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Introduction

The aim of this thesis is to describe the fundamental notions and necessary mathematical struc-
tures used to build the quantum theory with focus on operators in finite dimension. It shall be
shown that these are represented by the algebra M, (C) of complex matrices with standard matrix
multiplication.

The operation of hermitian adjoining in M, (C) will be defined and it will be shown that it
satisfies the definition of involution given in the first chapter. We shall define Hilbert-Schmidt
inner product in M,,(C) as an analogue of standard inner product in C™ and show that the norm
defined by this inner product is not compatible with the definition of a C*-algebra and that it
is necessary to equip M, (C) with operator norm in order to satisfy all the conditions of this
definition.

After doing so, we proceed to a closer inspection of M, (C), examining commutativity on its
irreducible subsets. We prove that a matrix commuting with all elements of an irreducible set must
be a scalar multiple of identity matrix. Furthermore, we discover that a set of matrices from M,,(C)
is simultaneously diagonalizable if and only if it is a set of mutually commuting diagonalizable
matrices. We conclude the second chapter with proving that all normal matrices are diagonalizable
and that all automorphisms of M,,(C) are inner.

In the third chapter, a grading of an arbitrary *-algebra is defined and the relationship between
maximal groups of commuting *-automorphisms (MAD-groups) and gradings is examined. In the
case of M, (C), we show that there is a correspondence between unitary Ad-groups and MAD-
groups. A classification theorem decomposing unitary Ad-groups into tensor products of Pauli’s
groups #y and diagonal unitary groups %p (k) is proven and respective gradings of M,,(C) are
studied in simple cases.

The thesis is concluded with a brief overview of quantum computing and an illustration of
quantum complementarity using elements of Pauli’s group.



Notation

n the set {1,2,3,...,n}
(o,0) inner product
e multiplicative identity in algebra A
0 zero vector
o* involution
o(A) spectrum of a linear operator A
ZA matrix of linear operator A in the basis %4
o hermitian adjoining
I identity matrix
(o, 0) Hilbert-Schmidt inner product
lle||s Euclidean norm in C"
| ®|op operator norm
Cr4 vector space of complex p X ¢ matrices
0] zero matrix
Eig(A, \) || eigenspace of a linear operator A corresponding to eigenvalue A
W CC V || W is asubspace of the vector space V
Ad g inner automorphism of M,,(C) generated by an invertible matrix A
S direct sum
U(n) the group of n X n unitary matrices
Py, k x k Pauli’s group
® tensor product
Gaq the set of unitary matrices generating MAD-group GG
Ad(9) the set of *-automorphisms generated by unitary Ad-group ¢
Up(n) the group of diagonal unitary n x n matrices
{o,0} (@n) I Wy, -commutant
{o, 0} commutant
* non-zero element in a matrix




Chapter 1

Algebras of observables in quantum
mechanics

1.1 Fundamental notions of quantum theory

All physical systems are described in terms of states and observables. In classical mechanics, both
are represented by functions on a given system’s phase space which, in the case of Hamiltonian
mechanics, is a symplectic manifold. The fundamental role in description of quantum systems is
played by Hilbert spaces and their one-dimensional subspaces [1]:

Definition 1 (Hilbert space). Hilbert space is a vector space with inner product (e, e) which is
complete with respect to the metric generated by its inner product.

Definition 2 (Ray). Let H be a complex Hilbert space. A ray in H is any one-dimensional sub-
space in H.

To avoid pathological properties in mathematical description, it is assumed that these Hilbert
spaces are complex and contain a countable dense subset, and therefore are by definition separable
[1]. Thus the first fundamental axiom of quantum mechanics is postulated:

Axiom 1. To each quantum system S belongs a separable complex Hilbert space H which shall
be called the state space belonging to S.

A proper definition of state in quantum mechanics is more complicated than in Hamiltonian me-
chanics because of the probabilistic character of microscopic processes, which are greatly affected
by measurement, and must therefore be executed in large quantities, resulting in the impossibility
to distinguish which states were originally manipulated in the experiment. Assuming that we can
perform just one experiment and determine the system’s state, we can proclaim it a pure state of
the examined system and postulate the second fundamental axiom of quantum mechanics [1]:

Axiom 2. Each pure state of a given system S is represented by some ray ® in its state space H
where the probability of transition between two states ® and W shall be denoted P(®, W) and is
given by:

(0, 9)]?

P($,0) =
() (lellll])

(1.1)

where ¢ € @ and Y € V.



Since each ray ¥ in H is generated by a unit vector ¢ : ¥ = {a®) : a € C, ||¢|| = 1}, it is easy
to see that P(®, ¥) does not depend on the choice of ¢ and v, so both vectors may be chosen with
unit norm. This fact simplifies the equation (1.1) to P(p, %) = |(¢,)[%. In addition, it implies
that we can represent pure states by unit vectors generating their corresponding rays.

To complete the mathematical description of a quantum system, a definition of observables is
needed. Unlike in classical physics, observables in quantum mechanics are described by different
mathematical objects than states, namely linear operators on H with some additional properties
[1]. It is possible to show that for each linear operator T on H such that its domain D is dense
in H and for each y € H there exists at most one y* € H such that (y, Tz) = (y*, z) for each
x € Dy. If such y* exists, the Hermitian adjoint T* of T can be defined in the following way:

D, ={yeH: 3y e H)((y,Tz) = (y*,x))(Vz € D)} T*y =y* forall ye Dy,
For the purposes of quantum mechanics, the following definition is useful:

Definition 3. If D . is dense in H and T* =T, then T is called self-adjoint.

In order to be able to predict outcomes of measurements, it is needed to somehow obtain
numbers from operators which map a subset of a Hilbert space H into H. For that purpose we
define the spectrum of an operator [1]:

Definition 4. The spectrum J(T ) of a linear operator T on a Hilbert space H is the set of A € C
such that (T' — \I) is not a bijection.

At this point, we can postulate the final fundamental axiom of quantum mechanics [1]:

Axiom 3. Each observable A of a given system S is represented by a self-adjoint linear operator
A on its state space H, and possible outcomes of measurements of any given observable A are
elements of the spectrum o (A) of its corresponding operator A.

It follows from the theory of linear operators on Hilbert spaces, that since Ais self-adjoint, all
possible outcomes of measurements are real numbers, also it is clear from Definition 3 that the
domain of any given observable must be dense in the state space H.

1.2 Normed algebras

The operations performed with linear operators, which are acting as observables in quantum me-
chanics, can be generalized into interesting algebraic structures, several of which will be intro-
duced in this section. However, to start, it is needed to clarify what we mean by operation. Be-
ginning with an arbitrary set M, we define binary operation in M as amap ¢ : M x M — M.
We say that ¢ is associative if ¢(p(a,b)c) = ¢(a, ¢(b,c)) for all a,b,c € M and we say that
¢ is commutative if ¢(a,b) = ¢(b,a) for all a,b € M. Let us consider a set R equipped with
two binary operations ¢, ¢, which shall be called addition and multiplication and let us denote
da(a,b) = a + b, ¢p(a,b) = ab. The triplet (R, ¢4, ¢p) shall be called a ring if the following
conditions are satisfied [1]:

1. (R, ¢,) is a commutative group

2. a(b+c¢) =ab+acforall a,b,c € R



3. (a+b)c=ac+bcforalla,b,c € R

If there exists e € R such that ae = ea = a for all a € R, then e shall be called a multiplicative
identity.

Now, let A be a complex vector space. If we introduce a new bilinear binary operation in A,
called multiplication, then A becomes a ring which shall be called a complex linear algebra. We
say that A is associative resp. commutative if its multiplication is associative resp. commutative.
From this point forward, the term complex linear algebra will be abbreviated to algebra.

To generalize the process of inverting operators, we must realize that in a non-specific algebra,
the existence of a multiplicative identity is not guaranteed, therefore it must be demanded in the
definition of an inverse element.

Definition 5. Let A an algebra with multiplicative identity and let a € A. Then a is called

invertible if there exists a~! € A, called the inverse element of a, such that ata=aal=ec

By generalizing the operation of hermitian adjoining as a map on the state space to algebras,
the following definition is obtained [1], [2]:

Definition 6. Let A be an algebra. Involution in A is a map * : A — A satisfying:
1. (a+b)=¢a+b forall¢ € Candforalla,bec A
2. (a*)*=a foralla € A
3. (ab)* =b*a* foralla,be A

The element a* will be called the adjoint element of a and the pair (A, x) will be called an
involutive algebra or *-algebra.

Note that (a*)* = a implies that « is its own inverse and therefore it must be a bijection. Having
defined the adjoint element, we are able to proceed analogously as with operators, resulting in the
following definition [1]:

Definition 7. Let A be a *-algebra and let a € A. Then a is called:
1. normal iff aa* = a*a
2. hermitian iff a* =a
2

3. aprojectoriff a* =a=a”".

4. Furthermore if A is an algebra with multiplicative identity and o* = a™", then a is called
unitary.

As in the case of studying the relations between two given vector spaces, it is needed to define a
map which preserves all algebraic operations (which in the case of *-algebras includes involution)

[1].
Definition 8. Ler A and B be algebras. A map v : A — B is called a morphism iff

1. Y(€a+b) =&Y(a) +1(b) forall§ € Candforall a,be A
2. Y(ab) = Y(a)y(b) foralla,b e A



If v is a bijection, then it is called an isomorphism, furthermore if A = B, then 1 is called an
automorphism.

Remark 1. Let A, B be algebras with multiplicative identity and let 1) : A — B be a morphism.
Since a = ae = ea for all a € V, we obtain that 1)(a) = ¥(e)(e) = Y(e)(a), thus P(e) = e.
Similarly, ¢(a) = ¥ (a+60) = ¥(a)+1(0) for all a € V, proving that (0) = 0, where 0 denotes

the zero vector.

Definition 9. Let A and B be *-algebras. A morphism v : A — B is called a *-morphism iff
P(a*) = (Y(a))* forall a € A. If 1 is a bijection, then it is called a *-isomorphism, furthermore
if A = B, then v is called a *-automorphism.

In a normed vector space, two well known relations, namely |la + b|| < ||a|| + ||b]|, between
the norm of a sum of two vectors and the norms of its summands, and ||#|| = O for the norm of the
zero vector, are postulated. Similar relations are given in the definition of a normed algebra with
regard to multiplication [1]:

Definition 10. A normed algebra is an algebra A satisfying:
1. A is a normed vector space with the norm ||e||
2. ||ab|| < ||all|jb]|  foralla,be A
3. if A contains a multiplicative identity e, then ||e|| = 1.
If A is complete with respect to its norm, then it is called a Banach algebra.

To finish, the relation between the norm and involution must be discussed, defining another two
important types of algebras [1].

Definition 11. A normed involutive algebra A is called a normed *-algebra iff ||a*|| = ||a|| for
all a € A. A normed *-algebra complete with respect to its norm is called a Banach *-algebra.

Definition 12. A Banach *-algebra A shall be called a C*-algebra iff ||a*al| = |al||? for all
ac A.

Note that [|a||* = ||a*al| implies [|a*|| = [|a]. Since [a|* = |la*a| < [la*[|[a] ie. [lal| <
|la*||, analogously ||a*|| < ||a|| and therefore ||a*|| = ||al|-

Remark 2. In quantum mechanics with a separable Hilbert space H, the mathematical framework
can be generalized in the form of C*-algebra postulate [3]:
A quantum system is characterized by a triplet (S*, A, (e, ®)) where

1. A, the set of its observables, is the collection of all the hermitian elements h of a C*-algebra
A;

2. 5%, the set of its states, is the collection of all real-valued, positive linear functionals ¢ on
A, normalized by the condition (¢, h) = 1;

3. (e, @) is the prediction rule, a map (e o) : S* x A — R which attributes to every pair
(¢, h), the value (¢, h) = ¢(h), interpreted as the expectation of the observable h when the
system is in a state ¢.



1.3 Quantum mechanics in finite dimension

Quantum systems with finite dimensional state space (such as when describing the spin of a parti-
cle) can be described by assigning vector space C™ of ordered n-tuples of complex numbers

I
T2

Tn

with standard inner product (z,y) = > " | Tiy;.

Observable A, which is a hermitian linear operator on C" is represented by its matrix # A in
a chosen basis # = (ej)p_, of C", defined as A;; = e] (Ae]) where ef denotes vectors of
the dual basis of Z. Using this definition, we can see that composing two observables A, B is
equivalent to matrix multiplication [4]:

n

?(AB);; = e} (ABe;) = €] (A(Be;)) Zek (Bej)er)) = e (A (?B)jer)) =
k=1
= Z %Bkj el (Aey) = Z ﬂBkj e; Zel# Aey)er) Z ﬂBk] Z Ager) =
k=1 = =1
_ Z K@Alkt%)Bkje;#(el) _ Z%Alk%Bkj
k=1 k=1

Furthermore, by Riesz’s lemma [1], [4] for any continuous linear functional ¢ on a Hilbert space
H there exists a vector x € H such that ¢ can be written uniquely in the form ¢(y) = (z,y) for
all y € H. Assuming orthonormality of 4, this statement allows to write the matrix A4 in the
form

(e1,Aer) (e, Aes) ... (e1,Aep)
'@A - (62,1461) (62,A62) (eg,Aen)
(en, Ae1) (en,Aes) ... (en,Aen)

Lastly, matrix multiplication is associative [4], i.e. for any three n x n matrices A, B, C"

n

(A(BC))i; = ZAM (BO) Z ApBrCij =Y (AB)yCy; = (AB)C,
= k=1 =1

Thus the vector space containing all observables of a given finite dimensional system can be rep-
resented by the vector space C™" of n x n matrices which together with the operations of matrix
multiplication forms an associative algebra, which shall be denoted M,,(C). Properties of this
algebra are studied in the following chapters.



Chapter 2

Associative algebras ), (C) of complex
n X n matrices

2.1 Involution, inner product and norms

In this section we define involution on M, (C) in such a way so that it forms a C*-algebra and
provide a definition of an inner product on M, (C). We begin by observing that the operation of
Hermitian adjoining of a given matrix A — AH, defined by (A);; = Aj; satisfies the definition
of an involution:

L. (€A+ B)[f = (€A + B)ji = €4j; + Bji = €(AM)i; + (B")y5

2. ((AT)H)y; = (AH);; = Ay = Ay

3. (AB)f = (AB)ji = Yy AjkBri = Yjmy Ak Brj = 2 pmy (B je (AT )i = (BT AT

for all 4,7 € 7 and for all ¢ € C, therefore the pair (M,,(C), o) constitutes a *-algebra where
multiplicative identity is the identity matrix I (the zero vector is the zero matrix O, O;; = 0 for
all i,j € n). Note that the Hermitian adjoining in general maps the vector space CP? of p x ¢
matrices bijectively onto C?P. In the following, the term involution will refer to the operation of
Hermitian adjoining.

Note that if A € M, (C) is invertible, then inversion commutes with involution:

AAT =AM A=T= A HIAT = AT A YT =T =1 = (A™H = (A")7,

justifying the use of abbreviated notation (A=) = (A7)=1 = A~-H,
Using involution, it is possible to define an analogue of the standard inner product on C".

Define the trace of a matrix A as the sum of its diagonal elements, i.e. Tr(A) = """ | A;; for all
A e M,(C).

Definition 13 (Hilbert-Schmidt inner product). Let A, B € M, (C). The Hilbert-Schmidt inner
product of A and B is defined as (A, B) = Tr(A" B).

It is easy to see that (4, B) = > I, A;jBij, hence (e, ) is linear in the second argument

and that (A, B) = (B, A), moreover (A, A) = ZZ]’:1|AU|2 >0and (A,4) =0 A=0

and therefore it is a strictly positive sesquilinear form, inducing the norm ||A|| = /(A4, A) for all

10



A € M, (C). Furthermore, M,,(C) is complete with respect to this norm, but ||| = \/n and so
M,,(C) paired with ||e|| cannot constitute a normed algebra. To satisfy all three conditions of a
normed algebra (Definition 10), another norm is needed [1]:

Definition 14 (Operator norm). Let A € M,,(C) and let x € C™. Operator norm of A is defined:
[Allop = sup{l|Az[e : [|lz]le = 1},
where ||z||¢ denotes the norm induced by the standard inner product in C".

Since all norms on finite dimensional vector spaces are equivalent [1], M, (C) is also complete
with respect to the operator norm. Its properties are summarized in the following corollary [1],

[5]:
Corollary 1. Let A, B € M,,(C). Then:
1. [ABllop < [[Allop[|Bllop
2. [ A% lop = N1 Allop
3. |AT Allop = [IA]13,
4. | llop =1

Proof. First, let a,b € C" = C™! with standard inner product. Then (a,b) = a’b and so

(Aa,b) = (Aa)"b = (e AT)b = o (AD) = (a, ATD), for AT we obtain (a, Ab) = (A a,b).
ABz ABz n

I Letz # 0 then | ABz|e = 1212 Ba|s < ||B:L‘Hgsup{””§T”|é|f . BreC \{9}}.

Now substituting z = B, it follows that 12le — |A(75=)|| and therefore
lI=lle =

|ABz||e
: B A0} 2 = ||A]o
Sup{ HB-THE :L"G(C \{ } || ” /g

This fact implies that || ABx||¢ < ||A|op||Bx||¢, and the same is true for suprema, thus

proving the first part of the corollary.

2. The Cauchy-Schwarz inequality |(a,b)| < ||a||||b|| implies sup{|(a,b)| : ||b]] = 1} = ||a]|.
It follows that

1A[IZ, = sup{(Az, Az) : [|lz]| = 1} = sup{(A" Az, z) : ||z = 1} <

< sup{[|A" Az]| : ||| = 1}

and therefore
1Al < AT Allop < AT ||opl| Allop- (2.1)

By dividing both sides by || A||,,, we obtain || Al < [|AH ||, and by doing the same for
A the inequality || A¥ ||,, < ||A||op is obtained, giving the desired result.

3. Applying the previous result to inequality (2.1)
”Ang < ”AHAHOP < HAHHOPHAHOP = HAng

proves the assertion.

11



4. By definition: ||I||op = sup{||Iz|¢ : ||z||e = 1} =sup{|jz|¢: ||z]|le =1} = 1.
O

Completeness of M,,(C) with respect to the operator norm and points 1, 3, and 4 of Corollary
1 imply that M,,(C) paired with operator norm forms a C*-algebra.

2.2 Irreducibility, diagonalizability and commutativity

In this section, the relationship between multiplicative commutativity and other properties of com-
muting matrices is investigated, beginning with commutation on irreducible sets [6].

Definition 15. Let U be an arbitrary subset of M, (C). The set U is said to be reducible if fixed
positive integers p, q and a fixed invertible matrix S exist such that for each A € U,

—1 (A A
STTAS = < O Ay

where A1 € CPP | A15 € CPY, Ay € C2 and O is zero q X p matrix. Otherwise U is said to be
irreducible.

Lemma 1 (Schur’s lemma). Let U be an irreducible subset of M,,(C) and let M & M, (C) be
a fixed matrix such that for each A € U there exists A € M, (C) satisfying AM = MA. Then
either M = O or M is invertible. Furthermore if A = A (so that M commutes with each element
of U), then there exists A € C such that M = A\I.

Proof. Suppose that rank(M) = r < n, and write

I, O
MZP(O O)Q

where P, () are invertible an I, is r x r identity matrix. Then for each A € U

AM = MA = (P71AP) <IO g) = <é 8) (Q7TAQ) (2.2)
Put
Ptar = (G 42)
@raa= (G 3)

where Aq1, A1y are 7 x r matrices, Aja, Ao are r X (n — r) matrices, A1, Ay are (n—r)xr
matrices and Agg, Agg are (n — r) X (n — r) matrices. Then (2.2) implies that

An O Ay Agg
= . 2.3
(Azl O> ( O 0] 2.3)
Thus A1 = O, which contradicts irreducibility of Z/. Hence r must be 0 or n, and so either
M = O or M is invertible. This proves the first part of the lemma.

12



Now suppose AM = M A for each A € U, and choose A as any eigenvalue of M (which must
exist due to the fundamental theorem of algebra) and let x be its corresponding eigenvector. Then

(M—XN)z=Mz—Xzx=X x— A x=0=0z
hence 0 € o(M — AI) i.e. M — A is singular. In addition
AM —MN) =AM —AN)=MA—-MN)A=(M—-ND)A=M - AN =0=M =\
Thus proving the second part of the lemma. O
An important example of an irreducible set is given in the following corollary:

Corollary 2. M, (C) is an irreducible set.

Proof. Let S € M, (C) be an arbitrary invertible matrix, p,q € n arbitrary numbers and R €

C%P, R # O. Then the matrix S <?{ 8) S~ satisfies
1a(0O O\ 1o (O O A A
SS(ROSS_RO#OAQQ
where A € CPP, Ajy € CP? and Ayy € C%4. Thus M, (C) is an irreducible set. d

The following theorem describes the set of n X n matrices commuting with all elements of
M,,(C), which will be needed in the subsequent chapters.

Theorem 1. Let M € M, (C). Then M commutes with all elements of M, (C) if and only if
M = M for some X € C.

Proof. 1tis trivial that A/ = A\I commutes with all elements of M,,(C). To prove the converse we
apply Lemma 1 on the set M,,(C). O

A simple way of describing a linear operator A on a vector space V, of finite dimension n is by
giving the image of vectors ey, es, €3, ..., €, composing a basis of V,,. A is called a diagonalizable
operator iff there exists a basis % = (e;);_; and \; € C such that Ae; = \e; for all i € n. The
basis 4 is called a diagonal basis of A. The set of vectors in V,, satisfying Az = Ax for a given
linear operator A is called an eigenspace of A corresponding to A € C [4]. It shall be denoted
Eig(A, A).

It follows that any matrix X € M, (C) can be proclaimed a matrix of some linear operator
on C" in the same manner as in Chapter 1, so this definition can be carried over to M, (C), i.e.
X is diagonalizable iff there exists a diagonal basis of C™ for the operator defined by X. The
following definitions and lemma are needed to study the relationship between commutativity and
diagonalizability of operators.

Definition 16. Let V,, be a vector space of finite dimension n and let M be a set of linear
operators on V. Then M is called simultaneously diagonalizable iff there exists a basis B of

V., such that # is a diagonal basis of all A € M.

Definition 17. Let A be a linear operator on a vector space V ,, of finite dimension n and let W
be a subspace of V,,. We say that W is A-invariant iff AW) C'W [4].
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In the following, the relation W is a subspace of V will be denoted W CC V.

Lemma 2. Let V,, be a vector space of finite dimension n such that V,, = @f 1 Wy, where

W,; CC V foralli € % and let B be a diagonalizable linear operator on Vy, such that W is
B-invariant for all i € k. Then B is diagonalizable on all W, where i € k.

Proof. First, we prove that the above statement is true for & = 2. We shall denote W; = U
and Wy = W. Let V,, = span((f;);_;), where (f;)!"_; is the diagonal basis of B. Let \; be
eigenvalue of B corresponding to f; for every ¢ € n. Since it is possible to uniquely decompose
each f; in the following form: f; = u; + w;, where u; € U and w; € W, we obtain

Bfi = Aifi = Xi(wi +wi) = Aiws + Nw;
Bf; = B(Uz + wi) = Bu; + Bw;.

Since )\iui, Bu; € U and )\Z"LUZ', Bw; € W, we obtain Bu; = \;u; and Bw; = \jw;.
We now prove that span((u;)?_;) = U and span((w;)}_;) = W. Since span((u;)}_,) CC U
and span((w;)"_,) CC W,

dim(span((u;)i—;)) < dimU dim(span((w;)i—;)) < dim W
Assume dim(span((u;)};)) +r = dim U, where r € dim U. Now
span((u;)j—;) @ span((w;)j—;) = Vy, = dim U — r + dim(span((w;)j—;)) = n
which is equivalent to
dim(span((w;)ji;) =n—dimU +r =dimW +r > dim'W,

a contradiction.

Therefore by choosing dim U linearly independent vectors from (u;);"_; and dim W linearly
independent vectors from (w;)]"_; we obtain diagonal bases of B in U and W respectively.

In the general case V,, = @le W we apply this result (n — 1)-times on vector spaces

k—1 k—3
@ W) & Wy V@ = @ W) & Wi AVAC (@ W) & Wi_o etc.
i=1 =1 =1

thus proving the lemma. ]

The following theorem describes how diagonalizability and commutativity are related. Also
note that an analogous theorem holds true for matrices from M, (C).

Theorem 2. Let V., be a vector space of finite dimension n and let M be an arbitrary set of linear
operators on V. Then M is a set of simultaneously diagonalizable operators if and only if M is
a set of mutually commuting diagonalizable operators.

Proof. Let A, B € M. If there exists a basis & in which both matrices 7 A and ¥ B are diagonal

and if 2 = (x;)}_; and if /\Z(A) and )\EB) are the eigenvalues of A and B corresponding to x;
respectively, then we obtain:

ABx; = A()\gB)xi) = )\EB)(Aa:i) = )\z(»B))\EA):ci = )\EA))\Z(»B)@- = /\fBa:i = B(/\Z(A)m) = BAx;.
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Therefore forany y € V,,,y = Z?:l o;xi, where o; € C for all i € n:

ABy = AB iaixi = zn:aiABxi = Zn:oziBAxi = BAzn: o;x; = BAy

=1 i=1 =1 =1

We have proved that simultaneously diagonalizable operators commute.

To prove the converse, let x(?) denote ¢-th eigenvector corresponding to j-th eigenvalue of B,

)

which we shall denote )\g , and let 77( ) be its geometrical multiplicity. Then

BAz"Y = AB2") = A0P2(D) = AP Az

J 2 J 2y

Therefore Aa:( ) e Eig(B, )\( )). Furthermore let for each )\;B) € 0(B) be y; € Eig(B, )\EB)),
(B)
SO Y = Zk 1 kak]) then

(B) (B) 77(B)
J
Ay; = Z Brayl) = Z Brdz) =37 Buray”) € Big(B,AY)
k=1

Which means that Eig(B, )\gB)) is A-invariant for each A;B) € o(B). Due to the fact that V,, =

@ |E1g(B )\( )), according to Lemma 2, there exists a basis % of V,, such that A is

(B))

dlagonal on each Eig(B, A ;) and therefore also on V. Itis easy to see that # B is also diagonal.

O]

2.3 Schur’s decomposition and diagonalizability of normal matrices

It is well-known that every diagonalizable matrix B € M,,(C) satisfies B = PDP~!, where P
denotes the transition matrix between the original basis and the diagonal basis of A and D denotes
a diagonal matrix. More general decomposition holds for every A € M, (C), as given by the
following theorem [7].

Theorem 3 (Schur’s decomposition theorem). Let A € M,,(C). Then there exists a unitary matrix
U € M, (C) and an upper triangular matrix T € M,,(C) such that UH AU = T.

Proof. This theorem is obviously true for n = 1. Assume that the theorem holds for n — 1,i.e.
for every A; € M,,_1(C) there exists a unitary matrix U; € M,,_1(C) and an upper triangular
matrix 7y € M,,_1(C) such that UlH AUy = T1. Let x1 be an eigenvector of A corresponding
to A € o(A). Without loss of generality, assume that ||z1||¢ = 1. Then by applying the Gramm-
Schmidt algorithm, there exists an orthonormal basis of C™ containing x1 with respect to the
standard inner product, denote its vectors by x1, xo, ..., z,. Put Q = (21, x2, ..., x,). It is easy to
see that ) € M,,(C) is unitary. Then

vy zy!
w3 w3l

Q7TAQ = i A(x, T, .y ) = i (Axy, Az, ..., Axy) =

H H
Tn Tn
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i
= | T3 ()\xl,AxQ,Axg,...,Axn) = 0 A
: 1

wy

1 H
0 U
follows that U is unitary. Now it remains to prove that U AU is upper triangular:

Harr (1 07N g oA (1 0H\ (1 0H\ (X T\ (1 67\
UAU_(HU{{QAQHUl_@UlH 0 A )\o U1)

_(r o\ (h o
“\e ufAaUu) T\ Ty

Since it is assumed that 77 is upper triangular, the proof is complete. O

where ¢ € C" !, A; € M,,_1(C). Now let U = Q < ) Since both U7 and () are unitary, it

As a consequence of this theorem, we prove another equivalent characterization of normal
matrices:

Lemma 3. Let T € M, (C) then T be an upper triangular matrix. Then T is normal iff it is
diagonal.

Proof. 1t is obvious that this statement is true for n = 1. We proceed by induction, assuming

H

that T = <g ZS >, where « € C,z € C*" ! and S € C* 17~ is diagonal. Therefore
H a O . H H .

T = . The equation T%T =TT gives:

z St
a2+ 20z ZHTHN  [|a)? @t
Sz SSH |7\ az SSH
which implies that ||z||» = 0 and thus z = 6. The assumption that S is diagonal gives the desired

result. u

Lemma 4. Let A,U € M, (C), furthermore let A be normal and let U be unitary. Then U AU
is normal iff A is normal.

Proof. Assuming that A is normal:
U AU(UH A = U AUUR AR = UH AAR D =
= UTAT AU = UR ARUUR AU = (UF AUYH U AU.

Assuming the converse, U AU(UH AU)H = (UH AUYHUH AU gives the result U7 AAHU =
U" AT AU and multiplying this equation by U from the left and by U’ from the right gives
AAH = AH A je. Aisnormal. ]

Theorem 4. Let A € M,,(C). Then A is normal iff there exists a unitary matrix U € M,,(C) such
that A is diagonalizable by U.
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Proof. Let A € M, (C), then by Schur’s decomposition theorem, it can be written in the form
A = UHTU, where U is unitary and T is upper triangular. By Lemma 4 A is normal iff T is
normal. Lemma 3 states that 7" is normal iff 7" is diagonal, so A is normal iff it is diagonalizable
by U. O

Alternative proof of the above theorem can be found in [8].

2.4 Automorphisms of M, (C)

Definition 18. Let A be an invertible element of M,,(C). Inner automorphism Ady is defined
Ada(X) = A1 X A forall X € M,(C) [9].

Note that linearity of Ad 4 follows from the linearity of matrix multiplication and that Ad4(XY') =
ATHXY)A = (A'XA)(A7YA) = Ada(X)Ada(Y), hence Ada preserves multiplication.
Since Ada(X) = A1 XA =0 = X = O, thus ker(Ad4) = {O} and therefore it is a bijec-
tion, so Ady satisfies the definition of an automorphism for every invertible A € M, (C). The
following theorem describes the properties of inner automorphisms in relation to their generating
matrices [9], [10].

Theorem 5. Let A, B be invertible elements of M,,(C). Then

1. Ad and Adp commute iff there exists wy, € C such that

AB =w,BA and w, =1.

2. Ada is a *-automorphism iff it is generated by a unitary matrix.
3. Ady is diagonalizable iff A is diagonalizable.

Proof.
1. By definition,
Ada(Adp) = Adp(Ada) & A'B™'XAB =B 'A"'XBA

for all X € M,,(C),ie. BAB™'A™'X = XBAB'A~!, so by Theorem 1,

1
BAB 'A™'= =T ie. AB=uw,BA.

Wn
Equality of determinants implies that det(AB) = w;! det(BA) and therefore w;’ = 1

2. First, let A be unitary. It follows that
(Ady (X)) = (A1 XA = ABXH AT — A7 XH A = Ady(X).
Assuming the converse, i.e. Ads(X™) = (Ad (X)) is equivalent to

ATIXHA = AHXHA=H o pAAH XH — xH pApH
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and therefore by Theorem 1 there exists A € C such that AA® = \I, where
n n L n
()\I)ii == ZAUA;{ = ZAiinj = Z|Aij|2 > 0.
i=1 i=1 i=1

The fact AAT AAT = \2] = AAAH AH shows that A is normal and therefore the matrix
U= %A is unitary and since A~! = %AH , the automorphism Ad4 can be written in the

1Mmmu@j:%WXA:iyﬁX%A:AﬁﬂﬂmmﬂXGMMQJMMMMS

generated by a unitary matrix.

3. Since the standard basis of M, (C) can be written in the form E;; = eiejT, where e; denotes
the standard basis of C", it follows that

Ada(Eij) = (A7 te))(Ae) )T = (A1 @ AT)(e; @ ej) = Ada = AP @ AT,

It can be easily proven that both A~! and A” are diagonalizable iff A is diagonalizable, and
since tensor product is diagonalizable iff both is components are diagonalizable [10], the
assertion is proven.

O]

Itis easy to see that the standard basis (E;;);';_; of M, (C) satisfies the following relation:

B F — O forj#k
TN By forj =k

and that an automorphism 1) preserves this relation. In addition, let { My, M, ..., M.} be a finite
set of matrices from M,,(C) and let aq, ..., a, € C. Then since ) is a bijection, we obtain

k k
1/)(2 OziMZ‘) = ¢<O) =0 & ZaiMi = O,
=1

i=1

hence v preserves linear independence, therefore the image of the standard basis constitutes an-
other basis of M, (C), resulting in the subsequent definition:

Definition 19. Any basis (B;); ;—, of My(C) satisfying
) | # k
B;jBy = forj. #
By forj=k
shall be called a generalized standard basis of M, (C).

Theorem 6 (Skolem-Noether theorem, specialized). All automorphisms of M,,(C) are inner; i.e.
for each automorphism ) there exists an invertible matrix G such that Adg = 1.

Proof. (As suggested in [11]) First, let (E;;);';_; be a standard basis of M, (C) and denote
Y(EBi;) = Fyj forall 4, j € . Itis clear that (F};)7;_; is a generalized standard basis of M, (C).
In addition, it is possible to write F; in the following form:

n
Fu = Z i Bij

ij=1
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where there exists at least one ordered pair of indices, say p, ¢ such that a,, # 0.
Second, we define:

n
A= Oé:;qlElpFH F = Z Ei1 AFlz
=1

n
B=FnEy G=)Y F;BE;

The fact that both (EU);1 ;=1 and (sz)? j—1 are generalized standard bases implies that AFj; = A

and BE1; = B. To proceed, the three following identities are needed:

n
AB = a;qlElpFlanqu = Oé;qlElpFHqu = Ot;qlElp( Z aijEij)qu =
7,7=1

n
— 1 . | —
Qpq (E :O‘mElj)qu = Qg Opgli1 = B
Jj=1

n
BA =FnEpa, E1pF11 = ay, F11Equ11 = Qpy Z i Eij) Eqp Z apEy) =

i,j=1
n
—1
Z ®igEip) Z auBr) = apd Y iga BB =
k=1 ik =1
-1
= Qg Opg Z By = Z i By = Fiy

il=1 il=1
Furthermore, it is easily seen that > " | Fy; = ZZ VV(Ey) =9 By) =¢(I) =1.
Third, we prove that G is invertible and G~ = F:

n
GF = Z Fj1BEjE;71 AFy; = ZFilBEllAFli = ZFilBAFlz‘ =
ij—=1 =1 i—1

n n
= ZFilFHFIi = ZFM =1
i—1 i1

n n n
FG =) EqAFF;BE;; =) EnAFnBEy; =Y EnABE); =
i,7=1 =1 =1

n n
= ZEilEllEli = ZEu =1
i—1 i=1

Fourth, we prove that for each ¢, j € 0, Adg(E;;) = Fi;:

n n
GE;;G™' = GE,F = Z Foi BEWwEijEn AFy = ZFHBEUE”AF” =
k=1 =1

= 3 BEWAFj = Fjn BAF; = Fn P By = Fyj

Thus inner automorphism Ad acts in exactly the same way on the standard basis (Eij>2j:1 as Y
does, hence Adg = . O
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Chapter 3

Classification of fine gradings of M,,(C)

3.1 Gradings and automorphisms of *-algebras
In a non-specific *-algebra A, we define operations with its subsets in the following way: let
A,B C A, then

aA+B={aa+b:ac A,beB}, AB={ab:ac Abe B}, A*={a":a€ A},
where o € C. This notation allows us to define a grading in an elegant fashion [9], [10], [12]:

Definition 20. Ler A be a *-algebra and let T be an index set. A grading I of a *-algebra A is a
decomposition of A into direct sum of subspaces

r: A=A,
1€T
such that for any pair of indices i, j € I there exists an index k € 1 with the property
AA; CAL
and for any index | € T there exists an index m € 1 such that
A7 CA,,.

Definition 21. Let A be a *-algebra and let T' be a grading of A. A grading T is called a
refinement of 1 iff it satisfies that for each A; constituting [ there exists A ; constituting ' such
that A; C A, where at least one inclusion is proper. A grading which cannot be refined further
is called fine.

Certain gradings of a finite dimensional *-algebra A can be obtained by looking at the group
of all its *-automorphisms. If a *-automorphism ¢ is diagonalizable and a, b are its eigenvectors
with nonzero eigenvalues u, v € C respectively, then clearly

Y(ab) = ¥(a)p(b) = (pa)(vb) = (uv)ab and ((a))* = (Aa)* = Xa*

This means that ab is either an eigenvector of 1) with the eigenvalue pv or the zero element and
that ™ is an eigenvector of ¥ corresponding to A. The given automorphism ) therefore leads to a
decomposition of A into the sum of eigenspaces of 1) with corresponding eigenvalues A;,

r: A= P FEig(y,\)
Xi€a ()
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which satisfies the definition of a grading [9].

Refinements of a given grading can be obtained by adjoining further diagonalizable *-automorphisms
commuting with . Supppose that ¢ and 1) are commuting diagonalizable *-automorphisms, i.e.
1 o ¢ = ¢ o). It follows that for any eigenvector a of 1) with the eigenvalue A

Ap(a) = p(ha) = (¢ o)(a) = (Yo d)(a) = ¥(d(a)) = ¢(a) € Eig(y, A)

and so ¢ is Eig(1, \)-invariant. Diagonalizability of ¢ (according to Lemma 2) implies that ¢ is
diagonalizable on Eig(¢), \) for each A € (1)) and therefore defines a refinement of I'.

Moreover, assuming that ¢/ is invertible, i.e. 0 ¢ o(¢), we obtain 1(a) = Aa = 1)~ (a) = }a
thus ¢»~! has the same eigenspaces as ) only corresponding to the inverses of their respective
eigenvalues. It can be easily proven that 1)~ ! preserves involution and multiplication and therefore
is a *-automorphism:

o = ((Woy (@) = v (2) =@ (2)) =y (") = (¥ (z)

YW (@) (W) = (o™ @)W o v )W) =2y = ¢ ()Y~ (y) =y~ (zy)

forall z,y € A.

The above observations imply that a pair consisting of *-automorphism and its inverse defines
the same grading and therefore a given grading I" and its refinements are induced by a group GG of
invertible diagonalizable *-automorphisms. If I' is fine, then G must be maximal, i.e. forally) ¢ G
there exists some ¢ € G such that ¢ # ¢1p. Maximal groups of commuting diagonalizable
invertible *-automorphisms shall be called MAD-groups of a *-algebra A [9].

3.2 Classification of MAD-groups of M, (C)

Let us consider a *-automorphism v of M, (C). According to Theorem 6, it is an inner auto-
morphism. It is clear that if for some unitary matrices U, V, the following implication holds:
U=V = Ady = Ady. Assuming the converse, i.e. Ady = Ady gives, according to Theo-
rem 1, UV ! = al, where o = 1. Hence an *-automorphism defines an equivalence relation
U~V < U= aV,a" =1 on the group of unitary matrices, which shall be denoted U (n). By
defining multiplication of equivalence classes [U][V] = [UV], a group isomorphic to the group of
all *-automorphisms of M, (C) is obtained.

According to Theorem 5 and Theorem 6, all *-automorphisms of M, (C) are diagonalizable,
invertible and inner. We show that there is a one-to-one correspondence between MAD-groups
and unitary Ad-groups [10], defined below:

Definition 22. A subgroup 4 of U(n) shall be called a unitary Ad-group iff
1. Forany pair U,V € 4 there exists wy, € C such that UV = w,VU.
2. & is maximal, i.e. for each M ¢ 4 there exists U € & such that UM # w, MU.

Obviously, if any unitary Ad-group contains a matrix U, it also contains the whole equivalence
class [U]. Denote for any MAD-group G:

Gaa={U €U(n): Ady € G}
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and conversely for any unitary Ad-group ¥:
Ad(9) ={Ady : U € 9}.

According to Theorem 5, the first property of Definition 22 is satisfied for any pair Ady, Ady €
G. It is easy to see that G 44 is maximal and that Ad(G 44) = G. We are interested in the classes
of MAD-groups, in what follows we will describe their suitable representatives.

If a unitary Ad-group ¢ is commutative, i.e. UV = VU for all UV € ¢, then all its elements
are simultaneously diagonalizable by some unitary matrix. In addition, maximality of ¢ implies
that it is conjugated to the group of all n x n diagonal unitary matrices, denoted %p(n). The
following lemma describes the case UV = w, VU [10].

Lemma 5. Let A, B be diagonalizable invertible elements of M,,(C) such that AB = wiyBA
where wy, = exp ((2mi)/k) and k divides n. Then there exists a invertible matrix P such that

PAP™! = diag(1, wy, wi, ..., wy ') @ diag(dy, da, ..., d,, 1)

and
010 0 0
0 1 0 0
0 0 .. 00
pPBP'=1| . . . ® diag(61, 02, -+, O /i)
000 .. 01
1 00 ... 0O

where arg d;, arg 0; € (0,27 /k) foralli =1,2,3,...,n/k.

Proof. First, order the eigenvalues \; of A with respect to arg \;, so that 0 < arg A} < arg Ay <
... < arg A, < 27. Consider the subspace F' CC C" of eigenvectors with arg \; € [0,27/k)
and denote dim F' = s. As AB" = ABB*! = wBAB*! = w?B?AB" 2 = .. = wFBFA =
BF A, by applying lemma 2, a basis {e1, €3, ..., e} C F consisting of common eigenvectors of A
and B¥ can be chosen, i.e.

Aei = )\Z-ei Bkei = eri,

where geometric multiplicity greater than 1 is allowed and where we may assume argy; €
0,27 /).
Let us define

1 1 1 _
f1 = e1 f2 = —Bel ,f3 = 7B2€1 fk = k—lBk 161
141 Vl 1/1
1 L o 1 k—1
fet1=¢€2 foipo=—Bes [firg= 5B ... foao=—F7B" e
1%} V2 y2
1 L 1 k—1
f(s—l)k+1 = €5 f(s—l)k+2 = 17365 f(s—l)k+3 = ﬁB es oo Sk = k,lB €s
S S S

Obviously, Afi = Aer = A\ifi,Afa = A(5-Be1) = qhifo, Afs = a(,jlfBzel) = ¢°\if3,
which implies that fi, fs, ..., fsi are eigenvectors of A, each corresponds to a different eigenvalue,
therefore these vectors are linearly independent.
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Suppose sk < n. Then there exists an eigenvector x of A, linearly independent on f1, fo, ..., fsk.
Let x correspond to A € o(A) and arg A € [(27/k)j,2m/k(j + 1)). This assumption implies that
A71B7iy = wIBJA 'z = w/ Bz, so B~z € F. Thus B~/z can be written as a linear
combination of ey, ..., e, and by applying B’ on both sides of this equation, we see that = can be
written as a linear combination of B’ey, ..., B’ e, which is a contradiction, so sk = n and (f;)?,
forms a basis of C".

We have obtained for some suitable P:

P7YAP = diag( A1, wAr, ..o, 0TI A2y e, o, T N, N, WAk s 0TI ) =
= diag(1,w, ...,w" ) ® diag(\1, Ao, ..., An/k)

Moreover,

1 1
Bfi = Bey =v1fas Bfy= 713261 =vifs Bfs= ﬁ3361 =11 fa
1

1 vk

k 1
—Be1=—FFge=wnh
Sl Sl

Bfy =

and similarly for other eigenvalues of B¥, giving the result:

010 .. 00
001 .. 00
. 000 .. 00 _
PBP = Cororoe ® diag(vi, v, . Vp /i)
0 0 0 0 1
1 0 0 0 0

O]

Also note that in the statement of lemma 5, it is possible to replace the interval [0, 27/k) by
the interval (—7/k, w/k].

Definition 23. The k x k matrix

010 0 0
0 01 00
000 0 0
000 .. 01
100 .. 00

will be denoted Py and the matrix diag(1,w,w?,...,w*™1), where wy = exp(2mi/k) will be
denoted Q. The group L), = {wLQZLP,? :lL,m,n = 0,1,2,...,k — 1} will be called Pauli’s
group.
It can be easily checked that &7, is a group of unitary matrices satisfying
PF=QF=1Ir PuQr=wiQiPr.

Furthermore, if k is even, then (P,Q;,)* = —1I and if k is odd, then (P, Q)" = I. These matrices
were first studied by Weyl in [13].
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Lemma 6. &7, ® &, is conjugated to Py, iff k and m are relatively prime [14].

Proof. First, let us put C¥ = span((egl))f;ol) and C"" = span((egz))?z)l) where (e, (1 ))k ! and

(65.2));-”:51 denote standard bases of their respective spaces. The elements of C*™ can be written

in the form

W
,_.

—1m—

aij(e (1) .1 ) where «;;€C forall i,j€n.

Jj=0

I
o

7

Now, it can be easily seen that f; = P} (e, D o 6(2)) s =0,1,2,...,km — 1 runs just once
through all the vectors egl) ® 65.2) iff the following sets are the same:

{(8 mo“) s=0,1,2,. km—1}:{<?>:¢:0,1,2,...,k—1;j:0,1,2,..-,m—1}-
s mod m J

Obviously, the inclusion C holds. Hence, it is sufficient to show that the equality

s modk) ([t modk e s—t modk) (O

s modm/) \t modm o \s—t modm/) \0
implies that s = ¢. Indeed, both k and m are divisible by |s —¢| and |s —¢| € {0,1,2,...,km —1}.
If £ and m have no common divisors, then their lowest common multiple is km, hence |s —¢| = 0.

. . . 1
Therefore there exists a unique pair p, ¢ such that Pgp, fs = fs—1 mod km = eéjl mod k& ©

) ot m = (Pre)) @ (Prel®) = (P @ Pu)(ef)) @ ef?).

Similarly, Qg fs = wkmfs = whwin(ep Mg e,(l )) = (wiel(,l)) ® (wmegz)) = (wk(el(,l)) ®
(w?ne((f)) = ( ieg,l)) (Qmeq ) = (Qr ® Qum)(ep D & e((z )). Which implies that both bases
contain the same vectors in different order, therefore any Ay, € Y, can be unitarily conjugated
to the tensor product Ay ® A,, where A, € Py and A,, € Py,. O

Now, let A, B € M,,(C) and let w,, = exp(27i/n). The set
{C € M,(C): (3s,t € Z)(AC = w’CA, BC = w'CB)}

shall be called w,-commutant of matrices A and B and will be denoted { A, B}“). Obviously,
w! = 1. For w, = 1, we denote {A, B}(1) = {A, B} and call the set commutant of matrices A
and B. In other words, { A, B}’ is the set of matrices commuting with both A and B.

Lemma 7. Let D1 = diag(dy,ds, ...,dx) and Dy = diag(d1, 2, ..., 0) where argd;, argd; €
0,27 /k) foralli € . Put A = Q,® Dy and B = Py®Dy. Then {A, B}“r) = 2,@{Dy, Do}’
[10].

Proof. Let us first consider C' € {A, B} C {A, B}(“¥). A is a diagonal matrix with d;w; on the
diagonal, wy, = exp(2w/k). Since argd; € [0,27/k), we have d;w; # diw!, for s # t and so
AC=CA=C = @?:1 Cj, where C; € M,,(C) is invertible and for each j it holds

C;Dy = D1C; 3.1)
From the equality BC' = C'B we obtain:

C;Dy = DyC; (3.2)
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for all i € 7, we put Cyy1 = Cy, thus C1 D5 = D5Cy, for matrix elements of C, denoted 7,
the following equation is obtained:

Vij0F = 67 (3.3)
for each 7, j. If 7;; # 0, then 5}“ = 5f = 0; =0;,1.e.

01D§ = D’;Cl = ClDQ = DQCl (3.4)

Moreover, C1 Dy = DyC7; = C; = (5 and analogously C; = Cy = ... = (k. Therefore
C =1, ®Cq,where Cy € {Dl, DQ},.

Now, let us consider H € {A, B}« ie. HA = wjAH and HB = w,BH. Put C =
A*BYH, where z,y € Z. Then

CA=(A"BYH)A = wjw! A(A*BYH) = w; "V AC

CB = (A"BYH)B = wjwjB(A*"BYH) = w,"BC
Fory = —sand x = —t is C € {A, B} and therefore C = AB~'H = I, ® C,C] €
{D1, Dy}, leading to H = Q; P} @ D;DLC, it is obvious that D§ D5Cy € {Dy, Do}'. O

Now we show that the previous lemmas imply that noncommutative unitary Ad-groups are
conjugated to other unitary Ad-groups acting on smaller dimension.

Lemma 8. A noncommutative subgroup 4 of U(n) is a unitary Ad-group iff it is unitarily conju-
gated to the tensor product &,,;; @9 for some divisor so of n and some unitary Ad-subgroup

& C Ul(so) [10].
Proof. Let ¢ be a noncommutative unitary Ad-group, i.e. every pair U, V € ¥ satisfies
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UV =w?UVIVU, where wyp=en, SUV)=01,2,..,n—1.

Denote so = min{s(U,V) > 0: U,V € ¢} and choose Uy, V; for which s(Uy, V) = sp. Since
ULV} € Gaq forall k, 1 € Ny, the set Z(9) = {(ws0)*1,, : k € Ny} forms a group isomorphic to
the subgroup of the cyclic group Z;, = {wk : k € Ny} and therefore s divides n.

If 5o = 1 then any W € ¢ lies also in {Up, V5 }(“»). We show that it is also true for sg > 0.
Suppose the contrary, i.e. the exists W € ¢ such that

kso < s(W,Up) < (k+1)sg forsome k=1,2,3,...,n/sp.

Then
0 < —kso + s(W,Up) = s(Vg "W, Up) < so,

which is a contradiction to the minimality of sy because Von/ "M € &. Therefore s(W,Uy) =
kso and analogously s(W,Vp) = lsg for k,l = 0,1,2,....,n/so — 1. Thus any W € ¢ lies in
{Up, Vg}(‘”fp), ie. 9 C {Uy, VO}(“”SLO). Using Lemma 5 we may assume that there exists a unitary
matrix A € U(n) such that

AHUOA:QH/SO®D1’ AHVOA:Pn/so®D2
and using Lemma 7 we obtain

g g {U()u ‘/0}(0.),510) = gn/so & {D17D2}I7
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where D1, Do are unitary. By repeating the process for the group &7, we obtain
r@n - {PnaQn}/ C ,@n@){(l)}/ = f@na

i.e. &, is maximal. This inclusion and assumption of maximality for ¢ imply that &, /,, @ I5, C
&, ie. there exists 4 C {D1, D2} such that ¥ = 2,/ ® &, hence the group ¢ is again
maximal.

It remains to answer the question whether for a given divisor so of n there exists ¢ such that
Z(9) = Z,/s,- An answer is affirmative because for any unitary Ad-group ¢ C U(sg) the group
Pryso ® & C U(n) is maximal. O

Theorem 7. & C U(n) is a unitary Ad-group iff it is unitarily conjugated to one of the finite
groups
Py @ Pry @ Pry @ ... @ P, @ Up(n/mimoms...Ts)

where Ty, T, T3, ..., Ts are powers of primes and their product divides n.

Note that this classification of unitary matrices is similar to the classification of invertible ma-
trices given in [9] and [10].

Proof. Since &1 = {(1)}, it is clear that the theorem holds if ¢ is a commutative unitary Ad-

group.
Now assume that ¢ is noncommutative and let n = p{"'p5?ps®...p%", where p; are primes and

a; > 0 for all i € 7, be unique prime decomposition of n. Now choose 71, 72, 73, ..., 75 satisfying
the following conditions:

B

1. for each j € s there exists ¢ € 7 and a natural number /3 such that ; = p;
2. mmoms...ws divides n
It is clear from Lemma 6 that the unitary Ad-groups of the form

Py @ Py @ Pry @ ... @ P, @ Up(n/mimams... Ts)

are mutually nonconjugated and that it is sufficient to consider just powers of prime numbers as
values for ;. Lemma 8 states that ¢ is a unitary Ad-group iff it is conjugated to &, ® &, where
& C U(n/m ). By repeatedly applying the above lemma on the residual unitary Ad-group ¢, we
obtain the final result. O

3.3 Unitary Ad-groups and corresponding fine gradings of 1/,,(C)

The simplest form of unitary Ad-group is %Zp(n) = {diag(u1, ug, us, ..., uy) : |u;|* = 1,7 € n}.
Forany U € %p(n), we have

AdU(EU) = UHEZ‘jU = UH(QZ'G?)U = UHei(UTej)T = (UHGZ) &® (UTej) = ’lTZ"LL]'Eij

hence the standard basis of M,,(C) is the diagonal basis for all elements of Ad(%p(n)). Clearly,
E;; € Eig(Ady, 1) for every U € %p(n) and for every i € n.
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Now let U be an element of %p(n), U = diag(uy, ug, us, ..., u,). Let V = diag(vi, ve, vs, ..., vp) €

%p(n) satisfy the relation u; # v; and u; # v; for some pair of indices (¢, j) € i x . We obtain
AdU(Ez]) = ’lTZ’LL]E,L and Adv(El]) = FivjEij = Eij ¢ Eig(Adv,’LTl'Uj),

i.e. for any pair of indices (7,j),7 # j and for every U € %p(n) there exists a matrix V' €
%p(n) which will decompose each eigenspace Eig(Ady, wu;) of Ady into the direct sum E;; &
Eig(Ady, w;u;), hence the decomposition

n
D(%p(n)): M,(C) = ( P E]> ® D,

i,j=1

i#]
where D,, = span(F11, E92, Es3, ..., Eny,) cannot be further refined. The properties of standard
basis imply that I'(%p(n)) satisfies the definition of a grading.

Another simple example of a unitary Ad-group is &2,. Let us denote A,, = Q% PP where

a,b=0,1,2,....,n — 1. The set of n? matrices {Ay, : a,b = 0,1,2,...,n — 1} shall be denoted
Ap.

Lemma 9. For all different pairs of indices (a,b) # (¢, d), the matrices Agp and A.q are orthog-
onal with respect to the Hilbert-Schmidt inner product [15].

Proof. Let (a,b) # (c,d), then
(Aap, Acd) = (Qn Py, QnPy) = Te((Qn ) QL P = Te(P°Qn QL Py)

n-no

and since trace is invariant under cyclic permutation of matrices,
(Aab, Aca) = Te(P Py Q" Q5,).
Without loss of generality, we can assume that ¢ > a and d > b, giving the result
(Aabs Aca) = Tr(PF0Q5).

If b # d, then Pff—b is traceless matrix multiplied by a diagonal matrix Q)" “, giving a traceless
matrix. In the case b = d and ¢ > a, a diagonal matrix with powers of w,, on the diagonal is
obtained. It follows that

n—1 A n(c—a) 1
Tr(diag(1, w2, w2 ph-Nlema))y = Zwﬁl(c_a) = wnwil =0.
=0 no

O

Since orthogonal matrices are linearly independent, the above lemma implies that the set A,

constitutes an orthonormal basis of M,,(C), in addition ||Ag|| = |/ Tr(AE A,) = /Tr(1) =
/1, so the set ﬁfln is an orthonormal basis of M, (C).

The relations P? = Q7 = I imply that (P¥)# = (P¥)~1 = piF med ™) ang analogously
Q@M = ()~ = Q%_k mod n) gorall k € Z, hence

Ady,,Aca = (Aab)HAchab = PibQiaQCPanPb =
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_ wgdp—chPb—i—d _ wgad—l—bc)QcPd _ w%ad—&-bc)Acd
i.e. A, is a diagonal basis of M,,(C) for all elements of Ad(Z?,). Put A, = span(Ag) for all
a,b=0,1,2,...,n — 1. It follows that
AabAcd = QanQCPd = wcha+ch+d = AabAcd g Aa+c,b+d

Aé{b — (Qapb)H _ beQfa — Pnbenfa _ w(nfa)(nfb)Pnfaanb = Ay,C An—a,n—b

n
where addition and subtraction are modulo n.
For any two pairs of indices (a, b), (c,d) € {0,1,2,...,n — 1}2, the following inequality holds
(ad+bc) modn # (ad+ (b+1)c) mod n

since ¢ € {0,1,2,...,n — 1}. Therefore for any A.q € &2, there exists Agy = Agpt1 € Pn
such that A,y ¢ Eig(Adg_,,,wi®"¢), thus the decomposition

n—1
T(Pn): Mn(C)= P Ay

4,j=0
is a fine grading.
Definition 24. Let A be an algebra with inner product and let I" be a decomposition of A into a

direct sum of subspaces. 1 is called an orthogonal decomposition of A iff each subspace consti-
tuting 1 is orthogonal to all the others.

Lemma 9 implies that I'(4,,) is an orthogonal decomposition of M, (C) with respect to the
Hilbert-Schmidt inner product.

Now, we will examine the fine gradings of M, ,,, (C), where p1, po are different prime numbers.
According to Theorem 7 and Lemma 6, we obtain the following nonconjugated unitary Ad-groups:

L. %p(p1p2)

2. Py, @ Up(p2)
3. Pp, @ Up(p1)
4. Pyips-

Cases 2. and 3. are clearly analogous and cases 1. and 4. were already examined. Let us consider
the case &), ® %p(p2). It can be easily verified that (A ® B,C ® D) = (A, C)(B, D), thus the
set {A;; @ E :4,7=0,1,2,...,p1 —1:k,0l=0,1,2, ..., pp — 1} constitutes an orthogonal basis
of My, p,(C). Let A CC Mp(C)and B CC My(C) denote A B={A®B:AcAbeB}
The relation (A ® B)(C ® D) = (AC) ® (BD) implies that &), @ %p(p2) gives the grading

p1—1 p2 p1—1
F(‘@m ® %D(p2)) : Mmpz((c) = ( @ EB Aij ®Ekl) S ( GB Ann ®Dp2>

i,j=0k,l=1 m,n=0
k#l

Now let us consider the case p1 = po, i.e. the algebra M,2(C), where p denotes a prime
number. The following unitary Ad-groups are mutually nonconjugated due to Theorem 7 and
Lemma 6:
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1. %p(p?)

2. P, @ Up(p)
3. Z,0 P,
4. Pp.

The third case is the only one that was not already examined. The previous remarks imply that the
group &, ® ), gives the fine grading

p—1
N2y 2): P AyeAu
i,7,k,1=0

3.4 Examples of gradings induced by *-automorphisms of 1/,,(C)

In this section, possibly non-zero matrix entries will be denoted *. Note that the following exam-
ples are not fine gradings.

Example 1. n =2, U = @y = diag(1, —1)

Ady E;; gives the following decomposition into eigenspaces corresponding to the powers of

w2
o (* O 1. (0 *
w2.<0 0 ) w2.<* O)

Example 2. n =3, U = Q3

* 0 0 0 =« 0 0 0 =
Wl [0 x 0 wi: |0 0 Wi | * 0
0 0 = * 0 0 0 = 0
Example 3. n = 3, U = diag(1, ws, w3)
* 0 0 0 0 0 0 *x =
Wl [0 x x wit* 00 wi: |0 0 0
0 * = x 0 0 0 00

Ada,, (Acd) = wéad+bc)Acd gives the following decomposition into eigenspaces corresponding
to the powers of ws:
Exampled4. n =3, U = Ag1 = P

MS(C) = Span(Ao(), Ap1, Aog) ©® Span(A107 A, Al?) 2] Span(Az(), Ao, A22)
Example 5. n =3, U = Ajp = Q3

M3(C) = span(Agg, Ao, A20) & span(Ag1, A11, Az1) @ span(Agg, A2, Az2)
Example 6. n =3, U = A1; = Q3P

M3(C) = span(Agg, A12, A21) @ span(Agi, Ao, Az2) @ span(Agz, Aq1, Ago).
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Chapter 4

Orthogonal decompositions and
quantum complementarity

4.1 Quantum bits

Classical computation and information is based on the concept of a bit, a physical object which
can be found in two states, usually denoted 0 and 1. Quantum computation and information are
built on a different concept, called quantum bit or qubit for short [16]. The difference between
classical bits and qubits is that quantum bits can be found in any linear combination (often called
superposition) of the basis states |0) and |1). Therefore, a qubit is described by a two-dimensional
complex vector space where the states corresponding to those of a classical bit constitute a basis,
assumed to be orthonormal. Using the bra-ket notation, we can write

) = |0) + B[1).

Another difference is that we can observe whether a bit is in the state 0 or 1, computers do this
when they retrieve the contents of their memory. However, to examine a qubit means perform a
quantum measurement. Measuring a qubit yields either the result |0) with the probability |a|? or
the result |1) with the probability |3|2. (Naturally, |a|? 4 |3|? = 1, since any state is represented
by a normalized vector.) Furthermore, measurement changes the state of a qubit, collapsing it
from the superposition of states |0) and |1) to the specific state consistent with the measurement
result, i.e. only one bit of information can be obtained from a single measurement of one qubit.

Suppose we have two qubits, thus having four possible outcomes: |00),|01),|10) and |11). A
pair of qubits can exist in a superposition of these four states:

|1Z)> = O£00’00> + 0501‘01> + 0410|10> + 0411|11>,

where the corresponding outcomes appear with the probabilities ]a?j |. Now suppose that only the
first qubit was measured with the result |0) with probability |ago|? + 1|2, leaving the system in
the normalized post-measurement state

¥f) =

1

V lewol? + [aor |2

An important two qubit state is the Bell state (also called the EPR pair),
1

V2

(Ozoo‘OO) “+ o1 ’01>).

(100) +[01))
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This state has the property that upon measuring the first qubit, one obtains two possible results: |0)
with probability 1/2, leaving the post-measurement state |1)’) = |00), and |1) with probability 1/2,
leaving |¢)') = |11); it is apparent that a measurement of the second qubit gives the same result as
the measurement of the first one. These results were the first intimation that quantum mechanics
allows information processing beyond what is possible in the classical world [16].

4.2 Complementarity structures

The definition of complementarity concerns very specific relation between quantum observables
[15].

Definition 25. Let H,, be a complex Hilbert space of finite dimension n. Two observables A
and B are called complementary iff their eigenvalues are non-degenerate and any two normalized
eigenvetors u; of A and v; of B satisfy (u;,v;) = ﬁ

It is apparent that in an eigenstate u; of A all eigenvalues of B are measured with equal prob-
abilities, and vice versa. Therefore exact knowledge of the measured value of A implies maximal
uncertainty to any measured value of B. Note that in the next definition the eigenvalues of A and
B are in fact irrelevant, since only the corresponding orthonormal bases are involved.

Definition 26. Ler H,, be a complex Hilbert space of finite dimension n and let of = (a;)}, and
B = (bj>?=1 be two orthonormal bases of H,,. The bases </ and % are called mutually unbiased
iff for all i, j € 7 the vectors a; and bj satisfy |(a;, bj)| = ﬁ

Now we will show that the matrices P, and @), satisfy the criterion of complementarity.
Clearly, the vectors of standard basis of C" satisfy Qne; = w 7lej and therefore (), has a non-
degenerate spectrum and (e;)’/_ are its eigenvectors. Since det(F, — AI) = (—1)"(\" — 1),
it follows that o(P,,) = {1, wp,w?, ...,w" '}, Denote pg, p1, P2, ..., Pn_1 the eigenvectors corre-
sponding to the respective powers of w,,. These are:

1 1 1 1
! “n i w? 71)
2 4 2(n—1
po=|1 pr=| %n p2 = “n Pn—1 = Wn
. o1 20D (=D
n

All these vectors have the same euclidean norm of /n, thus for the normalized vectors ﬁpk
computing the standard inner product yields the result

1 1, 1
= =Ll =

I(ej,%pk)l Tn NG

Thus giving the result that the grading generated by Pauli’s group decomposes M, (C) into
n? subspaces generated by its elements and thus the orthogonal decomposition of M, (C) into
subspaces generated by the powers of complementary observables gives mutually unbiased bases
of C™ with respect to the standard inner product.
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4.3 Generalized quantum bits and physical interpretation

It is sometimes useful to generalize the notion of qubit to higher dimensions. A qudit is defined
as a quantum system which has d basis states. A multiple qudit physical system is described by a
tensor product of single-qudit systems [15].

Theorem 7 states that any unitary Ad-group is conjugated to a tensor product of Pauli’s groups
acting on dimension equal to a power of a prime number and a diagonal unitary group. The spaces
on which these Pauli’s groups acts shall be called elementary qudits. (That is, elementary qudits
have dimension equal to some power of a prime number.) The physical meaning of the matrices
P, and @,,, whose powers constitute Pauli’s group is known; they represent the analogues of
momentum and position in finite-dimensional quantum kinematics [15].

In the previous chapter, possible gradings of M,,(C) were examined for n = pjp2, where p;
and po are prime numbers. The results imply that if p; = po, it is possible to view such system also
as a tensor product of two systems acting on a tensor product of two qudits, each with dimension
equal to p; = po. Systems that can be viewed as a product of other quantum systems of smaller
dimension as well as one big system shall be called composite systems.

The apparent contradiction that M, (C) represents linear operators for any n-dimensional quan-
tum system and at the same time there may exist multiple nonconjugated unitary Ad-groups for
given n is resolved in the following way: from physical point of view, M, (C) is the operator
algebra not only for a single n-dimensional system but also for all other members of the set of
inequivalent quantum systems for this 7 [15]. These systems correspond to different physical re-
alizations of composite quantum systems. Of course, each such system has its preferred set of
quantum operators.
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Conclusion

In this thesis, we have described the fundamental notions and necessary mathematical structures
used to build the quantum theory with focus on operators in finite dimension, represented by the
*-algebra M,,(C). It was proven that all its automorphisms are inner and the relationship between
fine gradings, maximal groups of commuting *-automorphisms (MAD-groups) and unitary Ad-
groups was shown.

A classification of unitary Ad-groups using Pauli’s groups &2, and diagonal unitary groups
%p(n) was given and the corresponding fine gradings of M,,(C) were examined. In the final
chapter, quantum complementarity was illustrated using two elements of Pauli’s group.

There are several unsolved problems in regarding composite systems. For example, no physical
interpretation of the matrices constituting the diagonal unitary group %p(n) is known. Moreover,
if the dimension of a composite system is not equal to a product of two primes, there are many
ways of decomposing a unitary Ad-group into tensor products of Pauli’s groups and diagonal
unitary groups.

It is unclear how to determine if these decompositions are equivalent (in the sense that they
describe just different realizations of one physical system) or that they depict different quantum
systems.
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