for parallel curvatures and the angular function θ, we find that

θ(t) = θ0 + vτt = θ0 + uv3t

k1(t) = κ cos θ(t) =
R

R2 + u2 cos θ(t)

k2(t) = κ sin θ(t) =
R

R2 + u2 sin θ(t),
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and hence the equations for the RPAF based on the Frenet frame are

N1(t) = (− cos θ cos (vt) − uv sin θ sin (vt) ,− cos θ sin (vt) + uv sin θ cos (vt) ,−Rv sin θ),
N2(t) = (− sin θ cos (vt) + uv cos θ sin (vt) ,− sin θ sin (vt) − uv cos θ cos (vt) ,Rv cos θ).

Following similar steps, we can write the RMOF angular function, curvatures and vectors F,G
as

θ(t) = θ0 + vκt = θ0 + Rv3t,

t1(t) = −τ sin θ = −uv2 sin θ,

t2(t) = τ cos θ = uv2 sin θ,
F(t) = (−Rv cos θ sin(vt) + sin θ cos(vt),Rv cos θ cos(vt) + sin θ sin(vt), uv cos θ) ,
G(t) = (−Rv sin θ sin(vt) + cos θ cos(vt),Rv sin θ cos(vt) + cos θ sin(vt), uv sin θ) .

On Fig. 4.1 we can see the comparison of Frenet frame vectors N and B with the RPAF vectors
U and V on the helix (4.3). Fig. 4.2 compares the Frenet frame T and N with the RMOF F and
G on the same helix.

4.4.2 Spivak curve
Considering again the Spivak curve σ, we find that the situation is much more complicated
in comparison with the helix. There are three points at which the Frenet frame ceases to ex-

ist – at t = 0 and t = ±

√
2
3 , and therefore we cannot construct the Frenet frame globally.

We can, however, construct it piecewise when we remove the problematic points. To address
the problematic points further, we can study the nature of them.

Firstly we will study the points t = ±

√
2
3 . The problem there is due to the curve changing

from “convex” to “concave”21 and vice versa. At these points the curvature κ changes sign and
the Frenet frame flips.

Secondly we look at the zero where the situation is slightly different. Recalling the formula
for σ (1.2), it is clear that something strange happens there. The Spivak curve σ lies in the
xy plane for t > 0 and in the xz plane for t < 0, effectively switching planes at t = 0, while
remaining smooth. This switch causes a rotation of the local Frenet frame through π

2 and is a
source of another discontinuity in the frame. This problem is usually discussed when dealing
with this curve while the former two problematic points are omitted.

Overall, the final Frenet frame, patched together from the local ones, can be found on left
part of Fig. 4.3 with the problematic points emphasized. The result, composed out of 4 different
local Frenet frames, has 3 discontinuities at the problematic points where κ = 0. Here the frame
suddenly rotates through either π or π

2 . Therefore, we cannot construct a tube with a non-circular
cross section on the curve based on this frame.

Moving on to the relatively parallel adapted frame, we can see on the right part of Fig. 4.3
a much neater result when applied to the Spivak curve. We constructed this frame from the

21As the curve σmaps R to R3, we cannot talk about convex or concave curves. However, if we restrict ourselves
to the plane in which the curve lies, we can apply our notion of convexity or concavity there.
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Figure 4.1: Comparison of the Frenet frame principal normal N (green) and binormal B (red)
on the left with the RPAF vectors U (green) and V (red) on the right, applied on the helix (4.3)
with the parameters set on R = 2, 5 and u = 0, 7.

Figure 4.2: Comparison of the Frenet frame tangent T (blue) and principal normal N (green) on
the left with the RMOF vectors F (blue) and G (green) on the right, applied on the helix (4.3)
with the parameters set on R = 2, 5 and u = 0, 7.
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Frenet frame on the interval (−
√

2
3 , 0) and then used the parallel transport to extend it on the

whole R. Note that this construction is coherent with the one stated earlier as the torsion is 0
for both t < 0 and t > 0 and therefore the vectors U and V coincide with the principal normal
N and the binormal B.

The construction of the rotation minimizing osculating frame is again problematic as it is
directly derived from the Frenet frame. The result can be found on the right part of Fig. 4.4 with
comparison with the Frenet frame. Only vectors which the two frames do not have in common
are shown, i.e. the tangent T and principal normal N from the Frenet frame and the vectors F,G
from the RMOF.
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Figure 4.3: Comparison of the Frenet frame and the RPAF on the Spivak curve σ. On the left is
the principal normal N (green) and binormal B (red) from the Frenet frame, and points at which
the Frenet frame ceases to exist are highlighted to draw attention to the rotation of the frame at
these points. On the left figure, the RPAF vectors U (green) and V (red) move smoothly along
the curve.

Figure 4.4: Comparison of the Frenet frame and the RMOF on the Spivak curve σ. On the left
is the Frenet frame, tangent vector T (blue) and principal normal N (green). The problematic
points at which the Frenet frame fails to exist are highlighted. On the right is the RMOF, with
the vector F (blue) and G (green).
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Chapter 5

Frames in higher dimensions

The first part of this chapter presents the classical results for the Frenet frame in higher dimen-
sions from [20]. In the second part, the main result of the generalisation of the relatively parallel
adapted frame to higher dimensions is introduced with the modification of the fundamental the-
orem of curves.

5.1 The Frenet frame
Definition 5.1.1. A moving n-frame is called the Frenet n-frame, or simply the Frenet frame, if
for all k, 1 ≤ k ≤ n, the k-th derivative c(k)(t) of c(t) lies in the span of the vectors e1(t), . . . , ek(t).

Theorem 5.1.1 (The existence and uniqueness of distinguished Frenet frame). Let c : I → Rn

be a curve such that for all t ∈ I, the vectors c′(t), c(2)(t), . . . , c(n−1)(t) are linearly independent.
Then there exists a unique Frenet frame with the following properties:

1. For k, the vectors 1 ≤ k ≤ n, c′(t), . . . , c(k)(t) and e1(t), . . . , ek(t) have the same orientation.

2. e1(t), . . . , en(t) have positive orientation.

This frame is called the distinguished Frenet frame.

Proof. The Gram-Schmidt orthogonalization process is used (see e.g. [22]). The assump-
tion of linear independence of c′(t), c(2)(t), . . . implies that c′(t) , 0. Therefore we may set
e1(t) := c′(t)

|c′(t)| . Now we can use the Gram-Schmidt orthogonalization procedure to find vector
fields e2(t), . . . , en−1 by defining

ẽ j(t) := −
j−1∑
k=1

(c( j)(t) · ek(t))ek(t) + c( j)(t)

and letting

e j(t) :=
ẽ j(t)
|ẽ j(t)|

.
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It is easy to see that e j(t), j < n, are well defined and satisfy the first assertion. Moreover, we
can find en(t) so that e1(t), . . . , en have positive orientation. From the definition of a moving
frame (1.0.12), we must check the differentiability of the frame. e1, . . . , en−1 are differentiable
by their definition. To justify the differentiability of en, one must realize that en is continuously
dependent on e1, . . . , en−1 which implies the differentiability of en �

5.2 The relatively parallel adapted frame
Before we can proceed with the main theorem about the existence of the relatively parallel
adapted frame, we need to prove that we can construct an adapted frame on any regular C1,1

curve.

Lemma 5.2.1. Let Γ : (L1, L2)→ Rn+1 be a regular C1,1 curve. Then on each compact subinter-
val [a, b] ⊂ (L1, L2) exists a collection of adapted moving frames on Γ.

Proof. Let Γ = (Γ1, . . . ,Γn+1). Then the tangent vector field T to Γ is defined as

T =
(
Γ̇1, . . . , Γ̇n+1

)
.

From
|T | = Γ̇2

1 + . . . Γ̇2
n+1 = 1

follows, that there exists at least one index i = 1, . . . , n + 1 so that

Γ̇2
i (s0) ≥

1
n + 1

for any fixed s0 ∈ (L1, L2). Without loss of generality we can assume that this i = n + 1, i.e.
|Γ̇n+1| ≥ 1/

√
n + 1. As Γ̇ is continuous, there must exist some ε > 0 such that |Γ̇n+1| > 0 on

(s0 − ε, s0 + ε). Now, constricting ourselves on the interval (s0 − ε, s0 + ε), we can construct n
normal vectors to the curve as

Ñ1 =
1√

Γ̇2
n+1 + Γ̇2

1

(Γ̇n+1, 0, . . . , 0,−Γ̇1)

Ñ2 =
1√

Γ̇2
n+1 + Γ̇2

2

(0, Γ̇n+1, 0, . . . , 0,−Γ̇2)

...

Ñn =
1√

Γ̇2
n+1 + Γ̇2

n

(0, . . . , 0, Γ̇n+1,−Γ̇n).

These vectors are certainly orthogonal to the tangent vector T , they have unit length and they
are linearly independent for all s ∈ (s0 − ε, s0 + ε). However, they do not need to be mutually
orthogonal, i.e. Ñi · Ñ j may, or may not be equal to δi j. To make them orthogonal, we apply the
Gram-Schmidt orthogonalization procedure to T, Ñ1, . . . , Ñn. The resulting collection of vector
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fields T,N1, . . . ,Nn will be mutually orthogonal and, if needed, can be normalized. Therefore,
we constructed an adapted moving frame T,N1, . . . ,Nn on Γ for the interval (s0 − ε, s0 + ε).

To construct the collection of frames for the whole compact subinterval [a, b], we realise
that Γ̇ is in fact uniformly continuous on the compact interval [a, b], i.e.

(∀i = 1, . . . , n + 1)(∀ε > 0)(∃δ > 0)(∀x, y ∈ [a, b])(|x − y| < δ =⇒ |Γ̇i(x) − Γ̇i(y)| < ε).

As the interest is on the case of ε = 1
√

n+1
, we get a set of δ1, . . . , δn+1 corresponding to

Γ̇1, . . . , Γ̇n+1. Denoting δ = min{δ1, . . . , δn+1}, we can write

(∃δ > 0) (∀i = 1, . . . , n + 1; x, y ∈ [a, b])
(
|x − y| < δ =⇒ |Γ̇i(x) − Γ̇i(y)| <

1
√

n + 1

)
.

Starting at s = a, we know that there exists at least one component of Γ so that Γ̇2
i (a) > 1

n+1
and that ∀s ∈ [a, 1

2δ], |Γ̇i(s)| > 0. Therefore we can construct the adapted moving frame as
described above on [a, a + 1

2δ]. We can continue this process for [a + 1
2δ, a + δ], [a + δ, a +

3
2δ], . . . , [a + n

2δ, b], where n =
⌊
2b−a

δ

⌋
. Thus we obtained a collection of adapted moving frames

on [a, b] as requested. �

Theorem 5.2.2. Let c : (a, b) ⊂ R→ Rn+1 be a regular C1,1 curve. Then there exists an adapted
moving frame T,N1, . . . ,Nn minimazing rotation, i.e.

T
N1
...

Nn


·

=


0 k1 . . . kn

−k1 0 . . . 0
...

...
. . .

...
−kn 0 . . . 0




T
N1
...

Nn


Proof. We already know from 1.0.2 that every regular curve can be parametrized by its arc-
length, ensuring |ċ| ≡ 1. Therefore, without loss of generality, let c be a unit-speed. Then the
tangent vector field T := ċ is well defined along the whole curve. From Lemma 5.2.1 follows
that after dividing the interval (a, b) into any compact subintervals, there exists a finite collection
of some adapted moving frames on each subinterval. Using this collection of adapted moving
frames we can redivide the interval onto new subinterval so that at each interval we get only
one adapted frame from the collection. Initially we will construct the RPAF on one of these
subinterval. Then we will justify that the locally constructed RPAFs can be connected in such a
way that the overall frame will be smooth.

Firstly, let us consider one of those subintervals, denoting it [α, β], and the adapted moving
frame on it, denoting the vectors T,M1, . . . ,Mn and the whole frame as U. From theorem 1.0.3
follows that there exists a skew-symmetric matrixA ∈ Mn+1 (Lloc ((a, b) ;R)) such that

U̇ = AU

Also, thanks to the skew-symmetry ofA, we can express it as

A =

(
0 ~aT

−~a Ã

)
,
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where ~a ∈ Mn,1 (Lloc ((a, b) ;R)) and Ã is skew-symmetric matrix from Mn (Lloc ((a, b) ;R)).
The construction of the relatively parallel adapted frame consisting of vectors T,N1, . . . ,Nn

and denoted as V will be analogous to the one adopted in the three dimensional case. The desire
is to rotate the normal vectors Mi in such way that the rotated vectors will be relatively parallel
along the curve on the subinterval, while preserving the tangent vector T . This can be provided
by taking a special case of rotation matrix in Rn+1 such that

R =

(
1 0
0 R̃

)
,

where R̃ ∈ Mn (Lloc ((a, b) ;R)). Now let us define V as

V = RU. (5.1)

This means that we need to seek conditions on R for V to be a RPAF. On one hand, as V
should be minimizing rotation along the tangent, there exists a skew-symmetric matrix B ∈

Mn+1 (Lloc ((a, b) ;R)), B :=
 0 ~kT

−~k 0

 such that

V̇ = BV.

On the other hand, differentiating (5.1) and substituting for U̇, we get

V̇ = ṘU + RU̇ = ṘU + RAU.

Comparing these two expressions, we arrive at(
Ṙ + RA − BR

)
U = 0. (5.2)

The matrix U is composed out of orthonormal vectors, meaning that it is orthogonal and there
exists an inverse. Therefore after multiplying the equation (5.2) by U−1 and writing the matrices
out, we get (

0 0
0 ˙̃R

)
+

(
0 ~aT

−R̃~a R̃Ã

)
−

 0 ~kT R̃

−~k 0

 =

 0 ~aT − ~kT R̃

~k − R̃~a ˙̃R + R̃Ã

 =

(
0 0
0 0

)
.

Breaking this matrix equation into its individual components, we get three equations:

˙̃R + R̃Ã = 0,
~kT R̃ = ~aT ,

R̃~a = ~k,

with the last two dependent due to R being a rotation, expressing the same condition just in a
different form. Overall, we end up with a first order differential equation for an unknown matrix
R̃ and an equation specifying the vector ~k:

˙̃R + R̃Ã = 0

R̃~a = ~k.
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From Chapter 3 (resp. [35]) follows that the differential equation has a solution. We will
further specify the initial condition as follows: R̃(α) = I, where I denotes the identity matrix
and α is the left edge of the interval. With this initial condition the solution is unique and
therefore the vector ~k, defined as ~k := R̃~a is also uniquely determined. Overall, we constructed
a relatively parallel adapted frame on a compact subinterval of (a, b).

Secondly, we need to discuss the construction of the global RPAF. Following the method
outlined above, we can construct a collection of relatively parallel adapted frames. To link them
together we will use the freedom of choosing the initial condition for the differential equation.

Let us denote the end points of the subintervals for which we can construct the auxiliary
adapted frame as ti, i ∈ Z and the frame corresponding to [ti, ti+1] as Ui. Then we can construct
the first relatively parallel adapted frame on the interval [t−1, t0] as described above, with the
initial condition R̃(t0) = I. We will, however, change the initial condition for the rest of the
intervals as follows:

• R̃(ti)Ui(ti) = Ui−1(ti) for i ≥ 1

• R̃(ti+1)Ui(ti+1) = Ui+1(ti+1) for i < 0.

This choice will ensure that the resulted RPAF will be continuous and its smoothness is a result
of uniqueness of the parallel transport 2.0.5. �

Next a modification of the fundamental theorem for curves will be presented. We already
know from the previous chapter that the parallel curvatures are not unique for the curve. How-
ever, in the next two theorems some correspondence is revealed.

Definition 5.2.1. We say that two curves are congruent if there exist an isometry mapping one
curve to another.

Theorem 5.2.3. Let α, β : I → Rn be arbitrary curves with frame field E1, . . . , En on α and
frame field F1, . . . , Fn on β. If

• α̇ · Ei = β̇ · Fπ(i), ∀i = 1, . . . , n

• Ėi · E j = Ḟπ(i) · Fπ( j)

for some permutation22 π. Then α and β are congruent.

Proof. Without loss of generality, we can assume that 0 ∈ I. Let G be an isometry such that

G(Ei(0)) = Fπ(i)(0).

Then for all t ∈ I we can denote G(Ei(t)) = Ēi(t).
As G preserves the dot product, Ē1, . . . , Ēn is a frame field on G(α) = ᾱ. Since G preserves

velocities and derivatives of vector fields as well, we have

ᾱ(0) = β(0), ˙̄α · Ēi = β̇ · Fπ(i),

˙̄Ei · Ē j = Ḟπ(i) · Fπ( j), Ēi(0) = Fπ(i)(0).
(5.3)

22As the RPAF construction does not specify the order in which the normals can be rearranged, we need to
take it into account. Therefore, by permutation π, we mean any possible order of numbers 1, . . . , n such that each
number appears only once.
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From (5.3) follows that
˙̄Ei =

∑
j

ai jĒ j

and
Ḟπ(i) =

∑
j

ai jF̄π( j)

with the same coefficient functions ai j. We already know from Chapter 1 that ai j + a ji = 023.
Defining a scalar function f =

∑
i Ēi · Fπ(i), it follows from the definition of G that f (0) = n.

Moreover, f ≤ n since Ēi · Fπ(i) ≤ 1 thanks to the Schwarz inequality. Differentiating f we
obtain

ḟ =
∑

i

˙̄Ei · Fπ(i) + Ḟπ(i) · Ēi =
∑

i, j

(ai j + a ji)Ē j · Fπ(i) = 0

as a result of the skew-symmetry of (ai j). Thus f ≡ n and from this follows that

Ēi(t) = Fπ(i)(t) ∀t ∈ I

and since
˙̄α =

∑
i

˙̄α · ĒiĒi and β̇ =
∑

i

β̇ · Fπ(i)Fπ(i),

ᾱ and β are parallel, as they can be expressed using vectors which are shown to be are identical
(5.3). Therefore, they differ only by a translation in the space. Using that ᾱ(0) = β(0), we will
show that ᾱ = β. From ᾱ, β being parallel follows that

dᾱi

dt
(t) =

dβi

dt
(t) ∀i = 1, . . . , n, ∀t ∈ I,

where ᾱ = (ᾱ1, . . . , ᾱn) and β = (β1, . . . , βn). From our knowledge of elementary calculus we
deduce that βi = ᾱi + pi which means β = α + ~p. However, as β(0) = ᾱ(0), ~p = 0. Overall,

G(α) = ᾱ = β,

as was requested. �

Theorem 5.2.4. Let α, β : I → Rn be congruent curves, E1, . . . , En frame field on αwith parallel
curvatures k1, . . . , kn−1. Then there exist a frame field on β with the same parallel curvatures
k1, . . . , kn−1.

Proof. As α, β are congruent, there exists an isometry G such that G(α) = β. Then since G
preserves the scalar product, G(Ei) = Fi gives us a frame field F1, . . . , Fn on β. From the proof
of the previous theorem we know that the coefficient functions ai j are the same for Ei as for Fi.
Therefore, we constructed a frame field with the required curvatures.

�

23Differentiate Ēi · Ē j = δi j.
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Chapter 6

Waveguides

In this chapter the notion of a (quantum) waveguide is introduced throughout an arbitrary de-
formation of a straight tube, following the approach of [4] or [21] and generalising it for C1,1

curves in n-dimensions. Only the relatively parallel adapted frame is used within this chapter as
it is the most general frame we can construct so far. Interested readers can find more information
about the motivation for (quantum) waveguides in [5].

We begin with a definition of a straight tube.

Definition 6.0.2. Let ω ⊂ Rn be a bounded open connected set. Then a straight tube Ω0 is
defined as Ω0 = R × ω. We call ω a cross section.

Remark. As ω is bounded, there exists a real number r, r < ∞, such that r = supt∈ω |t|,
cf. Fig. 6.1.

Now we can start the deformation process to achieve an arbitrary tube. Firstly we can bend
the straight tube around some curve to produce a curved tube without focusing on what the
cross section is doing. Thus let us consider any given regular curve Γ : R→ Rn+1 parametrized
by its arc-length. It is already known from the previous chapter that for such curve there always
exists a relatively parallel adapted frame (T,N1, . . . ,Nn). Furthermore, the cross section ω can
be manipulated along the curve. To achieve this, we will need the following definitions.

Then we can define for a rotation-minimizing adapted moving frame T,N1, . . . ,Nn a general
adapted moving frame TR,NR1 , . . . ,N

R
n along Γ as rotation of the original normal N1, . . . ,Nn by

the rotation matrix R, i.e., 
TR

NR1
...

NRn

 =

(
1 0
0 R

) 
T
N1
...

Nn

 .
Note that the tangent vector remains unturned. Now we can properly define a curved tube.

Definition 6.0.3. A curved tube Ω of the cross section ω about Γ is defined as the image of Ω0

for some mapping L such that

L : Ω0 → R
n+1 : (s, t) 7→ Γ(s) +

n∑
i=1

NRi (s)ti,

where t := (t1, . . . , tn). In other words, Ω := L(Ω0).
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Figure 6.1: An example of a cross-section ω.

However, the aim is to identify Ω with the Riemannian manifold (Ω0, gi j)24. To ensure that,
further restrictions are needed to impose on L. In the theory of quantum waveguides it is usual
to assume that Ω is non-self-intersecting and that therefore L is injective. This assumption
of injectivity yields us the necessary (but not always sufficient) condition of non-vanishing
determinant of the metric tensor

gi j = ∂iL · ∂ jL,

where ∂i is the partial derivative with respect to the i-th variable of (s, t1, . . . , tn). Rewriting L
using the definition of NRi and the Einstein summation convention but now summing only over
subscripts, we get

L(s, t) = Γ(s) + tiRi j(s)N j(s).

Using the definition of the relatively parallel adapted frame, we arrive at the following expres-
sion for the metric tensor gi j.

(gi j) =


h2 + h2

1 + · · · + h2
n h1 . . . hn

h1 1
...

. . .

hn 1

 , (6.1)

where

h =
(
1 − tiRi jk j

)2
,

h1 = R1kṘmktm,

...

hn = RnkṘmktm.

It is easy to check that

24The metric tensor gi j is induced by L, i.e. gi j := ∂iL · ∂ jL, where · is the inner product in Rn+1.
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det gi j = h2

and hence the requirement on the determinant being everywhere non-zero requires that the
function h is positive. This can be satisfied only if the parallel curvature functions k1, . . . , kn are
bounded. Overall we are making the assumption that

1. κ =

√
k2

1 + · · · + k2
n ∈ L∞(R) and a‖κ‖∞ < 1;

2. Ω does not overlap itself.

This wayL is a global diffeomorphism and we can identify the curved tube Ω with the Rieman-
nian manifold (Ω0, gi j).

If the determinant of g is positive, it is possible to find its inverse g−1. The answer to the
question how it would look like is answered in the following lemma.

Lemma 6.0.5. Let g be a metric tensor defined as above (6.1). Then its inverse g−1 is given as

(gi j)−1 =
1
h2



1 −h1 −h2 −h3 . . . −hn

−h1 h2 + h2
1 h1h2 h1h3 . . . h1hn

−h2 h2h1 h2 + h2
2 h2h3 . . . h2hn

−h3 h3h1 h3h2 h2 + h2
3 . . . h3hn

...
. . .

...
−hn hnh1 hnh2 hnh3 . . . h2 + h2

n


.

Proof. We will prove it via mathematical induction. Checking it for n = 1:

(gi j)(gi j)−1 =
1
h2

(
h2 + h2

1 h1

h1 1

) (
1 −h1

−h1 h2 + h2
1

)
=

(
1 0
0 1

)
.

Now let us consider an n-dimensional metric tensor g, denoting it as gn to emphasize its size.
We can write gn+1 as

(gn+1
i j ) =

(
(gn) 0

0 0

)
+


h2

n+1 0 . . . 0 hn+1

0 . . . 0
...

. . .
...

0 . . . 0
hn+1 0 . . . 0 1


= Gn +

1
h2 Hn+1.

Similarly, we can divide the supposed inverse metric as

(gn+1
i j )−1 =

(
(gn)−1 0

0 0

)
+

1
h2


0 . . . 0 −hn+1

0 . . . 0 h1hn+1
...

...
0 . . . 0 hnhn+1

−hn+1 hn+1h1 . . . hn+1hn h2 + h2
n+1


= G−1

n +
1
h2 H−1

n+1.
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Now let us check that (gn+1
i j )(gn+1

i j )−1 = I.

(gn+1)(gn+1)−1 =

(
Gn +

1
h2 Hn+1

) (
G−1

n +
1
h2 H−1

n+1

)
= GnG−1

n + Hn+1G−1
n +

1
h2 GnH−1

n+1 +
1
h2 Hn+1H−1

n+1

=

(
I 0
0 0

)
+

1
h2


h2

n+1 −h1h2
n+1 . . . −hnh2

n+1 0
0 0 0
...

...
hn+1 −h1hn+1 . . . −hnhn+1 0


1
h2


0 . . . 0 −h2hn+1

0 0
...

...
0 . . . 0

 +
1
h2


−h2

n+1 h1h2
n+1 . . . hnh2

n+1 h2hn+1

0 0 0
...

...
−hn+1 h1hn+1 . . . hnhn+1 h2


= I.

�

Let us end this chapter with an example how the waveguide would look in low-dimensions.

Example. In two dimensional case when n = 1, the cross section ω is just some open bounded
interval, the curve Γ has just one RPAF curvature k1 ≡ k, and the rotation matrix R = (1). Then

h(s, t) = 1 − k(s)t.

In tree dimensions the situation starts to be much more interesting. Let ω ⊂ R2 be a cross sec-
tion, Γ be a curve possessing relatively parallel adapted frame T,N1,N2 with RPAF curvatures
k1, k2. Making the ansatz

R =

(
cos θ − sin θ
sin θ cos θ,

)
for some θ : R→ R, θ ∈ C0,1(R), we have

h(s, t1, t2) = 1 − k1(s)[t1 cos θ + t2 sin θ] − k2[−t1 sin θ + t2 cos θ].

You can see examples of waveguides on Fig. 6.2.

We will finish this thesis by assigning a waveguide to the Spivak curve σ (cf. Fig. 6.3) using
the relatively parallel adapted frame, which will finally ensure a smooth result even for curves
lacking the Frenet frame.
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Figure 6.2: The comparison of waveguides constructed from the Frenet frame (left) and the
RPAF (right) on the helix (4.3) using an ellipse as the cross section. The major axis corresponds
to the binormal B or the normal vector V respectively. At the bottom right both frames coincides.

Figure 6.3: A waveguide of ellipse cross section on the Spivak curve σ constructed using the
relatively parallel adapted frame.
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Conclusion

This thesis was focused on the relatively parallel adapted frame and the moving frames in gen-
eral. In the first three chapters, the known findings about curves, differential geometry and first
order differential equations were recapitulated. Then the three different moving frames were
discussed and compared. The theorem about the existence of the relatively parallel adapted
frame, generalised to higher dimensions with less restrictions on the curve, was presented and
proven. The relatively parallel adapted frame was then used in the construction of wavequides
in higher dimensions even for curves not possessing the Frenet frame. Possible continuations of
the present work include the strengthening of the modification of the fundamental theorem of
curves and further applications. These may include applications of the frame in higher dimen-
sional computer modelling and simulations, in the theory of quantum waveguides or for curves
in Minkowski space.
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