DISCRETIZATION AND ORTHOGONALITY RELATIONS OF ORBIT FUNCTIONS OF WEYL
GROUPS

MICHAL JURANEK

AsstrACT. The present work summarizes and further develops properties of orbit functions. Orbit func-
tions, based on sign homomorphism of Weyl groups, are defined. For each Weyl group of two different
root lenghts there are four sign homomorphisms, which lead to ten types of orbit functions ( E-,S-,C-
functions). Proof of their continuous orthogonality and completness relation on the fundamental domain
is given. In the key part of the work, we discretize the fundamental domains and prove the discrete or-
thogonality relation and completness relation of orbit functions on the discretized fundamental domain.

1. INTRODUCTION

Orbit functions are special functions corresponding to Weyl groups and their root systems. Orbit
functions were first introduced in [20], later called C-functions. In [21]], E-functions and S-functions
are introduced. In [3] sign homomorphisms i.e. ¢ : W — {*1} are introduced and used to define six
types of E-functions. In [15] it is proven that only four sign homomorphisms exist for root systems
with two different lengths of roots. So together there is one C-function, three S-functions and six
E-functions.

The discretization of C-functions was done in [17], [16]. In [14] this was extended to one type of
S-function. The discretization of all types S-functions was done in [5]. The discretization of one type
of E-function was done in [6] The method for calculating the of elements of the discretized domain
was devised in [7].

In the present work, by using elegant mathematical notations, we unite all ten types orbit func-
tions. For orbit function W,"? corresponding to sign homomorphisms o, & and weight A from the
modified weight lattice P"% we find and define its domain F°%. We prove that the set orbit functions
{\P/{”O | e P""?} form a orthogonal basis in the space £L2(F?"7).

In the key part of the work, we discretize the domain F? into the domain grid ch\rf, where M is an
integer defining the density of the grid. We prove that the set of discretized orbit functions defined on
the domain grid Fy;” labeled by finite modified weight grid Ay’ {‘I’fg | e A?\f} form an orthogonal

basis of dimension of number of elements of A?\f. In order to verify the completness of the discretized

orbit functions we need to comapre the number of points in the domain grid F;}E and the number of

elements of the weight grid A},.

In section 2 the properties of Weyl groups and their root systems are reviewed. We study the prop-
erties of sign homomorphisms and define even subgroups and affine even subgroups in section 3. In
section 4 fundamental domains of even subgroups and affine even subgroups are constructed. The
same is applied analogously to the dual Lie algebra in section 5. In section 6 we define the modified
weight lattice P%9 and the domain of orbit function F%° and prove that set {‘I’f T Ae P”’g} forms
an orthogonal basis. The discretization is done in section 6. The explicit formula for the number of

elements of the discretized domain is given. The discrete othogonality relation is proven. We show

that number of points in the domain grid FX/F and the number of elements of the weight grid AKf are

equal. Summarization and comments are found in the last section.

Date: September 2, 2014.
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2. PROPERTIES OF SIMPLE LIE GROUPS AND THEIR LIE ALGEBRAS

2.1. Basic Properties.

Consider the set of simple roots A = {a,...,a,} of a Lie algebra of a compact simple Lie group of
rank n with two different lenghts of roots, spanning the Euclidean space R” [1},8,[22]. The set of simple
roots consists of short simple roots A; and long simple roots A; i.e.

A=A UA,.

A number of related quantities and virtually all the properties of the Lie group are determined from
A. We use the following standard properties.
The highest root & of the root system can be written as follows
E=—ag=mag +---+m,q,.
The coefficients m; are known positive integers, also called marks. The Coxeter number m is defined
as
m=1+my+---+m,.

The elements of the Cartan matrix C of the Lie algebra are

Aa;, aj)
= — i,jE{l,...,Tl}.
1 Aaj, @)
The order c of the center of the Lie group is the determinant of the Cartan matrix i.e.
c=detC.

The positive dual weight lattice P*V is defined as
P =Z{w) + -+ Zw,) .
The root lattice Q is defined as
Q=Zay+--+Za,.
The dual root lattice is defined as

2a;
QV=ZaY +---+Za’, where a’= L.
! " b (g )
2.2. Weyl group and affine Weyl group.
The properties of Weyl groups and affine Weyl groups can be found for example in [9,2]. The finite
Weyl group W is generated by n reflections r,, @ € A, in (n — 1)-dimensional ‘mirrors’ orthogonal to
simple roots intersecting at the origin:

2x, a;
ralXEer:X_ < l>ai; XGIR”.
(@i, ai)
The Fundamental Domain D of a Weyl group W is
D={xeR"|(Vie{l, -, n})((x,a;) 2 0)} (1)

= 1oy + 4 9@y 1 91,90 € RZ).

The infinite affine Weyl group W2 is the semidirect product of the Abelian group of translations
QY and of the Weyl group W
waff = QV s w.
Thefore
(Vwf e W) A1tw e w)31gY € QV)(Vx € R)(w*Fx = wx +4Y).

We will sometimes denote the elements from W2 as (w,q") defined as
(VX €R")((w,q")x =wx +9")
We define the retraction homomorphism ¢ : W3 s W as

(V(w,q") e W) (p(w,q") = w).
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Equivalently, W2f is generated by reflections r; and reflection ry, where

2& 2(“; ‘S) n
roa =rea + ——, rea=a— ——=-¢&, a eR".
TN ¢ )
The fundamental region F of W2 is
F={xeD|[{x)=<1}.
Equivalently, F is the convex hull of the points {0, %, e ;’1—’\“[}
F={pio) ++9,0) | o, 90 € RZ0, po +prmy + -+ yymy, = 1} (2)

={xeR" | {x,a)>0,YaeA(x, & <1}

The set of reflections r; =1, ,-+-,1, =1, is denoted by

S={r,-, )
The set of reflections together with r( is denoted by
R=SuU {1’0}.

3. SiGN HOMOMORPHISMS, EVEN SUBGROUPS, SIGN COXETER NUMBERS

3.1. Sign Homomorphisms.

A homomorphism o : W + {1,-1}, where {1,-1} is the multiplicative group containing elements
1 and -1 is a sign homomorphism. Two obvious choices of sign homomorphisms are the trivial
homomorphism and determinant denoted as

(Yw € W)(o,.(w)=det(w)),
(Ywe W)(1(w) =1).

Consider a Weyl group W with a simple system A. Since simple reflections generate W, it is suffi-
cient to define a sign homomorphism on simple reflections S. The set of ‘negative’ generators of the
Weyl group W of the sign homomorphism ¢ is denoted by S i.e.

o(r) = -1 if reS°,
11 otherwise.

The sign homomorphisms 0, and o are defined on the set of generators S = {r, | a € A} as

-1 if a € A%,
1 otherwise,

al(ra):{ -1 ifaeAf,
1 otherwise.
The sets S° and S’ denote the following

$*=8%={r, |a €A},

Sl=8% =1{r, | a A
The set S% is the same as the set of all simple relfections i.e.

§% =8.
The Weyl group W is isomorphic to a normal subgroup of W2ft
W= (W,0) = {(w,0) e W | we w}aw,

We will abuse notation and we will not distinguish these groups. Therefore any sign homomorphism o
is also defined on the subgroup (W, O) of the affine Weyl group. Now we naturally expand the domain
of the sign homomophism to the affine Weyl group by defining the sign of the last generator r; as the
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sign of r¢. The set of ‘negative’ generators of the affine Weyl group W2 of the sign homomorphism o
is denoted by R?

ro_ | S if o(re) =1,
N SUU{T()} ifa(rg):—l.

Equivavently, the sign homomorphism can be expanded to the affine Weyl group using the retraction
homomorphism

(Y(w,q*) e W)(o(w,q") = o(p(w,q")) = o (w)).
Again, we will abuse notation will not distinguish these isomorphic groups
W/ kerp = (W) = (W,0) = w.
Therefore we will also not distinguish between the sign homomorphism and its expanded version
cop=o.

For the sign homomophisms o,, 5, 0

The sets R® and R’ denote the following
RS = 120‘5 - SS
R'=R% = 5" U{ry).
The set R% is the same as the set of all generators
R% =R.
3.2. Abelian group of sign homomorphisms.
We define the group of all sign homomorphisms ¥ with the operation - defined as
(Yw e W) (01 - 02)(w) = 01 () (w)).

Evidently the group X is abelian and the neutral element in this group is the trivial sign homomor-
phism 1.

Proposition 3.2.1. The set of sign homomorphisms ¥ of a Weyl group W with two different lengths of
roots contains only sign homomorphisms 1, o,, 05, 07,

Y =11, o,, 0,, 07}.
Proof. (1) By, :
The simple reflections Sg_hold the following relations:
(ritip1)’ =1 foriefl,---,n—2}
(rir))?=1 fori,je{l,--,n}and|i—j|=1
(raru-1)t =1
If we apply an arbitrary sign homomorphism o on these equations we get
o(r;)o(ri)> =1 foriefl,---,n—2}
o*(ri)ch(rj)2 =1 fori,je{l,---,n}and|i—j|=1
o(ry)a(r, 1)t =1

The last two equations hold trivially for any sign homomorphism. From the first equation we
get the four wanted sign homorphisms:
(@) o(rn)=0(ry),---,=0(ry) =1
(i) o(r,)=1wegeto =1,
(ii) o(r,) =-1 we get 0 = 0.
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a(rZ) _G(rn 1) -1

(i) o(r,) =1 wegeto =oy,
(ii) o(r,) = -1 we get 0 = 0.
(2) Cy:
Analogous to B,,.
(3) Gy:

For the simple reflections the following relation holds:
(rry)°=1.
If we apply an arbitrary sign homomorphism ¢ on this equation we get

o(r1)%0(ry)® = 1.

This equation holds trivially for any sign homomorphism. To get the four wanted sign homor-

phisms

(@) o 1):Gr2)_1then0'_1l

(b) o(r;)=0(r;)=-1then o =0,

(¢) o(r;)=-1and o(r;) =1 then ¢ = 7y,

(d) o(r;)=1and o(ry) = -1 then o = 0.

(4) Fy:

For the simple reflections the following relations hold
(nr)’=1,
(rars)* =1,
(1’31’4)3 =1,
(rra)* =1,
(nrs)’ =1,
(nra)*=1

Only the first and the third equations are non-trivial for any sign homomorphism.

get the four wanted sign homorphisms:

(a) o(r)=0(rp) =1
(i) o(r3)=o0(ry) =1wegeto =1,
(ii) o(r3) =o0(ry) =—1 we get 0 = 0.
(b) o(r rp)=-1

=o(ry) =1wegeto=o0,
=o(ry) =-1we get o =o,.

Thus, we
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3.3. Even subgroups and affine even subgroups.
Kernels of non-trivial sign homomorphisms of the Weyl group W are even subgroups. Denoted as
Wo={lweW|o(w)=1}.

The corresponding affine even subgroup is the kernel of the expanded sign homomorphism or equiv-
alently the semidirect product of the group of translation Q¥ and the even subgroup W7 i.e.

Wit = {wf e W | o(w™) =1} = Q¥ We.
Even subgroups W¢, W, W! are the kernels of sign homomorphisms o,, 0;, 07, respectively,
We={weW |ow)=1}, W'={weW|ow=1}, W={weW|gw)=1}.
Their corresponding affine groups are
W = QY We, WA = Q¥ WS, WA = QY e W,

3.4. Sign Coxeter number.
We define sign Coxeter number m? as

m° = E m;.
r,-eR"

We define zero index Coxeter number as m( = 1. The long and short Coxeter numbers are defined as

m’ =m’ = E m;,

riGRS
m! =m = E m;.
T,’ERZ
Their sum gives the Coxeter number
m=m*+m'.

The even Coxeter number m? is the same as the Coxeter number

m% = m.

4. FUNDAMENTAL DoMAIN THEOREMS

4.1. Known Properties.
The set D is the fundamental domain of W, i.e.
Proposition 4.1.1.
(1) WD = R"
(2) Vx,xeD)Awe W)(Xx =wx) = (X = x = wx)
(3) Consider a point x = yjw{ + -+ y,w, € D, such that yy,...,9, > 0 for isotropy group it holds
that

Stabyy (x) = {1} & (Vi = 1,...,n)(y; > 0),
Stabyy (x) = (r; €S | (i = L., m) A (3; = O)}).

The set F is a fundamental region of W2 ie.
Proposition 4.1.2.

(1) WaffF = R"
(2) (Vx, X € F)A(w,q") e W) (X =wx +q") = (X = x =wx +q").
(3) Consider a point x = y;w, ++--+y,w, €F,such that yo+y;m;+---+y,m, =1 for isotropy group
it holds that
Staby.i(x) = {1} © (Vi=0,...,n)(y; >0) & (x € F°),
Stabyar(x) ={{r; €R | (i =0,...,n) A(y; = 0)}),

where F° denotes the interior of F and Stabyy.r () is finite.
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4.2. Notations.

We define the set J° needed for the Fundamental domain
J7={xeD|@3res?)(rx =x),
J%=]={xeD|3res’)(rx=x)}
jr=]'={xeD | @resrx=x)},
J7=] ={xeD | AreS)rx=x)}

We define these sets
={xeF|(3reR)(rx=x)}
H%=H°={xeF|3reR)(rx=x
Ho =H :{)(EF | @reRY(rx=x
H%=H={xeF | (dreR)(rx =x)}.
Lemma 4.2.1. For I[; defined as
L, ={xeF | Gwe W)(o(w) =-1)3q" € Q“)(wx +4" = x)}

s

)
b

)
)

it holds that
[, =HC.

Proof. We will prove two inclusions, The inclusion (D) is trivial. For the inclusion (C), consider a point

x €I, then clearly Stabyyar(x) # {1}. Therefore from (4.1.2 (3)) we get x ¢ F°, now again from (4.1.2 (3))

we get
Stabyar(x) = ({re R | rx = x}) # {1}
thus, there exists r, € R° such that v, x = x. O
The set F°* = FUr,(F\ H?), where r, € RY is arbitrary, but fixed is the fundamental domain of W2f,
meaning:
Proposition 4.2.1.
(1) ngfF(H = R"
(2) (VX X € FON)[A(w,q") € W) (X =wx +4Y) = (X = x = wx +4")].
(3) Consider a point x € F°*. If y e F\H? or x € r,(F \ H?) then
Stabyyae(x) = Stabyyai (x).

If x € H° then
|Stabyyar(x)| = 2 |Stabyyar(x)|.

Proof. (1) We use this sequence of equalities
R" = WF = QY(WF) = Q" (W’ Ur,W?)F) = Q" (W’(FUr,F))
= Q" (W(FUry(F\H?)) = W3"F"",
The third equality is the decomposition of W into left cosets. The fifth equality is just taking
out the elements which are in the intersection. So it is sufficient to prove that
FNnr,(F\H?)=0.

Consider a y € FNr,(F\ H?), therefore x € FA x € rs(F \ H?), therefore there exists y € F such
that y ¢ H i.e. (V7 e R%)(ry # y) and x =r,y, where x,y € F and from theorem [4.1.2 (2)[we
get

X=TeV =7
Therefore r, = ¥ and (Y7 € R?)(7y # ) meaning that the set is empty.
(2) Suppose we have x,x € F°" and w € W7, g € Q¥ such that
wx+q’ =%. (3)
Since F°7 consists of two disjoint parts F and r,(F \ H?), we distinguish the following cases:
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(a) x,x € F. It follows immediately from that xy = x.

(b) x,x€rs(F\H?). Consider y,y € F\H? such that x =7,y and x =r,y. Then y =r wr,y +
r-q" and from (4.1.2 (2)) we obtain y =¥, i.e. x = X.

(c) x€F, xer,(F\HY). We act by r, on (3) we get

TeWx + raqv = o)?: (4)
since r,x € F and x € F then from (4.1.2 (2)) we get
X=r1sX € (F\H?). (5)

We substitute this in (3))
rewx +71.9" = x.
Therefore y € I; and from lemma we get that xy € HY, this contradicts with ,
therefore the option cannot occur.
(3) We have an arbitrary x € F \ H° We know that

X€H’ © (3reR%)(rx = x).
We use this series of equivalencies
X€EF\H° © xeH’ & (Vr, € R%)(ryx % X)-
Therefore only "positive’ reflections stabilize x
(reR|ry=yx)cw
For the isotropy group we get
{re R| rx = x} CStabyai(x) C Stabyai(x) =({r e R [ rx = x}).
If we act on this by () we get
Stabyyar(x) = Stabyyar (x).
If x ery(F\ H?) we get that
roStabyyai (X)rs = Stabyya (15 x) = Stabyyai (r; x) = 15Stabyyai (X)75,

therefore
Stabwaff(x) = Stabwgff()()

If x € HY therefore (37 € R)(rx = x). We define the homomophism 77 as the sign homo-
morphism o constricted on the domain Stabyy.e(x). To prove that 79 is surjective we know that
©7(I) =1 and 77(7) = 1. It is obvious that ker 77 = Stabyyai(x) = Stabyyar(x) N W(;’ff, thus

Stabyyart (x)/Stabyyar(x) = {£1},
from this we conclude that

|Stabyyarr(x)| = 2[Stabyyar(x)|.

The set D°* =D Ur,(D\]?), where r, € S9 is arbitrary, but fixed it holds that
Proposition 4.2.2.

(1) WUD(T+ — ]RH
(2) Vx, xeD)Awe W) (X =wx) = (X = x =wx).
(3) Consider a point xy e D?". If y e D\ J? or x € r,(D \ J?) then
Stabyye(x) = Staby (x).
If x €]° then
|Staby (x)| = 2|Staby (x)|-

Proof. Analogous to O

We will denote the number of elements of Staby.(x) as d}
dy =|Stabyye (x)].
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4.3. Action of W? on the maximal torus R"/Q".

If we have two elements x,x € R” such that x — x = g, with g¥ € QV, then for w € W° we have
wx —wx = wqg’ € QY, i.e. we have a natural action of W7 on the torus R"/QV. For x € R"/QY we
denote the isotropy group and its order by

B =[Stab? (x),  Stab”(x) = {we W | wx = x) (6)
We denote the orbit and its order by
e(xX)=IWo%l, W= {wx eR"/Q" |we W"}.
Orbit-stabilizer theorem states that

[Wel
eo-(X): h% ‘

On the maximal torus R"/QV it holds that
Proposition 4.3.3.
(1) (Yx e R"/QY)dx € F** NR"/QY)(Fw € W)(x = wX)
(2) (Y, x eF"NR"Y/QY)Aw € W)(x =wx) = (X = x =wx)
(3) Consider a point x € F°"NR"/Q" i.e. x = ¥+ QV, where y € F°. For the isotropy group it holds
that

Stab?(x) = Stabyyai ().

Proof.

(1) Follows directly from (4.2.1 (1)).

(2) Follows directly from (4.2.1 (2)).

(3) Let us assume that ¥ = (w,q")y =wy +q" then y —wy =g € QY, i.e. wx = x and vice versa.
Therefore ¢(w,q") = w € Stab’(x). Thus,

P(Stabyyer(y)) = Stab” (x).

We also have

kerp ={(Tg") | (T,q") € Stab{f (»)}} = (1).

5. DuaL LiE ALGEBRA

The set of simple dual roots AY = {ay,...,a,/} is a system of simple roots of the dual Lie algebra,
where o = <a_a;_>. The system A" also spans Euclidean space R”. The dual system A" has analogous
properties as the root system A. The highest dual root 7 of the dual root system can be written as
follows

=V _ VoV VoV
N=—-ay =mya) +--+m,a,

. The coefficients m;/ are called dual marks . The elements of the dual Cartan matrix CY are

VoV
V_Z(ai,aj)

jiiv LjEf{l...,n}

The positive weight lattice P* is defined as

P =Zjw +-+ Z{w,.
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5.1. Dual affine Weyl group and dual affine even subgroup.
Dual affine Weyl group W2 is a semidirect product of the group of shifts Q and the Weyl group W

Wt = Q. w. (8)

Equivalently, W2 is generated by reflections r; and reflection ry , where

2 2(x, 1)

rOX =ty X+ ——, TX=X- s e R".

0T gy oy !
The set of dual simple reflections RV (r) =r,)

RY =SU{ry)
The fundamental region FY of Waff is the convex hull of the vertices {0, %, e %}
1 n
FY = {21w1 +o 4 2,0y | 2o,..., 2, € RZ, zo+zymy +-+z,m, = 1} 9)

={xeD|(x,n) <1}

The expansion of the sign homomorphism o to the dual affine even subgroup is

RV _ S¢ ifo(r,) =1
STU({ry} if o(r,) =-1.

The sets RYS = RV% and RY/ = RV in their explicit form are

RY ={r, | @€ AJU{ry)
R ={r, | a €A

Again, we will not distinguish the sign homomorphism and its expanded version i.e.
oo’ =0,

where ¢V is the retraction homomorphism on the dual affine Weyl group. The dual affine even sub-
group W2ff is the kernel of the expanded sign homomorphism or equivalently the semidirect product
of the group of translations Q, and of the even subgroup W¢ i.e.

walt = {wf e W | o(@) =1} = Q= W". (10)

We define the dual sign Coxeter number m"? as

mVo = > m:/

r,-GRV‘T

We define zero index dual Coxeter number as my = 1. The sum of dual long Coxeter number and dual
short Coxeter number is the Coxeter number

m=m"+m"!,
The even dual Coxeter number m"% is the same as the Coxeter number

mV% = m.

Now we will prove that m? = m"?, but first we need to prove the following lemma.
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Lemma 5.1.1. The following holds for these types of Weyl groups
B,:(Qwe W)(re=wriw™

dJweW -1

(Aw € W)(r,= wr,w
Cp:Qwe W)(re=wr, -1
(HweWw)
Fy: (Qwe W)
JweWw)
( )
( )

c(Jwe W)(re=wnw -1

Y
( )
( )
( )
(re=wryw™ )
( )
( )
dw e W)( )

Proof. (1) B,: a; =(1,-1,0,---,0) and & = (1,1,0,---,0) therefore w = diag(1,-1,1,---,1) € W.
n=(1,0,---,0)and a,, = (0,---,0,1) therefore w € W is

0 07 1
w=|l0 1 0|
1 0" 0
where I is the identity matrix in R"~>"~2 and 0 is zero vector in R"2.
(2) C,: a,=(0,---,0,v2) and & = (V/2,0,---,0) therefore w € W is
0 07 1
w = 6 I 6 )
1 0" 0
where I is the identity matrix in R""2"~2 and 0 is zero vector in R""2,
=(v2,v2,0,---,0) and a) = (V2,-v/2,0,---,0) therefore w = diag(1,-1,1,---,1) € W.
(3) F4 az_(O 0,1,- )andé (1,1,0,0) thereforeweW1s
0 0 0 -1
0o o010
YZlo 100
1 000
1=(2,0,0,0) and a3 =(0,0,0,2) therefore therefore w € W is
0 0 01
v 01 00
10 01 0
1 00O

(4) Gy: a; =(V2,0)and & = (@,g) therefore w=1r; -1, € Wis
1 -3
) 2
w_( _ﬁ ]'
) therefore w =r,-r; € W is

;¥
= % |

Proposition 5.1.2. Let o be a sign homomorfism then for the numbers m? and m"? it holds that

m’ =m"°, (11)

= (0,V6) and a, = (-2,

%

l\)|

O
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Proof.
To simplify the proof we will use the notation #i = (my, my, -, my).
(1) B, m=(1,2,---,2), 1" =(2,--+,2,1)
(a) o(rg) = -1 and o(r,) = -1, therefore from lemmawe get o(r;) = -1 and o(r,) = —1.
The sign Coxeter numbers are

m’ =1+ Z m;

r;€RY,i€{l,-,n}
m'? =1+ > m; .
r;€RY,i€{l,-,n}

By subtracting these equations we get

m’ —m"% = E m; — E m; =my +m, —m) —m,,

r;€RY,ie{l,n} r;€RY,ie{l,n}

since m; =m) forie€{2,3,---,n—1}and my = m), m, = my we get m” —m"? = 0.
(b) o(rg) =1 and o(r,) = 1, therefore from lemma we get o(r;) =1 and o(r,) = 1. The
sign Coxeter numbers are
m’ = Z m;

r;€RY,iefl,-,n}

m¥o = > m;/

1,€R,ie(1, )

By subtracting these equations we get

m’ —m"'7 = E m; — > m! =0,

r;€R%,ie{l,n} r;€R7,ie{l,n}

since r,  R° and r; ¢ R°.
c) o(rs) =1 and o(r,) = —1, therefore from lemma|5.1.1|we get o(r;) = 1 and o(r,)) = —1. The
& 1 g
sign Coxeter numbers are

m’ = E m;

r;€RY,i€{l,-,n}

m'o =1+ > m; .

r;€RY,ig{l,-,n}
By subtracting these equations we get

m’ —m'? =-1+ > mj — E m; =-1+m,—m, =-1+m,—m; =0.

r;€R7,ie{l,n} r;€RY,ie{l,n}
(d) o(rg) =-1and o(r,) =1 is done analogously to .

(2) C,, Mi=(2,---,2,1),m" =(1,2,---,2) is done analogously to (1)
(3) Fy, m=(2,3,4,2), m" =(2,4,3,2)

(a) o(rg) =-1and o(r,) = -1 is done analogously to E).
(b) o(r¢) =1 and o(r,) = 1 is done analogously to ’ .

¢) o(rg) =1 and o(r,) = -1, therefore from lemma|5.1.1|we get o(r;) = 1 and o(r3) = —1. The

sign Coxeter numbers are

Q

m’ = E m;

r;€R%,ie{l,-,4}

mVo =1+ > ml\-/.

r;€R7,i€{l,-,4}
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By subtracting these equations we get

m’ -m'? = -1+ Z m; — mY ==1+mz—myj =—1+mz—my=0.

r;€R7,1€{2,3} r;€R%,i€{2,3}

(re)=-1 and o(r,) = 1 is done analogously to

o ) =
m=(2,3), 1" =(3,2)
o(rg) =—1and o(r,) = -1 is done analogously to E).

(a)
(b) o(rs)=1and a(r,,) =1 is done analogously to ( .
)

¢) o(rg) =1 and o(r,) = —1, therefore from lemma|5.1.1|we get o(r;) = 1 and o(r,) = —1. The
3 n g

m- = E m;
r;€R7,ie{1,2}
m¥o =1+ E m; .
r;€R7,ie{1,2}

By subtracting these equations we get

o Vo _ A VvV _ —
m’ —-m"" =-1+ E m; — E m; =—1+my—my =—-1+my—my =0.
r;€R7,i€{1,2} r;€R7,i€{1,2}

(d) o(r¢) =~1and o(r,) = 1 is done analogously to .

Analogously we define these sets
HY? ={x e F¥ | @reR")(rx = x)}
HV% =H%Y = {)(EFV | @reRY)(rx = )()}
HY? =HY ={x e FY | @reRY)(rx = x)}
HY% =H¢ = {)(EFV | AreRY)(rx = )()}

We choose some fixed r, € RV? and define the set F¥7* by
FVor =FVur,(FY \ H"O). (12)

Analogously to proposition we obtain that FY°" is a fundamental region of the dual affine
even subgroup W2ff,
Proposition 5.1.1.
(1) WaffFvo+ =R,
(2) (Y, X € FY7)[(A(w,q) € Wi (X = wx +9) = (X = x =wx +9)].
(3) Consider a point y € FYo". If x e FY\HY? or x € r,(FY \ H"?) then

Stabw‘?ff()() = Stab . (x)-

If x € HY then
|Stab .(x)| = 2|Stabgar(x)|.

5.2. Action of W° on the maximal torus R"/Q. _
If we have two elements A, A € R"” such that A- A = g, with g € Q, then for w € W we have wl-wl =
wq € Q, i.e. we have a natural action of W on the torus R"/Q. For A € R"/Q we denote the isotropy

group and its order by
h{? =|Stab¥? (1), Stab’?(A)={we W’ |wd=A} (13)

We denote the orbit and its order by
€7 (V)=|W%], WoA={wleR"/Q|weW°}.
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Orbit-stabilizer theorem states that Wl
w

- hov'

A

On the maximal torus IR"/Q analogously to proposition it holds that

Proposition 5.2.2.

(1) (YAeR"/Q)(FX € FYo* nRY/Q)(Aw € W)(A = w])

(2) (VLA FY"NRY/Q)(Awe Wo)(A=wd) = (A=A =wl)].

(3) Consider a point A € F¥9*NRR"/Qi.e. A = y+Q, where y € FV7*. For the isotropy group it holds

that

GVU(/\)

Stab"? (1) = Stab gar(y).

6. ORBIT FUNCTIONS

We define orbit function of weight A, sign homomorphisms o, ¢ in point x as

W (x) = ) Glw)er ),

weWe
These functions are g-invariant i.e.
(Vx € R")(Ywe W)(Vq" € Q") (W) (wx +q) = 5(w)¥)"" (x))- (15)
They are also o-invariant in weights i.e.
(Ywe W)(W7 = 5(w)wo). (16)

If6=1o0ro =0 and o =0, 0, 0] then these functions are called E-functions
e+ = \Ilaerﬂ — \I/Ue,O'e,

s+ — \I,UE,JI — \I]O'S,US’

I+ = \I]O’[,]l — \IJU[,O'[

If 0 # 0 and 0 # 1 then these functions are called mixed E-functions

e = POl — Pl

§= = \PYIs01 — \I]as,cre’

[ C

[

o1 [

Bl = worss = oo,
If 0 = 1 then these functions are called S-functions
(Pe = \Iﬂl,(fe
(PS = \IILUS
qDl = \Ij]l,o’[
and if both are 1 then they are called C-functions
¢=wh,

6.1. Domains for orbit functions.
Due to the property [15|the natural domain for x is F°*, but we have to take out special values in
which orbit functions are zero. Let us take an arbitrary point x € F,[15|means that,

WY (wy +qY) = Fw) U7 (x)
Therefore \I/f ’5( x) = 0if and only if
Aw® e W)Wy = x) A (W) = -1).
The set of zero points of \I’f’a in F is

Log={x €F | Qwe W)(3q" € Q")(0(w) = 1) A (F(w) = ~1) A (wx +4" = x)}.
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Lemma 6.1.1.
Ih5= H°NH°

Proof. The first inclusion (C) we can see that I}, 7 C Iz and I;; 57 C Iz, therefore I, 7 C Iz NI5., by using

lemma we get [}, 5 C H°NHY,
The second inclusion (D) we will prove by contradiction. Let us assume an arbitrary, but fixed, point

x € F such that
(1) xe HONH"®
(2) x ely5
Since x € HY, therefore
(F((w1,47) € Stabyyae(X))(G(wy) = ~1)
and y € H9, therefore
(F((w2,q5) € Stabyya (x))(0(w;)5(w,) = -1).
Since x €¢I, 5, therefore
—(A(w,q") € Stabyyai(x))(o(w) =
(Y(w,q") € Stabyyae(x))(0 (w)

N

(Y(w,q") € Stabyar(x))(0(w) = -1) V (G(w) = 1) (17)
if we apply[17)on (wy,4)) and (w5, 9y ) we get
(o(wy)=-1A0(w;)=-1)and (o(wy) = -1 AG(wy)=1)
By taking (w1, 9y )(w2,q5) = (wywp, wiqy + 4, ) € Stabyyai(x) we get that
o(wiwy)=1A0(wwy) =-1.
This contradicts with O
The domain F%7 for orbit function \I/f 9 is

Fo% = (F\T, 5) Ur,(F\H?)\T, 5) = (F\(H° N H°))Ur,(F\ (H° U(H° N H)).

6.2. Weight domain of orbit functions.
If we want the orbit functions to be invariant to the abelian group of translations Q¥ and due to
property [16|the natural weight domain is

PO+ :P+UTO(P+\]O),

but again we have to take out special values of weights in which the orbit function is equal to zero. Let
us take an arbitrary point A € P*,[16|means that,

Therefore \I’/\U’E =0 if and only if
Awe W) (wA =) A(c(w) =-1).
The set of special values of weight of W77 in P* is
My5={1eP" | Qwe W)(o(w)=1)A(d(w) =-1) A (wA = A)}.
Analogously to lemma[6.1.1]we get that,
My5=J"NJ77np*
The weight domain P for orbit functions W7 7is

P77 = (P \ Iy 5) U ((P*\J7)\ Iy 5) = (PN (JTNJT9) Urg (PTA (U (T N]T)).
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6.3. Continuous orthogonality of orbit functions.
To prove the continuous orthogonality relation we need the orthogonality relation of normal expo-
nential functions on the torus T= WF and A, A" € P

J 2D e 27N1) = 1(T)5 (18)
T

Lemma 6.3.1. For any integrable function f on the torus T invariant to the Weyl group it holds that

ot = )

Proof. It is obvious that the average value of f on F% and on T is the same

M(Flf"a) Laff ) ﬁ J;rf ’

where y is the Lebesgue measure. For the measures y(P“’E) = u(F°"), since the difference of these
sets has a zero measure. Applying yu(T) = [W?|u(F°*) on the previous equation we get the desired
lemma. O

Lemma 6.3.2.
(VAN e pﬁﬁ)( Z F(w)Syy 1 = djém/]
weWoa

Proof. If A # )’ then, since A, A’ € P%% c D°* and wA = A’ for all win W, therefore the whole
sum is zero.
If A = )’ then the sum is equal to

Y F@duia= ) TWaa= ) GFw).
wewo weStabyyo (1) weStabyyo ()
The set P%7 is defined as (P* \T1, ) U7, ((P*\]J?)\T1, ) therefore
Aell, zVrsAell, 7 & [(Ywe Staby(A))(o(w) =-1) vV (6(w) = 1)]Vv
V [(Vw € Staby (r,A))(a(w) = -1)
From Stabyy(A) N W = Staby+ (1) we obtain
(Yw € Stabyo(A))(o(w) = 1) V (Yw € Stabyo (1, A))(0(w) = 1).
Since r,Stabyye (A)r, = Stabyye (1, 1), we obtain
(Yw € Stabyo (A))(o(w) = 1).

Z F(w) = Z 1=d9.

weStabyo (1) weStabya (1)

Lastly for the sum we get

Proposition 6.3.3. For all A, 1’ in P it holds that

00T G0 dx = W (S 0 -

Proof. First we use lemma and get.

1

W OW (0dx = _a_[ WY O (0dx =
fos IWel J

1 . . /
:lwgl Z Z 5(w1 )8('“/2)\[\ 627'(1<U/1/\,)(>e—27'(1<w2/\,X>dX

wr,eW9 weWe T
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since wy A, wp A" € P, we can use the orthogonality relation

|M]]-(j| Z Z E(wl)g(wz)f ezni(‘uﬂ/\,X)e—2ﬂi<w2/\,x>dx _

wr,eW9 weWe T

1 i~ (WO u(F) o

wreWo weWe w €W w,eWe

=p(FT) Y ) G = IWHET) Y TS

weWoweWe weWe
Using lemma we obtain

(W (ET) Y Gw)S0u = W u(FT)dS5, v

weWe

O

We have just proven that the set {\Iff T xepo? } is orthogonal. Next we prove that the set is com-

plete in the space £L?(F9), for this we need the following lemma.

Lemma 6.3.4. Let g, be any expression dependent on A then it holds that

) ) w=)

APt yeWaA AeP
and
Oy —
) 5= ) s
yeWoA weWe

Proof. The first equation is trivial once we know that W?P?* = P. The second equation just uses the
orbit stabilizer theorem. g

Proposition 6.3.5.
(Vf e LAFTT(YAe PP Fe e O)(f = ) c¥)),
Aepod

where the infinite sum Y | ps7 converges in the space £2(F°?) and the coefficients c, are

1 G 1

== ,\IIO-'O- 0,0 — T o .~ \I]O-’E .
= [woraEenag I T = e Eena Ln,af()() 3 (dx

Proof. For an arbitrary f € £L?(F?), we define f on the torus T by
(Yw e W)(f ow = 5(w)f)

The set of problematic points are on the boundary of F%7, this set has zero measure. Therefore f €
L£?(T). Now we can write f in the basis {e2ni</\,~) | Ae P} of L2(T)

f= ZkAezni<A">;
AeP

where

- 2mi(A, - )
9 ,u(T)<f’e )T

Due to o-invariance

Y Gw)(f ow) =W,

weWe
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Therefore

_ 1 o 1 ~ L e2miy 2mi(h) _
f—lwg|Z Wf ow) = e ) Fw)) s (f owel et <

weWe weWe AeP
2711(14//\ ) 27ti(A, - )_
|Wo| X e Yre
weWwe /\eP
2n1(w/\ ) 2miA, - )_
e
|wo| W(T Z<f ) Fw T
/\eP weWe
(6.3.1)
. —— .
_ Z<f \yao e2711</\,.) — - — Z(f \I_,ao ,6627H<’\"> _
W | )= W |;4F ) =
16.3.4) 6.3.4)
= Zd;{c/\ezmb\,.)? Z Z d;jcyeZni(%-)/:\ Z Z Cw/\ezm<w,\,.> _
AeP AePot yeWo L AePor weWe
= Z CA Z 5(w)62ni(w/\,-) = Z c,\\I’f’U = Z C/\\Ilf'g
Aepot  weW? Aepo+ 1epod

From the definition of c, we get that ¢,y = d(w)c) and ¢y = 0 for A € P"\ P99, Therefore the set
{\I’f'a | e P"’E} forms an orthogonal basis in £L2(F7"). O

7. DISCRETIZATION OF ORBIT FUNCTIONS

7.1. Grid Fy/".

The grid Fy; is the finite fragment of the lattice 3;P" which is found inside of F’*. Suppose we
have a fixed M € N and consider the W-invariant group of translations 3;P"/Q". The group PV/QV
is finite with the order

PV/QV

=cM". 19
- : (19
We define the grid Fy; as such cosets from :P"/QY which have a representative element in the

fundamental domain F°":
1

FO'+E_PV va0-+.
From the relation (4.3.3 (1)), we have that
1
WOFyH = —PY/QY. 20

The grid Fj;" can be viewed as a union of two disjoint grids — the grid F; = —PV/QV NF and r,(Fpr \
Hy,), where Hy, = Al/IPV/QV NHY,

FZC\T/F:FMUTU(FM\HIC\T/I). (21)
We obtain from (2) that the set F);, or more precisely its representative points, can be identified as
n
u u
FM {MCUY"""-FMHO)X|uO'”l'""uHEZg’uO—’_;uimi:M}' (22)
1=

7.2. Number of elements of Fy,".

The number of elements of F);, denoted by |F)|, are calculated in [7] for all simple Lie algebras.
Using these results, we derive the number of elements of Fy;". We define the symbols u{ € R, i =
0, e

uj €eIN, reR’,
ul e Zj, ri€R\R".
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The explicit form of Fys \ Hy, is :

uy g
Fy \Hy, = {Mla)}’+~-+ ”anr\z/ | u§ mo+ufmy +--+ugm, :M} (23)
Using the following proposition, the number of elements of Fy;” can be obtained from the formulas for
|Fml-

Proposition 7.2.1. Let m“ be the sign Coxeter number. Then

0 M <m°®
Py \HS =1 1 M =m°
|FM,m(7| M >m°

Proof. Taking non-negative numbers u; € Z; and substituting the relations u{ = 1+ u; if r; € R” and
u? = u; if r; € R\ R? into the defining relation , we obtain

Ugmy +uymy +---+uym, =M-m®,  ug,--,u, € Z§
This equation has one solution [0,---,0] if M = m?, no solution if M < m,, and is equal to the defining
relation of Fpj_po if M >m°. O

7.3. Grid A§/.
The W-invariant group of translations P/MQ is isomorhpic to ; P¥/Q". Therefore the group P/MQ
is finite with the order
|[P/MQ| =cM". (24)
We define the grid A{; as
AJf =P/ MQNMFY*
The grid A§/ can be viewed as a union of two disjoint grids — the grid Ay, = P/MQ N MF" and
ro(Ay \ HyY), where Hyf = P/MQNMH"?,
AX/[+:AMurG(AM\HZ\\/4G)' (25)

We obtain from (9) that the set Ay, or more precisely its representative points, can be identified as

n
Ay = {tlwl bt tyy | tor bty € ZE, to + Ztimz\/ :M}. (26)
i=1

7.4. Number of elements of Af/.

The number of elements of Ay, denoted by |Ay,|, are calculated in [7]] for all simple Lie algebras.
Usining these results, we derive the number of elements of A§;. We define the symbols 7" € RY, i =
0, RN

tl}/c €N, r; € RV
t/7 ez, rieR'\R'
The explicit form of Ay \ Hyy is
Ay \HYP = {t}/"a)l ot ) Ty | 1y Tmg+ ) Tmy + e+ 1 Omy, :M} (27)
Similarly to Proposition[7.2.1)we obtain the following.

Proposition 7.4.1. Let m"“ be the dual sign Coxeter number. Then

0 M <m°V
IAM\Hy1=1{1 M=m
|PM_mVO'| M > mo-v

Combining Propositions [7.2.1} [7.4.1|and [5.1.2| and taking into account that |Ay,| = |F);| we obtain
the following crucial result.

Proposition 7.4.2. For the numbers of elements of the set A§" it holds that

o+| _ o+
A% | = [F3r]-
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7.5. Grid FJ/°.
We define the grid Fy;” as such cosets from ﬁPV/QV which have a representative element in the
fundamental domain Fo9,

— 1 —
Fy%=—PY/QVNF7.
M= /e

The grid F;ﬁ can be viewed as a union of two disjoint grids — the grid Fy; \ (H;{jI N HZ‘EI'U) and the grid
ro(Fp \ (Hy, U (Hyy NHy %)) iee.

E{i7 = B\ (H§; 0 HG*) Uy (P \ (5 U (HE; 0 ) 29

7.6. Number of elements of Fgf.
Since there are only four sign homorphisms we get the following choices of grids

FiF = Fyv% = FyrUrg (Fy \ Hy)

Fyf = Fyy™ = Fy Ure(Fayr \ Hyy)

Fi = Fy% = Fap U (Fyg \ Hiy)

F$; = Fye® = Fag \ (Hiy N Hyy) U (Fag \ HY)

Fy; = Fyy® = Fy \ Hy Urg(Fa \ HE))

Fi = Fyr® = Fy \ Hy; U (Far \ HY),
where HK/I = Hi,}’, Hzl\/f = H;\Z and HZS\/I = HX/}

For the number of elements |F§ig' it holds that

|F$t| = 1Fml+ [Far \ Hiy|
|3 | = [Fal + [Far \ Hy|
|F4i| = [Fatl + [Far \ Hy|
7] = [P\
[ | = [Fa \ Hyg| + [Fae \ FI |
|Fit| = [Far \ Hyg| + [Far \ Hy-
For the number of elements |ervf| we use the following sequence of equalities
|F5r| = [Far \ (Hyy 0 Hip) U o (Fag \ Hip)| = |Far \ (Hyg 0 Hy)| + [Far \ Hiy| =
= |Far \ Hiy U Far \ Hyy| + [Far \ Hy| =
= |Far \ Hig| +|Fae \ Hyg| = |[Fae \ Hiy 0 Far \ Hyg |+ |Fae \ Hyg | =
= |Fae \ Hyg| + [Far \ Hyg | = [Far \ (Hy, U H3p)| + |Fag \ Hyg| = [Far \ Hig |+ |[Far \ Hyy

7

where in the third equality we use the inclusion—exclusion principle.

7.7. Grid Ay
We define the grid A}, as

A7 =P/MQNMFY??,

where FY99 = (FV\ (HYT N HY79))Ur,(FY \ (HY" U(H"Y? N HY7?)). The grid AIUVF can be viewed as a
union of two disjoint grids — the grid Ay, \ (H,[ ﬂH]\\/f'G) and the grid r,(Ap \ (Hy, U(HY ﬁH]\\/f'a)))i.e.

AT = Ay \(HYF NHYTO) Urg(Ay \ (HyY U (Hy? NHYT)). (29)
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7.8. Number of elements of A}’
Since there are only four sign homorphisms we get the following choices of grids

A;Z EAGeGe AMUT (AM\Hve)
A = AYT = Ay Urg(Ap \ HYY)
A= ATV = AppUrg (Ap \ HY)
A = AT = Ay \ (HYf NHYS) Urg(Apr \ HYY)
Ay =AY = Ay \Hy{ Urg(Ay \ HyY)
A =AY = Ay \Hyf Ut (Ap \ HYY),
where H]\\/,IeEHVU" HVZ H]\\/f’ an dHVS HA\ZUS.

For the number of elements ‘AM

|ASE] = 1AMl + [An \ Hyf|
|ASH] = 1AMI+|Am \ HyY |
|AN] = 1AMl +|Am \ HY|
[Afa| = A \ Hyg | +|An \ Hyy|
|A] = [An \ HY [+ |An \ HYE
|Ada] = [An \HE |+ [An \ Hig .

The following proposition is needed for the proof of the completness relation for discretized orbit
functions.

Proposition 7.8.1. For the numbers of elements of the set AXF and F](\’,I’E it holds that

0,0

A= |FS

7.9. Number of elements of F};, F/, le\j}, Fy Fiyp FZI\Z.
For Lie algebras B,,, C,, G, and F, the number of elements of F;}r, Pi}, FJI\/*I, Pf/}, st\/}’ le\/} are given by
the following relations, which are derived from [5].

Proposition 7.9.1.
(1) C,,n=>2,
k+n\ ([k+n-1 k+1 k
s+ _
'F2k<cn>—( )
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|F5(C

n)|:(n+;]§_1)+

_ n+k-—
[F5t (C n>|=2( )

L)
ol

IF55 (Bl = [Fif (C)l,
IF3i (Bl = IF35 (Cy)l,
IF5t (Bl = [F55(Cyl,
IF51 (Bl = [Fi7(C)l,
IF31(B)l = [F37(Cyl,
IF§; (Bl = |Fg7 (Cy)l,

IFS5(Gy)l =1+ 3k+6k%,
IFSt (Gl =2+ 7k +6k%,

IFSr (Ga)l=5+11k+6k%,

IFSH(Gy)l =2+ 6K2,
IFSE ., (Ga)l =2+ 4k +6K2,
IFSr . (Gl =4+8k+6k%,

|IF5r 5 (Ga)l =k + 6Kk,

IFS . 4(Ga)l =1+ 5k +6k?,
IFei(Go)l = 6K,

IFS ., (Ga)l = 4k + 6 k2,

e
|F6k+4

)

)

(G2)

£ (G2)

(G2)

Fgr,4(Ga)
IFS(Gy)l=1-3k+6k%,

Fgr2(G2)

(G2)

(G2)

(G2)

(G2)

G,y)|=2+8k+6k?%,
IF3i(Ga

IFi; (G

IFSr (Ga)l=1+5k+6k?
IFSt . 5(Go)l =4+ 9k + 6k
|FSr (Ga)l =7 + 13k + 6k*
IFSE, (Ga)l =1+ 2k +6k?
|FSE 5(Ga)l =3 +6k+6k?
IFS . 5(Go)l = 5+10k + 6k?
IFS, . 1(Go)l = =k + 6 k2
|IFSr.5(Ga)l =143k +6k?
IFS . 5(Ga)l =2+ 7k +6k?
(G2)
(G2)
(G2)

IFS . (Go)l = 2k + 6 k?
IF& 5(Ga)l =2+ 6k +6k?
IFS . 5(Ga)l =4+10k+6k>,

)| =Fy;(Ga)l,

)| =1Fy(G2)l,
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(4) Fy,
S5, (Fy)l = 1+ 8k +25k% + 36k + 36k,
|F53, o (Fa)l = 3+ 20k + 49k + 60> + 36 k%,
|FS3,  4(Fa)l = 8+ 42k + 85k + 84Kk> + 36 k%,
IF5%, o (Fa) = 18+ 78k +133k% + 108k + 36 k*,
IFS3, o(F4)l = 35+ 132k + 193k + 132k% + 36 k%,
|F$3, . 1o(Fa)l = 63+ 208k + 265k + 156k + 36 k*,
|F12k(F4)|:2+52k2+36k4,
F3, o (Fa)l =3+ 18k + 58k + 24> + 36 k%,
IFSE,o(Fy)l = 8+ 40k + 76 k> + 48k + 36 k%,
FS%,, (Fy)| = 17+ 70k + 106 K2 + 723 + 36 k*
|FSh, o(Fg)l =32+ 112k +148k* + 96 k> + 36 k*,
FS3 e 10(Fa)l = 55+ 170k +202k> + 120> + 36 k*,
IF35 (Fa)l = 1 -8k +25k> - 36 k> + 36 k%,
IFSop . (Fa)l = =2k +13k* = 12k> + 36 k*,
IFSS; o (Fa)l = 2k +13k% +12k° + 36 k*,
IF 56 (Fa)l = 1+ 8k +25k% +36 k> + 36 k*,
IF55p,a(Fa)l = 3+ 20k + 49Kk2 + 60 k% + 36 k*,
IF$5010(Fa)l = 8+ 42k + 852 + 84K> + 36 k%,
|F12k(F4)|=—2k2+36k4,
|F$sn (Fa)l = 4K + 24K° + 36 k%,
S a(Fa)l = 4k +22k% + 48 K% + 36 k%,
|IFS s (Fo)l = 2+ 16k + 52k + 72k + 36 k*
IFS5,  o(Fa)l = 6.+ 40k + 94k + 96 k> + 36 k%,
(Fy)

IFS 10(Fa)l =16+ 80k +148Kk% + 120 k> + 36 k*,

|FS3, ((F)l=1+10k+31k* +48k% + 36 k*
IFS5, o (Fy) = 4+ 25k + 61k + 72k + 36 k*
IF53,, s (Fa)l = 10+ 52k + 103 k% + 96 k> + 36 k*
IFS%, o (Fy)l = 22+ 95k + 157k + 78 K> + 36k*
IFS%, o(Fy) = 43+ 158k + 223k + 144K + 36 k*
IFSS o (Fa)l = 76+ 245k + 301k + 168 k> + 36 k*
IFShs  (F)l=1+8k+49k% + 12k% + 36k*

|FS%, s(Fy)l=4+26k+61k*+36k>+36k*
|F¢3y.5(Fa)l =10+ 50k + 85k + 60k + 36 k*

F&, o (Fy)l = 21 + 84k + 121k + 84k + 36 k*

IF&S . o(Fa)l = 39+ 132k + 169> + 108 k> + 36 k*
IFS 0 (Fa)l = 66+ 198K + 229k +132k% + 36 k*

|F5 sy (Fa)l = =3k +13k> - 24k° + 36 k*

|F§ 1.5 (Fa)l = 7k + 36 k*

|FS5; 5(Fa)l =3k +13k? + 24k> + 36 k*

IF$5ps7(Fa)l = 1+ 10k + 31k + 48K + 36 k*

IFS o o(Fa)l =4+ 25k +61k* +72k> + 36 k4
IF$5011 (Fa)l = 10+ 52k + 103K% + 96 k> + 36 k*

IF$sr (Fa)l = —k =5k +12k> + 36 k*

P Ss(Fa)l = =k +7k* + 36 k> + 36 k*

|F{5.5(Fa)l =5k +31 k?+60k3+36k*

IFS s (Fo)l =2+ 21k + 67k + 84K + 36 k*

IFS5 o(Fa)l=8+51k+115k%+108k> + 36 k4
IFS5, .11 (Fa)l = 20+ 99k + 175K + 1323 + 36 k%,

IFLE(Fy)| = [F3f (Fy),

IFY1 (F)l = [F57(Fy)l.

7.10. Discrete orthogonality of orbit functions.

To prove the discrete orthogonality relation of discretized functions {\Iff T Ae Af\f} with the fi-

nite domain FX/I'E, we need the discrete orthogonality relation of normal exponential functions on the

discretized torus 3 P¥/QY and A, A’ € P from [7] i.e.

) . 1
27, x) =27, x) VAV
E e e = ‘—P /Q

xeLPv/QY

Lemma 7.10.1. Let f(x)
f(wyx)=f(x) for all w e W, then

XEFy

6/\,/\/ :(;M"é/\’/\,_ (30)

be an expression dependent on x and invariant to the even subgroup W¢, i.e

Y ef0 =

) flo

xedpv/Qy
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Proof. Due to invariance

1
00 = ey ) fwn):

weWe

therefore

) 0= ) Y Ewfw= ) Y %f (wx) =

XEFy XEFS weWe XEFyf weWe
=) ) f= ) fw
XEFy yeWx XEHPY/QY

Finally, the discrete orthogonality relation follows.

Proposition 7.10.2. For all A, A’ in Af\f

Y BT () = W M"Y 8,0

XeFyT
Proof. First we use the fact that orbit functions have zero points, then we use this series of equalities,

) TR0 = ) BTV = ) W (0 =
)(EFXA’E XeFy; XGﬁPV/QV

— Z Z Z 67(w)5(wl)e2ni(w/\,x)e—2ni(w’/\’,x) —

XGﬁPV/QV weWoweWe

=) ) eMT@WIW)uawr= ) ) eM'TW WS =

weWsweWe weWeweWe
= |W°| Z MG (w)Sy, 1 = WM™ hSV o 1,
weWwe
where ), cpwo 0(W)oyn 1 = hf\vé/\,/\/ is analogous to lemmam O

The set {\ny | e A]UV’IE} is an orthogonal basis of a |FX,F

dimensional space, due to

0,0 _|r0,0
FoO| = A

Arbitrary function f defined on Ff\’f can be expressed as

f=") %),

AeAy’
where

by

) FO0w ().

)(EFX,,’F

1
~ cM WO |hY

Also, the discrete orthogonality of orbit functions allows the interpolation of an arbitrary function
g defined on F°°, into function gy, depending on the density of the grid. This result is crucial for
application in data processing.
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8. CoNCLUSION

In the present work, we have succeeded in uniting ten types orbit functions. The most important
property of orbit function is their discrete orthogonality in its potential utilization in increasing proc-
cessing speed of digital data.

In addition, the present work raises new questions. It is unknown under which condition do the
series of interpolated functions {gyr}3;_, converge. Another matter which requires further study are
the properties of orbit functions indexed by a general point in IR". Last but not least, a general one
to one correspondence between orbit functions and orthogonal polynomials in n variables exist [18].
Most sources study only 2-variable polynomials.

Potentially orbit functions can be applied in proccessing digital data. In informatics, they can be
potentially used in data compression and data hiding. In physics, their potential use lies in image
recognition.
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