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Introduction

Econophysics is a field of study, which uses methods of physics to analyse and
predict behaviour of financial markets, but econophysics is only branch of the
much more established field of mathematical finance. L.Bachelier is considered
as a founder of this field with his doctoral thesis from 1900, where he used
Brownian motion to describe the a development of prices on financial markets.
It was the first attempt to use advanced mathematics to describe a complex
system of financial markets. Since then many improvements and new ideas
were made in this area, we will name just few of them.

In 1973 F.Black and M.Scholes published the first rigorous option pricing
formula. It was a huge breakthrough correct prices of options were just guessed
till then. Their formula was widely celebrated and both of them were rewarded
Nobel prize for it twenty years later. However in 1994 Black and Merton were
in charge of a big hedge fund, they were very successful the first few years but
they lost more than a half of the value of their fund and failed during financial
crisis in 1997 and 1998 .

As the last but certainly not least we will mention Benoit Mandelbrot. He
is best known for his work in physics and as a father of fractal geometry, but
he also published number of articles about mathematical finance. His biggest
contribution to mathematical finance beside a usage of fractals was idea that
prices on financial markets do not follow normal Gaussian distributions but so
called heavy-tailed distributions, i.e. distributions with a polynomial decay. In
fact, he explained why Black-Scholes approach based on a normal distribution
had to fail during the crisis even before their formula was published, but no one
paid much attention to his ideas at that time.

In this thesis we will first describe a mathematical apparat that mathemat-
ical finance and econophysics use and we show some concrete applications to
finance then. We hope that this thesis will explain main ideas behind econo-
physics and why there is a need to use physical and not just mathematical
methods in finance.

In the first chapter, after stating basic results of probability theory including
central limit theorem, we will explain a need for more general limit theorems
and discuss an important class of distributions - stable distributions in details.
In the second and third chapters we will thoroughly discuss stochastic calculus
and fractal geometry with a special focus to Brownian motion. Throughout
these chapters, we try to outline a connection between stochastic processes and
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fractals and their applicability to finance.
In the last two chapters we will focus more on the applications. In the fourth

chapter we will discuss Black-Scholes formula in details and we will explain its
limitations and possible generalizations then. In the last chapter we will focus
on relation between thermodynamics and statistical physics with finance.



Chapter 1

Probability theory

1.1 Preliminaries

We will start with stating some basic definitions and results of the probability
theory. We will not go into details because these results are well know.

Definition 1.1. (Probability space) Let Ω be set of elementary events, F be σ-
algebra on Ω and µ probability measure (µ(Ω) = 1). Then we will call (Ω,F , µ)
probability space.

Definition 1.2. (Random variable) We will call any Borel measurable function
X : Ω → R(Rn) a random variable.

Definition 1.3. (Cumulative distribution) Let X : Ω → R be a random variable
on probability space (Ω,F , P ) . Then F (x) = P [ω ∈ Ω, X(ω) ≤ x] ≡ P [X ≤ x]
is a cumulative distribution (CD) of a random variable X.

Definition 1.4. (Probability density function) Let F (x) be a cumulative distri-

bution function. Then if exists a function p(x) such as F (x) =
x∫
−∞

p(y)dy then

we we will call p(x) a probability density function (PDF).

Remark. We can also define PDF as d(P ◦X−1) = p(x)dx. An existence and
a uniqueness is guaranteed by Radon - Nikodym theorem (see Appendix A) for
all equivalent measures with Lebesque measure. We can easily see from this

definition that P [a < X ≤ b] =
b∫
a

p(x)dx.

If PDF exists, we will call given CD absolutely continuous. We will consider
almost only absolutely continuous CD throughout this thesis.

Definition 1.5. We define expected (mean) value for every random variable X

by EX =
∫
Ω

XdP =
∞∫
−∞

xp(x)dx.

14



CHAPTER 1. PROBABILITY THEORY 15

Remark. Analogically, we can define Ef(X) for every Borel measurable func-
tion f . Specially for f(x) = xk we call EXk kth moment and E(X −EX)k kth
central moment. The second central moment is usually called variance and a
following relation holds

V arX = E(X − EX)2 = EX2 − (EX)2 (1.1)

For random variables X,Y on same probability space we define covariance by
following relation

Cov(X,Y ) = E((X − EX)(Y − EY )) = E(XY )− EXEY (1.2)

If Cov(X,Y ) = 0, we say that X and Y are uncorrelated.

Definition 1.6. (Random vector) Let Xi be random variables to R than we call
X = (X1, X2, ..., Xn) random vector. Cumulative distribution and PDF of X is
defined in following way

F (x1, ..., xn) = P [X1 ≤ x1, ..., Xn ≤ xn] =
x1∫
−∞
· · ·

xn∫
−∞

p(x1...xn)dx1...dxn

Expected value EX = (EX1, ..., EXn)

Definition 1.7. Let X1, X2 be random variables then we say that X1 and X2

are statistically independent ⇔ pX1,X2(x1, x2) = pX1(x1)pX2(x2.).
Independence of random variables (X1, X2, ..., Xn) is defined analogically.

Definition 1.8. (Conditional CD) Let X,Y be random variables then we a de-
fine conditional CD

FX|Y (x | y) = limε→0 P [X ≤ x | y − ε < Y ≤ y + ε]

Remark. Following relation for PDF of FX|Y can be easily proven .

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
(1.3)

Clearly pX|Y (x | y) = pX(x) if X and Y are independent. Further, we can
define a conditional expected value in following sense

EX|Y ( | y) =
∞∫
−∞

xpX|Y (x | y)dx

We will simplify marking for a conditional PDF with more arguments

pn|m(x1, ..., xn | y1, ..., ym) =
pn+m(x1, ..., ym)

pm(y1, ..., ym)
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We will end this section with an important theorem about transformation
of PDF.

Theorem 1.1. Let X : Ω→ Rn be a random vector with absolutely continuous
CD, g : Rn → Rn differentiable, invertible and regular function. Then a random
vector Y = g(X) has an absolutely continuous CD and

pY (y) = pX(g−1(y))|Jg−1(y)|

1.2 Central limit theorem

In physics, we examine effects that are caused by many small, random influences
very often. Typical example is a pressure of gas on walls of a containment vessel.

It is not surprising that a similar situation arises when we are trying to
describe behaviour of financial markets. As we already mentioned, early at-
tempts to describe financial markets were often somehow based on Gaussian
distribution, a reason for that is in following well known theorem.

Remark. Random variable X obeys normal (Gaussian) distribution

X ∼ N(µ, σ2) ⇔ pX(x) =
1√

2πσ2
exp (x−µ)2

2σ2

Theorem 1.2. (CLT) Let Xi be identically and independently distributed (iid)
random variables with finite variance, EXi = µ and V ar(Xi) = σ2 then

∑n
i=1Xi − nµ√

nσ

D→ X ∼ N(0, 1)

Remark.
D→ means convergence in distribution respectively a weak convergence,

for a definition see appendix B.

In other words, a sum of iid random variables with a finite variance converge
to a normal distribution. An assumption about identic distribution of random
variables may be relaxed, for example, if all Xi have the same expected value
but different bounded variance convergence to a normal distribution remains.

Assumptions of CLT are not very restrictive, indeed many systems do follow
normal distribution, but many do not. For example, it turns out on financial
markets that CLT works quite well when market is in a equilibrium, but when
market becomes unstable, CLT stops working at all. This reminds a situation
in equilibrium and non - equilibrium thermodynamics, this connection will be
discussed in the last chapter.

What happens when a sequence of random variables has not a finite variance?
Or when variables are not independent? The first question will be in detail
discussed in the next section, the second one is much more complicated and will
be briefly mentioned in the last chapter.
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1.3 Beyond central limit theorem: Levy distri-
butions

In this section, we examine distributions that can be a limiting distribution of
a sum of iid random variables with an infinite variance. A typical example are
variables with PDF in the following form:

p(x) ∼ 1
|x|1+α for |x| → ∞ and α ∈ (0, 2)

Convergence of sequence of random variables is as in the case of CLT pre-
sumed in distribution and after proper normalization .

Sn = 1
an

(
∑n
i=1Xi − bn)

So an =
√
nσ and bn = nµ is a proper normalization in the case of random

variables with finite variance .

1.3.1 Stable distributions

Proves of theorems in following sections are usually very lengthy and can be
found [4].

Definition 1.9. Probability density is stable if it does not change functional
form under convolution i.e. for all ai > 0 and all bi ∈ R :

p(a1y + b1) ∗ p(a2y + b2) ≡
∞∫
−∞

p(a1(x− y) + b1)p(a2y + b2)dy = p(ax+ b)

Where a > 0 and b is any real constant.

Remark. An idea behind this definition becomes clear, when we realize that
when we have two independent variables with PDFs p1, p2 then the sum of them
has PDF p = p1 ∗ p2, this follows from theorem (1.1). So if we sum stable,
independent random variables, they preserve their distribution and a change
will appear only in scale.

Normal distribution is an example of stable distribution , this fact is obvious
because it is well known that when we sum independent random variables X ∼
N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2) then X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
But for the sake of example, we will verify this relation and stability of

normal distribution directly from the definition. A helpful tool for verification of
stability is Fourier transform. Fourier transformation of PDF is usually called
a characteristic function and is defined by:

ϕ(k) = F [p(x)](k) =

∞∫
−∞

p(x)exp(ikx)dx (1.4)
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We will use the fact that Fourier transform of convolution is a product of Fourier
transforms.

F [f ∗ g] = F [g]F [f ]

Characteristic function of random variable X ∼ N(µ1, σ
2
1) has form ϕX(k) =

exp(ikµ1 − 1
2k

2σ2
1). So we can see that characteristic function of sum X + Y

equals :

ϕX+Y (k) = exp(ik(µ1 + µ2)− 1
2k

2(σ2
1 + σ2

2))

and this is characteristic function of random variable with distribution X+Y ∼
N(µ1 + µ2, σ

2
1 + σ2

2). So we have verified stability of normal distribution.
An importance of stable distributions follows from Levy-Khintchin theorem.

Theorem 1.3. (Levy, Khintchin) A probability density can only be a limiting
distribution of a sum of iid random variables, if it is stable.

Levy and Khintchin have also found the most general class of a stable distri-
butions. This class is often called Levy distributions or α - stable distributions.

Theorem 1.4. A probability density pα,β(x) is stable ⇔ logarithm of its char-
acteristic function has form :

lnϕα,β(k) = iγk − c|k|α(1 + iβ |k|k ω(k, α))

where γ ∈ R, c ≥ 0, α ∈ (0, 2〉 and β ∈ 〈−1, 1〉 and function ω has form:

ω(k, α) =

{
−tan(πα/2) for α 6= 1
(2/π)ln|k| for α = 1

Remark. Meaning of parameters α, β, γ and c can be easily understood. For
α = 2 we have normal distribution with the expected value µ = γ and variance
σ2 = 2c regardless of parameter β.
For α ∈ (0, 2) is α a tail exponent or an index of stability.

pα,β(x) ∼ 1
|x|1+α for |x| → ∞

This can be easily shown. For simplicity we will presume γ = β = 0 . Then

pα(x) = 1
2π

∞∫
−∞

exp(−c|y|α)exp(−iyx)dy = 1
2π

∞∫
0

exp(−c|y|α)(exp(−iyx)+exp(iyx))dy =
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1
π<

∞∫
0

exp(−c|y|α)exp(iyx)dy = 1
π<

∞∫
0

∑∞
n=o

(−c|y|α)n

n! exp(iyx)dy =

We can use Lebesque’s dominated convergence theorem now and change an or-
der of summation and integration.

= 1
π<
∑∞
n=o

(−c)n
n!

∞∫
0

|y|αnexp(iyx)dy = 1
π<
∑∞
n=o

(−c)n
n!

Γ(αn+1)
(−ix)αn+1

Finally, with a use of identity:

<((±i)αn+1) = −sin(παn/2)

we will get

pα(x) = − 1
π

∑∞
n=1

(−c)n
n!

Γ(αn+1)
xαn+1 sin(παn/2)

So only the first term in sum matters for |x| → ∞ and we will get a correct
asymptotic behaviour. Clearly variance diverges for ∀α ∈ (0, 2) and even an ex-
pected value is infinite for α ∈ (0, 1〉 . Values α > 2 have no mathematical sense
because inverse Fourier transform will give functions, which are not generally
positive.

The parameter γ gives a peak position or an expected value, if it exists. β
determines how asymmetric probability density is. Specially for γ = β = 0 is
probability density even a function. On the other hand for β = ±1 is distribution
very asymmetric and if at the same time α < 1, one tail will vanish completely.
The parameter c is scale factor that determines a width of a distribution.

We will show that parameters c and γ are really only responsible for scaling
and a peak position, therefore a shape of distribution is completely given by the
parameters α, β. We will show that by a simple replacement of x−γ with c1/αx
in a formula for PDF we can eliminate γ from the formula and c will remain
only as a multiplication constant.

pα,β(x) = F−1[ϕα,β ](x) = 1
2π

∞∫
−∞

exp(−i(x−γ)y−c|y|α(1+iβsgn(y)ω(y, α))dy =

1
2πc1/α

∞∫
−∞

exp(−ixz − |z|α(1 + iβsgn(z)ω(c1/αz, α))dz

Where we used substitution z = c1/αy in integral and replaced x− γ with c1/αx.

Now we will give concrete examples of stable distributions:

Normal distribution: For α = 2, c = σ2/2, γ = µ and any β ∈ 〈−1, 1〉
we have

p2,0(x) = N(µ, σ2)
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Levy - Smirnov distribution: If we set α = 1/2, β = 1, we will obtain by
inverse Fourier transform of characteristic function following PDF:

p1/2,1(x) =
√

c
2π

exp(− c2 (x−γ)−1)

(x−γ)3/2
, x ≥ γ

We will note that only stable distributions with β ± 1 and α < 1 are not defined
on entire R. Those distributions are defined on 〈γ,∞) respectively (−∞, γ〉 .

Cauchy distribution: Fixing α = 1 and β = 0 gives Cauchy distribution:

p1,0(x) = c
π((x−γ)2+c2)

These are only stable distributions with PDFs that can be written in terms of
elementary functions. However, other stable distributions with PDFs that can
be written in a closed form using special functions exist .

We will summarize basic properties of stable distributions. We should men-
tion first that a stability holds only for random variables with the same parameter
α. So if we sum stable random variables with the same α parameter, we will get a
stable distribution with the parameter α. However, if we sum stable distributions
with different parameters αi, we will not generally get a stable distribution.

We will consider independent stable random variables X,Y where X ∼
pα,β1,γ1,c1(x) and Y ∼ pα,β2,γ2,c2(x), then

X + Y ∼ pα,β,γ,c(x)

where c = c1+c2, γ = γ1+γ2 and β = c1β1+c2β2

c . Clearly these values are in right
ranges, therefore X+Y is a stable random variable. We used that characteristic
function of sum of independent variables is a product of characteristic functions
in calculation.

Stable distributions also fulfil something what is often called a scaling prop-
erty. In case of normal distribution is well known that for independent random
variables Xi ∼ N(0, σ2

i ) following relation holds
∑n
i=1 aiXi ∼ N(0,

∑n
i=1 a

2
iσ

2
i ).

So for iid random variables Yi ∼ N(µ, σ2)

Yn − µ
d
= n−1/2

∑n
i=1(Yi − µ) ∼ N(0, σ2)

where
d
= means an equality in distribution.

We will show that similar scaling relation holds for all stable distributions.
Let us consider astable random variable U ′ ∼ pα,β,γ,c(x) first. We want distribu-
tion of random variable U = aU ′ where a > 0. We know that pU (x) = 1

apU ′(
x
a )

from theorem (1.1), we use property of Fourier transform
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F [f(ax)](z) = 1
|a|nF [f(x)](z/a) for f : Rn → R

By applying this to pU (x) we will get ϕU (z) = ϕU ′(az), so we can see that

U ∼ pα,β,aγ,aαc(x)

As expected a stability of U holds and only scale parameters have changed. If
we now consider iid stable random variables U ′i with parameter γ = 0 we get∑n

i=1 siU
′
i
d
= (
∑n
i=1 s

α
i )1/αU ′n

If we consider more generally iid random variables Ui ∼ pα,β,γ,c(x), we will
show that Vi = Ui − γ ∼ pα,β,0,c(x). Once again we can use theorem (1.1) and
get pY (x) = pX(x+ γ). We use a formula

F [f(x+ b)](z) = e−ibzF [f(x)](z)

and we get ϕVi(z) = e−iγzϕUi(z) = exp(−c|z|α(1 + iβ z
|z|ω(z, α))). It means

Vi ∼ pα,β,0,c(x) and we can write

Un − γ
d
= n−1/α

n∑
i=1

(Ui − γ) (1.5)

This scaling relation for α = 2 clearly coincides with scaling relation for normal
distribution. We will get equality pSn(x) = 1

n1/α pVn( x
n1/α ) where Sn =

∑n
i=1 Vi

by reformulating (1.5) to equality of PDFs. This is typical sign of fractal be-
haviour, this connection will be further discussed in the chapter 3.

Now we will proceed to a generalized CLT where stable distributions play an
important role.

1.3.2 Generalized central limit theorem

Following theorem shows an importance of stable distributions and gives them
a prominent position between others heavy-tailed distributions.

Theorem 1.5. (generalized CLT) Let Xi be a sequence of iid random variables,
with asymptotic behaviour of PDF given by

pXi(x) = C±|x|−(1+α) for x→ ±∞ , α ∈ (0, 2)

Let us define the parameter β = C+−C−
C++C−

then γ ∈ R exists such as

∑n
i=1(Xi−γ)

n1/α

D→ X ∼ pα,β(x)
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Remark. So in a combination with classical CLT, we can say that every prop-
erly normalized sequence of iid random variables converges to a stable distribu-
tion and the limiting distribution is normal distribution iff those variables have
an finite variance.

Assumptions of this theorem are mild but still restrictive, it is possible to
weaken an assumption of identic distribution as in case of CLT but the same
asymptotic behaviour of all variables in ±∞ is still required. To go beyond
an independence of variables is even more complicated. It requires substantial
generalization to so called q-stable distributions, which we will mention in the
last chapter. Also this theorem does not work for variables with a different tail
behaviour in ±∞, not even for iid variables. This assumption seems to be the
key one.

We can from this theoretical discussion sense a problem that we have to
face when describing complicating and complex systems like financial markets.
Assumptions of any limit theorem will not be completely fulfilled, at least not
always. Limit theorems give us classes of distributions we should expect to come
across when describing a complicating systems effected by many small, random
influences. However, many unpredictable events can occur in reality. They can
for example create strong correlations between individual influences or one influ-
ence can overshadow a compound effect of the rest of them. Limit theorems that
use to work well will fail then and give completely wrong predictions. Despite
these limitations, limit theorems are still one of the most useful tools we have
for describing such systems.

A concrete example of a situation I described above is well known from math-
ematical finance. Most of the traders believed that CLT is an omnipotent prin-
ciple and they do not need to bother with any models based on something else
than normal distribution for long time. Misguidedness of this assumption was
theoretically shown by Mandelbrot. He showed that while during calm times
financial markets are well described by a normal distribution, during crises nor-
mal distribution gives deeply flawed predictions. But it took more than 20 years
and bankruptcy of hedge fund led by Black and Scholes before the main focus
of mathematical finance shifted from a normal distribution to alternatives like
stable distributions.

1.3.3 Infinitely divisible distributions

Definition 1.10. Random variable X is an infinitely divisible iff for every n ∈ N
there exists iid random variable Xn,1, ..., Xn,n so that

X
d
= Xn,1 + ...+Xn,n

Remark. We can easily see necessary and sufficient condition for a character-
istic function of an infinitely divisible random variable X from this definition

ϕX(x) = (ϕn(x))n ∀n ∈ N
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where ϕn(x) is a characteristic function of some random variable, that neces-
sarily means ϕn is continuous and ϕn(0) = 1.

It is worth mentioning that sometimes a definition of infinitely divisible dis-
tributions is more general and we require random variables Xn,1, ..., Xn,n to be
only independent.

Every stable distribution is also infinitely divisible, it is easy to see because for
any stable distribution with parameters α, β, γ, c we can consider n independent
random stable variables with parameters α, β, γ/n, c/n.

There are many infinitely divisible distributions, both with a finite and an
infinite variance. For example, Gamma distribution, Student’s t-distribution or
Poisson distribution are infinitely divisible. But for example binomial or uni-
form distribution are not infinitely divisible. We can show the last statement
easily because a characteristic function of uniformly distributed random variable
Y

pY (x) =

{
l/2 for |x| < l
0 for |x| > l

has form

ϕY (z) = sin(zl)
zl

and therefore Y is not infinitely divisible because nth root does not generally
exists.

An interesting property of infinitely divisible distributions is a complete-
ness, i.e. the limit of weakly-convergent (convergent in distribution) sequence of
infinitely-divisible distributions is again infinitely divisible.

The main reason why we mention infinitely divisible distributions is their
role in another generalization of CLT. Let us consider a triangular array of in-
dependent random variables Xn,k where n > k, fulfilling the condition

lim
n→∞

max
1≤k≤n

P (|Xn,k| > ε) = 0 ∀ε > 0 (1.6)

This condition is called a uniform asymptotic negligibility. It implies, that for
big n, the influence of individual random variables is negligible compared to
the compound influence of the rest of random variables in line. The uniform
asymptotic negligibility can be easily arranged by a proper scaling like in cases
of limit theorems.

We can state limit theorem for infinitely divisible distributions now.

Theorem 1.6. Let us consider a triangular array of independent random vari-
ables fulfilling uniform asymptotic negligibility condition, then

Sn = Xn,1 + ...+Xn,n
D→ Y

and Y is infinitely divisible random variable.
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Other theorems similar to theorems about stable distributions can be proven
for infinitely divisible distributions. Generally, these theorems are quite compli-
cated and often their applicability is questionable. Though infinitely divisible
distributions are used in mathematical finance rarely, they offer a way how gen-
eralize limit theorems for sequences of distributions with different asymptotic
behaviour.

The assumption of identic distribution is not fulfilled in finance, that is
actually quite logical. Big investors have bigger influence on the market than
smaller ones and also they often have a different approach to trading. Anyway,
it turns out that individual PDFs are similar enough so stable distributions give
most of the time good predictions.



Chapter 2

Stochastic calculus

In this chapter, we will introduce probably the most important tool to describe
systems such as financial markets - stochastic processes. We will focus on their
properties. We will introduce stochastic integral and discuss some important
classes of stochastic processes in details. The proves of most of the theorems
stated here can be found in [6] or [9].

2.1 Stochastic processes

Definition 2.1. Let T ⊂ R and ∀t ∈ T Xt is random variable to R(Rn) then
we will call (Xt, t ∈ T ) a stochastic process.

Definition 2.2. Function Xt(ω) for some fixed ω ∈ Ω is called a sample path
of the stochastic process X.

Remark. For T = N (or some other countable subset of R) we will call Xn

discrete-time stochastic process, for T = (a, b) we will call Xt continuous-time
stochastic process.

It is obvious that stochastic processes are a better option for describing finan-
cial markets then just random variables. The parameter t is interpreted as real
time very often, so stochastic process is a random variable changing in time.

We can write that ∀t ∈ T Xt ∼ p(x, t), where p(x, t) is PDF of stochastic
process X in time t or, in other words, a density of sample paths in time t
in neighbourhood of x. In the last section of this chapter, we will describe an
approach where we are only interested in time development of p(x, t). Now, we
will focus on an approach, which works with concrete sample paths as well.

Definition 2.3. For every stochastic process Xt, we will define finite-dimension
distribution (fidis) as distribution of random vector (Xt1 , ..., Xtn) for any n ∈ N
and ∀(t1, ..., tn) ∈ T .

Remark. We will call stochastic process X Gaussian iff all fidises are Gaussian.
From an elementary probability theory we know that a distribution of n-dimensional

25
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Gaussian random vector is fully given by correlation matrix Σ ∈ Rn,n and by
expected value µ ∈ Rn.

From now on we will use marking CX(t, s) = Cov(Xt, Xs) and µX(t) = EXt

where X is any stochastic process.

Definition 2.4. Stochastic process X is said to be strictly stationary ⇐⇒
∀(t1, ..., tn),∀h > 0

(Xt1 , ..., Xtn)
d
= (Xt1+h, ..., Xtn+h)

where t1, ..., tn, t1 + h, ..., tn + h ∈ T

Remark. For example in case of Gaussian process we only need to check con-
ditions µX(t + h) = µX(t) and CX(t, s) = CX(t + h, s + h) in order to verify
stationarity.

In reality this property is too strong and we encounter strictly stationary
processes in applications rarely. Following properties are on the other hand very
common.

Definition 2.5. Stochastic process X has stationary increments if for every
t, s ∈ T

Xt −Xs
d
= Xt+h −Xs+h

for such h that t+ h, s+ h ∈ T .

In other words, increments of such processes depend only on a time interval
in between.

Definition 2.6. Stochastic process X has independent increments if for ∀(t1, ..., tn)
where t1 < t2 < ... < tn random variables

Xt2 −Xt1 , .., Xtn −Xtn−1

are independent.

Remark. So for processes with independent and stationary increments if ti =
t0 + i∆t, then random variables Xt2 −Xt1 , .., Xtn −Xtn−1

are iid.
Now we will give some examples of stochastic processes.

Poisson process: Process (Xt, t ≥ 0) is Poisson process with parameter λ > 0
if
1) X0 = 0 a.s.
2) X has independent and stationary increments

3) Xt ∼ Poi(λt) that means P (Xt = k) = (λt)k

k! e−λt

A.s. means almost surely i.e. with probability 1. From this definition also
immediately follows that
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Xt −Xs
d
= Xt−s −X0 = Xt−s ∼ Poi(λ(t− s))

We should mention a role of Poisson process in theorem known as law of rare
events. Let Xt be a number of occurrences of some event up to time t, let
Xt be a process with stationary increments. Then if assumption of rareness
is fulfilled Xt ∼ Poi(λt). Mathematically speaking rareness of event means
following conditions.
a) P (Xt+h −Xt = 1) ≈ λh+ o(h)
b) P (Xt+h −Xt > 1) ≈ o(h)

for h→ 0
We will discuss the most important example of stochastic process - Brownian
motion further.

2.1.1 Brownian motion

Definition 2.7. Stochastic process (Bt, t ≥ 0) is called (standard) Brownian
motion if
1) B0 = 0 a.s.
2) Bt has independent and stationary increments
3) Bt ∼ N(0, t)
4) sample paths Xt(ω) are continuous

Remark. Brownian motion (BM) is named after biologist Robert Brown, whose
research dates back to 1820s but a firm mathematical background to Brownian
motion was given 100 years later by mathematician Norbert Wiener. It is why
Brownian motion is also often called Wiener process.

We can also consider Brownian motion in Rn i.e. random vector (B
(1)
t , ..., B

(n)
t )

where all B
(i)
t are Brownian motions in R and for every t, (B

(1)
t , ..., B

(n)
t ) has

normal n-dimensional distribution i.e every linear combination
∑n
i=1 αiB

(i)
t is

normally distributed. This is clearly always true for B
(i)
t independent.

Properties of Brownian motion:
Brownian motion is clearly Gaussian process. We will calculate expected value

and covariance of Brownian motion first, ∀t, s ≥ 0 following relations hold.
i) µB(t) = EBt = 0
ii) V arB(t) = EB2

t = t
iii) CB(t, s) = min(t, s)
Because CB(t, s) = E(BtBs) = E((Bt + Bs − Bs)Bs) = E((Bt − Bs)Bs) +

EB2
s
t>s
= E(Bt −Bs)EBs + s = s

Now we will focus on path properties of BM.

Definition 2.8. Stochastic process (Xt, t ≥ 0) is H - self similar for some
H > 0 if all its fidis satisfy condition

(THXt1 , ..., T
HXtn)

d
= (XTt1 , ..., XTtn)
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for every T > 0.

Remark. Roughly speaking, self-similarity means that sample paths look sim-
ilarly on every scale. Sample paths are only similar on every scale but not
identical, because equality in definition is only in distribution. This is also a
clear sign of fractal-like behaviour.

A self similarity has also important consequences that can be formulated by
following theorems.

Theorem 2.1. Let (Xt, t ∈ T ) be H - self similar stochastic process with sta-
tionary increments for some H ∈ (0, 1) then ∀t0 ∈ T

lim sup
t→t0

|Xt−Xt0 |
|t−t0| =∞

i.e. such processes have nowhere differentiable sample paths with probability 1.

Remark. This theorem is directly applicable to Brownian motion because from
properties of normal distribution we can easily see

(T 1/2Bt1 , ..., T
1/2Btn)

d
= (BTt1 , ..., BTtn)

for every T > 0, ∀n ∈ N and for any partition (t1, ..., tn). Therefore we can
state following properties of Brownian motion:

1) Brownian motion is 1
2 -self similar

2) Brownian motion has continuous but nowhere differentiable sample paths

Another important property of Brownian motion is that it has an unbounded
variation.

Definition 2.9. Function f on a finite interval 〈0, T 〉 has bounded p-variation, if

supτ
∑n
i=1 |f(ti)− f(ti−1)|p <∞

where supremum is over every partition of 〈0, T 〉, 0 = t0 < ... < tn = T for any
n ∈ N. In case of p = 1 we will just say that f has bounded variation.

Theorem 2.2. Brownian motion has unbounded variation on any finite inter-
val 〈0, T 〉 with probability 1, i.e.

supτ
∑n
i=1 |Bti(ω)−Bti−1(ω)| =∞ a.s.

Remark. This theorem can be further generalized: Brownian motion has un-
bounded variation for p ≤ 2 and bounded variation for all p > 2.

Unbounded variation and nowhere differentiability are main reasons why
classical differential and integral calculus fails when applied to these paths or
to stochastic processes in general. In other section of this chapter, we will in-
troduce integral to work with when integrating along Brownian sample path.

We will introduce some examples of stochastic processes derived from Brow-
nian motion further.
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Brownian motion with linear drift
Stochastic process

Xt = µt+ σBt (2.1)

where σ > 0, µ ∈ R and Bt is standard Brownian motion is called Brownian
motion with linear drift.
It is clearly Gaussian process with expected value µX(t) = µt and covariance
CX(t, s) = σ2min(t, s).

This process was used in 1900 by L.Bachelier to model a development of
financial prices but his approach had many flaws. For example, this process is
not always positive, which is a natural requirement, when describing prices of
assets. That is one of the reasons why geometric Brownian motion play much
bigger role in finance then Brownian motion with a drift.

Geometric Brownian motion
Process

Xt = exp(µt+ σBt) (2.2)

is called geometric Brownian motion. We will calculate its expected value and
covariance.

µX(t) = eµtEeσBt = eµtEeσt
1/2B1 = e(µ+ 1

2σ
2)t

We used self similarity of Bt and relation EeaZ = ea
2/2 for Z ∼ N(0, 1) in

calculations.
Similarly, we can calculate

CX(t, s) = e(µ+ 1
2σ

2)(t+s)(eσ
2min(t,s) − 1)

An importance of geometric Brownian motion in finance will be discussed in
the chapter 4, in fact, entire Black-Scholes option pricing formula stands on an
assumption that prices of assets on financial markets follow geometric Brownian
motion.

2.1.2 Conditional expectation

In this section, we will define a conditional expectation given by σ-algebra,
which will be needed for a definition of stochastic integral. This approach is
alternative to approach based on conditional probability densities as defined in
the chapter 1. The other approach will be discussed in the section 4 of this
chapter.

First, we remind a notion of σ-algebra.

Definition 2.10. Let F be a set of subsets of Ω then F is σ-algebra if following
conditions are fulfilled

1) ∅ ∈ F
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2) (A ∈ F)⇒ (AC ∈ F)
3) (∀k ∈ N, Ak ∈ F)⇒ (

⋃
k∈NAk ∈ F)

where AC denotes complement of A in Ω.

Remark. Properties of σ-algebras are well known, so we will not go into details
and we will state just basic properties of σ-algebras following immediately from
the definition.
a) Ω ∈ F
b) (∀k ∈ N, Ak ∈ F)⇒ (

⋂
k∈NAk ∈ F)

Definition 2.11. Let A be any set of subsets of Ω then σ(A) denotes smallest
σ-algebra containing A.

Definition 2.12. Let Y = (Y1, ..., Yn) be a random vector to Rn then we define
σ-algebra generated by Y as smallest σ-algebra containing all sets of form

{ω ∈ Ω, ai < Yi ≤ bi, i = 1, ..., n}
−∞ < ai < bi <∞

we denote this σ-algebra by σ(Y ).

Remark. In this definition, we can change generating set of subsets (ai, bi〉 for
any other subset that generates Borel σ-algebra. For example, all open or all
close sets in R(Rn). Alternatively, we can take inverse images of all Borel sets
in R(Rn) and we will get entire σ(Y ).

The importance of σ(Y ) lies in fact that σ(Y ) contains essential information
about variable Y. It gives us all information we need about a structure of Y. We
say that Y contains or carries information σ(Y ).

We will define σ-algebra generated by stochastic process, it can be defined
the most generally for stochastic process (Yt, t ∈ T ) as the smallest σ-algebra
containing sets in form {ω ∈ Ω, (Yt(ω), t ∈ T ) ∈ C} where C is ”suitable” set of
functions on T. To make this definition more precise we would need to go deep
into functional analysis, which is beyond this thesis.

Instead of that we will consider for example Brownian motion B = (Bs, s ≤
t), then σ-algebra generated by B will be generated by all sets in form

{ω ∈ Ω, (Bt1(ω), ..., Btn(ω)) ∈ Bn} for any n ∈ N and ti ∈ 〈0, t〉

where Bn denotes Borel sets in Rn. We will use a symbol Ft = σ(B) =
σ((Bs, s ≤ t)) for information contained by Brownian motion .

Let us consider a random variable Y and σ-algebra F then if σ(Y ) ⊂ F , we
will say that all information about Y is contained in F . If F = σ(X) for some
random variable X we will say that X contains more information than Y .

We can see from the definition that for any Borel measurable function f :
Rn → Rn and any random vector Y to Rn
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σ(f(Y )) ⊂ σ(Y )

This is actually quite logical. Let us consider function f(x) = x2 then from
knowledge of x we can easily construct f(x) but from knowledge of f(x) we
cannot construct x because we cannot determine a right sign of x.

We can finally define conditional expectation given by σ-algebra.

Definition 2.13. A random variable Z is called conditional expectation of X
given by σ-algebra F (we write Z = E(X|F)) if
1) σ(Z) ⊂ F
2) E(XIA) = E(ZIA) ∀A ∈ F
Where IA is an indicator of event A i.e. IA(ω) = 1 for ω ∈ A and IA(ω) = 0
else.
Similarly for a random variable Y we define E(X|Y ) = E(X|σ(Y )).

Remark. In other words, Z is a coarser version of X, which we can construct
having only information given by F . So if we have all information contained in
X, we can reconstruct X completely. Mathematically we have

σ(X) ⊂ F ⇒ E(X|F) = X

which is obvious from the definition.

Theorem 2.3. Let X be a random variable and E|X| < ∞, then for any σ-
algebra F , E(X|F) exists and is given uniquely.

Remark. Because of this theorem, we will usually consider only random vari-
ables with a finite first moment, when dealing with a conditional expectation.

We will mention that a conditional expectation can be easily calculated, when
σ-algebra is generated by a discrete random variable.
Let Y be a discrete random variable, let

Ai = {ω ∈ Ω, Y (ω) = yi} i ∈ I ⊂ N

and let us assume P (Ai) > 0 and
⋃
iAi = Ω then for any random variable X

with a finite first moment

E(X|Y )(ω) = E(X|Ai) ∀ω ∈ Ai

where E(X|Ai) is defined as

E(X|Ai) = E(XIA)
P (A)

Now we will show that these relations are compatible with the original definition
of conditional expectation for an arbitrary random variable. So we want to prove
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Z(ω) = E(X|Ai)
?
= E(X|σ(Y )) ∀ω ∈ Ai

Clearly σ(Z) ⊂ σ(Y ) so we only need to prove

E(XIA) = E(ZIA) ∀A ∈ σ(Y )

Because Y is a discrete variable σ(Y ) = σ({Ai, i ∈ I}) where Ai are disjoint so
any A ∈ σ(Y ) can be written as A =

⋃
i∈I′ Ai, we can make calculations

E(XIA) = E(X
∑
i∈I′ IAi) =

∑
i∈I′ E(XIAi)

E(ZIA) =
∑
i∈I′ E(X|Ai)P (Ai) =

∑
i∈I′ E(XIAi)

In the calculation of E(XIA), we used the assumption E|X| < ∞ to change
an order of summation and integration. So now we know, how to calculate a
conditional expectation for σ-algebras generated by discrete random variables,
but we also need some tools to work with a conditional expectation given by
arbitrary σ-algebra.

Properties of conditional expectation:

1. E( |F) is linear

2. EX = E(E(X|F))

3. Let X and F be independent i.e. ∀A ∈ F , IA and X are independent then
EX = E(X|F)

4. σ(X) ⊂ F , G random variable then E(XG|F) = XE(G|F)

5. Let F ⊂ F ′

(a) E(X|F) = E(E(X|F ′)|F)

(b) E(X|F) = E(E(X|F)|F ′)

Property 1. is obvious, property 2. follows immediately from the definition
(2.13) if we select A = Ω.
Before proving the property 3., we will mention that random variables X and
Y are independent ⇔ X and σ(Y ) are independent. A prove of property 3.
follows from calculation

E(XIA) = (EX)P (A) = E((EX)IA)

We will not prove the property 4. rigorously because it is obvious that we can
treat X as a constant when we have all information that X contains.
The case (b) of property 5. follows from
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σ(E(X|F)) ⊂ F ⊂ F ′

and from the property 4.
For prove of the case (a) we will use that ∀A ∈ F

E(E(E(X|F ′)|F)IA) = E(E(E(XIA|F ′)|F)) = E(XIA)

where we use that σ(IA) ⊂ F ⊂ F ′ first. We can treat IA as a constant then
and apply the property 2. twice. The second condition

σ(E(E(X|F ′)|F)) ⊂ F

is obvious so we have proved the case (a).
We will calculate conditional expectation for Brownian motion now. Let us

consider Fs = σ(Bx, x ≤ s) then

E(Bt|Fs)
s<t
= E(Bt −Bs+Bs|Fs) = E(Bt −Bs|Fs) + E(Bs|Fs) =

E(Bt −Bs) +Bs = Bs

and because evidently E(Bt|Fs)
s≥t
= Bt we get

E(Bt|Fs) = Bmin(t,s) (2.3)

Similarly, we can derive

E(B2
t − t,Fs) = B2

min(t,s) −min(t, s) (2.4)

In next the section, we will examine a general class of processes fulfilling this
condition.

Definition 2.14. Let us the set of random variables Z, which fulfils conditions

1. EZ2 <∞

2. σ(Z) ⊂ F

denote by L2(F).

Remark. Clearly L2(F) is a vector space, a closed subspace of space L2 of all
random variables with a finite variance . So for any random variable X,EX2 <
∞ we can calculate a projection to L2(F). It can be shown that a projection of
such X to L2(F) is E(X|F). In other words

E|X − E(X|F)|2 = min
Z∈L2(F)

E(X − Z)2 (2.5)



CHAPTER 2. STOCHASTIC CALCULUS 34

2.1.3 Martingales

Definition 2.15. A collection of σ-algebras (Ft, t ≥ 0) where for s ≤ t is
Fs ⊂ Ft is called a filtration. The filtration can be also discrete (Fn, n = 1, 2...)
fulfilling Fn ⊂ Fn+1.

Remark. Thus the filtration is an increasing stream of information. This def-
inition is natural for applications in finance, where as time goes, we have more
and more information. However, thermodynamic system on its own is heading
towards equilibrium, where entropy reaches its maximum and information we
have about system is minimal. Therefore for thermodynamics, it would be more
logical to define the filtration as a decreasing stream of information.

Stochastic processes and filtrations are closely connected.

Definition 2.16. A stochastic process (Yt, t ≥ 0) is adopted to the filtra-
tion (Ft, t ≥ 0) if for (∀t) (σ(Yt) ⊂ Ft). Analogically, a discrete time pro-
cess (Yn, n = 1, 2...) is adopted to the filtration (Fn, n = 1, 2...) if for (∀n)
(σ(Yn) ⊂ Fn).
Clearly, every stochastic process Y is adopted to a natural filtration given by
Ft = σ(Ys, s ≤ t).

Remark. We will often use a natural filtration of Brownian motion given by
Ft = σ(Bs, s ≤ t). We will say that processes adopted to natural filtration of
Brownian motion are adopted to Brownian motion. An example of such pro-
cesses are

Xt = Bnt + f(t) or Zt = max
0≤s≤t

Bs

where f(t) is any deterministic function.
For example, a process Xt = B2

t has smaller natural filtration than Brownian
motion but Yt = B3

t has the same natural filtration. It is so because knowledge
of value of Yt gives us value of Bt but same is not true about Xt.

An example of process not adapted to Brownian motion is

Zt = Bt+1

Definition 2.17. Process X = (Xt, t ≥ 0) is called martingale with respect to
filtration (Ft, t ≥ 0) if

1. E|Xt| <∞ ∀t ≥ 0

2. X is adopted to Ft

3. E(Xt|Fs) = Xs ∀s ∈ 〈0, t〉

For a discrete time process is a definition analogical, the third assumption has
the form E(Xn+k|Fn) = Xn ∀n, k ∈ N.
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Remark. The third assumption for discrete time martingale may be weaken to

E(Xn+1|Fn) = Xn ∀n ∈ N (2.6)

because
E(Xn+1|Fn) = E(E(Xn+2|Fn+1)|Fn) = E(E(Xn+2|Fn)|Fn+1) = E(Xn+2|Fn) =
E(Xn+k|Fn)
Also for a discrete time process Xn, the third condition can be rewritten to the
form

E(Yn+1|Fn) = 0

where Yn+1 = Xn+1 − Xn. Such Yn is called a martingale difference sequence
with respect to filtration Fn.

Another important property of martingales follows from a calculation

EXs = E(E(Xt|Fs)) = EXt ∀s, t ≥ 0 (2.7)

So martingale processes have a constant expected value. We should mention that
this condition is necessary but not sufficient. There exist processes with constant
expected value which are not martingale (for example B3

t ).
From this condition, we can immediately say that the process B2

t is not mar-
tingale because E(B2

t ) = t. Also we already know from calculations made in the
section (3.1.2) that Bt, B

2
t − t are martingale processes with respect to natural

filtration of Brownian motion.
Let us consider a martingale difference sequence Y = (Yn, n = 1, 2...) with

respect to filtration (Fn, n = 1, 2...) and a sequence C = (Cn, n = 1, 2...) that
fulfils the condition

σ(Cn) ⊂ Fn−1

We will call this property predictability with respect to Fn. Now we will define
the process X by

Xn =
∑n
i=1 CiYi and X0 = 0

Such process X is called a martingale transform of Y by C. We will write
X = Y ·C, further if the processes Cn, Yn have finite variance X is a martingale
with respect to Fn.
We will prove that X fulfils all three defining properties of a martingale.

E|Xn| ≤
∑n
i=1 |CiYi| ≤

∑n
i=1(EC2

i EY
2
i )1/2 <∞

Here we used Schwarz-Cauchy inequality.
Second condition σ(Xn) ⊂ Fn is obvious. Third condition follows from
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E(Xn −Xn−1|Fn−1) = E(CnYn|Fn−1) = CnE(Yn|Fn−1) = 0

here we used predictability of C.
Now let us consider Brownian motion B = (Bs, s ≤ t) and partition 0 =

t0 < ... < tn = t. We will define martingale difference by

∆iB = Bti −Bti−1
and ∆0B = 0

with respect to filtration Fi = σ(Btj , j = 1, ..., i) and F0 = {∅,Ω}. If we define
∼
Bti = Bti−1

, then martingale transform of
∼
B given by ∆iB has form

(
∼
B ·∆iB)k =

∑k
i=1Bti−1

(Bti −Bti−1
)

We know that this transformation is martingale from calculations we made in
general case. Importance of this sum lies in fact that it is actually discrete form
of Ito stochastic integral.

Often are martingales interpreted as fair games. That can be best seen from
relation

E(Xt −Xs|Fs) = 0 ∀t ≥ s

The best prediction of our profits in any time interval is 0 with no regard to
previous history.

2.2 Stochastic integral

We will discuss first, what class of functions we want to integrate and why a
classical approach fails. We want to be able to calculate integrals in a form

∫ T
0
f(t, Bt)dBt(ω).

where f is a ”reasonable” function. It is well known from the theory of Riemann
integral that for Riemann integrable functions

limn→∞
∑n
i=1 f(yi)(ti − ti−1) =

∫ T
0
f(t)dt

where 0 = t0 < ... < tn = T is partition of 〈0, T 〉 , yi ∈ 〈ti−1, ti〉 and
limn→∞max

i
(ti − ti−1) = 0. So the left side does not depend on a choice of

partition and yi.
We are facing a problem now, how does it work for integral in a form∫ T

0
f(t)dg(t)

?
= limn→∞

∑n
i=1 f(yi)(g(ti)− g(ti−1))

It is not easy to determine right conditions on functions f, g, so that a limit of
Riemann sum would exists and would not depend on a choice of partition and
yi. Without going into details, we will state the following result.



CHAPTER 2. STOCHASTIC CALCULUS 37

Theorem 2.4. Integral
∫ T

0
f(t)dg(t) exists in Riemann sense, if following con-

ditions are fulfilled

1. f and g do not have discontinuity at the same point t ∈ 〈0, T 〉

2. There exist p, q > 0 that f has bounded p-variation and g has bounded
q-variation and 1

p + 1
q > 1

Remark. This theorem gives sufficient conditions for existence of Riemann
integral, but these conditions are also very close to necessity.

So for Brownian motion, we do not have a problem with the first condition
because Brownian motion is continuous. The second condition implies that we
can only integrate deterministic functions with bounded q-variation where q < 2
respectively random variables fulfilling the same condition almost surely. We can
easily calculate that a differentiable function f with bounded derivation |f ′(t)| <
K ∀t ∈ 〈0, T 〉 has a bounded variation because

sup
τ

∑n
i=1 |f(ti)− f(ti−1)| ≤ K

∑n
i=1 |ti − ti−1| = KT

So we can integrate functions like et, sin t in Riemann sense but we cannot even
integrate all continuous functions. For example integral∫ T

0
Bt(ω)dBt(ω)

does not exist in Riemann sense so need for a different stochastic integral is
clear.

2.2.1 Ito integral

It is beyond this thesis to build stochastic integral mathematically rigorously.
A construction of stochastic integral reminds construction of Daniell integral
but is much more complicated. We will not go into details here and will focus
mainly on properties of such integral. For more thorough description of this
construction see Appendix C or the completely rigorous approach can be found
in [9].

Let us start with the concrete example. We try to calculate
∫ T

0
Bt(ω)dBt(ω),

as always B = (Bt, t ≥ 0) is standard Brownian motion. Let us consider a sum

Sn =

n∑
i=1

Bti−1∆iB (2.8)

where 0 = t0 < ... < tn = T and ∆iB = Bti − Bti−1
, this is actually Riemann

sum for integral
∫ T

0
Bt(ω)dBt(ω) but with the concrete choice of yi = ti−1.

With use of calculations

Sn = 1
2B

2
T − 1

2

∑n
i=1(∆iB)2 := 1

2B
2
T − 1

2Qn(T )

and
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E(∆iB∆jB) = δijV ar(∆iB) = δij∆i

where we defined ∆i = ti − ti−1. Now we can calculate

EQn(T ) =
∑n
i=1E(∆iB)2 = T

and similarly

V ar(Qn(T )) =
∑n
i=1 V ar(∆iB)2 =

∑n
i=1(E(∆iB)4)−∆2

i ) = 2
∑n
i=1 ∆2

i .

in calculations we used self similarity of Bt and fact that EB4
1 = 3.

If we send max
i

(∆i)→ 0 we will get

V ar(Qn(T )) ≤ 2 max
i

(∆i)T → 0

and because from the definition V ar(Qn(T )) = E(Qn(T )− T )2 we have

Qn(T )
L2→ T

For a definition of
L2→ and other types of convergence see Appendix B.

If we presume L2 convergence of Sn, we will get∫ T

0

Bt(ω)dBt(ω) =
1

2
(B2

T − T ) (2.9)

So we can see for a stochastic integral, that we have to

1. choose concrete yi

2. take convergence of Riemann sum in mean square sense

The choice

yi = ti−1 is characteristic for Ito stochastic integral
yi = 1

2 (ti − ti−1) characterize Stratonovich integral.

So we calculated Ito stochastic
∫ T

0
Bt(ω)dBt(ω). Stratonovich integral will be

mentioned later.
The relation E(∆iB)2 = ∆i and the fact that we assume convergence in

mean square suggest
(dBt)

2 = dt (2.10)

respectively ∫ T

0

(dBt)
2 =

∫ T

0

dt = T (2.11)

we got this rule only by a heuristic argument but it can also be proven rigorously.
This is still not enough to correctly define Ito stochastic integral but we

believe that we showed the main idea behind stochastic integral. We will move
to properties of Ito integral. For a more correct approach, a reader can see
Appendix C.
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Properties of Ito integral
First, we should define a class of processes, which we want to integrate. Inte-

grands must be the processes C = (Ct, t ∈ 〈0, T 〉) fulfilling conditions

1. C is adapted to Brownian motion

2.
∫ T

0
EC2

sds <∞

We can state most important properties of Ito integral now. We will use a
notion It(C) =

∫ t
0
CsdBs

1. It(aC1 + C2) = aIt(C1) + It(C2) a ∈ R

2. It(C) is martingale with respect to natural filtration of Brownian motion

3. EIt(C) = 0

4. E(It(C))2 =
∫ t

0
EC2

sds

5. It has continuous trajectories

These properties follow from the construction of Ito integral, so we will not
prove them here.

2.2.2 Ito lemma

We know from calculations we made at the beginning of this section∫ T
0
Bt(ω)dBt(ω) = 1

2 (B2
T − T )

So we can see that classical rules of integration do not hold for Ito integral. We
need tools to calculate stochastic integrals analogous to chain rule in classical
calculus. Such a tool is called Ito lemma.

Theorem 2.5. (Ito lemma 1) Let us consider function f(t, x) ∈ C2 i.e. with
continuous second partial derivations then

f(t, Bt)− f(s,Bs) =
∫ t
s
(f1(x,Bx) + 1

2f22(x,Bx))dx+
∫ t
s
f2(x,Bx)dBx

where fi means partial derivation ∂f
∂xi

.

Remark. This theorem can be formally derived using Taylor expansion with
use of relation (dBt)

2 = dt

f(t+ dt, Bt + dBt)− f(t, Bt) = f1(t, Bt)dt+ f2(t, Bt)dBt + 1
2 (f11(t, Bt)(dt)

2 +
2f12(t, Bt)dtdBt + f22(t, Bt)(dBt)

2) + ...

and now by neglecting all terms of higher order than O(dt) we get

f(t+ dt, Bt + dBt)− f(t, Bt) = (f1(t, Bt) + 1
2f22(t, Bt))dt+ f2(t, Bt)dBt
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and we get Ito lemma by integration.
We will calculate few integrals using Ito lemma now.

For example, we can find Ito exponential, i.e. process X fulfilling

Xt −Xs =
∫ t
s
XydBy

we can easily verify using Ito lemma, that such process is Xt = eBt−
1
2 t so we

have

eBt−
1
2 t − eBs− 1

2 s =
∫ t
s
eBy−

1
2ydBy

We can make similar calculation for process Xt = eσBt+(c− 1
2σ

2)t, σ > 0 then
we will get, with use of Ito lemma

Xt −Xs = c
∫ t
s
Xydy + σ

∫ t
s
XydBy

or in differential form

dXt = cXtdt+ σXtdBt

so we have found a stochastic differential equation solution of which is geometric
Brownian motion. We will use this in the chapter on Black-Scholes formula.

We will try to generalize Ito lemma now. Let us consider a process in form

Xt = X0 +

∫ t

0

A(1)
s ds+

∫ t

0

A(2)
s dBs (2.12)

where coefficients A(i) are adapted to Brownian motion. Such a process is called
Ito process and it can be shown that if process Xt has representation in this form
then coefficients A(i) are determined uniquely.

Theorem 2.6. (Ito lemma 2) Let us consider Ito process Xt and function
f(t, x) ∈ C2 . Then following formula holds

f(t,Xt) − f(s,Xs) =
∫ t
s
(f1(y,Xy) + 1

2 (A
(2)
y )2f22(y,Xy) + A

(1)
y f2(y,Xy))dy +∫ t

s
A

(2)
y f2(y,Xy)dBy

Remark. This theorem can also be formally proven by Taylor expansion and
by neglecting terms of order higher than O(dy). First, we will get a formula
similar to Ito lemma 1.

f(t,Xt)− f(s,Xs) =
∫ t
s
(f1(y,Xy) + 1

2 (A
(2)
y )2f22(y,Xy))dy +

∫ t
s
f2(y,Xy)dXy

and now, with use of

dXy = A
(1)
y dy +A

(2)
y dBy

we can get the theorem (2.6.).
We can easily generalize Ito lemma in the same manner for functions

f(t,X
(1)
t , X

(2)
t , ..., X

(n)
t )
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where

X
(i)
t = X

(i)
0 +

∫ t
0
A

(1,i)
s ds+

∫ t
0
A

(2,i)
s dBs

We will only state a formula for derivation of product of two processes, which
can be derived by using Ito lemma on function f(t, x1, x2) = x1x2.

d(X
(1)
t X

(2)
t ) = X

(1)
t dX

(2)
t +X

(2)
t dX

(1)
t +A

(2,1)
t A

(2,2)
t dt (2.13)

We will use this formula for some concrete calculations now.

Let us consider function f(t) ∈ C1 and processes X
(1)
t = f(t)−f(0) =

∫ t
0
f ′(s)ds

and X
(2)
t = Bt =

∫ t
0

dBt then using formula above, we can get

d(X
(1)
t X

(2)
t ) = (f(t)− f(0))dBt +Btf

′(t)dt

by integrating and some rearranging of terms, we get a useful formula∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

f ′(s)Bsds (2.14)

Stratonovich integral
As we already mentioned for any choice of yi ∈ 〈ti−1, ti〉, we have different

stochastic integral. But in reality, only two of these integrals are used. Ito
integral was discussed in the previous section. We will introduce Stratonovich
integral given by choice yi = 1

2 (ti − ti−1) now. Let us for simplicity consider
a process Ct in a form Ct = f(Bt) where f ∈ C2, then Riemann sum has the
form

∼
Sn =

∑n
i=1 f(B 1

2 (ti−ti−1
)∆Bi

By some calculations, we can get formula for transformation between Ito and
Stratonovich integral from this formula. We will denote Stratonovich integral

by
∫ T

0
Ct ◦ dBt then∫ T

0

f(Bt) ◦ dBt =

∫ T

0

f(Bt)dBt +
1

2

∫ T

0

f ′(Bt)dt (2.15)

Using this formula and Ito lemma we can calculate following Stratonovich inte-
grals ∫ T

0
f ′(Bt) ◦ dBt = f(BT )− f(B0)∫ T

0
Bt ◦ dBt = 1

2B
2
T

eαt − 1 =
∫ T

0
eαt ◦ dBt α ∈ R
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So we can see that rules of classical integration formally holds for Stratonovic
integral. This is of course an advantage of Stratonovich integral. However, Ito
integral is much richer mathematical structure thanks to its martingale property.
Stratonovich integral is clearly not martingale because for example process 1

2B
2
t

is not martingale.
When we have a stochastic differential equation (SDE), we always have to

know, if we should calculate it with respect to Stratonovich or Ito integration.
But when this equation arises from a concrete problem, we have to make this de-
cision ourselves. However, there is no universal answer, Ito integral is preferred
much more often.

A transformation formula between these two integrals can be generalized for
more general function f(t,Xt) where Xt is Ito process. This is only needed when
we solve SDE via Stratonovich calculus. It means that we transform Ito SDE
to Stratonovich SDE and we can use methods similar to methods of classical
integration then. This method will not be further discussed in this thesis. We
will focus only on Ito SDE so we will omit more general transformation formulas.

2.2.3 Stochastic differential equation

We will consider Ito SDE with an initial condition in the form

dXt = a(t,Xt)dt+ b(t,Xt)dBt, X0(ω) = Y (ω) (2.16)

So a result of this equation is stochastic process X = (Xt, t ∈ 〈0, T 〉). For
b(t, x) = 0, we clearly have an ordinary differential equation with a random
initial condition. SDE above is interpreted as an integral equation,

Xt = X0 +
∫ t

0
a(s,Xs)dt+

∫ t
0
b(s,Xs)dBt

so in fact, SDE is an integral equation.
Problem is, if integrals on the left side exist in Riemann respectively Ito

sense as defined in the previous section. We need to define solution of SDE for
that. There exist two different definitions of such solution - strong and weak
ones. We start with definition of the strong solution.

Definition 2.18. Process X = (Xt, t ∈ 〈0, T 〉) obeying SDE (2.16) is a strong
solution if

1. X is adapted to Brownian motion

2. both integrals in (2.16) exists

3. X is function of underlying Brownian motion, coefficient a(t, x), b(t, x)
and initial condition X0(ω)

It is important that X depends on sample paths of given Brownian motion.
If we change underlying Brownian motion, a solution will change but it will not
change functional form.
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Remark. This is a difference between weak and strong solutions. A weak so-
lution depends only on distribution of Xt. Therefore a knowledge of concrete
Brownian sample paths is not essential for a weak solution. We will only men-
tion that there exists SDE with a weak solution only.

Any solution of Ito SDE is usually called a diffusion. Brownian motion is a
typical example of diffusion, of course.
From now on, we will consider only a strong solution of Ito SDE. We will state
a following theorem about an existence and a uniqueness of a strong solution.

Theorem 2.7. Let us assume that an initial condition in SDE (2.16) is inde-
pendent of Brownian motion and has a finite variance and coefficients a, b fulfils
∀x, y ∈ R, t ∈ 〈0, T 〉

1. |a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K|x− y| K > 0

2. a, b are continuous

then there exists exactly one strong solution of SDE (2.16).

Linear SDE
We will focus on class of linear SDE now. Non-linear SDE appears quite

rarely and are usually analytically unsolvable. We will not discuss them in this
thesis.

Let us consider SDE in form

Xt = X0 +

∫ t

0

(c1(s)Xs+c2(s))ds+

∫ t

0

(σ1(s)Xs+σ2(s))dBs t ∈ 〈0, T 〉 (2.17)

where coefficients ci, σi are continuous. Such SDE is called a general linear
stochastic differential equation.

From the theorem (2.7), we can say that linear SDE has one unique strong
solution for a ” suitable ” initial condition X0.

As we already mentioned, the main tool for solving SDE is Ito lemma. We
will demonstrate a use of Ito lemma on less general examples of linear SDE.
Let us consider an equation

Xt = X0 + c

∫ t

0

Xsds+ σ

∫ t

0

XsdBs σ > 0, c ∈ R (2.18)

this SDE is called an equation with multiplicative noise. We already know that
geometric Brownian motion is a solution of this equation but for the sake of the
example, we will derive the solution using Ito lemma. If we denote Xt = f(t, Bt),
we get

Xt = X0 +
∫ t

0
(f1(s,Bs) + 1

2f22(s,Bs))ds+
∫ t

0
f2(s,Bs)dBs

Since Ito process has a unique representation, we only need to compare terms in
integrals. We get the partial differential equations cf = f1 + 1

2f22 and σf = f2
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solving these equations and using the initial condition, we will get the right
result

Xt = X0e
(c− 1

2σ
2)t+σBt (2.19)

Now let us consider another important example of linear SDE

Xt = X0 + c

∫ t

0

Xsds+ σ

∫ t

0

dBs σ > 0, c ∈ R (2.20)

This is called Langevin equation or equation with additive noise. For a solution
we will use substitution Yt = e−ctXt. Ito lemma then gives us

Yt − Y0 =
∫ t

0
σe−csdBs

from that we easily get solution

Xt = X0e
ct + σect

∫ t

0

e−csdBs (2.21)

Xt is called Ornstein-Uhlenbeck process and it can be shown that it is Gaussian
process.

A solution of general linear SDE can be calculated similarly but calculations
are much longer. So, we will state only results.
A solution of general linear SDE (2.17) has a form

Xt = Yt(X0 +

∫ t

0

(c2(s)− σ1(s)σ2(s))Y −1
s ds+

∫ t

0

σ2(s)Y −1
s dBs) (2.22)

where Yt has a form

Yt = exp(
∫ t

0
(c1(s)− 1

2σ
2
1(s))ds+

∫ t
0
σ1(s)dBs)

Yt is actually a solution of (2.17) for σ2 = c2 = 0 and the initial condition
Y0(ω) = 1.

Expected value of solution of SDE
When we have linear SDE in the form (2.17), we know a general solution and

we can theoretically determine an expected value and other moments from it.
However if we are interested only in expected value and/or variance, there is
another way to calculate them.
If we calculate an expected value of both sides in (2.17) we get

µX(t) = µX(0) +
∫ t

0
(c1(s)µX(s) + c2(s))ds

where constancy of expected value of Ito integral was used. By derivation, we
will get an ordinary differential equation

µ′X(t) = c1(t)µX(t) + c2(t) (2.23)

So if we can solve this equation, we have an expected value of solution in any
time.
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We can calculate second moment similarly, we use Ito lemma to calculate
X2
t from (2.17) and use procedure as above. If we denote EX2

t = qX(t) then we
get

q′X(t) = (2c1(t) + σ2
1(t))qX(t) + 2(c2(t) + σ1(t)σ2(t))µX(t) + σ2

2(t) (2.24)

2.3 Levy processes

Definition 2.19. Stochastic process X = (Xt, t ≥ 0) is called Levy process, if
it satisfies following properties

1. X0 = 0 a.s

2. X has stationary and independent increments

3. lim
h→0

P (|Xt+h −Xt| > ε) = 0 ∀ε > 0, t ≥ 0

4. X has a.s. right continuous sample paths with left limits

Remark. If only the first three conditions are satisfied, the process X is called
Levy process in law. For every Levy process in law X, there exists such Levy

process
∼
X that P (Xt =

∼
Xt) = 1,∀t ≥ 0 .

Typical examples of Levy process is Poisson process and Brownian motion.
Another important property of Levy processes follows from this theorem.

Theorem 2.8. Let X be a Levy process. Then random variable Xt is infinitely
divisible for any t ≥ 0 and a distribution of Xt is given by X1 by

ϕXt(u) = (ϕX1(u))t (2.25)

Proof. Infinite divisibility is clear because using independence and stationarity
of increments, we easily get for any s, t ≥ 0

ϕXt+s(u) = ϕXt(u)ϕXs(u)

so we have

ϕXt(u) = (ϕXt/n(u))n

for all n.
The second statement is bit tricky. We will show the main idea and omit
technicalities. We can get (2.25) for any rational t using idea as above. Then
we use continuity of ϕXt(u) in t , which follows from condition 3. in definition
of Levy process. We expand validity of relation (2.25) by limit transitions to
any t ∈ R with use of it.

A connection between Levy processes and infinitely divisible distributions is
underlined by the following theorem.



CHAPTER 2. STOCHASTIC CALCULUS 46

Theorem 2.9. A random variable Y is infinitely divisible iff there exists Levy
process X such as

Y
d
= X1

Remark. The left implication is obvious, the right one has to be proven. This
prove is quite technical so we will omit it.

We will state the most important theorem of this section now - Levy-Khintchine
representation of Levy process.

Theorem 2.10. Let X be a Levy process then there exists triplet (σ2, γ, ν) such
that

lnϕXt(u) = iuγt− 1

2
σ2tu2 + t

∫
R

(eiux − 1− iuxI|x|<1)dν(x) (2.26)

where I denotes characteristic function, γ ∈ R, σ > 0 and ν is a measure on R
such that ν({0}) = 0 and ∫

Rmin{1, x
2}dν(x) <∞

Such a triplet is determined uniquely.

Remark. The condition required for measure ν gives us two pieces of informa-
tion ∫

|x|≥1
1dν(x) <∞

and ∫
(−1,1)

x2dν(x) <∞

It is enough to know that integral in (2.26) exists and is finite, because for |x| ≥ 1
integrand behaves as O(1) and for |x| < 1 both real an imaginary part behaves
as O(x2) (that follows from 1− cosx ≈ sinx− x ≈ x2).

We also know from theorems (2.9) and (2.10) that (2.26) with t = 1 is
the general form for a characteristic function of a infinitely divisible random
variable.

Meaning of parameters in triplet (σ2, γ, ν) becomes clear with use of decom-
position

lnϕXt(u) = {iuγt−1

2
σ2tu2}+{t

∫
|x|<1

(eiux−1−iux)dν(x)}+{t
∫
|x|≥1

(eiux−1)dν(x)}

(2.27)
So we can see that any Levy process can be written as a sum of three independent
Levy processes. Clearly any linear combination of independent Levy processes is
Levy process.
The first bracket represents Brownian motion with drift, it is continuous part of
original Levy process. So parameters γ and σ are drift and diffusion coefficients.
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The last two brackets represent jumps of an original process, so we can see
that measure ν actually describes a size and a rate of jumps. The second bracket
is a pure jump square integrable martingale. The third bracket is more impor-
tant, as it represents compound Poisson process. It will be discussed in next
paragraph.

To summarize the previous discussion:

Every Levy process is actually composition of Brownian motion, linear drift
and jumps, which are represented by compound Poisson process. Therefore

Brownian motion with drift is only non-deterministic continuous Levy process.

We will also mention that this decomposition play a key role when defining more
general stochastic integral along Levy sample paths.

Compound Poisson process
We will define compound Poisson process. Following calculations should give

a better idea of structure of jumps in Levy process and will better explain meaning
of measure ν.

Let us consider Poisson process (Nt, t ≥ 0) with a rate parameter λ and iid
random variables {ξi, i = 1, 2...} independent of N , with common distribution
F that determines the size of jumps. Then process

Xt =

Nt∑
i=1

ξi t ≥ 0 (2.28)

is called compound Poisson process. We can calculate a characteristic function
of Xt∑
n≥0

E(eiu
∑n
i=1 ξi)e−λt

(λt)n

n!
=
∑
n≥0

(

∫
R
eiuxdF (x))ne−λt

(λt)n

n!
= e−λt

∫
R(1−eiux)dF (x)

so we have
ϕXt(u) = et

∫
R(eiux−1)λdF (x)

We can see that compound Poisson process is a Levy process with a diffusion
parameter σ = 0 and a measure ν = λdF (x). If an interval (−1, 1) is null set
for measure given by distribution F , then it has exactly the same form as the
third bracket.

By adding linear drift to Xt we get centered compound Poisson process

Xt =
∑Nt
i=1 ξi + ct t ≥ 0

now if we set c = λ
∫
R xdF (x) we get

ϕXt(u) = et
∫
R(eiux−1−iux)λdF (x)
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2.3.1 Stable processes

We will introduce an important subset of Levy processes,

Definition 2.20. Levy process X is called α-stable, if X1 is α-stable random
variable.

Remark. We can see from (2.25) and properties of stable distributions that for
α-stable process X and any t ≥ 0 is Xt α-stable variable.

So for α-stable process characteristic function has the following form

lnϕXt(u) = itγk − ct|k|α(1 + iβ
|k|
k
ω(k, α)) (2.29)

where function ω and the ranges of parameters are the same as in theorem (2.4).
From (2.29) it is obvious that parameter β does not change in time and only
scaling parameters γ, c change.

An important question is how we have to choose the triplet (σ2.γ, ν) to get
a stable process? There are only two options.

Theorem 2.11. Non-trivial Levy process with generating triplet (σ2, γ, ν) is
α-stable for some α ∈ (0, 2〉, if one of these conditions is fulfilled

1. α = 2 and ν = 0

2. α ∈ (0, 2), σ = 0 and ν = (c+I(0,∞) +c−I(−∞,0))|x|−(α+1)dx where c± ≥ 0

Remark. The first condition leads clearly to Gaussian process. The second
condition is more complicated. We can theoretically integrate in (2.26) and we
should get a result in form (2.29). That is quite complicated and we will outline
a different way to prove this.

Let Y be an infinitely divisible random variable. We denote a random vari-
able with characteristic function ϕrY by Y ∗r.
Let us consider Levy process X now. We will assume that X1 = Y is α-stable
variable. It implies

Y ∗r
α

= rY + c, r > 0

where c is a real constant, both sides are infinitely divisible variables so they are
uniquely determined by the triplet (σ2, γ, ν). The previous equation is equivalent
to equality of triplets

(rασ2, rαγ, rαν) = (r2σ2, rγ + c, ν ◦ S−1
r )

where Sr : x 7−→ xr, so evidently α = 2 or σ = 0 must hold. From rαν = ν◦S−1
r

we can derive the condition on ν. Let us denote G(x) = ν{(x,∞)} respectively
ν{(−∞, x)} then

rαG(rx) = G(x) r, x > 0

by choosing r = 1/x we get
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G(x) = x−αG(1)

we know from properties of ν given by theorem (2.10) that G(1) <∞, for α = 2
is G(1) = 0 (Gaussian case). Finally, for α ∈ (0, 2) we have

G(x) =
∫∞
x

dν(y) = const. x−α

so dν(y) = c+y
−α−1dy on (0,∞) and we proceed with the interval (−∞, 0)

analogically.

2.4 Different approach to stochastic processes:
Fokker-Planck equation

In this section, we will introduce a bit different approach to stochastic processes.
We will be interested only in time development of PDF p(x, t) of stochastic
process Xt. A conditional expectation will be considered as defined by (1.3)
without use of σ-algebras. We will also outline useful analogies between these
two approaches throughout this section.

Historically, these approaches evolved very differently. The approach, which
was used to define Ito integral is more mathematically rigorous but for some ap-
plications unnecessarily complicated. An approach, which will be demonstrated
in this section was used by physicists when describing diffusion processes and
formulating diffusion equations. This approach has some mathematical down-
sides. For example, conditional PDFs do not always exist and other assumptions
are often implicitly required.

2.4.1 Markov processes

We will use a notation

p1|n−1(xn, tn|x1, t1; ...;xn−1, tn−1) = pXtn |Xt1 ,...,Xtn−1
(xn|x1, ..., xn−1)

Definition 2.21. Process Xt is called Markov process, if for all t1 < t2... < tn

p1|n−1(xn, tn|x1, t1; ...;xn−1, tn−1) = p1|1(xn, tn|xn−1, tn−1)

Remark. In other words, Markov processes have no memory. Their future time
evolution depends only on a present position.

In terms of conditional expectation given by σ-algebras, we can define Markov
process by

E(Xt|Fs) = E(Xt|σ(Bs))

for all t ≥ s ≥ 0 and Ft = (σ(Bs), s ≤ t) natural filtration of Brownian motion.
The theory behind Markov processes in terms of this definition is quite tech-

nical. It is why we omitted it in the previous sections, where we paid attention
only to subclass of Markov processes - martingales.
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Properties of Markov processes
There is a connection between Markov processes and processes with indepen-

dent increments. In fact, every process with independent increments is Markov
process but the reverse implication does not hold. We will prove this by following
calculations. Let Xt be process with independent increments and X0 = 0 then

pXtn |Xt1 ,...,Xtn−1
(xn|x1, ..., xn−1) =

pXtn−Xtn−1
+Xtn−1

|Xt1−X0,...,Xtn−1
−Xtn−2

(xn|x1 − x0, ..., xn−1 − xn−2) =

(pXtn−Xtn−1
∗ δxn−1

)(xn) = pXtn−Xtn−1
(xn − xn−1)

where we used fact that PDF of a sum of independent variables is convolution
of individual PDFs, notation δa(x) = δ(x− a) and we considered x0=0. So we
have proved:

process Xt has independent increments ⇒ Xt is Markov

Another important property of Markov processes is a following identity

pn(x1, t1; ...;xn, tn) =

n∏
k=2

p1|1(xk, tk|xk−1, tk−1)p1(x1, t1) (2.30)

this follows directly from using definition of Markov process iteratively on pn.
So for Markov process we only need a knowledge of two functions p1 and p1|1
to describe system completely. This is enormous simplification compared to a
general stochastic process.

For n = 3 (2.30) reads

p3(x1, t1;x2, t2;x3, t3) = p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)p1(x1, t1)

so by integrating over x2 and dividing by p1(x1, t1) we get

p1|1(x3, t3|x1, t1) =

∫
R
p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)dx2 (2.31)

for t3 ≥ t2 ≥ t1. This is Chapman-Kolmogorov equation for PDFs of Markov
process.

Master equation
We will approximate Chapman-Kolmogorov equation for stationary Markov

processes in this paragraph. For such process we have

p1(x, t) = p1(x, 0) = p1(x)
p1|1(x2, t2|x1, t1) = p1|1(x2, t2 − t1|x1, 0) = pt2−t1(x2|x1)

so Chapman-Kolmogorov equation has a form

pt+t′(x3|x1) =

∫
R
pt(x2|x1)pt′(x3|x2)dx2 (2.32)
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Note that this is just matrix multiplication for discrete probability space .
We approximate pt′(x3|x2) for small t′ by Taylor expansion now

pt′(x3|x2) = (1− νtot(x2)t′)δ(x3 − x2) + t′ν(x3|x2) (2.33)

Where ν(x3|x2) is transition probability per unit time from x2 to x3 and 1 −
t′νtot(x2) is probability to remain in state x2 up to time t′. So clearly

νtot(x2) =

∫
R
ν(x3|x2)dx3 (2.34)

by using (2.33) and (2.34) we can rewrite Chapman-Kolmogorov equation (2.32)

pt+t′ (x3|x1)−pt(x3|x1)

t′ =
∫
R pt(x2|x1)ν(x3|x2)dx2 −

∫
R pt(x3|x1)ν(x2|x3)dx2

so in limit t′ → 0 we have

∂

∂t
pt(x3|x1) =

∫
R
pt(x2|x1)ν(x3|x2)dx2 −

∫
R
pt(x3|x1)ν(x2|x3)dx2 (2.35)

this is master equation for stationary Markov process.
We will not presume a stationarity of Markov process but only time homo-

geneity of transition probability p1|1. This is equivalent to stationary increments.
Now we simplify a notation by rewriting x2 → x′, x3 → x and p1 → p, divide
(2.35) by p1(x, t) and integrate over x1. We get master equation for probability
density itself.

∂

∂t
p(x, t) =

∫
R
p(x′, t)ν(x, x′)dx′ −

∫
R
p(x, t)ν(x′, x)dx′ (2.36)

Notice that we do not need Markov process to have stationary increments to
derive this. We need only Taylor expansion (2.33) to hold for small t′. In other
words, a condition of stationary increments must be satisfied only on small time
scales.

We will derive further approximation of master equation. For sufficiently
smooth functions ν(x|x′), p(x, t) we can derive Taylor expansion of (2.36).
Let us for x = x′ + r rewrite

ν(x|x′) = ν(x|x− r) ≡ ν(x− r, r)

the first argument is an initial position and second argument r is a jump size. It
is important that the first argument is an initial position and it is not position
after a jump. This choice is consistent with Markov property.
Now we can write

∂

∂t
p(x, t) =

∫
R
ν(x− r, r)p(x− r, t)dr − p(x, t)

∫
R
ν(x,−r)dr (2.37)

we can perform Taylor expansion of the first integral in x− r around r = 0 now
and we get

∂

∂t
p(x, t) =

∞∑
n=1

(−1)n

n!

∂n

∂xn
(an(x)p(x, t)) (2.38)
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where we denoted

an(x) =

∫
R
rnν(x, r)dr (2.39)

This is Kramer-Moyals expansion of master equation. Notice that if we chose
first argument of ν position after a jump we would write ν(x, r) instead of ν(x−
r, r). We would get a different expansion (2.38) with p(x, t) outside of sum then.
This expansion would not have a good physical interpretation.

2.4.2 Fokker-Planck equation

In this section, we will approximate Kramer-Moyals expansion by truncation
up to certain order of derivatives. Generally, we cannot neglect any terms in
Kramer-Moyals expansion but if ν(x, r) is slowly varying function of first argu-
ment truncation is possible. This problem can be treated much more rigorously
of course but we will omit more sophisticated discussions. We will consider a
truncation after the second order

∂

∂t
p(x, t) = − ∂

∂x
(a1(x)p(x, t)) +

1

2

∂

∂x2
(a2(x)p(x, t)) (2.40)

this is famous Fokker-Plank equation, where a1 is called a drift coefficient and
a2 a diffusion coefficient.

We derived originally master equation for transition PDF p1|1 so we can
consider Fokker-Plank equation in a form

∂

∂t
p(x, t|x0, t0) = − ∂

∂x
(a1(x)p(x, t|x0, t0)) +

1

2

∂

∂x2
(a2(x)p(x, t|x0, t0))

this is often called forward Fokker-Planck or forward Kolmogorov equation.
Similarly, we can derive backward Fokker-Planck (Kolmogorov) equation.

∂

∂s
p(x, t|z, s) = −a1(z)

∂

∂z
p(x, t|z, s)− 1

2
a2(z)

∂

∂z2
p(x, t|z, s) (2.41)

Physically is forward Fokker-Planck equation much more important because it
has an interpretation as a diffusion equation. We will remind that also every so-
lution of Ito stochastic differential equation is called a diffusion. A link between
SDE and Fokker-Planck equation will be discussed in the next paragraph.

Stochastic differential equation as diffusion process
Let us consider Ito SDE in a form

dXt = −µ(Xt, t)dt+D(Xt, t)dBt (2.42)

let p(x, t) be a probability density of Xt then

p(x, t+ ∆t) =

∫
R
p(x− r, t)p1|1(x, t+ ∆t|x− r, t)dr (2.43)
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Let us assume time homogeneity of p1|1 on small time scales so expansion (2.33)
holds, then we get

p(x, t+ ∆t) = ∆t

∫
R
p(x− r, t)ν(x− r, r)dr + p(x, t)(1−∆tνtot(x)) (2.44)

where we have already integrated over δ(r).
We can use Taylor expansion on (2.44) in the same way as when we derived
Kramer-Moyals expansion and truncate this expansion after second order deriva-
tives. We should obtain Fokker-Planck equation. We will consider p(x, t+∆t)−
p(x, t) = ∆t ∂∂tp(x, t) then

∆t
∂

∂t
p(x, t) = ∆t

∫
R
{−r ∂

∂x
(p(x, t)ν(x, r)) +

1

2
r2 ∂

∂x2
(p(x, t)ν(x, r))}dr (2.45)

we used identity νtot(x) =
∫
R ν(x, r)dr.

We need to calculate moments of ν(x, r), in other words we need to calculate
an average ∆Xt = Xt+∆t−Xt for small ∆t. We have stationarity of increments
on this scale so we can consider coefficients µ and D constant on this interval.

∆Xt = −µ(Xt, t)∆t+D(Xt, t)∆Bt

By calculating expected value we get

E(∆Xt) = ∆t

∫
R
rν(x, r)dr = −µ(Xt, t)∆t (2.46)

similarly we get

E(∆Xt)
2 = ∆t

∫
R
r2ν(x, r)dr = D(Xt, t)

2∆t (2.47)

here we used E(Bt)
2 = t and neglected terms of higher order then O(∆t).

In conclusion, we got an equation for probability density function of process
Xt from (2.45)

∂

∂t
p(x, t) =

∂

∂x
(µ(x, t)p(x, t)) +

1

2

∂

∂x2
(D2(x, t)p(x, t)) (2.48)

So we have connected Fokker-Planck equation with SDE. So (2.42) and (2.48)
describe the same process but SDE gives description on level of sample paths
and Fokker-Planck equation shows time evolution of probability density.

We usually want to know both these descriptions, because we do not know
path properties of process like fractal dimension from Fokker-Planck equation.
This link between them is extremely important.

As a result of this calculations we can see that a solution of SDE (2.42) is
Markov process. It has also time homogenous increments on small time scales,
so expansion (2.33) works.

We will notice at the end of this section, that if we consider more general
coefficients µ,D, which depend not only on present value of Xt, but also on
past values or on some other processes, then we do not have to get a solution
with Markov property. Also equation for time evolution of PDF might be more
complicated than Fokker-Planck equation then.



Chapter 3

Fractal geometry

In this chapter, we will discuss fractals and we will show an important link
between fractals and stochastic processes. We will also suggest few ways how
fractals can be applied in finance. Proves of all theorems stated in this section
can be found in [2].

3.1 Fractals

Sets and functions, that are not sufficiently smooth or regular for methods of
classical calculus, were for long time considered just mathematical curiosity.
But it turned out that such objects widely appear in nature or in finance and
they are often better for a description of real systems than smooth curves or
surfaces.

We should start with a definition of fractal but there is actually no satis-
factory one. A founder of fractal geometry Mandelbrot has defined fractals as
objects with different topological and Haussdorf dimension. A topological di-
mension is a dimension in classical sense. Haussdorf dimension is one of fractal
dimensions, which will be discussed in details further. However, a lot of fractal-
like sets would not be fractals by this definition. That is why we will omit a
definition of a fractal. We actually do not need one, we can build a mathemat-
ical apparat applicable to any set. However, it will give us something new for
fractals only. We will state some properties typical for fractals.

1. fractals have a fine structure i.e. details on every scale

2. fractals are self similar in some sense

3. fractals are too irregular to be described by usual geometrical methods

Fractal dimension belongs among the most important tools for description of
fractals. There is a lot of non-equivalent definitions of fractal dimension, so we
should always know, which one we are using. Property of self similarity implies

54
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that many fractals can be generated recursively. So they can often be very easily
described despite their irregularity by defining recursive procedure.

At the end of this introduction, we will state a well known example of fractal
- Koch curve. Recursive procedure that generates Koch curve, is depicted in
figure 4.1. Self similarity of Koch curve is obvious. This kind of self-similarity

Figure 3.1: Koch curve

is called strict self similarity. We will encounter also less strict self similarities,
for example statistical self similarity, which occurs, when working with random
fractals.
From this example, we can also see, why a classical definition of dimension fails
in giving us enough information. Topological dimension of Koch curve is of
course 1 and the length of this curve is clearly infinite. Further, this curve is
always continuous but nowhere differentiable. This itself suggests that we will
need more delicate methods for a description of fractals than classical calculus
and geometry offer.
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3.1.1 Haussdorf dimension and measure

We will start with a definition of the fractal dimension proposed by Haussdorf.
His definition is probably the most valuable one from a purely mathematical
point of view. However, there are some difficulties with computer calculations
of Haussdorf dimension, so other definitions of dimension are often used in
practise.

Let us start with a definition of Haussdorf measure.
We define a diameter for any set U ⊂ Rn with Euclidean measure (or more
generally any metric space) by |U | = sup{|x − y|;x, y ∈ U}. If we consider
any set F ⊂ Rn, then δ-cover of F is any countable cover {Ui}i∈N satisfying
|Ui| < δ, ∀i. We will define

Hsδ(F ) = inf{
∞∑
i=1

|Ui|s; {Ui} is δ − cover ofF}

now we can define an s-dimensional Haussdorf measure by

Hs(F ) = lim
δ→0
Hsδ(F ) (3.1)

The definition is correct, the limit always exists because Hsδ(F ) increases with
δ → 0. Before we will use Haussdorf measure to define Haussdorf dimension,
we will state some properties of Hs.

Properties of Haussdorf measure
We should note that Hs is in fact a measure on Rn first. It is not trivial and

quite technical to prove, so we will omit it.
Hn is in Rn equivalent measure to Lebesque measure, further for every Borel

set F ⊂ Rn following holds

Hn(F ) = 2nc−1
n Ln(F )

where Ln is a n-dimensional Lebesque measure and cn = π
n
2

Γ(n+2
2 )

is a volume of

a n-dimensional ball with radius 1.
It is obvious that when we multiply radius of a n-dimensional ball by a factor

λ the volume will change with a scaling factor λn. We would expect that for Hs,
a correct scale factor will be λs. This assumption is supported by the following
theorem.

For F ⊂ Rn a function f : F → Rn with property

|f(x)− f(y)| = λ|x− y| ∀x, y ∈ F

is called a similarity transformation of scale λ > 0. If λ = 1, f is called a
congruence. Translations and rotations are typical examples of a congruence.

Theorem 3.1. Let f be a similarity transformation of scale λ > 0, F ⊂ Rn
then

Hs(f(F )) = λsHs(F )

Now we will proceed to define Haussdorf dimension.
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Haussdorf dimension
We will start with a simple observation, for δ-cover {Ui} of F ⊂ Rn∑

i

|Ui|l =
∑
i

|Ui|l−s|Ui|s ≤ δl−s
∑
i

|Ui|s l > s

so if Hs(F ) ∈ R then Hl(F ) = 0, ∀l > s and Ht(F ) = ∞, ∀t < s so we can
define Haussdorf dimension in the following way

dimHF = inf{s ≥ 0,Hs(F ) = 0} = sup{s ≥ 0,Hs(F ) =∞} (3.2)

Notice that Hs(F ) ∈ 〈0,∞〉. Further, if F is Borel set and Hs(F ) ∈ (0,∞) F is
called a s-set.

Properties of Haussdorf dimension
Haussdorf dimension satisfies following properties that should be expected to

hold for an every reasonably defined dimension.

1. topological (Lebesque) dimension is always smaller or equal than Hassdorf
dimension

2. E ⊂ F ⇒ dimHE ≤ dimHF , this property is called a monotonicity

3. dimH

⋃
i∈N Fi = sup{dimHFi}

4. all countable sets G have dimHG = 0

5. F = F ◦ ⊂ Rn then dimHF = n

6. smooth m-dimensional manifolds have Haussdorf dimension also m

We will also state the following theorem.

Theorem 3.2. Let F ⊂ Rn and we consider a function f : F → Rn satisfying
condition

|f(x)− f(y)| ≤ c|x− y|α ∀x, y ∈ F

then dimHf(F ) ≤ (1/α)dimHF .

This theorem has an important consequence. Let us consider a function
f : F → Rn satisfying

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y| ∀x, y ∈ F

where 0 < c1 ≤ c2. Such a function is called a bi-Lipschitz transformation and
we have dimHf(F ) = dimHF from theorem (4.2). It means that Haussdorf
dimension is bi-Lipschitz invariant. So we can see bi-Lipschitz transformation
plays here a similar role as a homeomorphism in topology.
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Calculation of Haussdorf dimension
There are many ways how to calculate a fractal dimension, we have to use

a computer for these calculations very often. However, a dimension can be
calculated also analytically for a lot of fractals. Here, we will show only few
simple examples.

Let F be a Koch curve. We know that F consists of 4 identical disjunct
copies of F scaled by factor 1/3. We denote each of those copies by Fi and we
get

Hs(F ) = 4Hs(Fi)

using the theorem (4.1) we get

Hs(F ) = 4(1/3)sHs(F )

if we assume that such s exists, for which Hs(F ) is real and positive, we can see
that s = ln 4

ln 3 .

Mass distribution principle
We will introduce a very useful method for a calculation of a dimension here.

Theorem 3.3. Let ε > 0 and c > 0 and let µ be a measure on F ⊂ Rn. Let
µ(F ) ∈ (0,∞) (such µ is often called a mass distribution on F ), further let µ
fulfil

µ(U) ≤ c|U |s (∀U)(|U | ≤ ε)

then Hs(F ) ≥ µ(F )/c which implies

s ≤ dimHF

A proof of this theorem follows immediately from the following calculation.
Let {Ui} be a cover of F then

0 < µ(F ) ≤
∑
i

µ(Ui) ≤ c
∑
i

|Ui|s

This theorem is often very useful for a lower estimates of Haussdorf dimension.
The next theorem will give us a better understanding of a meaning of Haussdorf
dimension.

Theorem 3.4. Let µ be a mass distribution on Rn, c > 0 constant and F Borel
subset of Rn. We denote a ball with radius r and a centre in x by B(x, r), then

1. lim sup
r→0

µ(B(x, r))/rs < c ∀x ∈ F ⇒ Hs(F ) ≥ µ(F )/c

2. lim sup
r→0

µ(B(x, r))/rs > c ∀x ∈ F ⇒ Hs(F ) ≤ 2sµ(Rn)/c

The direct and very important consequence of this theorem is

lim
r→0

lnµ(B(x, r))

ln r
= s ∀x ∈ F ⇒ dimHF = s (3.3)
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3.1.2 Box counting dimension

Let us denote the smallest number of sets with a diameter at most δ needed to
cover F by Mδ(F ). We assume for δ → 0 a behaviour

Mδ(F ) ∼ cδ−s

so we have

s = lim
δ→0

− lnMδ(F )

ln δ
(3.4)

This is an idea behind a box counting dimension. This limit does not have to
exist always. To be correct, we have to define a lower box counting dimension
by

dimBF = lim inf
δ→0

− lnMδ(F )

ln δ
(3.5)

and we define an upper box counting dimension in the same manner. If they
are equal to each other, we will denote both of them by dimBF .

There are many equivalent definitions of box counting dimension. We will
state only one, which is usually the most useful. Let us consider cubes in Rn in
the form

〈m1δ, (m1 + 1)δ〉 × ...× 〈mnδ, (mn + 1)δ〉
where mi are integers. We denote by Nδ(F ) a number of these cubes, which
intersect F ⊂ Rn. We can show with a little bit of effort that

Mδ
√
n(F ) ≤ Nδ(F ) ≤ 3nMδ(F )

So we can equivalently define a box counting dimension by calculating a number
of these cubes that intersect F instead of a number of any sets with a diameter
at most δ that cover F .

Thanks to this definition, a box counting dimension is clearly more suitable
for computer calculations than Haussdorf dimension. These dimensions are not
equivalent but they usually coincide for ”reasonable” fractals. A box counting
dimension has many non-convenient properties from a mathematical point of
view. Its theoretical significance lies in situations, where it is equal to Haussdorf
dimension.

Properties of box counting dimension
We will start with a comparison of Haussdorf and a box counting dimension.

We use an inequality
Hsδ(F ) ≤ δsMδ(F )

for 1 < Hs(F ) we will get

s ≤ lim
δ→0

− lnMδ(F )

ln δ

so we have showed dimHF ≤ dimBF . This holds for any set F because the
condition 1 < Hs(F ) can be achieved by a proper scaling; for Hs(F ) = 0 is this
inequality trivial.
Now we will summarize basic properties of a box counting dimension.
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1. dimHF ≤ dimBF ≤ dimBF

2. dimBF, dimBF are both monotone

3. dimBF, dimBF are both bi-Lipschitz invariant

4. dimB(E∪F ) = max{dimBE, dimBF}, this property hold only for a finite
union and in the case of dimB it is not fulfilled at all

5. dimB(F ) = dimB(F ) the same identity holds for dimB .
This property is especially inconvenient because the countable dense sets
in some area have the same box counting dimension as the whole area.
This severely limits a use of a box counting dimension.

We will introduce one of many examples of sets with different box counting and
Haussdorf dimension at the end of this section.
The set F = {0, 1, 1

2 ,
1
3 , ...} has clearly dimHF = 0 but it can be shown that

dimBF = 1/2.

3.1.3 Self similar sets

As we have already mentioned, many fractals can be generated recursively. We
will formalize this notion now.

Let D = D ⊂ Rn then S : D → D is called a contraction if

|S(x)− S(y)| ≤ c|x− y| c ∈ (0, 1)

if the equality holds, S is called a contracting similarity.
A finite set {S1, ..., Sn} of contractions is called an iterated function system

(IFS). A compact set F ⊂ D satisfying F =
⋃m
i=1 Si(F ) is called an attractor of

IFS. This attractor is very often fractal. It can be shown that such an attractor
exists and it is unique. We can use Banach contracting mapping theorem to
prove this. We will not go into details. However, we will mention, that from
Banach theorem follows also, that for any compact set E fulfilling Si(E) ⊂ E
following holds

F =

∞⋂
k=0

Sk(E)

where S(E) =
⋃n
i=0 Si(E).

So if we have IFS, we can get a good approximation of an attractor by simple
iterations.

The following theorem is useful for calculations of dimension of self similar
sets.

Theorem 3.5. Let {S1, ..., Sn} be IFS such that

|Si(x)− Si(y)| ≤ ci|x− y| ci ∈ (0, 1)

further let such open set V exists that
⋃n
i=1 Si(V ) ⊂ V where this union is

disjoint. Let F be an attractor of this IFS then
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dimBF = dimHF = s

where
∑m
i=1 c

s
i = 1.

We actually used this theorem, when we calculated a dimension of Koch
curve. The condition on an existence of a set V is required because we need
individual similar copies not to overlap much. This was satisfied obviously in
the case of Koch curve.

The copies can overlap without an existence of such V so only following
would be true dimBF = dimHF ≤ s. We will mention, that if Si are affine
contractions, an attractor is called a self affine set.

3.2 Random fractals

We often encounter fractals in physics or finance, which are generated somehow
randomly. We discussed IFS as a possibility to generate fractals in the last
section. This procedure can be easily randomize. We will omit general technical
theorems and will show a concrete example only.

Let us consider a random Koch curve. A size of the part in the middle, that
is replaced by equilateral triangle in each step, is a random variable X with a
uniform distribution X ∼ U(0, 1

3 ). We can similarly as in the theorem (4.5)
calculate a dimension of this fractal by

1 = E(2(1/2(1−X))s + 2Xs) =

∫ 1/3

0

3(2(1/2(1− x))s + 2xs)dx

se we get dimBF = dimHF = s = 1, 44.
We will omit further generalizations and move to a different more important

example of random fractal - Brownian motion.

3.2.1 Brownian motion

We have already discussed many properties of Brownian motion but here we
will take another look at it. Let Bt be a Brownian motion in Rn, then we can
consider a graph {(t, Bt(ω)); t ∈ R} ⊂ Rn+1. We can also consider a trail of
Brownian motion {Bt(ω); t ∈ (t1, t2)}. Both these sets are fractals. We will
determine their fractal dimensions and other properties.

We have already discussed a self similarity of Brownian motion.

(T 1/2Bt1 , ..., T
1/2Btn)

d
= (BTt1 , ..., BTtn)

This is the case of a statistical self similarity. A coefficient H = 1/2 is often
called Hurst index and is directly connected to a fractal dimension. It is ob-
vious that with decreasing H, sample paths of stochastic process will be more
dense and fractal dimension will increase. We will state theorems about fractal
dimension of Brownian motion now.
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Theorem 3.6. Let B be Brownian motion in Rn, n ≥ 2 then a trail F =
{Bt(ω); t ∈ (t1, t2)} has a.s. fractal dimension

dimBF = dimHF = 2

This is very interesting result. A fractal dimension of a trail of Brownian motion
does not depend on a dimension of a space, where it is realized. This is not
generally true for most of stochastic processes.

Theorem 3.7. Let B be Brownian motion in R then a graph G = {(t, Bt(ω)); t ∈
(t1, t2)} has a.s. fractal dimension

dimBG = dimHG = 3/2 (3.6)

We have only some sample paths to analyse in practice. This theorem gives
us a new and powerful tool to determine if an underlying distribution of these
sample paths is Gaussian. We only need to calculate a box counting dimension,
which is quite easy with a use of computers. We can find out thanks to this
theorem, if a underlying distribution is normal. In reality, it is more complicated
of course. The main problem is that we do not usually encounter fractals but
multifractals. This will be further discussed at the end of this chapter.

3.2.2 Fractional Brownian motion

Definition 3.1. Stochastic process (Xt, t ≥ 0) is called a fractional Brownian
motion (FBM) with a parameter H ∈ (0, 1) if

1. X0 = 0 a.s.

2. Xt(ω) is continuous a.s.

3. Xt+h −Xt ∼ N(0, h2H)

We can see that FBM has stationary increments from the property 3. A
question is, if FBM has independent increments. From E(Xt+h −Xt)

2 = h2H

we get

E(XtXt+h) =
1

2
(t2H + (t+ h)2H − h2H)

so we can write

EXt(Xt+h −Xt) =
1

2
(−t2H + (t+ h)2H − h2H)

H 6= 1
2

6= 0 (3.7)

So we have a standard Brownian motion for H = 1
2 and FBM without inde-

pendent increments for H 6= 1
2 . That makes FBM an important concept for

generalizations beyond independent increments and Markov processes.
Another interesting property of FBM is that E(Xt − X0)(Xt+h − Xt) is

positive for H > 1/2 and negative for H < 1/2. In conclusion, for H > 1/2
if Xt grew in past, it is likely to keep growing in future. This is often called a
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super diffusive behaviour. On the other hand, for H < 1/2 Xt is kept oscillating
close to a concrete value. This indicates a sub-diffusive behaviour.

The scaling property of FBM is obvious

(THXt1 , ..., T
HXtn)

d
= (XTt1 , ..., XTtn)

We will also state a theorem about a fractal dimension of FBM.

Theorem 3.8. Let Xt be fractional Brownian motion with a parameter H then
a.s. fractal dimension of a graph G = {(t,Xt(ω)); t ∈ (t1, t2)} is

dimHG = dimBG = 2−H

We will mention a possible generalization of FBM to a multifractal Brownian
motion. Multifractals differ from fractals by a diverse behaviour on different
scales, i.e. we need more than one Hurst index to describe them. So if we
consider the parameter H as a function H : t → (0, 1), we will get a process
with a multifractional behaviour.

We will briefly introduce fractional Brownian surfaces.

Definition 3.2. Set of random variables (Xt,s; t, s ≥ 0) fulfilling following con-
ditions

1. X0,0 = 0 a.s.

2. Xt,s(ω) is continuous a.s.

3. Xt+h,s+k −Xt,s ∼ N(0, (h2 + k2)2H)

is called a fractional Brownian surface with a parameter H.

A similar theorem as for FBM holds here.

Theorem 3.9. Let Xt,s be a fractional Brownian surface with a parameter H
then a.s. fractal dimension of the graph G = {(t, s,Xt,s(ω)); t ∈ (t1, t2), s ∈
s1, s2} is

dimHG = dimBG = 3−H

3.2.3 Levy stable processes

We have already known that a general form of a characteristic function of stable
process is given by (2.29). If we consider the parameter γ = 0 in (2.29), we have
scaling property for α-stable process Xt

(T 1/αXt1 , ..., T
1/αXtn)

d
= (XTt1 , ..., XTtn)

so clearly Hurst index H = 1/α.
We will consider symmetric stable processes (with the parameter β = 0). For
calculations of their fractal dimension, we have the following theorem.
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Theorem 3.10. A graph G of α-stable symmetric process Xt has a.s. fractal
dimension given by

dimHG = dimBG = max{1, 2− 1/α}

So for α ≤ 1 α-stable process Xt has fractal dimension 1. This is consistent
with the fact that Xt has an infinite number of small jumps on every interval
for α ≤ 1. For 1 < α < 2 Xt, it combines a continuous component with jumps.

As in the case of Brownian motion, this theorem is a very important tool
for us. If we have a graph and expect underlying distribution to be stable, this
theorem helps us determine the parameter α of distribution.

3.3 Multifractals

We have discussed fractals with only one scaling (Hurst) index in this section till
now. We will consider a very important generalization to fractals with the whole
spectrum of scaling indexes - multifractals. We will use a mass distribution
principle for mathematical description of these sets. If µ(B(x, r)) ' rs holds for
every point of given set, then the theorem (4.4) says that this set has Haussdorf
dimension equal to s. However, if a mass distribution µ is spread irregularly and
this power law behaviour differs for individual points, a knowledge of just fractal
dimension is not enough. We need to know the whole multifractal spectrum.
These mass distributions are called multifractal measures.

From now on, we will not consider sets but directly multifractal measures.
In reality, we have a set, for which computers can calculate corresponding mul-
tifractal measure. Then we can apply some other methods, few of them will be
described in the next section.

3.3.1 Multiftactal spectrum

We will consider multifractal measure 0 < µ(Rn) < ∞, naturally a support
of µ is an original multifractal set. We will define two kinds of multifractal
spectrums - coarse and fine ones. A connection between them is very similar
to a connection between Haussdorf and a box counting dimension. We will also
discuss Legendre transform method for a calculation of multifractal spectrum.

Coarse multifractal analysis
Let us consider r-mesh cubes in the form

〈m1δ, (m1 + 1)δ〉 × ...× 〈mnδ, (mn + 1)δ〉

where mi are integers. For α ≥ 0 we write

Nr(α) = |{r −mesh cubes with µ(C) ≥ rα}|



CHAPTER 3. FRACTAL GEOMETRY 65

where |{...}| denotes a number of elements in a set. Now we can define a coarse
multifractal spectrum by

fC(α) = lim
ε→0

lim
r→0

ln+ (Nr(α+ ε)−Nr(α− ε))
− ln r

(3.8)

where we write ln+ x = max{0, lnx} to ensure non-negativity of fC(α). To
ensure an existence of a coarse spectrum, we define an upper coarse spectrum
fC(α) and a lower coarse spectrum fC(α) in the usual way.

For small ε, we have a power law behaviour

Nr(α+ ε)−Nr(α− ε) ≈ r−fC(α) (3.9)

so we can see that fC(α) is a power law exponent for a number of r-mesh cubes
B that behave as µ(B) ' rα. Some estimates of a coarse spectrum can be
numerically calculated, if we choose r small enough and we box-count a number
of cubes that fulfil µ(B)/ ln r ' α. This calculations are however numerically
quite awkward, so we will introduce a different method.

We can start by defining qth moments for q ∈ R, r > 0

Mr(q) =
∑
Cr

µ(B)q (3.10)

where a sum is over such r-mesh cubes that µ(B) > 0. We will define a function
β(q) by

β(q) = lim
r→0

lnMr(q)

− ln r
(3.11)

Now let us consider q ≥ 0, then clearly the following inequality holds

Mr(q) ≥ rqαNr(α)

so for a sufficiently small r and any ε we get

(ε+ α)q +
lnMr(q)

− ln r
≥ lnNr(α+ ε)

− ln r

so by sending r → 0 and using (3.9) we have ∀q > 0

fC(α) ≤ β(q) + αq (3.12)

Similarly, this can be shown for q < 0. So (3.12) actually holds for any real q.
This motivates us to define Legendre transform of β by

fL(α) = inf
q∈R
{β(q) + αq} (3.13)

From calculations we made, we have a following relation between Legendre
transform of β and a coarse spectrum.
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Theorem 3.11. Let µ be a finite measure on R then ∀α ≥ 0 if limit (3.11)
exists

fC(α) ≤ fC(α) ≤ fL(α)

So Legendre transform of β gives us an upper estimate of coarse spectrum
but the equality fL(α) = fC(α) holds very often. It is why Legendre transform
fL(α) is sometimes taken as a coarse spectrum.

Fine multifractal analysis
A coarse spectrum provides us information about fluctuations of the measure

µ. A fine multifractal spectrum will tell us more about a limiting behaviour of
the multifractal measure.

We can start by defining a local dimension of the measure µ

dimlocµ(x) = lim
r→0

lnµ(B(x, r))

ln r
(3.14)

now, if we denote Fα = {x ∈ Rn, dimlocµ(x) = α}, we can define a fine spectrum
as

fH(α) = dimH(α) (3.15)

From the theorem (3.4), we have an inequality

0 ≤ fH(α) ≤ α (3.16)

Calculating a box counting dimension of Fα is not very useful because in the
most of interesting cases Fα is dense in support of µ. We know that dimBF =
dimBF and so we would get a measure of the whole multifractal.

As in the case of a box counting and Haussdorf dimension, a fine analysis is
more valuable from a theoretical point of view but a coarse spectrum is more
practical for real calculations. Also the same inequality holds between them.

Theorem 3.12. For µ finite measure on Rn and every α ≥ 0 we have

fH(α) ≤ fC(α)

We also get an equality between coarse and fine spectra very often.

So far, we have defined a multifractal spectrum and discussed ways to cal-
culate it. Let us consider a situation now, where we have a spectrum and we
will outline a way to use it on a simple example.

We consider a graph of the price evolution of an asset. If we find out,
that it is a multifractal, then we can calculate its spectrum (f(α), α). We
believe, based on a generalized central limit theorem and some other empirical
data, that an underlying distribution is stable. So, using the theorem (3.10),
we know corresponding stable distribution for every α from spectrum. We
can calculate an underlying distribution as a weighted mixture of these stable
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distributions, where their weights is given by f(α). We can consider these
individual stable distributions independent, so we only need to calculate their
convolution. Notice that because these distributions do not have the same tail
parameter, the resulting distribution does not have to be stable.

Our approach was based on a generalized central limit theorem, which gives
stable distributions. However, we can get resulting distribution non stable. It
sounds suspicious but there is a good reason for it. Multifractal behaviour
suggests some memory effects, so the price evolution process is not Markov.
Respectively, individual variables are not independent, so none of limit theo-
rems we discussed so far can work. On the other hand, an independence can
hold on individual scales represented by multifractal spectrum. So on these
scales, our limit theorems can work. For example, we can usually expect CLT
to work on very small scales, so corresponding distribution will be Gaussian.
We will also mention that we can assess a stability of the market based on a
weight of Gaussian distribution in this mixture of stable distributions. We know
that an underlying distribution should be Gaussian and a graph would be only
monofractal on a completely stable market.



Chapter 4

Black-Scholes formula

In this chapter, we will explain basic terminology used on the financial markets.
Then we will derive a famous Black-Scholes formula for pricing of European
options and discuss its limitations and possible generalizations.

4.1 Financial markets

Trading on financial markets has so many aspects that any mathematical model
cannot address all of them. It is why we always have to make assumptions about
a market, which are not completely fulfilled. However, they should be close
enough to reality to keep our models well working. We will always consider a
risky asset (stock). A price of this asset will be given by a stochastic process.
Further, we will consider bonds, risk free assets, which provide fixed interests.
An example of such bonds is a bank account. We will omit possibilities like a
bankruptcy or so. We will consider only losses/gains caused by price evolutions
of risky assets.

In last decades, some traders shifted their focus from trading stocks to trad-
ing derivatives - assets, of which prices are derived from a price of some under-
lying assets. Mathematically speaking, if a price of the underlying asset is given
by a stochastic process Xt, then the price of this derivative will be a function
f(Xt). We will focus on one of the most popular derivatives now.

4.1.1 Options

A put/call option is a derivative that gives us the right to sell/buy an underlying
asset at certain time for an agreed price. The price is usually called a strike
price. We also distinguish between European and American options. European
options give us a right to buy/sell only at given time, which is usually called
expiration time of option. American options give us a right to do so in any time
between a moment we bought the option till its expiration. From now on we
will consider only European options.

68
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4.2 Black-Scholes option pricing

We will be interested in determining right prices of options. For deriving Black-
Scholes formula, we need to make some assumptions about markets first. Let
us assume that financial markets fulfils following conditions

1. all information relevant to the trading can be quickly obtained by all
participants

2. a market is liquid, this means that we can in any time buy or sell any
stocks, which we want

3. there is a low friction on the market - this mean that all trading costs and
fees are negligible

Such markets are called efficient markets. The efficient market hypothesis states
that asset prices on such markets follow Markov stochastic processes.

We can move to a mathematical formulation of an option pricing problem.
We have to find a suitable stochastic process that will describe a time evolution
of risky assets first. We will choose a geometric Brownian motion as such a
process. So the price evolution is given by following SDE

dXt = cXtdt+ σXtdBt (4.1)

and we already know a solution of this SDE

Xt = X0e
(c− 1

2σ
2)t+σBt (4.2)

A deterministic part of the equation (4.1) suggests that prices of assets grow
exponentially and fluctuations are given by Brownian motion. Many economists
believe in exponential growth so this assumption seems reasonable.

With use of Ito lemma, we get

d lnXt = (c− 1

2
σ2)dt+ σdBt

so we can see that a logarithm of the price follows Brownian motion. It means
that a price of assets is log-normally distributed.

The parameters c, σ > 0 are called a rate of return and volatility. The
volatility determines how ”dangerous” trading on the market is. For now, we
will consider these parameters as constants.

We will define bonds mathematically - we will presume an bank account,
where interests are paid continuously

βt = β0e
rt (4.3)

where β0 is an initial deposit and r > 0 is an interest rate.
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4.2.1 Building portfolio

We can define a portfolio now. For simplicity, we assume that we have only
one type of stock and one kind of bond. at will be a number of stocks that we
have. bt will be a number of bonds. Both at, bt are stochastic processes and we
presume that they are adapted to Brownian motion. We will call

((at, bt), t ∈ 〈0, T 〉)

a trading strategy. So our fortune at any moment can be written as

Vt = atXt + btβt (4.4)

We should note that at, bt ∈ R so they can be negative. It corresponds with a
situation, when we borrow money or make a deal with someone to buy stock
in future for in advance agreed price. This kind of deal is called taking a short
position.

Processes at, bt are special because we have a control over them and logically
we will change them only in reaction to changes on the market. Mathematically
speaking, it means

dVt = atdXt + btdβt (4.5)

This is often called a self-financing condition.

4.2.2 Option pricing problem

We explain how we can determine prices of options by building so called risk
less portfolios now. We will consider European call options with expiration
time T and a strike price K. It means that in time T a value of this option is
(XT −K)+.

We need to calculate how much money we have to invest in order to secure
stocks and bonds with value (XT −K)+ in the time T . If a price of the option
is p > q (where q is the price we will calculate), then we can sell a call option,
invest q according to investment strategy we will calculate and lock a risk-less
profit p− q.

If we denote Vt = u(T − t,Xt) then with a use of Ito lemma, we get

Vt − V0 =

∫ t

0

(−u1 + cXsu2 +
1

2
σ2X2

su22)ds+

∫ t

0

(σXsu2)dBs (4.6)

where u1 = ∂u
∂t and u2 denotes ∂u

∂x .
Now we use the self financing property (4.5) and get

Vt − V0 =

∫ t

0

asdXs +

∫ t

0

bsdβs (4.7)

with a use of dβt = rβtdt and (4.1), we can compare integrands in (4.6) and
(4.7) and we get following equations

at = u2(T − t,Xt) (4.8)
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and partial differential equation for u = u(x, t)

u1 =
1

2
σ2x2u22 + rxu2 − ru for x > 0 (4.9)

Notice that the constant c was eliminated in calculations and do not play role
in building self financing portfolio.

The partial differential equation (4.9) can be solved analytically, which is
a big advantage of Black-Scholes model. With a use of a boundary condition
u(0, x) = (x−K)+ we can write the solution in a form

u(t, x) = xΦ(g(t, x))−Ke−trΦ(g(t, x)− σ
√
t) (4.10)

where Φ is a cumulative distribution function of normal distribution N(0, 1) and

g(t, x) =
ln x

K + (r + (1/2)σ2)t

σ
√
t

(4.11)

We can finally state that the right price of European call options with a strike
price K and expiration time T with a value of underlying stock given by Xt is

V0 = u(T,X0) (4.12)

where u is given by (4.10). This follows from the fact that if we invest V0 and
we use the strategy given by

at = u2(T − t,Xt) (4.13)

bt =
u(T − t,Xt)− atXt

βt
(4.14)

then the value of our portfolio in time T will be VT = u(0, XT ) = (XT−K)+. So
if value of an option is different than this estimate, we can use this strategy and
lock a risk-free profit. Of course, it is a more complicated in reality. Limitations
of this formula will be discussed later in this chapter.

We can derive a right price similarly for European put options. However,
there is a direct connection between a price of call and put options. It is called
put-call parity. Let us denote a price of a put option by P (Xt, t) and a price of
a call option by C(Xt, t). Let us presume that both of them have same strike
prices K and expiration time T , then we can consider portfolio

Vt = Xt + P (Xt, t)− C(Xt, t) (4.15)

So we bought one stock and one put option and sell one call option. It is obvious
that a value of this portfolio in time T is always VT = K. So this portfolio
guarantees a risk-free profit. The only other way to gain such a profit is to
invest Ke−r(T−t) in time t in bonds, so we know that a value of this portfolio
in time t is

Vt = Ke−r(T−t)

so we have a relation between prices of put and call options

P (Xt, t) = C(Xt, t)−Xt +Ke−r(T−t) (4.16)
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4.2.3 Change of measure

We will introduce a very useful tool of stochastic calculus - a change of under-
lying probability measure.

We have always considered some probability space (Ω,F) with given prob-
ability measure P till now. Let us consider a process

∼
Bt = Bt + qt t ∈ 〈0, T 〉 (4.17)

where Bt is a standard Brownian motion under probability measure P . We can

ask now, if a probability measure Q, such as
∼
Bt is standard Brownian motion

under Q, exists. An answer is given by the following Girsanov’s theorem.

Theorem 4.1. Let us consider a process

Mt = exp (−qBt −
1

2
q2t) t ∈ 〈0, T 〉

and a probability measure Q defined by

Q(A) =

∫
A

MT (ω)dP (ω) A ∈ F (4.18)

then a process
∼
Bt defined by (4.17) is standard Brownian motion under proba-

bility measure Q. Q is called equivalent martingale measure and Q and P are
in fact equivalent measures.

We remind that the measures P,Q are equivalent if

P (A) = 0 ⇐⇒ Q(A) = 0

or alternatively, it can be defined with a use of Radon-Nikodym theorem. One
implication follows immediately from (4.18). Further, it can be shown that Mt,
as defined in the theorem (4.1), is martingale with respect to natural Brownian
filtration.

Black-Scholes formula revisited
Here we will use a change of measure technique to derive Black-Scholes for-

mula.
A naive idea how to calculate a price of European call options would be

Vt = e−r(T−t)(XT −K)+ t ∈ 〈0, T 〉 (4.19)

where r is an interest rate, T is expiration time and K is a strike price. This
formula does not work well but we will show how it can be corrected. Let us
consider a process

∼
Xt = e−rtXt
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then with a use of Ito lemma, we get

d
∼
Xt =

∼
Xt((c− r)dt+ σdBt) (4.20)

now if we denote
∼
Bt = Bt + c−r

σ t we get

d
∼
Xt = σ

∼
Xtd

∼
Bt (4.21)

We will denote a probability measure given by the theorem (4.1), under which
∼
Bt is standard Brownian motion, by Q.

Now we will consider self financing portfolio Vt given by (4.4) and portfolio
∼
Vt = e−rtVt then using (4.20) we get

d
∼
Vt = atd

∼
Xt (4.22)

so by integration we get

∼
Vt = V0 +

∫ t

0

asd
∼
Xs = V0 + σ

∫ t

0

as
∼
Xsd

∼
Bs (4.23)

Under the measure Q is
∼
Bt standard Brownian motion, so

∼
Vt is martingale with

respect to natural Brownian filtration Ft. Obviously, a natural filtration of Bt

and
∼
Bt is the same, so we do not have to distinguish between them. From

martingale property, we have

∼
Vt = EQ(

∼
VT |Ft) t ∈ 〈0, T 〉

so in conclusion we derived

Vt = EQ(e−r(T−t)VT |Ft) (4.24)

This equation gives us a value of self financing portfolio in time t. It will be
useful in particular, if we know a boundary condition in the form VT = h(Xt).
Clearly, this is a case of risk-less portfolios we built in the last section for option
pricing.
We will use this to determine a correct price of European call options. A bound-
ary condition for them reads

VT = h(XT ) = (XT −K)+

so for a price of option in time t we have

Vt = EQ(e−r(T−t)h(XT )|Ft) = EQ(e−r(T−t)h(Xte
(r− 1

2σ
2)(T−t)+σ(

∼
BT−

∼
Bt))|Ft)

(4.25)
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We can use the fact that σ(Xt) ⊂ Ft and that
∼
BT −

∼
Bt is independent of Ft

so we can treat Xt as a constant and calculate just a non-conditional expected

value over
∼
BT −

∼
Bt ∼ N(0, T − t) and we get

Vt =

∫
R
e−r(T−t)h(Xte

(r− 1
2σ

2)(T−t)+σy(T−t)1/2)ϕ(y)dy (4.26)

where ϕ(y) is PDF of a distribution N(0, 1). Now we can use h(x) = (x−K)+

and after some calculations we obtain

Vt = XtΦ(g(T − t,Xt))−Ke−r(T−t)Φ(g(T − t,Xt)− σ
√
T − t) (4.27)

where g(t, x) is defined by (4.11). This result clearly corresponds with the
formula we obtained above.

4.3 Beyond Black-Scholes formula

In this section, we suggest some generalizations of Black-Scholes model. We do
not have ambitions to go here into details. We just want to explain limitations
of this model and outline ways how it can be overcome.

4.3.1 Implied volatility

Black-Scholes price depends on four parameters and a price of an underlying
asset. A strike price and expiration time of an option are given by contract and
an interest rate, which can be easily determined and considered as a constant.
Volatility σ is a bit more complicated to determine. We can try to estimate it
from a behaviour of a risky asset Xt by measuring

µ =
1

N∆t

N−1∑
k=0

ln (
X(k+1)∆t

Xk∆t
)

and then define it by

σ2
his =

1

N∆t

N−1∑
k=0

(ln (
X(k+1)∆t

Xk∆t
)− µ)2 (4.28)

Volatility defined in this manner is called historic volatility. It is not very often
used because it fluctuates a lot in time.

An implied volatility σimp is used more frequently. This volatility is obtained
by inverting Black-Scholes option pricing formula, where we use a price of option
on the market as a correct option price. It means that we believe that right
volatility is given by an interplay of supply and demand that determines a
market price of option.

If theoretically Black-Scholes formula would be completely rigorous then
σhis = σimp should hold. However, this is usually not true. We can actually
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estimate how off Black-Scholes price is by comparing these two volatilities. A
problem of σimp is that it depends on a strike price and expiration time, not
just on an underlying asset. Implied volatility as a function of Xt −K where
K is a strike price, forms a convex function. A graph of this function is usually
called volatility smile.

We should also mention that a price calculated by Black-Scholes formula
works much better in situations, where the price Xt of an asset is close to a
strike price K. An estimate given by this formula is getting less reliable with an
increasing difference Xt −K. This can be easily explained - a real distribution
of a price of an underlying asset is not purely Gaussian but more likely stable
one. There are jumps in these stable processes, i.e. bigger price changes are
much more probable than in the case of Gaussian distribution. For example,
if we have a call option and a price of underlying asset is much lower than a
strike price, then the Gaussian model will almost exclude a possibility that this
asset will grow enough, so an option could not be exercised. Therefore such an
option would be worthless according to this model. A model based on stable
distributions will assign much higher probability to it and also a higher price to
the option. As it turns out, a stable model is closer to reality.

We will briefly discuss generalizations of Bl.-Sch. formula beyond constant
volatility. If we consider volatility σ to be known function of time, we can just
take its mean value

σ2 =
1

T

∫ T

0

σ2(t)dt

More substantial generalization is to consider volatility as a stochastic process.
Most usually we require volatility to follow Langevin equation

dσt = ασtdt+ βdB′t

and we already know that a solution of this equation is Ornstein-Uhlenbeck
process.

The price evolution Xt of assets is still given by (4.1) and we consider a
correlation between Bt and B′t. This approach is called Heston model and we
can proceed similarly as when we derived Bl.-Sch. formula. But a derivation
here is more complicated and we will not get a solution in an analytical form so
we will omit further calculations.

4.3.2 Beyond geometric Brownian motion

In this section, we look on assumptions of Bl.-Sch. model more generally.
The most important assumptions of the efficient market are liquidity and

no friction. No friction is hard to arrange for a common trader but it can
be close to reality for banks and other financial institutions. Liquidity is also
quite real for some stocks. An efficient market hypothesis suggests then that
a price evolution process should be Markov. A motivation behind a choice
of Gaussian distribution is naturally CLT. Empirical observations then prefer
geometric Brownian motion over Brownian motion with drift.
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Problems arise when markets are heading towards crises. Underlying pro-
cesses stop being Markov and underlying distributions will not be Gaussian.
Assumptions of Bl.-Sch. model will not be fulfilled at all and its predictions
will be naturally very far from reality. This exactly happened to the hedge
fund led by Black and Scholes after few very successful years. They lost almost
everything during the crisis in 1998.

Many attempts to go beyond Black-Scholes model were made. We can try
to calculate a right option price with a use of stable or infinitely divisible distri-
butions instead of geometric Brownian motion. These calculations are possible
but they usually do not provide results in terms of elementary functions, which
is impractical, of course. Another possibility is to use a multifractal analysis as
described in the previous chapter. A multifractal spectrum can help to deter-
mine situations when Bl.-Sch. formula works well and when we need a different
model. These are just few of many possible approaches to this problematic.
There is a huge demand for new sophisticated models nowadays and also a huge
number of problems to be solved.



Chapter 5

From thermodynamics to
finance

We will start this chapter with a review of Boltzmann-Gibbs statistics that
leads to standard equilibrium (extensive) thermodynamics. We will move to
non-extensive thermodynamics with a use of generalize Tsallis entropy then.
We will also demonstrate a mathematical correspondence between extensive and
non-extensive thermodynamics given by q-calculus. We will discuss a general-
ize entropy as way to explain a presence of heavy tailed distributions. Finally,
we will use an analogical procedure to generalize Bl.-Sch. option pricing for-
mula. This parallel between thermodynamics and finance demonstrates how
close physics and finance can be and why physical methods are useful in finance
so often.

5.1 Boltzmann-Gibbs statistics

We will derive a classical Boltzmann-Gibbs distribution. It is stated in most
textbooks that B.-G. statistics work when a system is in thermal equilibrium.
We will discuss conditions required for B.-G. to work a bit more thoroughly at
the end of this section.

5.1.1 MaxEnt principle

We will start with a brief review of concept of entropy. Entropy was first in-
troduced in thermodynamics as a new state function that never decreases spon-
taneously. Modern entropy is defined axiomatically and it measures a level of
uncertainty is systems. In other words, it quantifies a level of disorder in a sys-
tem. Entropy nowadays has huge applications in statistical physics, information
theory and in dynamical system theory.

Let us consider a probability space (Ω,F , P ). We will define an information
function I, which we require to fulfil these natural conditions. Let A,B ∈ F

77
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1. I(A) = 0⇔ P (A) = 1

2. P (A)→ 0⇒ I(A)→∞

3. for A,B independent I(A ∩B) = I(A) + I(B)

From these conditions, we can define I only by a following relation

I(A) = −k lnP (A) k > 0 (5.1)

where k is any constant. By comparison with results of classical thermodynamics
we can determine that k is Boltzmann constant in statistical physics. Here we
use k = 1 for simplicity.

We can define entropy of a discrete random variable X as a mean value of
I. Let us assume that for any xi ∈ Ran X we have P (X = xi) = pi then

S =
∑
i

piI(X−1(xi)) = −
∑
i

pi ln pi (5.2)

This is called Shannon information entropy. For continuous case we only use
integration instead of a sum.

Entropy has two main uses. The first one is to calculate or measure entropy
of a random variable or a physical system. This number tells us how much
information random variable or given system contains. This look at entropy
is closely connected with information theory. Here we will not go further into
details.

The other use is more important for us - it is a maximal entropy principal.
Let us consider a system and assume that we know its mean value of energy.
The goal is to find PDF that maximize entropy (5.2) and also gives a right
mean value of energy. This PDF contains the most information, i.e. maximize
information we need to describe the system. We take this distribution as a right
one for description of fluctuations of energy. This is far from a rigorous approach
and the result we will obtain is often considered as a postulate. Mathematically
speaking, if we denote a mean energy by E and Ei will be energy in state with
probability pi, we have to find an extreme of function S with these constraints

S = −
∑
i

pi ln pi (5.3)∑
i

pi = 1 (5.4)∑
i

Eipi = E (5.5)

we use a method of Lagrange multipliers and construct a function

Λ = −
∑
i

pi ln pi + α(
∑
i

pi − 1) + β(
∑
i

Eipi − E) (5.6)
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Finding an extreme of Λ and using conditions (5.4) yields

pi =
1

Z(β)
exp (−βEi) (5.7)

where Z is a normalization constant

Z(β) =
∑
i

exp (−βEi) (5.8)

a multiplier β could be theoretically calculated with a use of (5.5) but in general,
it is not analytically possible. However, in statistical physics, we can derive by
comparison with classical thermodynamics β = 1

kBT
.

If we consider energy of a free particle Ei = 1
2mv

2
i then with a use of the

theorem (1.1), we get Maxwell-Boltzmann distribution for velocity vi. So we
obtained Gaussian distribution. It is no coincidence, a connection between CLT
and Shannon entropy is very deep. In fact, one of proofs of CLT is based on
Shannon entropy.

5.1.2 Limitations of Boltzmann-Gibbs statistics

Here we will briefly discuss conditions required for Boltzmann-Gibbs statistics
to work well and typical examples of systems where it does not work at all.

To determine exact conditions, where B.-G. statistics can be used, is very
complicated and still an open issue. Ergodicity is a very important concept in
this problematic. Simply said, systems, whose time averages coincide with space
averages, are ergodic. A mathematical formulation of ergodicity is rather com-
plicated, so we will omit it here. An important fact is that ergodicity naturally
leads to B.-G. statistics. A problem is that ergodicity is almost impossible to
verify in real systems.

Anyway B.-G. statistics work well very often but systems with properties like
long-range particle interactions, long-term memory or (multi)fractal behaviour,
cannot usually be well described in framework of B.-G. statistics. Financial
markets are the most important example of such systems for us, of course.

5.2 Non extensive statistical mechanics

In this section, we will discuss Tsallis generalize entropy, which leads to non
extensive statistical mechanics. We will use MaxEnt principle on it and obtain
heavy tailed distributions, which obviously play an important role in finance.

5.2.1 Tsallis entropy

There are many generalizations of entropy. We will discuss only one of them
- Tsallis entropy. Tsallis entropy is non additive, i.e. we do not require in-
formation function to fulfil the property 3.. This is a reason, why we use a
term non-extensive statistical mechanics - entropy of two independent systems
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is not a sum of individual entropies. This sounds strange but in open systems
(like financial markets or in quantum mechanics), a notion of independence is
complicated and the condition 3. is not necessarily reasonable.

We will define informational function I by

Iq(A) =
1

q − 1
(1− P (A)q−1) (5.9)

Notice that for q → 1 we obtain informational function I1 = I that leads to
Shannon entropy. Further condition P (A)→ 0⇒ Iq(A)→∞ does not hold for
q > 1. However, it is important that I(A) increases with P (A)→ 0. Instead of
additivity, we get following property for independent A,B ∈ F

Iq(A ∩B) = Iq(A) + Iq(B) + (1− q)Iq(A)Iq(B) (5.10)

We will consider a discrete random variable X. If we denote P (X = xi) = pi,
then we get Tsallis entropy of X analogically as in previous section

Sq =
1

q − 1
(1−

∑
i

pqi ) q ∈ R− {0} (5.11)

where we used
∑
i pi = 1.

Problematic is that Tsallis entropy does not have a solid background in
information theory as Shannon entropy. This means that calculating Tsallis
entropy for a concrete random variable yields a number but we do not know
how to interpret it. So the only way to use Tsallis entropy is MaxEnt principal.
However, this principal will give us a very important class of distributions.

We can consider q as a biasing parameter, q > 1 privileges common events,
q < 1 privileges rare events. So B.-G. (q = 1) is unbiased statistics.

We will use MaxEnt principal. We can calculate constraint extremes as in
the last section and we get following the most probable distribution

pi =
1

Zq
(1 + (q − 1)βqEi)

1/(1−q) (5.12)

where Zq is a normalization constant given by

Zq =
∑
i

(1 + (q − 1)βqEi)
1/(1−q) (5.13)

Clearly for q = 1 we obtain B.-G. distribution. We have power law behaviour

pn ∼ E
1/(1−q)
n for other q > 1. Meaning of inverse temperature βq is not very

well understood with an exception of β1 = β = 1/kBT . We have obtained heavy
tailed distributions, which coincide with empirical observations in finance and
in many other complex dynamical systems. However, it is still not very clear, if
this way to obtain them is really fundamental or if it is more likely coincidence.
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5.2.2 Quantum calculus

Another interesting interpretation of Tsallis entropy is given via quantum cal-
culus also known as q-calculus.

Q-calculus is ”calculus without limits”. Instead of it, q-calculus introduces
a new parameter q. For example, q-derivation is given by

Dq(f(x)) =
f(qx)− f(x)

qx− x
(5.14)

Notice that in a limit q → 1 we get D1(f(x)) = f ′(x). This is characteristic
for q-calculus. Q-calculus corresponds in limit q → 1 with classical calculus. In
fact, we can build corresponding q-version to almost every field of mathematics.
This is usually very difficult and quite technical, so we will not go into details.
Anyway, we will define q-versions of basic operations and functions. We will
also show that Tsallis entropy is q-deformation of Shannon entropy. We will
outline the notion of q-dependent random variables and q-version of CLT.

Let us start with definition of q-exponential and q-logarithm

expq(x) = [1 + (1− q)x]
1

1−q
+ (5.15)

lnq(x) =
x1−q − 1

1− q
(5.16)

where [x]+ = x for x ≥ 0 and [x]+ = 0 for x ≤ 0.
Again, (5.15) and (5.16) are normal exponential respectively logarithm in limit
q → 1. Naturally, q-exponential and q-logarithm are inverse functions. We will
define q-sum, subtraction, product and division

x⊕q y = x+ y + (1− q)xy

x	q y =
x− y

1 + (1− q)y

x⊗q y = [x1−q + y1−q − 1]
1

1−q
+

x�q y = (x1−q − y1−q − 1)
1

1−q

It can be easily shown that q-sum and q-product are commutative and associa-
tive. All these operations recover a usual form for q = 1, also x ⊕q 0 = x and
x ⊗q 1 = x holds. Further, q-subtraction/division was naturally derived as an
inverse operation to q-sum/product.

These operations are defined in the way that following relations would hold.

expq(x⊕q y) = expq(x)expq(y) expq(x+ y) = expq(x)⊗ expq(y)

lnq(x⊗q y) = lnq(x) + lnq(y) lnq(xy) = lnq(x)⊕ lnq(y)

Further, we can find Taylor expansion of these functions and expq can be an-
alytically extended to a complex plane. We will not need these results and we
omit them here.
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We can demonstrate a role of Tsallis entropy as q-analogue of Shannon
entropy now. Indeed

Sq =
1

q − 1
(1−

∑
i

pqi ) =
∑
i

pilnq(1/pi) (5.17)

this corresponds with Shannon entropy S =
∑
i piln(1/pi) but because lnq(1/x) 6=

−lnq(x) we can see that we can define q-analogue to Shannon entropy in more
then one way.

We can notice another analogies between Tsallis entropy and q-calculus.
Pseudo-additivity of Tsallis entropy given by the relation (5.10) obviously cor-
responds with our definition of q-sum. Also the most probable distribution
derived via maximization of q-entropy has form

pi =
1

Zq
(1 + (q − 1)βqEi)

1/(1−q) =
1

Zq
expq(−βqEi) (5.18)

this distribution is called q-Gaussian, so now we can state that q-entropy leads
to q-Gaussian distribution, which is heavy tailed with an exception of the case
q = 1, where we get Shannon entropy and normal distribution.

We can proceed to q-dependence of random variables to q-CLT and to q-
stable distributions. Following theory is very technical, so we omit a rigorous
mathematical formulation of some statements. We also have no ambitions to go
into details here.

A very important tool for establishing q-analogues in probability theory is
q-Fourier transform.

Definition 5.1. For q ≥ 0 we define q-Fourier transform by

Fq[f ](ξ) =

∫
suppf

expq(ixξ)⊗q f(x)dx

Remark. Notice that expq(ixξ)⊗q f(x) is not zero outside of support of f , as
it is in the case of normal product.

If f is PDF, then we will call Fq[f ] its q-characteristic function. We will
introduce a notion of q-independence now.

Definition 5.2. Random variables X,Y are (q′, q, q′′) independent, if for their
PDF pX ,pY following holds

Fq′ [pX+Y ] = Fq[pX ]⊗q′′ Fq[pY ]

If q = q′ = q′′, we call random variables just q-independent. It can be easily
seen that for q = q′ = q′′ = 1 this definition is equivalent to a normal definition
od independent variables.

Before stating q-CLT, we also need to define q-convergence.
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Definition 5.3. A sequence of random variables Xn is q-convergent to a random
variable X, if

lim
N→∞

Fq[Xn](ξ) = Fq[X](ξ) ∀ξ ∈ R

Remark. This is equivalent to convergence in distribution For q = 1, because
it is well known that

Xn
D→ X ⇐⇒ ϕXn(y)→ ϕX(y) ∀y ∈ R

where ϕ as usually denotes characteristic function.

We will define q-moments. Let p(x) be PDF then corresponding q-PDF has
a form

pq(x) =
|p(x)|q

νq(p)
(5.19)

where νq is normalization given by

νq(p) =

∫ ∞
−∞
|p(x)|qdx <∞ (5.20)

where we have to assume a finiteness of νq. We can define q-mean by

µq =

∫ ∞
−∞

xpq(x)dx (5.21)

and q-variance by

V arq(x) =

∫ ∞
−∞

(x− µq)2pq(x)dx (5.22)

and we can define every other q-moment in the same manner.
We will state q-CLT. It can be stated in more general form but we would

need much more preliminary results for it.

Theorem 5.1. Let Xn be a sequence of identically distributed and q-independent
random variables with 1 ≤ q < 2. Let Xn have a finite µq and V ar2q−1. We
define a sequence

SN =

∑N
n=1Xn −Nµq
Cq(N)

where Cq(N) is proper normalization. Then SN is q-convergent to
∼
q-Gaussian

distribution , where
∼
q is given by q.

Remark. Even though this theorem gives a very interesting possibility to gen-
eralize limit theorems even for strongly correlated variables, its applicability is
questionable. This type of correlation was not observed in any real system so
far.

We will also briefly introduce (q, α) stable symmetric distributions.



CHAPTER 5. FROM THERMODYNAMICS TO FINANCE 84

Definition 5.4. Random variable X is said to be (q, α)- stable, if its q-characteristic
function has a form

ϕq(x) = expq(−β|x|α)

where β > 0, q ∈ R and α ∈ (0, 2〉.
A class of these distributions is usually denoted by Lq[α]

Remark. From the theorem (1.4), we can see that these distributions really are
just stable symmetric distributions with peak in 0 for q = 1. These distributions
were recently used for generalized q-CLT (only for q > 1). We will not go into
details here, for details see [13]. Anyway, many important questions are still to
be answered in this area of q-calculus.

We will end this section with a following theorem.

Theorem 5.2. Let Xj ∈ Lq[α] be q-independent random variables and let ai be
arbitrary real constants, then

n∑
i=1

aiXi ∈ Lq[α]

Proof. Let Fq[pXj ](ξ) = expq(−βj |ξ|α) where pXj is PDF of a random variable
Xj . Now with a use of Fq[aX](ξ) = Fq[X](a2−qξ) we obtain Fq[

∑n
i=1 aiXi](ξ) =

expq(−β|ξ|α) where β =
∑n
i=1 βj |a|α(2−q).

So a sum of q-independent (q, α)-stable random variables is (q, α)-stable.

5.3 Non-Gaussian option pricing

In this section, we will derive a generalization of Bl.-Sch. option pricing for-
mula in the framework of Tsallis generalized thermodynamics. We will assume
that underlying noise follows q-generalized Brownian motion. We will derive
analogous formulas as in the chapter about ordinary Bl.-Sch. option pricing.

Let St be a price of a risky asset, we will consider a process

Yt = ln
St+t0
St0

(5.23)

now we will assume that Y is given by

dYt = µdt+ σdΩt (5.24)

where a process Ωt with PDF P (x, t) is given by

dΩt = P (Ωt, t)
1−q
2 dBt (5.25)

Ωt is called a statistical feedback process and it connects a macroscopic level
given by P and a microscopic level represented by Ω. It is just standard Brow-
nian motion for q = 1.
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This definition of Ωt also leads to non-linear Fokker-Planck equation

∂

∂t
P (Ω, t|Ω′, t′) =

1

2

∂2

∂Ω2
P 2−q(Ω, t|Ω′, t′) (5.26)

A solution of this equation can be found only for unconditional PDF P (Ω, t).
Then we can replace Ω by Ω−Ω′ and t by t− t′. It follows from calculations we
made on page 49 when deriving that every process with independent increments
is also Markov. A solution is given by

Pq(Ω, t|Ω′, t′) =
1

Z(t− t′)
(1− β(t− t′)(1− q)(Ω− Ω′)2)

1
1−q (5.27)

Notice that this is equivalent to

Pq(Ω, t|Ω′, t′) =
1

Z(t− t′)
expq(−β(t− t′)(Ω− Ω′)2)

q-dependent constants Z, β are chosen so we would get usual autocorrelation
E(dΩtdΩt′) = δ(t− t′)dtdt′. Obviously, this holds for normal Brownian motion.
A concrete form of these constants is not important for us. It can be found in
[11] .

We will also consider only a certain range of the parameter q. We want Ωt
to be heavy tailed distribution, so we want q > 1. Otherwise, Pq can have only
a finite support. Further, we want Ωt to have a finite variance, which gives the
range of 1 < q < 5/3. As usually, standard model is recovered for q = 1.

With use of (5.23) and (5.24), we can rewrite Pq in terms of an asset price
St

Pq(ln(St+t0)| ln(St0)) =
1

Z(t− t0)
(1−

∼
β(t−t0)(1−q)(ln St+t0

St0
−µt)2)

1
1−q (5.28)

where
∼
β = β

σ2 .
From now on, we will presume t0 = 0 and Ω0 = 0 for simplicity and without

loss of generality. This choice makes Ω generalized Brownian motion.
By (5.24) is a given form of d lnSt from that we can derive

dSt = (µ+
σ2

2
P 1−q
q (Ωt, t))Stdt+ σStdΩt :=

∼
µStdt+ σStdΩt (5.29)

This can be easily verified by calculating d lnSt with a use of Ito lemma.
Notice that we started with the equation (5.29) instead of (5.24) as in the

chapter about standard Bl.-Sch. formula. Equivalence of these two approaches
is clear from the fact that the parameter

∼
µ (called rate of return) will not appear

here as well as in normal model in final formula.
We will derive a generalization of Bl.-Sch. equation (4.9). We will use a

little short cut in this derivation. Anyway, we will derive similar formula more
rigorously later with use of equivalent martingale measures and we will show
equivalence between these two approaches.
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Let us consider a derivative with a price given by function u = u(t, St) then
with a use of Ito lemma we get

du = u2dS + (u1 +
1

2
σ2S2P 1−q

q u22)dt (5.30)

where ui denotes partial derivations.
In the previous chapter, we derived that a price u can be ”modelled” by risk-
free portfolio consisting of bonds and shares St. We also derived that the right
number of shares we need to hold for one derivative is given by u2(t, St), so
portfolio

Π = u− u2S (5.31)

should be risk-free with interest rate r. For little changes of Π we have

∆Π = ∆u− u2∆S = (u1 +
1

2
σ2S2P 1−q

q u22)∆t (5.32)

but Π is also risk-free. Following relation analogous to properties of bonds given
by (4.3) holds

∆Π = rΠ∆t (5.33)

combined together, we can get generalized Black-Scholes equation

u1 +
1

2
σ2S2P 1−q

q u22 = r(u− u2S) (5.34)

It can be easily verified that we obtain classical Bl.-Sch. equation (4.9) in limit
q → 1.

We will try to derive a price u(t, St) with a use of an equivalent martingale
measure. In other words, we try to find a measure Q, under which a discounted
price

Gt = e−rtSt (5.35)

is martingale. We will need a more general version of theorem (4.1) for that. If
we have a process

Xt = q(t,Xt)dt+ dBt (5.36)

and we assume ∫ T

0

q2(t,Xt)dt <∞ (5.37)

then equivalent martingale measure Q , under which Xt is standard Brownian
motion, exists. Q is given by

Q(A) =

∫
A

MT (ω)dP (ω) (5.38)

where

MT (ω) = exp (−
∫ T

0

qdBt −
1

2

∫ T

0

q2dt) (5.39)
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We can proceed with deriving option pricing formula in similar manner as in
the previous chapter. With a use of Ito lemma, we can derive from (5.29)

dGt = (
∼
µ − r)Gdt+ σGdΩ (5.40)

We already know that a solution of this equation has the form

GT = G0 exp ((
∼
µ− r)T − σ2

2

∫ T

0

P 1−q
q dt+ σ

∫ T

0

P
1−q
2

q dBt) (5.41)

The relation for an original price St can be obtained with use of definition of
∼
µ

given by (5.29)

ST = exp (µT + σ

∫ T

0

P
1−q
2

q dBt) (5.42)

We need to find a measure Q, under which is Gt martingale, so if we rewrite
(5.40)

dGt = σGP
1−q
2

q d
∼
Bt (5.43)

where

d
∼
Bt = (

∼
µ− r

σP
1−q
2

q

)dt+ dBt (5.44)

we want
∼
Bt to be standard Brownian motion under Q. Pq is non-vanishing

bounded function of Ωt so we know that such Q exists and is given by (5.38,
5.39) .

Now we need a form of price S analogical to (5.42) but under a new measure
Q. We can easily see from (5.43)

d lnG = −σ
2

2
P 1−q
q dt+ σP

1−q
2

q d
∼
Bt (5.45)

from this we can find a form of Gt under Q by stochastic integration. Because
St = ertGt we get

ST = S0 exp (σ

∫ T

0

P
1−q
2

q d
∼
Bt +

∫ T

0

(r − σ2

2
P 1−q
q )dt) (5.46)

or equivalently

dSt = rSdt+ σSP
1−q
2

q d
∼
Bt (5.47)

The difference in form of St under original measure and under Q is only in
replacement of a time dependent rate of return

∼
µ by an interest rate r.

To calculate integrals in (5.46), we have to realize first that under Q following
holds

ΩT =

∫ T

0

P
1−q
2

q d
∼
Bt (5.48)
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further from the theorem (1.1) and the form of Pq we obtain

Ωt
d
=

√
β(T )

β(t)
ΩT (5.49)

where
d
= denotes equality of distributions.

We will use
∫ T

0
1

Z(t)dt = αT
2

3−q , where α is q-dependent constant (its form can

be found in [11]). We get following equality now

ST = S0 exp (σΩT + rT − σ2αT
2

3−q (1− (1− q)β(T )Ω2
T )) (5.50)

Let us assume that Vt is a price of a derivative of an underlying asset St. Let
us assume further that VT = h(ST ). This is obviously case of European call
option, where h(ST ) = (ST −K)+ where K is a strike price.

We will use conditional probability in similar manner as in the previous
chapter to derive the correct formula. We will work with natural filtration
of generalized Brownian motion It and use the fact that ΩT = ΩT − Ω0 is
independent of Ω0. From martingale property follows

V0 = EQ(e−rTh(ST )|I0) (5.51)

With a use of (5.50) and independence of ΩT and I0, we can calculate only a
normal mean value of function h(ST ) and we obtain

V0 =
e−rT

Z(T )

∫
R
h(ST )(1− β(T )(1− q)(ΩT )2)

1
1−q dΩT (5.52)

where ST is given by (5.50).
Notice that in the previous chapter, we derived this formula more generally

for Vt at any time. It would be possible here too but we would have to inte-
grate over (t, T ) in (5.46) so resulting integrals would be more complicated and
dependent on ΩT and Ωt. We would use independence of ΩT −Ωt with Ωt and
the fact that Ωt does not obtain more information than It. We could continue
similarly as we did above then.

A closed form solution of V0 for European call option (where h(ST ) =
(ST − K)+) can be analytically found, see [11]. However, we usually cannot
obtain a closed form solution of (5.52) for more complicated derivatives. So we
have to calculate it numerically or to try to solve generalized Bl.-Sch. equation
(5.34) with given boundary conditions. We will prove equivalence of these two
approaches in the next paragraph.

We will start with a solution we have obtained via equivalent martingale
measure. We will show that the solution also fulfils generalized Bl.-Sch. equa-
tion.
We define a function v(t, x) by

v(t, St) = EQ(h(ST )|It) (5.53)
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Clearly v(t, St) is martingale under Q with respect to filtration It, 0 ≤ t ≤ T .
A form of dSt under Q is given by (5.47), so we can use Ito lemma and get

dv(t, St) = (v1 + rStv2 +
1

2
σ2S2

t P
1−q
q v22)dt+ σSP

1−q
2

q v2d
∼
Bt (5.54)

because v(t, St) is martingale following must hold

v1 + rStv2 +
1

2
σ2S2

t P
1−q
q v22 = 0 (5.55)

if we denote a price of a derivative u(t, St), we get

u(t, St) = EQ(e−r(T−t)h(ST )|It) = e−r(T−t)v(t, St) (5.56)

if we insert v(t, St) = er(T−t)u(t, St) into (5.55), we will obtain Bl.-Sch. gener-
alized equation (5.34). So we have proved desired equivalence.

Above derived formulas give very good predictions for values of q around q =
1.5. They seem to be much more reliable then results achieved by classical Bl.-
Sch. option pricing. This coincides with the fact that heavy tailed distributions
are better for describing financial markets then Gaussian distribution. On the
other hand, it is theoretically quite unclear, if derivations of these formulas really
follow the ”right direction”. The obtained solution corresponds with empirical
observations but it might be caused just by a correct assumption to start with
a heavy tailed distributions.

In conclusion, we derived formulas with a real-world applicability with a use
of advanced mathematics and concepts from statistical physics. This should be
an enough motivation to study q-calculus and other related fields of mathematics
in order to improve or generalize these results. Also finding other parallels
between physics and finance should be very promising.



Appendix A

We will state an important theorem for probability theory here - Radon-Nykodum
theorem. It will give us an equivalent definition of equivalent measures. Two
measures µ, ν on same measurable space are equivalent if

µ(A) = 0 ⇐⇒ ν(A) = 0

we write (µ >> ν)⇔ (µ(A) = 0⇒ ν(A) = 0), we also need following definition.

Definition A.1. A measure µ on measurable space (X,F) is σ-finite if X is a
countable union of measurable sets with finite measure µ.

Clearly any probability measure and Lebesque’s measure are σ-finite.

Theorem A.1. For σ-finite measures µ, ν on the same measurable space (X,F)
holds µ << ν if and only if there exists measurable non negative function f
fulfilling

µ(A) =

∫
A

f(ω)dν(ω) A ∈ F

further f is given uniquely with an exception of sets with ν measure 0.

If µ = P ◦X−1 where X is random variable and P probability measure and
ν is Lebesque’s measure then f is just PDF as we know it.
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Appendix B

We briefly introduce main modes of convergence of random variables that we
used throughout this thesis.

Convergence in distribution
A sequence of random variables (An) converges in distribution (converges

weakly) to A, if for all bounded and continuous functions f following holds

lim
n→∞

Ef(An) = Ef(A)

convergence in distribution is equivalent to

lim
n→∞

FAn(x) = FA(x) ∀x ∈ D

where F denotes cumulative distribution and D set of all continuity points of
FA.

Also equivalent to An
D→ A is

lim
n→∞

ϕAn(x) = ϕA(x) ∀x ∈ R

where ϕ denotes characteristic function.

Convergence in probability

A sequence An converges to A in probability (An
P→ A) if

lim
n→∞

P (|A−An| > ε) = 0 ∀ε > 0

An important fact is that convergence in probability implies convergence in
distribution.

Lp convergence
Let p > 0 then we say that sequence An converges to A in Lp if all An and A

are Lp integrable variables and

lim
n→∞

E|A−An|p = 0

Further Lp convergence imply convergence in probability. L2 convergence is
usually called mean square convergence.
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Appendix C

We will show main steps of construction of stochastic integral in this appendix.
We will not go into all details and will not prove most of the statements here.
For a completely rigorous construction see [9].

As in the case of Daniell’s construction of integral, we will start with simple
processes - an analogue of step functions from non-random case.

Definition C.1. Process C = (Ct, t ∈ 〈0, T 〉) is called a simple process, if there
exists partition 0 = t0 < ... < tn = T such as

Ct = Zi for ti−1 ≤ t < ti

where Zi are adapted to Brownian filtration Fti−1
and EZ2

i <∞

So for a simple process we can easily calculate

It(C) =

∫ t

0

CsdBs =

k−1∑
i=1

Zi(Bti −Bti−1) + Zk(Bt −Btk−1
) (C.1)

for t ∈ (tk−1, tk〉.
We will move to properties of stochastic integral for simple processes now.

Of course, as in case of general Ito stochastic integral, following properties hold

1. It(aC1 + C2) = aIt(C1) + It(C2) a ∈ R

2. It(C) is martingale with respect to natural filtration of Brownian motion

3. EIt(C) = 0

4. E(It(C))2 =
∫ t

0
EC2

sds

5. It has continuous trajectories

The properties (1), (5) are in this case obvious. The property (3) follows directly
from property (2) because EI0(C) = 0. We will prove that It(C) is martingale
with respect to Brownian filtration. So we have to prove three things that It(C)
is adapted to Brownian filtration, which is obvious. Then we have to prove

E|It(C)| <∞
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which follows from the property (4) because E(It(C))2 <∞ implies E|It(C)| <
∞. The last property defining martingale reads

E(It(C)|Fs) = Is(C) for t > s (C.2)

we will prove this for s, t ∈ 〈tk−1, tk〉 but a proof for any t, s is exactly the same
just bit more lengthy. It follows from calculations

It(C) = Is(C) + Zk(Bt −Bs) (C.3)

so
E(It(C)|Fs) = Is(C) + ZkE(Bt −Bs) = Is(C) (C.4)

We will prove the property (4). We can assume t = tk without loss of generality.
We denote ∆Bi = Bti −Bti−1 then by direct calculations we can get

E(It(C))2 =

k∑
i=1

k∑
j=1

E(Zi∆BiZj∆Bj) =

k∑
i=1

E(Zi∆Bi)
2 =

k∑
i=1

EZ2
i (ti − ti−1)

(C.5)
in the last term we can recognize Riemann sum so we have

E(It(C))2 =

∫ t

0

EC2
sds (C.6)

We have proved all desired properties of stochastic integral for simple processes
now. The most complicated part is to generalize Ito integral for much larger
class of integrable processes. We will only outline how it can be done.

We want to integrate processes Ct, t ∈ 〈0, T 〉 fulfilling conditions

1. C is adapted to Brownian motion

2.
∫ t

0
EC2

sds <∞

A crucial point of construction is to prove that for every such process C sequence
of simple processes C(n) exists that following holds∫ T

0

E|Cs − C(n)
s |2ds→ 0 n→∞ (C.7)

In other words, simple processes are dense in space L2[Ω×〈0, T 〉,dP ×dt]. Fur-
ther, it can be proven that It(C

(n)) converges uniformly to It(C) = lim
n→∞

It(C
(n)),

which implies
E sup

0≤t≤T
|It(C)− It(C(n))|2 → 0 n→∞ (C.8)

It follows from this that general stochastic integral It(C) is correctly defined
for every C fulfilling required conditions, because (C.7) implies that its value
does not depend on a choice of C(n). Continuity of sample path is also veri-
fied thanks to uniform convergence. All other properties, which we derived for
simple processes, can be proven for general stochastic integral similarly by limit
transitions .



Bibliography

[1] W.Paul, J. Baschnagel: Stochastic Processes: From physics to finance.
Springer, 2000.

[2] K. Falconer: Fractal geometry, Mathematical foundations and applications.
Wiley, 1989.

[3] J.-P. Bouchard, M. Potters: Theory of financial risks, From statistical
physics to risk management. CUP, Cambridge, 2001.

[4] B. V. Gnedenko, A. N. Kolmogorov: Limit distributions for sums of inde-
pendent random variables. Adison-Wesley, 1968

[5] R. N. Mantegna, H. E. Stanley: An introduction to econophysics. CUP,
Cambridge, 2000.

[6] T. Mikosch: Elementary stochastic calculus with finance in view. World
scientific, 1998.

[7] H.Risken: The Fokker-Planck equation. Springer, 1988.

[8] J. C. Hull: Options, futures and other derivatives. Prentice Hal, Upper
Saddle River, 1997.

[9] B.Oksendal: Stochastic differential equations. Springer, 1994.

[10] B.B. Mandelbrot: Fractals and scaling in finance. SELECTA VOLUME E,
1996.

[11] L. Borland: Option pricing formulas based on a non-Gaussian stock price
model. Physical review letters, 2002.

[12] C. Tsallis, C. Anteneodo, L. Borland, R. Osorio: Non-extensive statistical
mechanics and economics. Physica A, 2003.

[13] S.Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg: Generalization of sym-
metric α-stable distributions for q > 1. APS/123-QED, 2010.

[14] A. E. Kyprianou: Levy processes and continuous-state processes. Univer-
sity of Bath, Claverton Down, 2000.

94



BIBLIOGRAPHY 95

[15] L. Borland: Microscopic dynamics of non-linear Fokker-Planck equation.
Physical review E, 1998.

[16] S.Umarov, C. Tsallis, S. Steinberg: On a q-central limit theorem consis-
tent with nonextensive statistical mechanics. Milan journal of mathematics,
2008.

[17] J.Korbel: Application of generalized statistics in econophysics, 2010.


	Probability theory
	Preliminaries
	Central limit theorem
	Beyond central limit theorem: Levy distributions
	Stable distributions
	Generalized central limit theorem
	Infinitely divisible distributions


	Stochastic calculus
	Stochastic processes
	Brownian motion
	Conditional expectation
	Martingales

	Stochastic integral
	Ito integral
	Ito lemma
	Stochastic differential equation

	Levy processes
	Stable processes

	Different approach to stochastic processes: Fokker-Planck equation
	Markov processes
	Fokker-Planck equation


	Fractal geometry
	Fractals
	Haussdorf dimension and measure
	Box counting dimension
	Self similar sets

	Random fractals
	Brownian motion
	Fractional Brownian motion
	Levy stable processes

	Multifractals
	Multiftactal spectrum


	Black-Scholes formula
	Financial markets
	Options

	Black-Scholes option pricing
	Building portfolio
	Option pricing problem
	Change of measure

	Beyond Black-Scholes formula
	Implied volatility
	Beyond geometric Brownian motion


	From thermodynamics to finance
	Boltzmann-Gibbs statistics
	MaxEnt principle
	Limitations of Boltzmann-Gibbs statistics

	Non extensive statistical mechanics 
	Tsallis entropy
	Quantum calculus

	Non-Gaussian option pricing

	 
	
	 

