
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Supervised classification of network traffic

Řízená klasifikace sít’ového provozu

Bachelor’s Degree Project

Author: Patrik Urban

Supervisor: Michal Sofka, MSc., Ph.D.

Academic year: 2014/2015

- Zadání práce -

- Zadání práce (zadní strana) -

Acknowledgment:
My greatest thanks belongs to my supervisor Michal Sofka Ph.D. for all his advice, help with revisions
of the text and also for his great attitude. I would also like express my deepest gratitude to my parents
and family for the support in my studies, without which all of this would be impossible.

Candidate’s declaration:
I hereby certify that:

• this bachelor’s degree project represents my own work;

• the contribution of any supervisors or others to the research or the dissertation itself
was consistent with normal supervisory practice;

• external contributions to the research are properly acknowledged and all used sources
of information are listed in the bibliography.

Prague, July 7, 2015 Patrik Urban

Název práce:

Řízená klasifikace sít’ového provozu

Autor: Patrik Urban

Obor: Matematické inženýrství

Zaměření: Matematické modelování

Druh práce: Bakalářská práce

Vedoucí práce: Michal Sofka, MSc., Ph.D., Cisco Systems Inc.

Abstrakt: Tato práce představuje techniku klasifikace přenosu multimédií (videa a audia) motivované
sít’ovou bezpečností. Způsob přenosu obsahu zachytitelný v záznamech z proxy serveru je popsán no-
vým příznakem založeným na opakujících se hodnotách velikosti přenesených dat ze serveru na klienta.
Tento příznak je použit ve dvou metodách klasifikace multimédií: klasifikace každého proxy logu nebo
klasifikace IP adres serverů. Výsledky jsou porovnány s naivním klasifikátorem založeném na manu-
álně řízených pravidlech. Představené techniky jsou vhodné pro klasifikaci multimediálního přenosu i
v šifrovaném https provozu. Nejlepší klasifikátory zde dosáhly detekce 51% všech proxy logů multi-
mediálního provozu s přesností 77% a detekce 94% IP adres přenášející multimédia s přesností 85%. S
využitím příznaků, v https provozu nedostupných, dosáhly nejlepší klasifikátory detekce až 55% všech
multimediálních proxy logů s přesností 64% a nebo detekce 93% IP adres s přesností 94%.

Klíčová slova: klasifikace mediálního přenosu, klasifikace sít’ového provozu, sít’ová bezpečnost, sít’ová
komunikace, strojové učení s učitelem

Title:

Supervised classification of network traffic

Author: Patrik Urban

Abstract: This work proposes a technique for classifying media streaming traffic (audio and video) for
the network security. The streaming strategy captured by server proxy logs is described by a new feature
computed from repetitive server-to-client byte values. This feature is then used by a binary classifier in
two methods of media classification: classification of each proxy log or of the server IP address. The
results are compared with a naive classification method based on manually-derived rules. The proposed
methods are suitable for classifying media requests in https traffic, where the the best classifiers achieved
the recall of 51% with the precision 77% in the case of the proxy log classification and the recall of
94% with the precision 85% in the case of classifying IP addresses transferring media traffic. The best
classifiers using additional features not available in https achieved the recall 55% with the precision
64% in the case of the proxy log classification and recall 93% with the precision 94% in the case of
classifying IP addresses.

Key words: media streaming traffic, network security, network traffic, streaming data classification, su-
pervised classification

Contents

1 Introduction 8
1.1 Motivation for this work . 8
1.2 Proxy service, proxy logs analysis and classification . 9
1.3 Supervised machine learning, classification . 10
1.4 Mathematical formulation and used classification methods 10

1.4.1 General formulation . 10
1.4.2 Linear and quadratic discriminant analysis . 11
1.4.3 Support vector machines . 12

2 Background 15

3 Classifying media streaming 16
3.1 Data and proxy log attributes, what is media streaming 16
3.2 Naive methods (based on simple models) . 18
3.3 Single log behavioural analysis, repetitive features . 19

3.3.1 Repetitiveness, used features . 19
3.3.2 Training sets . 21
3.3.3 Feature extraction algorithm . 25
3.3.4 Enriching feature vector for single log classification 26

3.4 IP behavioural analysis, repetitive features . 27
3.4.1 Training sets . 27
3.4.2 Used features, final feature vector . 29

4 Experiments 31
4.1 Naive classification experiment and results . 33
4.2 Single log behavioural classification and results . 35
4.3 IP classification and results . 38
4.4 Comparison of classification methods . 40

5 Discussion 41
5.1 Main contribution and possible extensions . 42

Conclusion 43

6

List of Tables

3.1 Description of proxy log attributes . 16
3.2 Proxy log example . 17
3.3 Statistical properties of datasets used for naive classification 18
3.4 Proxy logs conditioning by scb, csb and repetitiveness 22
3.5 Training sets used for single log classification - summary 23
3.6 Statistical properties of training sets used for single log classification 23
3.7 List of content-type-RS values within training sets used for single log classification . . . 24
3.8 Final feature vector for single log classification . 27
3.9 All versions of the feature vector for single log classification 27
3.10 Training sets used for IP classification - summary . 28

4.1 Specifications of the evaluation dataset. 32
4.2 Statistical results of naive classification . 34
4.3 Statistical results of single log classification . 36
4.4 Statistical results of IP classification . 39

7

Chapter 1

Introduction

1.1 Motivation for this work

One of many threats nowadays is a PC infection by a malicious software. Such software is in most
cases programmed to gain information, sensitive data or anything else from the infected computer and
then to send it over the internet to the attacker. The attacker - the one who controls such software - is in
most cases motivated by some form of gain or political interest. The infection may start with a click on an
advertisement or on a link in an email or with a file download. The software then begins to communicate
over the internet to ex-filtrate information or to receive additional orders. The computer resources may
be even sold to someone else for Bit Coin mining or cyber-attacking. Any of these threats are dangerous
and apparently unwanted. Such (and also many other) unwanted http requests are detectable through the
analysis of the internet communication.

This bachelor degree project was supervised by Cisco Systems Inc. (to which I will further refer
simply as Cisco). Cisco is one of many companies, which specializes themselves for network and internet
security. A product of Cisco offered to their customers is a cloud web security solution. To protect the
customer, Cisco provides a proxy server service, through which the customer connects to the internet.
Thanks to a proxy server Cisco can monitor and record all internet communication between the customer
and internet, these records (also denoted as proxy logs) stores, analyses and checks for any malicious
http request.

With the size of a customers network rises not only the probability of existence of malicious com-
munication, but also the time needed to check all proxy logs. This checking procedure can become - and
in most cases also becomes - unmanageable due to the huge amount of data to be checked. Therefore,
prior analysis and classification of all the internet entries has to take place. The goal of this analysis and
classification is to reduce the amount of data, which has to be manually reviewed or further analysed.
The roughest output of such classification is labelling the communication as:

• Safe - communication that cannot harm the client

• Malicious - communication that is known to be harmful or unwanted

• Unknown - communication which does not have a clear label assignment

The goal of this project is finding and classifying media streaming. According to Cisco measurements
and estimates [6], around 64% of volume of global internet traffic was video internet traffic in the year
2014 and this number will rise up to 84% in the year 2019. Although this estimate does not say how
many requests are or will be generated, it can be assumed, that the percentage of the requests will be
considerable given the large video transmission volumes. Being able to sort out video traffic will greatly

8

reduce the amount of data to be further analysed. Audio streaming - either self contained music or radio
streaming, or files sent parallel to videos, is also included in media streaming traffic.

In addition to the rising video traffic, the amount of encrypted internet traffic will rise according to
recent estimates [5]. Encrypted https traffic improves the security and privacy of web page visitors by
making it impossible to read detailed information about the communication and therefore proxy logs in-
clude only a little information, namely IP address of both client and server, the amount of data transferred
both ways and time, when the communication happened. Such encrypted information is extremely dif-
ficult to analyse. A solution to this problem may be training a classifier on unencrypted data only using
information available in https traffic.

1.2 Proxy service, proxy logs analysis and classification

Proxy server is a server (computer or an application) which stands between a client and other servers
and provides communication. Along with providing the communication, proxy server also keeps record
of it in a form of proxy logs. Each proxy log is a line of information about one particular client’s request.
Proxy log can include various information about the request, which can be used for an analysis of the
communication.

The more of the communication is described the easier it is for Cisco to provide security for their
clients. One of many goals of the analysis is to recognize as much of the internet traffic as possible to
be able to decide which communication is malicious and which is not. The classification result safe has
to be very accurate, not to have many false positives - that is not to label unknown and malicious traffic
as safe. Such misclassification causes a security risk. It is therefore better to classify some safe traffic as
unknown or malicious than the other way around.

The first step of designing a classifier is to manually look into the proxy logs to find a typical feature
for a particular communication (e.g. advertisement, internet radio or news reading). When a feature is
found, a rule can be designed and tested whether it suffices to describe the chosen communication. These
manually designed rules are not the best option to use in real practice, because they lack flexibility and
scalability. That means, that if the traffic slightly changes or not all of the traffic follows the same rule,
the rule might not be applicable. An example of such rule might be filtering of the communication by
the amount of data sent from a client to a server.

Because the internet keeps evolving, classification has to be of different form then of using rigid
manually designed rules. Machine learning methods takes the leading role on this part. The first steps
of the analysis are the same, only the procedure does not stop with manually designed rules. Instead of
trying to find a threshold on the identified features, that would differentiate the chosen traffic, we create
data-driven algorithms, that will do the job. The goal is then to:

1. Find descriptive features

2. Find a set of proxy logs containing only our chosen communication

3. Find a set of proxy logs containing everything else but our chosen communication

4. Train a classifier on these two sets of data, so that it:

(a) Finds the best values of features

(b) Is be able to distinguish previously-unseen traffic and label it either as a member of one or
the other set

9

If the found features are sufficient, the classifier can always be updated by training on new sets of
data. If the features divide the input space into more than two regions, the classifier can be used to
distinguish other types of requests, for example text or Java applications, only by training on different
sets of proxy logs.

1.3 Supervised machine learning, classification

Supervised machine learning is a process of creating a data driven algorithm based on pre-labelled
data - so called training set. Machine learning can also be unsupervised (the set is not pre-labelled).
This type of machine learning includes for example clustering, which means that the algorithm separates
the data into distinct groups of subsets itself.

Classification and regression are two main domains of supervised machine learning. The difference
between these two is in the predictions, that can be made about the data. Classification predictions are
elements of a finite set of categories (e.g. {“safe”, “malicious”, “unknown”}), while for regression, the
predictions are elements of infinite or continuous set of values (e.g. threat severity). This bachelor’s thesis
will be devoted to classifying media streaming and the predictions made will be { “media”, “nomedia”
≡ “mediaC” } (C meaning complement).

The classifier (classification algorithm) learns itself on training data and creates rules which separate
the training set into the same number of subsets as is the number of predictions. It can afterwards classify
any other data on the basis of these rules into one of the categories. It is obvious that a sufficient set is
essential for training a robust classifier.

1.4 Mathematical formulation and used classification methods

1.4.1 General formulation

Classification is a process of assigning categories (also classes) to certain input values. Therefore I
begin be denoting X the input space of finite dimension N with elements x = (x1, . . . , xN)T called input
vectors or simply inputs. We will make use of terms known from linear spaces and so we assume X is
a linear vector space. For every input there is an output y. In a classification problem y is a category
Gk which form a finite disjoint system of categories

(
Gk

)K
k=1 for some natural number K. We can denote

each pair of input and output as (x,Gk), or (x, yk) when we assign yk ∼ Gk (yk can be for example
a numerical value). For the purpose of this work I can put K = 2 and for convenience map the two
categories G1 and G2 to a set of numbers {+1;−1} with yk taking values of ±1. The bijection between
an input x in input space X and output ±1 divide the input space into regions R1 and R2 for which holds(
∀(x, y)

)(
x ∈ Rk ⇒ y ∼ Gk

)
for k ∈ {1; 2}. These are called decision regions and they are divided by

decision boundaries.
Considering X ×

(
Gk

)K
k=1 as a probability space we have a joint probability distribution p(x,Gk) ≡

p(x, yk) (it is not a system of probabilities indexed by k, instead 1 =
∫

X

∑
k p(x,Gk)dx). Finding the joint

probability from data is a very difficult task but solving this problem would almost completely resolve
the classification problem. It is possible to obtain the joint probabilities from the product rule given by
(1.2) but as will be shown, the posterior probabilities will be sufficient classification.

Let there be a set of M inputs to which all outputs are given:
(
(xi, yki)

)M
i=1. This is called a training

set. For a two-class problem we can further distinguish a positive training set (yki = 1 ∼ G1) and
negative training set (yki = −1 ∼ G2). The goal now is to find a function, which predicts the output of a
new input x using the information from the training set. Such function is to be precise, in other words it

10

should make as few mistakes as possible. The probability of a mistake [4] (x ∈ R1 classified as a member
of class G2 and visa versa):

p(mistake) = p(x ∈ R1,G2) + p(x ∈ R2,G1)

=

∫
R1

p(x,G2)dx +

∫
R2

p(x,G1)dx (1.1)

should be as small as possible. To achieve small classification errors x is assigned to such category for
which the integrand is smaller that the other, in other words: if p(x,G1) > p(x,G2) then x is of category
G1. From the probability theory is given that

p(x,Gk) = p(Gk|x)p(x) (1.2)

and so it is clear, that the inequality implies:

if p(G1|x) > p(G2|x) then x is of category G1

Our aim is than to find the posterior probabilities p(Gk|x). The Bayes’ theorem states that

p(Gk|x) =
p(x|Gk)p(Gk)

p(x)
(1.3)

and so the problem is in a way equivalent to finding conditional probability distributions p(x|Gk) which
can estimated from the training set.

Suppose now there exists a function G (also called predictor), which would assign proper category
to a certain x: G(x) = yk ∈

(
Gk

)K
k=1 and minimize the probability of mistake given by (1.1). It shall

be further assumed, that for every category Gk there exists a function δk(x) so that x is a member of
category Gk, when δk(x) > δ j(x) for all j , k. Such function δk is called a discriminant function of
class Gk (p(Gk|x) itself falls into this category of functions) and the predictor can be constructed using
discriminant functions. The decision boundary between two categories Gk, G j is then a set of points in
X for which δk(x) = δ j(x).

A special case of discriminant functions which model linear dependencies between inputs and outputs
are linear functions of the form δk(x) = wk · x + wk0. The decision boundary between two classes is than
a set of point

{x ∈ X|(wk − w j) · x + (wk0 − w j0) = 0} (1.4)

which is an affine space in X and thus the decision boundary is linear too. We will loosen the linear-
ity assumption by assuming existence of monotonous transformation Φ of δk such that Φ(δk) is linear
function of x (monotonousness provides the existence of inversion). In that case the decision boundary
{x ∈ X|δk(x) = δ j(x)} = {x ∈ X|Φ(δk(x)) = Φ(δ j(x))} which is again a set of the form (1.4) and thus an
affine space in X. The loosened assumption in other words states, that the decision boundary is generally
a monotonous transformation of an affine space in the mapping of Φ−1 in X.

1.4.2 Linear and quadratic discriminant analysis

In the following will be discussed only a two-class problem. So far no assumption has been made
about the probability distribution of the training data. For the derivation of quadratic discriminant anal-
ysis and linear discriminant analysis classifiers normal distribution of the training data will be assumed.
As already mentioned the discriminant function can be p(Gk|x) itself and for a

11

multivariate Gaussian distribution the probability density is given by

fk(x) =

(
1

(2π)Mk |Σk|

)1/2

exp
(
−

1
2

(x − µk)TΣ−1
k (x − µk)

)
(1.5)

where Σk is the covariance matrix of training data from category k, µk is the mean value of of training
data from category k and Mk is the number of points labelled as of category Gk. Considering monotonous
transformation by logarithm and using (1.3), the decision boundary takes the form:

ln
(f1(x)p(G1)

p(x)

)
= ln

(
p(G1|x)

)
= ln

(
p(G2|x)

)
= ln

(f2(x)p(G2)
p(x)

)

0 = ln
(f1(x)

f2(x)

)
+ ln

(p(G1)
(p(G2)

)
= ln

(p(G1)
(p(G2)

)
+

1
2

ln
(
(2π)M2 |Σ2|

)
−

−
1
2

ln
(
(2π)M1 |Σ1|

)
−

1
2

(x − µ1)TΣ−1
1 (x − µ1) +

1
2

(x − µ2)TΣ−1
2 (x − µ2) (1.6)

This is a quadratic function in x and with the discriminant function

δk(x) = ln
(
p(G1)

)
−

1
2

ln
(
(2π)Mk |Σk|

)
−

1
2

(x − µk)TΣ−1
k (x − µk) (1.7)

it defines the quadratic discriminant function which forms a basis of quadratic discriminant analysis
or shortly QDA.

When further assuming univariate distribution Σ1 = Σ2 =: Σ, we can simplify the form of the
decision boundary to

ln
(p(G1)(2π)M2/2

(p(G2)(2π)M1/2

)
−

1
2

(µ1 + µ2)TΣ−1(µ1 − µ2) + xTΣ−1(µ1 − µ2) = 0 (1.8)

which is a linear function in x and thus the decision boundary is a hyperplane (an affine space) in X
perpendicular to Σ−1(µ1 − µ2). The discriminant function has a form:

δk(x) = xTΣ−1µk −
1
2
µT

k Σ
−1µk + ln

(p(G1)
(2π)M1/2

)
(1.9)

and it defines the linear discriminant function which forms a basis of linear discriminant analysis or
shortly LDA.

A final remark should be made: the assumption of multivariate Gaussian distribution is not necessar-
ily needed and LDA can be derived also using the method of least squares. The equivalence of these two
approaches is described in detail for example in [4].

1.4.3 Support vector machines

This section on support vector machines or shortly SVMs will use more general form of a linear
model of classification. At first, the two-class problem of linearly separable data will be discussed. The
assumption of linear separability is equivalent to the existence of a hyperplane (affine space) of the form

y(x) = wT ·Φ(x) + b (1.10)

which separates the two sets of data for some w, b and spatial transformation Φ (from the assumption
of transformation follows, that for Φ exists also inverse transformation, which is defined everywhere

12

Figure 1.1: An example of the difference between an arbitrary separating hyperplane and the optimal
separating hyperplane found by the SVM algorithm. The separating hyperplane is purple, grey lines
parallel to the separating hyperplane are in a distance of a margin. Support vectors are marked by circles.

(a) Arbitraty separating hyperplane

margin

(b) Optimal separating hyperplane

margin

on X). If there exists more than one pair of parameters w and b then there exist an infinite number of
parameters defining separating hyperplane and we can choose a subset. Example of such situation in two
dimensional feature space is given in Figure 1.1a. The purple line makes a linear decision boundary but
there exists a better one as shown in Figure 1.1b. We can quantify the quality of a separating hyperplane
by the size of a margin, which is defined to be the smallest distance between the decision boundary and
any of the sample points [4]. Sample point in the distance of margin from the separating hyperplane are
called support vectors and the SVM algorithm finds such support vectors which maximize the size of
margin.

Suppose again there is a training set that comprises of M inputs (x1, . . . , xM), each assigned to one
of two categories G1 and G2. Numerical values ±1 can be assigned to output categories so that for every
input xn there is tn having value either 1 or −1 corresponding to G1 and G2, respectively. The linearity
of (1.10) provides the freedom of choice w so that all xn are assigned to classes according to the sign of
y(xn) or equivalently so that the training data satisfies tn = sign(y(xn)) for all samples. From this choice
follows tny(xn) > 0 for all samples in training data.

From simple algebra follows it that the distance of any point in a feature space from the separating
hyperplane is given by

|y(x)|
||w||

=
|wT ·Φ(x) + b|

||w||
(1.11)

We want to find the smallest distance between the hyperplane and any of the sample points. We are
interested in the distance of a sample point about which we already know that tny(xn) > 0. Thus the
distance of xn from the decision boundary is given by

tny(xn)
||w||

=
tn(wT ·Φ(x) + b)

||w||
(1.12)

Margin is defined to be the smallest of these distances and we want to maximize the margin with respect
to w and b. The optimization problem for w and b can be than written as

arg max
w,b

{
1
||w||

min
n

(
tn(wT ·Φ(x) + b)

)}
(1.13)

13

Figure 1.2: Illustration of using slack variables for SVM using non separable data

margin

ξ = 0

ξ = 0
ξ < 1

ξ > 1

y = 0

Solution of this problem is analytical and leads to a problem of quadratic programming. The solution is
discussed in more detail for example in[4].

What has not been mentioned yet is a problem of applying SVM to data which are not linearly
separable. In that case slack variables ξn ≥ 0 will be added for all sample points to express the loss for
incorrect classification. In addition the transformation b → κb and w → κw do not change the distance
between a point and the decision boundary given by (1.12) and it allows the choice of setting

tn(wT ·Φ(xn) + b) = 1 (1.14)

for all support vectors. Slack variables are set to be zero for all correctly classified samples having the
distance from the decision boundary larger than 1. For all other points, the slack variable are defined
to satisfy ξn = |tn − y(xn)|. Thus all support vectors will have ξn = 0 and points laying on the decision
boundary (for which y(xn) = 0) will have ξn = 1 as shown in Figure 1.2. The problem is then very
similar to the one with linearly separable data and it again leads to a problem of quadratic programming.
Detailed solution is given for example in [4] and it will not be discussed here further.

A problem of dividing non-linearly separable data can by approached by a feature space transforma-
tion. In that case a kernel is used to transform the feature space into other high dimensional space where
data become linearly separable. Kernel is a function of a form

k(wT , x) = Φ(w)T ·Φ(x)

for some fixed nonlinear feature space mapping Φ. The linear model (1.10) then takes the form

y(x) = k(wT , x)

In this project will be used two kinds of kernels for SVM. The first one usesΦ = IX , the identity mapping
on the feature space, the second one will be a polynomial of the form

k(x,w) =
(
wT · x + b

)p

for some b and p ∈ N being the order of the polynomial. The performance of these two classifiers will
be compared in Chapter 4.

14

Chapter 2

Background

A work on traffic patterns of particular http application [2] studied 20 different applications (among
which was also Youtube, Dailymotion or Radioways - web radio streaming) covering 12 different types
of applications. The traffic was made artificially by using the application for a certain amount of time
and recorded. The information about the patterns of Youtube or web-radio streaming traffic agree with
the observation of stable, repetitive traffic which was used to classify media streaming in this work. For
more details see Figure 2 and 3 in [2].

Proxy server service was also used to classify users of a university network in order to control and
better use the networks total bandwidth. The work is not focused on classifying media streaming, but
the on identification of users with large amount of transferred data. High bandwidth users are restricted
during peak hours to enable others to use the internet [12].

Media streaming classification using keywords detection and statistical properties of server-client
data traffic was studied in [11]. The proposed method achieved both high precision and recall although
it might lack robustness and is not applicable to https traffic.

In a research described in [14] was applied SVM classifier to detect different internet applications
communication over a wide range of protocols, such as http, https, ftp, pop3, smtp etc. Our work has
a different aim - classify different types of content transferred over one or two protocols.

15

Chapter 3

Classifying media streaming

3.1 Data and proxy log attributes, what is media streaming

The data I was working with consisted of millions of proxy logs. Each proxy log had 12 proxy log
attributes. The description of each attribute is given in Table 3.1. An example of a proxy log is given
in Table 3.2. In the rest of this text I will refer to the proxy log attributes as they are given in Table 3.1.
These logs come from a communication record of a whole network of one client of Cisco. From the
description of the proxy log attributes it is clear that these data do not provide much information about
one particular request. Considering that not all attributes are always available (for example because of
encrypted https traffic) finding a feature that would describe particular traffic is challenging. The easiest
way of finding a request belonging to some category of traffic is to search the url for string patterns that
are known to fall into that category or the content-type-RS. Unfortunately this approach is not applicable
for example for https traffic.

Table 3.1: Description of proxy log attributes

Feature Description
timestamp Time based attribute in milliseconds.
httpstatus Numerically coded status of connection to a webpage.
scb Size of data transferred form server to client.
csb Size of data transferred form client to server.
url Target internet address.
userID Hashed ID of PC in client’s network.
elapsedtime Time interval the request took.
s-IP IP address of a server to which client has conntected.
c-IP IP address of a client.
content-type-RS Sent content is classified by the server into groups to identify the

communication. These groups are registered and managed by IANA1.
Groups are organized into types and subtypes and can include
additional information. The classification is, however, unreliable and
therefore cannot be used as a feature of further classification.

referrer URL of web site, which sent client to current web page.
user-agent Web browser and additional information about clients PC

1https://www.iana.org

16

Table 3.2: Proxy log example. Content-type-RS, referrer and user agent and are not always available.

Feature Value
timestamp 1382058540001
httpstatus 200
scb 0
csb 13470
url https://remote.astpl.com/

userID 06a3c2f922cbf5f00213298723be88b0
elapsedtime 47012
s-IP 203.59.96.242
c-IP 2

content-type-RS []3

referrer []
user-agent Mozilla/4.0

My task was to find media (audio and video) streaming traffic. Because of its today’s popularity,
identifying such traffic can greatly reduce the amount of unknown requests that would have to be searched
for unwanted or malicious traffic. It is also assumed, that media streaming traffic is not malicious and
can be labelled as safe.

Example sets containing one or other type of traffic had to be created to find distinctive features. For
that purpose content-type-RS feature and url was used to filter certain type of traffic and also to search
for names of well-known video streaming websites. Filtered flows were further manually analysed and
cleared. Not all approaches to the problem of identifying media streaming were equally successful, as
will be seen in further chapters.

For the purposes of this work media streaming will be defined defined by content-type-RS values.
Flows categorised as media streaming are those having the value of content-type-RS any subtype of
video excluding video/x-ms-asf and video/vnd, application/octet-stream containing string
“youtube.com” and not containing string “google” in url (to prevent including Google search results),
any subtype of audio, application/x-shockwave and application/x-fcs having scb>10kB and
csb< 100B.

The prefix “www” was omitted from the string “www.youtube.com” because url of the form
https://www.youtube.com/watch?v=IvdYyil6IEk will link you to the web page where you can
see a video of funny animals, but the actual content of the page - the video and audio itself, comes from
a Youtube content delivery server with an address of a form
http://r17�sn-aiglln7y.c.youtube.com/videoplayback.... More about the delivery cloud
system of Youtube is given for example in [1].

Some types such as video/x-ms-asf or video/vnd had to be excluded, even though they are a
subtype of video. The first subtype was excluded because url of flows of this type contained patterns
indicating advertisement and it was not possible to check the actual content by opening the url address in
a web browser. The second subtype was excluded, because these subtypes are registered under various
vendors according to [8], which makes them unreliable.

Probably the most controversial is the type application/x-fcs and its conditioning. This content
type was added to the media streaming traffic after manual analysis and it is considered to be video
traffic for example in [3]. According to [9] it really should be a video traffic transferred over the real-

2Sensitive data
3Empty value - not all feature values are always available.

17

time-messaging protocol . However, flows with this content type make up to 10% of all internet traffic
and it is highly improbable to have so many media streaming requests only of this type. In addition,
most of the traffic of this type has scb=1B, which is too little to contain a video (or anything else). After
thorough analysis of the application/x-fcs content type I decided to categorise as media streaming
only those flows having scb value greater than 10kB and csb value smaller than 100B. This content type
will not be included in the training sets, because the flows are difficult to label even by manual analysis.

For the matter of consistency and simplicity I will further refer to media streaming traffic only as to
media and to any other traffic as to mediaC.

3.2 Naive methods (based on simple models)

The first approach to media identification is using statistical properties of given features of media
traffic and comparing them to the statistical properties of the mediaC traffic. It is obvious from the
description of proxy log attributes in Table 3.1 that only few features are actually giving some useful
information about the traffic. Timestamp, c-IP and user-agent cannot describe any particular traffic in
principle and referrer was not always available. Moreover both mode and median of csb are zero in
random traffic (see Table 3.3). The only useful features for any statistical analysis left are scb or length
of url (number of characters in the URL address) for which I will use the notation of lurl.

Before sorting logs by content-type-RS or url I removed logs with values of both scb and csb equal
to zero (logs cleared of those having zero values will be in further text called nonZero). Example sets
were created by filtering the rest of the data for content-type-RS values to form a media set as defined in
the previous section with the only difference, that the type application/x-fcs was excluded from the
set.

Figure 3.1 shows the distribution of csb, scb and lurl values within sets media and mediaC and also
within subsets of media and mediaC of request with zero csb value (the distribution will be later used in
Chapter 4).

Table 3.3: Statistical properties of datasets used for naive classification obtained from more than 7 million
flows. Note, that application/x-fcs was excluded from the set media.

Dataset (size) media (211120) mediaC (7191571)
feature scb csb lurl scb csb lurl
mean 461.294kB 0.0003kB 477.8 19.240kB 3.362kB 133
mode 237.568kB 0kB 135 0.043kB 0kB 22
median 237.568kB 0kB 677 1.868kB 0kB 66

Dataset (size) media with zero csb value (210912) mediaC with zero csb value (4927570)
feature scb csb lurl scb csb lurl
mean 458.223kB 0kB 478.2 18.195kB 0kB 177.6
mode 237.568kB 0kB 135 0.043kB 0kB 90
median 237.568kB 0kB 677 1.487kB 0kB 87

As we can see in the figures, it is obvious, that some simple conditioning by chosen features will not
be much precise. Histograms of features distribution within requests with zero csb values were added
because the conditioning on zero csb value was used in experiments. This value is typical for media
traffic, as is shown in Table 3.3.

18

Figure 3.1: Distribution of scb, csb and lurl values within the sets media, mediaC and their subsets of
request with zero csb value. Note, that application/x-fcs was excluded from the set media.

log
2
(scb+1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

pr
ob

ab
ili

ty

0

0.1

0.2

0.3
media
media, csb=0
mediaC
mediaC, csb=0

log
2
(csb+1)

0 2 4 6 8 10 12 14 16 18 0

pr
ob

ab
ili

ty

0

0.5

1
media
mediaC

log
2
(lurl)

4 5 6 7 8 9 10 11 12 13 14

pr
ob

ab
ili

ty

0

0.2

0.4 media
media, csb=0
mediaC
mediaC, csb=0

3.3 Single log behavioural analysis, repetitive features

3.3.1 Repetitiveness, used features

After rejecting simple statistical approach the data had to be further analysed. I used already con-
structed sets media4 and mediaC and tried to find some rule or pattern which would differentiate them.
I sorted the set media by userID to get a record of continuous communication over the internet of one
particular user at a time. I discovered most media flows seemed to follow a repetitive pattern. This
repetitiveness means that equally sized (or nearly equally sized) packages of data are being sent over and
over again from the server. Some video websites send long videos in more than a hundred packages.

4Content type application/x-fcs was still considered to belong in the set mediaC.

19

The same was observed and called “short ON-OFF” strategy of video streaming in [13]. This behaviour
is typical for Youtube, forming almost a half of all media requests. However, not all media follow this
streaming strategy. Another possibility seems to be sending only one file which size is from 102 to 105

bigger than the mean scb of other media (again described also in [13]). Because of this behaviour only a
very small percentage of proxy logs belong to this type of video communication and they are usually eas-
ily distinguishable by their size. My further aim became detecting media streaming using repetitiveness.
I created a data extraction script5 which groups flows by user-ID and s-IP and calculates additional data
for them such as repetitiveness, length of url and other statistics. I sorted the data by the repetitiveness
greater than 10 (more than 10 proxy logs of communication between the same s-IP and the same userID
in a series has the same or similar scb value). Surprisingly more than 30% of all communication has the
repetitiveness greater than 10. This was mainly because of very popular scb values - almost 30% of all
traffic comprises of flows with scb smaller than 1kB, furthermore over 50% of these have one of follow-
ing values: {0, 1, 2, 5, 13, 15, 16, 20, 35, 42, 43, 44, 49, 204, 202}. It is obvious, that the repetitiveness by
itself (not even high) is not descriptive enough.

Another feature of all media communication seemed to be that no data is sent back to the server and
so csb value is equal to 0. This feature is not very descriptive, because as was shown in Table 3.3 zero
value of csb is the most common value of all. However, the value of csb helps filtering out unwanted
repetitive flows.

A typical feature of media is also large scb value. Mean scb value of media is around 20 times
greater than mean scb value of mediaC mode and median of scb was even much greater, as was seen in
Table 3.3. Again, this feature itself cannot describe media traffic distinctively enough, but it helps with
cleaning the repetitive flows belonging to mediaC.

Another feature, that is typical for media is that a connection to the website was successful and
therefore httpstatus was set to 200. Unfortunately, this feature is not accessible for https traffic and
therefore will not be included in all used feature vectors. The same applies to lurl, which is a good
feature but unfortunately url is not available in https.

Last feature could be url itself. Searching through url for strings and patterns is very trivial and
impractical way of identifying traffic. A list of video or audio streaming website domains has to be
created and regularly updated to achieve a stable detection performance. Even then would be some
media requests unrecognised, because their url does not contain anything else but IP address and they
are therefore difficult to distinguish. This approach was not a goal of this work.

Statistical features can be added, having flows grouped in repetitive series. The similarity of scb
values is already used but there is also a similarity of lurl. Many media flows in repetitive series have
almost identical url address, which differ only by a number of a part of transferred file.

I succeeded in sorting out media from random traffic by suitable conditioning of values of only three
given features. The first condition was zero csb value, the other two constraints on scb and repetitiveness
were:

• scb > 200kB
The value is large and filters out not only unwanted repetitive traffic but also around 65% of all
media requests.

• repetitiveness > 10
Repetitiveness proved to be the key feature. Although conditioning flows to zero csb and scb
bigger than 200kB is already highly restrictive, repetitiveness reduces the number of different
content-type-RS values by another 90% as shown in Table 3.4.

5Detailed description of this script will be given in Section 3.3.3 on page 25.

20

An example of descriptive potential of these features is shown in Table 3.4. In around 600000
nonZero flows (cleared of flows with both scb and csb value equal to zero) there is more than a hundred
different types of content-type-RS. After restricting this dataset by csb and scb values, we get around
14000 logs. As we can see from the table these logs still have content-type-RS values in a wide range
of types. Conditioning these 14000 logs by repetitiveness value resulted in around 7000 logs with only
5 content-type-RS values. Moreover, we get only those types, which belong to media. Using other
datasets of proxy logs, image/jpeg, application/ms-dos or text/ types appeared but they were
very rare (less than 1% of all logs) and some of those logs included in url patterns suggesting they
actually belonged to media (e.g. “.flv” file extension , word “video” etc.).

As we can see, there is a possibility of filtering out some part of media streaming only by using
s-IP, userID (c-IP), csb and scb, which are usually the only attributes available in https traffic. Adding
httpstatus and lurl can only improve the identification performance.

It seems that timestamp could be used to create some time window in which flows would have to
follow one another. In practice, however, the time delay between two flows in a series was apparently
dependent on the download speed of each particular user and therefore did not provide widely applicable
information.

3.3.2 Training sets

The next step is to use the descriptive properties of the selected features to train a classifier. In order
to do so appropriate training sets need to be created and descriptive feature vector designed. I will now
discuss creating of the training sets (positive set will include only media, negative will include only
mediaC).

The first positive training set satisfies the definition of the set media given in Section 3.1., only
excluding application/x-fcs. It was excluded because it might pollute the training set resulting in
decrease of classification performance.

The second positive training set was created by searching for strings in url in addition to search-
ing through content-type-RS values for video types. It was searched for names of well-known video
websites: “youtube.com”, “vimeo”, “metacafe”, “hulu.com”, “veoh.com”, “abc.com”, “dailymotion”
and “stream.cz”. Unfortunately, most of these were not found. Only Youtube and Vimeo proved to be
popular and also some flows containing string “hulu.com” and “dailymotion” appeared. The results of
searching in content-type-RS for video were added to form a set of almost 200 000 logs found in more
than 9 million nonZero logs. These logs were than put for data extraction by designed extraction script6

and manually cleared of content-type-RS types with the help of the list of content types [8] not to include
any type of traffic unrelated to media streaming. In the end I had around 140 000 logs. The second
training set was aiming on the detection of video streaming only.

The third positive training set was based on the second one, but the logs were further restricted by
scb and csb. I wanted to have a training set similar to what I found only by using rules as discussed
in Section 3.3.1. I set the minimum scb to 150kB, csb again equal to 0, and repetitiveness greater than
10. The condition on scb was slightly loosened to get more data so that the classifier could be trained to
distinguish more video communication than just the most evident.

All three positive sets will be further referred to by their names given in Table 3.5 or commonly as
mediasets, even though they do not follow the exact definition of media given in Section 3.1.

To form a negative set I used again information from content-type-RS to filter out request corre-
sponding to media. This dataset was further cleared of very frequent communication with scb=1. These
obviously do not belong to the type of communication I was trying to find and they might interfere

6See Section 3.3.3 on page 25.

21

Table 3.4: Proxy log conditioned by scb, csb and repetitiveness values and grouped by content-type-RS
values. Set1 (≈14000 logs) obtained by conditioning more than 600000 logs only by scb and csb, Set2
(≈7000 logs) is conditioned also by repetitiveness.

content-type-RS Set1 Set2
application/font-woff 2 0
application/java-archive 1 0
application/javascript 61 0
application/msword 1 0
application/octet-stream 10507 6739
application/pdf 70 0
application/pkix-crl 6 0
application/vnd.ms-fontobject 5 0
application/x-font-woff 2 0
application/x-javascript 142 0
application/x-msdos-program 104 0
application/x-pkcs7-crl 1 0
application/x-shockwave-flash 316 22
application/x-silverlight-app 1 0
application/x-swz 1 0
application/x-unknown 3 0
application/xml 1 0
application/zip 2 0
audio/mp4 192 105
audio/mpeg 46 0
audio/x-wav 1 0
font/eot 2 0
image/bmp 1 0
image/gif 170 0
image/jpeg 929 0
image/png 262 0
image/svg+xml 6 0
image/vnd.microsoft.icon 1 0
image/x-icon 1 0
multipart/byteranges 65 0
text/css 144 0
text/html 172 0
text/javascript 82 0
text/plain 79 0
text/xml 16 0
unknown/unknown 10 0
video/f4f 20 0
video/mp4 230 103
video/quicktime 1 0
video/x-flv 244 163
video/x-ms-wmv 1 0

22

Table 3.5: Training sets used for single log classification - summary

Name Brief description Size
trSet0 Flows searched for string patterns in url and for video 142290

in content-type-RS. Then manually cleared using
content-type-RS values to include only video related traffic.

trSet1 Flows from trSet0 restricted by scb>150kB, csb=0 and 87845
repetitiveness > 10.

trSet2 media without application/x-fcs 92744
mediaC Flows searched for content-type-RS values related to 468823

mediaC and restricted by scb>1.

with the training of a robust classifier because of their common large repetitiveness values (the requests
followed one after another dozens of times).

Some statistical information about all four sets is given in Table 3.6, list of content-type-RS values
of positive training sets is given in Table 3.7 and a summary about obtaining training sets is provided in
Table 3.5. Histograms of scb, csb, lurl and repetitiveness are given in Figure 3.2 to show the distribution
of these features within the training sets. The basis of the logarithm is in the figure stated, because the
features were not yet normalised.

In further text I will refer to all training sets by their name given in Table 3.5.

Table 3.6: Statistical properties of training sets used for single log classification. Length of URL is
measured by the number of characters, rep (repetitiveness) does not have a unit.

Dataset trSet0 trSet1
feature scb csb lurl rep scb csb lurl rep
mean 529.642kB 0.006kB 632 111 559.056kB 0kB 718 88
mode 237.568kB 0kB 135 1 237.568kB 0kB 785 12
median 241.644kB 0kB 704 28 249.856kB 0kB 719 38

Dataset trSet2 mediaC
feature scb csb lurl rep scb csb lurl rep
mean 400.735kB 0kB 514 79 18.404kB 1.249kB 146 68
mode 237.568kB 0kB 135 1 43kB 0kB 22 1
median 237.568kB 0kB 686 20 1.972kB 0kB 77 4

23

Figure 3.2: Distribution of scb, lurl and repetitiveness within the training sets used for single log classi-
fication.

log
2
(scb+1)

2 4 6 8 10 12 14 16 18 20 22 24

pr
ob

ab
ili

ty

0

0.5 trSet0
trSet1
trSet2
mediaC

log
2
(lurl)

4 5 6 7 8 9 10 11 12 13 14

pr
ob

ab
ili

ty

0

0.5
trSet0
trSet1
trSet2
mediaC

log
2
(rep)

0 5 10 15

pr
ob

ab
ili

ty

0

0.2
trSet0
trSet1
trSet2
mediaC

Table 3.7: List of content-type-RS values of training sets used for single log classification. Negative
training set mediaC includes 71 different content-type-RS values which will not be listed.

content-type-RS trSet0 trSet1 trSet2
application/octet-stream 104110 79766 52236
application/x-shockwave-flash 1545 0 19340
audio/mp4 0 0 1671
audio/mpeg 0 0 825
audio/ogg 0 0 24
video/3gpp 8 2 4
video/abst 12000 0 10436
video/f4f 5795 791 3838
video/f4m 0 0 16
video/flv 16 15 0
video/mp2t 998 0 757
video/mp4 14216 5880 2660
video/quicktime 2 0 2
video/webm 23 2 4
video/x-f4f 19 0 0
video/x-flv 3300 1389 931

24

3.3.3 Feature extraction algorithm

Require: data7, lim, memlen ∈ N, interval ∈ [0; 1]
Ensure: flows with computed features

1: find nonZero requests (cleared of requests having zero both scb and csb value)
2: for each unique userID do
3: find all logs belonging to userID
4: find all unique s-IP values
5: for each s-IP do
6: find all logs belonging to this s-IP
7: if # flows ≥ lim then
8: dataset← all logs with current userID and s-IP
9: create array memory of size memlen×2, first column will contain scb values, second column

will contain position vectors of flows relative to dataset
10: for each flow ∈ dataset do
11: current← scb value of current flow
12: current_memvalues = current first column of memory
13: if ∃ value ∈ current_memvalues : current ∈ (1-interval;1+interval)*value then
14: add to the second column of memory on the row containing value the position of current

flow relative to dataset
15: value← (length of position vector)∗value+current

length of position vector+1
16: else
17: if memory is not full⇔ ∃ empty row in memory then
18: save current as a new value in current_memvalues
19: add to the second column of memory on the same row position of current flow relative

to dataset
20: else
21: save current to current_memvalues instead of the oldest record of memory
22: return the position vector of the oldest record in memory
23: add to the second column of memory on the row containing current the position of

current flow relative to dataset
24: end if
25: end if
26: end for
27: use returned position vectors to add length of the position vector to every flow on a position

given by this vector
28: add length of url to every proxy flow
29: find additional statistics on scb and lurl within flows grouped by position vectors
30: else
31: do not use these logs and jump to next s-IP8

32: end if
33: end for
34: end for
35: return logs with additional statistics and repetitiveness value

7The data stream would be buffered for a certain amount of time and than processed, making it possible to treat data as a
finite set of proxy logs.

8The algorithm discards a certain amount of flows. This problem can be solved in practice for example by keeping these
flows and adding them to the next buffered dataset.

25

3.3.4 Enriching feature vector for single log classification

Feature vector had to be designed using chosen features, to be as much successful in the traffic
identification as possible. That required further analysis and tests to see, which features help with the
description. The feature vector had to include more than just the five features found.

For many values it is better to add a logical value so that the classifier is more sensitive to it. This is
also because of numerical imprecision but mainly because of the way the classifier works. It naturally
makes the separating boundary somewhere near the descriptive value so that it maximizes the separation
of the data (the size of the margin as seen in Section 1.4.3) and minimizes all penalizations from outlying
points. This is unfortunate when only one value of many is important. For example httpstatus 200 is of
my interest and status values range from 100 to slightly under 600 and there are of course values such as
201, 202,..., 208. Moreover these values are not uniformly distributed, because they are categorical and
so the number is not related to the position on any axis. They are rather concentrated over the value of
every hundred. The value 200 might be almost undistinguishable from 201 or 202 and so I added logical
value: httpstatus==200 (if httpstatus = 200 then 1; else 0). Following the same logic I also added logical
value csb==0 because of its importance.

In order to make some values more comparable (for example scb ranges from 0B to 1010B) log values
were added (before that I added 1 to scb to have all scb values greater than 1 and thus positive log values).
The basis of logarithm is not stated, because it is not fixed. Further normalization of all feature values
renormalizes also the basis of logarithm along the rule:

(∀a, b, c > 0) loga(b) =
logc(a)
logc(b)

.

Repetitiveness plays two important roles in the classification. First of all it clearly separates flows
with no repetitiveness from the repetitive ones by a trivial limit: repetitiveness > 1. The second role is the
quantification of how much certain communication is repetitive. Communication with a repetitiveness
smaller than 7 is very different from that with a repetitiveness over 30. To cover all possible applications
of repetitiveness, several additional features were created. To help the classifier with comparison, loga-
rithm was added (again positive) and also two types of logical bins (if the repetitiveness value belongs to
an interval 1; otherwise 0).

Another element of the final feature vector is lurl. In addition to thinking of flows as of groups of
flows in the same series of similar scb, we can add some statistics of lurl within the group of flows. The
most straightforward would be the standard deviation but it ranged from 102 to 10−8 and eventually 0.
Mean value of this feature was somewhere around 10−5. Uniformly distributed features are easier to
separate and so I transformed the feature by logarithm after addition of 1.

Speaking of statistics within a group of flows with a similar scb it is apparent to use some statistics of
scb itself - I chose mean of distances from the mean scb within the group. I am using this statistics and
not for example standard deviation, because one of the parameters in my data extraction script is interval
of values into which repetitive flows have to fall and I wanted to have these two values more intuitively
comparable.

The final feature vector comprises of 25 features, all elements normalized to range from 0 to 1. The
entire vector is given in Table 3.8. Because of the similarity of logical values 11-16 and 17-24 I decided
to test their difference. Every classifier will therefore be trained in three versions depending on what
elements of the feature vector are used. I will also make a comparison between classifiers which are
trained using httpstatus and lurl and those which do not have these values available. The results will
show, how much more difficult it is to identify media traffic in https traffic than in http traffic.

The final six versions of the feature vectors are given in Table 3.9.

26

Table 3.8: Final feature vector for single log classification. Some feature names were abbreviated in this
table: http = httpstatus, rep = repetitiveness.

1 http 10 ∆ rep 18 log(rep+1)≤1
2 http==200 11 log (rep+1) 19 1<log(rep+1)≤2
3 lurl 12 rep < 3 20 2<log(rep+1)≤3
4 log (std(lurl)+1) 13 3 ≤rep<9 21 3<log(rep+1)≤4
5 scb 14 9 ≤rep<20 22 4<log(rep+1)≤5
6 log (scb) 15 20 ≤rep<40 23 5<log(rep+1)≤6
7 csb 16 40 ≤rep<60 24 6<log(rep+1)≤7
8 csb==0 17 60 ≤rep 25 7<log(rep+1)≤8
9 rep

Table 3.9: All versions of the feature vector for single log classification. Using the notation (n:m) =

(n,n+1,...,m-1,m)

Using lurl and httpstatus Name Elements of feature vector with
respect to Table 3.8

YES
vector11 (1:25)
vector12 (1:17)
vector13 (1:11,18:25)

NO
vector01 (5:25)
vector02 (5:17)
vector03 (5:11,18:25)

3.4 IP behavioural analysis, repetitive features

Another option of repetitive traffic classification will be discussed in this section. So far only a
classification of the traffic flow by flow was discussed. The aim now will be to classify each s-IP as
either transferring media or mediaC. This approach requires the assumption that very specific traffic
goes from one particular IP address. Under this assumption, it should be possible to sort the content
coming from one website only by server IP addresses.

I slightly altered the labelling script described in Section 3.3.3 so that it groups proxy log only by
s-IP address (the differentiation of userID is no longer needed). This approach provides different data to
work with and it is possible to use more descriptive statistics for each s-IP than for one log in the case of
a single log classification.

3.4.1 Training sets

The first step is to create new training sets. Using the same training sets as for single log classification
would not lead to training of a robust classifier. It seems that traffic of very different types (images, text,
video, JS applications etc. all together) comes through one IP address. The classification then does
not filter out media requests from mediaC requests, it rather distinguishes IP addresses of two types. IP
addresses of the first type transfer media content, IP addresses of the second type transfer mediaC content
only. The training sets used for the single log classification, however, included strictly only one category
of traffic and therefore all data for particular IP would be either of media category or of mediaC category.
The testing data, on the other hand, contain unsorted data and a dataset of flows with the same s-IP

27

Figure 3.3: Distribution of ratios of media requests relative to all requests per one IP. The distribution
covers only 7679 IP addresses containing at least one media request. No media requests were found in
88% of all IP addresses. Note, that application/x-fcs was excluded from the set media.

(# media requests per IP)/(# of all requests per IP)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

transferring media streaming includes also requests unrelated to media according their content-type-RS
values.

While creating training sets, flows were grouped into sets of flows with the same s-IP. These sets were
then sorted by content-type-RS values into subsets of media and mediaC requests, excluding the content
type application/x-fcs from media not to pollute the training sets. Figure 3.3 shows a percentage
of media flows relative to all flows per one IP (data from all IP addresses with the ratio greater than
zero, which makes around 12% of all IP addresses). The threshold on the ratio to describe IP addresses
transferring media traffic was set to 70%. That means, that an IP address will be labelled as belonging
to the class mediaIP, when at least 70% of all requests coming from this address are media requests,
otherwise it is labelled as an element of class mediaCIP.

Two obvious options how to form a negative training set (set of IPs transferring mediaC traffic)
suggest itself. Either to take any IP which does not belong to mediaIP category, or only those, from
which none media requests come. Because both these options are viable, both will be taken and tested,
only with a little difference. The first training set will include all IP addresses, for which the ratio of the
number of media flows to all flows is smaller than 10%. According to the histogram in Figure 3.3 only
little data will be lost and we will not have to be afraid of polluting the negative set. Brief description of
the training sets is given in Table 3.10 some interesting distributions of features within training sets are
given in Figures 3.4-3.5.

Table 3.10: Training sets used for IP classification - summary

Name Brief description
P Class mediaIP - Proxy logs grouped into dataset of request from one s-IP.

Then sorted by content-type-RS values to either video or mediaC traffic.
IP address belongs to class mediaIP if at least 70% of all logs with the s-IP
belong to media category.

N1 Class mediaCIP - Proxy logs grouped and sorted the same way as for P set.
IP address belongs to this class, if all requests send from the s-IP were from
mediaC class.

N2 Class mediaCIP - Proxy logs grouped and sorted the same way as for P set.
IP address belongs to this class, if 10% or less requests send from the s-IP
were from media class.

28

3.4.2 Used features, final feature vector

Feature vector for this type of communication uses all values available. Having a set of communica-
tion coming though one IP address it is possible to use standard statistics such as mean, mode, and median
on all vectors of data (scb, csb etc.) from the set. These statistics will be used for repetitiveness, scb,
csb and lurl. Transformed log values of repetitiveness and scb will be added after addition of 1. Mean,
mode or median of httpstatus would not be very useful, instead logical value mode(httpstatus)==200
can be descriptive in the same sense as httpstatus==200 for the single log classification. Another logical
values were used for mode(scb)==0 and mean(csb)==0 (both mode and mean are used because zero
mean is much more restrictive than zero mode as shown in Figure 3.5), min(repetitiveness)>1, and the
same logical bins for log(repetitiveness+1) as for the single log classification.

What is definitely new in this type of classification is a vector of repetitiveness values assigned during
the feature extraction process and the number of flows per s-IP. The vector of repetitiveness values is
not a list of all repetitiveness values per IP. Large values would repeat themselves, because they would
be assigned to all flows in the series. Instead, the vector of repetitiveness values has the same number
of elements as is the number of series of repetitive requests per IP. For example requests with scb values
(15,20,15,20,10,15,10,20) would have the vector of the form (3,3,2). A vector of unique repetitiveness
values can be created using this vector of repetitiveness. The sum of unique repetitiveness values divided
by the total number of flows per s-IP states, how many times the unique values repeated themselves
during the communication. Almost the same is given by the ratio of the number of unique repetitive
values to the length of the vector of repetitiveness values. Repetitive traffic would have these values
close to 1 and nonrepetitive traffic would have it close to 0 because requests being sent should have
different scb values. The distributions of these two values within the training sets are given in Figure 3.4.

Figure 3.4: Distribution of the described ratios within the training sets used for IP classification. The
bars represent the number of occurrences in the interval between the ticks so that the last bar is for the
interval (0.95;1]

sum(unique repetitiveness values assigned to communication per IP)/(# of flows)

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95 1

pr
ob

ab
ili

ty

0

0.2

0.4
N1
N2
P

(# of unique repetitivness values per IP)/(# number of all repetitiveness value assignments)

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95 1

pr
ob

ab
ili

ty

0

0.1

0.2 N1
N2
P

29

The final feature vector comprises of 49 features described above. The feature vector is again in two
versions, one including url and httpstatus values and one without these two features.

Figure 3.5: Distribution of several selected features within the training sets used for IP classification.

mean(log
2
(scb+1))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

pr
ob

ab
ili

ty

0

0.2

0.4 N1
N2
P

mode(log
2
(scb+1))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

pr
ob

ab
ili

ty

0

0.2

0.4

0.6
N1
N2
P

mean(log
2
(csb+1))

0 2 4 6 8 10 12 14 16

pr
ob

ab
ili

ty

0

0.5

1

mode(csb)>0 mode(csb)==0

pr
ob

ab
ili

ty

0

0.5

1
N1
N2
P

mean(csb)>0 mean(csb)==0

pr
ob

ab
ili

ty

0

0.5

1
N1
N2
P

30

Chapter 4

Experiments

Experiments and results will be described and discussed in this chapter. An experiment of naive
classification was conditioning flows by certain values of features discussed in Section 3.2.

The single log behavioural classification was tested using 72 different classifiers varying by the fea-
ture vector, with which they were trained, by the training set and - what is the most important - by the
use of url and httpstatus. Classifiers trained not having these two features available are ready to be used
for classification of https traffic. Classifiers are be named systematically following a rule:

sl_clas_sX_lhY_vZ

where clas takes values in {LDA, QDA, SVM, SVM3} (SVM3 means using a polynomial kernel of the
third order), X can by 0, 1 or 2 and it defines used training set (trSet0, trSet1, trSet2), Y is a logical value
of the usage of lurl and httpstatus features and Z takes values 1,2 or 3, depending on the version of the
feature vector (see Table 3.9).

The IP classification method was tested using 24 classifiers grouped into four sets varying in the
usage of httpstatus and url and also in the used training set. Classifiers are again named systematically
following a rule:

ip_clas_sX_lhY

where clas takes values in {LDA, QDA, SVM, SVM3, SVM5, SVM7} (the number following “SVM”
again defines the order of the used polynomial kernel), X takes values either 1 or 2 defining used training
set (N1, N2) and Y is again logical value of the usage of lurl and httpstatus features.

All classifiers were tested on the same evaluation dataset. The dataset comprises of around 2 million
proxy logs and 27000 unique s-IP values. We want to compare these classifiers and therefore we need to
quantify their performance. Three main performance measures of the classification will be counted.

The first one is recall (also called TPR - true positive rate) and is defined to be the number of media
flows classified as media divided by all media flows in the evaluation dataset. It is percentage of media
requests identified.

The second measure is FPR - false positive rate which is defined to be the the number of mediaC
flows classified as media divided by all mediaC flows in the evaluation dataset.

The third measure is precision and it is defined to be the number of correctly classified media flows
divided by the number of flows classified as media flows. 1 - precision quantifies the error of the first
type, which is in our case classifying a request belonging to mediaC class as a member of media class.

The higher recall and precision are numbers are, the better the classifier is. They are, however, not
sufficient for comparing the performance of two classifiers. Having two classifiers, one with recall 70%
and precision 80%, and second classifier with recall 80% and precision 70%, we cannot be certain, which

31

Table 4.1: Specifications of the evaluation dataset.

Classification method Naive Single log IP
Total number of elements 1974101 1974101 27178
Elements used for classification 1586574 1402484 11775
Elements in media class 46469 42938 378
Elements of Youtube media 20835 20457 X

of these two is better, because we do not know, how precise would be the first classifier, with operating
point shifted to 80% recall.

To be able to compare the performance of two classifiers, we need to introduce the receiver oper-
ating characteristic or shortly ROC curve. It is a graph of TPR (recall) as a function of FPR. The
performance of a classifier represented by a curve in a square graph of size 1 (ROC space). The higher
the curve goes for small FPR values, the better. The curve is not important for values of FPR bigger than
0,1 because for such value the mistake of the first type is too big.

Obtaining the described measures involves one problem, that needs to be discussed. The number of
media and mediaC flows in the dataset occurs in all definitions. The problem is that these numbers are
unknown and it was actually the goal of this project to find them. Bottom estimate of the number of
media flows in the dataset was made to obtain the values of the measures. The exact definition of the
media traffic applies here. As was seen, the content type was never included in any training set but some
requests of this type (namely those having scb greater than 10kB and csb value smaller than 100B) are
considered to be true positives of the classification. Thus any such request classified as media will show
that the classifier is able to detect previously unseen media streaming traffic.

It is clear, that not all media flows are found by the conditioning of content-type-RS values described
in the definition of media in Section 3.1. Some flows do not include content-type-RS value (for example
https traffic, which is also included in the evaluation dataset). After manual analysis of a representative
example of flows in media can be, however, expected that more than 98% of flows labelled as media by
this conditioning are really media streaming requests. All classifiers are on the same evaluation dataset
and it will be shown, that supervised classifiers are better than the conditioning, because they find new
media streaming traffic.

Because Youtube video and audio flows made almost a half of all media requests, special statistics
measuring the performance of the classifier was added - percentage of Youtube video or audio flows
found.

Overview of the used evaluation set is given in Table 4.1.
The performance of all classifiers will be measured considering some application/x-fcs flows

as media streaming. This type was not included in any training set although it makes more than 30% of
all media requests, because of its controversy and because it does not follow the same statistical rules as
all other media streaming.

In this chapter will be used further notations for TP - true positives, which are defined to be correctly
classified media records (requests or IP addresses) and FP - false positives, which are defined to be
mediaC records classified as media records.

32

4.1 Naive classification experiment and results

TPR and FPR will be calculated twice - once using the the same definition of media as for all others
classifiers and once using the definition of the media set with excluded application/x-fcs to see, how
does the performance change. All results computed using the training definition of the media streaming
will be labelled by number 2. Precision, number of false positives or true positives will not change and
therefore will be calculated only once.

The evaluation set used for testing was only cleared of flows having both scb and csb equal to zero.
The measurement itself consisted of finding the media and mediaC flows in the evaluation dataset and
then finding the media and mediaC set of flows conditioned by given features.

Naive classification means conditioning by csb, scb and lurl values. The value of csb was put equal
to zero, which leaves two parameters for the classification. To be able to compare the results I conducted
a manual grid search. As seen in Figure 3.1, important decision values for log2(lurl) is between 8 and
10 and for log2(scb) it is somewhere around 15. The intervals chosen for the grid search are therefore
[8;11) for log2(lurl) and [14;18) for log2(scb) with a step 0,1 for both features. I obtained a contour
plots of recall (TPR) and FPR and used these to create an ROC curve. I mapped FPR values back to
the two-dimensional feature space of log2(lurl) and log2(scb) and than found the values of TPR in the
corresponding points. Because the mapping from the feature space to FPR is not injective, the mappings
had to be put more specifically to obtain an injective mapping after the composition of the inversion from
FPR to the feature space and than to TPR.

For every value of FPR there exists one or more points in the feature space with this FPR value.
When the point is only one, the mapping FPR→TPR is injective and we have a one point of the ROC
curve. When there are more points in the feature space with the same FPR value, the resulting value of
the mapping FPR→TPR will be put to be the maximum of all TPR values, maximizing over all points
with the particular FPR value.

After the construction of the mapping, we can plot obtained points into the ROC space and compare
them with the results of all other classifiers. The resulting ROC curve is given in Figure 4.1. Recall,
precision and other interesting results of the classification for 3 work points (marked also in the figure)
of the classifier are given in Table 4.2.

The performance measured relative to the exact definition of media is worse, because the naive
classifier could not identify correctly any request of the type application/x-fcs. This content type
does not satisfy the condition of zero csb value and therefore including application/x-fcs into the
media streaming only increases the number of all media requests found in the evaluation set.

We can see, that the naive classifier had very high precision in all operating points. The recall,
however, decreases very quickly with decreasing false positive rate. It also found a

33

Figure 4.1: ROC curves of the naive classifier. The three marked points define the operating point, for
which Table 4.2 gives explicit statistical results.

FPR
10-4 10-3 10-2

T
P

R

0

0.2

0.4

0.6

x-fcs included in media
x-fcs excluded from media
operating points

Table 4.2: Statistical results of naive classification. Operating points 1, 2 and 3 are marked on the ROC
curve in Figure 4.1, ordered by the increasing value of FRP. All statistics denoted by number “2” were
obtained with application/x-fcs excluded from media.

classifier Operating point 1 Operating point 2 Operating point 3
Flows classified as media 5329 21229 23825
Flows classified as mediaC 1581245 1565345 1562749
% of Youtube media flows found 22.57% 96.18% 96.67%
True Positives 4965 20547 21410
False Positives 364 682 2415
Recall (TPR) 10.68% 44.22% 46.07%
FPR 0.02% 0.04% 0.16%
Precision 93.17% 96.79% 89.86%
Recall (TPR) 2 12.15% 50.29% 52.41%
FPR 2 0.02% 0.04% 0.16%

34

4.2 Single log behavioural classification and results

Feature values on the evaluation set ware obtained by the labelling script (see description in Sec-
tion 3.3.3 on page 25). The parameters of the script were set to 5 for the memory length and 0.1 for the
interval. The first parameter implies, there have to be at least 5 flows per userID and per s-IP to use the
flows for feature extraction. The second parameter states, that for adding a new flow to a repetitive series
of flows, the flow must not have the scb value further from the mean of the values in the series than 10%
of the mean. An example: repetitiveness values assigned to a series of scb values (10,10,9,11,10,13) is
(4,4,1,4,4,1), because the mean value is computed only for those values, that are already considered to
be repetitive. The mean of the numbers 10, 10 and 9 is 9.666 and 11 does not belong to the interval
9.6666±0.96666 and therefore will not be added to this series1.

The number of flows used for the testing was over 1,4 million. Recall, precision and ROC curves
were obtained using the classification results. The ROC curves are given in Figure 4.2. Comparison
of the best classifiers from each group (training set and usage of lurl and httpstatus) is given in each
figure. FPR is shown on a logarithmic scale, because this region is the most important. Recall, precision,
FPR and other statistics quantifying the performance of chosen classifiers are given in Table 4.3 and the
operating points given in the table are also marked in the figure with ROC curves.

As was mentioned, some requests of application/x-fcs are considered to belong in media, al-
though they were not present in the training sets. Any such request found is therefore another proof of
better performance in comparison with the naive classifier or manually designed rules. An example of
the detection of requests of this type were found the numbers of flows of the type application/x-fcs
among the true positives of classifiers given in the table. Classifiers trained using the features lurl and
httpstatus found 260 flows of this type on average with the minimum of 93 flows, classifiers which do
not use lurl and httpstatus found 745 flows of this type on average with the minimum of 442 flows.

A discussion about false positives should be made. Among false positives were very frequently found
images, text and javascript applications. For example the website www.flightradar24.com regularly sends
an updated view on the flight traffic all around the world. Another javascript application probably reg-
ulates the streaming of some media - many requests with the domain www.siriusxm.com were found
among false positives. Images get misclassified, when every file is sent more than once (it is not rare to
send the file 3 or 4 times in a row, some images are sent more than 10 times) or when the files come from
a gallery or it is a content of an image advertisement banner, that changes images with time. The images
in the galleries are usually of similar size (and also their size is similar to the size of packages of media
content) and as a client proceeds through the gallery, repetitive pattern occurs.

Some requests of https traffic were also found among false positives, which were evaluated as me-
diaC, because content-type-RS value is not available. These requests had an IP address for example
72.246.91.18, 23.66.160.251 or 95.100.203.164 and its domain was akamaitechnologies.com, which is
known for serving audio and video streaming. The classifier is more precise in classifying these requests
than the script made for the evaluation labelling. It is exactly the case of what was discussed at the end
of paragraph preceding Section 4.1.

As a summary of the discussion about false positives it shall be said, that 20%-40% of false positives
were images, around 10% makes text and 0%-30% false positives has empty content-type-RS value.
The distribution varies from classifier to classifier but it is almost the same for the classifiers using lurl
and httpstatus and for the classifiers not using them.

1The relation to the mean of scb values was included, because it is common, that the first values in the series of repetitive
flows are smaller than the most frequent values or the mean value. The repetitiveness of such traffic would be smaller, although
the scb values are similar.

35

Table 4.3: Statistical results of single log classification. The first part of the table shows results of
classification using lurl and httpstatus, the second part shows results of classification which do not use
these features. Total number of classified flows was 1402484, number of media flows included was
42938 and number of Youtube media requests was 20457. The operating points are marked on the ROC
curves in Figures 4.2a and 4.2b.

Classifier Classified % of Youtube
name as media media found TP FP TPR FPR Precision

sl_LDA_s0_lh1_v3 39911 93.46% 22272 17639 51.87% 1.30% 55.80%
sl_SVM_s0_lh1_v1 41913 97.40% 23523 18390 54.78% 1.35% 56.12%
sl_SVM_s0_lh1_v1 28569 96.55% 21341 7228 49.70% 0.53% 74.70%
sl_SVM_s1_lh1_v3 18076 76.27% 17197 879 40.03% 0.06% 95.14%
sl_LDA_s2_lh1_v3 40197 96.93% 22915 17282 53.37% 1.27% 57.01%

sl_SVM3_s2_lh1_v1 37059 97.18% 23794 13265 55.41% 0.98% 64.21%
sl_LDA_s0_lh0_v2 41413 92.77% 22516 18897 52.44% 1.39% 54.37%
sl_SVM_s0_lh0_v1 35835 93.52% 22825 13010 53.16% 0.96% 63.69%
sl_LDA_s1_lh0_v2 29089 91.47% 21899 7190 51.00% 0.53% 75.28%

sl_SVM3_s1_lh0_v2 17439 74.35% 16446 993 38.30% 0.07% 94.31%
sl_LDA_s2_lh0_v1 38117 93.12% 22705 15412 52.88% 1.13% 59.57%

sl_SVM3_s2_lh0_v1 28799 91.65% 22189 6610 51.68% 0.49% 77.05%

The comparison of classifiers according to their ROC curves is difficult, because the curves intersect
each other. Among classifiers applicable on https traffic are probably the best sl_SVM3_s1_lh0_v2
and sl_SVM3_s2_lh0_1. The polynomial kernel of SVM classifier was the most flexible in dividing the
features space in correct regions. Something about the used feature vectors could be assumed, because
the vector03 did not appear among the best 6 classifiers in this group. Another interesting thing is, that
LDA classifiers scored so well, even though they assume a univariate distribution. It was supposed,
that QDA classifiers should perform better than LDA, because the assume only multivariate Gaussian
distribution, but they usually scored worst.

Among the best six classifiers using lurl and httpstatus were again the LDA classifiers and one of
them appeared even among the best two. The two best classifiers according to their ROC curve are
sl_SVM3_s2_lh1_v1 and sl_LDA_s2_lh1_v3. Nothing particular can be assumed about the use of the
feature vector in the basis of the comparison of classifiers from this group. Comparing all ROC curves in
Figure 4.2b with those in Figure 4.2a, we see, that using lurl and httpstatus improves the performance.

36

Figure 4.2: ROC curves of the best single log classifiers from each group for comparison of their per-
formance. The marked points define the operating point, for which Table 4.3 provides further statistical
results.

(a) Comparison of the best classifiers trained without the use of features lurl or httpstatus

FPR
10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

T
P

R

0

0.2

0.4

0.6

0.8

1
sl_LDA_s0_lh0_v2
sl_SVM_s0_lh0_v1
sl_LDA_s1_lh0_v2
sl_SVM3_s1_lh0_v2
sl_LDA_s2_lh0_v1
sl_SVM3_s2_lh0_v1
operating points

(b) Comparison of the best classifiers trained with the use of features lurl and httpstatus

FPR
10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

T
P

R

0

0.2

0.4

0.6

0.8

1
sl_LDA_s0_lh1_v3
sl_SVM_s0_lh1_v1
sl_LDA_s1_lh1_v2
sl_SVM_s1_lh1_v3
sl_LDA_s2_lh1_v3
sl_SVM3_s2_lh1_v1
operating points

37

4.3 IP classification and results

The experiments with IP classification were conducted in the same manner as were those with single
log classification. Feature values on the evaluation set ware obtained by the altered script and the flows
were grouped into sets of requests with the same s-IP. To obtain performance measures, IP addresses
had to be categorised into mediaIP or mediaCIP on the basis of the ratio of media flows to all flows, as
was discussed in Section 3.4.1. Two baselines for the number of mediaCIP addresses were actually set.
The first way of labelling an IP address as mediaCIP is, that absolutely no media request was made from
this address. The second way, how to classify an IP address as mediaCIP is, that it is simply does not
belong to mediaIP class. Because of these two ways of classification IP address as mediaCIP, we get
two measurements of number of false positives and also two precisions. These are given in Table 4.4
denoted by the numbers in the same order, they were explained here.

The second option of labelling leaves some IP addresses unlabelled. These might be further analysed
to see, which class they should be assigned to.

The feature extraction algorithm was run with different parameter, than for the single log classifica-
tion. The interval stayed the same - 10% - but the length of the memory was set to 10. The reason for
this is the following: most features are statistical and classifying the IP on the basis of statistics such as
mean, mode or median from 5 values might be imprecise. The parameter set to 10 implies, that IP will
be classified, if the number of flows assigned to it is greater than or equal to 10.

The number of classified IP addresses put was more than 11000. Recall, precision and ROC curves
were obtained using the classification results. ROC curve of the best classifier from each group is com-
pared with others in Figure 4.3. Recall, precision and other statistics quantifying the performance of
chosen classifiers are given in Table 4.4.

IP classification has very interesting false positives. IP false positives are in most cases IP addresses
with flows transferring almost strictly nothing to the server. Among misclassified IPs were some sim-
ilar cases, as for single log classification - my.pinkfroot.com - a website for searching a watching the
position of airplanes or ships online, a weather forecast website, which regularly updates informa-
tion. These both were examples of mainly javastcript applications. Some websites transferred many
images in a form of a banner (panorama-tours.com) or only one image dozens of times (www.click-n-
print.com). Some interesting false positives include for example application/octet-stream with the
domain googlevideo.com, definitely belonging to media traffic. Another example of better performance
of classifier than of the evaluation labelling can be a type application/binary sent from a domain
bbcfmhds.vo.llnwd.net, which is an audio and video streaming domain (the same domain under the
same IP sent also data with content values video/f4f and url addresses of flows with the binary type
contained string patterns indicating media streaming). The last example was not classified as videoIP,
because flows with known video type made too small fraction to all flows, containing the mentioned bi-
nary files. Among false positives also appeared windowsupdate.com, with high repetitiveness and large
amount of data transferred from server to client, or Facebook.com.

After the analysis of false positives it was no surprise they were classified as mediaIP, because they
had the same features and followed the same patterns as media. The solution to this problem is a future
work.

The comparison of best classifiers clearly confirms, that using lurl and httpstatus greatly improves the
performance of the classification. It is moreover obvious, that better classification results have classifiers
trained on the training set N2 - the training set including also IP addresses with media requests. The
training set is probably better, because it also gives examples of traffic that is not of media type, but has
more diversity in the flows.

38

Figure 4.3: ROC curves of the best IP classifiers from each group for comparison of their performance.
The two pairs of curves vary by the usage of the features lurl and httpstatus, the difference between the
curves within the pairs is the usage of training set N1 or N2.

FPR
10-5 10-4 10-3 10-2 10-1 100

T
P

R

0

0.2

0.4

0.6

0.8

1

ip_SVM_s1_lh0
ip_SVM_s2_hl0
ip_SVM_s1_lh1
ip_SVM_s2_lh1
operating points

Table 4.4: Statistical results of IP classification. The operating points described in this table are marked
on the ROC curve in the figure above. Performance measures are given in two variants for two baselines
of false positives as described in the first paragraph of this section. The number of classified IP addresses
in the evaluation dataset was 11775 containing 378 mediaIP addresses.

Classifier Classified Precision Precision
name as mediaIP TP FP 1 FP 2 TPR FPR 1 FPR 2 1 2

ip_SVM_s1_lh0 419 357 44 62 94.44% 0.39% 0.54% 89.03% 85.20%
ip_SVM_s2_lh0 419 357 44 62 94.18% 0.39% 0.54% 89.03% 85.20%
ip_SVM_s1_lh1 376 354 16 22 93.65% 0.14% 0.19% 95.68% 94.15%
ip_SVM_s2_lh1 374 354 15 20 93.65% 0.13% 0.18% 95.93% 94.65%

39

4.4 Comparison of classification methods

The best classifiers of the same type were plotted into one graph to compare all methods. Naive clas-
sifier is included in only one figure, because it uses lurl and therefore inapplicable on encrypted traffic.
Two best classifiers representing each method and the applicability on encrypted traffic are compared
in Figure 4.4. The first figure compares classifiers trained using lurl and httpstatus, the second figure
compares the rest.

It is easy to notice, that the best designed classifiers perform better, than the naive classifier. The best
method proposed is the IP classification method, which performed worse than single log classification in
only in a very small interval of FPR values.

Figure 4.4: ROC curves of the best classifiers representing all classification methods for comparison.
Classifiers using lurl and httpstatus are compared in the upper figure.

FPR
10-6 10-5 10-4 10-3 10-2 10-1 100

T
P

R

0

0.2

0.4

0.6

0.8

1

naive classifier
naive operating points
ip_SVM_s1_lh1
ip_SVM_s2_lh1
IP operating points
sl_LDA_s2_lh1_v3
sl_SVM3_s2_lh1_v1
sl operationg points

FPR
10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

T
P

R

0

0.2

0.4

0.6

0.8

1
ip_SVM_s1_lh0
ip_SVM_s2_hl0
IP operating points
sl_SVM3_s1_lh0_v2
sl_SVM3_s2_lh0_v1
sl operationg points

40

Chapter 5

Discussion

In the previous chapter the performance of the three proposed classification methods was compared.
Other differences between theses methods shall be discussed now.

The first difference between the naive method and the behavioural methods is, that only the naive
classification can be used for the real-time traffic classification. Conditioning proxy log features can be
done using only one proxy log at a time. The behavioural classification on the other hand, can be used
either for classification of stored proxy logs or for “pseudo” real-time classification. Such “pseudo” real-
time classification would have to use a buffer to collect enough data to be able to classify requests or IP
addresses.

IP classification could be used to create a list of mediaIP addresses. Such list would be then applica-
ble as a real-time classifier. It might only need regular updating.

What must not be forgotten is that all behavioural classifiers are implicitly dependent on the param-
eters of the labelling script. Their performance can be improved by training on and classifying data
labelled with different parameters. The parameter of the interval was set to 10% after manual analysis of
the media traffic and this value produced encouraging results. Smaller interval would cause some flows
to be missed and not assigned to the repetitive series of flows and the mean repetitiveness of the traffic
would decrease. That would make it more difficult to distinguish media traffic having the repetitiveness
larger. Larger interval, on the other hand, would cause grouping of requests, that would not have anything
in common, but a similar scb value.

The second parameter of the script defines the number of flows, that will be discarded and also the
length of the memory. The longer the memory is, the greater the probability, that a flow will be assigned
high repetitiveness. It was found experimentally, that increasing the length of the memory for example
to 10 does not cause an increase of mean repetitiveness by more than 2 or 3, but the number of flows
discarded increases by almost 30%. The longer the length of the memory, the fewer requests get classified
or the bigger the buffer would have to be.

I would also like to discuss possible improvements of the proposed methods. The first improvement
could be training on a bigger and more homogeneous dataset. Training sets used here had unbalanced
size (negative sets were 3-5 times bigger than positive sets) and the data of media traffic was made mainly
of Youtube media flows.

Another improvement could be achieved by clearing the feature vector of features, that do not help
much in the differentiating of the two categories of traffic. There is also an opportunity in searching for
other features and using them to divide the feature space to more than two regions.

More sophisticated classifiers could be more successfully trained on larger training sets. Some clas-
sifiers got overtrained on the amount of data I was working with (that is probably why using polynomial

41

kernel of the degree 5 or 7 for SVMs did not score better in IP classification, than the order those with
the degree 3 or linear SVM).

There is also a huge space left for further analysis of content types such as application/x-fcs
and application/octet-stream. There is also a question of the reliability of this feature.

Some more sophisticated tool for reviewing url addresses to help with the manual analysis of the
data would also increase the precision of the analysis. There is also a possibility of creating the data
artificially by recording a communication with particular site or using particular web applications. The
range of different applications, however, makes it almost impossible to create enough data to be sure of
its representativeness.

The performance of the proposed classification method can also be improved by combining them
with some manual data pre-filtering or combining the classifiers together (classifying the data by more
classifiers at once).

5.1 Main contribution and possible extensions

The main contribution of this work is the proposal of new method of traffic analysis. The extraction of
repetitiveness of scb values is dependent only on the knowledge of server IP address and client ID (client
ID is not used in IP classification). The most important property of described methods are the features,
they are based on. Although the whole process of manual analysis, designing the naive rules, creating
the training sets was based on features content-type-RS and url, the final classifiers do not use these. The
classifiers designed to be used in encrypted https traffic use only scb, csb, s-IP and userID (userID is
used only in the case of single log classification), those trained for classification of unencrypted traffic use
also lurl and httpstatus. Although the methods use only so few features, they are successful in detecting a
considerable amount of media streaming traffic. Moreover they accomplish the goal of finding previously
unseen media and they are therefore even better than manual conditioning on content-type-RS values.

The applicability of classification on encrypted https traffic is very important. As was said in the
introduction, the volume of data transferred over the internet using encryption rises and will continue to
rise. Training classifiers on unencrypted traffic with the ability of extension to https traffic is needed. As
an example of achievement could be taken the classification results of one trained classifier, which was
able to detect up to 93% of Youtube media request (naive classifier found 96%, but the naive classification
method is based on using features unavailable in https traffic). Youtube has recently changed from http
to encrypted https traffic and any known method of identifying one of the top 5 most favourite video
streaming web sites is very important for the network traffic classification.

This work can be further extended by further analysis of all false positives and finding another
key feature for distinguishing them from true positives. Deeper understanding of content types such
as application/octet-stream, application/x-fcs or application/javascript and their re-
lationships to misclassified requests of Windows update, weather forecasts or images would also help in
the improvement of both recall and precision. Further analysis could also aim on increasing recall by
going through true negative requests (media flows classified as mediaC) and finding some new feature
helping with their description and identification.

The repetitiveness feature could be also applied to malware detection. Some malware is typical by
periodic communication with an external server and this pattern could be recognised.

42

Conclusion

This work is dedicated to classifying media streaming (particularly audio and video) using logs
captured by a proxy server. Large portion of the media streaming can be easily described by its typical
streaming strategy: sending equally sized packages of data one after another. Such traffic creates a typical
pattern of repeating server-to-client byte values (the amount of data sent form the server to the client),
which and used for classification. Media streaming traffic is further typical by the size of the transferred
data, with its mean more than 10 times bigger than the mean of rest of the traffic. Last crucial feature of
media streaming is that very small amount of data (usually no data at all) are sent from the client back to
the server. Other used features are the status of the connection (media streaming is always “successfully
connected”), or the length of the URL address. These are, however, available only in unencrypted http
traffic.

One option of media streaming detection is manual setting of all parameters and searching for the
best combination to achieve the classification results. This option is not viable since multiple features
are used and the datasets have large sizes. The second option, which is more robust and flexible, is to
create representative sets of media traffic and its complement and train a classification algorithm to find
the best parameters separating the media traffic from the rest of the traffic. The classification algorithm is
capable of discovering relationships between the features, which would be impossible to find by manual
analysis, and therefore achieve better classification results. The algorithm can be also much more easily
updated by training on new sets of data.

This work introduces new feature describing media streaming, which is based on the streaming strat-
egy. The feature was used in two methods of classification - classification of each proxy log and classi-
fication of the server IP address. The first method aims on classifying all proxy logs as either of media
streaming type or other traffic, the second method classifies a server IP address as transferring media
traffic, if at least 70% of the communication with this IP address is composed of media streaming. Both
methods were designed and tested in many variations, of which the most important is the difference in
applicability on encrypted https traffic.

These two methods were compared with each other and also with a naive classifier based on manually
designed rules. Two performance measures will be defined here to present the results. The first measure
is TPR, which is defined to be the number of correctly classified media streaming records divided by the
total number of media streaming records in the dataset and the second measure is FPR, which is defined to
be the number of other records then media streaming misclassified as media streaming divided by the total
number of all other records than media streaming in the dataset (the set of other records is a complement
to a set of media streaming records). For the fixed value of FPR 0.1%, the naive classifier scored 45.79%
TPR compared to the best classifiers of the proxy log and IP address classification method, which scored
49.24% and 92.61%, respectively. Results of the best classifiers using only features available in https
traffic are 34.40% for the proxy log classification and 66.23% for the IP address classification. The naive
classifier can not be used https traffic.

This work has many possible extensions. Further analysis of false positives (requests or IPs incor-

43

rectly classified as media streaming or transferring media streaming) would help increase the precision
of the classification. Additional analysis of other content types and proxy log requests would make it
possible to create better training sets. There is also a space for improvement of used feature vector and
for searching for other features. The proposed feature, repetitiveness, could also be used for identifying
malware, because some types of malware communicate periodically with a command and control server.

44

Bibliography

[1] Adhikari, Vijay Kumar and Jain, Sourabh and Chen, Yingying and Zhang, Zhi-Li. How do you
’Tube’. SIGMETRICS Perform. Eval. Rev..

[2] Augustin, B. and Mellouk, A. On Traffic Patterns of HTTP Applications. In: Global Telecommuni-
cations Conference (GLOBECOM 2011), 2011 IEEE.

[3] Bujlow, T. and Riaz, T. and Pedersen, J.M. Classification of HTTP traffic based on C5.0 Machine
Learning Algorithm. Computers and Communications (ISCC), 2012 IEEE Symposium on.

[4] Christopher M. Bishop. Pattern recognition and machine learning. Springer-Verlag New York, 2006.
ISBN 978-0-387-31073-2

[5] Cisco technology radar. 2014, https://techradar.cisco.com/pdf/cisco-technology-radar.pdf

[6] Cisco Visual Networking Index: Forecast and Methodology, 2014-2019. 2015,
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-
network/white_paper_c11-481360.pdf,

[7] http://www.techsupportalert.com/5-Best-Free-Video-Streaming-Sites.htm. accessed July 7, 2015

[8] https://en.wikipedia.org/wiki/Internet_media_type. accessed July 7, 2015

[9] https://en.wikipedia.org/wiki/Real_Time_Messaging_Protocol. accessed July 7, 2015

[10] https://www.senderbase.org/. accessed July 7, 2015

[11] Kaoprakhon, S. and Visoottiviseth, V. Classification of audio and video traffic over HTTP protocol.
In: Communications and Information Technology, 2009. ISCIT 2009. 9th International Symposium
on.

[12] Sait, S.Y. and Kumar, M.S. and Murthy, H.A. User traffic classification for proxy-server based
internet access control. In: Signal Processing and Communication Systems (ICSPCS), 2012 6th Inter-
national Conference on.

[13] Rao, Ashwin and Legout, Arnaud and Lim, Yeon-sup and Towsley, Don and Barakat, Chadi and
Dabbous, Walid. Network Characteristics of Video Streaming Traffic. Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies.

[14] Zhu Li and Ruixi Yuan and Xiaohong Guan. Accurate Classification of the Internet Traffic Based
on the SVM Method. Communications, 2007. ICC ’07. IEEE International Conference on.

45

