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pouze podklady ( literaturu, software, atd. ) uvedené v přiloženém seznamu.
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1 Introduction

Metamaterials are artificial materials whose structure is designed so they have
properties which may not be found in conventional materials. Although this
is a general term, it is used primarily for metamaterials with negative index n
where electrical permittivity ε and magnetic permeability µ are simultaneously
negative.

The first theoretical study of such materials comes from Russian physicist
Viktor Veselago [15]. In this paper he admitted (and concluded) that substances
with negative ε and µ have some properties different from ordinary substances
with positive values of permittivity and permeability. To understand these
properties we shall look at Maxwell’s equations where ε and µ appear separately,
and not in the form of their product like in squared refractive index n2 = εµ.

rot ~E = −∂
~B

∂t
, (1.1a)

rot ~H =
∂ ~D

∂t
, (1.1b)

and we substitute here from constitutive relations ~B = µ ~H, ~D = ε ~E. In a plane

monochromatic wave all quantities are proportional to ei(
~k~r−ωt) where ~k is a

wave vector of the monochromatic wave, ω its frequency, ~r is a radius vector
and t is time. Because of this fact the expressions above reduce to

~k × ~E = ωµ ~H, (1.2a)

~k × ~H = −ωε~E. (1.2b)

Now we can see that for positive values of ε and µ the vectors ~E, ~H,~k form a
right-handed set of vectors and for negative ε and µ they form a left-handed
set. That is why materials with simultaneously negative permittivity and per-
meability are called “left-handed”. Although the wave vector is in the opposite
direction in left-handed substances, the Poynting vector, representing energy
flow and defined as ~S = ~E × ~H, forms always a right-handed set with ~E and
~H. From this we can see that in the left-handed materials the group velocity
(and energy flow) is always opposite to the wave velocity. These results have
many interesting consequences, for example reversed Doppler effect and reversed
Cerenkov radiation, perfect lens and even metamaterial cloaking.

However the absence of such material in the sixties led to neglect of this
subject. After thirty years at the brink of the millennium it was shown how
to make materials with negative µ (substance with negative ε were known in
plasma physics for relatively long time). Medium with negative permittivity can
be created as a system of parallel wires. Medium with negative permeability
was designed by John Pendry [9] in 1999. It was created from two concentric
conductive rings called split ring resonators (SRR) which were capacitively and
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inductively coupled. The resonator acts as magnetic dipole with very intense
response to the incident wave. These resonators can be built in two-dimensional
and three-dimensional bodies and so we get better properties. In 2000 David
R. Smith [13] constructed medium with negative refractive index. He combined
field of small wires (for negative permittivity) with field of split resonators (for
negative permeability) in such way that resonance proceeded at the same fre-
quency.

Figure 1: A metamaterial with ε < 0: a periodic structure composed of thin
infinite wires arranged in a simple cubic latice, mimics the response of plasma.
[10]

Figure 2: This metamaterial is designed to give a magnetic response to an ex-
ternal magnetic field in the GHz region of the spectrum: rings are manufactured
in layers which are then stacked to form an array of resonant columns. [10]
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Figure 3: Schematic permeability of the magnetic metamaterial shown in Figure
2 showing the resonant response of the structure at ωres. Note that the frequency
at which µr = −1 is far removed from the resonant frequency and in this instance
is in a region where µi is small. [10]

Figure 4: A split ring structure etched into copper circuit board plus copper
wires to give negative µ and negative ε. Structure made at USCD by David
Smith. [10]

The subject began to develop since those moments. That is because there
are many promising applications of metamaterials. For example metamaterial
antennas and absorbers, perfect lenses, cloaking devices, terahertz detectors,
new high-tech magnetic materials and much more [10].
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In this thesis we introduce and examine two operators derived from Maxwell’s
equations describing discontinuity of permittivity ε in zero. This discontinuity
describes how the wave propagates through interface between right-handed and
left-handed substances. The first operator is derived immediately from the elec-
tric part of Maxwell’s equations. The second is a generalization of the first one
but there is included the principle of causality which is required by physics.
This condition is expressed by adding small positive imaginary parts to ε and µ
(in our case only to ε) representing the fact that real systems are always slightly
lossy [10].

This thesis is organized as follows. In the next chapter we show how to
derive mathematical operator from Maxwell’s equations. Also we give here a
small physical description of the effect of invisibility. In Chapter 3 we introduce
self-ajoint extension of the operator defined in previous chapter. Then in Chap-
ter 4 we point out some important notions from theory of sectorial operators
and sesquilinear forms which we use to introduce the “invisibility operator” rig-
orously. The spectrum of both operators is examined in Chapter 5. There
equipped with calculated eigenvalues we can mathematically correctly justify
physical complexification. Our results are then summed up in Chapter 6.
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2 From Maxwell’s equations to the mathemati-
cal model

The operators we want to consider are derived from only electric part of Maxwell’s
equations.

div ~D = ρ, (2.1a)

rot ~E = 0. (2.1b)

These two equations represent Gauss’s and Faraday’s law with no magnetic field.
Equation (2.1b) expresses that the electrostatic field is potential and therefore

we can introduce potential ~E = ∇ϕ. We substitute this equation together with
relation ~D = ε ~E (we assume that the material is homogeneous) to (2.1a) and
we get

div ε(~x) gradϕ = ρ. (2.2)

The derived operator in a one-dimensional setting is

H = − d

dx
ε(x)

d

dx

D(H) = {ψ ∈ L2((−1, 1))| − d

dx
ε(x)

d

dx
ψ(x) ∈ L2((−1, 1)), ψ(±1) = 0}

(2.3)

We choose here negative sign for this operator because it is positive in usual case
when ε > 0. But because we want to consider metamaterials where permittivity
is negative, we define function ε(x) as

ε(x) =

{
−1, x ∈ Ω− = (−1, 0)

+1, x ∈ Ω+ = (0, 1)
(2.4)

Now let us have a closer look at the operator H. We understand the derivative
in (2.3) in distributional sense. We can see from (2.2) that expression on the
left side must be a function. Therefore because of the derivatives in (2.3) we
consider ψ(x) and ε(x) d

dxψ(x) as the continuous functions in (−1, 1). Since the
permittivity ε(x) is defined as (2.4), the only problem with continuity is in zero.
All together we get finally an operator

(H0ψ)(x) =

{
+ψ′′(x), x ∈ Ω−

−ψ′′(x), x ∈ Ω+

D(H0) = {ψ ∈ H2((−1, 0))⊕H2((0, 1))|ψ(−1) = ψ(1) = 0,

ψ(0−) = ψ(0+),

ψ′(0−) = −ψ′(0+)},

(2.5)

where H2((−1, 0)) ⊕ H2((0, 1)) is a direct sum of Sobolev spaces [1]. In one-
dimensional space we can identify it with AC2([−1, 0]) ⊕ AC2([0, 1]). Let us
note that the boundary conditions ψ(±) = 0 are as well as in (2.3) only our
choice. We examine this operator in Section 3 and prove that it is self-adjoint.
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2.1 Effect of invisibility

There are many ways to use metamaterials as was stated in the Introduction.
However one of them arise more interest than the others and that is the meta-
material cloaking. In last few years there are exponentially increasing atten-
tion to create an electromagnetic cloak of invisibility. It can be based on vari-
ous schemes [8] for example localized resonance, dipolar scattering cancellation,
tunneling light transmittance, sensors and active sources, and transformation
optics. Let us summarize some results of the last approach a little bit more [11].

Basics of transformation optics were established in the sixties [3], [12]. How-
ever these important studies were neglected and almost forgotten but their usage
in metamaterial cloaking brought them back to life. Thus the field of transfor-
mation optics has been reestablished [11].

In order to create the electromagnetic cloak we need to have such material
that is in design flexible enough to control and direct electromagnetic fields in
the way we want. This is the key property of metamaterials which owe it to
the subwavelength details of the structure. More informations about design and
constructions of metamaterials can be found for example in [14]. In this time
we can think of material that can be constructed in a way that permittivity and
permeability may vary arbitrarily throughout a material, taking arbitrary sign
for its values as desired. It can be shown [11] how electromagnetic quantities:

electric displacement field ~D, the magnetic field intensity ~B and the Poynting
vector ~S, can be directed at will. Let us imagine a source which is embedded in
some elastic medium that can be pulled and stretched (see Figure 5). We might
consider for example a uniform electric field and require that the field lines avoid
a given region (which is what we want in the case of invisibility). As we destort
the material we find useful to choose Cartesian mesh so it is easy for us to keep
track of distortions. We can now understand it as coordinate transformation
between the original Cartesian mesh and the distorted mesh. It turns out that
Maxwell’s equations have the same form in any coordinate system (that is also
after this transformation) but the refractive index n, or specifically permittivity
ε and permeability µ, are scaled by a common factor. For more details of this
transformation see [11].

Now suppose that we want to hide an object contained in a given volume of
space. If we imagine this situation, we require that anyone outside the metama-
terial cannot see any difference in viewing. They must be completely unaware
that something is here concealed. Therefore we need metamaterial to bend the
rays around itself and return them to their original trajectory (see Figure 6).
An alternative scheme has been recently investigated for the concelment of ob-
jects but there is a need for specific knowledge of the shape and the material
properties of the object being hidden [11]. Therefore if the object changes the
cloak must change as well.
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Figure 5: Left: a field line in free
space with the background Carte-
sian coordinate grid shown. Right:
the distorted field line with the
background coordinates distorted in
the same way. [11]

Figure 6: A point charge located
near the cloaked sphere. The field
is excluded from the cloaked re-
gion, but emerges from the cloaking
sphere undisturbed. [11]

Although theory implies metamaterial cloaking to be very promising, there
are still some issues and complications to deal with [11]. For instance in the
example above an arbitrary object may be hidden because it remains untouched
by external radiation. There is also an unavoidable singularity in the ray tracing.
Look at the Figure 6 and consider a ray heading directly towards the centre of
the sphere. Then the ray does not know which way to bend itself. Another
problem is whether the cloaking is broad band or specific to a single frequency.
In our example above we considered only one frequency. We also wanted the
ray to flow around the sphere unchanged but it had to follow longer trajectory
than it would have done in free space so in order to have the same phase a phase
velocity must be grater than the velocity of light. There is no problem now but
one arose when we require also absence of dispersion. For more details see [11].



3 SELF-ADJOINT EXTENSION OF SYMMETRIC OPERATOR 15

3 Self-adjoint extension of symmetric operator

3.1 Proof that H0 is self-adjoint

Now we examine the operator H0 from Section 2. As was said there we want
to find out whether this operator is self-adjoint. Self-adjointness is very useful
property because we know that spectrum of such operator is real. Let us recall
the definition of self-adjoint operator.

Definition 3.1.1. Operator H is self-adjoint if H is symmetric and D(H) =
D(H∗).

It is easy to see that operator (2.5) is symmetric using twice integration by
parts. For all ψ,ϕ ∈ D(H0) is

(ψ,H0ϕ) =

∫ 0

−1
ψϕ′′ −

∫ 1

0

ψϕ′′ =

= −
∫ 0

−1
ψ′ϕ′ +

∫ 1

0

ψ′ϕ′ + [ψϕ′]0
−

−1 − [ψϕ′]10+ =

=

∫ 0

−1
ψ′′ϕ−

∫ 1

0

ψ′′ϕ− [ψ′ϕ]0
−

−1 + [ψ′ϕ]10+ + [ψϕ′]0
−

−1 − [ψϕ′]10+

The sum of the brackets gives zero (because of the boundary conditions) and
so for all ψ,ϕ from domain of H0 we get equality (ψ,H0ϕ) = (H0ψ,ϕ) which
expresses that the operator H0 is symmetric. To prove equality of the domains
we recall definition of adjoint operator.

Definition 3.1.2. Let H be an operator on Hilbert space H . Then adjoint
operator H∗ is determined by the relation (ϕ,Hψ) = (H∗ϕ,ψ) uniquely for
all ψ ∈ D(H) and ϕ ∈ D(H∗). The domain of H∗ is defined to be the set
D(H∗) = {φ ∈H |∃η ∈H ,∀ψ ∈ D(H), (φ,Hψ) = (η, ψ), η = H∗φ}.

We will modify an expression of the form (φ,H0ψ) where φ ∈ D(H∗0 ),
ψ ∈ D(H0) according to the definition of adjoint operator. Similarly as above
we want to use twice integration by parts but first we must find out whether φ′′

exists. For this we consider a restriction of the operator H0

(Ḣ0ψ)(x) =

{
+ψ′′(x), x ∈ Ω−

−ψ′′(x), x ∈ Ω+

D(Ḣ0) = {ψ ∈ H2((−1, 0))⊕H2((0, 1))|ψ(−1) = ψ(1) = 0,

ψ(0−) = ψ(0+) = 0,

ψ′(0−) = ψ′(0+) = 0},

(3.1)

and its adjointness [2]

(Ḣ∗0ψ)(x) =

{
+ψ′′(x), x ∈ Ω−

−ψ′′(x), x ∈ Ω+

D(Ḣ∗0 ) = {ψ ∈ H2((−1, 0))⊕H2((0, 1))|ψ(−1) = ψ(1) = 0},

(3.2)
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Since (3.1) is a restriction of operator (2.5) we know that Ḣ0 ⊂ H0. For their
adjointness holds H∗0 ⊂ Ḣ∗0 and for operator and its adjointness there is relation
H0 ⊂ H∗0 . All together we have

Ḣ0 ⊂ H0 ⊂ H∗0 ⊂ Ḣ∗0 (3.3)

and thus φ′′ exists. Now we can use integration by parts as we wanted.

(φ,H0ψ) =

∫ 0

−1
φψ′′ −

∫ 1

0

φψ′′ =

=

∫ 0−

−1
φ′′ψ −

∫ 1

0+

φ′′ψ + [φψ′]0
−

−1 − [φψ′]10+ − [φ′ψ]0
−

−1 + [φ′ψ]10+
!
=

!
= (η, ψ) = (H∗0φ, ψ)

Because we want to prove equality between domains of original and adjoint
operator, we need the sum of four brackets to be zero.

[φψ′]0
−

−1 − [φψ′]10+ − [φ′ψ]0
−

−1 + [φ′ψ]10+
!
= 0 (3.4)

The left side of this equation can be rewritten as follows

LS = φ(0−)ψ′(0−)− φ(−1)ψ′(−1)− φ(1)ψ′(1) + φ(0+)ψ′(0+)−

− φ′(0−)ψ(0−) + φ′(−1)ψ(−1) + φ′(1)ψ(1)− φ′(0+)ψ(0+) =

= −ψ(0+)[φ′(0+) + φ′(0−)] + ψ′(0+)[φ(0+)− φ(0−)]−

− ψ′(−1)φ(−1)− ψ′(1)φ(1)
!
= 0

(3.5)

From the definition of adjoint operator the equality (3.4) must be valid for
all ψ ∈ D(H0). Therefore we choose some specific functions from the domain
to make this equation valid.

-1.0 -0.5 0.5 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 7: Function vanishing at zero
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0.10

0.12

0.14

Figure 8: Function vanishing at zero

First we choose function (see Figure 7) that has finite arbitrary nonzero
derivative in −1 from which it increases and then continuously decreases and
vanishes in a neighbourhood of zero. On interval (0, 1) this function is constantly
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zero. For such function the expression (3.5) reduces to −ψ′(−1)φ(−1) = 0 and
therefore we have

φ(−1) = 0 (3.6)

The second function (see Figure 8) we choose in reverse to the first one with
respect to the y-axis. That means that this function is zero on interval (−1, 0),
it vanishes in a neigbourhood of zero from the right and there is finite arbitrary
nonzero derivative in 1 to which this function decreases. All together it again
reduces the expression (3.5) from which we have

φ(1) = 0 (3.7)

-1.0 -0.5 0.5 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 9: Function vanishing at bound-
ary

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Figure 10: Constant function at zero

In the third and fourth case we want ψ′(−1) = ψ′(1) = 0. Thus our third
function (see Figure 9) vanishes in a neighbourhood of boundary, there are finite
arbitrary nonzero derivatives from the left and right in zero and the value of this
function is here zero. Then from (3.5) remains only ψ′(0+)[φ(0+)− φ(0−)] = 0
and therefore using the arbitrariness of ψ′(0) we obtain

φ(0+) = φ(0−). (3.8)

The last function (see Figure 10) also vanishes in a neighbourhood of bound-
ary but this time we choose it constant and nonzero in zero. Therefore only
nonzero part of (3.5) is −ψ(0+)[φ′(0+) + φ′(0−)] = 0 and then we obtain the
last equation

φ′(0+) = −φ′(0−) (3.9)

The equations (3.6) – (3.9) are boundary conditions for the operator H∗0
which are clearly the same as for operator H0. It means that D(H0) = D(H∗0 )
and by definition the operator H0 is self-adjoint.
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4 Definition of a non-self-adjoint operator

In this section we want to define the “invisibility” operator. The difference
between this and the original operator is that we change our earlier defined
permittivity (2.4) in a way that we add to both +1 and −1 a positive number
ε multiplied by imaginary unit. Thus if the parametr ε is zero, we have back
the operator H0. We denote such operator Hε and in this chapter we rigorously
define it via sesquilinear forms.

But there is a problem with a definition of such operator because the original
operator H0 is not bounded from below so standard methods for introduction
such operator cannot be used. Physical explanation can be done by looking at
refractive index n =

√
εµ. When both ε and µ are positive, we choose the pos-

itive sign for the square root. But in the case when ε and µ are simultaneously
negative, causality forces us to choose a negative sign for refractive index. That
is because causality requires that both ε and µ have small positive imaginary
parts representing the fact that the real systems are always slightly lossy. [10]

4.1 Sectorial operators and sesquilinear forms

In this section we summarize basic facts about sectorial operators and sesquilin-
ear forms. We also state here Representation theorem which we use to introduce
operator Hε rigorously.

As was said at the beginning of this chapter the operator H0 is not bounded
from below. However we will show in the next section that the new operator Hε

is semibounded (that means bounded either from below or from above) and even
sectorial (definition of sectorial operator can be seen further in this section). We
have a Representation theorem for such forms [7].

Theorem 4.1.1 (Representation theorem). Let h be densely defined, closed
sectorial form in H . Then the operator

D(H) := {ψ ∈ D(h)|∃η ∈H ,∀φ ∈ D(h), h(φ, ψ) = (ψ, η)}, (4.1)

Hψ := η, (4.2)

is m-sectorial.

To use this theorem we need first understand the new terms stated there.
Let us begin with notion of numerical range.

Definition 4.1.2. Let H be an operator in a Hilbert space H . The numerical
range Θ(H) of H is the set of all complex numbers (ψ,Hψ) where ψ changes
over all ψ ∈ D(H) with ‖ψ‖ = 1.

This notion is important for operators in a Hilbert space H and we use
it in most of our definitions here. Two very important properties of numerical
range are that point spectrum σp(H) of H is subset in Θ(H) and that numerical
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range is a convex set. For example we know that spectrum σ(H0) is subset in R
because H0 is self-adjoint. We show in Section 5 that the point spectrum of H0

consists of isolated eigenvalues and there are infinitely many of them. Because
the numerical range has to be a convex set, it implies that Θ(H) = R.

For understanding what m-sectorial operator is we need to start with more
general accretive operators [7].

Definition 4.1.3. An operator H in H is said to be accretive if the numerical
range Θ(H) is a subset of the right half-plane, that is, if Re(ψ,Hψ) ≥ 0 for all
ψ ∈ D(H).
An operator H which satisfies that (H + λ)−1 ∈ B(H ) and

∥∥(H + λ)−1
∥∥ ≤

(Reλ)−1 for Reλ > 0 is said to be m-accretive.

The m-accretive operators have many useful properties. For example an
m-accretive operator H is maximal accretive in the sense that H is accretive
and there is no proper accretive extension. It can be proved that such operator
is equivalent to a closed maximal accretive operator and that H is necessarily
densely defined.

Sometimes the numerical range Θ(H) is not contained in the whole right
half-plane or it contains more than that. If such operator still has a structure
of accretive operator we have a quasi-accretive operator.

Definition 4.1.4. Operator H is quasi-accretive (quasi-m-accretive) if H + α
is accretive (m-accretive) for some scalar α.

This definition expresses that numerical range Θ(H) is contained in half-
plane of the form Re ζ ≥ const. Finally sometimes the numerical range can be
a subset of sector which is defined below.

Definition 4.1.5. If numerical range Θ(H) ofH is subset of a sector |arg(ζ − γ)| ≤
θ < π/2, then H is said to be sectorial. γ and θ are called a vertex and semi-
angle of the sectorial operator H.
Operator H is said to be m-sectorial if it is sectorial and quasi-m-accretive.

So we finally reached definition of m-sectorial operator which we obtain from
Representation theorem. Let us just note that spectrum of m-sectorial operator
H with a vertex γ and a semi-angle θ is a subset of the sector |arg(ζ − γ)| ≤ θ.

Notion of sectoriality is very similar for forms as for operators. Furthermore
it is even easier to handle with quadratic or sesquiliner forms. We will need only
two definitions which are almost identical as above.

Definition 4.1.6. The numerical range Θ(h) of form h is the set of values of
h[ψ] for all ψ ∈ D(h) with ‖ψ‖ = 1.

Definition 4.1.7. The form h is said to be sectorial if its numerical range Θ(h)
is a subset of a sector of the form |arg(ζ − γ)| ≤ θ where 0 ≤ θ < π

2 , γ ∈ R. We
shall call γ a vertex and θ a corresponding semi-angle of the form h.
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It is easy to see that the definition above for all ψ ∈ D(h) means that

Re(h[ψ]) ≥ γ (4.3)

|Im(h[ψ])| ≤ (tan θ)(Re(h)− γ)[ψ] (4.4)

which is useful when we prove that a form is sectorial.

The last two notions of Representation theorem are well known in functional
analysis, nevertheless we remind them shortly also because one interesting prop-
erty for sectorial forms.

Definition 4.1.8. A form h is densely defined if D(h) is dense in H .

Definition 4.1.9. A sectorial form h is closed if ψn −→
h
ψ implies that ψ ∈ D(h)

and h[ψn − ψ]→ 0.

Symbol ψn −→
h
ψ says that a sequence ψn is h-convergent to ψ ∈H and that

is if ψn ∈ D(h), ψn → ψ and h[ψn−ψm]→ 0 for n,m→∞. From the definition
it follows immediately that h-convergence is equivalent to h+α-convergence for
any scalar α. In the next section we find very useful following lemma. That is
why we also state here a proof of it [7].

Lemma 4.1.10. Let h be a sectorial form. h-convergence is equivalent to Re(h)-
convergence.

Proof. First we denote Reh = h and Imh = k. From the (4.3) and (4.4) it easily
follows that

|(h− γ)[ψ, φ]| ≤ (h− γ)[ψ]1/2(h− γ)[φ]1/2 (4.5)

|k[ψ, φ]| ≤ (tan θ)(h− γ)[ψ]1/2(h− γ)[φ]1/2 (4.6)

and by adding this two together we have

|(h− γ)[ψ, φ]| ≤ (1 + tan θ)(h− γ)[ψ]1/2(h− γ)[φ]1/2 (4.7)

It follows further

(h− γ)[ψ] ≤ |(h− γ)[ψ]| ≤ (sec θ)(h− γ)[ψ] (4.8)

From this last inequality we get that (Reh − γ)[ψn − ψm] → 0 if and only if
(h− γ)[ψn − ψm]→ 0

If we use this lemma in Definition 4.1.9 it follows that h is closed if and only
if Reh is closed.
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4.2 Operator Hε

Now we are equipped with all basic facts of theory of sectorial forms that we
need to introduce the “invisibility” operator Hε. We want it to act as follows

(Hεψ)(x) = − d

dx
αε(x)

d

dx
(4.9)

αε(x) =

{
−1 + iε x ∈ Ω−

1 + iε x ∈ Ω+

, (4.10)

Corresponding quadratic form for such operator is

hε[ψ] = (1 + iε) ‖ψ′‖2+ + (−1 + iε) ‖ψ′‖2− (4.11)

where ‖·‖− is norm in L2((−1, 0)), similary ‖·‖+ is norm in L2((0, 1)) and ‖·‖ is
norm in L2((−1, 1)). For this form we choose domain as D(hε) = H1

0 ((−1, 1)).
From the definition of hε we can see that its numerical range is a subset of

complex plane with a positive imaginary part. But according to Definition 4.1.7
we need a subset of half-plane of the form Re ζ ≥ γ. To change our quadratic
form in such way we multiply it by eiθ. We can easily find that appropriate θ
is −π2 and so we get “rotated” form

aε[ψ] = −ihε[ψ] = ε(‖ψ′‖2+ + ‖ψ′‖2−) + i(‖ψ′‖2− − ‖ψ
′‖2+) =

= ε ‖ψ′‖2 + i(‖ψ′‖2− − ‖ψ
′‖2+)

(4.12)

Now let’s examine whether this form is sectorial using (4.3), (4.4)

Re(aε[ψ]) = ε ‖ψ′‖2 > 0 (4.13)

|Im(aε[ψ])| =
∣∣∣‖ψ′‖2− − ‖ψ′‖2+∣∣∣ ≤ ‖ψ′‖2+ + ‖ψ′‖2− =

1

ε
Re(aε[ψ]) (4.14)

From this we can see that vertex γ = 0 and for θ ∈ [0, π2 )

|Im(aε[ψ])| ≤ tan(θ)(Re(aε)− 0)[ψ], (4.15)

Thus aε[ψ] is a sectorial form.

Let us note that Re(aε) is a closed form because from (4.13) we can see
that it is associated form with operator H0 (except for the multiplication by ε).
The operator H0 is self-adjoint and every self-adjoint operator is also closed,
therefore Re(aε) is closed.

Theorem 4.2.1. There is an m-sectorial operator Aε associated with form
(4.12) and for all ψ from its domain it acts as

(Aεψ)(x) =

{
(−i− ε)ψ′′(x), x ∈ Ω− = [−1, 0]

(i− ε)ψ′′(x), x ∈ Ω+ = [0, 1]

D(Aε) = {ψ ∈ H1
0 ((−1, 1)), ψ ∈ H2((−1, 0))⊕H2((0, 1))|

(ε+ i)ψ′(0−) = (ε− i)ψ′(0+)},

(4.16)
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Proof. It is easy to check that assumptions of Representation theorem 4.1.1
hold. Form aε is densely defined because space H1((−1, 1)) is dense in H =
L2((−1, 1)), closed due to corollary of Lemma 4.1.10 and sectorial as was proved
above. Therefore we know that there is an m-sectorial operator associated with
the form aε. Now we want to find how it acts and explicit its domain. Following
procedure we use is the same as described in Perturbation Theory for Linear
Operators by Kato [7].

Let us have sesquilinear form based on definition (4.12)

aε[φ, ψ] = ε(φ′, ψ′)+ + ε(φ′, ψ′)− + i(φ′, ψ′)− − i(φ′, ψ′)+ (4.17)

Let Aε be the operator associated with the form aε and for ψ ∈ D(Aε) let us
have Aεψ = η. The form aε[φ, ψ] where φ ∈ D(aε) is from Representation
theorem equal to (φ, η) where η = Aεψ. We write down this equality in the
form of integral∫ 0

−1
(ε+ i)φ′ψ′ +

∫ 1

0

(ε− i)φ′ψ′ =

∫ 0

−1
φη +

∫ 1

0

φη (4.18)

Now we consider z an indefinite integral of η, thus z′ = η. Then∫ 0

−1
φη +

∫ 1

0

φη =

∫ 0

−1
φz′ +

∫ 1

0

φz′ = −
∫ 0

−1
φ′z −

∫ 1

0

φ′z+

+ φ(0−)z(0−)− φ(−1)z(−1) + φ(1)z(1)− φ(0+)z(0+)

(4.19)

We substitute it into (4.18) and we get∫ 0

−1
φ′((ε+ i)ψ′ + z) +

∫ 1

0

φ′((ε− i)ψ′ + z)−

− φ(0−)z(0−) + φ(−1)z(−1)− φ(1)z(1) + φ(0+)z(0+) = 0

(4.20)

This equality is true for every φ ∈ D(aε), that is, every φ such that φ is ab-
solutely continuous and φ′ ∈ L2(−1, 1). For any φ′ ∈ L2(−1, 1) such that∫ 0

−1 φ
′ = 0, φ(x) =

∫ x
−1 φ

′(x)dx, φ(x) = 0 for x ∈ (0, 1] satisfies the conditions

φ ∈ D(aε),φ(−1) = φ(0−) = 0, so that [(ε+ i)ψ′+ z] is orthogonal to such φ′ by
(4.20) and thus it must be equal to constant c−. Similarly for any φ′ ∈ L2(−1, 1)

such that
∫ 1

0
φ′ = 0, φ(x) =

∫ 1

x
φ′(x)dx, φ(x) = 0 for x ∈ [−1, 0) satisfies the

conditions φ ∈ D(aε),φ(0+) = φ(1) = 0, so that [(ε− i)ψ′ + z] is orthogonal to
such φ′ by (4.20) and thus it must be equal to constant c+. Substituting this
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into (4.20) we obtain∫ 0

−1
φ′c− +

∫ 1

0

φ′c+ − φ(0−)z(0−) + φ(−1)z(−1)− φ(1)z(1) + φ(0+)z(0+) =

= (c− − z(0−))φ(0−) + (z(−1)− c−)φ(−1)+

+ (c+ − z(1))φ(1) + (z(0+)− c+)φ(0+) =

= (c− − z(0−) + z(0+)− c+)φ(0) + (z(−1)− c−)φ(−1)+

+ (c+ − z(1))φ(1) = 0
(4.21)

Since φ(−1) and φ(1) vary over all complex numbers when φ varies over D(aε),
their coefficients in (4.21) must vanish. We write down these equalities and use
that the constants c− and c+ can be written as c∓ = (ε± i)ψ′(a) + z(a) where
a is arbitrary point chosen in a way that z vanishes (thus a ∈ −1, 0, 1).

c− − z(0−) + z(0+)− c+ = (ε+ i)ψ′(0−)− (ε− i)ψ′(0+)
!
= 0 (4.22)

z(−1)− c− = −(ε+ i)ψ′(−1)
!
= 0 (4.23)

c+ − z(1) = (ε− i)ψ′(1)
!
= 0 (4.24)

The equalities (4.23) and (4.24) are satisfied if we choose domain D(Aε) ⊂
H1

0 ((−1, 1)). Equation (4.22) is a boundary condition on the derivative at zero
which is a generalization of such condition we have for operator H0. From
(ε+ i)ψ′ + z = c− and (ε− i)ψ′ + z = c+ it follows that (ε+ i)ψ′ and (ε− i)ψ′
are absolutely continuous and η = −((ε+ i)ψ′)′ on [−1, 0) and η = −((ε− i)ψ′)′
on (0, 1]. In this way we have proved that each ψ ∈ D(Aε) has properties that
ψ and ψ′ are absolutely continuous and ψ′′ ∈ L2(−1, 1) and that ψ satisfies the
boundary conditions (4.22) – (4.24).
In this way we have proved that the operator Aε associated with the form aε is
m-sectorial and acts the same as it is stated in this theorem.

Now we have the operator Aε and to finally obtain Hε we must multiply Aε
by i (rotate the numerical range counter-clockwise by π/2).

(Hεψ)(x) =

{
(1− iε)ψ′′(x), x ∈ Ω− = [−1, 0]

(−1− iε)ψ′′(x), x ∈ Ω+ = [0, 1]

D(Hε) = {ψ ∈ H1
0 ((−1, 1)), ψ ∈ H2((−1, 0))⊕H2((0, 1))|

(ε+ i)ψ′(0−) = (ε− i)ψ′(0+)},

(4.25)

and that is our “invisibility” operator.



5 SPECTRAL ANALYSIS 24

5 Spectral analysis

5.1 Spectrum of the operator H0

Firstly we take a look at the spectrum of self-adjoint operator H0 (relation
(2.5)). Also we examine a little more general operator which also crosses zero
and has a jump discontinuity there but its boundaries does not have to be at
−1, 1 and this interval (−1, 1) not even need to be symmetric.

5.1.1 Spectrum on symmetric interval (−1, 1)

The equation for eigenvalues is H0ψ = λψ. We have to examine it on two
subintervals Ω+ = (0, 1),Ω− = (−1, 0) because there the equations differ from
each other.

Ω+ : ψ′′ + λψ = 0

Ω− : ψ′′ − λψ = 0
(5.1)

We first solve the case when λ = 0. Then there is the same equation for both
sets

ψ′′ = 0 (5.2)

and so we can easily write down the solutions

Ω+ : ψ1(x) = A1x+B1

Ω− : ψ2(x) = A2x+B2

(5.3)

From boundary conditions on functions ψ1,2 we can determine the constants

ψ1(+1) = A1 +B1 = 0 (5.4)

ψ2(−1) = −A2 +B2 = 0 (5.5)

ψ1(0+) = B1 = ψ2(0−) = B2 (5.6)

ψ′1(0+) = A1 = −ψ′2(0−) = −A2 (5.7)

thus, we obtain relations: A1 = −B1, A2 = B2, B1 = B2, A1 = −A2 and so
we find the eigenfunctions for eigenvalue λ0 = 0 with one arbitrary integration
constant:

Ω+ : ψ1(x) = A1x−A1 = A1(x− 1)

Ω− : ψ2(x) = −A1x−A1 = −A1(x+ 1)
(5.8)

For nonzero λ we proceed similarly. When we solve the differential equations
(5.1) on each interval, we get the solutions

Ω+ : ψ3(x) = C1 sin
√
λx+D1 cos

√
λx

Ω− : ψ4(x) = C2 sinh
√
λx+D2 cosh

√
λx

(5.9)

Remark 5.1.1. We should say that although there is a square root in (5.9), we
do not have to assume only positive λ. If we consider λ < 0, we can write it
as λ = −λ̃ where λ̃ is opposite number to λ and therefore λ̃ is positive. After



5 SPECTRAL ANALYSIS 25

substitution this negative λ in (5.1) we can easily see that the first equation is
changed into the second one and the second equation into the first one. Thus
the equations are basically the same but they swapped their intervals Ω+ and
Ω− with each other. Further we will see that such described sign change of λ
does not affect the resulting equation.

Now we use boundary conditions in the same way as above

ψ3(+1) = C1 sin
√
λ+D1 cos

√
λ = 0 (5.10)

ψ4(−1) = −C2 sinh
√
λ+D2 cosh

√
λ = 0 (5.11)

ψ3(0+) = D1 = ψ4(0−) = D2 (5.12)

ψ′3(0+) = C1

√
λ = −ψ′4(0−) = −C2

√
λ (5.13)

From the last two equations we get D1 = D2 and C1 = −C2, then substitute
into the previous two equations and we have

C1 sin
√
λ+D1 cos

√
λ = 0⇒ D1

C1
= − tan

√
λ

C1 sinh
√
λ+D1 cosh

√
λ = 0⇒ D1

C1
= − tanh

√
λ

(5.14)

tan
√
λ = tanh

√
λ (5.15)

That is a transcendental equation that has infinitely many solutions. Using
various computational tools (such as Wolfram Mathematica) we calculate ap-
proximate solutions

λ1 ≈ 15, 4182

λ2 ≈ 49, 9649

λ3 ≈ 104, 248

λ4 ≈ 178, 27

λ5 ≈ 272, 031

.................................

(5.16)

After substitution these solutions into the equations (5.9) we receive eigenfunc-
tions for appropriate eigenvalues

Ω+ : ψ3,k(x) = C1 sin
√
λkx+D1 cos

√
λkx (5.17)

Ω− : ψ4,k(x) = −C1 sinh
√
λkx+D1 cosh

√
λkx (5.18)

where k ∈ N. As was pointed out in Remark 5.1.1 there are also negative
eigenvalues identical with (5.16) except for the sign. It is because the boundary
conditions are symmertic and if we use the same process as above we obtain
again equation (5.15). Some of the eigenfunctions are shown in Figure 11.
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Figure 11: Eigenfunctions of the operator H0 for λ0,1,2,3 (A1 = C1 = 1, D1 =
−C1 tan(

√
λk))

5.1.2 Spectrum for any interval (−a−, a+) containing zero

We change the operator H0 accordingly to the change of interval:

D(H0) = {ψ ∈ H2((−a−, 0))⊕H2((0, a+))|ψ(−a−) = ψ(a+) = 0,

ψ(0−) = ψ(0+),

ψ′(0−) = −ψ′(0+)}
(5.19)

where a± ∈ R+. We denote α := a+ − a−. Let us begin with equations (5.1)
and proceed just like in the previous case.

For λ = 0 we get again equations (5.3) but use the new boundary conditions
to determine the constants:

ψ1(a+) = A1a+ +B1 = 0 (5.20)

ψ2(−a−) = −A2a− +B2 = 0 (5.21)

ψ1(0+) = B1 = ψ2(0−) = B2 (5.22)

ψ′1(0+) = A1 = −ψ′2(0−) = −A2 (5.23)

Thus, we obtain relations: B1 = −A1a+, B2 = A2a−, B1 = B2, A1 = −A2 and
after the substitutions we find out that

a− = a+ (5.24)
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This fact says that λ = 0 is eigenvalue of the operator H0 if and only if interval
[−a−, a+] is symmetric (α = 0).

For λ 6= 0 we get again solutions (5.9) but with new boundary conditions.
For this let a− be fixed and a+ = α+ a− be a variable.

ψ3(a+) = C1 sin
√
λ(α+ a−) +D1 cos

√
λ(α+ a−) = 0 (5.25)

ψ4(−a−) = −C2 sinh
√
λa− +D2 cosh

√
λa− = 0 (5.26)

ψ3(0+) = D1 = ψ4(0−) = D2 (5.27)

ψ′3(0+) = C1

√
λ = −ψ′4(0−) = −C2

√
λ (5.28)

From the last two equations we get again D1 = D2 and C1 = −C2 and after
substitution we have

C1 sin
√
λ(α+ a−) +D1 cos

√
λ(α+ a−) = 0⇒ D1

C1
= − tan

√
λ(α+ a−)

C1 sinh
√
λa− +D1 cosh

√
λa− = 0⇒ D1

C1
= − tanh

√
λa−

(5.29)

tan
√
λ(α+ a−) = tanh

√
λa− (5.30)

The eigenfunctions look the same as (5.17), (5.18) but the eigenvalues λk now
depend on variable α and therefore the eigenfunctions depend on it as well. This
dependence can be seen in Figure 12 where we chose a− = 1. Thanks to this
choice we obtain for α = 0 same solution (5.16) as before because in this case
we have the same interval [−1, 1] where we solve equation (5.30) (or (5.15) in
this particular case).

5.2 Spectrum of the operator Hε

Now we examine spectrum of our non-self-adjoint operator Hε (relation (4.25)).
Equations for eigenvalues on both intervals Ω+ and Ω− are

Ω+ : (1 + iε)ψ′′ + λψ = 0

Ω− : (1− iε)ψ′′ − λψ = 0
(5.31)

If λ = 0 we solve again for both intervals the same equation

ψ′′ = 0 (5.32)

which brings once again solutions (5.3). We use boundary conditions

ψ1(1) = A1 +B1 = 0 (5.33)

ψ2(−1) = −A2 +B2 = 0 (5.34)

ψ1(0+) = B1 = ψ2(0−) = B2 (5.35)

(ε− i)ψ′1(0+) = (ε− i)A1 = (ε+ i)ψ′2(0−) = (ε+ i)A2 (5.36)
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Figure 12: Spectrum of the operator H0 depending on variable α ∈ [0, 5]

and obtain relations A1 = −B1, A2 = B2, B1 = B2, (ε− i)A1 = (ε+ i)A2. From
the first three equalities we see that A1 = −A2 but the last one says A1 = ε+i

ε−iA2.
This could be satisfied only if ε = 0 therefore in general case when ε is positive,
λ = 0 can not be eigenvalue of the operator Hε.

More interesting is the case when λ 6= 0. We rewrite equations (5.31) in
better way

Ω+ : ψ′′ + λ
(1− iε)
1 + ε2

ψ = 0

Ω− : ψ′′ − λ (1 + iε)

1 + ε2
ψ = 0

(5.37)

and the solutions of these equation are

Ω+ : ψ3(x) = C1 sin

√
λ

1− iε
1 + ε2

x+D1 cos

√
λ

1− iε
1 + ε2

x

Ω− : ψ4(x) = C2 sinh

√
λ

1 + iε

1 + ε2
x+D2 cosh

√
λ

1 + iε

1 + ε2
x.

(5.38)
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Use of boundary conditions is now a little more difficult

ψ3(1) = C1 sin

√
λ

1− iε
1 + ε2

+D1 cos

√
λ

1− iε
1 + ε2

= 0 (5.39)

ψ4(−1) = −C2 sinh

√
λ

1 + iε

1 + ε2
+D2 cosh

√
λ

1 + iε

1 + ε2
= 0 (5.40)

ψ3(0+) = D1 = ψ4(0−) = D2 (5.41)

(ε− i)ψ′3(0+) = (ε− i)C1

√
λ

1− iε
1 + ε2

= (ε+ i)ψ′4(0−) = (ε+ i)C2

√
λ

1 + iε

1 + ε2
.

(5.42)

From the last equality we obtain C2 = C1
ε−i
ε+i

√
1−iε
1+iε which we substitute to-

gether with (5.41) to the first two equations

C1 sin

√
λ

1− iε
1 + ε2

+D1 cos

√
λ

1− iε
1 + ε2

= 0⇒

⇒ D1

C1
= − tan

√
λ

1− iε
1 + ε2

(5.43)

−C1
ε− i
ε+ i

√
1− iε
1 + iε

sinh

√
λ

1 + iε

1 + ε2
+D1 cosh

√
λ

1 + iε

1 + ε2
= 0⇒

⇒ D1

C1
=
ε+ i

ε− i

√
1 + iε

1− iε
tanh

√
λ

1 + iε

1 + ε2

(5.44)

so all together we get final equation

tan

√
λ

1− iε
1 + ε2

=

√
1− iε
1 + iε

tanh

√
λ

1 + iε

1 + ε2
(5.45)

which can be equivalently written as

tan

√
λ

1 + iε
=

√
1− iε
1 + iε

tanh

√
λ

1− iε
(5.46)

This equation will be solved in the next paragraph.

5.3 Mathematical and physical justification of complexifi-
cation

It is not difficult to see that if ε = 0, we have the same equation as we had
for operator H0 and therefore the same solution as well. But we need to know
whether solutions of (5.45) pass continuously in solutions (5.16) of the original
equation. To prove this we use Implicit function theorem from [6].

Theorem 5.3.1 (Implicit function theorem). Let F (x, y) be a function, [x0, y0]
point in R2 and n natural number. Let L be an open two-dimensional interval
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which contains point [x0, y0] and function F (x, y) is continuously differentiable
in L up to order n. Further suppose that F (x0, y0) = 0, ∂F

∂y (x0, y0) 6= 0. Then
there exist positive numbers ∆1, ∆2 such that

1. (∀x ∈ (x0 − ∆1, x0 + ∆1))(∃1y ∈ (y0 − ∆2, y0 + ∆2))(F (x, y) = 0). If
we denote this y as f(x), the equation F (x, y) = 0 is satisfied for all
x ∈ (x0−∆1, x0 + ∆1) and y ∈ (y0−∆2, y0 + ∆2) if and only if y = f(x).

2. Function f(x) is continuously differentiable up to order n on interval (x0−
∆1, x0 + ∆1).

It is easy to see that our function F

F (λ, ε) = tan

√
λ

1 + iε
−
√

1− iε
1 + iε

tanh

√
λ

1− iε
(5.47)

is continuously differentiable so we only have to find the point (λ0, ε0) that sat-
isfies the assumptions of Implicit function theorem.

We already know the point in which function F is zero because when we
choose ε = 0 we have the same equation as in section 5.1.1 and then we choose
λ0 as a solution of equation (5.15). Now we have to check whether also the
derivative of F with respect to x is nonzero in this point.

∂F

∂ε
(λ0, 0) =

1

cos2
√

λ
1+iε

1

2

√
1 + iε

λ

−iλ
(1 + iε)2

∣∣∣∣∣∣
(λ0,0)

−

− 1

2

√
1 + iε

1− iε
−i(1 + iε)− i(1− iε)

(1 + iε)2
tanh

√
λ

1− iε

∣∣∣∣∣
(λ0,0)

−

−
√

1− iε
1 + iε

1

cosh2
√

λ
1−iε

1

2

√
1− iε
λ

iλ

(1− iε)2

∣∣∣∣∣∣
(λ0,0)

=

= − i
2

√
λ0

1

cos2
√
λ0

+ i tanh
√
λ0 −

i

2

√
λ0

1

cosh2√λ0
=

= −iλ0 (tan
√
λ)′
∣∣∣
λ=λ0

+ i tanh
√
λ0 − iλ0 (tanh

√
λ)′
∣∣∣
λ=λ0

Now we use that λ0 is a solution of (5.15). Because of that we can write tan
√
λ0

instead of tanh
√
λ0 and therefore

∂F

∂ε
(λ0, 0) = i

(
tan

√
λ0 −

√
λ0

cos2
√
λ0

)
=

i

cos2
√
λ0

(
sin
√
λ0 cos

√
λ0 −

√
λ0

)
which is nonzero for all nonzero λ0. According to Implicit function theorem
there exist some open sets containing points (λ0, 0) and thus function F is con-
tinuously differentiable around solutions of the origin operator H0.
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Now we can show graphically how the eigenvalues of operator Hε go to the
original eigenvalues of operator H0. It can be seen on Figures 13 and 14 that
real part of λ goes with decresaing value of ε to the original eigenvalue while
the imaginary part goes to zero which is exactly what we wanted.
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Figure 13: Real part of spectrum of the operator Hε
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Figure 14: Imaginary part of spectrum of the operator Hε
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6 Conclusions

In this thesis we were interested in description of wave propagation from an
ordinary medium to the metamaterial using operators. We began with elec-
tric part of Maxwell’s equation from which we derived formal operator with
Dirichlet boundary condition and then specified it with more boundary condi-
tions that were needed. We proved that this operator is self-adjoint and then
we constructed more general but non-self-adjoint operator which we called the
“invisibility” operator because of such usage in metamaterials. Then we were
concerned mainly with this operator, we proved that it is m-sectorial and in
the end we found out that in the limit case its spectrum goes continuously into
the spectrum of the original self-adjoint operator. Let us here briefly note that
an alternative definition of our “invisibility” operator can be done by a new
representation theorem for indefinite quadratic forms obtained recently in [5]
based on [4].

The motivation for this thesis was to introduce basic facts from the theory
of metamaterials and the theory of sectorial quadratic forms as well. The main
objective was to define the “invisibility” operator mathematically rigorously and
then justify the complexification in it.

There are still many problems to concern and thus many ways how to extend
this thesis. For example one could prove that spectrum of the complexed oper-
ator goes in the limit case continuously to the spectrum of the original operator
generally thus without calculation of the spectra. The alternative definition of
our “invisibility” operator should be investigated and used as well. Also one
should consider the same problem but on infinite interval instead of the finite
one in this case. This thesis also open the way to extend that operator to higher
dimension and try to generalize the results stated here.
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