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Abstrakt: V této práci se zaměřujeme na problematiku tzv. Dirichletovského laplaciánu na omezené
oblasti Ω v R2. Konkrétně se věnujeme kvalitativním vlastnostem množin (známých jako nodální čáry),
které jsou vlastní funkcí zobrazeny na nulu. V 60. letech uvedl L.E.Payne doměnku, že tyto čáry druhých
vlastních funkcí mají neprázdný průnik s hranicí oblasti Ω. Nejprve se zaměřujeme na oblasti, kde lze
řešení najít analyticky. Dále se věnujeme numerickému řešení, které se zakládá na min-max principu a
napočítáváme analyticky známá řešení.
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Abstract: This degree project deals with the so-called Dirichlet Laplacian on a bounded domain Ω in
R2. In particular we are concerned with qualitative properties of the zero sets (that are known as the
nodal lines) of its eigenfunctions. It was conjectured by Payne in 1960s that for the second eigenfunction
these lines should have non-empty intersection with the boundary of Ω. Firstly we focus on domains that
permit explicit analytical solutions. Then we apply numerical methods based on min-max principle to
reproduce these results.
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Notation

Symbol Meaning
C complex numbers
C∞ smooth functions
C∞0 (Ω) linear space of smooth functions f on Ω

whose partial derivatives can be extended
continuously to Ω and f |∂Ω= 0

Dom(T ) domain of an operator T
∂Ω boundary of region Ω

H Hilbert space
Ker(T ) kernel of an operator T
N positive integers
N0 non-negative integers
n̂ integers 1, . . . , n
Ω closure of region Ω

Q(q) domain of a quadratic form q
R real numbers
Ran(T ) range of an operator T
W1,2 Sobolev space
〈·, ·〉 inner product
X ⊂⊂ Y X is a subspace of Y
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Chapter 1

Introduction

The Laplace operator is one of important operators in physics. It appears in physical equations such
as wave, heat and Schrödinger equation. By the separation of variables in these equations we obtain the
eigenvalue problem of Laplace operator. For more details see [2].

In this degree project we acquaint with the theory concerning the solution of the eigenproblem for the
Dirichlet Laplacian concentrating on the solutions on a bounded region (open, connected and non-empty
subset in RN) Ω with a smooth boundary. The operator is given by its domain and its action. In our case
the domain will be restricted by the Dirichlet boundary condition. It means we require for functions from
the domain to have zero value on the boundary of the region ∂Ω.

The problem we need to solve is

−∆ f = λ f in Ω, (1.1)

f = 0 on ∂Ω,

where the domain of the operator −∆ is subspace C∞0 (Ω of the Hilbert space L2(Ω). This is an elliptic
operator that is not self-adjoint. However its closure is self-adjoint (cf. Chapter 3).

In Chapter 2 we summarize without proofs the relevant material on unbounded operators, their spec-
trum and quadratic forms. We introduce the notions of self-adjoint and closed operator and important
theorems such as the spectral and representation theorem establishing the relation between quadratic
forms and operators with specific properties.

Chapter 3 deals with the Dirichlet boundary condition. We introduce the notion of Sobolev space and
show its important properties. Then we look more closely at general and spectral properties of Dirichlet
Laplacian.

In particular we are interested in finding the set, where the second eigenfunction of Dirichlet Lapla-
cian vanishes. This set is known as the nodal set. This notion will be precisely introduced in chapter 4.
There we also present the results of so-called nodal hypothesis. This hypothesis predicts, that the nodal
set for the second eigenfunction of Dirichlet Laplacian on some specific regions is not a closed curve.

Chapter 5 contains the analytical solution of problem (1.1) on a rectangle, a disc and a sector of a disc
region. For more complicated regions it is not possible to find the solution analytically. Therefore we
used numerical tools for creating a program that could possibly find the eigenfunctions on such a region.
We tested this program on regions we solved analytically to find out whether they give some reasonable
results. These results are shown and discussed in Chapter 6.
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Chapter 2

Basic notions

2.1 Linear operators and spectrum

In this chapter we provide a short introduction to unbounded self-adjoint operators.

Definition 2.1. A linear operator B is bounded if there exists a constant c > 0 such that ‖B(x)‖ ≤ c‖x‖
for all x ∈ Dom(B). We define the operator norm by ‖B‖ = supx∈Dom(B),‖x‖=1 ‖Bx‖.

However the Laplace operator and many of important operators that appear e.g. in quantum mechan-
ics are the unbounded ones. Therefore we present here the theory of the unbounded operators. Many of
following terms could be defined on more general spaces, because somewhere the inner product is not
needed and the Banach space is sufficient. Since we do not need this generalization we introduce these
terms on the Hilbert space H .

Definition 2.2. Let Dom(T ) be a subspace of H and T be a linear operator T : Dom(T )→H .
The set Γ(T ) := {(x,T x) ∈H ⊕H | x ∈ Dom(T )} is called the graph of the operator T.
We call the operator T closed if its graph is a closed set in H ⊕H .

The graph is a Hilbert space with the inner product

〈〈 f1, g1〉, 〈 f2, g2〉〉 = 〈 f1, f2〉 + 〈g1, g2〉.

(cf. [4]-vol1, p. 250).
Closeness is very important property of operators. Of course not all operators are closed. However it

is still possible that a closed extension exists. Therefore we need another property called close-ability.

Definition 2.3. Let T be a linear operator, Dom(T ) subspace H be the domain of T . We say T̃ is an
extension of T with domain Dom(T̃ ) if Dom(T̃ ) is subspace of H containing Dom(T ) and T̃ f = T f
for all f in Dom(T ). An operator is said to be closable if it has a closed extension.

Theorem 2.4 (Hellinger-Toeplitz theorem, cf. [4]-Section III.5). Let T be an everywhere-defined linear
operator on H satisfying

〈x,Ty〉 = 〈T x, y〉 (2.1)

for all x, y ∈H then T is bounded.

This theorem is a corollary of the closed graph theorem. It implies that the unbounded operator that
obeys (2.1) is not everywhere-defined. Thus we assume that such an operator is only densely defined.
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Definition 2.5. We call operator T to be positive or non-negative if it satisfies 〈T f , f 〉 > 0 or 〈T f , f 〉 ≥ 0,
respectively, for all f ∈ Dom(T ) r {0}.

Definition 2.6. We call operator T to be bounded from bellow if it satisfies 〈T f , f 〉 ≥ M‖ f ‖2 , for some
M ∈ R, for all f ∈ Dom(T ) r {0}.

Note 2.7. Let T be a densely defined linear operator on H . Then there exists at most one y∗ such that
for all x ∈ Dom(T ),

〈y,T x〉 = 〈y∗, x〉. (2.2)

(cf. [1]- 7.1.1.)

This note enables us to define the adjoint operator.

Definition 2.8. Let T be a linear operator on H and y∗ satisfies (2.2). We define T ∗y := y∗. We call T ∗

the adjoint operator to the operator T with Dom(T ∗) consisting of y satisfying (2.2).

Theorem 2.9 (cf. [4]-VIII.1). Let T be a densely-defined operator on H . Then

1. T ∗ is closed,

2. T is closable if and only if Dom(T ∗) is dense in which case T = T ∗∗,

3. if T is closable then (T )∗ = T ∗.

Definition 2.10. The spectrum σ(T ) of a closed operator T on a Hilbert space H is defined by

σ(T ) := {λ ∈ C| (T − λ) is not a bijection of Dom(T ) onto H }.

The situation that (T −λ) is not a bijection of Dom(T ) onto H occurs in two cases excluding each other:

1. T − λ is not an injection, then λ is an eigenvalue of T ,

2. T − λ is not a surjection.

We denote σp(T ) the set of all eigenvalues. The set of isolated eigenvalues of a finite multiplicity
σdisc(T ) is called the discrete spectrum of the operator T . The complement of discrete spectrum to the
spectrum is called the essential spectrum of the operator T , σess(T ) = σ(T ) r σdisc(T ) .
We call ρ(T ) the resolvent set of the operator T defined by

ρ(T ) := C r σ(T ).

By definition, λ ∈ ρ(T ) if and only if the operator T − λ is a bijection of Dom(T ) onto H . From the
closed graph theorem follows that the inverse (T − λ)−1 is bounded. If λ ∈ ρ(T ) we call Rλ := (T − λ)−1

the resolvent of operator T.

The following lemma explains the importance of the assumption of closeness of the operator in
definition of spectrum.

Lemma 2.11. If a linear operator T is not closed, then σ(T ) = C. The spectrum σ(T ) of a linear
operator T is always closed set.

Note 2.12. If we talk about spectrum of a closable operator we mean the spectrum of its closure.
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Definition 2.13. A densely-defined linear operator T is called symmetric, if T ⊂ T ∗ e.g. Dom(T ) ⊂
Dom(T ∗) and T x = T ∗x, ∀x ∈ Dom(T ). This means

〈y,T x〉 = 〈Ty, x〉, ∀x, y ∈ Dom(T ).

We call T a self-adjoint operator, if T is densely defined and satisfies the condition T = T ∗.

The following theorem will be needed for the spectral theorem.

Theorem 2.14. The spectrum of any self-adjoint operator T is real and non-empty. If z < R, then

‖(T − z)−1‖ ≤ |Imz|−1.

Moreover
(T − z)−1 = ((T − z)∗)−1.

Theorem 2.15 (cf. [1]-10.4.3). A self-adjoint operator is bounded if and only if its spectrum is bounded.

Definition 2.16. We define a compact operator on H to be an operator T with domain H such that
for any bounded sequence fn ∈H , T fn has a norm convergent subsequence.

Theorem 2.17 (Ries-Schauder, cf. [1]- Theorem 6.2.2). Let T be a compact operator on H , then

1. σp(T ) r {0} = σ(T ) r {0},

2. every isolated eigenvalue has finite multiplicity,

3. σ(T ) has at most one limit point λ = 0,

4. The set of eigenvalues is at most countable and we can write the eigenvalues λn in decreasing
order in such a way that they obey

lim
n→∞

λn = 0.

Theorem 2.18 (Hilber-Schmidt, cf. [1]- Theorem 6.2.4). Let T be a self-adjoint compact operator on
H . Then there exists an orthonormal basis on H consisting of eigenfunctions of T .

Note 2.19. Let T be a linear operator, z ∈ ρ(T ) and (T − z)−1 be a self-adjoint compact operator.
Further we assume that ( fn)∞n=1 is an orthonormal basis consisting of eigenfunctions of (T − z)−1 and the
corresponding eigenvalues λn , 0 satisfy limn→∞ λn = 0. Then we have

(T − z)−1 fn = λn fn
1
λn

= (T − z) fn

T fn =
( 1
λn

+ z
)

fn.

That means that the eigenvalues λ̃n =
(

1
λn
− 1

)
of the operator T converge to infinity as n→ ∞.

Theorem 2.20 (cf. [3]- 4.2.3). Let T be a self-adjoint operator on H which is non-negative in the sense
that σ(T ) ⊂ [0,∞) then the following conditions are equivalent:

1. the resolvent operator (T + 1)−1 is compact,

2. σess(T ) = ∅,
11



3. there exists a complete orthonormal set of eigenvectors { fn}∞n=1 of T with corresponding eigenval-
ues λn ≥ 0 such that limn→∞ λn = ∞.

Note 2.21 (cf. [3]- 1.1.4.). Every symmetric operator is closable and its closure is also symmetric.

Proof. Since T ∗ is an extension of T the first part of statement follows from 2.9(1)
From 2.9(3) and the first part of this note we get T = T ∗∗. Thus T ∗∗ is the smallest closed extension of
T . Bringing these facts together we get

T = T ∗∗ ⊂ T ∗ = (T )∗.

Thus the closure T is symmetric.
�

Note 2.22. A closed operator T is self-adjoint if and only if T ∗ is symmetric.

Not all closed symmetric operators are self-adjoint. This is important when we use the spectral
theorem which is valid only for self-adjoint operators. Thus we present a criterion for self-adjointness.
First we introduce a new useful notion of essential self-adjointness.

Definition 2.23. A symmetric operator T is essentially self-adjoint if its closure is self-adjoint. If T is
closed we call a subset D ⊂ Dom(T ) a core for T if T |D = T.

If T is essentially self-adjoint then it has one and only one self-adjoint extension. The existence
follows from the definition and the uniqueness is possible to prove by contradiction (see [4], VIII.2).

We can see the advantage in introducing this notation when getting a non-closed symmetric operator
T . If we find out that T is essentially self-adjoint, then the closure is self-adjoint by definition and
T = T ∗∗. If we get a self-adjoint operator T̃ we need not to know the exact domain but a knowledge of
some core for T̃ is sufficient.

Theorem 2.24 (The basic criterion for self-adjointness, cf.[4]- Theorem VIII.3). Let T be a symmetric
operator on H then the following statements are equivalent:

1. T is self-adjoint,

2. T is closed and Ker(T ∗ ± i) = {0},

3. Ran(T ± i) = H .

The corollary of this theorem is an analogous statement for essentially self-adjoit operators.

Corollary 2.25. Let T be a symmetric operator on H then the following statements are equivalent:

1. T is essentially self-adjoint,

2. Ker(T ∗ ± i) = {0},

3. Ran(T ± i) = H .

(cf. [4]- Section VIII.2).

Note 2.26. A symmetric operator may have many self-adjoint extensions. However it may also happen
that there exists no such an extension. (For more details see von Neumann formula in [1]- Theorem 8.3.2).

Now we introduce the notation for few sets of functions needed in further text.
12



Definition 2.27. We denote C∞(Ω) all the smooth functions on domain Ω ⊂ RN whose all partial deriva-
tives can be extended continuously on Ω.

Definition 2.28. We define C∞0 (Ω) to be the set of all functions f ∈ C∞(Ω) satisfying f ≡ 0 on the region
boundary (∂Ω).

Following theorems will enable us to introduce the rational powers of a self-adjoint operator.

Theorem 2.29 (Spectral theorem 1, cf. [3]- 2.3.1). Let T be a self-adjoint operator. Then there exists a
unit linear map f → f (T ) from C0(R) to algebra of all bounded operators L (H ) satisfying

1. the map f → f (T ) is multiplicative (which means it is an algebra homomorphism),

2. we have f (T ) = f (T )∗ for all f ∈ C0(R),

3. we have ‖ f (T )‖ ≤ ‖ f ‖∞ for all f ∈ C0(R),

4. if w < R and rw(s) := (s − w)−1 then rw(T ) = (T − w)−1,

5. if f ∈ C0(R) has support disjoint from σ(T ) then f (T ) = 0.

Functions of self-adjoint operators may be represented by multiplication operators. We can obtain
this multiplication operator by a unitary transformation. The spectrum of a self-adjoint operator is an
invariant of this transformation. These ideas are summarized in the following theorem.

Theorem 2.30 (Spectral theorem 2, cf. [3]- 2.5.1). Let H be a self-adjoint operator on H with spectrum
S. Then there exists a finite measure µ on S × N and a unitary operator

U : H → L2 := L2(S × N, dµ)

with the following properties: if h : S × N → R is the function h(s, n) = s, then the element ξ ∈ H lies
in Dom(H) if and only if h · U(ξ) ∈ L2. We have

UHU−1ψ = hψ

for all ψ ∈ U(Dom(H)) and also
U f (H)U−1ψ = f (h)ψ

for all f ∈ C0(R) and ψ ∈ L2(S × N, dµ).

We can extend Theorem 2.29 originally valid for functions from C∞0 (R) to functions from B denoting
the algebra of bounded Borel measurable functions on R.

Definition 2.31. We say that the sequence fn ∈ B increases monotonically to f if fn(x) increases
pointwise and monotonically to f (x) for every x.

Note 2.32. If fn ∈ B increases monotonically to f , then the norms

‖ fn‖ := sup{ fn(x) | x ∈ R}

are uniformly bounded.

Theorem 2.33 (Spectral theorem 3, cf. [3]- 2.5.3). There exists a map f → f (H) from B to L (H )
which extends the map from Theorem 2.29 and has the same properties with replacement C0(R) by B.
The extension is unique subject to the further requirement that:

s-lim
n→∞

fn(H) = f (H)

whenever fn ∈ B converges monotonically to f ∈ B.

Note 2.34. A sequence of bounded operators (An)∞n=1 on a Banach space X converge strongly to a
bounded operator on X if limn→∞ ‖An f − A f ‖ = 0, ∀ f ∈X and we write s-limn→∞ An = A.

13



2.2 Quadratic forms

It turns out, that there exists a one-to-one correspondence between quadratic forms with specific
properties and self-adjoint operators bounded from below. It is often easier to find the domain of a
quadratic form then of an operator. Therefore when we study the operators, it is useful to use the theory
of quadratic forms. We summarize the basic definitions and facts from it in this section.

For bounded operator the Riesz lemma implies that there is a one-to-one correspondence between
bounded quadratic forms and bounded operators. Thus for a sesquilinear map q : H → H such that
|q( f , g)| < M ‖ f ‖ ‖g‖ we can write

q( f , g) = 〈 f , Ag〉,

for some bounded operator A. In this section we present an analogues statement for unbounded forms
and operators.

Definition 2.35. We call quadratic form a map q : Q(q) ×Q(q)→ C,
where Q(q) is a dense linear subset of Hilbert space H such that q(·, f ) is conjugate linear and q(g, ·)
is linear for f , g ∈ Q(q). We call Q(q) the form domain.

We say that
q is symmetric if q( f , g) = q( f , g), ∀ f , g ∈ Q,
q is positive if q( f , f ) ≥ 0, ∀ f ∈ Q,
q is bounded from below if q( f , f ) ≥ M‖ f ‖2 for some M ∈ R.

Note 2.36. A positive quadratic form is symmetric if H is complex. (cf. [1]- Section 1.2).

Note 2.37. A quadratic form bounded from below is symmetric if H is complex. (cf. [4]- Section VIII.6).

Now we wish to find the connection between self-adjointness and a distinct class of quadratic forms.
Since a self-adjoint operator is always closed, we need to introduce the term of closeness for quadratic
forms. We do it in accordance with the definition of closed operators. An operator A is closed if its graph
is closed. Equivalently we can say that Dom(A) is complete under the norm ‖ f ‖A := ‖A f ‖ + ‖ f ‖.

Definition 2.38. A quadratic form q bounded from below, q( f , f ) ≥ −M‖ f ‖2, is closed if Q(q) is com-
plete under the norm

‖ f ‖+1 =

√
q( f , f ) + (1 − M)‖ f ‖2.

If q is closed and D ⊂ Q(q) is dense in Q(q) in the norm ‖ · ‖+1, then D is called form core for q. A
form q2 is an extension of form q1 if Dom(q1) ⊂ Dom(q2) and q1( f ) = q2( f ),∀ f ∈ Dom(q1). A form q
is said to be closable if there exists a closed extension of q. The closure q of the form q is the smallest
closed extension.

Equivalently we can define the core for the closed form q to be the linear subspace D of domain its
Q(q) satisfying q|D = Q(q).

Note 2.39. The norm ‖ · ‖+1 comes from the inner product 〈 f , g〉+1 = q( f , g) + (1 − M)〈 f , g〉.

Note 2.40. q is closed if and only if for every sequence ( fn) ⊂ Q(q) such that

1. fn → f in H

2. q( fn − fm, fn − fm)→ 0 as m, n→ ∞,

f ∈ Q(q) and q( fn − f , fn − f )→ 0.
14



Theorem 2.41 (Representation theorem, cf.[1]- 7.5.8). Let q be a densely defined closed symmetric and
from below bounded quadratic form on H . Then there exists a self-adjoint operator A such that

1. Dom(A) ⊂ Q(q) and
q( f , g) = 〈 f , Ag〉, ∀ f ∈ Q(q), g ∈ Dom(A),

2. q |Dom(A) = q,

3. if there exist f ∈ Q(q) and h ∈H such that

q( f , g) = 〈h, g〉, ∀g ∈ Q(q),

then f ∈ Dom(A) and h = A f ,

4. if a linear operator T satisfies Dom(T ) ⊂ Q(q) and 〈T f , g, 〉 = q( f , g), ∀ f ∈ Dom(T ), g ∈ Q(q),
then T ⊂ A. If T is self-adjoint, then T = A. Thus the condition (1) defines a unique self-adjoint
operator.

For a symmetric operator bounded from below there always exists at least one closed extension. The
problem is that none of these extensions needs to be self-adjoint. For quadratic forms the situation is
different. The closed extension does not need to exist but when it does it is automatically self-adjoint.

Since Dirichlet Laplacian is a non-negative operator we will look more closely at this specific case
of operators. In following we assume self-adjoint operators. For such a non-negative operator we can
introduce the rational powers of the operator using the spectral theorem.

Theorem 2.42 (cf. [3]- 4.3.4). If A is a non-negative self-adjoint operator and 0 < m < 1, then
f ∈ Dom(A) if and only if f ∈ Dom(Am) and also Am f ∈ Dom(A1−m). For such f we have

A f = A1−m(Am f )

Note 2.43. Using this theorem we can define a quadratic form q for a given self-adjoint operator A by

q( f , g) := 〈A1/2 f , A1/2g〉

where f , g ∈ Dom(A1/2).

Lemma 2.44 (cf. [3]- 4.4.1). Let A be a non-negative self-adjoint operator on H . Then f ∈ H lies in
Dom(A) if and only if f ∈ Dom(A1/2) and also there exists h ∈H such that

q( f , g) := 〈h, g〉

∀g ∈ Dom(A1/2). In this case we have A f = h.

Theorem 2.45 (cf. [3]- 4.4.2). The quadratic form q arises from a non-negative self-adjoint operator if
and only if the domain Q(q) of q is complete under the norm ‖ f ‖q :=

√
‖ f ‖2 + q( f , f ).

Theorem 2.46 (cf. [3]- 4.4.5). Let q be the form defined on the domain Q(q) of a non-negative symmetric
operator A by

q( f , g) := 〈A f , g〉.

Then the quadratic form q is closable and its closure is associated with a self-adjoint extension of A.

15



2.3 Variational characterisation of eigenvalues

This section reviews some of the results of the variational method. This method is more closely
described in [3]-Chapter 4. We will need the theory of this section for numerical solution of Dirichlet
problem in Section 5.2.

Definition 2.47. Let A be a self-adjoint operator bounded from below on H and q the associated
quadratic form. Then we define

λ(L) := sup{〈A f , f 〉 | f ∈ L, ‖ f ‖ = 1} = sup{q( f , f ) | f ∈ L, ‖ f ‖ = 1},

where L is a finite-dimensional subspace of H (= Dom(A)). Further we define

λn := inf{λ(L) | L ⊂⊂ Dom(A), dim(L) = n}.

Theorem 2.48 (Min-max principle, cf. [6]- Theorem B.5). Let A be a self-adjoint operator bounded from
below. Let λn be a non-decreasing sequence of numbers defined by 2.47. Then

1. λ∞ := limn→∞ λn = inf σess(A), with convention that σess = ∅ if λ∞ = +∞,

2. {λn}
∞
n=0 ∩ (−∞, λ∞) = σdisc(A) ∩ (−∞, λ∞) each λn ∈ (−∞, λ∞) being an eigenvalue repeated

according to its multiplicity.

Corollary 2.49 (cf. [6]-Corollary B.2). If A satisfies the assumptions from 2.48, then

inf σ(A) = inf
f∈Dom(A)r{0}
‖ f ‖=1

〈 f , A f 〉 = inf
f∈Q(q)r{0}
‖ f ‖=1

q( f , f ).

The min-max principle appears also in the form of the so-called max-min principle. The version
max-min gives the lower estimates for eigenvalues. This case is the subject of the following theorem.

Theorem 2.50 (Max-min principle, cf. [9]- Theorem 12.1). Let A be a self-adjoint from below bounded
operator with associated quadratic form q and let the numbers λn be the eigenvalues of A for n ∈ Ĵ − 1.
There J ∈ N is the index of first number λn, which is not an eigenvalue. If we choose any m linearly
independent normalized functions (g1, . . . , gm) ∈ Dom(A) ⊂ L2(RN), then we have for m ≤ J

λm = max
g1,...,gm−1

min{q(gm, gm) | 〈gm, gi〉 = 0, ∀i ∈ m̂ − 1}.

There we consider the inner products and norms in L2(RN).

Corollary 2.51. Under the assumptions of 2.50 we have

λm = min{q(gm, gm) | 〈gm, fi〉 = 0, ∀i ∈ m̂ − 1},

where f1, . . . , fm−1 are the eigenvectors of operator A.
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Chapter 3

Dirichlet Laplacian

As mentioned in the introduction when we study the spectrum of a differential operator we need to
pay attention to the domain of the operator. The domain may be restricted by a boundary condition.
In this project we restrict ourselves on so-called Dirichlet boundary condition. This means we require
functions from the domain to have zero value on the boundary of the region ∂Ω. These are the simplest
conditions to work with, nevertheless they are useful in many physical problems. For instance they
represent ideal conductivity of surface while solving the heat equation. In other words the surroundings
have infinitely large thermal capacity. The conditions may be also considered as an infinite potential
wall, when we describe the motion of a quantum particle by Schrödinger equation.

Note 3.1. Dirichlet Laplacian is an elliptic operator.

Generally we have a second order elliptic operator H on L2(Ω) defined by

H f := −b(x)−1
N∑

i, j=1

∂

∂xi

(
ai j(x)

∂ f
∂x j

)
, ∀ f ∈ C∞0 (Ω) (3.1)

where a(x) := (ai j(x)) is a real, symmetric, uniformly positive and bounded matrix satisfying

c−1I ≤ a(x) ≤ cI, ∀x ∈ Ω (3.2)

for some real constant c ≥ 1. Further we demand ai j(x) to be defined and differentiable on a region
Ω ⊂ Rn and its boundary (∂Ω).
The coefficient b(x) is a real, continuous and bounded function defined on the region Ω ⊂ Rn and its
boundary satisfying

c−1 ≤ b(x) ≤ c, ∀x ∈ Ω (3.3)

for some real constant c ≥ 1.

Lemma 3.2 (cf. [3]- Lemma 6.1.1). By the established conditions for coefficients ai j(x) and b(x) the
operator H is symmetric and positive on H = L2(Ω, b(x)dxN). Moreover the associated quadratic form

Q( f , g) :=
∫

Ω

N∑
i, j=1

ai j(x)
∂ f
∂xi

∂g

∂x j

is closable and its closure on the domain C∞0 (Ω) is independent of the choice of the particular coefficients
b(x), a(x).
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Proof. The operator H acts on L2(Ω) and especially according to the assumptions of lemma the functions
f , g ∈ C∞0 (Ω). We use the fact that the Hilbert spaces L2(Ω, dxN) and L2(Ω, b(x)dxN) coincide and have
only different, but equivalent norms and inner products.

We denote

‖ f ‖2
∇

:=
∫

Ω

| f |2 + |∇ f |2dN x

‖ f ‖2Q := ‖ f ‖2 + Q( f , f ) =

∫
Ω

b(x)| f |2 +

N∑
i, j=1

ai j(x)
∂ f
∂xi

∂ f
∂x j

,

where ‖ · ‖ is norm on H = L2(Ω, b(x)dxN). Due to the conditions (3.2) and (3.3) we have

c−1‖ f ‖2
∇
≤ ‖ f ‖2Q ≤ c‖ f ‖2

∇
.

The norm ‖ · ‖∇ is independent from the coefficients ai j, b. Thus the norms are comparable and the
completion of C∞0 (Ω) is the same for both of them.

Now we can prove the symmetry of H. That means we need to show the equality

〈 f ,Hg〉 = 〈H f , g〉,

where 〈·, ·〉 is the inner product on H = L2(Ω, b(x)dxN).
Using integration by parts and Gauss’ theorem in connection with the condition that the functions f , g
has zero value on ∂Ω we obtain

〈 f ,Hg〉 =

∫
Ω

−b(x)−1
N∑

i, j=1

f
∂

∂xi

(
ai j(x)

∂ f
∂x j

)
b(x) dxN =

∫
Ω

N∑
i, j=1

∂ f
∂xi

(
ai j(x)

∂ f
∂x j

)
dxN = Q( f , g).

In the same manner we show the equality 〈H f , g〉 = Q( f , g). Therefore

〈 f ,Hg〉 = Q( f , g) = 〈H f , g〉

and H is a symmetric operator associated with the quadratic form Q.

For non-negativity we need to verify

〈 f ,H f 〉 ≥ 0 ∀ f ∈ C∞0 (Ω).

We have

〈 f ,H f 〉 = Q( f , f ) =

∫
Ω

N∑
i, j=1

ai j(x)
∂ f
∂xi

∂ f
∂x j

∀ f ∈ C∞0 (Ω).

Since a(x) is a positive matrix, we have Q( f , f ) ≥ 0. Thus both the form Q and the operator H are
non-negative.

The closability is implied by the fact, that Q is a quadratic form defined on a domain of a non-negative
symmetric operator by the relation Q( f , g) = 〈 f ,Hg〉. (cf. Theorem 2.46)

�

Now we introduce the notation for few sets of functions needed in further text.
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Definition 3.3. We call the set supp( f ) := {x ∈ Ω | f (x) , 0} the support of the function f and define
C∞c (Ω) to be the set of smooth functions with compact supports contained in Ω. The elements of C∞c (Ω)
are called test functions.

Definition 3.4. We call distribution a linear function Φ : C∞c (Ω)→ C.

Definition 3.5. Let f ∈ C∞c (Ω). We define weak derivative Dαφ of distribution Φ by

(DαΦ)( f ) := (−1)|α|Φ(Dα f )

for every multi-index (α = α1, . . . , αN) consisting of non-negative integers. Here |α| = α1 + . . . + αN is
called degree of this multi-index.
We define the multiplication by a smooth function g by (gΦ) f := Φ(g f ).

Note 3.6. We often use the term derivative in the sense of distributions instead of the notion weak deriva-
tive.

For the next lemma and other work with Dirichlet Laplacian (or elliptic operators in general) we need
to introduce the notion of the Sobolev space.

Definition 3.7. We define the Sobolev space W1,2(Ω) for any Ω ⊂ RN to be the set of all the distributions
f satisfying f ∈ L2(Ω)∧ ∂ f

∂xi
∈ L2(Ω), ∀i ∈ N̂. There the derivatives should be understood in the sense of

distributions.

Note 3.8. Using this notation the Sobolev space W1,2(Ω) is the domain of the gradient operator ∇ :
L2(Ω)→ L2(Ω) ⊕ · · · ⊕ L2(Ω) defined by

∇ f (x) := ∂1 f ⊕ · · · ⊕ ∂N f .

We define the inner product on W1,2(Ω) by

〈 f , g〉∇ :=
∫

Ω

(
f (x)g(x) + ∇ f (x)∇g(x)

)
dN x. (3.4)

Lemma 3.9 (cf. [3]- Lemma 6.1.2). With respect to this inner product the Sobolev space W1,2(Ω) is a
Hilbert space for arbitrary bounded region Ω ⊂ RN .

Proof. According to Note 3.8 it is sufficient to show, that the operator ∇ is a closed linear operator with
respect to the norm induced by inner product (3.4).

Let { fn}∞n=1 ∈ W1,2(Ω), f ∈ L2(Ω) and {gn}
N
n=1 ∈ L2(Ω). We assume, that limn→∞ ‖ fn − f ‖ = 0 and

limn→∞ ‖∂i fn − gi‖ = 0, ∀i ∈ N̂, where we denoted ∂
∂xi

= ∂i. If Φ ∈ C∞c (Ω) is a distribution, then

〈gi,Φ〉 = lim
n→∞
〈∂i fn,Φ〉

= − lim
n→∞
〈 fn, ∂iΦ〉

= −〈 f , ∂iΦ〉

= 〈∂i f ,Φ〉.

We used the continuity of the inner product in the first and third equality and the definition of derivative
in the sense of distributions in the second and forth one.

The equality 〈gi,Φ〉 = 〈∂i f ,Φ〉 is valid for all distributions Φ and therefore gi = ∂i f . Thus f ∈ Dom(∇)
and ∇ f = (g1, . . . , gN).

�
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Definition 3.10. We define the Sobolev subspace W1,2
0 (Ω) by W1,2

0 (Ω) := C∞c (Ω), where the closure is
taken with respect to the norm ‖ · ‖∇.

Lemma 3.11 (cf. [3]- Lemma 6.1.3). The domain of closure of the quadratic form from Lemma 3.2
satisfies Dom(Q) = W1,2

0 (Ω). Thus W1,2
0 (Ω) = Dom(H1/2) ∧ W1,2

0 (Ω) ⊃ C∞0 (Ω). Where H is the self-
adjoint closure of the operator from Lemma 3.2 satisfying the Dirichlet boundary condition.

Proof. We need to show the following inequalities

Dom(Q) ⊆ W1,2
0 (Ω),

Dom(Q) ⊇ W1,2
0 (Ω).

From Lemma 3.2 we have Dom(Q) = C∞0 (Ω). Since Q is a closed form, the domain has to be

closed with respect to the norm ‖ · ‖Q. Thus C∞0 (Ω) = C∞0 (Ω). By definition, it is easily seen that

C∞c (Ω) ⊆ C∞0 (Ω). Therefore we have C∞c (Ω) ⊆ C∞0 (Ω). These facts together give

W1,2
0 (Ω) = C∞c (Ω) ⊆ C∞0 (Ω) = C∞0 (Ω) = Dom(Q).

This proves the second inequality. To show the first one we introduce for a given ε > 0 a smooth function
Fε : R→ R satisfying

1. Fε(x) = x, if |x| > 2ε,

2. Fε(x) = 0, if |x| ≤ ε,

3. |Fε(x)| ≤ |x|, if x ∈ R,

4. 0 ≤ F′ε(x) ≤ 3, if x ∈ R.

Let f ∈ C∞0 (Ω) be a real function. For a complex function we would do the same steps for the real
and imaginary part of the function. We define fε(x) := Fε( f (x)), ∀x ∈ Ω. By the definitions of fε and Fε,
it is easily seen that fε is a smooth function on Ω, which vanishes in a neighbourhood of ∂Ω. Therefore
fε ∈ C∞c (Ω). The points 3. and 1. give

| fε| ≤ | f (x)|,

lim
ε→0

fε(x) = f (x),

∀x ∈ Ω. Using the dominated convergence theorem we get

lim
ε→0
‖ f − fε‖ = 0,

where ‖ · ‖ is the norm on L2(Ω). Further the points 4. and 1. give

|∇ fε(x)| ≤ 3|∇ f (x)|,

lim
ε→0
∇ fε(x) = ∇ f (x),

∀x ∈ Ω such that f (x) , 0. We denote sets A := {x ∈ Ω | f (x) = 0} and B := {x ∈ Ω | f (x) = 0 ∧ ∇ f (x) , 0}.
According to the implicit function theorem the set B is a hypersurface in RN of codimension 1. Therefore
it is measure-zero set. Then the dominated convergence theorem gives

lim
ε→0
‖∇ f − ∇ fε‖ =

∫
A
|∇ f |2dN x =

∫
B
|∇ f |2dN x = 0.
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Since ‖ f ‖2
∇

= ‖ f ‖2 + ‖∇ f ‖2, we have

lim
ε→0
‖ f − fε‖2 = lim

ε→0

(
‖ f − fε‖2 + ‖ f − fε‖2∇

)
= 0. (3.5)

The norms ‖ · ‖Q and ‖ · ‖∇ are equivalent. Therefore (3.5) implies that we can approximate a function
f ∈ C∞0 (Ω) by a function from C∞c (Ω) with arbitrary precision in the norm ‖ · ‖Q. In other words C∞c (Ω)
is dense in C∞0 (Ω). This implies the second inequality.

�

Theorem 3.12. Under the specified conditions for the coefficients from formula for a general elliptic
operator, the quadratic form Q from Lemma 3.2 is closed on the domain W1,2

0 (Ω) in the Hilbert space
L2(Ω, b(x)dnx). There exists a non-negative self-adjoint operator H on L2(Ω, b(x)dnx) associated to the
form in such a way that

〈H1/2 f ,H1/2g〉 = Q( f , g)

for all f , g ∈ Dom(H1/2) = W1,2
0 (Ω).

Proof. The fact that the quadratic form is closed with respect to the norm on L2(Ω, b(x)dnx) follows from
Lemma 3.2. Theorem 2.45 then proves the second part of this theorem.

�

In following we will look more closely to the self-adjoint extension H of the operator from Lemma 3.2
with the spatial choice of the coefficients ai j(x) = δi j and b(x) = 1. We call this operator the Dirichlet
Laplacian and denote H = −∆. According to Theorem 2.41 this self-adjoint extension is unique. In
particular we will study the spectrum of Dirichlet Laplacian. Thus we solve

−∆ f = λ f in Ω, (3.6)

f = 0 on ∂Ω,

for f ∈ W1,2
0 (Ω).

Note 3.13. According to Theorem 2.14 the Dirichlet Laplacian has real and non-empty spectrum.

Lemma 3.14 (cf. [3]- 6.2.2). Let Ω be a cube and λn the eigenvalues of Dirichlet Laplacian on Ω written
in increasing order and repeated by multiplicity. Then there exists a constant c > 0 such that

lim
n→∞

λnn−2/N = c.

Theorem 3.15 (cf. [3]- 6.2.3). Let Ω ⊂ RN be a bounded region, then H defined above has empty
essential spectrum and compact resolvent.

Proof. We denote

Q̃ :=
∫

Ω

|∇ f (x)|2dN x, f ∈ C∞c (Ω)

λn(Ω) := inf{λ(L) | L ⊂⊂ C∞c (Ω), dim L = n},

where λ(L) := sup{Q̃( f ) | f ∈ L, ‖ f ‖ ≤ 1}, ∀L ⊂⊂ C∞c .
Let Ω ⊆ Ω′, then λn(Ω) ≥ λn(Ω′) since λ(Ω) is infimum over a smaller set. If we choose Ω′ such

that it is a cube, then the previous lemma implies limn→∞ λn(Ω) = ∞. Then Theorem 2.48 implies that
σess(H) = ∅. According to Theorem 2.20 this is equivalent to the fact that H has compact resolvent.

�
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Note 3.16. This theorem with Note 3.13 give σ(H) = σdisc(H).

Note 3.17. We denote W2,2(Ω) the set of all the distributions f satisfying f ∈ L2(Ω) ∧ ∂2 f
∂x2

i
∈ L2(Ω),

∀i ∈ N̂. There the derivatives should be understood in the sense of distributions. Then any weak solution
of 3.6 satisfies the extra regularity f ∈ W2,2(Ω). (cf. [6]- Theorem D.3)
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Chapter 4

Nodal hypothesis

In this chapter we introduce the important notion of nodal line more precisely then we did in the
introduction. We summarize the up to date results of the so-called nodal hypothesis.

This hypothesis originates from the conjecture of L.E. Payne from 1960s. Payne assumed the nodal
hypothesis to be valid for bounded regions in R2. Later on this was proved with the additional as-
sumptions on convexity and smoothness of the boundary. The hypothesis was reformulated for higher
dimensional cases and proved even for some unbounded regions with some specific properties.

Definition 4.1. We denote λn and fn the nth eigenvalue and eigenfunction of Dirichlet Laplacian on a
region Ω and define the nodal set of fn to be N( fn) = f −1

n (0) ∩Ω.

One can verify, that N( f1) = ∅ and if 〈 f1, f2〉 = 0, then N( f2) , ∅. On planar domains this non-
empty set is a nodal line. In our case we are interested in the nodal lines of the second eigenfunction.
The reason is simple. These are the eigenfunctions the nodal hypothesis concerns about.

The original conjecture of L.E. Payne was formulated (in 1967) for Ω bounded as follows. Let
Ω ⊂ R2 be bounded. If

−∆ f = λ f in Ω

f = 0 on ∂Ω

then N( f2) cannot be a closed curve. Thus its closure must intersect the boundary.

Hypothesis 4.2 (The nodal set conjecture). For all bounded and simply-connected domains Ω the second
eigenfunction f2 satisfies

N( f2) ∩ ∂Ω , ∅.

The conjecture was proved for bounded convex domains in R2 with smooth boundary by A.D. Melas
in 1992. It was reformulated and proved for some unbounded domains such as long thin convex do-
mains in RN by D. Jerison in 1995, thin curved tubes in RN , possibly non-convex and multi-connected
by P.Freitas and D. Krejčiřík in 2007 and diminishing fibre bundle of arbitrary dimension with a compact
base space of dimension at most 3 by J. Lampart, S. Taufel in 2014. On the contrary it was disproved for
a certain multi-connected domain in R2 by M.T. Hoffmann-Ostenhof and N. Nadirashvili in 1997 and
the same in RN by S. Fournais in 2001.
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Chapter 5

Examples

5.1 Analytical solution

A way how to obtain the nodal lines of Dirichlet Laplacian is to study the eigenfunctions of this
operator. Therefore we solve the following linear differential equation of the second order, which is the
equation for the eigenvalue problem

−∆ f = λ f , (5.1)

where f ∈ Dom(H). In fact we can find the analytical solution of this problem only on some very
specific domains like disc (or a sector of a disc) and rectangle. When we want the nodal lines on a more
difficult region we need to use an approximation and numerical tools.
In this section we show the analytical solutions on the above mentioned regions.

5.1.1 Rectangle

For the rectangle the region is

Ω = {(x, y)| x ∈ (0, a) ∧ y ∈ (0, b)},

where constants a, b > 0. Due to the Dirichlet boundary condition we have

f (0, y) = f (x, 0) = f (a, y) = f (x, a) = 0.

Using separation of variables by solving (5.1) we get the eigenvalues λn,m and associated eigenvectors
fn,m,

λn,m = π2
(n2

a2 +
m2

b2

)
(5.2)

fn,m = sin
(nπx

a

)
sin

(mπy
b

)
, (5.3)

where n,m ∈ N. The obtained functions are not normalized. It is easy to notice that the eigenvalues
are degenerated whenever the condition a2(m2 − m̃2) + b2(n2 − ñ2) = 0 for some positive integers
n , ñ,m , m̃ is satisfied. The eigenfunction corresponding to the second eigenvalue on rectangle is
shown in Figure 6.1a on p. 31.
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5.1.2 Disc

Now the region Ω is a disc of radius r = 1. To solve the problem (5.1) we transform Laplacian to the
polar coordinates (r, θ). If we denote ∂ f

∂x = ∂x f and ∂2 f
∂x2 = ∂2

xx f then the equation for the eigenvalues is

∂2
rrv +

1
r
∂rv +

1
r2 ∂

2
θθv + λv = 0. (5.4)

The boundary condition is represented by the equality v(1, θ) = 0.

Putting v(r, θ) = f (r) h(θ), we solve this problem by separation of variables. The equation (5.4) now
takes the form:

f ′′(r) + 1
r f ′(r) + λ f (r)
f (r)

= −
h′′(θ)
h(θ)

.

Since both sides are functions of different variables, they have to be a constant. We denote this constant c.
Now we obtain the general solution for the angular part of the equation: h(θ) = a cos(nθ) + b sin(nθ),
where n ∈ N0 and satisfies n2 = c.

For the solution of the radial part we denote f (r) = y and obtain

r2y′′ + ry′ + (r2λ − n2)y = 0.

For λ , 0 we substitute: r
√
λ = ρ(λ) and obtain the Bessel equation

d2y

dρ2 +
1
ρ

dy
dρ

+

(
1 −

n2

ρ2

)
y = 0. (5.5)

The solutions of (5.5) are the Bessel functions Jn(ρ). (The Bessel functions are more closely described
in [8], Chapters 9., 10.) We denote

√
λ = k ∈ R. The boundary condition gives v(1, θ) = Jn(k) h(θ) =

Jn(
√
λ) h(θ) = 0. The Bessel function has infinite number of zeros for every n ∈ N0. If we denote the

mth zero of the nth Bessel function km,n (for m, n ∈ N0), then the corresponding eigenvalue λm,n is the
square of this zero.

Then the eigenfunctions take the form

vn,m(r, θ) = Jn(km,nr) (a cos(nθ) + b sin(nθ)), (5.6)

where k ∈ R, n ∈ N0 and a, b are real constants. The eigenfunctions corresponding to the second
eigenvalue on a disc are shown in Figures 6.2a and 6.2c on p. 32.

5.1.3 Sector of a disc

Now we do not assume the whole disc, but just a part of it. It means that the angular variable is
restricted by a real number α ∈ (0, 2π). We use very similar approach as we did in the case of Ω being a
disc. Thus we get

−
h′′(θ)
h(θ)

= c

where c is a constant and θ ∈ (0, α). Since the boundary condition now gives h(0) = h(α) = 0, the
solution h(θ) = A sin( mπθ

α ), m ∈ Z, for arbitrary constant A ∈ R satisfies this differential equation. We
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Figure 5.1: The Bessel functions Jν for ν = π
α (red colour) and ν = 2π

α (blue colour) for angles α = π
6 ,

α = 11π
6 and α = 1.1125
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also get the form of the constant c =
(
πm
α

)
, m ∈ Z. Now we make the substitution for λ , 0 in the same

way as we did in the previous case: r
√
λ = ρ(λ). The form of Bessel equation we obtain now is

d2y

dρ2 +
1
ρ

dy
dρ

+

(
1 −

(mπ
α

)2

ρ2

)
y = 0

and Bessel functions Jν(ρ), ν = mπ
α solve this equation. Since we need to satisfy the boundary condition

f (1) = 0 we have y(
√
λ) = Jν(

√
λ) = 0. Thus the eigenvalue λ is a square of the first root of the Bessel

function and the corresponding eigenfunctions take form

v(r, θ) = Jν(
√
λr) A sin

(mπθ
α

)
m ∈ Z. (5.7)

In Figures 5.1a and 5.1b the Bessel functions for angles α = π
6 and α = 11π

6 for m = 1, 2 are shown.
For the smaller angle α = π

6 the second eigenvalue is the square of the second zero of the Bessel function
corresponding to m = 1. However for the bigger angle α = 11π

6 the second eigenvalue is the first square
of the first zero of the Bessel function corresponding to m = 2. We expect there exists an angle β for
which we obtain two different Bessel functions Jν for ν = mπ

β , m = 1, 2 such that they share one same
root. Thus we search for β satisfying

J π
β
(
√
λ) = J 2π

β
(
√
λ).

This condition gives β � 1.113 and correspondent eigenvalue is λ � 9.528. The Bessel functions for
this angle are shown in Figure 5.1c. The second eigenfunctions on sectors of discs for various angles are
shown in Figures 6.4 and 6.3 on p. 33 and p. 34.

Note 5.1. The nodal lines for the degenerated eigenvalues are not given uniquely, since the eigenfunc-
tion is an arbitrary linear combination of the linearly independent eigenfunctions corresponding to the
degenerated eigenvalue.

5.2 Numerical approximation

The max-min principle (Theorem 2.50) enable us to make the numerical approximation of eigenval-
ues and eigenfunctions. It provides the lower estimates for the eigenvalues. We remind that we have
H = −∆ with the associated quadratic form Q and search for the nodal lines of H on various bounded
regions Ω.
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The script for the numerical approximation of eigenfunctions of Dirichlet Laplacian was created
with assistance of consultant Ing. Tomáš Kalvoda,Ph.D. We used the open-source mathematical software
SAGE. It is based mainly on Python. It uses already existing open-source libraries. We describe here the
libraries and functions we used in the source code of our program for finding the eigenfunctions of H.

The used method is called finite element method. At first we divide the region we are interested in
into smaller parts called finite elements. Especially we choose these finite elements to be triangles in the
process called triangulation.

According to the max-min principle (Theorem 2.50) we have to choose m linearly independent nor-
malized functions (g1, . . . gm) to obtain the mth eigenvalue. We choose gi to be a linear combination of
functions from a particular set X . We define a function from X for every point of the triangulation
excluding the points of the boundary as follows. If we denote a the chosen point, B the set of all its
neighbouring points and C the set of the remaining points, then we define the function in discrete points
of triangulation by

fa(x) =


1 for x = a
0 for x ∈ B
0 for x ∈ C.

We denote the coordinates of points a and b, c ∈ B such that b , c: a = (ax, ay), b = (bx, by) and
c = (cx, cy), then the function on the triangle with vertices a, b, c takes the form

fa(x, y) =
1

ax (by − cy) + bx (cy − ay)
((bx cy−by cx)+(by−cy) x+(cx−by) y) if (x, y) ∈ triangle a, b, c.

Outside this triangle the function has zero value. If we assign numbers to all points of the triangu-
lation omitting points on the boundary and denote n the total number of these points then ( fi)n

i=1 form a
linearly independent system of piece-wise linear functions. (We will not differentiate the point and the
number assigned to it when using the index of the function.)

For illustration the function fa ∈X is depicted in Figure 5.2.

Figure 5.2: Illustrative figure of a function fa form set X . The blue point is our chosen point a, the green
one represents the function value fa(a) and the red ones are neighbouring points of a. Intersections of
lines are the remaining points of the triangulation.
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Since we choose the function gi to be a linear combination of functions from X we write

gi =

n∑
k=1

gi
k fk

where gi
k, ∀k ∈ n̂ is a real coefficient and n is the total number of points of the triangulation except the

points on the boundary. We denote the vector of coefficients g̃i := (gi
1, . . . , g

i
n)T ∈ Rn.

We define the matrix of the quadratic form Q̃ by

Q̃k j = 〈∇ fk,∇ f j〉 fi ∈X , ∀i ∈ n̂. (5.8)

The inner product on the left-hand side of (5.8) has non-zero value only in the case of k = j and
k, j denoting the neighbouring points of triangulation. We denote Faa the diagonal elements and Fab the
non-diagonal non-zero elements of Q̃. Then we have

Faa = 〈∇ fa,∇ fa〉 =

∫
Ω

(∇ fa)2 d2x =

∫
triangle a,b,c

(∇ fa)2 d2x

=
1
2

(b2
x + b2

y − 2bx cx + c2
x − 2by cy + c2

y)

|ay bx − ax by − (ay − by) cx + (ax − bx) cy|
,

Fab = 〈∇ fa,∇ fb〉 =

∫
Ω

∇ fa ∇ fb d2x =

∫
triangle a,b,c

∇ fa ∇ fb d2x

= −
1
2

(ax bx + ay by − (ax + bx) cx + c2
x − (ay + by) cy + c2

y)

|ay bx − ax by − (ay − by) cx + (ax − bx) cy|
.

We wish to investigate the first and second eigenvalue and eigenfunction of H. According to the
max-min principle we search for the minimum over functions (g1, . . . , gm) to find the approximation of
the mth eigenvalue. If we denote g1 the wanted approximation of the first eigenfunction then we have

λ1 ≈ min
g1

i ∈R

‖g1‖=1

n∑
k, j=1

〈∇(g1
k fk),∇(g1

j f j)〉 = min
g1

i ∈R

‖g1‖=1

n∑
k, j=1

g1
k Q̃k j g

1
j = min

g1
i ∈R

‖g1‖=1

〈g̃1, Q̃g̃1〉 (5.9)

There the norm is in L2(Ω). Finding this minimum we obtain the vector of coefficients (g1
1, . . . , g

1
n)T

which determines the eigenfunction g1. We denote g2 the wanted approximation of the second eigen-
function. Then the approximation of the second eigenvalue λ2 takes form

λ2 ≈ min
g2

i ∈R
‖g2‖=1
〈g1,g2〉=0

n∑
k, j=1

〈∇(g2
k fk),∇(g2

j f j)〉 = min
g2

i ∈R
‖g2‖=1
〈g1,g2〉=0

n∑
k, j=1

g2
k Q̃k j g

2
j = min

g2
i ∈R
‖g2‖=1
〈g1,g2〉=0

〈g̃2, Q̃g̃〉. (5.10)

Again the norm is in L2(Ω). We obtain the vector of coefficients (g2
1, . . . , g

2
n)T determining the function

g2.
Now we move to the exact functions in SAGE we used to solve the task introduced bellow. When

the points (the vertices of triangles) are set, then the algorithm for getting the second eigenvalue and
eigenfunction is universal for any bounded region.
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• At first we set the points covering given region. We want to assign numbers to these points. For this
there exists the function array in the library NumPy which is abbreviation for numerical python.

• The function Delaunay from library scipy.spatial (ScientificPython) focused on spatial algorithms
and data structures makes the triangulation.

• Further we get the inner products in the right-hand sides of the equations (5.9) and (5.10) using
the function np.dot from library numpy. Thus we obtain a sparse matrix. For work with such a
type of matrices we use the the library scipy.sparse. The class dok_matrix saves only the non-zero
elements of the matrix. This class is suitable in our case because non-zero elements are only the
diagonal ones (these containing the inner products of two same functions of the basis) and few
others next to the diagonal (inner products of a function from the basis and its neighbour function,
in the sense that both have value of 1 in different but neighbouring points).

• The task is now to minimize the expressions given in (5.9) and (5.10), where the matrix H̃ is this
sparse matrix. The minimum is found by the function minimize from the library scipy.optimize in-
tended for optimization and root finding with method SLSQP which is abbreviation for Sequential
Least SQuares Programming. This method accepts additional constraints. In our case the addi-
tional conditions are the normalisation of the function g, when searching for the first eigenfunction
and the normalisation of g with orthogonality of g to the first eigenvector, when searching for the
second eigenvector.

• Finishing this process we obtained a piecewise linear function on original region Ω satisfying the
given conditions. However this function is smooth. To smooth it we use the function LinearND-
Interpolator which means Piecewise linear interpolant in N dimensions from scipy.interpolate.

Further information about the used libraries and functions are available in [7]. The script is saved on
the enclosed CD.
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Chapter 6

Discussion on results

As was mentioned in Section 5.1 computing nodal lines analytically is possible only for some specific
regions. In that section we found the second eigenfunction of Dirichlet Laplacian on a rectangle, a disc
and a sector of a disc. Thus we tested our program for numerical approximation described in Section 5.2
on these regions. In this chapter the results obtained both analytically and numerically are shown and
discussed.

It is noticeable that both methods give results following the nodal hypothesis introduced in Chapter 4.
That means that the nodal lines are indeed not closed and their closures intersect the boundary.

The following figures depict the obtained eigenfunctions and their nodal lines. For disc and rectangle
with specific choice of lengths of edges we have the degeneracies of the second eigenvalue. And we
obtain linearly independent eigenfunctions corresponding to the same eigenvalue. We found also these
degeneracies solving this problem numerically. As we can see in Figures 6.2 and 6.1 the numerical
approximation gives the eigenfunctions with a sufficient precision for these regions.

The only imprecision occurs near the boundary. The size of gradient of a monotonous function on
a certain interval depends on the difference of function values in the edges of this interval. Thus the
eigenfunction decreases from maximum to minimum rapidly and the nodal line can be found with suffi-
cient precision. Near the boundary the eigenfunction needs to satisfy the Dirichlet condition. Therefore
in intersection of the neighbourhood of the boundary and regions around the zero sets of eigenfunction
there appear large areas, where the eigenfunction value is close to zero. As a result the exact zero value
(nodal line) cannot be found with sufficient precision.

The numerical imprecision is particularly noticeable in the results of the sector of a disc region. The
reason is the same as we mentioned in the previous paragraph. Therefore the problem occurs mainly the
disc centre. In the case of angles smaller then some specific angle the nodal line goes in the direction of
the angular variable. For angles larger then this specific angle the nodal line goes in the direction of the
axis of the angle. In the first case the results are more precise since the area with values close to zero is
not very large compared to the area with values close to zero in the second case. In the second case the
bigger the angle we choose the more precise are the results (compare Figures 6.3f and 6.3b).

We have also found the specific angle in which the first case changes into the second one. For this
angle θ � 1.113 the Bessel functions Jν for ν = π

α and ν = 2π
α have one same root. Therefore the

eigenvalue is degenerated. Thus we obtain two eigenfunctions with nodal lines in the angular and in the
radial direction respectively. These eigenfunctions are shown in Figures 6.4a- 6.4d.

In Table 6.1 are given the eigenvalues obtained both analytically and numerically for comparison.
We conclude, that the numerical approach is useful for the illustration of eigenfunctions and their

nodal lines. However for the numerical imprecision it is not suitable for direct confrontation of the
Nodal hypothesis.
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Figure 6.1: The second eigenfunction on rectangle region of edges a = 1, b = 2 obtained both analytically
and numerically.

(a) Analytical solution
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(b) Numerical solution
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Table 6.1: The eigenvalues λ

Region Analytical solution Numerical solution
Eigenvalue Eigenfunction Eigenvalue Eigenfunction

rectangle, a = 1, b = 2 19.739 Figure 6.1a 19.856 Figure 6.1b
disc, r = 1 14.682 Figure 6.2a, 6.2c 14.735 Figure 6.2b, 6.2d
sector, r = 1, θ = π

6 184.669 Figure 6.3a 187.193 Figure 6.3b
sector, r = 1, θ = 1.1125 90.774 Figure 6.4a, 6.4c 91.695 Figure 6.4b, 6.4d
sector, r = 1, θ = π 26.375 Figure 6.3c 26.545 Figure 6.3d
sector, r = 1, θ = 11π

6 15.632 Figure 6.3e 15.801 Figure 6.3f
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Figure 6.2: The second eigenfunction of the corresponding degenerated eigenvalue on a disc region
obtained both analytically and numerically. We denoted f1a and f1b the analytical solution (5.6) from
Section 5.1 for the choice of coefficients a = 1, b = 0 and a = 0, b = 1, respectively.

(a) Analytical solution, f1a
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(b) Numerical solution
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(c) Analytical solution, f1b
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(d) Numerical solution
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Figure 6.3: The second eigenfunction on sector of a disc region for angle θ obtained both analytically
and numerically.

(a) Analytical solution, θ = π
6 .
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(b) Numerical solution, θ = π
6 .
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(c) Analytical solution, θ = π
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(d) Numerical solution, θ = π
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(e) Analytical solution, θ = 11π
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(f) Numerical solution, θ = 11π
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Figure 6.4: The second eigenfunctions of corresponding degenerated eigenvalue on a sector of a disc
region for angle θ = 1.1125. We denoted f1 and f2 the analytical solution (5.7) from Section 5.1 for the
choice of m = 1 and m = 2, respectively.

(a) Analytical solution, f2
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(b) Numerical solution, f2
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(c) Analytical solution, f1
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(d) Numerical solution, f1
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Summary

In this degree project we dealt with the Dirichlet Laplacian on bounded regions in R2. This operator
is important in the physics since it occurs in equations such as wave, Schrödinger and heat equation.
This is a self-adjoint closed non-negative operator. In Chapter 2 we reviewed some of standard facts
on the theory concerning such an operator and its spectrum and summarized without proofs the relevant
material on quadratic forms. In Chapter 3 we showed the important general properties of Dirichlet
Laplacian resulting in its specific spectral properties.

Section 5.1 contains the analytical solution for the eigenvalue problem of Dirichlet Laplacian on spe-
cific regions, that provides such a solution. We found the eigenfunctions and eigenvalues on a rectangle,
a disc and a sector of a disc. We found possible degeneracies of second eigenvalues on these regions.

Then we created a script for numerical approximation of solution of the eigenvalue problem of
Dirichlet Laplacian. This program provides the solution of this problem on regions solved analytically.
The software and the algorithms we used are described in Section 5.2. The script could be also used for
some other bounded regions. However the first step of the algorithm (the triangulation) needs to be done
separately for every particular region, which is not always very easy task.

We discussed the results of analytical and numerical solutions in Chapter 6. Comparing the results of
both methods we found out that the program gives reasonable results. We also checked, that the solutions
are in agreement with the nodal hypothesis, whose results are summarized in Chapter 4.

It would be challenging to find the nodal lines using the numerical tools for more complicated re-
gions, on which we cannot find the analytical solution.
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