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cházky a na příkladu Hadamardovy procházky na přímce ilustrujeme základní vlastnosti této procházky.
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lattice. We start with a brief summary of basic facts about classical random walks. Then we introduce
the concept of quantum walks and illustrate its basic characteristics on the example of the Hadamard
walk on a line.
The next part of the thesis deals with the effect of trapping which we firstly demonstrate on the three-state
quantum walk on a line. Subsequently, we extend the model of the quantum walk to two dimensions and
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In the last chapter we introduce the term strong trapping and present a class of trapping four-state coins.
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Introduction

Classical random walk is a stochastic process in probability theory with a wide range of applications.
This term was introduced by Pearson in 1905 in the context of the mathematical formulation of random
transport phenomena. The concept of classical random walks was used to describe for example Brownian
motion as a model for microscopic diffusion. Recently, classical random walks has also been success-
fully utilized in theoretical computer science for algorithm development such as graph connectivity or
solving 2-SAT and 3-SAT problem (for a short introduction see [1]).
Quantum walks, which are quantum mechanical analogues of classical random walks, were first intro-
duced by Aharanov et al [2] in 1993 and also studied by Meyer [3] in the context of quantum cellular
automata. Research in this field was initially motivated by development of quantum algorithms based
on quantum walks that are considerably better than their classical counterparts in terms of computational
complexity (i.e. they require less number of steps to solve the given problem). Among them, the most
famous is the Grover search algorithm [4] that exhibits quadratic speed-up in comparison with the clas-
sical algorithms.
There have also been various experimental proposals and physical implementations of both quantum
walks on a line and on a two-dimensional lattice using cold atoms in lattices, ion traps or polarization
and orbital angular momentum of a photon (for a comprehensive review we recommend [5]).
The aim of this thesis is to review the basic facts known about discrete-time quantum walks on a line
and on a two-dimensional lattice. Throughout the text we especially focus on one of the most striking
behaviour of the quantum walks, namely on the effect of trapping.
The structure of this thesis is as follows. In the first chapter we briefly introduce the concept of classical
random walks, touch upon its most significant properties so that we would be able to compare the clas-
sical model with its quantum analogue in the next chapter.
In chapter two we define two-state quantum walk and illustrate this concept with the help of the Hadamard
walk on a line. We derive analytic expressions for the probability distribution and its limit distribution.
We also summarize the most significant differences between classical random walks and quantum ran-
dom walks.
In the third chapter we expand the two-state model to that of the tree-state quantum walk on a line, which
exhibits phenomenon that cannot be observed in the two-state quantum walk - trapping.
In the fourth chapter the concept of the two-dimensional quantum walk on a lattice is introduced.
The last chapter focuses on a novel type of trapping observed in quantum walks in two dimensions -
strong trapping and ends with a general comment on the various types of random walks introduced in the
thesis.
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Chapter 1

Classical random walk

Let us provide a brief introduction to classical random walks and derive its most significant properties
using the simplest example of a random walk on a line and its subsequent generalization to higher di-
mensions.
It is important to note that there exist two types of random walks: discrete-time and continuous-time
random walk. In this text we restrict ourselves only to models of discrete-time random walks.

1.1 One-dimensional random walk

A classical random walk on a line can be described as a system consisting of a particle which moves along
equidistantly distributed points on a line making steps of the same length. At each step, the direction of
its motion is determined by a random process, for example by a toss of a coin, which gives two possible
mutually exclusive outcomes.
The crucial characteristic of this stochastic process is its probability distribution. Deriving it, we will
consider a particle with the initial position at the origin (S 0 = 0) performing a random walk with steps
of one unit. Suppose that the particle is assigned a probability p of shifting to the right and a probability
q = 1 − p of going to the left which can be associated with the two outcomes of the coin-flip.
The probability of finding the particle at the position x after n steps equals the probability of taking k
steps to the right and l steps to the left, where k, l obviously satisfy the following relations: x = k − l and
n = k + l. This can be equivalently viewed as the probability of obtaining k times outcome p (success)
in n flips (trials) of the coin. Since the next step of the random walk is independent of the previous one,
the above probability is governed by the binomial distribution

P(S n = x) =

(
n
k

)
pkql =

(
n
k

)
pk(1 − p)n−k. (1.1)

According to the central limit theorem [6] as number of steps n tends to infinity the binomial distribution
(1.1) approaches the Gaussian distribution (see Figure 1.1) with the mean value µ = 0 and the variance
σ2 = 1

lim
n→∞

P

a ≤ S n − (q − p)n√
(4pqn)

≤ b

 =

b∫
a

1
√

(2π)
e−

x2
2 dx, (1.2)

where −∞ < a < b < +∞.
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Figure 1.1: The probability distribution of the unbiased classical random walk after t = 100 step and its
limit distribution.

1.2 Generalization to Zd

In this section we introduce the most straightforward generalization of the one-dimensional random walk
described above. In this case the motion of the particle is restricted to d-dimensional integer lattice Zd

and its direction depends on a result of a coin-flip with 2d possible outcomes. Moreover, the coin is
supposed to be ’fair’, in other words, probability of the particle to jump to any of the 2d adjacent points
is 1

2d . Random walks that satisfy this condition are also referred to as simple random walks [7].
Now, using the same argument as in the previous section, we derive its probability distribution. Let us
denote by x = (x1, · · · , xd) the position of the particle. Again we assume that the random walk starts at
the origin (0, · · · , 0). Arbitrary component xi can be rewritten as xi = xi+ − xi−, where xi± correspond
to number of steps taken to the right and to the left, respectively along the i-th axis. The probability
P(S d

n = x) of being at point x after n steps is given by the multinomial distribution as

P(S d
n = x) =

n!∏d
i=1 xi+!xi−!

1
(2d)n . (1.3)

1.3 Returns to the origin

In the following we will be interested in one significant characteristic of classical random walks, namely
in the probability of its eventual return to the origin called the Pólya number. According to this property,
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random walks are classified as recurrent, if the Pólya number equals 1 and transient otherwise [8].
In the following we take advantage of the trivial fact that the probability of return is 0 for odd number
of steps. Therefore, we compute the corresponding probabilities after 2n steps instead which leads to
physically equivalent results.
Let Q be the Pólya number and pk, qk two sequences representing the probability that the particle is at
the origin after k steps and the probability that the particle returns to the origin after k steps for the first
time (for more details see [9]). The relation between these sequences is following

p0 = 1 (1.4)

p2 = q2

p4 = q4 + p2q2

...

p2k = q2k + q2k−2 p2 + · · · + q2 p2k−2

...

if we add those equation to infinity we obtain

∞∑
k=0

pk =

∞∑
k=0

pk

∞∑
k=1

qk + 1. (1.5)

Since also Q =
∑∞

k=1 qk the Pólya number can be expressed as

Q = 1 −
1
∞∑

k=0
pk

. (1.6)

This leads us to a simple criterion: The point 0 is recurrent if and only if
∑+∞

k=0 P(S k = 0) = +∞.

Now, we use this criterion to prove recurrence or transience for simple random walks in dimensions 1, 2
and 3.
For a one-dimensional simple random walk the probability of finding the particle at the origin can be
written according to equation (1.1) as

P(S 1D
2n = 0) =

(
2n
n

)
1

22n , (1.7)

which can be rewritten, using Stirlig’s formula, 1 as

P(S 1D
2n = 0) ≈

1
√
πn
. (1.8)

Since the series
∑∞

n=1
1√
n

is divergent, one-dimensional random walk is recurrent according to the above
criterion.
For a two-dimensional walk the corresponding probability is given as

P(S 2D
2n = 0) =

1
42n

n∑
k=0

(2n)!
(k!)2((n − k)!)2 =

1
42n

(
2n
n

)2

. (1.9)

1Stirling’s formula: n! ≈
√

2πn nn e−n
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Similarly, this can be approximated as

P(S 2D
2n = 0) ≈

1
πn
. (1.10)

Again, the corresponding series is divergent, hence random walk in dimension two is reccurent.
In the three dimensions the probability of finding the particle at the origin after 2n steps is given as

P(S 3D
2n = 0) =

1
62n

j+k≤n∑
j,k=0

(2n)!
(k!)2( j!)2((n − k − j)!)2 . (1.11)

After some algebra (for detailed computation see [10]) we get

P(S 3D
2n = 0) ≈

const
√

n3
. (1.12)

In this case the series converges. As a result, three-dimensional random walk is transient.
It can be shown that simple random walks in dimension d > 3 are transient [8].

1.4 Markov chains

A classical random walk can also be viewed as a Markov chain (for a detailed introduction to Markov
chains see [11]), which is a random process where the next step is independent of the previous evolution.
In the following we give a notion of Markov chains with the example of classical random walk on a
d-regular graph 2.
Let G be d-regular graph and I set of its vertices. We denote as pn the probability distribution over
vertices I after n steps, i.e. its components satisfy 0 ≤ pni ≤ 1, i ∈ I and

∑
i∈I pni = 1.

The evolution is generated by the transition matrix P, where 0 ≤ Pi j ≤ 1 and
∑

j∈I Pi j = 1. At the
same time, the element Pi j equals the probability of going from vertex i to vertex j. The probability
distribution over I after the n-th step of random walk is then given as pn = P pn−1.
We illustrate the idea of a Markov chain with the example of a simple classical random walk on a circle
of N vertices. In this case the transition matrix is given as

P =
1
2



0 1 0 0 · · · 0 1
1 0 1 0 · · · 0

0 1 0 1
...

0 0 1 0
. . .

...
...

. . . 1 0
0 1 0 1
1 0 · · · 0 1 0


(1.13)

and the probability distribution after n steps is given by pn = Pn p0. The probability distribution of this
random walk approaches the stationary distribution p∞ = ( 1

N , · · · ,
1
N ) [12].

There exist several other characteristics that describe important aspects of the behaviour of random walks.
The most important of them for the application of random walks in computer science are the so-called
hitting time and mixing time [12].

2D-regular graphs are graphs with vertex-degree d, in other words each vertex has d outgoing edges.
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Hitting time Hi j is the expected number of steps before the vertex j is visited for the first time during the
evolution of the random walk starting from vertex i.
On the other hand, mixing time represents the number of steps before the probability distribution of the
classical random walk is close enough to its limit distribution.

In this chapter we summarized several basic facts about classical random walks so that we could compare
this model with that of a quantum walk which we introduce in the next chapter.
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Chapter 2

One-dimensional quantum walk

Quantum walk is the quantum-mechanical counterpart of the classical random walk. The simplest exam-
ple of the quantum walk is a one-dimensional walk on a line, which consists of a quantum particle that
makes steps of the same length of one unit either to the left or to the right.
At this point we note that in the following we restrict ourselves to the so-called discrete-time quantum
walks. Similarly to classical random walks, there also exist continuous-time quantum walks. Unlike
the discrete-time quantum walks, the continuous-time quantum walks do not use a coin and their time
evolution is given by the unitary operator U(t) = exp(−iHt), where H represents the Hamiltonian of the
system [13].

2.1 Definition of the one-dimensional two-state quantum walk on a line

Let us now describe the model of a two-state quantum walk on a line.
The position of the particle at each time can be described by a vector from Hilbert spaceHp spanned by
the basis states { |n〉 ; n ∈ Z }.
To obtain non-trivial correctly defined quantum walk we use an additional degree of freedom called a
coin. In case of the two-state quantum walk, the coin is assigned a coin space Hc spanned by two basis
states we denote |L〉 and |R〉 corresponding to the direction of motion to the left and to the right. In the
following, we associate |L〉 and |R〉 with

(
1
0

)
and

(
0
1

)
, respectively.

The state of the whole system is thus represented by a vector from Hilbert spaceH , whereH = Hc⊗Hp

is the tensor product of Hilbert spacesHc andHp.
The evolution of a quantum walk is a unitary process on the Hilbert space H , which comprises of two
subsequent transformations of the state vector. First, the coin state is rendered in a superposition by the
application of the coin operator C, which acts on the coin space Hc and resembles a coin-flip in the
classical random walk. Subsequently, we realize the translation of the particle using conditional step
operator S on the state vector that moves the particle to the adjacent integer point on a line according to
the outcome of the previous coin-flip. The unitary step operator S can be described as follows

S = |L〉 〈L| ⊗
∑
n∈Z

|n − 1〉 〈n| + |R〉 〈R| ⊗
∑
n∈Z

|n + 1〉 〈n| . (2.1)

Each step of the quantum walk is then realized by the unitary operator U

U = S (C ⊗ I) (2.2)
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which gives the following expression for the state of the quantum walk after t steps with the initial state
|ψ(0)〉

|ψ(t)〉 = U t |ψ(0)〉 . (2.3)

Before we proceed, let us denote by ψR(n, t), ψL(n, t) the probability amplitude of finding the particle
at point n after t steps with the coin-state value R and L, respectively. We also define vector of these
amplitudes as

ψ(n, t) =

(
ψL(n, t)
ψR(n, t)

)
= ψL(n, t) |L〉 + ψR(n, t) |R〉 . (2.4)

The corresponding probability is then given by

P(n, t) = |ψL(n, t)|2 + |ψR(n, t)|2. (2.5)

In this notation, the time evolution (2.3) attains the following form

|ψ(t)〉 =
∑
n∈Z

(
ψL(n, t) |L〉 + ψ(n, t) |R〉

)
⊗ |n〉 . (2.6)

2.2 The Hadamard walk on a line

In the previous section we described the time evolution of a quantum walk as a successive application of
a unitary operator. Now, we will try to obtain general expressions for amplitudes of the particle being
at the position n at given time t in the case of the so-called Hadamard walk which is a typical example
of a quantum walk on a line. The unitary operation on the coin space is represented by the Hadamard
operator

Ĥ =
1
√

2

(
|L〉 〈L| + |L〉 〈R| + |R〉 〈L| − |R〉 〈R|

)
(2.7)

which has this form in the basis |L〉 =
(

1
0

)
, |R〉 =

(
0
1

)
H =

1
√

2

(
1 1
1 −1

)
. (2.8)

It is worth to note that the Hadamard walk is a balanced quantum walk which means that in one step the
probability of going to the left equals probability of shifting to the right.

There exist two major methods of quantum walk analysis. One of them, the combinatorial approach, is
based on the same principle as the method used in the section concerning classical random walk: the
desired probability is given as a sum of amplitudes of all the paths ending at point n after t steps.
However, in our case we will follow the so-called Schrödinger approach which was first employed by
Nayak and Vishwanath [14]. The basic principle of this method is to transform the time evolution of
the probability amplitude using the Discrete-Time Fourier Transform (see Appendix) analyse it in the
Fourier domain and then transform it back to the spatial domain with the help of the Inverse Fourier
Transform. This method represent the major method for analysis of quantum walks with homogeneous
coin (e. i. the coin operator does not change during the time evolution and also stays the same for every
position n) since this homogeneous quantum walks take a simple form in the Fourier domain.

In the following we demonstrate the Schrödinger approach on the example of the Hadamard walk. Obvi-
ously, in the (t +1)-th step of the walk only the amplitudes at the adjacent points ψ(n−1, t) and ψ(n+1, t)

14



contribute to the amplitude ψ(n, t + 1). After the application of the Hadamard operator on ψ(n − 1, t) and
ψ(n + 1, t), respectively, we obtain

Ĥψ(n ± 1, t) =
1
√

2

(
ψL(n ± 1, t) + ψR(n ± 1, t)
ψL(n ± 1, t) − ψR(n ± 1, t)

)
(2.9)

=
1
√

2

(
ψL(n ± 1, t) + ψR(n ± 1)

)
|L〉 +

1
√

2

(
ψL(n ± 1, t) − ψR(n ± 1, t)

)
|R〉 . (2.10)

Taking into consideration only the contributions to the probability amplitude ψ(n, t + 1) we derive the
following recurrent relation

ψ(n, t + 1) =

 1√
2

1√
2

0 0

ψ(n + 1, t) +

 0 0
1√
2

−1√
2

ψ(n − 1, t) (2.11)

where we denote

HL =

 1√
2

1√
2

0 0

 , HR =

 0 0
1√
2

−1√
2

 . (2.12)

The evolution of the Hadamard walk starting from the initial state
(
α |L〉+β |R〉

)
⊗|0〉, |α|2+|β|2 = 1, is then

given as the solution of the above recurrence with the initial condition ψ(0, 0) =

(
α

β

)
and ψ(n, 0) =

(
0
0

)
for n , 0.
As we have already mentioned, the task of computing analytic expression for the probability amplitude
ψ(n, t) is considerably simplified in the Fourier domain. We therefore transform the recurrence (2.11)
using the Discrete-Time Fourier Transform (Appendix (5.10))

ψ̃(k, t + 1) =
∑
n∈Z

(
HL ψ(n + 1, t) + HR ψ(n − 1, t)

)
eikn (2.13)

which can be rewritten as

ψ̃(k, t + 1) = e−ikHL

∑
n∈Z

ψ(n + 1, t)eik(n+1) + eikHR

∑
n∈Z

ψ(n − 1, t)eik(n−1)

=
(
e−ikHL + eikHR

)
ψ̃(k, t)

= Ũ(k) ψ̃(k, t) (2.14)

where

Ũ(k) =
1
√

2

(
e−ik e−ik

eik −eik

)
=

(
e−ik 0
0 eik

)
H. (2.15)

The recurrence (2.14) is thus easily rewritten as

ψ̃(k, t) = Ũ t(k) ψ̃(k, 0). (2.16)

As a result, our problem is reduced to the task of computing Ũ t(k) which is easy in case of a diago-
nal matrix. We therefore compute eigenvalues λ1(k) = e−iωk , λ2(k) = ei(π+ωk) and the corresponding
eigenvectors v1, v2 of the matrix Ũ(k)

v1(k) =
1
√

2

((
1 + cos2 k

)
− cos k

√
1 + cos2 k

)− 1
2
(

e−ik
√

2e−iωk − e−ik

)
(2.17)

v2(k) =
1
√

2

((
1 + cos2 k

)
+ cosk

√
1 + cos2 k

)− 1
2
(

e−ik

−
√

2eiωk − e−ik

)
(2.18)
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where ωk ∈ [−π2 ,
π
2 ] satisfies the relation sinωk = sin k√

2
.

The matrix Ũ t(k) then can be written in the form of a diagonal matrix as

Ũ t(k) = λt
1(k) |v1(k)〉 〈v1(k)| + λt

2(k) |v2(k)〉 〈v2(k)| (2.19)

which yields the following formula

ψ̃(k, t) = e−iωkt
〈
v1(k)

∣∣∣ψ̃(k, 0)
〉
|v1(k)〉 + ei(π+ωk)t

〈
v2(k)

∣∣∣ψ̃(k, 0)
〉
|v2(k)〉 (2.20)

where ψ̃(k, 0) =

(
α

β

)
is the Fourier transform of the initial state.

If we now return to the spatial domain using Inverse Fourier Transform (see Appendix (5.11)), we obtain
the general expressions for probability amplitude ψ(n, t) as

ψ(n, t) =
1

2π

π∫
−π

ψ̃(k, t)e−inkdk (2.21)

2.3 Asymptotic behaviour of the Hadamard walk

To obtain the asymptotic form of the probability distribution for the Hadamard walk, we now follow the
approach used in [15] which is based on the weak limit theorem obtained by Grimmett et al [16] who
introduced the method of moments to derive it. The r-th moment 1 of the position operator n is given as

〈
nr〉 =

1
2π

π∫
−π

ψ̃∗(k, t)
(
i

d
dk

)r

ψ̃(k, t)dk, (2.22)

where
(
i d

dk

)
is the Fourier transform of the position operator n. In the next step we express ψ̃(k, t) in

terms of (2.20)

〈
nr〉 =

1
2π

π∫
−π

ψ̃∗(k, t)
(
i

d
dk

)r (
e−iωkt

〈
v1(k)

∣∣∣ψ̃(k, 0)
〉
v1(k) + ei(π+ωk)t

〈
v2(k)

∣∣∣ψ̃(k, 0)
〉
v2(k)

)
dk

and apply the position operator
(
i d

dk

)
. We consider only the contributions to the integrand in which the

variable t is of order at least r

〈
nr〉 =

1
2π

π∫
−π

(
tr

(
dωk

dk

)r

e−iωkt
〈
v1(k)

∣∣∣ψ̃(k, 0)
〉 〈
ψ̃(k, t)

∣∣∣v1(k)
〉

+ (−1)rtr
(
dωk

dk

)r

ei(π+ωk)t
〈
v2(k)

∣∣∣ψ̃(k, 0)
〉 〈
ψ̃(k, t)

∣∣∣v2(k)
〉)

dk + O(tr−1).

Using again the formula (2.20) the r-th moment of the position operator n reads

〈
nr〉 =

1
2π

π∫
−π

tr
(
dωk

dk

)r (∣∣∣∣〈v1(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 + (−1)r
∣∣∣∣〈v2(k)

∣∣∣ψ̃(k, 0)
〉∣∣∣∣2) dk + O(tr−1).

1R-th moment the operator X in quantum mechanics is given as 〈Xr〉 = 〈ψ|Xr |ψ〉
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If we subsequently rescale the position operator by number of steps t we obtain

〈(n
t

)r〉
=

1
2π

π∫
−π

(
dωk

dk

)r (∣∣∣∣〈v1(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 + (−1)r
∣∣∣∣〈v2(k)

∣∣∣ψ̃(k, 0)
〉∣∣∣∣2) dk + O(t−1) (2.23)

which converges to the r-th moment of a variable [16]

1
2π

π∫
−π

(
dωk

dk

)r (∣∣∣∣〈v1(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 + (−1)r
∣∣∣∣〈v2(k)

∣∣∣ψ̃(k, 0)
〉∣∣∣∣2) dk = lim

t→+∞

〈(n
t

)r〉
= 〈vr〉 =

∫
vrw(v)dv.

(2.24)
We can express the following terms in the above relation as∣∣∣∣〈v1(k)

∣∣∣ψ̃(k, 0)
〉∣∣∣∣2 +

∣∣∣∣〈v2(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 = 1 (2.25)∣∣∣∣〈v1(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 − ∣∣∣∣〈v2(k)
∣∣∣ψ̃(k, 0)

〉∣∣∣∣2 = −
cos k√

(1 + cos2 k)

(
|α|2 − |β|2 + ᾱβ + αβ̄

)
(2.26)

Using the substitution

v = −
dωk

dk
= −

cos k
√

1 + cos2 k
, dv =

sin k√
(1 + cos2 k)3

dk (2.27)

and its inverse

cos k = −
v

√
1 − v2

, sin k = ±

√
1 − 2v2

1 − v2 (2.28)

we obtain the 〈vr〉 in the following form due to the symmetries of the integrand

〈vr〉 =

− 1√
2∫

− 1√
2

vr
1 −

(
|α|2 − |β|2 + ᾱβ + αβ̄

)
v

π(1 − v2)
√

1 − 2v2
dv (2.29)

which yields the probability density of the variable v as

w(v) =
1 −

(
|α|2 − |β|2 + ᾱβ + αβ̄

)
v

π(1 − v2)
√

1 − 2v2
. (2.30)

Let us comment on the most general two-state quantum walk on a line. The general unitary two-
dimensional matrix can be written in the following form

C =

( √
ρ

√
1 − ρeiθ√

1 − ρeiϕ −
√
ρei(θ+ϕ)

)
, (2.31)

where ρ ∈ (0, 1), 0 ≤ θ and ϕ ≤ π. The global phase of the coin operator was removed since it is
irrelevant for quantum walks with homogeneous coin.
In [17] Tregenna et al analysed quantum walk with the coin (2.31) and found the eigenvalues of this
operator in the Fourier domain as λ1,2 = ±eiδe±ωk , where δ =

θ+ϕ
2 and ωk satisfy relation sinωk =

√
ρ sin(k − δ). Notice that the eigenvalues are dependent of variable k for all two-state quantum walks on

a line.
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Figure 2.1: The probability distribution of the Hadamard walk after t = 100 step with the limit distribu-
tion (2.30) of the variable n

t normalized by 1
t .

2.4 Quantum walk vs. classical random walk

We have seen that the classical random walk is a stochastic process which satisfies the Markov prop-
erty. In contrast, the model of a homogeneous quantum walk described above is a deterministic process
since every step of this walk is governed by one unitary transformation. Moreover, the requirement of
"memorylessness" of the random walk cannot be satisfied in the case of its quantum counterpart since
every unitary process is reversible. The probabilistic nature of the quantum walk stems solely from the
quantumness of the particle.
The limit distributions of those two types of walks exhibit significant differences. The limit distribution
of the quantum walk does not have one peak centered around the origin since, due to the quantum-
mechanical properties of the particle, the amplitudes interfere (compare Figure 1.1 and Figure 2.1).
As can be seen from the comparison of the limit distributions, more precisely from the scaling factor
of the probability distribution (1.2) and (2.30), the quantum walk propagates quadratically faster. This
feature of quantum walks is utilized in quantum algorithm development.
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Chapter 3

Three-state quantum walk on a line

In this chapter we extend the model of the two-state quantum walk on a line to that of the three-state
quantum walk to demonstrate one remarkable property of quantum walks called trapping, previously
referred to as localization. We note that similar effect can be observed in case of four-state quantum
walks on a lattice.

3.1 Definition of the one-dimensional three-state quantum walk on a line

In the case of the three-state quantum walk there are three possible states of the coin (the internal degree
of freedom): in one step of the walk the particle can move to the left, to the right or stay at its current
position. The coin space thus has to be augmented by a basis vector which we denote by |S 〉 representing
the option with no motion. We choose the following basis of the coin space

Hc = span {|L〉 , |S 〉 , |R〉} = span


10
0

 ,
01
0

 ,
00
1


 . (3.1)

The corresponding shift operator S is given by

S = |L〉 〈L| ⊗
∑
n ∈Z

|n − 1〉 〈n| + |S 〉 〈S | ⊗
∑
n ∈Z

|n〉 〈n| + |R〉 〈R| ⊗
∑
n ∈Z

|n + 1〉 〈n| (3.2)

and every step of the walk is a unitary process represented by the evolution operator U (2.2). Again, we
denote by

ψ(n, t) =

ψL(n, t)
ψS (n, t)
ψR(n, t)

 (3.3)

the vector of the probability amplitudes of the particle being after t steps of the walk at point n corre-
sponding to the coin states |L〉 , |S 〉 and |R〉.

3.2 The Grover walk on a line

The most typical example of a three-state quantum walk on a line is that with the Grover operator as the
coin which was extensively studied by Konno et al [18]. In the above basis (3.1), the Grover operator is
given by
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G =
1
3

−1 2 2
2 −1 2
2 2 −1

 . (3.4)

Again, we assume that the particle starts the walk with the initial state

ψ(0, 0) =

αβ
γ

 , ψ(n, 0) =

00
0

 for n , 0, (3.5)

where |α|2 + |β|2 + |γ|2 = 1.
Using the same idea as in the case of the Hadamard walk, we obtain the time evolution of the Grover
walk in the following form

ψ(n, t + 1) = GL ψ(n + 1, t) + GS ψ(n, t) + GR ψ(n − 1, t), (3.6)

where we have denoted

GL =
1
3

−1 2 2
0 0 0
0 0 0

 , GS =
1
3

0 0 0
2 −1 2
0 0 0

 , GR =
1
3

0 0 0
0 0 0
2 2 −1

 . (3.7)

Subsequent application of the Discrete-Time Fourier Transform (5.10) gives the time evolution in the
Fourier domain as

ψ̃(k, t + 1) =
1
3

e
−ik 0 0
0 1 0
0 0 eik


−1 2 2

2 −1 2
2 2 −1

 ψ̃(k, t) = Ũ(k) ψ̃(k, t) (3.8)

where Ũ(k) represents the Fourier transform of the evolution operator U.
The solution of the recurrence (3.8) in the Fourier space is again reduced to a successive application of
the evolution operator Ũ(k) on the initial state ψ̃(k, 0) = ψ(0, 0), i. e.

ψ̃(k, t) = Ũ t(k) ψ̃(k, 0). (3.9)

Again, we diagonalize the unitary matrix Ũ(k) so that we can compute its t-th power as

Ũ t(k) =

3∑
j=1

λt
j(k)

∣∣∣v j(k)
〉 〈
v j(k)

∣∣∣ . (3.10)

The eigenvalues of the evolution operator Ũ(k) are given by

λ1 = e−iωk

λ2 = 1 (3.11)

λ3 = eiωk

where ωk satisfies for k ∈ [−π, π) conditions

cosωk = −
1
3

(2 + cos k) (3.12)

sinωk =
1
3

√
(5 + cos k)(1 − cos k). (3.13)
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The corresponding eigenvectors are obtained as

v1,3(k) =

√
2
(

1
1 + cos(ωk ∓ k)

+
1

1 + cosωk
+

1
1 + cos(ωk ± k)

)−1



1
1 + ei(∓ωk+k)

1
1 + ei∓ωk

1
1 + ei(∓ωk−k)


(3.14)

v2(k) =

√
1 + cos k
5 + cos k



1
1 + eik

1
2
1

1 + e−ik


. (3.15)

The recurrence (3.9) has the following expression in the orthonormal basis formed by the eigenvectors
(3.14) and (3.15)

ψ̃(k, t) =

3∑
j=1

λt
j(k)

〈
v j(k)

∣∣∣ψ̃(k, 0)
〉 ∣∣∣v j(k)

〉
(3.16)

and the desired probability ψ(n, t) is then obtained by the Inverse Fourier Transform (Appendix (5.11))
as

ψ(n, t) =
1

2π

π∫
−π

3∑
j=1

λt
j(k)

〈
v j(k)

∣∣∣ψ̃(k, 0)
〉 ∣∣∣v j(k)

〉
e−ikndk (3.17)

which can be equivalently written as

ψ(n, t) =

ψL(n, t)
ψS (n, t)
ψR(n, t)

 =

3∑
j=1


ψ

j
L(n, t)

ψ
j
S (n, t)
ψ

j
R(n, t)

 (3.18)

where

ψ
j
l (n, t) =

1
2π

π∫
−π

λt
j

〈
v j(k)

∣∣∣ψ̃(k, 0)
〉 ∣∣∣v j(k)

〉
e−ikndk (3.19)

for the coin-state values l = L, S ,R.
The major difference between the Hadamard walk and the discussed Grover walk is the existence of
the eigenvalue λ2 independent of k. This feature is responsible for the phenomenon which cannot be
observed in the two-state quantum walk - trapping. We have seen from the limit distribution (2.30) that
the probability of finding the particle at the fixed position in the limit as number of steps t tends to infinity
converges to zero in case of the two-state quantum walk. The particle is trapped at the initial position if
the probability of finding it there does not vanish after infinitely many steps. We will verify in the next
section that the Grover walk exhibits trapping.
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3.3 Probability of being at the origin in the limit

Let us now compute the analytic expression for the probability P(0,∞) of being at the origin as number
of steps t tends to infinity which is a limit of the expression

P(0, t) =

3∑
j=1

|ψ
j
L(0, t)|2 +

3∑
j=1

|ψ
j
S (0, t)|2 +

3∑
j=1

|ψ
j
R(0, t)|2. (3.20)

The probability amplitudes ψ1
j(0, t) and ψ3

j(0, t) take the form of integrals of oscillating functions e∓iωkt

which converge to 0 as t tends to infinity (follows from the Riemann-Lebesgue lemma). Hence the only
contribution to the probability P(0,∞) would be that of ψ2

j(0, t). However, since the eigenvalue λ2 equals
unity the ψ2

j(0, t) = ψ2
j(0) is independent of t. After some algebra, we can rewrite integrals ψ2

j(0) (3.19)
as

ψ2
L(0) =

α + β + γ

2π

π∫
−π

cos k + 1
cos k + 5

dk +
α − γ

2π

π∫
−π

sin2 k
(cos k + 5)(cos k + 1)

dk + i
β + 2γ

2π

π∫
−π

sin k
cos k + 5

dk

ψ2
S (0) =

α + β + γ

2π

π∫
−π

cos k + 1
cos k + 5

dk + i
γ − α

2π

π∫
−π

sin k
cos k + 5

dk (3.21)

ψ2
R(0) =

α + β + γ

2π

π∫
−π

cos k + 1
cos k + 5

dk +
−α + γ

2π

π∫
−π

sin2 k
(cos k + 5)(cos k + 1)

dk + i
−2α − β

2π

π∫
−π

sin k
cos k + 5

dk

The solution of the above equations is

ψ2
L(0) =

√
6

6
α +

− √6
3

+ 1
 β +

−5
√

6
6

+ 2
 γ (3.22)

ψ2
S (0) =

− √6
3

+ 1
 (α + β + γ) (3.23)

ψ2
R(0) =

−5
√

6
6

+ 2
α +

− √6
3

+ 1
 β +

√
6

6
γ (3.24)

which yields the trapping probability at the origin as

P(0,∞) = |ψ2
L(0)|2 + |ψ2

S (0)|2 + |ψ2
R(0)|2 (3.25)

= (5 − 2
√

6)
(
1 + |α + β|2 + |β + γ|2 − 2|β|2

)
. (3.26)

Note that the probability P(0,∞) depends only on the initial state of the quantum walk and is greater
than 0 except for one special choice of the localized initial state

ψG =

αβ
γ

 =
1
√

6

 1
−2
1

 , (3.27)

which is a solution of
|ψ2

L(0)|2 = |ψ2
S (0)|2 = |ψ2

R(0)|2 = 0. (3.28)

It can be readily verified that this solution is orthogonal to the eigenvector v2(k). Indeed, if we start the
Grover walk with the state ψG the component responsible for trapping ψ2

j vanishes. Since the coin is
three-dimensional we are able to find orthogonal basis spanned by vectors v2(k), ψG and v. However, the
vector v is not independent of k and thus cannot represent localized initial state. In other words, we have
shown that the Grover walk exhibits trapping except for one particular initial state ψG (see Figure 3.1).
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Figure 3.1: The probability distribution of the Grover walk on a line after t = 50 steps with the initial
states ψ = 1√

3
(1,−1, 1)T (on the left) and ψG = 1√

6
(1,−2, 1)T (on the right).

3.4 General three-dimensional coin exhibiting trapping

Štefaňák et al [19] found two classes of three-dimensional unitary operators C exhibiting trapping. As
we have already mentioned, this effect is conditioned by the existence of an eigenvalue in the point
spectrum. We now outline their method and show that in the case of the three-state quantum walk on a
line the trapping can be avoided by a suitable choice of the initial state.
Any three-dimensional coin operator has the following form in the Fourier domain

Ũ(k) =

e
−ik 0 0
0 1 0
0 0 eik

 C. (3.29)

It is easily shown that to obtain non-trivial, correctly defined quantum walk, Ũ(k) has to have exactly one
eigenvalue independent of k.
The eigenvalues of the general three-dimensional, trapping coin thus can be written in the form

λ2 = eiϕ, λ1,3(k) = e±iωk . (3.30)

Obviously, these eigenvalues must satisfy the characteristic equation

det
(
Ũ(k) − λ

)
= (λ1 − λ)(λ2 − λ)(λ3 − λ) = 0. (3.31)

Subsequent comparison of the terms with the same power of λ leads to conditions for elements of the
coin operator C.
In [19] the authors parametrized the general three-dimensional matrix, applied these conditions together
with conditions on a U(3) group and obtained two classes of coin operators which exhibit non-trivial
time evolution.
In the first case, the coin operator C1 depends on five parameters γ2, γ4, γ5, θ13 and θ23 which satisfy
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following conditions: θ13, θ23 , ±
π
2 , θ23 , 0, γ1 = γ2 + γ4 with angles in the interval (−π, π).

C1 =


ei(γ2+γ4) cos θ13 cos θ23 eiγ2 cos θ13 sin θ23 e−iγ5 sin θ13

−eiγ4 cos θ23(1 + sin θ13) sin θ23 cos2 θ23 − sin θ13 sin2 θ23 e−i(γ2+γ5) cos θ13 sin θ23

eiγ5(− cos2 θ23 sin θ13 + sin2 θ23) −e−i(γ4−γ5) cos θ23(1 + sin θ13) sin θ23 e−i(γ2+γ4) cos θ13 cos θ23


(3.32)

The second class C2 depends on six parameters γ1, γ2, γ4, γ5, δ and θ23. The evolution of the quantum
walk driven by this operator is non-trivial if following holds: θ13, θ23 , ±

π
2 , δ , γ1 − γ2 − γ4, sin θ13 =

− sin κ
sin(δ+κ) .

C2 =


eiγ1 cos θ23B eiγ2 B sin θ23 −e−i(δ+γ5)A sin κ

−ei(γ1−γ2)A sin θ23 cos θ23δ eiκ(cos2 θ23 + eiδA sin2 θ23 sin κ) e−i(γ1−γ4+γ5)B sin θ23

eiγ5(sin2 θ23 + eiδ cos2 θ23A sin κ) −e−i(γ4−γ5)A sin θ23 cos θ23 sin δ e−iγ1 cos θ23B


(3.33)

where κ = γ2 + γ4 − γ1, A = 1
sin(δ+κ) , B =

√
A2 sin δ sin(δ + 2κ).

In [19] they also derived the eigenvectors corresponding to the eigenvalue λ2 for both of the classes C1
and C2 as

v1(k) =


−e−iγ5

(
sin θ13

2 + cos θ13
2

)
sin θ23

ei(k−γ2−γ5)
(
sin θ13

2 − cos θ13
2

)
+ ei(γ4−γ5)

(
sin θ13

2 + cos θ13
2

)
cos θ23

−eik
(
sin θ13

2 + cos θ13
2

)
sin θ23

 (3.34)

v2(k) =


ei(γ2+γ4) sin δ sin θ23

−ei(γ1+γ4) sin δ cos θ23 + ei(k+γ4) √sin δ sin(δ + 2κ)
ei(k+γ1+γ5) sin δ sin θ13

 . (3.35)

Now we show that for general three-dimensional trapping coin there exists localized initial state that is
orthogonal to eigenvector corresponding to the constant eigenvalue and thus results in propagating walk.
Let us denote such states by ψ1, ψ2 corresponding to the class C1 and C2, respectively. These states must
satisfy the following relation for every k

〈vi(k)|ψi〉 = 0, ψi =

αβ
γ

 , i = 1, 2 (3.36)

In the case of the first class C1 we obtain the following relations (in ki, i represents the power of k):

k0 : αeiγ5

(
sin

θ13

2
+ cos

θ13

2

)
sin θ23 = βe−i(γ4−γ5)

(
sin

θ13

2
+ cos

θ13

2

)
cos θ23 (3.37)

k1 : βe−i(k−γ2−γ5)
(
sin

θ13

2
− cos

θ13

2

)
= γe−ik

(
sin

θ13

2
+ cos

θ13

2

)
sin θ23 (3.38)

with the solution

ψ1 =
1
√

2


e−iγ4 cos θ23

(
sin θ13

2 + cos θ13
2

)
sin θ23

(
sin θ13

2 + cos θ13
2

)
ei(γ2+γ5)

(
sin θ13

2 − cos θ13
2

)
 (3.39)

For the class C2 the equation (3.36) gives:

k0 : αe−i(γ1+γ2) sin δ sin θ23 = βe−i(γ1+γ4) sin δ cos θ23 (3.40)

k1 : −βe−i(k+γ4)
√

sin δ sin(δ + 2κ) = γe−i(k+γ1+γ5) sin δ sin θ13. (3.41)
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with the corresponding solution

ψ2 =
sin(δ + κ)√

sin δ
(
sin2 κ sin δ + sin3(δ + κ) sin2 θ23

)


e−i(γ1−γ2) cos θ23 sin θ13 sin δ
sin θ23 sin θ13 sin δ

−e−i(γ4−γ1−γ5) √sin δ sin(δ + κ) sin θ23

 . (3.42)

In this chapter we presented a striking property of quantum walks - trapping. We note that the effect of
trapping does not have a classical analogue. Indeed, if the probability of leaving the current position is
non-zero the classical random walk diffuses. Hence, trapping is purely quantum phenomenon.
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Chapter 4

Two-dimensional quantum walk

Let us now focus on a quantum walk on a two-dimensional lattice. We will see that in certain aspects
this type of quantum walk differs considerably from the one-dimensional case. The major difference is
that the two-dimensional quantum walk allows for the trapping effect even in the case of a leaving walk.

4.1 Definition of the two-dimensional quantum walk on a lattice

The basic concept is similar to that of the quantum walk on a line. The particle is assigned a Hilbert
spaceH = Hc ⊗Hp, where the coin spaceHc is spanned by vectors

{ |L〉 , |D〉 , |U〉 , |R〉} =



1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1


 (4.1)

corresponding to all four possible directions of movement: to the left, down, up and to the right. The
position on the lattice is given by a vector from the Hilbert space Hp = span{ |p〉 = |n,m〉 | n,m ∈ Z},
where n,m represent the coordinates of the particle on the lattice. The conditional shift operator takes
the form

S =
∑

n,m ∈Z

(
|L〉 〈L| ⊗ |n − 1,m〉 〈n,m| + |D〉 〈D| ⊗ |n,m − 1〉 |n,m〉

+ |U〉 〈U | ⊗ |n,m + 1〉 〈n,m| + |R〉 〈R| ⊗ |n + 1,m〉 〈n,m|
)
. (4.2)

One step of this quantum walk is again given by (2.2) and its state after t steps with the normalized initial
state |ψ(0)〉 =

(
α |L〉 + β |D〉 + γ |U〉 + δ |R〉

)
⊗ |0, 0〉 localized at the origin corresponds to

|ψ(t)〉 =
∑

n,m ∈Z

(
ψL(n,m, t) |L〉 + ψD(n,m, t) |D〉 + ψU(n,m, t) |U〉 + ψR(n,m, t) |R〉

)
⊗ |n,m〉 , (4.3)

where ψ j(n,m, t), j = L,D,U,R are again components of the vector of the probability amplitudes
ψ(n,m, t) analogous to (2.4).
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4.2 Two-dimensional Grover walk

In this section we give a typical example of a quantum walk on a two-dimensional lattice with the help
of the Grover walk represented by the four-dimensional Grover coin

G =
1
2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (4.4)

The time evolution, obtained by similar reasoning as that of the Hadamard walk (2.11), attains the fol-
lowing form

ψ(n,m, t + 1) = GL ψ(n + 1,m, t) + GD ψ(n,m + 1, t) + GU ψ(n,m − 1, t) + GR ψ(n − 1,m, t) (4.5)

where G j, j = L,D,U,R represent

GL =
1
2


−1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

 , GD =
1
2


0 0 0 0
1 −1 1 1
0 0 0 0
0 0 0 0

 , GU =
1
2


0 0 0 0
0 0 0 0
1 1 −1 1
0 0 0 0

 , GR =
1
2


0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 −1

 .
(4.6)

Using the two-dimensional Discrete-Time Fourier Transform (see Appendix 5.12) we derive the time
evolution of the Grover walk in the Fourier domain as

ψ̃(k, l, t + 1) =
∑

n,m∈Z

ψ(n,m, t) eikneilm

= e−ikGL

∑
n,m∈Z

ψ(n + 1,m, t) eik(n+1)eilm + e−ilGD

∑
n,m∈Z

ψ(n,m + 1, t) eikneil(m+1)

+ eilGU

∑
n,m∈Z

ψ(n,m − 1, t) eikneil(m−1) + eikGR

∑
n,m∈Z

ψ(n − 1,m, t) eik(n−1)eilm

=
(
e−ikGL + e−ilGD + eilGU + eikGR

)
ψ̃(k, l, t)

= Ũ(k, l) ψ̃(k, l, t)

= Ũ t(k, l) ψ̃(k, l, 0). (4.7)

The recurrence (4.7) represents the time evolution of the Grover walk with the initial state ψ̃(k, l, 0) =

ψ(0, 0, 0) = (α, β, γ, δ)T in the Fourier domain with the transformed step operator

Ũ(k, l) =


e−ik 0 0 0
0 e−il 0 0
0 0 eil 0
0 0 0 eik

 G. (4.8)

The solution of the recurrence (4.7) has the following form

ψ̃(k, l, t) =

4∑
j=1

λt
j(k, l)

〈
v j(k, l)

∣∣∣ψ̃(k, l, 0)
〉 ∣∣∣v j(k, l)

〉
(4.9)
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where
λ1 = 1, λ2 = −1, λ3 = eiω(k,l), λ4 = e−iω(k,l) (4.10)

represent the eigenvalues of the operator (4.8) where ω(k, l) is given as

cosω(k, l) = −
1
2

(cos k + cos l) , k, l ∈ [−π, π) (4.11)

with the corresponding eigenvectors

v j(k, l) =



(
λ j eil + 1

) (
λ j e−ik + 1

) (
λ j e−il + 1

)(
λ j eik + 1

) (
λ j e−ik + 1

) (
λ j e−il + 1

)(
λ j eil + 1

) (
λ j eik + 1

) (
λ j e−ik + 1

)(
λ j eil + 1

) (
λ j eik + 1

) (
λ j e−il + 1

)
 . (4.12)

Notice that again we obtained eigenvalues independent of k and l. This implies that the two-dimensional
quantum walk driven by the Grover coin is trapped at the origin, which was verified by Konno in [20].
Again, the trapping can be avoided by a suitable choice of the initial state, namely by choosing an initially
localized state without an overlap with eigenvectors v1 and v2 that are responsible for trapping. Similarly
to the three-state quantum walk on a line, these initial states must be orthogonal to the eigenvectors v1
and v2. Solving the equation 〈

v j(k, l)
∣∣∣ψG

〉
= 0, j = 1, 2 (4.13)

for every k, l yields exactly one initially localized state ψG = 1
2 (1,−1,−1, 1)T which results in a propa-

gating quantum walk (compare Figure 4.1 and Figure 4.2).
There is a significant difference between the trapping effect in the case of the four-state quantum walk
on a lattice and in the case of the three-state quantum walk on a line. The four-state quantum walk intro-
duced above belongs to the so-called leaving walks, which means that at each step the particle is forced
to leave its current position. Unlike in the case of the quantum walk on a line, the four-state quantum
walk can exhibit trapping even if it has zero probability of staying at the same point in one step of the
walk. This is one of many examples of counter-intuitive nature of quantum mechanics.

4.3 General four-dimensional trapping coin

Let us now consider general trapping four-state coin governing a two-dimensional quantum walk. We
have already seen that the trapping effect stems from the existence of a constant eigenvalue. Let us denote
by λ an eigenvalue of the operator Ũ(k, l), which is the Fourier transform of the general coin C

Ũ(k, l) = diag
(
e−ik, e−il, eil, eik

)
C =


e−ik 0 0 0
0 e−il 0 0
0 0 eil 0
0 0 0 eik



c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c24 c34 c44

 (4.14)

The eigenvalue λ obviously satisfies the characteristic equation

det
(
Ũ(k, l) − λ

)
= λ4 − λ3

(
c11 e−ik + c22 e−il + c33 eil + c44 eil

)
+

λ2
(
C14 + C23 + C12 e−ike−il + C13 e−ikeil + C24 eike−il + C34 eikeil

)
− λ

(
C123 e−ik + C124 e−il + C134 eil + C234 eik

)
det (C) = 0, (4.15)
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where we have denoted

Ci j = det
(
cii ci j

c ji c j j

)
and Ci jk = det

cii ci j cik

c ji c j j c jk

cki ck j ckk

 . (4.16)

Let us now assume that λ lies in the point spectrum of the operator (4.14), i. e. λ is a k, l-independent
eigenvalue. The equation (4.15) holds for every k, l which leads to the following relations

λ4 + λ2 (C14 + C23) + det (C) = 0

λ3
(
c11 e−ik + c22 e−il + c33 eil + c44 eil

)
+ λ

(
C123 e−ik + C124 e−il + C134 eil + C234 eik

)
= 0 (4.17)

λ2
(
C12 e−ike−il + C13 e−ikeil + C24 eike−il + C34 eikeil

)
= 0.

One can immediately see that if λ is a constant eingevalue of the operator (4.14) then −λ is in the spectrum
since it satisfies relations (4.17).
Considering a coin with three constant eigenvalues, we find out that the last one has to be k, l-independent
as well. This readily follows from the relation det(Ũ(k, l)) = det(C) which stems from (4.14). However,
coin operator with four constant eigenvalues results in a quantum walk with trivial time evolution. Hence,
the general trapping four-state coin possesses a pair of constant eigenvalues λ, −λ.
Relations (4.17), together with the conditions on U(4) group, represent requirements on the general four-
state trapping coin. However, solving these equations analytically appears to be practically impossible.
In the next chapter we present an alternative approach for the construction of the trapping coins.
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Figure 4.1: The probability distribution of the Grover walk on a two-dimensional lattice after t = 50
steps with the initial state ψ = 1

2 (1,−1, 1, 1)T .

Figure 4.2: The probability distribution of the Grover walk on a two-dimensional lattice after t = 50
steps with the initial state ψG = 1

2 (1,−1,−1, 1)T .

30



Chapter 5

Strong trapping

We now introduce stronger version of the trapping effect considered in the previous two chapters. Strongly
trapped quantum walks exhibit a wide range of interesting properties such as non-trivial topological
phases or possible utilization for the quantum search [21].

5.1 Definition of strong trapping effect

Let us consider a two-dimensional quantum walk on a lattice driven by the following coin operator

CS TR =
1

2
√

2


−
√

3
√

3 1 1
1 −1

√
3
√

3
√

3
√

3 −1 1
1 1

√
3 −

√
3

 . (5.1)

It is easily verified that the Fourier transform Ũ(k, l) of this operator given by the equation (4.14) has
eigenvalues in the form (4.10) where

cosω(k, l) = −

√
3 cos k + cos l

2
√

2
, k, l ∈ [−π, π) (5.2)

and eigenvectors corresponding to the pair of constant eigenvalues λ1, λ2 given as

v1,2(k, l) =


√

2 ± eil
√

2 ±
√

3eik

±
√

3eil +
√

2eikeil

±eik +
√

2eikeil

 . (5.3)

There is a striking difference between the Grover walk defined in the previous chapter and the quantum
walk driven by the coin operator (5.1), namely the non-existence of the vector orthogonal to the eigen-
vectors v1(k, l) and v2(k, l) in the latter case. Indeed, the equation (4.13) yields only a trivial solution in
this case. In other words, the quantum walk is trapped for arbitrary choice of localized initial state. This
phenomenon, called strong trapping, was defined by Kollár et al in [21] where they introduced a class of
four-dimensional trapping coins using a constructive approach.
General coin from this class depends on 7 real parameters α1, α2, β1, β2, δ1, δ2 and ϕ and has the
following form
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CS =


e−i(α1+α2) cos δ1 cos δ2 −e−i(α2+β1) sin δ1 cos δ2 −e−i(α1+β2) cos δ1 sin δ2 e−i(β1+β2+ϕ) sin δ1 sin δ2
e−i(α1−β2) cos δ1 sin δ2 −e−i(β1−β2) sin δ1 sin δ2 e−i(α1−α2) cos δ1 cos δ2 −ei(α2−β1−ϕ) sin δ1 cos δ2
e−i(α2−β1) sin δ1 cos δ2 ei(α1−α2) cos δ1 cos δ2 −ei(β1−β2) sin δ1 sin δ2 −ei(α1−β2−ϕ) cos δ1 sin δ2
ei(β1+β2+ϕ) sin δ1 sin δ2 ei(α1+β2+ϕ) cos δ1 sin δ2 ei(α2+β1+ϕ) sin δ1 cos δ2 ei(α1+α2) cos δ1 cos δ2

 .
(5.4)

In [21] they also analysed quantum walks driven by the coin operator (5.4) in the Fourier domain and
obtained the eigenvectors corresponding to the constant eigenvalues λ1 = 1 and λ2 = −1 as

v1,2(k, l) =
1
2


−eiβ1 sin δ1 ∓ e−iβ1eil sin δ2
−e−iα1 cos δ1 ± eiα2eik cos δ2

∓eiα2eil cos δ2 + eiα1eikeil cos δ1
∓ei(β2+ϕ)eik sin δ2 − ei(β1+ϕ)eikeil sin δ1

 . (5.5)

In this case the relation (4.13) leads to the condition

cos 2δ1 = cos 2δ2 (5.6)

which means that strong trapping is avoided for the coins satisfying (5.6). Indeed, in this case there exists
initially localized state that results in non-trapped quantum walk given by

ψ(0, 0, 0) =
1
√

2


e−iβ1 cos δ1
−e−iα1 sin δ1

−e−i(α2+β1−β2) sin δ1
−e−i(α1+α2−β2−ϕ) cos δ1

 , ψ(n,m, 0) =


0
0
0
0

 for n,m , 0. (5.7)

In the previous chapter we studied the Grover walk on a lattice which belongs to the weakly trapped
quantum walks, i. e. walks that escape for the choice of the initial state (5.7). If we compare the
spectra of weakly trapping and strongly trapping coins, we see that the spectrum is gapless in the former
case, whereas in case of the strong trapping walks there appear gaps around ω(k, l) = 0 (see Figure 5.1
and Figure 5.2). This implies the existence of non-trivial topological phases (for an introduction to
topological phases see [22]).

5.2 General notes on the trapping in classical and quantum walks

Let us now comment on the most significant differences between various types of classical random walk
and quantum walks regarding the effect of trapping.
The classical random walk is not trapped unless the probability of leaving the current position is zero. In
other words, the trapping does not have a classical analogue.
As we have already discussed in the previous chapter, contrary to the four-state quantum walk on a
lattice, the two-state (leaving) one-dimensional quantum walk does not exhibit trapping since it cannot
possess k-independent eigenvalue.
In chapter 3 we also observed that for an arbitrary one-dimensional three-state trapping walk the trapping
effect could be avoided by one special choice of the initial state. This became more complicated in the
case of the two-dimensional quantum walks which are classified as weakly trapped, if the trapping can
be avoided, or strongly trapped otherwise.
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Figure 5.1: The spectrum of the Grover coin (4.4).

Figure 5.2: The spectrum of the strongly trapping coin operator (5.1).
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Conclusion

In this thesis we have summarized the concept of quantum walks in dimensions one and two.
In the first chapter we outlined basic information about classical random walks such as the limit distri-
bution, the recurrence properties or hitting and mixing time of random walks.
In the second chapter we introduced quantum walk on a line and illustrated methods of analysis with
the example of the Hadamard walk. We also commented on the most significant differences between the
models of the classical and quantum walks.
In the third chapter we described the three-state quantum walk on a line and showed that the three-state
quantum walk driven by the Grover coin exhibits trapping. We also presented the general form of three-
state trapping coins.
The last two chapters dealt with the effect of trapping in leaving quantum walks on a two-dimensional
lattices. We saw that the trapping effect in dimension two represents a more complex phenomenon and
that the four-state trapping coins can be classified as weakly or strongly trapping according to whether
the trapping can be avoided or not.
However, there still remain open questions. On the contrary to the three-state quantum walk on a line,
the form of the general strongly trapping coin is yet to be determined. Once we have obtained this form,
there arise questions related to the stability of the trapping effect on a lattice under perturbations, such as
the dependence of the coin on small changes of its parameters or the underlying lattice. These charac-
teristics are extremely important for physical implementation of quantum walks. Strongly trapping coin
could also be potentially utilized for wave-packet manipulation. The wave-packet could be trapped or
released by switching form a trapping to a non-trapping coin.
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Appendix

Fourier Transform

Let f ∈ L1(Rn). The Fourier transform F : L1(Rn) 7→ C(Rn) of the function f defined as

(F f )(y) =

∞∫
−∞

eiy·x f (x) dn x (5.8)

is a bounded function.
The Fourier transform has some interesting properties:

Linearity: a ∈ C, f , g ∈ L1(Rn)(
F

(
a f (x) + g(x)

))
(y) = a

(
F f (x)

)
(y) +

(
F g(x)

)
(y).

Modulation: b ∈ Rn, f ∈ L1(Rn)(
F f (x)

)
(y + b) =

(
F eibx f (x)

)
(y).

Translation: b ∈ Rn, f ∈ L1(Rn)(
F f (x − b)

)
(y) = eiby (F f (x)

)
(y).

Scaling: c ∈ R, c , 0, f ∈ L1(Rn)

(
F f (cx)

)
(y) =

1
|c|n

(
F f (x)

) (
y

c

)
.

Conjugation: f ∈ L1(Rn) (
F f (x)

)
(y) =

(
F f (x)

)
(−y).

Fourier transform is injective. The inverse transform is given as

(
F −1 f

)
(x) =

1
(2π)n

∞∫
−∞

e−iy·x f (y) dny. (5.9)

However, in this thesis we use the so-called Discrete-Time Fourier Transform to analyse discrete-time
quantum walks.
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Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform f̃ of a complex valued function f over integers is defined as
follows:

f̃ (k) =
∑
n∈Z

f (n) eikn (5.10)

with the corresponding inverse transform

f (n) =
1

2π

π∫
−π

f̃ (k) e−ikn dk. (5.11)

The above relations can also be generalized to two-dimensional spaces as

f̃ (k, l) =
∑

n,m∈Z

f (n,m) ei(kn+lm) (5.12)

f (n,m) =
1

(2π)2

π∫
−π

π∫
−π

f̃ (k, l) e−i(kn+lm) dk dl. (5.13)
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