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a přenos stavu

Bachelor’s Degree Project

Author: Stanislav Skopuý

Supervisor: Ing. Martin Štefaňák, Ph.D.
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fyzikálně inženýrská, Katedra fyziky

Abstrakt: V této práci se zaměříme na téma kvantových procházek a jejich využití. Představíme základ
diskrétní kvantové procházky a zmíníme kontinuální kvantovou procházku. Poté popíšeme Groverův al-
goritmus a odhadneme jeho složitost. Také stanovíme dolní hranici počtu kroků potřebných k nalezení
označeného stavu. Definujeme vyhledávací algoritmus založený na kvantové procházce a opět ukážeme
jeho složitost. Provedeme srovnání obou typů algoritmu. Předvedeme jiný způsob odhadu počtu kroků
algoritmu založeného na kvantové procházce pomocí vlastností spektra zobecněného evolučního ope-
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Abstract: In this text we focus on the topic of quantum walks and their usage. We introduce basic
of the discrete time quantum walks and mention the continuous time quantum walk. We describe the
Grover’s search algorithm and estimate its complexity. We also prove the lower bound of number of
steps necessary to find the marked state. We define quantum walk search algorithm and again show its
complexity. We present the difference between both kind of algorithm. We show the different method
of approximating the number of steps of walk search algorithm using the properties of spectrum of the
generalised evolution operator. At the end we focus on use of quantum walks in the state transfer and
communication on the regular lattice.
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Introduction

In this bachelor’s degree project I study the topic of quantum walks and their application in quantum
algorithm. The quantum walks are fast developing topic because there are many ways how to physically
implement them and test their properties in experiments. I focus on search algorithm and briefly on state
transfer.

In the first chapters of this text we introduce the mathematical formalism of the quantum physic
that we use and the basic concept of the quantum walks. Then we describe the quantum walk search
algorithm and Grover’s algorithm, which is not based on quantum walks, and compare their properties.
In Chapter 4 we discuss the quantum walk search algorithm again to estimate their complexity from
different point of view. Last chapter presents use of discrete time quantum walk for the transfer of the
state and communications across the grid thanks to quantum walk search algorithm.
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Chapter 1

Mathematical formalism

1.1 Quantum Mechanics

Basic axioms of Quantum mechanic settle that every quantum system can be described with Hilbert
spaceH , which is often called state space, and every state of this system is described by one-dimensional
subspace of H . Vector from H is denoted |ψ〉. Symbol 〈ψ| represent element from dual space and
is assigned to vector |ψ〉 by Riesz’s lemma. Scalar product of |ψ〉 and |ϕ〉 is written in form 〈ϕ|ψ〉.
Because one state of the system is represented by vectors from one dimensional subspace, we can choose
vector, which norm is equal 1. This will enable us to write simple form of many following expressions.

If Hilbert space has countable orthogonal basis, we can write decomposition of state in the basis

|ψ〉 =

∞∑
i=1

〈i|ψ〉|i〉. (1.1)

In case of finite dimension spaces sum is also finite. One of the most important thing for physics is
how we can predict results of measurement. If the state of system is |ψ〉, then the probability to measure
system in the state |i〉 is equal to |〈ψ|i〉|2.

However quantum system can change trough time, so we have to know how to calculate
the time evolution. Evolution of state is determined by the Schödinger equation

i~
∂|ψ (t)〉
∂t

= Ĥ|ψ (t)〉, (1.2)

where Ĥ is the Hamiltonian operator of the system. Now we take scalar product of solutions
from equation (1.2) and execute its time derivative.

d
dt
〈ϕ (t) |ψ (t)〉 =

(
∂〈ϕ (t) |
∂t

)
|ψ (t)〉 + 〈ϕ (t) |

(
∂|ψ (t)〉
∂t

)
=

=
i
~
〈ϕ (t) |Ĥ|ψ (t)〉 −

i
~
〈ϕ (t) |Ĥ|ψ (t)〉 = 0

(1.3)

From (1.3) follows that the operator of time evolution directed by (1.2) must be unitary to guaran-
tee invariance of scalar product. We want to preserve this property, when we consider discrete time
instead of continuous. So every discrete time step will be also performed by unitary operator.

1.2 Asymptotic notation

Another thing we will often use is following standard computer science notation. Let us say
f (n) = O(g(n)) if there are positive constants c and k such that 0 ≤ f (n) ≤ cg(n) for n ≥ k.
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Similarly we say f (n) = Ω(g(n)) if there are c, k ≥ 0 and 0 ≤ cg(n) ≤ f (n) for n ≥ k. If function f
comply f (n) = O(g(n)) and f (n) = Ω(g(n)) we say f (n) = Θ(g(n)).
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Chapter 2

Quantum walk

In this Chapter we present the basic of quantum walks. First in Section 2.1 we introduce discrete
time quantum walk and then in Section 2.2 we briefly describe continuous time quantum walk.

2.1 Discrete time quantum walk

To introduce discrete quantum walks gently we will at first briefly describe classical random walk on
discrete line, then we move to the discrete time quantum walk on discrete line and later
we introduce quantum walk on general type of graph. Classic random walk on discrete line is a process,
where we have one walker on discrete line with grid-length 1. Movement of the walker is random,
but we know at each step probabilities for walker to go right and left, let us denote them p+ for right and
p− for left. Walker starts at position 0 and we are interested in the probability that he is in certain position
after the fixed number of steps. Distribution of probability with rising number of steps will approximate
to Gauss distribution. Walk is said to be unbiased, if the probabilities are p+ = p− = 1

2 .
For introducing quantum walk we have to construct underlying Hilbert space. Let {|i〉 : i ∈ Z}

be the basis that span position Hilbert space Hp. To use advantages of quantum world we want walker
to travel simultaneously in both neighbouring position in each step. But it is easy to see that

|0〉 →
1
√

2
| − 1〉 +

1
√

2
|1〉 →

1
2
| − 2〉 + |0〉 +

1
2
|2〉 (2.1)

is not unitary transformation. Position space need to be augmented with something, which will direct
the move of every step. We set another auxiliary space Hc with basis {| ↑〉, | ↓〉}. This space is often
called coin-space. Final state space is H = Hc ⊗ Hp. Unitary transition operator, which will shift
position depending on the state of coin-space, has the form

Ŝ = | ↑〉〈↑ | ⊗
∑

i

|i + 1〉〈i| + | ↓〉〈↓ | ⊗
∑

i

|i − 1〉〈i|. (2.2)

Time evolution only under (2.2) is quit trivial. State with defined orientation, i.e. | ↑〉 or | ↓〉,
will simply shift in one direction. To obtain non-trivial evolution we will first conduct rotation
on the coin-space, let us call it coin-flip. Then one step of the walk will consist of coin-flip and
application of shift operator Û = Ŝ · (Ĉ ⊗ Î). Let us start the walk in the initial state | ↑〉 ⊗ |0〉,
take one step and execute measurement on coin-space, after this we would like to get probability dis-
tribution of classical unbiased walk. Balanced coin, that is often used to manage this [1], is the so called
Hadamard coin

C =
1
√

2

(
1 1
1 −1

)
. (2.3)

12



If we measure coin-space after every step, we will get the same probability distribution as for clas-
sical unbiased walk. To get proper quantum walk we conduct measurement at the end of the walk.
Quantum properties starts to emerge since third step due to interference. As an example of quantum
walk we consider 3 step walk with initial state | ↑〉 ⊗ |0〉

|ψ3〉 = Û3 (| ↑〉 ⊗ |0〉) = Û2
(

1
√

2
| ↑〉 ⊗ |1〉 +

1
√

2
| ↓〉 ⊗ | − 1〉

)
=

= Û
(
1
2
| ↑〉 ⊗ |2〉 +

1
2

(| ↑〉 + | ↓〉) ⊗ |0〉 −
1
2
| ↓〉 ⊗ | − 2〉

)
=

=
1

2
√

2
| ↑〉 ⊗ |3〉 +

1

2
√

2
(2| ↑〉 + | ↓〉) ⊗ |1〉 −

1

2
√

2
| ↑〉 ⊗ | − 1〉 +

1

2
√

2
| ↓〉 ⊗ | − 3〉.

(2.4)

Probability distribution is no longer approaching Gauss distribution. The highest probabilities are not
in the centre but on the edges. Walk in this case is also not symmetric, because chosen coin treats states
| ↑〉 and | ↓〉 differently [1]. See figure 2.1.
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position

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p

Figure 2.1: The probability distribution of the discrete quantum walk after 100 steps with the initial state
| ↑〉⊗ |0〉. Only the probability on the even points is plotted. The highest probability is shifted to the right
because initial state of the coin is unsymmetrical.

Now we introduce generalization of quantum walks for general graph G. Degree dv of vertex v
of graph G is number of edges outgoing from the vertex. We restrict us on so called regular graph,
i.e. all vertices have same degree d. We also label edges outgoing from each vertex from 1 to d.
Then underlying Hilbert space of is spanned by orthogonal basis {|i〉 ⊗ |v〉 : v ∈ G, i ∈ 1 . . . d}.
Shift operator is defined as Ŝ |i〉 ⊗ |v〉 = |i〉 ⊗ |w〉, where vertices v and w are connected by edge marked
with i on v’s side. Every vertex can have generally different coin. One step of walk now has the form
Û = Ŝ ·

∑
v∈G

Ĉv ⊗ |v〉〈v|.

2.2 Continuous time quantum walk

We introduce continuous time quantum walk on regular graph. It take place only on position space
Hp with orthogonal basis {|v〉 : v ∈ G}. Time evolution of the state is determined by (1.2).
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We express Hamiltonian of the system in basis

〈v|Ĥ|w〉 =


−α v , w, v and w are connected
0 v , w, v and w are not connected
dα v = w

. (2.5)

In classical approximation α can be seen as probability to move from one vertex to another
connected vertex [1]. The Hamiltonian (2.5) is time-independent, so from (1.2) we can calculate
the time evolution operator

Û(t) = e−iĤt (2.6)

where we set ~ = 1.
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Chapter 3

Search algorithm

In this Chapter we introduce the quantum search algorithm. We estimate the number of steps they
need to succeed and describe their properties. We start with Grover’s algorithm in Section 3.1 and then
in Section 3.2 introduce quantum walk algorithm on hypercube. At the end in Section 3.3 we shortly
present quantum walk algorithm on regular lattice.

3.1 Grover’s algorithm

Grover’s algorithm is quantum search algorithm over unsorted data. Before we begin with algorithm,
we need to describe the basic quantum unit of information so called qubit and quantum memory regis-
ter. Classical computer operate with two state systems called bits. Qubits are bits quantum equivalent.
Qubit can be in superposition of both states at the same time instead of bit which can be in only one
of the two states at the time. For description of qubit state we will use Hilbert space of C2.
Quantum memory register is composed of qubits and underlying Hilbert space is tensor product
of particular qubit’s spaces. For simplicity of notation we will write |i〉 ⊗ | j〉 = |i j〉.

Now we describe the problem for the Grover’s algorithm. Let us have quantum register
with n qubits. Orthogonal basis {|i1i2 . . . in〉; ik ∈ {0, 1}} have N = 2n elements. We label these elements
|S 1〉, |S 2〉, . . . , |S N〉. Let there be a unique state from basis, labelled |S m〉, that satisfies the condition
C(|S m〉) = 1, where for all other basis states C(|S i〉) = 0, i , m. We assume that condition C(|S i〉)
can be evaluated in unit time. Now we use Grover’s algorithm to find state |S m〉.

Algorithm is composed of following steps:

1. Initialize the system in the superposition of basis states

N∑
i=1

1
√

N
|S i〉, (3.1)

i.e. there is the same amplitude to be in each of the N states.

2. Repeat following unitary operation O(
√

N) times

(a) Rotate the phase of basis state |S 〉 if C(|S 〉) = 1 by π. If C(|S 〉) = 0, leave the system
unaltered.

(b) Apply the diffusion transform D̂ which is defined by matrix D = (Di j) as follows:

〈i|D̂| j〉 = Di j =
2
N

if i , j and 〈i|D̂|i〉 = Dii = −1 +
2
N

(3.2)
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3. Measure the the resulting state. This will be state |S m〉 with probability of at least 0,5. [2]

Let us show that the algorithm works. It is easy to see from the definition of the matrix D that it can be
written in the form

D = −I + 2P, where Pi j =
1
N

for all i, j. (3.3)

Amplitudes of vector P̂|x〉 are equal to the average of amplitudes of vector |x〉. When we let D̂ act
on arbitrary vector |x〉

D̂|x〉 = (−Î + 2P̂)|x〉 = −|x〉 + 2P̂|x〉 (3.4)

and label the average of amplitudes as A, we can express ith amplitude of vector D̂|x〉

〈i|D̂|x〉 = −〈i|x〉 + 2A = (A + (A − 〈i|x〉)). (3.5)

Expression (3.5) shows that D̂ is acting like inversion about the average [2]. Let us apply D̂ on vector
which have one amplitude equal to −

√
1 −C2 and rest amplitudes equal to C√

N
, where C is a real number

lying between 1
2 and 1. The average A is approximately equal to C√

N
and hence amplitudes C√

N
do not

change significantly after applying D̂. Marked state amplitude becomes positive and increases by 2C√
N

.

Thus every iteration in the second step of the algorithm increases amplitude in the marked state by 2C√
N

.

As long as the amplitude
√

1 −C2 is less then 1√
2

the increment is grater then 1√
2N

. This means that

there exist a number T less then
√

N and meeting the condition, that after we repeat T-times second step,
we will measure the marked state with probability grater then 1

2 . So the algorithm can find the result
with O(

√
N) steps. In figure 3.1 we can see example of the evolution of the probability to measure

the marked state.

0 20 40 60 80 100
step

0.2

0.4

0.6

0.8

1.0
p

Figure 3.1: The evolution of the probability p to find the marked state during 100 steps. We use the
Grover’s algorithm and search within 1024 elements.

On the other hand we prove that quantum search algorithm cannot perform better then Ω(
√

N).
In general the quantum search algorithm step is composed from the application of the so called
oracle operator Ôm = Î − 2|m〉〈m|, which changes the phase of the marked state |m〉 by π,
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and the application of the evolution operator Ûn in nth step. At beginning of the prove we define
the following states

|ϕn〉 = Ûn . . . Û2Û1|ϕ0〉

|ϕm
n 〉 = ÛnÔmÛn−1 . . . Û2ÔmÛ1Ôm|ϕ0〉

. (3.6)

We show the lower bound of the number of steps by bounding quantity An defined as follows

An =
∑

m

‖|ϕm
n 〉 − |ϕn〉‖

2 (3.7)

For simpler notation we denote the vectors from the Hilbert space x = |x〉. At first we show that
the upper bound of (3.7) is 4n2. We prove this by mathematical induction. For n = 0 it holds true
because A0 = 0. Now we move to the inductive step An+1. Using ‖x + y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

we write

An+1 =
∑

m

‖Ômϕ
m
n − ϕn‖

2 =
∑

m

‖Ôm(ϕm
n − ϕn) + (Ôm − Î)ϕn‖

2 ≤

≤
∑

m

(
‖ϕm

n − ϕn‖
2 + 4‖ϕm

n − ϕn‖|〈m|ϕn〉| + 4|〈m|ϕn〉|
2
) . (3.8)

Now we use Cauchy-Schwarz inequality∣∣∣∣∣∣∣
N∑

i=1

aibi

∣∣∣∣∣∣∣ ≤
 N∑

i=1

|ai|
2


1
2
 N∑

i=1

|bi|
2


1
2

(3.9)

and the fact that ∑
m

|〈m|ϕn〉|
2 = ‖ϕ‖2 = 1 (3.10)

to bound An+1 as follows

An+1 ≤ An + 4

∑
m

‖ϕm
n − ϕn‖

2


1
2
∑

m

|〈m|ϕn〉|
2


1
2

+ 4 ≤

≤ An + 4
√

An + 4 ≤ 4n2 + 8n + 4 = 4(n + 1)2

(3.11)

which means that An ≤ 4n2 holds true.
To find the lower bound of An we suppose that |〈m|ϕm

n 〉|
2 ≥ 1

2 which means that we find
the marked state with probability higher than 1

2 . We can also suppose without lost of generality that
〈m|ϕm

n 〉 = |〈m|ϕm
n 〉|. We can now estimate the following expression

‖ϕm
n − m‖2 = 2 − 2|〈m|ϕm

n 〉| ≤ 2 −
√

2. (3.12)

Another useful inequality holds true for any normalized state x∑
m

‖x − m‖2 ≥
∑

m

(
2 − 2<〈m|x〉

)
≥ 2N − 2

∑
m

|〈m|x〉| ≥

≥ 2N − 2
√

N
(3.13)
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where we use the following estimation

∑
m

|〈m|x〉| ≤

∑
m

|〈m|x〉|2


1
2
∑

m

1


1
2

≤
√

N. (3.14)

Using (3.9),(3.12),(3.13) and ‖x− y‖2 ≥ ‖x‖2 − 2‖x‖‖y‖+ ‖y‖2 we can calculate the lower boundary of An

An =
∑

m

‖
(
ϕm

n − m
)
− (ϕn − m) ‖2 ≥

≥
∑

m

‖ϕm
n − m‖2 − 2

∑
m

‖ϕm
n − m‖‖ϕn − m‖ +

∑
m

‖ϕn − m‖2 ≥

≥
∑

m

‖ϕm
n − m‖2 − 2

∑
m

‖ϕm
n − m‖2


1
2
∑

m

‖ϕn − m‖2


1
2

+
∑

m

‖ϕn − m‖2 ≥

≥


∑

m

‖ϕm
n − m‖2


1
2

−

∑
m

‖ϕn − m‖2


1
2

2

≥

≥

[(
2N −

√
2N

) 1
2
−

(
2N − 2

√
N
) 1

2

]2

. (3.15)

From this and An ≤ 4n2 follows that

2n ≥
(
2N − 2

√
N
) 1

2
−

(
2N −

√
2N

) 1
2 . (3.16)

So the number of steps of search has lower bound c
2

√
N where c is approximately equal to

√
2−

√
2 −
√

2.
Hence any quantum search algorithm must have at least Ω

(√
N
)

steps.
One thing that should be mentioned before we move to another algorithm is that matrix D

can be represented as product of three matrices D = WRW [2], where R is the phase rotation matrix
and W is so called Walsh-Hadamard Transform Matrix, which are defined as follows

Ri j = 0 if i , j,Rii = −1 if i , 0,R00 = 1

Wi j = 2−
n
2 (−1)i· j.

(3.17)

Here i and j are binary representation of numbers i and j, which are lying in {0, 1, . . . ,N − 1},
i · j is a bitwise product [2]. This expression of D is important for the implementation
of the Grover’s algorithm in quantum computers.

3.2 Quantum walk search algorithm on a hypercube

Quantum walk search algorithm on a hypercube is based on a discrete time quantum walk.
Before we introduce the algorithm itself, we at first describe hypercube as a graph, its Hilbert space
and unperturbed quantum walk. The hypercube is n-dimensional cube with edge-length 1. It has N = 2n

vertices, which we label with an n-bit binary strings corresponding to their coordinates. Two vertices
a and b of hypercube are connected, if their bit strings a and b differ only by a single bit flip. Hence,
every vertex have degree equal to n. Hilbert space of a quantum walk on a hypercube isH = Hn ⊗H2n

.
We denote the states from this Hilbert space as |d, a〉, where a is a bit string of underlying vertex
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and d labels the direction on a hypercube. We define the operator Ŝ to shift the state |d, a〉
to the state |d, ad〉, where ad is bit string a with bit flip on dth place

Ŝ =

n∑
d=1

∑
a
|d, ad〉〈d, a|. (3.18)

For unperturbed walk we need to denote also the coin operator Ĉ0 on the coin space. We choose so called
Grover diffusion operator

Ĉ0 = Ĝ = −Î + 2|sC〉〈sC |, where |sC〉 =
1
√

n

n∑
d=1

|d〉. (3.19)

Then the evolution operator of the walk is Û = Ŝ (Ĉ0 ⊗ Î). However, in the quantum walk search algo-
rithm we have some marked state that we need to treat differently than others to produce higher amplitude
of probability in the state at the final measurement. At each step we will use different coin
on the marked state, denoted by Ĉm, and Ĉ0 will used on the other states. Coin Ĉm can be chosen
simply equal to −Î. Thanks to high symmetry of the hypercube we can assume that the marked state
is |0〉, where 0 is a string consisting only from zeros [4]. Coin operator acting on the whole space
have the form

Ĉ′ = Ĉ0 ⊗ Î +
(
Ĉm − Ĉ0

)
⊗ |0〉〈0| = Ĉ0 ⊗ Î − 2|sC〉〈sC | ⊗ |0〉〈0|. (3.20)

Shift operator is the same as in the unperturbed walk, so the perturbed operator Û′ is defined as follows

Û′ = Ŝ Ĉ′ = Ŝ (Ĉ0 ⊗ Î) − 2Ŝ (|sC〉〈sC | ⊗ |0〉〈0|) = Û − 2Ŝ (|sC〉〈sC | ⊗ |0〉〈0|). (3.21)

Algorithm itself is composed of the following steps:

1. Initialize the system in the superposition of basis states

|ϕ0〉 =

n∑
d=1

2n−1∑
a=0

1
√

n2n
|d, a〉, (3.22)

where a is binary representation of a.

2. Apply unitary operator Û′ t f =
⌊
π
2

√
2n

⌋
times.

3. Measure the resulting state [4].

We will show that the marked state have probability 1
2 − O

(
1
n

)
to be measured at the end

of the algorithm. To simplify the problem we first show that the perturbed walk on the hypercube
can be collapsed to the walk on the line. Then we introduce two approximate eigenvectors of Û′,
initial state |ϕ0〉 and |ϕ1〉, which both have high overlap with subspace of two eigenvalues of Û′.
We denote these eigenvalues by eiω and the state e−iω and their eigenvectors by |ω〉 and | − ω〉.
We approximate these vectors by linear combination of |ϕ0〉 and |ϕ1〉. After that we show that ap-
plication of Û′ is approximation of rotation in subspace spanned by |ϕ0〉 and |ϕ1〉 with rotation angle
approximately equal to 1√

2n−1
. Since we show that the state |ϕ1〉 is well approximation of the marked state,

the algorithm will finish after
⌊
π
2

√
2n

⌋
steps.
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Let us define the permutation operator P̂i j as follows

P̂i j|d, (a1, a2, . . . , ai, . . . , a j, . . . , an)〉 = |dP, (a1, a2, . . . , a j, . . . , ai, . . . , an)〉

where dP = d for d < {i, j}, dP = i for d = j, dP = j for d = i.
(3.23)

Because the unperturbed evolution operator Û treats all directions in the same way the operator P̂i j com-
mutes with Û. It is easy to show that P̂i j also commutes with perturbed evolution operator Û′ [4]. From
the expression (3.22) of the initial state we see that |ϕ0〉 is an eigenvector of P̂i j

with eigenvalue 1. From this it follows that |ϕt〉 = (Û′)t|ϕ0〉 is also an eigenvector of P̂i j with eigen-
value 1 for any t ∈ N i.e. (Û′)t preserves the symmetry of initial state with respect to bit swaps.
Because of that all intermediate states of algorithm are placed in subspace spanned by eigenvectors
of eigenvalue 1 of P̂i j. Before we define new basis, we will define function called Hamming weight
which assigns to every bit string number of ones in the string. Hamming weight of string a is denoted
by |a|. This function will simplify subsequent notation.

Now we define subspace basis {|R, 0〉, |L, 1〉, |R, 1〉, . . . , |R, n − 1〉, |L, n〉} as follows

|L, a〉 =

√
1

a
(
n
a

) ∑
|a|=a

∑
ad=1

|d, a〉 (3.24)

|R, a〉 =

√
1

(n − a)
(
n
a

) ∑
|a|=a

∑
ad=0

|d, a〉. (3.25)

Using these states we can reduce the quantum walk on the hypercube to the quantum walk on the line
[4]. Marked state corresponds to |R, 0〉. Shift operator has the form

Ŝ =

n−1∑
a=0

|R, a〉〈L, a + 1| + |L, a + 1〉〈R, a| (3.26)

and the unperturbed coin has the form

Ĉ =

n∑
a=0

(
cos (ωa) sin (ωa)
sin (ωa) − cos (ωa)

)
⊗ |a〉〈a|, (3.27)

where cos (ωa) = 1 − 2a
n and sin (ωa) = 2

n

√
a(n − a) and where first part acts on the space spanned

by {|R〉, |L〉} and second part acts on position space {|0〉, |1〉, . . . , |n〉} [4]. The unperturbed evolution
operator Û on subspace acts as

Û =

n−1∑
a=0

|R, a〉(− cos (ωa+1) 〈L, a + 1| + sin (ωa+1) 〈R, a + 1|)+

n∑
a=1

|L, a〉(sin (ωa−1) 〈L, a − 1| + cos (ωa−1) 〈R, a − 1|)

(3.28)

and perturbed operator Û′ acts as

Û′ = Û + ∆Û = Û − 2|L, 1〉〈R, 0|. (3.29)
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The initial state |ϕ0〉 expressed in the new basis have the form

|ϕ0〉 =
1
√

2n
|R, 0〉 +

1
√

2n
|L, n〉 +

n−1∑
a=1


√(

n−1
a

)
2n |R, a〉 +

√(
n−1
a−1

)
2n |L, a〉

 . (3.30)

Let us defined arcA of complex numbers with absolute value 1 as follows

A =

{
z| Re(z) > 1 −

2
3n
, |z| = 1

}
. (3.31)

It can be shown that on this arc lie exactly two eigenvalues of Û′ [4]. They must be a complex conjugate
pair. Let us denote them by eiω and e−iω. Corresponding eigenvectors |ω〉 and |−ω〉 comply |ω〉 = |−ω〉∗.
Let us define the state |ϕ1〉 as follows

|ϕ1〉 =
1
c


b n

2−1c∑
a=0

1√
2
(
n−1

a

) |R, a〉 − 1√
2
(
n−1

a

) |L, a + 1〉

 (3.32)

where c is a normalization constant

c =

√√√√√b n
2−1c∑
a=0

1(
n−1

a

) . (3.33)

If the system is in the state |ϕ1〉 we will measure with high probability p the state |R, 0〉 which we identify
with the marked state. Because for sufficiently large n hold c ≤ 1 + 2

n we can estimate the probability p

p = |〈R, 0|ϕ0〉|
2 =

1
2c2 ≥

1

2
(
1 + 2

n

)2 =
1
2
− O

(
1
n

)
. (3.34)

It can be shown that states |ϕ0〉 and |ϕ1〉 are approximately eigenvectors of Û′ with eigenvalue 1 [4].
Furthermore, it can be proven that eigenvectors |ω〉 and | − ω〉 can be written as a linear combination
of states |ϕ0〉 and |ϕ1〉 as follows

|ω〉 =
√

p0|ϕ0〉 +
√

p1eiη|ϕ1〉 +
√

1 − p0 − p1|r0〉

| − ω〉 =
√

p0|ϕ0〉 +
√

p1e−iη|ϕ1〉 +
√

1 − p0 − p1|r0〉
∗

(3.35)

where |r0〉 is normalized vector orthogonal to |ϕ0〉 and |ϕ1〉. Also p0 and p1 obey 1
2 ≥ p0 ≥

1
2 −

3n
2n+1 and

1
2 ≥ p1 ≥

1
2 −

3n
8c2(n−1

n/2)
and eiη = i + ∆, where |∆| = O

(
n

(n−1
n/2)

)
[4]. From (3.35) we express initial state as

|ϕ0〉 =
√

p0(|ω〉 + | − ω〉) + δ|r〉. (3.36)

where δ =
√

1 − 2p0 = O(
√

n
2n ) a and |r〉 is a normalized vector orthogonal to |ω〉 and | − ω〉.

Now we apply t times step operator Û′ on the initial state

(Û′)t|ϕ0〉 =
√

p0(eiωt|ω〉 + e−iωt| − ω〉) + δ|r′〉 =

= 2p0 cosωt|ϕ0〉 − 2
√

p0 p1(sinωt + Re(e−iωt∆))|ϕ1〉+

+
√

1 − p0 − p1(eiωt|r0〉 + e−iωt|r0〉
∗) + δ|r′〉 =

= cosωt|ϕ0〉 − sinωt|ϕ1〉 + O
(

n3/4
√

2n

)
|r̃〉

(3.37)
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where |r̃〉 is some normalized residual vector [4]. From (3.37) it can be seen that after applying operator
Û′ t f = π

2|ω| times the state of the system will approximately rotate from |ϕ0〉 to |ϕ1〉. Thanks to (3.34)

we see that we find the marked state with probability 1
2 −O

(
1
n

)
. To estimate time in relation to dimension

of hypercube n we need to estimate ω. It can be shown [4] that∣∣∣∣∣∣ω +
1

c
√

2n−1

∣∣∣∣∣∣ ≤ O

n
2
3

2n

 . (3.38)

From (3.38) we can approximate time t f = π
2

√
2n−1

(
1 + O

(
1
n

))
. So after number of steps equal

to the closest integer to t f = π
2

√
2n−1 we will measure the marked state with probability p = 1

2 − O
(

1
n

)
.

We see the example of evolution of the probability to measure the marked state in figure 3.2.

0 10 20 30 40 50 60
step

0.1

0.2

0.3

0.4

p

Figure 3.2: The evolution of the probability p to find the marked state during 60 steps. We use the
quantum walk algorithm on the hypercube with dimension 7.

Now it is interesting to compare the properties of quantum walk algorithm with the Grover’s search
algorithm. They have some similarities. They both start with initial state equal to superposition of all
states and both change in every step the phase of the marked state by π. Quantum walk algorithm takes
O

(√
2n−1

)
steps and 2n = N is number of vertices, so both algorithm have the same running time of

O
(√

N
)
.

There are also some differences. First of them is that the Grover’s algorithm can be presented
as rotation in two dimensional subspace instead of quantum walk where it is just an approximation
of rotation [4]. Also the two dimensional subspace in the Grover’s algorithm is spanned by initial state
and marked state whereas in the walk algorithm the second state has just a large overlap with marked
state. Another difference is in the use of the diffusion operator (coin in the case of the walk algorithm).
In the case of the Grover’s algorithm it is used on the whole 2n dimensional space. Quantum walk algo-
rithm uses diffusion operator only on n dimensional space. This property can have some practical use in
certain physical implementations of quantum computer [4].

3.3 Quantum walk search algorithm on regular lattice

Quantum walk search algorithm on regular lattice is similar to the walk algorithm on the hypercube.
Hence we will just briefly describe the algorithm. We will introduce the regular lattice as the graph and
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the similar operators we have introduced in search on the hypercube. Then we define the algorithm and
mentioned its properties.

The regular lattice is an n-dimensional grid with dimension n and N vertices arranged as
n√N × n√N × . . .× n√N. We can identify each vertex with vector |a1, a2, . . . , an〉 where ai ∈ {1, 2, . . . ,

n√N}.
We add the coin space spanned by 2n directions in the regular lattice H2n. Then the final Hilbert space
of the walk is H = H2n ⊗ HN . We use the same unperturbed coin operator Ĉ0 as in (3.19). Let us
denote the marked vertex by |m〉. Then coin operator of the perturbed walk has a form similar to (3.20)
except there is projector |m〉〈m| instead of |0〉〈0|. Now we define two shift operators Ŝ f f and Ŝ in the case
of two dimensional lattice.

Let us assume that there is an orthogonal basis of the coin space {| →〉, | ←〉, | ↑〉, | ↓〉} which describe
the directions. Then Ŝ f f is defined as follows

Ŝ f f | →〉 ⊗ |x, y〉 = | ←〉 ⊗ |x + 1, y〉

Ŝ f f | ←〉 ⊗ |x, y〉 = | →〉 ⊗ |x − 1, y〉

Ŝ f f | ↑〉 ⊗ |x, y〉 = | ↓〉 ⊗ |x, y + 1〉

Ŝ f f | ↓〉 ⊗ |x, y〉 = | ↑〉 ⊗ |x, y − 1〉

, (3.39)

where x, y ∈ {1, . . . , n√N}. We assume that periodic boundary conditions hold true, i.e. if any x or y is
equal to n√N and after application of the shift operator it can exceed n√N, the corresponding coordinate
will be shifted to 1 instead, for x or y equal to 1 and shift down it will be shifted to n√N. We call
(3.39) "flip-flop" shift operator, because after the shift the coin changes the direction. The "flip-flop"
operator can be defined also in higher dimension obeying the same flipping rule as in two dimension.
Operator Ŝ is defined to not change the directions as follows

Ŝ | →〉 ⊗ |x, y〉 = | →〉 ⊗ |x + 1, y〉

Ŝ | ←〉 ⊗ |x, y〉 = | ←〉 ⊗ |x − 1, y〉

Ŝ | ↑〉 ⊗ |x, y〉 = | ↑〉 ⊗ |x, y + 1〉

Ŝ | ↓〉 ⊗ |x, y〉 = | ↓〉 ⊗ |x, y − 1〉

. (3.40)

Ŝ is a classical shift operator and it can be also expanded to any dimension of regular lattice.
Now we define the unperturbed step operator Û = Ŝ f f

(
Ĉ0 ⊗ Î

)
and the perturbed step operator Û′

as follows

Û′ = Ŝ f f Ĉ′ = Û − 2Ŝ f f
(
|sC〉〈sC | ⊗ |m〉〈m|

)
. (3.41)

Then the algorithm is consisting of the following steps:

1. Initialize the system in the superposition of the states

|ϕ0〉 =

n∑
d=1

N∑
a=1

1
√

nN
|d, a〉, (3.42)

where a label vertices.

2. Apply unitary operator Û′ T -times.

3. Measure the resulting state.
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If the dimension of the lattice is equal or higher then three the number of steps T is required O
(√

N
)
.

Then the probability to measure the marked state is Θ (1), i.e. it is constant [5]. In case of two dimen-

sional lattice after T = O
( √

N log (N)
)

probability p to measure the marked state is p = O
(

1√
log(N)

)
[5].

See example of the search on the two dimensional lattice in figure 3.3. We can use amplitude ampli-
fication to increase the probability of success, then the algorithm with complexity O

(√
N log (N)

)
will

find the marked state with constant probability [5]. It can be also shown that if we use Ŝ instead of Ŝ f f

algorithm will take at least Ω (N) steps [5].

50 100 150 200
step

0.05

0.10

0.15

0.20

p

Figure 3.3: The evolution of the probability p to find the marked state during 200 steps. We use the
quantum walk algorithm without amplitude amplification on the two dimensional regular lattice with 30
times 30 vertices.

To show that the algorithm works we repeat the same process as in the search on the hypercube.
It can be shown that there are two eigenvectors of Û′, denoted by |ω〉 and | − ω〉, with eigenvalues eiω

and e−iω. Then the initial state and the marked state can be approximately written as linear combinations
of |ω〉 and | − ω〉. Application of Û′ is approximately rotation in the subspace spanned by the initial
state and the marked state. The number of steps is derived from the angle of rotation which depends
on the dimension of the lattice [5].

Before we move to another chapter there is interesting property of regular lattice worth mention-
ing. In case of the two dimensional lattice there can be used only two dimensional coin instead of
four dimensional. Let {|0〉, |1〉} be the standard qubit basis. Then we can choose directions of the coin
| ↑〉 = |0〉, | ↓〉 = |1〉, | ←〉 = 1√

2
|0〉 + 1√

2
|1〉 and | →〉 = 1√

2
|0〉 − 1√

2
|1〉. If there is no marked state,

Û acts like this

Û | →〉 ⊗ |x, y〉 = | →〉 ⊗ |x + 1, y〉

Û | ←〉 ⊗ |x, y〉 = | ←〉 ⊗ |x − 1, y〉

Û | ↑〉 ⊗ |x, y〉 = | ↑〉 ⊗ |x, y + 1〉

Û | ↓〉 ⊗ |x, y〉 = | ↓〉 ⊗ |x, y − 1〉

. (3.43)

If there is a marked state |m〉, Û′ has form

Û′ = Û
(
Î − 2|s,m〉〈s,m|

)
(3.44)
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where |s〉 = 1√
2
| ↑〉 + 1√

2
| ↓〉. It can be shown that the algorithm based on this choice needs

the same number of steps T = O
(√

N log (N)
)

to succeed [5].
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Chapter 4

Different look on the walk search
algorithm

In this Chapter we return to the quantum walk search algorithm and estimate the number of steps to
succeed from the different perspective. In Section 4.1 we do so for the search algorithm on the hypercube
and in Section 4.2 for the search on the regular lattice.

4.1 Search on the hypercube

In this chapter we examine different approach to estimating the number of steps in the search algo-
rithm. We introduce the walk operator Ûλ and show how the number of steps can be derived
from the properties of the spectrum of Ûλ. We use the definition (3.18) and (3.19). Let us now introduce
the relevant eigenvalues of Û = Ŝ (Ĉ0 ⊗ Î). There are following eigenvalues

v±k = e±iϕk = 1 −
2k
n
±

2i
n

√
k(n − k) (4.1)

in the spectrum of Û with corresponding eigenvectors

|v±k〉 = βk

∑
a

(−1)k·a 2−
n
2

√
2

n∑
d=1

α±kd
|d, a〉

where α±kd
=

 1√
k

if kd = 1
∓i√
n−k

if kd = 0

and βk =

{ √
2 if k = 0 or k = n

1 else
.

(4.2)

Other eigenvectors of Û correspond to eigenvalues ±1 and they are not affected by the perturbation,
hence they have no influence on the properties of the algorithm. We denote the marked vertex by |m〉.
From the fact that the coin state |sC〉 is eigenvector of Ĉ0 with eigenvalue 1, i.e. Ĉ0|sC〉 = |sC〉,
we can express Û′ from (3.21) in the form

Û′ = Û − 2Ŝ (|sm〉〈sm|) = Û − 2Ŝ Ĉ (|sm〉〈sm|) =

= Û
(
Î − 2|sm〉〈sm|

)
.

(4.3)

We write |sC〉 ⊗ |m〉 = |sm〉 for simpler notation. Now let us define a family of operators Ûλ as follows

Ûλ = Û
[
Î +

(
eiλπ − 1

)
|sm〉〈sm|

]
. (4.4)

26



From (4.4) it is easy to see that Û0 = Û and Û1 = Û′. Operator Ûλ is also periodic with period 2.
If we apply Ûλ on (4.2) we see that the eigenstates orthogonal to |sm〉 do not change. Hence we can
restrict us only to eigenstates not orthogonal to |sm〉 and from each degenerate eigenspace we choose
only one vector. After normalization this vector has the form

|ϕ±k 〉 =
1√(

n
k

) ∑
| j|=k

(−1) j·m|v±j 〉. (4.5)

Selection of these eigenstate depends on the position of the marked state. Because it can be shown that
Ûλ commutes with (3.23)[6], i.e. it preserves high symmetry of the hypercube, we can again choose that
the marked state is |0〉. Then (4.5) has the simpler form

|ϕ±k 〉 =
1√(

n
k

) ∑
| j|=k

|v±j 〉. (4.6)

These states span the 2n dimensional subspaceH ′. The marked state |sm〉 is inH ′ and the Hilbert space
H ′ also complies Ûλ(H ′) = H ′. Again to simplify notation we change index k and ± for new index l
such that l ∈ {−n + 1, . . . , n} and {k,±} = {|l|, sgn(l)}. Now we write e±iϕk = eiϕl and |ϕ±k 〉 = |ϕl〉. Thus
we can restrict us on Hilbert spaceH ′ with basis {|ϕl〉|l ∈ {−n + 1, · · · , n}}.

Let us describe the properties of the spectrum of Ûλ. The eigenphases ϕl of the unperturbed walk
from (4.1) stay largely unchanged with changing λ. Moreover, there are eigenstates |ρλ〉 with eigenphase
approximately parallel to the line πλ

2 [6]. An avoided crossing can be found at points where eigenphase
related to ϕl get near to the eigenphase of |ρλ〉. See figure 4.1 for example of eigenphase of Ûλ as
a function of λ. It can be shown that the application of Ûλ on H ′ near the avoided crossing can be
approximately described as evolution in two dimensional subspace, i.e. the other states inH ′ are far less
influenced. One of the vectors that span the system at lth-crossing is |ϕl〉. It is easy to show that the state
|ϕl〉 is approximate eigenvector of (4.4). Let us apply operator (4.4) on the state |ϕl〉 and we get

Ûλ|ϕl〉 = eiϕl |ϕl〉 + 2−
n+1

2
(
eiλπ − 1

)
βl

√(
n
|l|

)
eiψlÛ |sm〉, (4.7)

where eiψl = e±iψk =
√

k±
√

n−k
√

n
and βl is given in (4.2). We see that if l is close to 0 or n |ϕl〉 is

an approximate eigenstate of Ûλ with exponentially small reminder.
Now let us define function g(λ) as a eigenphase of |ρλ〉, i.e. eig(λ) is eigenvalue of (4.4). We write |ρλ〉

as linear combination of basis states

|ρλ〉 = 2−
n+2

2

n∑
l=−n+1

βl

√(
n
|l|

)
eiψlal|ϕl〉 (4.8)

where coefficients al need to be specified yet. We can calculate the scalar product 〈sm|ρλ〉 = 2−n− 3
2 b [6]

where b is defined as follows

b =

n∑
l=−n+1

β2
l

(
n
|l|

)
al. (4.9)
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Figure 4.1: The eigenphase of the operator Ûλ as a function of λ for the 7-dimensional hypercube.

Now we choose the coefficients al to accomplish Ûλ|ρλ〉 = eig(λ)|ρλ〉. To do so we apply (4.4) on (4.8)
and get

Ûλ|ρλ〉 =Û |ρλ〉 +
(
eiλπ − 1

)
Û |sm〉〈sm|ρλ〉

=eig(λ)|ρλ〉 + 2−
n+1

2

n∑
l=−n+1

βl

√(
n
|l|

)
eiψl |ϕl〉[(

−eig(λ) + eiϕl
)

al +
(
eiλπ − 1

)
2−n−1eiϕlb

]
.

(4.10)

We see that if we set

al = −

(
eiλπ − 1

)
2−n−1eiϕlb

−eig(λ) + eiϕl
(4.11)

the second term in (4.10) disappears and the state |ρλ〉 is eigenstate of Ûλ. However constant b also
depends on coefficients al thus (4.11) and (4.9) represent a set of linear equations. We can express
the condition for the equations to have solution by inserting (4.11) in (4.9). We get the expression

1 =

n∑
l=−n+1

β2
l

(
n
|l|

)(eiλπ − 1
)

2−n−1eiϕl

eiϕl − eig(λ) (4.12)

which implicitly define g(λ).
Now we construct the second vector |µl〉 in the two dimensional subspace at the lth-crossing by taking

from |ρλl〉 only the part which is orthogonal to |ϕl〉. So |µl〉 complies |µl〉 = |ρλl〉 − 〈ϕl|ρλl〉|ϕl〉 where
we denote λ at lth-crossing by λl. From construction of |µl〉 it follows that |µl〉 is orthogonal to the state
|ϕl〉. The state |µl〉 expressed in basis {|ϕl〉}

n
l=−n+1 has the form

|µl〉 = b2−
3n+1

2
(
1 − eiλlπ

) n∑
k=−n+1

k,l

√(
n
|k|

)
ei(ϕk+ψk)βk

eiϕk − eig(λl)
|ϕk〉 (4.13)
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where b is normalization constant. It can be shown [6] that b is equal to

b =

√
2g′(λ)
π

2n+1. (4.14)

It is easy to see from (4.13) and (4.14) that the term which |µl〉 differs from |ρλl〉 is exponentially small and
thus |µl〉 is approximately eigenvector of Ûλl . It can be shown that the two dimensional space spanned
by the states |ϕl〉 and |µl〉 has high overlap with true eigenstates |ω±l 〉 of Ûλl at the avoided crossing.
Hence we can write |ϕl〉 ≈

1√
2

(
|ω+

l 〉 + |ω
−
l 〉

)
and |µl〉 ≈

i√
2

(
|ω+

l 〉 − |ω
−
l 〉

)
[6]. Then we apply Ûλl on |ϕl〉

for t times and we get the following expression

(Ûλl)
t|ϕl〉 ≈

1
√

2

(
eit(ϕl+

1
2 ∆l)|ω+

l 〉 + eit(ϕl−
1
2 ∆l)|ω−l 〉

)
(4.15)

where ∆l is gap between two eigenphases at the lth avoided crossing. We see that if we choose
the number of steps Tl to comply eiTl∆l

1
2 = i we rotate the state |ϕl〉 in the state |µl〉. In different words

after Tl =
⌊
π
∆l

⌋
steps we get

(
Ûλl

)Tl
|ϕl〉 ≈ ieiTlϕl |µl〉. The gap between two eigenphases can be calculated

for small differences as the gap between two eigenvalues. To estimate the spectral gap we express Ûλl

in the two dimensional subspace as 2 × 2 matrix W as follows

W =

(
A B
C D

)
where

A = 〈µl|Uλl |µl〉 = eig(λl) = eiϕl

B = 〈ϕl|Uλl |µl〉 = 2−
n
2−1

(
eiλlπ − 1

)
ei(ϕl+ψl)βl

√(
n
|l|

)√
2g′(λl)
π

C = 〈µl|Uλl |ϕl〉 = −2−
n
2−1

(
e−iλlπ − 1

)
ei(ϕl−ψl)βl

√(
n
|l|

)√
2g′(λl)
π

D = 〈ϕl|Uλl |ϕl〉 = eiϕl

[
1 +

(
eiλlπ − 1

)
2−n−1β2

l

(
n
|l|

)]
. (4.16)

In (4.16) we use the fact that at the lth-crossing we can set g(λl) = ϕl with fulfilling the condition (4.12)
up to exponentially small reminder [6]. The spectral gap of W complies

(∆l)2 = (D − A)2 + 4BC (4.17)

and after inserting (4.16) in (4.17) we obtain following approximation of |∆l|

|∆l| =
∣∣∣eiλlπ − 1

∣∣∣ 2− n
2 βl

(
n
|l|

)√
2g′(λl)
π

+ O
(
2−n

(
n
|l|

))
. (4.18)

Entering (4.18) in Tl =
⌊
π
∆l

⌋
the number of step that is necessary to rotate the state |ϕl〉 in the state |µl〉 is

Tl =


π2

n
2

√
π

2g′(λl)∣∣∣eiλlπ − 1
∣∣∣ βl

√(
n
|l|

)
 . (4.19)

The probability to measure the marked state after Tl steps is

|〈µl|sm〉|2 ≈ 2−2n−3b2 ≈
g′(λm)
π

. (4.20)
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The search algorithm on the hypercube constructed in previous chapter corresponds to the avoided cross-
ing at λ = 1 and ϕ0 = 0, so called 0th-crossing. It can be shown that g(0) = 1 and

g′(1) =
π

2
(
1 + γn − 2−n+1)

where γn ∼
1
n

for large n
[6]. (4.21)

Using this we can estimate the number of steps in the algorithm

T =


π2

n
2

√
π

2g′(1)

2
√

2

 ≈
π4 N

√
2
(
1 +

1
n

+ 2−n+1

) ≈
π√2

4
N

 (4.22)

and the probability to measure the marked state is approximately equal to 1
2 . This matches our results

in previous chapter.
From the relation between the number of steps and the eigenphase gap follows that the number

of steps declines with the rising gap. So algorithm based on higher avoided crossing will be faster.
But it was shown that after crossing particular l the algorithm fails because the probability to measure
the marked state falls. Also the initial state of the algorithm at the 0th-crossing |ϕ0〉 does not depend
on choice of the marked state but on the other crossings the initial state depend on the position
of the marked state. So before we start the algorithm based on the other crossings we need to find
the initial state and there is no suitable method to do so that still preserve the improvement of the higher
crossing.

4.2 Search on the regular lattice

We can perform the same process for estimation of the number of steps on regular lattice search
as we did with the search on the hypercube. We define Ûλ by (4.4) and restrict us on the subspace spanned
by the spatial eigenvectors of Û that are not orthogonal to the marked state. Again the avoided crossings
in the spectrum of Ûλ is found. The dynamic at the avoided crossing can be describe
as rotation in two dimensional subspace spanned by two approximate eigenvectors. The number
of steps is inversely proportional to the gap between the eigenphases at the avoided crossing T = π

∆
.

We focus only on 0th-crossing. It can be shown that the eigenphase gap is equal to

∆ =
4b
√

N
+ O

(
1
N

)
(4.23)

where b is defined as 〈sm|µ0〉 = b. The constant b is chosen to normalized the state |µ0〉. The value of b
depends on the dimension as follows

b ≈


1√

2
π ln(N)+ 8

π2 (2−K)+ 2
π ln

(
8
π2

)
+O( 1

N )
= Θ

(
1√

ln(N)

)
for d = 2

Θ(1) for d ≥ 3
(4.24)

where K ≈ 0, 916 is Catalan’s constant and d is the dimension of the regular lattice. Then after T number
of steps

T =


⌊
π
√

N
4

√
2
π ln (N) + 8

π2 (2 − K) + 2
π ln

(
8
π2

)⌋
= O

(√
N ln (N)

)
for d = 2

O(
√

N) for d ≥ 3
(4.25)
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we measure the marked state with probability p = |〈sm|µ0〉|
2 = b2

p =

 Θ

(
1√

ln(N)

)
for d = 2

Θ(1) for d ≥ 3
. (4.26)

In the case of the two dimensional lattice it is necessary to use amplitude amplification so the algorithm
will find the marked state with probability Θ(1). By doing so as we discuss in previous chapter algorithm
need O

(√
N ln (N)

)
steps.

0.0 0.5 1.0 1.5 2.0
λ

-0.5

0.0

0.5

1.0
φ/π

Figure 4.2: The eigenphase of the operator Ûλ as a function of λ for the two dimensional regular lattice
with 10 times 10 vertices.
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Chapter 5

State transfer

In Section 2.1 we show how quantum discrete walk can be used for the state transfer. In Section 2.2
we use the properties of the quantum search on the regular lattice to communicate across the grid.

5.1 State transfer as the discrete time quantum walk

One of the many use of quantum walks is a state transfer, in particular we focus on the discrete quan-
tum walk realization of the state transfer on a spin chain with position dependent couplings.
First we describe in general the system we use and the quantum walk. Then we introduce connection be-
tween properties of walk and physical properties of the system. Finally we describe
the way the transfer works.

In general the system is a network with every vertex corresponding to spin 1
2 . If there is an interaction

between vertex i and j we say that these vertices are connected. We consider an XX model od spin-spin
interaction with Hamiltonian of the network

Ĥ =
∑
{i, j}∈E

Ji j
(
σ̂i

xσ̂
j
x + σ̂i

yσ̂
j
y

)
(5.1)

where E denotes the set of edges, σi
x is Pauli X matrix for the ith spin and Ji j is strength of spin inter-

action between i and j, Ji j is often called spin coupling parameter [8]. Because (5.1) conserves the total
spin number along Z axis

∑
i σ

z
i we can restrict us to subspace with fixed number of excitation where

by excitation it is meant a spin pointing up along the Z axis. In particular we focus on cases with zero
or one excitation. The first case is invariant under the evolution generated by (5.1) and the second case
can be consider as walking particle on an underlying network [8]. On the network we marked the two
spins as a sender and a receiver. We prepare the sender spin in state α| ↓〉 + β| ↑〉 and rest of the network
has spin down. The state of the network can be written in the form

(α| ↓〉 + β| ↑〉)s ⊗ | ↓ . . . ↓〉net| ↓〉r. (5.2)

We want to use the evolution generated by (5.1) to transfer the state of sender to receiver. So the final
state of the system will have the form

| ↓〉s ⊗ | ↓ . . . ↓〉net (α| ↓〉 + β| ↑〉)r . (5.3)

We use as the network the spin chain so the interaction occurs only between neighbouring spins.
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In the transfer of the state we use the one dimensional discrete time quantum walk. The evolution
operator Û = Ŝ Ĉ has in general the form

Û |x, ↑〉 = cos (θ) |x + 1, ↑〉 − sin (θ) |x − 1, ↓〉

Û |x, ↓〉 = sin (θ) |x + 1, ↑〉 + cos (θ) |x − 1, ↓〉
(5.4)

where θ denotes the coin flip rate. The equivalent notation of Û is

Û = eiP̂σ̂zeiσ̂yθ (5.5)

where P̂ is the momentum operator and σ̂ j are Pauli matrices acting on the coin space [8]. We can
use (5.5) to build the analogy between properties of the walk and physical properties of the system
of relativistic particle in one dimension . We write the operator Û in the form

Û = Û(t) = eiP̂σ̂zvteiσ̂yωt (5.6)

where vt = 1 and ωt = θ. We can identify v with the velocity and ω with the angular frequency. Then
if we take the infinitesimal steps and apply the Trotter theorem we get

lim
n→∞

(
Û

( t
n

))n
= ei(P̂σ̂zv+σ̂yω)t[8]. (5.7)

This operator is generated by Hamiltonian, which has the form of one dimensional Dirac Hamiltonian

Ĥ = cP̂σ̂z + mc2σ̂y (5.8)

where we identify v with speed of light and ω with the mass of particle. The Dirac Hamiltonian describe
the relativistic particle in one dimension. Because we take t = 1 we see that the mass of the particle
correspond to the coin flip rate [8]. The operator (5.5) does not differentiate between θ and θ + 2π and
in case of m → +∞ the flip rate of the coin corresponds to θ → π

2 . Hence we can choose the relation
m = tg (θ). Another analogy can be constructed using (5.1) to obtain relation between mass and the spin
coupling parameter J = 1

2m [8].
Now let us introduce the state transfer itself. We work with the finite chains of spins so at the

end of the chain we use reversing coin, i.e. coin with flip rate equal to θ = π
2 . For the transfer we

use the engineered couplings protocol. This protocol is based on the properly chosen couplings pa-
rameter between each spins. The protocol sets the coupling parameter between spin n and n + 1 to be
Jn = λ

2

√
n (N − n) where λ is real positive parameter common for all couplings [8]. Then the mass

for the transfer between n and n + 1 position is

mn =
1

2Jn
=

1
λ
√

n(N − n)
. (5.9)

The evolution operator have form

U(n) = eiP̂σ̂zeiσ̂yθn (5.10)

where θn depends on position. In the case of one dimensional discrete quantum walk interference appears
only between positions separated by the distance of two, hence we can study two independent walks
on even and on odd positions [8]. We can treat even positions as edges and odd as vertices and use
for the evolution operator Û2 instead of Û. So we use N positions to simulated the chain with N

2 spins.
Coins associated with edges positions correspond to mass and at the vertex position we can set the coin
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flip rate θ2k−1 = 0, i. e. coin is the identity operator. It can be shown that different choice of the coin
on vertex positions produces the similar results [8]. On the edges positions the coin flip rate is derived
from its relation with mass and has the form

θ2l = arctan

 1

2λ
√

k
(

N
2 − k

)
 (5.11)

where k ∈ {1, 2, . . . , N
2 − 1}.

It was shown in [8] that the transfer strongly depends on the parameter λ. At first the transfer is
perfect for small values of λ. This case is called large mass limit. Around λ = π

N the transfer starts
to fall and it is restored for λ = O (1) and higher [8], this is called small mass limit. It can be shown
that in case of the large mass limit Û2 is generated by Hermitian operator whose action is the same
as the action of the Hamiltonian introduce by Christandl [8]. So it can be shown that the state
of the sender is fully transfered to the receiver.

In the case of small mass limit it follows that

cos (θ2k) ≈ 1 and sin (θ2k) ≈ 0. (5.12)

Thus the double step operator Û2 is approximately equal to e2iP̂σ̂z . The transfer take the N
2 steps.

The initial state of the sender is α|1, ↓〉 + β|1, ↑〉. The first part moves left and it is reflected at posi-
tion 0, then it moves to position N − 1, so it results in α|N − 1, ↑〉. β|1, ↑〉 first moves to the position
N where is reflected and also its phase is changed by π, then it moves to the position N − 1 and results
in −β|N − 1, ↓〉. After application of operator σ̂y the state of the receiver is α|N − 1, ↓〉 + β|N − 1, ↑〉 and
so we reach the full state transfer [8].

This shows how discrete time quantum walk can be used to transfer the state across one dimensional
chain. The continuous time quantum walk can be also used to transfer the state. However the discrete
walk has the additional degree of freedom, the coin, which gives us more possibilities to control the walk
[8].

5.2 An amplitude transfer across regular lattice

The process used in the search algorithm on the regular lattice can be used to transfer amplitude
across regular lattice. In this section we describe how we can achieve the transfer and its basic properties.
First we need to expand the search algorithm for more marked states. Suppose we have l marked states
|m1〉, . . . , |ml〉 for l � N. We define a family of operators analogous to (odkaz na U-lambda) with set
of parameters λ = (λ1, . . . , λl) as follows

Ûλ = Û

1 +

l∑
j=1

(
eiπλ j − 1

)
|sm j〉〈sm j|

 . (5.13)

At λ = (1, . . . , 1) around the eigenphase equal to 0 we can find l − 1 degenerate eigenvalues and two
further values forming and avoided crossing with degenerate subset [9]. The subspace spanned by cor-
responding vectors have high overlap with space spanned by initial state |ϕ0〉 and m approximate eigen-
vectors |ρ1

λ=1〉, . . . , |ρ
l
λ=1〉. We denote |ρ j

λ=1〉 = |ρ j〉 for simpler notation. The states |ρ j〉 are orthogonal
to |ϕ0〉 and they comply 〈ρ j|ρk〉 ≈ δ jk. As in the previous chapter the search algorithm can be construct
on the avoided crossing. It can be shown [9] that the number of steps necessary to find one of the marked
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states is inversely proportional to the gap between non-degenerate levels at the avoided crossing. This
gap is equal to ∆ = 2ε

√
l where

ε =
2|〈sm j|ρ j〉|
√

N
+ O

(
1
N

)
(5.14)

In (5.14) |〈sm j|ρ j〉| does not depend on j. Finally (5.14) and T ≈ π
∆

imply that the number of steps

of the search algorithm with more marked states is T =

⌊
π
2

√
N
m

⌋
for dimension higher then 3 and

T =

⌊
π
2

√
N

m ln(N)

⌋
for dimension equal to 2.

Now we describe the transfer itself. Let us first assume that there exists Hamiltonian Ĥ which com-
plies Ûλ=1 = e−iĤ . In the basis {|ϕ0〉, |ρ

1〉, |ρ2〉, . . . , |ρl〉} the Hamiltonian Ĥ can be expressed
as (l + 1) × (l + 1) matrix as follows

H(l+1)×(l+1) =


0 −iε . . . −iε
iε 0 . . . 0
...

...
. . .

...

iε 0 . . . 0

 (5.15)

where ε is defined by (5.14). H(l+1)×(l+1) has eigenvalues 0 with l − 1 eigenvectors and ±ε
√

l with
eigenvectors

|ν±〉 =
i
√

2l

∓i
√

l|ϕ0〉 +

l∑
j=1

|ρ j〉

 . (5.16)

We start the transfer of the amplitude with the system in the state

|ρ1〉 =
i
√

2l

(
−|ν+〉 − |ν−〉 + i

√
2 (l − 1)|ν0〉

)
where |ν0〉 =

1
√

l (l − 1)

(1 − l) |ρ1〉 +

l∑
j=2

|ρ j〉

 . (5.17)

We see that |ν0〉 is orthogonal to |ν±〉 so it is eigenstate of (5.15) with eigenvalues 0. Hence it applies that

Û1|ν0〉 = |ν0〉. Now we use the operator Û1 on the state |ρ1〉 Tt times where Tt =

⌊
π

ε
√

l

⌋
= 2T

ÛTt
1 |ρ

1〉 =
i
√

2l

(
−eiε

√
lTt |ν+〉 − e−iε

√
lTt |ν−〉 + i

√
2 (l − 1)|ν0〉

)
=

=
i
√

2l

(
|ν+〉 + |ν−〉 + i

√
2 (l − 1)|ν0〉

)
=

=


(
1 −

2
l

)
|ρ1〉 −

l∑
j=2

2
l
|ρ j〉


. (5.18)

So we transfer the amplitude 2
m to other states. If we set l = 2 we get full transfer. This process can be

used for communication between sender and receiver across the regular lattice without the knowledge
of their exact position. It can be shown that this process can also track moving receiver though the speed
of the receiver is limited by the transfer time Tt ∼

√
N (Tt ∼

√
N ln (N) for dimension equal to 2) [9].
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Conclusion

In this text we study the quantum walks and their use in search algorithm and state transfer protocol.
We introduce the concept of the discrete time quantum walks and mention difference between quantum
walks and classic random walks.

In Chapter 3 we described the Grover’s search algorithm and showed that it needs O
(√

N
)

steps.
We also proved the lower bound for quantum search algorithm in general and hence there can not be
faster algorithm than Ω

(√
N
)
. We also presented the quantum search algorithm on the hypercube and on

regular lattice and shown that it also takes O
(√

N
)

steps to succeed except the two dimensional lattice

which need O
(√

N
)

ln (N) steps. We compared the properties of the Grover’s algorithm and the walk
search algorithm and recognised their advantages and disadvantages. In Chapter 4 we again estimated
the number of steps of the walk search algorithm from perspective of the avoided crossing of eigenphases
of the operator Ûλ.

In the last chapter we focused on use of discrete quantum walk to accomplish the transfer of state and
communication across the grid thanks to mechanism of the quantum walk search on the regular lattice.
We notice that the communication can be achieved without knowledge of position of sender and receiver
and that it is possible even with moving receiver.
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