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B.6 Asia, heat map of Rényian transfer entropy q=1.5 . . . . . . . . 46
B.7 Europe, heat map of Shanonian transfer entropy . . . . . . . . . 46
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Chapter 1

Information theory

Information theory was founded by Shanon in 1948, see [1], and it was orig-
inally intended to solve problem of reliable communication over an unreliable
channel. Then it gradually spread to many fields. And now, after more than
a half century, we can see broad applicability of information theory not only in
communication theory, but even in physics, statistics or machine learning.

1.1 Shannon entropy

The main question of information theory is how we can measure information
or uncertainty of random variable. First attempt to quantify information was
performed by Hartley in 1928, see [2]. According to him, we need log2N units of
information to describe (encode) particular element from some set consisting of
N elements. The logarithmic measure provides additivity property, i.e. to select
arbitrary element from two sets with N and M elements we need log2NM units
of information. But this is just sum of needed information to select element from
first set and then from the other.

Shanon extended this idea for sets with given probability distribution, i.e.
provided we have additional knowledge about the set, and thereby proposed to
measure the information by entropy.

Definition 1.1. Let X be a discrete random variable with distribution p(x).
Then we define entropy of X as:

H(X) = −
∑
x∈X

p(x) log p(x),

where X denotes set of all possible outcomes of X. For events x with probability
p(x) = 0 we define summand by lim

p→0
p log p = 0.
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Chapter 1. Information theory

From definition it can be readily seen that entropy can be rewritten as ex-
pected value.

H(X) = E

[
log

1

p(X)

]
The expression − log p(x) is sometimes called measure of surprise of event

x. It measures the uncertainty of the event before experiment or equivalently
information that may be yielded by observing the event. The surprise is large
for very unusual events due to logarithm around zero. On the other hand,
observing of almost certain event does not surprise us so much (it gives us little
information) since it is in some sense expected. Hence we can say that entropy
is an expected value of measure of surprise.

1.1.1 Coding theory and Huffman code

According to Shanon, the entropy is the averaged number of bits needed to
optimally encode random variable X with its probability distribution p(x). It
means that entropy is averaged number of questions which can be answered only
by yes or no and that bring us from absolute randomness to complete knowledge
of random variable X. Let us proceed the following example to demonstrate
this interpretation and also basic ideas of coding theory.

Let X be a random variable defined as:

X =


1 with probability 1/2
2 with probability 1/4
3 with probability 1/8
4 with probability 1/8

Then there is at least log2 4 = 2 yes/no questions that completely determine
random variable X. We can follow this diagram to determine the value of X.

”Is
X > 2?”

”Is
X > 1?”

X = 1NO

X = 2YESNO

”Is
X > 3?”

X = 3NO

X = 4YES

YES

In this case the number of questions does not depend on the actual value of X
and hence the averaged number of questions is E[Q] = 2 and this corresponds
to uniform distribution of X.

2



Chapter 1. Information theory

We can also simply ask: ”Is X = 1?”, ”Is X = 2?” and so on. This approach
will require three questions in order that we can determine the arbitrary value
of random variable X but the actual number of questions depends on value of
X. The averaged number of questions will be (notice we smartly started asking
from the most probable value):

E[Q] = 1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
=

7

4
(1.1)

Thus, we reduced the average number of questions by involving the additional
information in the form of known probability distribution.

In order to encode the random value X we transfer this questionnaire into
binary code with leading zeros followed by one on the i-th place representing
yes for the i-th question. For example, the value 3 for X is encoded by 001.
Generally every sequence of yes/no questions can be encode in binary code so
that finding the least averaged number of questions is equivalent to finding the
shortest averaged binary code.

Huffman code

The main question in coding theory is how much we can shorten the code.
The code should be instantaneous i.e. no code contains prefix of some other
code. This requirement ensure instantaneous decoding i.e. we can decode every
bit immediately without waiting for transmission of all code. Such a code is
already uniquely decipherable. The existence of such a code is guaranteed by
Kraft’s inequality.

Theorem 1.1. (Kraft’s inequality)
Let {x1, . . . , xN} be possible outcomes that are encoded by sequences of charac-
ters from alphabet {0, . . . , D− 1}. Then there is an instantaneous code with the
lengths of sequences {l1, . . . , lN} iff

N∑
i=1

D−li ≤ 1 (1.2)

Shanon solved the problem of redundancy when he proved the most significant
theorem in coding theory.

Theorem 1.2. (Shanon’s noiseless coding theorem 1948)
Let the lengths of codes {l1, . . . , lN} satisfies inequality 1.2. Then the averaged
length of code is bounded from below.

E[L] ≥ H(X)

3



Chapter 1. Information theory

Unfortunately the theorem claims nothing about construction of the code.
It only states theoretical boundary for averaged length under which we cannot
get. Lately Huffman published the construction of optimal code i.e. code that
minimize averaged length.

E[L] =

N∑
i=1

pili

For fixed source i.e. random variable X we readily find the optimum lengths l∗i
by minimizing E[L] as a function of li subject to the Kraft inequality constraint.
By Lagrange multipliers we derive:

l∗i = − logD pi,

hence, the minimum averaged length is

L∗ =

N∑
i=1

pi(− logD pi) = HD(X)

and from Shanon theorem it follows that L∗ is minimum and thus lengths l∗i
corresponds to optimal code. Since lengths must be integers we generally achieve
minimum lengths only for D-adic probability distributions i.e. for ∀i ∃n ∈ N
such that pi = D−n

We may take li = dlogD
1
pi
e these lengths satisfies Kraft inequality too since

the property of Ceiling function x ≤ dxe ≤ x+ 1 and this choice of code lengths
is called Shanon-Fano code. The averaged length then satisfies well known
inequality.

HD(X) ≤ L < HD(X) + 1 (1.3)

In order to get closer to the boundary we do not code only individual symbols
but all sequences of say M symbols. Due to independence of symbols we get the
entropy of sequence H(X1, . . . , XM ) = MH(X) (we will state the properties of
entropy later). The inequality 1.3 holds even for composed sequences thus, we
have

H(X) ≤ L

M
< H(X) +

1

M

and L
M represents averaged length per symbol. We see that coding longer se-

quences allows arbitrary approach to theoretical boundary.

Let us discuss the construction of Huffman code. Huffman assumed instan-
taneous code and then derived optimal code by reasoning about properties of
such code.

4



Chapter 1. Information theory

1. The length of more probable message must not be greater than length
of less probable one. So that after rearrangement of the messages the
following condition holds:

p1 ≥ p2 ≥ . . . ≥ pN

l1 ≥ l2 ≥ . . . ≥ lN

2. Due to definition of instantaneous code, namely the prefix restriction, the
two longest codewords must have the same length

lN−1 = lN

3. At least two and not more than D of the codewords with length lN must
differ only in the last bit/digit.

4. Each possible sequence of lN − 1 digits must be used either as a codeword
or must have one of its prefixes used as a codeword.

From these properties we can simply construct the optimal code. In what
follow assume D = 2 i.e. binary code. The construction is:

1. Assign to two less probable messages 0 and 1. It will be their last digit in
the codeword.

2. Combine these two messages into one with probability equal to sum of
their probabilities.

3. Repeat all procedure with new set consisting of N − 1 messages until you
have only one message.

We see that the codeword is created from the end to the beginning. Let
illustrate the procedure by example. Recall the random variable X from the
beginning of this subsection and let encode it by Huffman optimal code.

codeword X

0 1 1/2 1/2 1/2 1

10 2 1/4 1/4 1/2

110 3 1/8 1/4

111 4 1/8

5



Chapter 1. Information theory

The entropy of random variable X is:

H(X) =
1

2
· log2 2 +

1

4
· log2 4 +

1

8
· log2 8 +

1

8
· log2 8 =

7

4
,

and according to Shanon there is no code with averaged length less than H(X).
Let see what excepted length of Huffman code is:

E[L] = 1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
=

7

4

This result do not surprise us because we already know that Huffman code
is optimal and since probability distribution of X is 2-adic we reach the lowest
boundary.

At the end let us note the connection between code and questions which bring
us to complete knowledge about some the system (random variable). We have
already seen that every questionnaire can be rewritten into codeword and vice
versa so that E[Q] = E[L]. And therefore since 1.1 we can say that we have
by chance guessed the most effective questions. If we compare the way how we
encoded the questions and Huffman code we see that after exchanging ones by
zeros the codes exactly match.

Hence, we can ask whether asking for the most probable value in each step is
generally the most effective way of determining the random variable. The answer
is no. The proper question may be yielded from Huffman code by determining
the successive digits in the code (starting from the most significant bit i.e. from
left to right). Thus after the first question: ”Is X in set A?” we must know
what the first digit in the code is and accordingly we choose the set A.

1.1.2 Entropy interpretation in statistical physics

Let us show brief evolution of the word ”entropy” as it emerges in two fields
of physics namely thermodynamics and statistical physics. At the end we will
intimate connection with information definition of entropy.

The term entropy was firstly introduced in thermodynamics by Clausius as
a state function of thermodynamical system. Precisely, only a differential of
entropy was defined:

dS =
dQ

T

The definition was motivated by the fact that heat received by the system
during any reversible process depends on the path in state space i.e. dQ is
not a total differential of some state function. Luckily, for reversible processes
there always is an integrating factor 1

T that changes Pfaff’s form dQ into exact
differential and corresponding state function S is then called entropy. Since

6



Chapter 1. Information theory

only differential was defined the actual value of S depends on initial value S0

independent of temperature and external parameters. However, it is proved
that this initial value have to be function of number of particles otherwise Gibbs
paradox arises.

Second law of thermodynamics stays that for reversible (quasi-static) adia-
batic process the entropy is conserved. However, for non-static (irreversible)
processes the entropy increase and difference dS > 0 can be regarded as a mea-
sure of irreversibility or, in other words, the loss of information that is necessary
to back trace the process.

For isolated system entropy increases for non-static processes. Let have sys-
tem at equilibrium state and by sudden change of external parameters shift
it to another non-equilibrium state (1). Then, provided the system is further
isolated, it will aim to new equilibrium state (2) corresponding to new set of
parameters. In this state the entropy takes maximum value and the difference
δS = S(2) − S(1) > 0 may represent distance of state (1) from equilibrium state
(2).

Other interpretation of entropy comes from statistical physics, where it is
considered to be a measure of the extent to which a system is disordered. And
the value of entropy is logarithm of number of allowable configurations or micro-
states of the system satisfying given constraint, such as specific energy level. The
Boltzmann equation expresses this interpretation.

S = k ln Γ

In other words, every physical system is incomplete defined. We only know
some macroscopic quantities and cannot specify the position and velocity of
each molecule in the system. This lack of information is entropy i.e. entropy
is amount of information about the system that is needed for description of
microscopic structure.

There were none clues that entropy defined by Shanon and that from statis-
tical physics should be somehow related. Its the work of Jaynes who connected
the information view of entropy with that from statistical physics or thermody-
namics.

1.1.3 Basic properties of entropy

Firstly, someone may notice that we have not specified the base of logarithm.
It is a common habit not to write the base as it is almost always assumed to
be 2 in which case the entropy is measured in unit bits, which was adduced by
J. W. Tukey. Nonetheless, we can sometimes encounter with natural logarithm
which corresponds to unit called nat. For special purposes one is allowed to use

7



Chapter 1. Information theory

arbitrary units (base of the logarithm). Fortunately, there is a simple rule for
converting entropy between different basis D and D′. The rule reads:

HD′(X) = logD′ DHD(X)

Secondly, entropy of random variable X is independent of its possible val-
ues. It is only function of probability distribution of X. Therefore entropy is
often denoted by H(p1, . . . , pn), where p1, . . . , pn is the distribution of X and
random variable is omitted. We can note that entropy is symmetric. It is in-
tuitive requirement that measure of information should not depend on order of
probabilities.

Next, the entropy of random variable X is bounded. From definition it is
evident that entropy is always positive since it is a sum of only positive values.
On the other side, one can prove that entropy is also bounded from above, it is
always less or equal than logarithm of number of possible outcomes of X.

Theorem 1.3. Let X be discrete random variable and |X | denotes number of
possible outcomes. Then

0 ≤ H(X) ≤ log |X |

Someone may ask when these inequalities become equalities. The following
theorem gives us the answer.

Theorem 1.4. Let X be discrete random variable and |X | denotes number of
possible outcomes. Then

H(X) = 0 ⇔ ∃x ∈ X p(x) = 1, and

H(X) = log |X | ⇔ p(x) =
1

|X |
∀x ∈ X

Theorem claims that the entropy is equal to zero if and only if random variable
X is deterministic constant i.e. X is distributed by Dirac distribution (p(i) = 1
for some i). And the other equality is valid if and only if the distribution of X
is uniform. It means that there is no outcome which we can somehow empha-
size thus the system is completely unpredictable. Any no uniform distribution
may be understood as additional information and therefore leads to decrease of
entropy (or uncertainty).

According to theorem 1.4, we can random variable X, that may represent
some system, with entropy H2(X) (2 denotes units i.e. bits) imagine as a
system with 2H(X) equally probable outcomes.

8



Chapter 1. Information theory

We have not justified the option for surprise i.e. h(p) = − log p(x). Clearly it
satisfies two intuitive conditions required for measure of information, namely:

h(p) is nonnegative for ∀p ∈ (0, 1〉 (1.4)

h(p) is additive for independent events i.e.

h(pq) = h(p) + h(q), p, q ∈ (0, 1〉
(1.5)

Someone may ask whether there is another function satisfying these two con-
ditions (axioms). The answer gives the following theorem [3].

Theorem 1.5. The only function satisfying conditions 1.4 and 1.5 is:

h(p) = −c log p, c ≥ 0

Here c corresponds only to different units used for measure of information
(uncertainty). It is common to assume in addition to 1.4 and 1.5 also normal-
ization:

h

(
1

2

)
= 1

which sets the units to bits and h(p) = − log2 p.

1.1.4 Joint entropy

Similarly to the definition of entropy for one random variable we can define
joint entropy for n random variables.

Definition 1.2. Let X1, . . . , Xn be n discrete random variables with joint dis-
tribution p(x1, . . . , xn). Then we define joint entropy of X1, . . . , Xn as:

H(X1, . . . , Xn) = −
∑

(x1,...,xn)∈X1×...×Xn

p(x1, . . . , xn) log p(x1, . . . , xn)

The relation between joint entropy and individuals ones states following the-
orem which finds great applicability in data compression.

Theorem 1.6. Let X1, . . . , Xn be n discrete random variables with joint entropy
H(X1, . . . , Xn). Then:

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi)

and the equality holds iff the random variables X1, . . . , Xn are mutually inde-
pendent.

9



Chapter 1. Information theory

1.1.5 Conditional entropy

Let X and Y are random variables. Then for all y from possible outcomes
of Y p(X|Y = y) is a probability distribution of X. Therefore we can define
entropy of X given Y = y.

H(X|Y = y) = −
∑
x∈X

p(x|Y = y) log p(x|Y = y)

Then the conditional entropy is defined as averaged entropy of random vari-
able X under the assumption that the value of Y is known.

Definition 1.3. Let X and Y be discrete random variables. Then the condi-
tional entropy is defined as:

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) (1.6)

After inserting the definition of H(X|Y = y) into expression 1.6 we get:

H(X|Y ) = −
∑

(x,y)∈X×Y

p(x, y) log p(x|y)

that is just an expected value of − log p(X|Y ).

Conditional entropy may bring a little bit of insight into difference between
yielded information and uncertainty. Imagine we have event A that occurs with
probability p and after observing another event B the probability of A change
to q. Thus, before happening B we get log2 1/p bits of information from A
and provided B happened it changes to log2 1/q and we can say that difference
log2 1/p− log2 1/q represents information gained

We already know that joint entropy of two independent random variables is
sum of individuals ones and for dependent variables there is an inequality. With
the help of conditional entropy we are able to find out so-called chain rule.

Theorem 1.7. (Chain rule)
Let X and Y be discrete random variables then

H(X,Y ) = H(X) +H(Y |X) (1.7)

Theorem is valid also for conditional joint entropy i.e.:

H(X,Y |Z) = H(X|Z) +H(Y |Z,X)

10



Chapter 1. Information theory

Later we will use generalization for more than two random variables.

Theorem 1.8. Let X1, . . . , Xn be discrete random variables then

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1, . . . , X1)

Here we use notation H(X1|X0, . . . , X1) = H(X1).

1.1.6 Relative entropy and mutual information

In what follows, we will define relative entropy also called Kullback divergence
which is considered as a distance between probability distributions, even though
neither triangle inequality nor symmetry property does not hold.

Definition 1.4. Let p(x) and q(x) be two probability distributions and q(x) 6= 0
for ∀x, then relative entropy is defined as:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

It is worth mentioning that relative entropy is only special case of general
f -divergence.

Definition 1.5. Let p and q be a discrete probability distributions with the same
support S and f be a convex function defined for t > 0 and satisfies f(1) = 0
then f-divergence is defined as:

Df (p||q) =
∑
x∈S

q(x)f

(
p(x)

q(x)

)

Hence we see that relative entropy emerges for f(t) = t log t. General f -
divergences are important in statistics where are used as a different measures of
distinction between probability distributions.

In coding theory the relative entropy represents averaged number of unnec-
essarily bits used in encoding of random variable X if we use bad distribution
q(x) instead of underlaying probability distribution p(x).

Relative entropy is used for definition of mutual information of two random
variables as a distance from total independence.

Definition 1.6. Let X and Y be two discrete random variable with probability
distributions p(x), p(y) respectively. Then mutual information is defined as:

I(X;Y ) = D(p(x, y)||p(x)p(y))

11



Chapter 1. Information theory

The mutual information represents amount of information about random vari-
able X included in Y . Symmetry of mutual information is clear from definition
and can be paraphrased as information about X in Y is equal to information
about Y in X. It is useful to think of mutual information as an intersection of
entropy (information) H(X) and H(Y ) as it is depicted at the Figure 1.1.

Figure 1.1: Relations between entropies

Thus mutual information is help-
ful measure of dependence of random
variables (or time series as we will see
later). Actually, mutual information
specifies how many bits in average we
could predict about X from Y and
vice versa. Due to symmetry it is not
applicable to detect information flow
between two time series because that
should be directional.

After some treatment we get rela-
tion between mutual entropy and en-
tropy of random variable.

H(X) = I(X;Y ) +H(X|Y ) (1.8)

It flows from this equation that mutual information is the reduction in un-
certainty after observing Y . Other relations between mutual information, con-
ditional entropy and joint entropy may be figured out from diagram 1.1.

The next expression is clear form 1.8 (since H(X|X) = 0) and intuitively
reasonable as well.

I(X;X) = H(X)

From equation 1.8 we express the mutual information and by conditioning
both sides we get so-called conditional mutual information:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (1.9)

This quantity is the reduction in the uncertainty of X due to knowledge of
Y when Z is given, i.e., amount of information about X contained only in Y
excluding possible intersection of I(X,Y ) and I(X,Z) that may be thought as
a redundancy in variables X and Y given Z.

There is relation similar to chain rule for entropy:

I(X1, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, . . . , X1) (1.10)

12



Chapter 1. Information theory

For more variable we cannot depict the situation in a Venn diagram because
it becomes indecipherable. But it is still possible to imagine that this relation
just says: ”Common information about n random variables in Y is union of
individual information about Xi in Y .”

The predictability property of mutual information may be regarded as a re-
dundancy and we can define m dimensional mutual information (redundancy):

R(X1; . . . ;Xm) =

m∑
i=1

H(Xi)−H(X1, . . . , Xm)

which represents number of saved bits when group of m events are encoded with
one codeword instead of encoding events separately.

1.1.7 Jensen’s inequality

Many important inequalities follow from Jensen’s inequality which is valid for
convex functions. Let us recall the definition.

Definition 1.7. Let f be a real-valued function defined on 〈a, b〉. Then f is called
convex if for ∀x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

f is called strictly convex if equality holds only if λ = 0 or λ = 1.

It is good to note that f is convex iff −f is concave (definition of concave
function differs only in opposite inequality). We will use this remark for log-
arithm, that is concave, in order to derive useful inequalities with the help of
Jensen’s inequality.

Theorem 1.9. (Jensen’s inequality)
Let f be a convex function and X random variable. Then

E[f(X)] ≥ f(E[X])

and if f is strictly convex then the equality implies that random variable X is
constant (i.e. X = c with probability 1).

The following theorem is the key point for many important inequalities in
information theory.

Theorem 1.10. Let p(x) and q(x) be probability distributions and q(x) 6= 0 for
∀x ∈ X then

D(p||q) ≥ 0

with equality iff p(x) = q(x) ∀x ∈ X
Corollary 1.1. For any two random variables

I(X;Y ) ≥ 0

with equality iff X and Y are independent.

13



Chapter 1. Information theory

With this corollary it is easily seen from 1.8 that:

H(X) ≥ H(X|Y ) (1.11)

This means that knowing another random variable Y cannot increase uncer-
tainty of X. But it is valid only on average, in special cases H(X|Y = y) may
be greater than H(X).

1.1.8 Entropy rate

Entropy rate is defined for a stochastic processes to measure increase of joint
entropy H(X1, . . . , Xn) with respect to n.

Definition 1.8. Let X = {Xn} be stochastic process. Then entropy rate of
stochastic process X is:

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn),

provided the limit exists.

Let us calculate entropy rate for some stochastic processes:

1. Let X be a random variable with m equally distributed outcomes and
consider stationary stochastic process Xn = X ∀n. Then the sequence
(X1, . . . , Xn) has mn equally probable results. Thus

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn) = lim

n→+∞

1

n
logmn = logm

2. Consider sequence (X1, . . . , Xn) of i.i.d random variables. Then the en-
tropy rate is:

H(X) = lim
n→+∞

1

n
H(X1, . . . , Xn) = lim

n→+∞

1

n
nH(X1) = H(X1)

These two examples are very simple and the second one is just generalization
of the first one. The resulting entropy rate can be guessed immediately without
any calculation if we consider that entropy rate of stationary process charac-
terizes measure of dependence in the process. Therefore, for every stationary
process we have

H(X) ≤ H(X1)

Next we define conditional entropy rate of stochastic process that is very
helpful quantity in forecasting of future evolution of stochastic process (time
series) because it tells us the uncertainty about next step given all history.

Definition 1.9. Let X = {Xn} be stochastic process. Then conditional en-
tropy rate of stochastic process X is:

H ′(X) = lim
n→+∞

H(Xn|Xn−1, . . . , X1)

provided the limit exists.
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Chapter 1. Information theory

The entropy rate represents entropy per symbol (or step in time series)
whereas conditional entropy rate is conditional entropy of the last symbol given
the past. These two quantities are generally distinct and even not necessarily
exist. But for stationary processes holds the following theorem.

Theorem 1.11. Let X = {Xn} be stationary stochastic process. Then H(X)
and H ′(X) exist and

H(X) = H ′(X)

We will not show prove of this theorem but we should mention the interesting
properties of stationary process that the prove takes advantage of.

Theorem 1.12. Let X = {Xn} be stationary stochastic process. Then

H(Xn+1|Xn, . . . , X1) ≤ H(Xn|Xn−1, . . . , X1)

This means that for stationary processes the uncertainty of next step given
the past never decreases.

1.1.9 Differential entropy

We shortly mention generalization of Shanon entropy for continuous random
variables that is called differential entropy.

Definition 1.10. Let X be random variable with probability density function
f(x) with support S then differential entropy is defined as:

h(X) = −
∫
S

f(x) log f(x)dx,

if the integral exist.

Likewise for discrete case the differential entropy is function only of probabil-
ity density. But not every properties of discrete entropy are necessarily valid for
continuous one. For example, consider uniform distribution on interval 〈0, a〉.
Then we easily calculate h(U) = log a and for a < 1 we have negative entropy.

Entropy of Normal distribution Let us compute entropy of Normal dis-
tribution. We just interchange the sum with integral and use known expression
for Gauss integral.

+∞∫
−∞

x2n exp (−αx2)dx =

√
π

α

(2n− 1)!!

(2α)n

15



Chapter 1. Information theory

Then after little calculation we get

H(X) =
1

2
ln (2πσ2) +

1

2

Unfortunately, this is not very useful because for small variance we get neg-
ative value of entropy. Continuous entropy cannot be defined for δ distribution
because log δ is not well defined.

Remark to Normal distribution We should mention that Normal distri-
bution is the less bias distribution given mean and variance, in other words, it
maximizes entropy constrained to fixed average value and standard deviation,
i.e. it does not involve any other information and corresponds to maximum
ignorance about system. Similarly for n random variables and given covariance
matrix entropy is maximized by n dimensional Gaussian distribution.

Exponential distribution Exponential distribution takes over the maximal-
ity property for positive random variables. The maximum entropy is

H(X) = log (eλ)

The joint, conditional and other entropies are defined similarly to discrete
ones, i.e. the sum is just replaced by integral.

Calculating entropy For calculating entropy of continuous random variable
other approach can be used. We divide range of the random variable into N
boxes of size ε and compute probabilities of these boxes

pj =

∫
Bj

ρ(x)dx

and then we simply sum over all boxes. The entropy diverges with finer par-
titioning (ε 7→ 0), see [10] as it represents amount of information needed for
specifying the state of the system with an accuracy ε. Consider easy example
of uniform distribution on 〈0, 1〉. Entropy of such random variable would mean
average number of bits necessary to encode, in other words determine, arbitrary
number from interval 〈0, 1〉 and that is infinite, imagine any irrational number.
Since in real world we are not able to distinguish all small details this infinity
does not have to scary us.
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Chapter 2

Rényi entropy

In this chapter we will generalize Shanon information measure according to
Rényi, see [4]. We will follow intuitive way of Rényi to introduce new information
measure and furthermore explore quantities related to information measure like
relative information, conditional entropy or mutual information from other point
of view to generalize them.

2.1 Information quantities

2.1.1 Entropy

To motivate Rényi entropy we should have a look at the way how Shanon

extended work of Hartley. Let E =
n⋃
k=1

Ek and Ek contains Nk elements. Then

information necessary to characterize one of N =
n∑
k=1

Nk equiprobable elements

is log2N . If we would like to know only the set in which the particular elements
is we can proceed as follows: Choosing arbitrary element can be done by first
selecting Ek and then particular element from Ek. Since these two steps are
independent the additivity property of Hartley information measure claims

log2N = Hk + log2Nk,

where Hk represents information needed to specify set Ek. From this equation
Hk can be readily obtained and then it is reasonable to define H, information
needed to specify the set which particular element belongs to, as a weighted sum
of Hk and introduce probabilities pk = Nk

N . Aforementioned procedure leads to
already known Shanon’s formula.

From above generalization of Hartley information measure we can see that
Shanon information measure is based on two postulates (first of them was in-
troduced by Hartley):
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Chapter 2. Rényi entropy

• Additivity - information gained from observing two independent events is
the sum of the two partial ones

• Linear averaging - information gained from experiment that has n possible
outcomes Ak with probabilities pk k = 1, . . . , n is equal to linear average

n∑
k=1

pkH(Ak),

where H(Ak) denotes information gained from experiment when event Ak
occurs.

Rényi was aware that there is no reason for restricting to linear average used
by Shanon and considered Kolmogorov–Nagumo generalized mean

Ef [X] = f−1(
∑

pif(xi)),

where f is continuous and strictly monotone (i.e. invertible). It represents
the most general mean compatible with Kolmogorov axiomatics. We may also
encounter with name quasi-linear mean.

Hence, every continuous and strictly monotone function may define various
measures of information i.e. various entropies. However, additivity postulate
puts some constraints on possible functions f , namely it restricts f to only two
options, linear f(x) = cx and one-parametrized family of exponential functions
chosen for later purposes in the form f(x) = c(2(1−α)x − 1), α 6= 1, proof may
be found in [5]. The linear function leads to already known Shanon entropy and
exponential function gives Renyi entropy:

Hα(P) =
1

1− α
log2

N∑
i=1

pαi (2.1)

Though, the left hand of 2.1 is defined for all α 6= 1 we should disable non-
positive values since for α < 0 2.1 becomes very sensitive to small probabilities.
In other words, adding new event with zero probability makes Hα(P) infinite
and it is undesirable property because information measure should be function
only of probability distribution and that remains unchanged after adding event
with zero probability. For the same reason α = 0 is excluded since we get again
value independent on probability distribution H0(P) = log2N . As long as the
limit α tends to 1 is well defined and equals to Shanon’s entropy (it can be
readily clarified by L’Hopital rule) we may conclude that 2.1 defines suitable
measure of information for α > 0.
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Chapter 2. Rényi entropy

It is easily seen that Hα is non-negative and equal to 0 if and only if the
probability distribution is degenerate, consider pαi ≤ pi for ∀i and α > 1 where
pi ∈ 〈0, 1〉 with equality iff pi = 0 or pi = 1 and opposite inequality for α < 1.
Using method of Lagrange multipliers we may find that Hα ≤ log2N and thus
we have the same boundary conditions as we have already seen for Shanon
entropy.

0 ≤ Hα ≤ log |X | α > 0

Simple derivation of 2.1 with respect to α and as a consequence of Jensen’s
inequality 1.9 applied to convex function − log x and random variable X =

p1−α
k with probability distribution

pαk∑
pαk

we get that Rényi entropy is decreasing

function of α. This means that Shanon entropy may be regarded as a lower
and upper boundary for Rényi’s information measure of order α < 1 and α > 1
respectively.

2.1.2 Relative entropy revised

In preceding chapter we defined relative entropy without any motivation. Now
we should have a look at this quantity in more detail to generalize it for Rényi’s
α information measure.

Relative entropy is connected with the idea of gain of information as can be
seen from following example. Let have experiment with A1, . . . , An possible
outcomes which occur with probabilities p1 = P (A1), . . . , pn = P (An). Now
we observe event B and the probabilities change to q1 = P (A1|B), . . . , qn =
P (An|B). It is legitimate to ask how much information about the experiment
we gained from observing event B. To answer this question we first imagine
only one outcome, say A1. Before observing event B the outcome would give us
log2 1/p1 bits of information or equivalently the uncertainty of the outcome is
log2 1/p1. After occurring B the uncertainty and possible information received
from observing event A1 change to log2 1/q1. Hence we need log2 1/p− log2 1/q
bits of information less than before and this decrease in uncertainty is equal to
gain of information about A1 observing B.

If we take into account all outcomes we get n partial gains of information and
it is reasonable to assign the average of these gains to overall gain of information
about experiment after observing event B. Notice that gain of information
may be considered also as minus increase of uncertainty and this brings us two
possibilities to calculate overall gain of information. Either we take average of
partial gains log2

q
p or average increases of uncertainty log2

p
q and result multiply

by (−1).

In Shanon’s case of linear averaging both approaches leads to the same al-
ready known relative entropy. However, for generalized average, i.e. E[X] =

1
1−α log2

(∑
p(x)2(1−α)x

)
, we get different results, see [4]. The first method
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Chapter 2. Rényi entropy

suggests undesirable properties of information gain and hence the other method
is used.

Definition 2.1. Let p and q be probability distributions on the same discrete
probability space. Then gain of information of order α when p is replaced with
q is

Dα(q||p) =
1

α− 1
log2

(
n∑
k=1

qαk
pα−1
k

)
(2.2)

The properties of ordinary relative entropy are conserved and are again rooted
in Jensen’s inequality. We state one more property of Dα valid for all α > 0.

Dα(q||u) = Hα(u)−Hα(q)

This relate gain of information with decrease of uncertainty after replacing the
most ignorant distribution, i.e. uniform one u, with arbitrary distribution q.
The prove is just inserting uniform distribution of size n to the definition.

2.1.3 Conditional entropy

Here we follow the same idea as in the fist chapter only linear averaging is
replaced by generalized mean. Let have two random variables X and Y then
the remained uncertainty about X or information still gained from observing X
after knowing that Y = yk is

Hα(X|Y = yk) =
1

1− α
log2

(
n∑
h=1

pαh|k

)

Then generalized averaging gives us conditional information of order α.

Definition 2.2. Let X and Y be two discrete random variables with distribution
p and q then conditional information of order α is defined as

Hα(X|Y ) =
1

1− α
log2

∑
h,k

rαhk
qα−1
k

,
where rhk denotes joint probability distribution.

The inequality valid for Shanon conditional entropy is easily broaden to Rényi
conditional entropy so we have

0 ≤ Hα(X|Y ) ≤ Hα(X) (2.3)

with the same conditions to equality as in Shanon’s case, i.e. Hα(X|Y ) = 0 iff
there is such a function g that X = g(Y ) and Hα(X|Y ) = Hα(X) iff X and Y
are independent, see [4].
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Chapter 2. Rényi entropy

We remark another definition of conditional information that is based on the
additive property of Shanon entropy for dependent variables, equation 1.7. We
can postulate this equation also for Rényi entropy and define conditional entropy
as

H̃α(X|Y ) = Hα(X,Y )−Hα(Y ) =
1

1− α
log2


n∑
k=1

qαk

(
m∑
h=1

pαh|k

)
n∑
k=1

qαk

, (2.4)

where Hα(X,Y ) is Rényi entropy of joint probability distribution.

Escort distribution

Let have arbitrary probability distribution p then we can construct another
probability distribution ρ called escort distribution

ρqk =
qqk
n∑
k=1

qqk

This new probability distribution has interesting property that it emphasizes
probable events and suppresses rare ones for q > 1. The greater q is, the bigger
is the accentuation of probable events, i.e by choosing large q we restrict our
interest on the center of probability distribution. On the other hand, 0 < q < 1
highlights rare events and covers up most likely ones. Due to monotony of
exponential function inequalities among probabilities remain unchanged and for
q close to zero escort distribution tends to uniform distribution. This feature
can be violated by allowing negative values of q which actually changes tails to
peaks in probability distribution and vice versa.

Since escort distribution deforms original distribution it is used in statistical
physics for ”zooming” in different regions of probability distribution. We shall
note that escort distribution of escort distribution is also escort distribution with
parameter q = q1q2, i.e. escort distribution may be consider as a one-parametric
group of transformations on probability distributions. Thus another ”zooming”
does not give us any new information.

We should also mention relation of Rényi entropy of escort distribution and
entropy of original distribution

H1/q(ρq) = Hq(p)

With the help of escort distribution we can rewrite equation 2.4 to

H̃α(X|Y ) =
1

1− α
log2

(
n∑
k=1

ραk2(1−α)Hα(X|Y=yk)

)
, (2.5)
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which means that to fulfill condition [odkaz v prvni kapitole] we have to
average with respect to escort distribution instead of original distribution.

It can be shown, see [5], that H̃α(X|Y ) = 0 iff outcome of Y uniquely deter-
mines X and for independent random variables H̃α(X|Y ) = Hα(X) but oppo-
site implication does not generally hold. It is necessary to be valid H̃α(X|Y ) =
Hα(X) for all α > 1 or 0 < α < 1 to imply independence of X and Y , see [6].

2.1.4 Mutual information of order α

There are more ways how to define mutual information of order α. All of
them are motivated by some relation valid for Shanon mutual information. The
ambiguity is caused by the fact that restriction to one property of Shanon mutual
information violates some other one. Hence, in application we should pick up
such a definition that best fits our requirements.

The Shanon mutual information was defined in first chapter as a gain of
information after replacing total independence by the joint distribution. Ana-
logically, we could use equation 2.2 and define generalized mutual information
in the same way. Unfortunately, this definition would violate desirable property
of mutual information, namely

Iα(X;Y ) ≤ Hα(X), (2.6)

which states that the information on X yielded by Y must not exceed uncer-
tainty of X.

Mutual information may also be defined by the property of Shanon mutual
information

I(X;Y ) = H(X)−H(X|Y ) (2.7)

This would give us generalized mutual information in the form

Iα(X;Y ) =
1

1− α
log2


m∑
h=1

pαh

m∑
h=1

n∑
k=1

rαhk
qα−1
k

 (2.8)

However, Rényi preferred in his paper [4] another way of defining mutual
information. He noticed that Shanon mutual information can be written as an
average of information gain.

I(X;Y ) =

n∑
k=1

qkD(P (X|Y = yk)||P (X))
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Using equation 2.2 and generalized mean instead of linear averaging results
in

Iα(X;Y ) =
1

1− α
log2

 n∑
k=1

qk
m∑
h=1

pα
h|k

pα−1
h

 (2.9)

which satisfies 2.6 with the same conditions for equality as in Shanon’s case.
The drawback is that neither 2.9 nor 2.8 is symmetric, i.e. information on X
gained from observing Y is generally distinct from information on Y from X.

It should be noted that 2.9 and 2.8 are different. First of them represents
decrease of uncertainty while the second one is average information gain on X
from observing Y .

In next chapter we will use different definition of mutual information that is
based on property of Shanonon mutual information.

I(X;Y ) = H(X) +H(Y )−H(X,Y )

By inserting Rényi entropies we arrive to the formula

Iα(X;Y ) =
1

1− α
log2

∑
h,k

(phqk)α∑
k,h

rαhk
(2.10)

This quantity is symmetric and might have been obtained also by using equa-
tion 2.7 and the second definition of conditional entropy, equation 2.4.

Rényi rejected this definition because for Rényi information measure inequal-
ity

Hα(X) +Hα(Y ) ≥ Hα(X,Y )

does not always hold. Hence, 2.10 can be negative and according to Rényi it is
inappropriate to have negative mutual information. However, it was examined
in [6] that mutual information defined in 2.10 is negative if marginal events of
X obtain higher probability at the cost of decrease of probability of central part
of the distribution after observing Y . Such a feature can be handy in various
applications, for example in finance as we will see in the next chapter.

2.2 Operational definition

Renyi entropy is information measure as well as Shanon entropy. Now we
should address some possible ways how to interpret its actual value. This gives
us basic view to particular problems in applications.
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We already know that Shanon entropy emerged from coding theory where it
represents the shortest average length of optimal code

H1(p) ≤ L(p) =

N∑
i=1

lipi

and the optimal lengths of individual symbols are related with their probabilities
as

l∗i = − log2 pi

That means highly improbable symbols corresponds to very long codewords in
order to save short lengths for frequently transmitted symbols. Such a behavior
is convenient for linear cost function occurring in transmitting where the bits
are send one by one, hence, sending n bits takes n-times term needed to send
one bit. Nevertheless, in some situations it is reasonable to use various cost
function, for example, in storing data when exponential cost function may be
used for ”pricing” of allocated free space. Thus, we are not interested in the
shortest code but the cheapest one.

Campbell dealt with the problem of exponential weighing in his paper [7]. He
suggested to minimize

C =

N∑
i=1

piD
tli

with respect to lengths li where t is some parameter related to the cost and
D is number of symbols used for encoding messages. However, further analysis
proposed to minimize logarithm of C

L(t) =
1

t
logD

(
N∑
i=1

piD
tli

)
(2.11)

to get elegant connection with generalized mean, i.e. 2.11 corresponds to Kolmogorov-
Nagumo generalized mean with ϕ(x) = Dtx.

The following theorem is the analogy of well-known Shanon noiseless channel
theorem.

Theorem 2.1. Let l1, . . . , lN satisfy Kraft inequality

N∑
i=1

D−li ≤ 1,

then averaged length of optimal code with exponential cost is bounded from below

Hα ≤ L(t), (2.12)

where α = 1/(t+ 1).
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According to this theorem we must lengthen the code for highly probable
symbols in order to be able to shorten improbable ones which would be otherwise
strongly penalized by exponential cost function.

We have equality in 2.12 if

li = − logD ραi

where ρα is escort distribution but this is actually the same result that we
obtained for linear averaging except we replaced original distribution with escort
distribution. For t > 0 we have α < 1 and escort distribution properly enhances
rare probabilities and suppresses likely ones so that we can use Shanon formula
for optimal lengths. On the other hand, −1 < t < 0 corresponds to α > 1
and probable events receives even shorter code. This may be helpful in the
case of finite buffer used for transmitting when we are interested in maximizing
probability of sending message in one snapshot.

Aforementioned connection with classical coding procedure is also advantage
in applicability of new coding theorem because we do not have to invent some
new coding method which approaches the optimal lengths. We can just use
Huffman code with escort distribution.

2.3 Axiomatization of information measure

Renyi compares information with energy because there was considered many
different kinds of energy and it took many years to discover that all of them
are just one ’thing’, the same discovery may come even for information but to
defining different information measures it is convenient to postulate some basic
requirements that suitable information measure should fulfill. Fadeev proposed
following set of postulates:

1. information measure is function only of probability distribution and has to
be symmetric - H(p1, . . . , pn) = H(pπ(1), . . . , pπ(n)) for any permutation
π

2. H(p, 1− p) is a continuous function for p ∈ 〈0, 1〉

3. normalization - H( 1
2 ,

1
2 ) = 1

4. H(p1, . . . , pn) = H(p1 + p2, p3, . . . , pn) + (p1 + p2)H( p1
p1+p2

, p2
p1+p2

)

The last axiom states that overall information needed for identification of
particular message is independent on grouping of messages. That means that
we can combine, say, two messages with probabilities p1 and p2 into one message,
thus information needed for selecting one of these n − 1 messages corresponds
to the first term on the right side. When this new message occurs we examine
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which of the original two messages was actually sent, information necessary to
this identification is the second term on the right side. The axiom demands
that information needed for this procedure is equal to information needed for
directly selecting particular message.

It can be shown, see [8], that these axioms holds if and only if Shanon infor-
mation measure is used.

Theorem 2.2. Let p1, . . . , pn be a probability distribution and H be an arbitrary
function fulfilling postulates 1 to 4 above, then

H(p1, . . . , pn) = −
n∑
j=1

pj log2 pj

The fourth axiom is somewhat too restrictive and precludes information mea-
sure of order α (Rényi’s entropy). Therefore, Rényi weakened the fourth axiom
by assuming only additivity of entropy for independent experiments and intro-
duced new set of axioms that characterizes both Shanon’s and Rényi’s infor-
mation measure. These new axioms are formulated for generalized probability
distributions, i.e. including incomplete distributions for which

∑
pi ≤ 1.

1. H is a symmetric function of the elements of generalized distribution

2. H({p}) is a continuous function of p for p ∈ (0, 1〉

3. normalization - H({ 1
2}) = 1

4. additivity -

H({p1q1, . . . , pnq1, p1q2, . . . , pnq2, . . . , p1qm, . . . , pnqm}) =

H({p1, . . . , pn}) +H({q1, . . . , qm})
(2.13)

5. averaging - There exists a strictly monotone and continuous function g(x)
such that for two generalized probability distributions {pi} and {qk} de-
note W ({pi}) =

∑
pi, W ({qk}) =

∑
qk and if W ({pi}) + W ({qk}) ≤ 1,

then

H({pi} ∪ {qk}) = g−1

[
W ({pi})g [H({pi}] +W ({qk})g [H({qk}]

W ({pi}) +W ({qk})

]
Characterization of Shanon and Rényi entropy is then given by the following

theorem.

Theorem 2.3. Let H({pi}) be defined for all generalized probability distribu-
tions and satisfies axioms 1 to 4 and axiom 5 with gα(x) = 2(α−1)x, α > 0, α 6=
1 and g(x) = ax+ b, a ≤ 0, then

H({pi}) =
1

1− α
log2

[∑
pαi∑
pi

]
and

H({pi}) =
−
∑
pi log2 pi∑
pi

respectively.
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We mention one more set of axioms characterizing both Shanon’s and Rényi’s
entropy that define also an conditional entropy in the form 2.5 which will be
used in the next chapter.

1. Let X be a discrete random variable with probability distribution {pi},
then H(X) is function only of {pi} and is continuous with respect to all
its arguments.

2. For a given integer n H(X) takes its maximum for {pi = 1/n, i = 1, . . . , n}
with the normalization H(X) = 1 for distribution {1/2, 1/2}.

3. For a given α ∈ R and two random variables X,Y H(X,Y ) = H(X) +
H(Y |X) with

H(X|Y ) = g−1

(∑
i

ραig
(
H(Y |X = xi)

))
,

where ραi is escort distribution of probability distribution of X.

4. g is invertible and positive in 〈0,+∞)

5. Let X be a random variable and {p1, . . . , pn} its distribution, and if X ′

has probability distribution {p1, . . . , pn, 0} then H(X) = H(X ′). That is,
adding an event of probability zero we do not gain any new information.

These axioms are generalization of Khinchin’s axioms [9] in order to include
Rényi’s entropy. It can be shown that the only possible functions in axiom 3 are
either linear or exponential function which corresponds to Shanon’s and Rényi’s
entropy, see [5].
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Chapter 3

Transfer entropy

In this chapter we will see how the basic concepts of information theory can
be exploited in time series analysis. In particular, we will measure information
flow between two time series in order to detect any causality between them.

Transfer entropy was firstly introduced by Schriber [10] who applied it to bi-
ological data and now we see applicability in many distinct fields. In this work
we aim to financial time series likewise in [11] and [12]. Transfer entropy is very
useful tool for cross-correlation and causality analysis of two time series. The
huge advantage of transfer entropy is an independence on model used for model-
ing time series, i.e. model-free. Thus transfer entropy has broader applicability
than Granger’s method that assumes linear model. In addition, transfer entropy
is able to quantify information flow and not only reveal existence of causality.

Transfer entropy takes into account also higher order correlations, i.e. any
kinds of dependency and thus may show that two series are intertwined even if
cross-correlation analysis points out no correlation.

3.1 Shannonian transfer entropy

We introduce transfer entropy in similar way as was done in [11] with slight
modification in the form of time dependency.

Let have discrete stochastic process X = {Xt} (time series) then we define
block entropy of order m and at time t as

HX(t,m) = −
∑

p(xt, xt−1, . . . , xt−m+1) log2 p(xt, xt−1, . . . , xt−m+1),

where sum is over all possible m-tuples (xt, xt−1, . . . , xt−m+1) which we denote

x
(m)
t for the sake of brevity. We see that block entropy of stochastic process is

just joint entropy of m successive random variables Xt, . . . , Xt−m+1.
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Block entropy represents, depending on point of view, either averaged uncer-
tainty of next m values at time t − m provided we have no extra knowledge
about the process or information capacity about the process stored in m suc-
cessive observation as a function of time. For prediction the difference

hX(t,m) = HX(t+ 1,m+ 1)−HX(t,m)

is very important because it represents conditional entropy (see chain rule in
chapter 1) at time t of the next step provided we know all m preceding values
of the process. According to basic properties of conditional entropy stated in
chapter 1 we have inequality.

0 ≤ hX(t,m) ≤ HX(t+ 1, 1) = H(Xt+1),

where H(Xt+1) denotes uncertainty of next step without any extra information,
for instance history of the process. The limit lim

t 7→∞
hX(t, t) is already known

conditional entropy rate, definition 1.9.

For quantitative characterization we introduce relative explanation that
indicates percentage of predictability i.e. how much percent of information
about next step is stored in m preceding values.

REX(t,m) = 1− hX(t,m)

H(Xt+1)
(3.1)

The relative explanation, especially its dependence on m, may also be used
for characterizing stochastic processes. Imagine REX(t,m) remains zero in-
dependently on m for ∀t this situation indicates totally random process since
observing history of the process does not give us any new information about
next step. Similarly, increase of REX(t,m) with respect to m until some value
M in which REX(t,m) levels off at value less than 1 suggests Markov process of
order M . The third special case that can be detected by relative explanation is
periodic process for which REX(t,m) reaches 1 for some M and ∀t, this value
then corresponds to period of the process.

With conditional entropy in hand we can easily extend it for two stochastic
processes X, Y and get transfer entropy in the form

T
(m,l)
Y 7→X(t) = hX(t,m)− hXY(t,m, l), (3.2)

where the conditional entropy for two processes is

hXY(t,m, l) = HXY(t+ 1,m+ 1, l)−HXY(t,m, l) (3.3)

and
HXY(t,m, l) = −

∑
p(x

(m)
t , y

(l)
t ) log2 p(x

(m)
t , y

(l)
t ) (3.4)

where x
(m)
t and y

(l)
t substitutes history in X and Y respective, i.e. x

(m)
t =

xt, . . . , xt−m+1 and similarly y
(l)
t = yt, . . . , yt−l+1.
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From equation 3.2 we see that transfer entropy is always nonnegative since any
extra knowledge about random variable never increase uncertainty, see equation
1.11, and transfer entropy vanish if and only if the next step in X process is
independent on history up to t− l + 1 of Y.

After inserting 3.3 to 3.2 and with help of 3.4 we get following explicit formula
for transfer entropy that can be used for numerical evaluation.

T
(m,l)
Y 7→X(t) =

∑
p(xt+1, x

(m)
t , y

(l)
t ) log2

p(xt+1|x(m)
t , y

(l)
t )

p(xt+1|x(m)
t )

, (3.5)

where sum is taken over all possible outcomes of (xt+1, x
(m)
t , y

(l)
t ).

It is convenient to state even in words what transfer entropy means.

T
(m,l)
Y 7→X(t) = Uncertainty about next step in X knowing history in X

− Uncertainty about next step in X knowing history in X and Y
(3.6)

By using 1.10 and generalization of 1.9 for more random variables we get
transfer entropy in form of flow of information from process Y to X.

T
(m,l)
Y 7→X = I(Xt+1;X

(m)
t , Y

(l)
t )− I(Xt+1;X

(m)
t )

= I(Xt+1;Y
(l)
t |X

(m)
t )

(3.7)

The causality or directionality of transfer entropy is provided by non-symmetry
property of conditional information. So we can measure flow from Y to X and
vice versa and according to sign of difference between these two flows we may
conclude which of them is superior and which of them is subordinate in sense
of information production.

Other advantage of transfer entropy that arises from using information ap-
proach is that it takes into account all kinds of dependence unlike cross-correlation
function which considers only linear correlation. Figures 3.1 and 3.2 demon-
strate this benefit of information approach for lagged mutual information and
auto-correlation function of London stock exchange index. We see that auto-
correlation drops immediately to zero while lagged mutual information shows
correlation even for one hour time lag.

We see that transfer entropy depends on two parameters (m and l). These pa-
rameters should correspond to order of Markov process, i.e. time series (discrete
stochastic process) should be Markov process with specific order. The advan-
tage of Markov process is that we can calculate the genuine transfer entropy that
is only burdened with statistical error while for non-Markov process we should
take all history in both series to obtain actual value of transfer entropy but that
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is in practice impossible. Consequently, by taking only limited history in target
series we may erroneously regard information from the rest of the history of
target series as incoming from source series, see equation 3.7. Thus generally
speaking, low m overestimates transfer entropy while low l, i.e. short history in
source series, underestimates information flow. To avoid spurious information
from target series it is common to set l = 1 and m as large as possible.

Interpretation of actual number To better understand the actual value
of transfer entropy it is convenient to examine ratio of transfer entropy and
conditional entropy, which Marchinski called relative explanation added.

REA(m, l, t) =
T

(m,l)
Y 7→X(t)

hX(t,m)
(3.8)

This quantity tell us how many percent of information about next step in
process X can be gained from history of Y provided we already know history
of X.

Stationarity assumption As for now we have seen that there is no problem
with generalization of transfer entropy to time dependent quantity. The reason
for stationarity assumption, mentioned in almost all papers dealing with trans-
fer entropy, arise in practical application since we have to somehow obtain the
probability distribution in equation 3.5. This is done by observing one long re-
alization of process and computing the relative frequencies, hence, the processes
in consideration should be also ergodic.
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3.2 Rényian transfer entropy

Generalization of Shannonian transfer entropy for Renyi’s entropy may be
done according to information representation of transfer entropy, i.e., equation
3.7, see [6].

T
(m,l)
q;Y 7→X(t) = Hq(Xt+1|X(m)

t )−Hq(Xt+1|Y (l)
t , X

(m)
t )

= Iq(Xt+1;X
(m)
t , Y

(l)
t )− Iq(Xt+1;X

(m)
t )

(3.9)

Using definition of conditional entropy in equation 2.4 and mutual information
in form 2.10 we can rewrite aforementioned equation to

T
(m,l)
q;Y 7→X(t) =

1

1− q
log2

∑
ρq(x

(m)
t )pq(xt+1|x(m)

t )∑
ρq(x

(m)
t , y

(l)
t )pq(xt+1|x(m)

t , y
(l)
t )

=
1

1− q
log2

∑
ρq(x

(m)
t )pq(y

(l)
t |x

(m)
t )∑

ρq(xt+1, x
(m)
t )pq(y

(l)
t |xt+1, x

(m)
t )

(3.10)

As we know from preceding chapter, more definition of mutual information
and conditional entropy exists, hence, different generalization of Shannonian
transfer entropy may be received. Our choice is motivated by attractive prop-
erties of Rényian transfer entropy for financial time series.

Namely, it can be interpreted as a rating factor which quantifies a gain/loss in
the risk concerning the behavior of next step in X after we take into account the
historical values of a time series Y . The positive value means decrease of risk and
negative value occurs when the knowledge of history in series Y broadens the
tail part of distribution of the next step in X more than does only knowledge
of history in X. This perception flows from already mentioned properties of
mutual information defined in 2.10.

3.3 Simulated data

To test properties of transfer entropy estimator we simulated simple linear
coupling:

X(t) = r(t) + εY (t− 1), (3.11)

Y (t) = s(t), (3.12)

where r(t) and s(t) are two uncorrelated white noise processes, i.e. its distribu-
tion is N(0, 1).
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3.3.1 Shannonian flow

Firstly, we derive analytical solution for Shannonian transfer entropy using
S = 3 bins in coarse graining of both continuous time series X and Y . The
decision for only three bins is due to lack of real data used in later analysis and
the fact that for more bins one needs huge amount of date for reasonable results.
On the other hand, three bins is the minimum that can incorporate non-linear
dependency.

We use the same notation as above, i.e., x
(m)
t = (xt, . . . , xt−m+1) and due

to stationarity we get x
(m)
t = (x0, . . . , x−m+1) and from now on we will omit

redundant time subscript. In our analysis we use l = 1 as it is common practice
when limited amount of data is available, see [11], hence we can write y0 instead
of y(l). Then transfer entropy 3.5 may be written as

T
(m,1)
Y 7→X =

∑
xm+1

∑
x(m)

∑
y0

p(xm+1, x
(m), y0) log2

p(xm+1, x
(m), y0)p(x(m))

p(x(m), y0)p(xm+1, x(m))
(3.13)

From equation 3.11 and 3.12 we see that successive values of X process are
mutually independent and identical distributed, this is clearly valid also for Y
and its distribution is N(0, 1+ε2) and N(0, 1) respectively. Due to independence

of x
(m)
t on y0 we may rewrite joint probabilities in equation 3.13

p(xm+1, x
(m), y0) = p(xm+1, y0)p(x(m)) (3.14)

p(x(m), y0) = p(y0)p(x(m)) (3.15)

p(xm+1, x
(m)) = p(xm+1)p(x(m)) (3.16)

After inserting equations 3.14, 3.15 and 3.16 into 3.13 and simplification of the
fraction we arrive at

T
(m,1)
Y 7→X =

∑
xm+1

∑
x(m)

∑
y0

p(xm+1, y0)p(x(m)) log2

p(xm+1, y0)

p(y0)p(xm+1)
(3.17)

Next, we can sum over all m-tuples x(m) and owing to identical distribution of
both X and Y we can use just x and y instead of xm+1 and y0. Finally, we get
transfer entropy in the form

T
(m,1)
Y 7→X =

S∑
x,y=1

p(x, y) log2

p(x, y)

p(y)p(x)
(3.18)

We see that in this special case transfer entropy does not depend on parameter
m and all variations are caused only by chosen partitioning. In what follows
we derive transfer entropy for equiprobable bins and discretization according to
standard deviation.
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We will need joint probability density function to calculate probabilities oc-
curring in equation 3.18. The density may be written in the form

ρ(x, y) =
1

2π
exp

{
− (x− εy)2 − y2

2

}
(3.19)

which follows from definitional equations 3.11 and 3.12 (recall that x and y
represents X(t + 1) and Y (t) respectively). Then, necessary probabilities are
obtained by integrating over appropriate limits depending on chosen partition.

Equiprobable partition For equiprobable partition, i.e. p(x) = p(y) = 1
S

for all bins, we get after simple operation

2 log2 S +

S∑
x,y=1

p(x, y) log2 p(x, y) (3.20)

Standard deviation partition Partitioning to three bins distinguishing be-
tween high drop, high rise and slight change, where high drop is considered
decrease of more than one standard deviation and similarly the high rise, re-
sults in

3∑
x,y=1

p(x, y) log2 p(x, y)−
3∑

x=1

p(x) log2 p(x)−
3∑
y=1

p(y) log2 p(y) (3.21)

Numerical evaluation of equations 3.20 and 3.21 gives theoretical values 0.010
and 0.009 respectively.

Now we want to examine convergence of our estimator for these two partitions
and estimate its standard errors. For this purpose, we generated time series X
and Y of length 10000 data points and calculated transfer entropy from X to Y
as a function of history length m for both partitioning. The results are depicted
in figure 3.3 along with straight lines denoting precise theoretical value and
errorbars obtained by bootstrap method when we set bootstrap sample length
only 20 because of huge computation time demand, for a short introduction to
Bootstrap see appendix A.

From figure 3.3 we can see that transfer entropy increases with m but in our
example whatever partitioning we use it should remain constant for all m. This
spurious increase is caused by finite sample effect and is much more emphasized
for larger alphabet, i.e. more number of bins. In [11] the same example was
studied as a function of sample length and it was shown that transfer entropy
approaches its theoretical value very slowly. Therefore Marchinsky introduced
Effective transfer entropy

TEffY→X = TY→X − TYsh→X (3.22)
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Figure 3.4: Effective transfer entropy

History m equprob equdist stn deviation
1 0.0027 0.0016 0.0023
2 0.0032 0.0029 0.0042
3 0.0060 0.0054 0.0046

Table 3.1: Standard errors

where Ysh means that original time series Y was shuffled and hence all possible
correlation between X and Y vanished, thus, no information flow should be
detected. However, numerical calculation shows increase with m of transfer
entropy from Ysh to X similar to one observed in case of transfer entropy from
Y to X. Marchinsky then assigned TYsh→X to finite sample effect and suggested
to use Effective transfer entropy 3.22 instead of 3.5.

Estimator of Effective entropy is depicted in figure 3.4. Though it is clear
that Effective entropy is much closer to theoretical values for both partitions
than transfer entropy estimator (notice different scale on y axis) it still consid-
erably fluctuates for different values of m even for relatively large sample length
used N = 10000, see also [11] where comparison between transfer entropy and
Effective transfer entropy was done for length up to 60000.

Due to statistical fluctuation we would like to pick up such a partition that
is the most robust with respect to finite sample effects. For this reason we es-
timated transfer entropy and Effective transfer entropy even for one other par-
tition which have drawback that its theoretical value cannot be calculated and
thus its consistency is not justified. Nevertheless, after experience with relative
consistency for equiprobable and standard-deviation coarse graining we assume
that our transfer entropy estimator should be consistent for any partitioning.

The extra partition mentioned above is equidistant one, i.e. it divides range
of time series to S equidistant bins (in our example S = 3). In figure 3.4 can
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be seen that this partition is rather stable with respect to m and therefore
should be used in later application. To more advocate the choice of equidistant
partition we performed the same calculation as above for N = 2500 which is
the minimum length of time series that we analyzed. This calculation showed
that equidistant partition had the lowest standard error see table 3.1 for small
m ∈ {1, 2}.

3.3.2 Rényian flow

The same linear coupling was analyzed even with help of Rényian transfer
entropy. Here, instead of struggling with explicit formula 3.10 that is suitable
for unknown systems, we profit from symbolic representation of transfer entropy,
equation 3.9. Using the same argumentation about independence as used in
Shanonian case we get

T
(m,l)
q;Y 7→X(t) = Hq(Xt+1) +Hq(Yt)−Hq(Xt+1, Yt)

=
1

1− q

(
log2

∑
y

pq(y) + log2

∑
x

pq(x)− log2

∑
x,y

pq(x, y)

)
(3.23)
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Figure 3.5: Rényian effective trans-
fer entropy, q = 0.8
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Figure 3.6: Rényian effective trans-
fer entropy, q = 1.5

We can use already obtained probabilities and get results for equprobable
bins and standard deviation partitioning for two different values of parameter
q = 1.5 and q = 0.8. Consequently the same simulation was performed but
now equidistant partitioning does not look as the best option and it seems that
equprobable partitioning is the most suitable one, see figures 3.5, 3.6.

In order to compare Shanonnian and Rényian transfer entropy it is convenient
to calculate them with the same partitioning and from preceding simulation
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example we see that it is impossible to determine one universal partitioning
that would fit to all cases. Hence, more careful analysis is necessary to get
plausible results especially with real data as we will see in the next section.

Symbolic representation of time series The problem how to make a
proper discretion of some system is dealt in mathematical branch called Sym-
bolic dynamics. Generally, symbolic dynamics deals with problem how to
assign symbols to continuous variable, i.e. discretization, in such a way that
new symbolic variable would contain as much information about original one as
possible. In the case of time series, we get new series of symbols and we then
examine this discretized version and want to infer some statistical properties
of original one. Actually, time series are usually already discretized in time so
we can say that every time series analysis uses some kind of symbolic dynamics
approach even though it may not be apparent. Unfortunately, no general rule
exist and thus in practice we have to find ”quasi-optimal” discretization with
help of trial and error.

3.4 Real markets analysis

We have obtained minute data of 11 biggest stock exchanges in period from
1st July 2012 to 1st October 2012. Before any numerical analysis we have
to appropriately prepare the data. That is done by excluding any no-trading
periods (holidays, nighttime) in both series. After this we obtain different time
series where time axis become so called trading time. The drawback is that
separated points in original time series may become close neighbors in new time
series. Nevertheless small number of such points precludes statistical significant
errors.

Due to different time zones and trading hours of particular stock exchanges it
is impossible to exploit minute data to measure information flow between Asia
and the other continents. Unfortunately, later analysis showed non-stationarity
which spoiled also possibility to measure interrelatedness between Europe and
USA. Hence, we measure information flow only within continents.

We would like to analyze information flow in whole period, however, first look
at data reveals non stationarity of time series, see appendix with figure depicting
means and variances calculated in individual blocks along with its error bars.
Note that we transformed series of minute closure prices sn to log-returns

Xi = log si − log si−1

before analysis and this new series still preserve non-stationarity. Since our
basic analysis assumes stationarity of time series we had to select only part of
data where all indexes in particular continent have at least approximately the
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same mean and variance within their blocks. Mean does not violate stationar-
ity assumption so much but variance is more diverse in particular blocks, see
appendix B.

In the case of Europe we analyzed three indexes, namely AIM100 of London
stock exchange, DAX and EURO STOXX 50 which is composed of 50 largest
stocks in Eurozone and should represents summary for all Europe. We choose
data points from around 13th to 15th block which shows the lowest variance
diversity. This data corresponds to period from 23rd of August to 7th of Septem-
ber. Only two weeks may seem rather short but acquisition at high frequency
assures sufficient amount of data ' 5000.

In America the biggest stock indexes was selected DJI - Dow Jones Industrial
Average, NYA - New York Stock Exchange and CCMP - NASDAQ Composite
Index. These indexes appeared to be approximately stationary at the end of
our examined period and therefore we could pick up larger data set composed
of ' 6000 data points from 7th to 29th of August.

Many big stock exchanges are situated in the east coast of China and in
Japan. Five indexes were available, namely, Shenzhen, Korea, Hong Kong,
Shanghai and Tokyo. Unfortunately, Asia stock exchanges close around lunch
time for one and half hour and moreover there is different time zone in China
and Japan and thus after filtration little data has left which is reason why only
11 blocks were used to test stationarity. See in appendix that it is impossible
to find stationary part in all five indexes, hence, we opted only Shenzhen Stock
Exchange Composite Index, Korea Stock Exchange KOSPI 200 Index and HSI
- The Hang Seng Index Hong Kong from 13th of August to 6th of September.
This period gave us over 3000 data points.

3.4.1 Choice of parameters

Due to non-stationarity we have quite small amount of ”clean” data therefore
actual values of transfer entropy are subject to huge statistical errors. Thus it
is difficult to compare flows from different stock exchanges. The errors are more
enhanced for larger m and l and we have to trade off between statistical errors
and bias caused by underestimation of history parameter m.

Effective transfer entropy has higher errors (twice the error of transfer en-
tropy) because it is sum of two transfer entropies. Moreover, for small m the
correction of transfer entropy is not very remarkable and for this reason we de-
cided to use only transfer entropy and parameters m = l = 1 as had been done
in [12] where similar amount of date had been analyzed.

This approach leads to slightly overestimating of actual values but allows sig-
nificant comparing between both directions and various indexes that is crucial
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in our case since we analyze flow only inside continents and these systems are
rather close to equilibrium, thus, small flows appears. Hence, we should inter-
pret calculated results more in qualitative sense, for instance detecting major
(leading) stock exchange, than quantitative description like a precise number of
bits that flows from one series to another.

After careful examination of errors for three mentioned partitioning for all
indexes we decided to use equiprobable partitioning that was used also in [11].

3.4.2 Numerical results

Numerical results are presented in appendix B. Q parameter of transfer en-
tropy selects the part of distribution in which we are interested, so we see that
that more information is exchanged in central part of distribution q = 1.5 than
tail part q = 0.8. We can also see that the highest information flow is in Asia
followed by America and in Europe are particular stock exchanges only slightly
coupled (note different scales in heat maps).

3.4.3 Time dependent information flow

For DAX and SX5E where the biggest amount of date is available we calculate
information flow as a function of time. Whole series is divided to blocks cor-
responding roughly to one weak. In each block data are considered stationary
and transfer entropy is calculated.

We can see from figure 3.8 that information flow from SX5E to DAX indeed
changes during examined period. Nevertheless, we cannot say that it changes
in the form depicted in the figure because errors of our estimator overlaps for
successive weeks. All we can say is that there is significantly higher influence at
the beginning of examined period than around 5th week which is period of lower
interrelatedness and is followed by other stronger correlation around 8th week.
At the end of examined period we see restoration of previous lower connected
state.
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Appendix A

Estimators, errors and
Bootstrap

A.1 Estimators

From data we want to infer some feature A of whole population, for example
population mean µ or variance σ2. The proper estimator ÂN (x1, . . . , xN ) of
some parameter A should have following properties.

• consistency - lim
N 7→∞

ÂN = A

• unbiasedness - E[ÂN ] = A

• effectiveness - Every other estimator of A fulfilling conditions above must
have higher variance.

For example biased estimator of variance is

σ̂2 =
1

N

N∑
i=1

(xi − x̄)2

this is so called plug-in estimator since we plug in empirical distribution function
into expression for variance instead of proper unknown one, this is common
practice in estimation of parameters. However, this estimator is biased and the
unbiased one is

s2 =
N

N − 1
σ̂2 =

1

N − 1

N∑
i=1

(xi − x̄)2,

where x̄ is sample mean.

Since every estimator is a random variable we would like to know variance
of our estimator. The square root of the variance (standard deviation) is then
called standard error of the estimate and is used for error bars in plotting.
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Let have a look at the simples case, i.e. population mean. Its variance, pro-

vided the date is independent, is σ2
x̄ = σ2

N . We see that it depends on unknown
population variance σ2, therefore we are forced estimate both population mean
and its standard error. In order to properly estimate standard error of x̄ we
need to find suitable estimator σ̂ of population standard deviation σ. Such an
estimator is, see [13]:

σ̂ = KNs =

√
N − 1

2

Γ
(
N−1

2

)
Γ
(
N
2

) s

Nevertheless, asymptotic behavior shows that for N > 10 it is reasonable to
use KN = 1, as it is very common in practice, i.e. σ̂ = s and thus σ̂x̄ = s/

√
N .

We use this relation for testing stationarity of time series in the last chapter.

The standard error of variance estimator is:

σs2 = σ2

√
2

N − 1
,

we used the fact that (N−1)s2

σ2 has chi-squared distribution with N−1 degrees of
freedom and such a distribution has variance 2(N − 1). Thus estimated error of
sample variance, which we also use in the last chapter for basic weak stationary
justification, is:

σ̂s2 = s2

√
2

N − 1

A.2 Bootstrap

These two examples are specific because there is analytical derived standard
error of the estimate. In practice we need to estimate other, much more difficult,
parameters also called statistics θ, i.e. function of hidden probability distribu-
tion θ = t(F ). For this purpose, we suggest some estimate θ̂ of θ and then we
need to know its standard error. In many cases we are not able to derive exact
formula and it is where bootstrap come handy. Bootstrap has been using since
1979 when computers power became capable of processing huge amount of data
in reasonable time, see [14].

The main idea behind bootstrap is very simple but demanding immense com-
putational effort that is why it emerged quite recently. Let have a sample values
x = (x1, . . . , xn) for this values we calculate estimator θ̂(x) of our desired pa-
rameter and in order to find out standard error of the estimator we resamle the
date to get so called bootstrap sample x∗, i.e. we draw n values with replacement
from original ones. Thus some values may repeat in the new sample and other
ones may be missing.
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After that, we calculate estimator for this new sample θ̂∗(x∗) and repeat the

same procedure many times until we get sufficient number of values (θ̂∗(x∗1), . . . ,

θ̂∗(x∗m)) for statistical inference. The bootstrap estimate of standard error is
just standard deviation of the sample of estimators. The length m of bootstrap
sample is usually taken in range 25− 200, see [14].

Problem with bootstrap Unfortunately, some problems emerge when we
try to apply bootstrap method in time series analysis since bootstrap method
assumes that data in original sample are i.i.d., the identical distributed restric-
tion may be satisfied for stationary time series but the independence is general
problem in most time series. The simplest solution is differencing time series
and hope that new time series of differences is already independent, as it is case,
e.g. for random walk. The differencing of time series is based on some a priori
known structure or model of the system. Hence, provided we have faithful model
of date we may bootstrap only the extracted random already independent noise
or residuals and then reconstruct resampled time series. However, in many cases
no suitable model exist and we are left with nonparametric bootstrap.

We analyze financial data, particularly stock indexes values which are, more
precisely its logarithm, according to old and austere theory motivated by Bache-
lier regarded as a random walk. Therefore, someone would expect there is
no problem, nevertheless, empirical analysis shows that this theory is not sat-
isfactory and even the differences are dependent. The dependence may not
be obvious since auto-correlation function suggest uncorrelated date but as we
have already seen auto-correlation cannot detect nonlinear correlation and more
precise analysis with mutual information points out nonnegligible dependence.
Thus it is clear that simple bootstrap sample loses the correlation structure and
hence cannot faithfully represent original data.

For dependent data with unknown structure we have to use improved boot-
strap method called moving blocks bootstrap. Instead of resampling bare
data we resample all blocks of given length l, these blocks are less correlated
and the original structure of time series remains unchanged. The procedure is
as follows:

1. From original data we construct n− l + 1 overlapping blocks.

B1 = (X1, . . . , Xl), B2 = (X2, . . . , Xl+1), . . . , Bn−l+1 = (Xn−l+1, . . . , Xn)

2. Then, provided l divides n, we generate b = n/l random numbers uni-
formly distributed on n − l + 1 and accordingly select blocks from which
we consequently compose new series.
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Figure B.1: America, heat map of
Shanonian transfer entropy
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Table B.1: America, Shanonian transfer en-
tropy
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Figure B.2: America, heat map of
Rényian transfer entropy q=0.8
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0 0.0097 0.0118

NYA
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CCMP ± 0.0008 0 ± 0.0012
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Table B.2: America, Rényian transfer entropy
q=0.8
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Figure B.3: America, heat map of
Rényian transfer entropy q=1.5
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Table B.3: America, Rényian transfer entropy
q=1.5
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Figure B.4: Asia, heat map of Shanon-
ian transfer entropy
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Table B.4: Asia, Shanonian transfer entropy
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Figure B.5: Asia, heat map of Rényian
transfer entropy q=0.8
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Table B.5: Asia, Rényian transfer entropy q=0.8
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Figure B.6: Asia, heat map of Rényian
transfer entropy q=1.5
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Table B.6: Asia, Rényian transfer entropy q=1.5
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Figure B.7: Europe, heat map of
Shanonian transfer entropy
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Table B.7: Europe, Shanonian transfer entropy
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Figure B.8: Europe, heat map of
Rényian transfer entropy q=0.8
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Table B.8: Europe, Rényian transfer entropy
q=0.8
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Figure B.9: Europe, heat map of
Rényian transfer entropy q=1.5
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Table B.9: Europe, Rényian transfer entropy
q=1.5
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