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Abstrakt:  Predlozena bakalarska praca sa venuje vlastnostiam E-funkcii Weylovych grap.
V prvej Casti prace sumarizujeme zakladné vlastnosti Weylovych grup a afinnych Weylovych
grup. V druhej casti sa venujeme Specifickym vlastnostiam parnych podgrap, ktoré nam
umoznuju definovat E-funkcie. Nasledne uvddzame explicitny tvar E-funkcii v ranku dva a
vlastnosti, ktoré spifiajt. V kI'i¢ovej ¢asti prace je uvedeny nami zostrojeny explicitny tvar
E-funkcii v ranku tri a dokaz, Ze spifiaja diskrétnu ortogonalitu.

Zaverom, v tejto praci sa nam podarilo overit uzito¢né vlastnosti E-funkcii v ranku tri,
najma diskrétnu ortogonalitu, ktora umonuje vyuzit E-funkcie v spracovani dat. Tato praca
tieZ otvara nové otazky, napr. ¢i vlastnosti E-funkcii maja rovnaky tvar vo vsetkych rankoch,
hlavne v pripade Specialnej Weylovej grupy typu Fy

KTicové slova: ~ Weylova grupa, afinna Weylova grupa, koreriovy systém,

fundamentalna oblast, E-funkcia, diskrétna ortogonalita

Title:
Types of E-functions of Weyl groups and their properties

Abstract:  The present bachelor thesis focuses on the properties of E-functions of Weyl
groups. In the first part of the thesis, we summarize basic properties of Weyl groups and
affine Weyl groups. In the second part, we study the specific properties of even subgroups,
which allow us to define E-functions. Subsequently, we state the explicit form of E-functions
in rank two and their respective properties. In the key part of the thesis, we construct the
explicit form of E-functions of rank three and verify their discrete orthogonality relations.

Concluding, the present thesis succeeded in the verification of the useful properties of
E-functions of rank three, especially discrete orthogonality with its utilization in processing
data. Based on this main conclusion, new questions are raised, e. g., whether the properties
of E-functions are valid for any rank in the same form, particularly taking the case of the
special Weyl group of type Fy.

Key words:  Weyl group, affine Weyl group, root system, fundamental domain,
E-function, discrete orthogonality
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Introduction

One type of special functions corresponding to Weyl groups and their root systems, called E-
functions, are introduced firstly in [8]]. The results of the paper [2]], which contains detailed
explanation of discrete Fourier calculus of orbit functions, are extended to this type of E-
functions in [3]]. Additional five types of E-functions for root systems with two different
lengths of roots are introduced and studied in detail for simple Lie algebras of rank two
in [TI]. In the present thesis we study these six types of E-functions for simple Lie algebras
of rank three and verify if the properties that are valid in [1]] are also valid for simple Lie
algebras of rank three. Especially, the discrete orthogonality relations of these functions are
of interest.

With further analysis of E-functions, made in [} [3, [6], the following important prop-
erties have been described. E-functions depend on n variables, with n being the rank of
the corresponding Lie algebra, and are periodic in various ways in the Euclidean space R".
Moreover, each pair of the same type of E-functions is orthogonal when integrated over their
(bounded) fundamental region in R”. This property represents continuous orthogonality of
E-functions. Similarly, discrete orthogonality also holds — each pair of the same type of E-
functions is orthogonal when their values are summed over a discrete lattice of any density
in the fundamental region. The symmetry of the lattice is defined by the given Weyl group.

One of the motivations for constructing E-functions is their utilization in processing
digitally given data. Each type of E-functions is orthogonal in a region of different shape
and therefore might be more suitable for processing specific type of data. This should, in
return, increase the processing speed for that specific type of data.

Chapters one, two and three review already known results, except for the last part of
chapter two, where for the purpose of discrete calculus of E-functions the description of the
fundamental domains is reformulated. Chapter four contains original results concerning
the form and orthogonality of E-functions of rank three, except for the basic properties of
simple Lie algebras B3 and Cj taken from [10].

The thesis is organized as follows. In the first chapter, Weyl groups in general are stud-
ied. We define their root systems and classify crystallographic irreducible root systems.
From Weyl groups we create affine Weyl groups and discuss their fundamental domains.

In the second chapter, we find three types of subgroups of Weyl groups of index two
called even subgroups. We discuss the fundamental domains of these subgroups and define
E-functions based on the orbits of these subgroups. We also discuss the properties of these
E-functions: their symmetries, orthogonality and product decomposition.

In the third chapter, we summarize the general properties of Weyl groups of type C, and
G, and we review the results of 1] by explicitly stating the E-functions corresponding to
the Weyl groups of type C, and G,.

In the fourth chapter, we summarize the general properties of Weyl groups of type Bj,
C3 and explicitly state their E-functions. Also, we verify if they have the same properties as
E-functions of Weyl groups of rank two.



Chapter 1
Weyl groups

In this chapter we study Weyl groups in general. We review nomenclature from [1}, 2, [4]
needed for further definition of E-functions. For a more detailed study of Weyl groups and
Coxeter groups see [4].

1.1 Finite reflection groups and root systems

Consider an Euclidian space R"” with an inner product ( , ):R"xR"+ R. The reflection
r, over the hyperplane H, with a being the normal vector of the hyperplane is defined as

2{A, a)
@ a.

A finite group generated by reflections is a finite reflection group.
Let @ be a finite set of nonzero vectors in IR" satisfying these conditions:

TeAd=A—

s (Vaed)(PNR-a={a,-a})
* (Vaed)(r,® =)

and let W be the group generated by {r, | @ € ®}. Then the set ® is a root system with the
associated reflection group W and elements a € @ are called roots.

Let @ be a root system of a finite reflection group W. Then a subset A C¢ ® with the
properties:

* A is the basis of spang (D)

 for each @ € @ in A basis the coefficients all have the same sign (all nonnegative or all
nonpositive)

is a simple system of group W. From now on, the notation for the simple system A =
{ay,...a,} is used, where n is the dimension of the space R". The vectors a; € A are called
simple roots. The reflections corresponding to the simple roots are called simple reflec-
tions and are denoted

Tq, =T, @; €A,

Example 1.1.1. The reflection group of type B, (n > 3), denoted by Wg , is defined as follows.
Let {e; | i € {1,...,n}} be the standard basis in R”. From now on, this notation of the standard
basis is used. Then the group Wy consists of all permutations and all sign changes of the
coordinates in the standard basis. This group can be generated by transpositions of the
coordinates and one sign change — a sign change on only one coordinate. These generators



are clearly orthogonal transformations from O(n). All sign changes are isomorphic to the
quotient group (Z/2Z)" and all permutations are isomorphic to the permutation group S,;
therefore, the number of elements of W, is

|Wp, | = 2"n!.
Considering all combinations of signs, the root system of Wg is
Op, ={xe;+e; [i,jef{l,..,n}i=jtU{xe; [i€(l,.., n}}
The simple system of Wg is
Ap ={ej+ei . |ie{l,..,n=1}}U{e,}.

We denote the simple roots a; = ¢; +e;,1, fori e {l1,..,n—1},and a, =e,.

Let @ be a root system and A its simple system then the set
DY = {av | a € CD}

2a
(a,a

is the dual root system to the root system @ and roots a" = y are called dual roots

(coroots). The set

where a < >, is the dual simple system to the simple system A and a. are called dual

simple roots (51mple coroots).
A root system @ is crystallographic if it satisfies

Na,p) )
B,B)

(Va,/ie@)(

_ Xai,aj)
ij = Yaja;)’

2a,p)
(B.B)
form the Cartan matrix.

Let @ be a crystallographic root system then the group W generated by r,(a € @) is
called the Weyl group of ®.
The root lattice and the dual root lattice are defined as follows:

The integers are called Cartan integers. The elements C;; where a;,a; € A,

Q=Zay+..+Za,, Q'=Za/+..+Za,.
We also use the following notations for the subsets of Q and QV,
Q" =Zjay +..+ Z{a,, Q™" =Nay +... + Na,,
QY =Zla) +..+ Zfa,, Q""" =Nay +..+Na.
1.2 Fundamental weights
Let {wy,...,w,} be a basis of R” such that
(Vi,je {1,...,n})((a)i,a]\./> = 51‘]‘)-

Then {wy,...,w,} is called the basis of fundamental weights and the vectors w; are called
weights.



Let @) = 2%, then trivially it holds that

(aj,a;)’
(Vi,j e {1,...,n})((wly,a]-) = 6i]~).

The basis {wy,...,w, } is called the basis of dual weights and ;" are called dual weights
(coweights). The notations for these bases are:

A={aq,...,a,}, AV:{aY,...,a,\{}
Q=lw,....,w0,}, QV={w{,..., 0}
Representations of a vector in A, AY, Q), QY bases are denoted as

n

(ap,...,a,)A = Zaiai,

i=1
n

_ AV
, = E
(@i,...,a,)Av a;a;,

i=1
n

(ai,...,a,)0 = Zaia)i,

i=1
n

(ay,...,a,)qv = Zaiw;/.

i=1

The weight lattice and the dual weight lattice are defined as follows
P=Zw+..+Zw,, P'=Zw+..+Zw,.
We also use the following notations for the subsets of P and PV,

PT=Ziw++..+Z{w,, P =Nw;+..+No,
PVt = Zgw}/ +... +Zga),\1/, pVtt = lNa)i/ +...+ INa)i/.

1.3 Classification of irreducible crystallographic reflection
groups

Let @ be a crystallographic root system and let a, € . Then the order of r,74 is denoted
m(a, B), therefore

(Ya, B € D)((ryrs)"*P) =1).

The Coxeter-Dynkin diagram of the Weyl group W with the simple system A = {ay,..., a,}
is constructed as follows:

* the vertices are indexed 1 to n for each simple root,
* avertix is blank for long roots and full for short roots (if there are two root lengths),

* when m(a;, a;) > 3 then there is an edge connecting vertices i and j,



* the value of the vertix is m(a;, @;), in the diagram the value m(a;, a;) = 3 is denoted by
one line, the value m(a;, a;) = 4 is denoted by two lines and the value m(a;, a;) = 6 is
denoted by three lines.

Example 1.3.1. The Coxeter-Dynkin diagram of Wpg is

1 2 n-1 n

Theorem 1.3.2. Let W, W be Weyl groups with the same Coxeter-Dynkin diagram then W,
W are conjugate in O(n).
For proof see [4].

A Weyl group is irreducible if its Coxeter-Dynkin diagram is connected. Irreducible
Weyl groups can be classified by their Coxeter-Dynkin diagrams; these Coxeter-Dynkin
diagrams also classify all possible complex simple Lie algebras. The standard notation for
the types of all possible Coxeter-Dynkin diagrams of irreducible Weyl groups is

An (7’1 > 1), Bn (Tl > 3), Cn (1’1 > 2), Dn (1’[ > 4), E6l E7, Eg, F4, Gz.

The corresponding diagrams, taken from [5]], are of the following form

1 2 3 n n
An O—O—O__O 1 2 n-3 n—1
Dn C C oo n_z
1 2 n-1 n 6
B, O—O—""—-(C—e 1 2 4 5
Eg
1 2 n-1 n 3
Cn ' ' ..._.:O 8
7 1 2 3 4 6 7
1 2 4 5 6 Eg
E; 5
3
1 2 3 4 1 2
F, O—C—e—e G, =

1.4 Affine Weyl Groups

The affine Weyl group W is defined as the semidirect product of the Abelian group of
translations of the coroot lattice Q¥ and of the Weyl group W,

Waff: QV > W,

and the dual affine Weyl group is defined as the semidirect product of the Abelian group
of translations of the coroot lattice Q and of the Weyl group W,

W = Qs w.

The highest root & of the affine Weyl group W2 can be expressed, see e. g. [5], as follows

n
E = Zmiai.
i=1

10



The coefficients m; € IN can be viewed as attached to the i-th vertix of the Coxeter-Dynkin
diagram of W — they are called marks. The form of the highest root £ is for all cases the
following;:

B, : &=a1+2a,+2az3+--+2a,,

Cp: &=2a1+2ap+ -+ 20,1 +a,,

Fy i &=2a;+3ay+4a3+ 20y,

Gy : &£=201+3a,,

A, E=ar+ar+-+a,,

D,: {=a1+2ay+--+2a, ) +a,1+a,,

Eg : E=a1+2a,+3a3+2a4+as+2a,

E; : &=2a;+3a,+4a3+3a4+ 2a5+ ag + 2ay,

Eg : & =2a1+3ay+4a3+5a,+6as+4aq+ 207+ 303.

The highest dual root 7 of the dual affine Weyl group W2ff can be expressed, see e. g. [2],
as follows .
n=) ma;
i=1

and the coefficients m) € IN are called dual marks. The form of the highest dual root 7 is
for all cases the following:

B, : n=2a)+2a)+-+2a ,+a,,

Ch: n=a)+2a)+2aj +-+2a,

Fy: n=2a) +4ay +3a3 +2a),

G, : 1=3a +2a;,

Ayt n=a+a)++a,,

D,: n=a)+2a)++2a) ,+a, +a,,

Eg : n=a) +2a) +3a] +2a] +ad +2a/,

E; : n=2a)+3a, +4ay +3a] +2ai +a +2a],

Eg : n=2a) +3a; +4aj +5a)] +6a +4a] +2a) +3ay.

The reflection r is an affine reflection over the hyperplane {x € R" | (x,&) = 1}, which is
defined as

n _ 2¢
(VxeR )(ro)(_rg)(+ <€’€>).

The reflection r; is an affine reflection over the hyperplane {x € R" | (x,#) =1}, which is
defined as

21]
(Vx e R" (rvx:r X+ )
Nrox=mx 4
Theorem 1.4.1. The affine Weyl group W2 is generated by {r; | i € 1,...,n} U {ry}.
For proof see [4].

Let W be a Weyl group and A its simple system then the extended Coxeter-Dynkin
diagram of the affine Weyl group W2 is the Coxeter-Dynkin diagram of W with the root
ay = —¢ added to the diagram. The vertex representing the root ¢ is indexed with the value
0. Analogously, the extended Coxeter-Dynkin diagram of the dual affine Weyl group Waff
is the Coxeter-Dynkin diagram of W with the dual root ey = —# added to the diagram. The
vertex representing the dual root a; is indexed with the value 0.

11



Example 1.4.2. The extended Coxeter—Dynkin diagrams of the Weyl groups of types B, and
C, are

1 2 n-1 n
Bn ..._O:.
E;O
0O 1 2 n-1 n
C, O—e—=e —eO.

The extended Coxeter—Dynkin diagram of Wé‘f is the same as the extended Coxeter—-Dynkin
diagram of ngf The extended Coxeter-Dynkin diagram of Wéﬁ is the same as the extended

Coxeter-Dynkin diagram of ngf. These diagrams are dual to each other.

1.5 Fundamental domain

The fundamental domain of a group G is the smallest, in terms of inclusion, connected set
D c R" such that the action of G on D is the whole space R".

Theorem 1.5.1. The fundamental domain D of the Weyl Group W is
D={AeR"|(Va e A)({A, a) > 0)}.
For proof see [4].
Theorem 1.5.2. The fundamental domain F of the affine Weyl Group W2 is
F=Dn{leR" | () E&)<1).
For proof see [4].

\
The fundamental domain F is equivavently the convex hull of the points {O, Z—ll, ey Z—z}

and the fundamental domain FY of W2 is the convex hull of the points {0, %, . %}
1 n
Let W be a Weyl group and A its simple system and let {X; | i € {1,...,n}} denote the
‘mirrors’ of reflections of the simple reflections r;,

Xi={x eR" | (x,a;)=0}.
The 'mirror’ X of the affine reflection r is
Xo={x eR" [ {x,&)=1}
and its dual counterpart X is
Xy ={x eR" | (x,m)=1}.
The intersections of the 'mirrors’ with the fundamental domain F are denoted Y; and Y
Y, =X;nF, Yy=X,NE.

The intersections of the ‘mirrors’ with the fundamental domain F" are analogously denoted
Y and Y,
YY=X;nFY, Y/=X,NF"

12



Chapter 2

E-functions

In this chapter we find three types of normal subgroups of Weyl groups using sign homo-
morphisms [7]]. Using orbits of these subgroups, we define even orbit functions (abbreviated
E-functions), and discuss their properties. For a more detailed study see [1, 3}, [6]].

2.1 Even subgroups

A sign homomorphism is a homomorphism o : W +— {1,-1}, where {1,-1} is the multi-
plicative group containing elements 1 and —1. One obvious choice of a sign homomorphism
is 0, defined as

(Yw e W)(0,(w) = det(w)).

Even subgroups W¢ of a Weyl group W are the kernels of non-trivial sign homomorphisms
W =kero={weW | o(w) =1}.
The corresponding affine groups are defined as
Wt = QY s WO

The maps 0; and oy are sign homomorphisms of a Weyl group W with a simple system A.
Since simple reflections generate W, it is sufficient to define o5 and 07 on simple reflections.
They are defined as follows [7]]

05(7’5)2—1, Us(rl) I,
o(rs) =1,  oy(r)=-1,

where r; are simple reflections over short roots and r; are simple reflections over long roots.
Even subgroups W¢, W*¢, W' are the kernels of sign homomorphisms o, o;, 0}, respectively,

W =kero,, W°®=kero,, W!=kero,.
Their corresponding affine groups are
Weaff — QV > W@) Wsaff — QV q WS, Wlaﬁ: — QV q Wl.

Let Y, denote the union of all ‘mirrors’ of short roots intersected with the fundamental
domain and Y is the union of all ‘'mirrors’ of long roots intersected with the fundamental
domain

ﬁ:)’imF:Ust)mF, (2.1)
V=X mP:UX?” NE, (2.2)

1

13



0
1
notation ?«lv =X, NFY and 17;\/ = X, NFV is also used.

The fundamental domains of the affine groups are denoted F°*, F* F'* (+ sign notation
will be clearer later) and their explicit form is

where X;s) represent ‘mirrors’ of short roots and X.’ represent ‘mirrors’ of long roots. The

F®* =FUrF°, F*"=FUr(F\Y,), F*=Fun(F\(Y;UYy)).
The subsets of weight lattice corresponding to the even subgroups are
P, =PTur(P*), P,=PtUr(P"\X,), P,=P"un(P\X),

where 7, 1y, 17 are each an arbitrary, but fixed, simple, short simple, long simple reflections
respectively.
The stabilizer of A € R" of a group G is defined as

Stabg(1) ={ge G| gA=A}.
The coefficients df\, df\, df\ denote the orders of stabilizers of W¢, W, W/, respectively,

d§ =|Stabye(A)], df =|Stabys(A)l, df\ = [Stabyy(A)].

2.2 Maximal torus and its orbits

In this section we define notions needed for the discrete calculus of E-functions. One arbi-
trary natural number M, which controls the density of the grids appearing in this calculus,
is chosen.

Let = be an equivalence defined as

VxyeRNx=y)e @39 €QV)x=r+q"),

the quotient space R"/ = is the maximal torus, denoted R"/QV. The quotient space R"/Q
is defined analogously. For M € IN the sets ﬁPV/QV and P/MQ are finite grids. Their in-
tersections with fundamental domain F and the magnified dual fundamental domain MFV,
respectively, are denoted as

1
Fy = MPV/QV NF, Ay =P/MQNME",

The grid F), is explicitly given in [3] as

n
Fy = {X—/}w¥+---+%w,\{ | ug, uy,...,u, € Z§, u0+Zu,-mi :M}. (2.3)

=1

The grid Ay, is explicitly given in [3]] as

n
AM = {tlwl +---+twy, | to,tl,...,tn EZ-(;, t0+Ztim;/ :M} (24)
i=1

For x € F) the orders of the stabilizers in the space R"/QV for each type of even subgroup
are denoted as
h$ =|Stab’x|, ki =[Stab’x|, h; = |Stab'x|.

14



and the orders of the orbits are denoted as
e(x)=IWexl, €Ex)=IWxl, €ex) =Wyl
Of course, the orbit—stabilizer theorem states that

A

|We| W]
ee(X)_ he ’ = =
X

ES(x)=—=—, €ex)=—
5 hk

For A € Ay the orders of the stabilizers in the space IR"/Q for each type of even subgroup
are denoted as
hY® =|Stab¥®A|, hY* =[Stab"*A|, hY' =|Stab¥!(1)|.

Finally, using the notation from the grids in R"/QV for each type of even subgroup are,
FSf =FyUrFy,  Ef = FyUrdFy \Ys),  Fir= ExpUr(Fag \ (YU Yp)),
where Fy, denotes ﬁPV/QV N F°. Their dual counterparts are grids in IR"/Q defined as
A=A UTAYy,  ASE = Ay Urd Ay \ (MY UMYY)), Al = Ay Un(Ay \MYY),

where A§, denotes P/MQNMFY°.

2.2.1 Algorithm for calculating orders of stabilizers

Calculating the orders of stabilizers from their definition is not an easy task, but there exists
a simple algorithm for calculating the orders of stabilizers using extended Coxeter-Dynkin
diagrams [2, (3]].
The calculation procedure of ) = [Stabyy.e(x)| and also €(x) = |hM for any x € F) uses the
X
extended Coxeter-Dynkin diagrams of W2, The calculation procedure of hY = |Stab (M)

for any A € Ay uses the dual extended Coxeter-Dynkin diagrams of Waf,
Consider a point x € F,.

1. Let [ug,...,u,] be the corresponding coordinates of x € Fys (from[2.3). If uy,...,u, are
all non-zero, then h, = 1.

2. If some of the coordinates [uy, ..., u,] are zero then consider such a subgraph U of the
extended Coxeter-Dynkin diagram of the affine Weyl group W2 consisting only of
those nodes i for which u; = 0,1 =0,...,n. The subgraph U represents a Weyl group U
(non-extended). Take the order of this Weyl group |U|. Then it holds that

hy, = U

We proceed similarly to determine /| when considering a point A € Ay.

1. Let [ty,...,t,] be the corresponding coordinates of A € Ay (from[2.4). If ty,...,¢t, are all
non-zero then hy = 1.

2. If some of the coordinates [ty,...,t,] are zero then consider such a subgraph U of the
extended Coxeter-Dynkin diagram of the dual affine Weyl group W2 consisting only
of those nodes i for which t; = 0,i = 0,...,n. The subgraph U represents a Weyl group
U’ (non-extended). Take the order of the Weyl group |U’|. Then it holds that

Y =|U’l

15



To calculate h$, 5, hé( the following relations are used.

For x € F)y
he — hy ifh, =1
X %hx otherwise
oo | 3 ifxey,
X hy otherwise
h)( lf X € ?} U YO

1
W o=4 2 :
X hy otherwise.

Similar relations are used to calculate h}°, h}°, hxl.
For A e Ay

v eV
pve _ ;1[/\\/ if hy = 1
A shy otherwise
. ~v
pvs _ ) gohy  ifxeYo uyy
A hx otherwise
) ~v
hvl — %hX if X € Yl
A hy otherwise

The relations for x € Fys allow the calculation of the remaining x € F5;\Fa, F3 \Fas, F]l\]; \Fum,

respectively, as

Hry =her Moy =he h

_ 11l
nx — hX’

and the relations for A € Ay, allow the calculation of the remaining A € A$; \ Ay, A3\
Aty AN\ Ay, respectively, as

Ve _ 1,Ve Vs _ 1,Vs vl _ 1Vl
hr/\ _h/\ ’ hrsx\ =h ’ hrlx\ _h/\ '

2.3 Even orbit functions

In this section we discuss the properties of even orbit functions. The continuous orthogonal-
ity relations stated are valid for Weyl groups of rank 2. The discrete orthogonality relations
stated are valid for Weyl groups of rank 2 and rank 3.

Let 0 be a sign homomorphism then the even orbit function of even subgroup W and
AeP, \Iff :R" — C is defined as

(V)(ER”) \I]f()(): Z eZT(i(W/\,X) )

wewe

These functions are invariant with respect to the action of w € W¢

o (x) =Wy (x)
WY (wy) =Wy (x)

and invariant with respect to the action of the Abelian group of translations QV,

(Vq" € Q)WY (x +q") =¥/ (X))
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2.3.1 E°¢" —functions

For W? = W¢, the even orbit functions are denoted Z°* and their explicit form, parametrized
by AeP,,,is

ET(x) =Wy (x) = Z 2 WAX) v e F*, ) eP,,.

weWe

Continuous orthogonality and Z°*- transforms

For all A, " € P,. it holds that
[ =5 =T ax = wel 15 o 25)
Fe+

where |[W*¢| is the order of the even subgroup W€ and |F¢*| is the volume of the fundamental
domain. Therefore the set of functions

{51 1en,)
is orthogonal. Let f € C!(IR") be invariant to the affine even subgroup W2ff
(Vx e RM)(Ywe W) (Vq" € QV)(f(wx +q") = f(x)) (2.6)

Then the E°* — transform of f converges to f and in point x € R” is defined as

1 -
¢85 (x), where " = —J (X)ES (x)dx.
A; A=A ) A |We||Fe+|df\ Fﬁf A

Discrete orthogonality and Z¢* - interpolation

For all A, A’ € A§f it holds that

) ES IET () = [WIM" det(C) hY*5,y, (2.7)

XEF5T

where det(C) is the determinant of the Cartan matrix and # is the dimension of the space
R".

Let g : R" - C be invariant to the affine even subgroup W2 (as in[2.6). Then the Z¢+ -
interpolation of g, denoted g, (depends on the density of the grid), in point x € IR" is

1

— ketzet , h ket = e e+ )
gM(X) /\;Jr A=A (X) where A |W‘3|M” det(C) hXe Z+€ (X)f()() A (X)
M XEFy

For x € F§; the interpolation function gy, and the function g have the same value

(Vx € Fyr)(gm(x) = g(x)).

2.3.2 E°" —functions
For W? = W*, the even orbit functions are denoted Z°* and their explicit form, parametrized
by AeP,,is

BV (=W () = ) WA, e P ep,.

weWs
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Continuous orthogonality and Z°*- transforms

For all A, A" € P, it holds that

[ 2wz ax =W iE o, 28)
F5+

where |W?| is the order of the even subgroup W* and |F**| is the volume of the fundamental
domain. Therefore the set of functions

AR

is orthogonal. Let f € C!(IR") be invariant to the affine even subgroup W2 (as in [2.6). Then
the E°* — transform of f converges to f and in point x € R" is defined as

- 1 2
Z "5 (x), wherec| = W s+f s+ dx.
A€l F
Discrete orthogonality and Z°" - interpolation
For all A, A’ € Ajj it holds that
Y EET (OET () = W IM" det(C) b5, (2.9)

XE€F3;

where det(C) is the determinant of the Cartan matrix and # is the dimension of the space
R".

Let ¢ : R” > C be invariant to the affine even subgroup W2ff (as in|2.6). Then the Z5* -
interpolation of g, denoted g, (depends on the density of the grid), in point x € R" is

1

kSTEST(x), where ki = e (X)f(X)ES (x).
A;+ VEN |Ws|M? det(C)h}SX% A

For x € F3/ the interpolation function gy and the function g have the same value

(Yx € Fyp)(gm(x) = g(x))-

2.3.3 E!* — functions

For W? = W/, the even orbit functions are denoted Z/* and their explicit form, parametrized
by AeP,,is

2N (0 =" (x) = Z 2wy yeF*, A en,.
wew!

Continuous orthogonality and Z/* - transforms

For all A, A" € P, it holds that

L BN (B () dx =IW'IF™ ) 6,1, (2.10)

where |W!| is the order of the even subgroup W' and |F'*| is the volume of the fundamental
domain. Therefore the set of functions

RN

18



is orthogonal. Let f € C!(IR") be invariant to the affine even subgroup Wlaff (as in . Then
the E"* — transform of f converges to f and in point x € R" is defined as

1

I+=l+ I+ =+

€y &8, (x), wherec) :—f FOE (x)dx.
P |Wl||F1+|df\ Fl+

Discrete orthogonality and 2/ - interpolation

Forall }, A e Af\z it holds that

Y T OB (x) = IW!IM" det(C) hY's,, (2.11)
XeF]lJI

where det(C) is the determinant of the Cartan matrix and # is the dimension of the space
R".

Let g : R"” — C be invariant to the affine even subgroup Wlaff (as in . Then the 2/
interpolation of g, denoted gy, (depends on the density of the grid), in point x € R" is

1

l+r—~l+ I+ I =+
E l kV'EV(x), wherek) = WM det(C)th E € (X)f()()u/\ (x)
AeAl

For x e F ]l\} the interpolation function gy, and the function g have the same value

(Vx € Fi) (g (x) = g(x)).

2.4 Mixed even orbit functions

In this section we discuss the properties of mixed even orbit functions. The continuous
orthogonality relations stated are valid for Weyl groups of rank 2. The discrete orthogonality
relations stated are valid for Weyl groups of rank 2 and rank 3.

Let 0,0 be two different sign homomorphisms then the mixed orbit function of even

subgroup W and of homomorphism &, ¥;"? : R" +— C is

(V)(GRYZ) \I]/{T;E(X): Z 5(w)e27‘(i<w/\,)(> .

weker o

These functions are invariant or anti-invariant with respect to the action of w € W¢

w7 (wy)
w7 (x)

a’(w)\lff’f (x),
F(w)W 7 (x).

This property is called c-invariance. Mixed even orbit functions are invariant with respect
to the action of the Abelian group of translations Q"

(V" € Q)W (x +4Y) =W (x))-
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2.4.1 E¢ —functions

The mixed even orbit functions Z¢~ are given by the relation 2¢ = ‘I’ae % — @l where A €
g y A A

P. The o,-invariance implies the following zero points

88

T(0=0, xe(Yu¥)nY.
Some of these functions are also zero

ES =0, AePN((XoUX)NX,).
Therefore the domain and the weight lattice have to be changed to

F& = (F\((YoUY)NY,)UrF°,
P_=(P*\((XoUX)) N X)) Ur P,

Therefore Z°~ functions, parametrized by A € P,_, in explict form are

89|

0= Y ow)e?™0, y e F AeP.

weWwe

Continuous orthogonality and Z°" - transforms

For all A, A" € P,_ it holds that

| =5 00ETw0 die=WellE 14 o 2.12)

where |W*¢| is the order of the even subgroup W¢and |F¢7| is the volume of the fundamental
domain. Therefore the set of functions

{”e‘ | AeP, }
is orthogonal. Let f € C!(IR") be o,-invariant to the affine even subgroup W2t

(Vx € R)(Vw e W)(Vq" € QV)(f(wx +4") = oy(w) £ (x)) (2.13)
Then the Z°” — transform of f converges to f and in point x € R" is defined as
1

¢S 29 (x), wherec{ = ————— E dx.
A;_ e b IwelFeldy Ff*f

Discrete orthogonality and =¢ - interpolation
Due to zero points and zero functions, the grids are changed in the following way

Fir = (Fu \ (YU Y) N Y,) UriFyy,
AS = (Ay \ (MYY UMY, ) A MY, ) UrAS,.

For all A, A" € Af, it holds that

Y ET(0ZT () = IWeIM" det(C) 15,1, (2.14)
XE€Fy,
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where det(C) is the determinant of the Cartan matrix and # is the dimension of the space
R™.

Let g : R" > C be o,-invariant to the affine even subgroup W2 (as in[2.13). Then the Z¢-
— interpolation of g, denoted g), (depends on the density of the grid), in point x € IR" is

1

= kSTES (x), wherek{ = ¢ E9 (%)
gm(x) A; FETO0, where ki = ;e (0f (05 (%)
M X&€EMm

For x € F}, the interpolation function g, and the function g have the same value

(Vx € Fy(gm(x) = g(x)).

2.4.2 E5 —functions

H 05,01 __ \I]Us'ae

The mixed even orbit functions E°~ are given by the relation £ = W, ¢, where A €
P. The o;-invariance implies the following zero points

EY(0)=0, xe(YuY).
Some of these functions are also zero

ES =0, lePn(XoUX).
Therefore the domain and the weight lattice has to be changed to

FS~ = (F\ (YU Y))UrF°,
P,_=(P*\ X)) urP*.

Therefore Z°~ functions, parametrized by A € P,_, in explict form are

[1]

0= ) ow)e™ W0, yeFT, NeP..

weWs

Continuous orthogonality and Z°"- transforms

For all A, A" € P,_ it holds that
[ =0T dx =i 1 o (2.15)

where |W?| is the order of the even subgroup W? and |F*| is the volume of the fundamental
domain. Therefore the set of functions

{Eg— | le PS_}

is orthogonal. Let f € C!(IR") be oj-invariant to the affine even subgroup Wsaff (as in|2.13).
Then the Z°~ — transform of f converges to f and in point xy € R" is defined as

1

Z ¢y 25 (x), wherecy = W FS_f(X)Ef\_(X)dX-
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Discrete orthogonality and =° - interpolation

Due to zero points and zero functions the grids are changed in the following way
Fii = (P \ (Yo U T U Py
A=Ay \MYZ YU Ay

For all A, A" € A}, it holds that

Y SET (ES (0 = [WIM” det(C) B, (2.16)
X€Fy,

where det(C) is the determinant of the Cartan matrix and 7 is the dimension of the space
R". Let g : R" - C be gj-invariant to the affine even subgroup W2ff (as in[2.13). Then the

=S

E°” —interpolation of g, denoted gy, (depends on the density of the grid), in point y € R" is

1

)= ) KET(x), wherek{ = = ) E0fET ().
Pyl |[Ws|M" det(C) b o2

For x € F}; the interpolation function g, and the function g have the same value
(Yx € Fy)(gm(x) = &(x))-

2.4.3 Z=!~ — functions

The mixed even orbit functions E/~ are given by the relation " = W/ = W% where 1 €

P. The o,-invariance implies the following zero points
B (x)=0, xe¥.
Some of these functions are also zero
Ef=0, 1ePnX.
Therefore the domain and the weight lattice has to be changed to
F= = (F\ Y,)UrF°,
P_=(P*\ X,)unP*.
Therefore Z/~ functions, parametrized by A € P_, in explict form are

Ei\_()() = Z oy(w)e?™ WAy e FI- A ep_.
weW!

Continuous orthogonality and Z/~ - transforms

For all A, " € P_ it holds that

|, 2 Ek oo ar = 1whiE g ou, (2.17)

where |W!| is the order of the even subgroup W' and |F'7| is the volume of the fundamental
domain. Therefore the set of functions

{E’; | e Pl_}

is orthogonal. Let f € C!(IR") be o,-invariant to the affine even subgroup Wlaff (as in|2.13).
Then the 2/~ — transform of f converges to f and in point x € R" is defined as

I-ml-
Z C/\ = X ’ Where /\ = ﬁj f )d}(
P IWHIF™|d),

[I]
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Discrete orthogonality and discrete =' - transforms

Due to zero points and zero functions the grids are changed in the following way
Fip=(Fy\ Yo U rlFM,
AL = (A \ (MY, UMYY) UnAS,.

For all A, X" € A}; it holds that

Y EETEL (x) = IW!IM" det(C) hY's )., (2.18)
)(eF,l\Z

where det(C) is the determinant of the Cartan matrix and # is the dimension of the space
R". Let g : R" > C be o,-invariant to the affine even subgroup Wlaff (as in . Then the

2/~ — interpolation of g, denoted g, (depends on the density of the grid), in point y € R" is

kl_:l ), where o E X)-
A;_ = A |Wl|M” det(C) hY! ; v (x)

For x € F;, the interpolation function g)s and the function g have the same value

(Vx € Fap)(gm(x) = g(x)).

2.5 Product decomposition of even orbit functions

Different products of E-functions can be decomposed into the sum of E-functions. These
relations are valid for Weyl groups of rank 2. For more details see [[1]].

Decomposition of Z¢* - E¢*

The product of two E¢"— functions decomposes into the sum of E°*— functions with the
signs of the summands all positive. Two Z¢ — functions decompose into the sum of =¢*
functions with the signs of the summands relative to the sign homomorphism o;. The gen-
eral formula of these decompositions, which hold for any A, A’ € P and x € R?, is

B0 -ES (0= ) B0 ECO)ES()= ) aw)ES 0 (219)

wewe wewe

08)

The mixed product of 2 — and Z° - functions decomposes into the sum of E°"— functions
with the signs of the summands relative to the sign homomorphism oy,

et

B0 ES(0) = ) odw)E 0 (0) (2.20)

weWe

Decomposition of Z°* - E5*

The product of two Z°* — functions decomposes into the sum of E°*— functions with the signs
of the summands all positive. Two Z°~— functions decompose into the sum of Z°~— functions
with the signs of the summands relative to the sign homomorphism o¢;. The general formula
of these decompositions, which hold for any A,A" € P and x € R?, is

BV (0-EY (0= ) Efaa) BN (0-EL(= ) aiw)EY (). (2.21)

weWs weWs

[1]
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The mixed product of Z°*— and E°~— functions decomposes into the sum of =Z°— functions
with the signs of the summands relative to the sign homomorphism oy,

EV(00-EN (0= ) aw)ET ) (2.22)
weWs

Decomposition of Z/*. B!+

The product of two Z'*— functions decomposes into the sum of Z/* - functions with the signs
of the summands all positive. Two Z/~— functions decompose into the sum of Z/~— functions
with the signs of the summands relative to the sign homomorphism ;. The general formula
of these decompositions, which hold for any A,A" € P and x € R?, is

EV(0-EN 0= ) B0 ER()-EN( =) adwEl, (0. (2.23)

weW! weW!

[

The mixed product of Z/*— and E/"—functions decomposes into the sum of Z/~—functions
with the signs of the summands relative to the sign homomorphism oy,

BV (0B 0= ) o), (0. (2.24)
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Chapter 3

E-functions of rank 2

In this chapter we review explicitly Weyl groups of rank two with two different root lengths
— of type C, and G, — and their E-functions [1},[3} [10].

3.1 Weyl group and Affine Weyl group of type C,

3.1.1 Basic properties of the Weyl group of type C,

The Coxeter—Dynkin diagram (numbers are marks m;) and Cartan matrix with its inverse
are the following,

2 1
@O C:(—22_21)' cl=

ayp aj

(31)

Hence a; is the short root, a; is the long root. The bases of simple roots and fundamental
weights are thus related by

2
2

S

1 \% \%
a = 2w — woy, W] =ap; +5ay, a; = 2a4, wy = 2wy,
@y =—=2w; +2w,, W, =ay+ay, a) = a,, wy = w,.

The four bases are

A= {al,az}, AV = {a;/'a;/}
Q= {wl,wz}, QY = {w}/,w;/}.

In the orthonormal basis these vectors have the form

) = %el + %62,
):el’

a; =(0,1)=ey, wy = (
a=(1,-1)=e;—e;, @y =(

’

[l ) )
O -

(1,
1

1),
(1,0).

)

N<m <

w
w

’

The highest root of ngf and the highest dual root of Wéf are given by these formulas
E=2a1+a,=(1,1), n=a)+2ay =(2,0).

The extended Coxeter-Dynkin diagrams (numbers above vertices are the marks m; respec-
tively marks m)’) of ngf and Wgﬁf are

0o 2 1 1 2 0
oN me ’
dyg a1 ap al a2 CYO
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Table 3.1: The coefficients for discrete calculus of C,. Positive values of ug,uy,u; > 0 and
to, t1,tp > 0 are assumed.

X €EM(C) | e(x) | en) | en) | €'(x) AeAM(Cy) | Y | by | hyY | HY
[l/lo,ul,MQ] 8 4 4 4 [to,tl,tzl 1 1 1 1
[0,u,u,] | 4 4 2 4 0t,6] | 2] 1] 1] 2
[uO,O,uz] 4 4 4 2 [fo,o,tz] 2 1 1 2
[Mo,ul,O] 4 4 2 4 [to,tl,O] 2 1 2 1
[0,0,u,] | 1 1 1 1 [0,0,t,] | 4] 2| 2| 4
[0,u,0] | 2 2 1 2 [0,4,0] | 8| 4 | 4 | 4
[15,0,0] | 1 1 1 1 (t,0,0] | 8| 4| 4| 4

3.1.2 E-functions of C,

In the explicit form of E-functions, the vector from the weight lattice will be in Q) basis and
the variable will be in AY basis, denoted (a,b)q and (x,y)av. The coefficients for discrete
calculus of C, — assuming ug, uy,u, > 0, tg,t,t, > 0 — are shown in Table (3.1).

E¢* — function of C,

The explicit form of Z¢" of C, is

E(ea,b)g (x,9)av =2 cos(2mb(x—p))+2cos(2m (ax —ay + bx —by)),

where (a,b)q € P, and (x,y)av € F¢". The continuous (2.5) and discrete (2.7) orthogonal
relations hold. The product decomposition relation (2.19) holds.

E%* — function of C,
The explicit form of Z°* of C, is
—s

5(:;,1;)@ (x,9)av = 2[cos(2m(ax + by)) + cos(2m((a + 2b)x — by))],

where (a,b)q € P, and (x,p)av € F*". The continuous (2.8) and discrete (2.9) othogonal
relations hold. The product decomposition relation (2.21)) holds.
E* — function of C,

The explicit form of 2 of C, is

Ef;’b)o(x,y)Av = 2{cos(2m(ax + by)) + cos(2m(ax — (a+ b)y))},

where (a,b)q € P, and (x,v)av € F'*. The continuous (2.10) and discrete (2.11) othogonal
relations hold. The product decomposition relation (2.23)) holds.

Z¢ — function of C,

The explicit form of Z¢" of C, is
E(ea_'h)ﬂ (x,v)av = 2{cos(27(ax + by)) — cos(2m((a+ 2b)x — (a+ b)y))},

where (a,b)q € P,_ and (x,y)av € F¢~. The continuous (2.12) and discrete (2.14) othogonal
relations hold. The product decomposition relations (2.19)), (2.20) hold.
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E%~ — function of C,

The explicit form of Z°~ of C, is

—s—

Elab (%, 9)av = 2{cos(2m(ax + by)) — cos(2m((a+ 2b)x — by))},

a, )Q

where (a,b)q € P,_ and (x,y)av € F*~. The continuous (2.15) and discrete (2.16) othogonal
relations hold. The product decomposition relations (2.21]), (2.22) hold.

2! — function of C,

The explicit form of E/~ of C, is

{710 () = 2{cos(2r(ax-+ by)) ~ cos(2m(ax ~ (a+ b)),

where (a,b)q € P_ and (x,9)av € F/~. The continuous (2.17) and discrete (2.18) othogonal
relations hold. The product decomposition relations (2.23)), (2.24) hold.

3.2 Weyl group and Affine Weyl group of type G,

3.2.1 Basic properties of the Weyl group of type G,

The Coxeter-Dynkin diagrams (numbers are marks ;) and Cartan matrix with its inverse
are the following,

2 3

e c=(37)  <r=(3)

ap a
Hence a, is the short root and a; the long root. The relative lengths of the simple roots are
set as (a,,ay) = % and (ay,ay) = 2. The basis of simple roots and fundamental weights are
thus related by

aq :2(1)1—3(1)2, w1 :2a1+3a2, 0[1/:0(1, C()Y:(,()l,
0y =—wi+ 20)2, wy =aq + 20(2, O!;/ = 30[2, a);/ = 36()2.

The four bases are

A={a, a0y}, A ={af,a)}
Q= {wlle}l QY= {a)il'w;/}'

Relative to the orthonormal basis these vectors have the form

a1 = (V2,0) = V2ey, :% B)=de+Re,,  of =(5R),
ap = (—\/%;%) = —%61 + \/Lgez, = (0, %) \\?@2; wy = (0,V6).

The highest root of ng and the highest dual root of ng are given by these formulas

E=2a;+3a; = ?(1,\/3), 1 =3a) +2ay =(0,V6).

The extended Coxeter—Dynkm n diagrams (numbers above vertices are the marks m; respec-
tively marks m)’) of ngf and ngf are

@cacg}o

dyp ap ap al CYZ CYO
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3.2.2 E-functions of G,

In the explicit form of E-functions, the vector from the weight lattice will be in Q) basis and
the variable will be in AY basis, denoted (a,b)q and (x,y)av. The coefficients for discrete
calculus of G, —assuming u, uy,u, > 0, tg,t1,t, > 0 — are shown in Table (3.2).

Table 3.2: The coefficients for discrete calculus of G,. Positive values of ug,uy,u, > 0 and
to, t1,tr > 0 are assumed.

X €Fu(G) | ) | €00 | ) [ ') Ae Am(Ga) [ WY | By | By | mY
[Mo,ul,uz] 12 6 6 6 [to,tl,tz] 1 1 1 1
[O,l/ll,l/lz] 6 6 3 6 [O,tl,tz] 2 1 1 2
[uO,O,uz] 6 6 6 3 [to,o,tQ] 2 1 2 1
[uo,ul,O] 6 6 3 6 [fo,tl,O] 2 1 1 2
[0,0,1,] | 1 1 1 1 [0,0,t,] | 4] 2 | 2| 2
[0,1,0] 2 2 1 2 [0,t,0] | 6] 3| 3] 6
[15,0,0] | 3 3 3 3 [t5,0,0] 12| 6 | 6 | 6

E¢*— function of G,
The explicit form of E¢" of G, is

et

=(ab)a (x,9)av = 2 cos (7 (ax + by)),

where (a,b)q € P,, and (x,p)av € F°*. The continuous (2.5) and discrete (2.7) othogonal
relations hold. The product decomposition relation (2.19) holds.

E5* — function of G,

The explicit form of E°* of G, is

27ti((2a+b)x—(3a+2b)y)

=S+

=(a,b) (x y)AV :ezﬂi(ax+by)+€2ni(—ax+(3u+b)y)
a,b)o\Y

+e

eZni((a+b)x—(3a+2b)y) e2ni(—(2a+b)x+(3a+b)y) 2mi(—(a+b)x+by)

+ + +e ,

where (a,b)q € P, and (x,p)av € F*". The continuous (2.8) and discrete (2.9) othogonal
relations hold. The product decomposition relation (2.21]) holds.

E* — function of G,
The explicit form of 2 of G, is

b (x;y)AV :eZHi(ax+by) + eZni((a+b)x—by) + e2ni(—(2a+b)x+(3u+2b)y)
Q

~
I
—

I+
(a,

2mi(ax—(3a+b)y)

e2ni((u+b)x—(3u+2b)y) +62ni(—(2a+b)x+(3u+b)y) +e ,

+

where (a,b)q € P, and (x,p)av € F'*. The continuous (2.10) and discrete (2.11) othogonal
relations hold. The product decomposition relation (2.23) holds.
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E¢ — function of G,

The explicit form of Z¢” of G, is

”(a b (x,v)av =2i{sin(27(ax + by)) + sin(27((3a + b)y) — (2a + b)x)
+sin(2m((a + b)x — (3a + 2b)x))},

where (a,b)q € P,_ and (x,y)av € F*~. The continuous 1) and discrete (2.14) othogonal
relations hold. The product decomposition relations (2.19), (2.20) hold.

2%~ — function of G,
The explicit form of Z°~ of G, is

=S ( 3}) eZni(ax+by) _ e2ni(—ax+(3a+b)y) _ eZni((2a+b)x—(3a+2b)y)
—(a, b

2mi((a+b)x—(3a+2b)y) 21i(—(2a+b)x+(3a+b)y) 2mi(—(a+b)x+by)

+e +e —e

where (a,b)q € P,_ and (x,)av € F*~. The continuous 5) and discrete (2.16)) othogonal
relations hold. The product decomposition relations ([2.21] - 2.22) hold.

E!- - function of G,
The explicit form of Z°~ of G, is
e2ni(ux+by) _ e2ni((u+b)x—by) _ e2ni(—(2a+b)x+(3a+2b)y)

Hlub (X, ¥)av

2mi((a+b)x—(3a+2b)y) 2mi(—(2a+b)x+(3a+b)y) 2mi(ax—(3a+b)y)

+e +e —€ ’

where (a,b)q € P_ and (x,p)av € F'~. The continuous 7) and discrete (2.18) othogonal
relations hold. The product decomposition relations ([2.23 - 2.24)) hold.
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Chapter 4

E-functions of rank 3

In this chapter we review explicitly Weyl groups of rank three with two different roots
lengths — of type B3 and C; — and their E-functions. Basic properties of these groups are
from [10].

4.1 Weyl group and Affine Weyl group of type B;

4.1.1 Basic properties of the Weyl group of type B;

The Coxeter-Dynkin diagram (numbers are marks m;) and Cartan matrix with its inverse
are the following,

1 2 2 )
o Ne= C:(—zl 21—02), C‘I:%(%ii).
& &y 0 -1 2 123

Hence a3 is a short root and «,, a; are long roots. The relative lengths of the simple roots
are set as (as,a3) =1 and (a1, ;) = (ay, ay) = 2.
The bases of simple roots and fundamental weights are thus related by

\% \%
0(1:2(1)1—0)2, w] =a]+ap+as, a; =ay, W, = wy,
azz—a)1+2a)2—2a)3, 61)2:061+26¥2+20(3, a;/ =y, CL);/ = Wy,
a3 =—wjy+ 2(1)3, w3 = %al +a)+ %a3, ag/ = 20(3, C():\a/ = 20)3.

The four bases are
A={aj,ar a3}, AY={a),a),aj)
Q ={w,wy w3}, QV={w),wy,wy}

Relative to the orthonormal basis the vectors are of the form

alz(l,—l,O):el—ez, (1)1:(1,0,0)261, 0)1/:(1,0,0)—61,
a,=(0,1,-1)=ey;—e3, wy=(1,1,0)=¢; +e,, wy =(1,1,0) = ey +e,
a3 =1(0,0,1)=ej, w3=(353) =51 +ext+es),  wy=(L1,1)=¢ +e;+e;.

The highest root of ng and the highest dual root of Wgsff are given by these formulas
E=ar+2ay+2a3=(1,1,0), n=2a)+2a;+a; =(2,0,0).

The extended Coxeter—-Dynkin diagrams (numbers above vertices are the marks m; respec-
tively marks m)’) of WB?H and WB?H are
3 3 O

a0, 0 2 2 1

a; a, as af af a; a3
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4.1.2 E-functions of B;

In the explicit form of E-functions, the vector from the weight lattice will be in Q) basis and
the variable will be in AV basis, denoted (4, b,c)q and (%, 9,2)Av-
For M =5, the grid F5 has 20 elements and its explicit form is

1 1 1 1
Fs = {3(0, 0,0,5), 5(0, 0,1,3), 3(0, 0,2,1),=(0,1,0,3), E(O' 1,1,1),

1 1

5 5
L1,0,1,2),2(1,0,2,0),2(1,1,0,2), ~(1,1,1,0), ~(1,2,0,0), -(2,0,0,3), -(2,0,1,1)
5 My Ay 15 )My &y 15 Pl A 15 Pl A 4 15 b B 4 15 P A ’ P e 4 ’

1 1 1 1 1
-(2,1,0,1),=(3,0,0,2),=(3,0,1,0),=(3,1,0,0),=(4,0,0,1),
£(2,1,0,1),(3,0,0,2),2(3,0,1,0),£(3,1,0,0), £(4,0,0,1)

(0,2,0,1),=(1,0,0,4),

Q= U] —

1
—=(5,0,0,0);.
L5000

For M =5, the grid A5 has 20 elements and its explicit form is

A5 ={(0,0,0,5),(0,0,1,4),(0,0,2,3),(0,0,3,2),(0,0,4,1),(0,0,5,0),(0, 1,0, 3),
(01 ]-; 1; 2); (0; 1; 21 1); (O; ]-; 31 0); (01 21 0; 1)1 (01 2; ]-; 0); (]-; O; O; 3); (1; O; ]-; 2)1
(1,0,2,1),(1,0,3,0),(1,1,0,1),(1,1,1,0),(2,0,0,1),(2,0,1,0)}.

Table 4.1: The coefficients for discrete calculus of Bs. Positive values of ug,uy,uy,uz > 0 and
to, t1,tr, t3 > 0 are assumed.

x€Fm(Bs) |er) | e | )| e AeAn(Bs) | hy | hSY | WY | hY
[tg, U1, uy, uz] | 48 24 24 24 [to,t1,t0,83] | 1 1 1 1
[ug, uy,u,,0] | 24 | 24 24 12 [to,t1,t,0] | 2 | 1 | 1 | 2
[ug,u,0,uz] | 24 | 24 12 24 [to,t1,0,t3] | 2 | 1 | 2 | 1
[ug,0,uy,uz] | 24 | 24 12 24 [to,0,t5,83] | 2 | 1 | 2 | 1
(0,11, up,us] | 24 | 24 12 24 [0,t,t,t3] | 2 | 1 | 1 | 2
[1g,11,0,0] 6 6 6 6 [to,t1,0,0] | 8 | 4 | 4 | 4
[1g,0,uy,0] | 12 12 12 12 [t0,0,5,0] | 4 | 2 | 4 | 2
[0,u;,u,,0] | 12 | 12 12 12 [0,t,,65,0] | 4 | 2 | 2 | 4
[1o,0,0,u3] 8 8 4 8 [t0,0,0,t5] | 6 | 3 | 6 | 3
[0, 11,0, u3] 8 8 4 8 [0,£,0,¢5] | 4 | 2 | 2 | 2
[0,0,up,u3] | 12 | 12 6 12 [0,0,t5,t5] | 8 | 4 | 4 | 4
[1,0,0,0] 1 1 1 1 [t0,0,0,0] |48 | 24 | 24 | 24
[0,0,u,,0] 6 6 6 6 [0,0,t,,0] |16 | 8 | 8 | 8
[0,14,0,0] 1 1 1 1 [0,£,0,0] |16 8 | 8 | 8
[0,0,0,us] 2 2 1 2 [0,0,0,t5] | 48 | 24 | 24 | 24
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— function of B;

et

The explicit form of Z¢* of Bj is

—e+ —2in(—ax-2bx—cx+by+cz)

(ach(xy’ ) =e
2int (—cx+ay+2by+cy—ax—bx-2bz—cz)

+ eZiTc(bx—Zaz—sz—cz+ay) + eZin(ay+by+cy—ax—cz)+

-2in(-bx-2az-2 bz—cz+ay+by)+

+e +e

+ e—2i7z(ay+2by+cy—ax—bx—2bz—cz) + eZin(—ax—bx—sz—cz+by)+

+ eZiTc(2by+cy—bx—2az—2bz—cz+ay) + eZin(ax+bx+cy—2bz—cz+by)+

+ 6—217'((—ax—bx—cx+cy—2bz—cz+by) + e—21n(ax+by+cy—cz) + e—2in(ay+by—ax+cz)+

—2int(—cx+ay-ax—bx+2bz+cz) 2imt(ax+by+cz) —2in(cx+bx—2az—2bz—cz+ay)+

+e +e

2in(-bx—cx+cy—-2az—-2bz—cz+ay+by) + eZin(uy—ax—bx+2bz+cz)+

+e

+e

2int(—ax-2bx—cx+by+cy—cz) 2imt (-2bx—cx+ay+by—ax+cz)

+e +

—2int(—cx+2by+cy-bx—-2az-2bz—cz+ay) +e—Zin(ax+bx+cx—2bz—cz+by)+

+e
+e

+ e—2i7z(—2bx—cx+ay+by+cy—ax—cz) + eZin(bx+cx—2az—2bz—cz+ay+by)+

+ e—ZiTc (bx+cy—2az—2bz—cz+ay+by)’

where (a,b,¢)q € P,, and (x,y,z)av € F**.
The explicit form of the grid F§; for any natural M is

b
Pﬁ:{ﬁw}/+ﬁw3+ﬁw§ | a,b,c,deZ*,d+a+2b+2c:M}

b+2
U{%w}/+7cw}/ ng | a,b,c,delN,d+a+2b+2c:M}.

The explicit form of the grid A$; for any natural M is

ASf ={aw; +bwy +cws | a,b,c,d € Z{,d +2a+2b+c = M}
Ulawy +(b+c)wy —cws | a,b,c,d e N, d +2a+2b+c=M}.

The discrete othogonal relations hold.

— function of Bj

The explicit form of Z°* of Bj is

”f;’bc (x,9,2)av = 2[cos(r (~bx—cx+az+bz+cz—ay—by))+
+cos(m(ax+bx+cx—by—cy+cz))+
+cos(m(cx—ay—-by—cy+ax+bx+bz+cz))+
+cos(m(—ax—by—-cy+cz)++cos(n (bx+az+bz+cz—ay—-by))+
+cos(m(ay—ax—bx+bz+cz))+cos(m(ax+by+cz))+
+cos(m(-bx—cy+az+bz+cz—ay-by))+
+cos(m(—ay—by—cy+ax+bx+bz+cz))+
+cos(m(—ax—bx—cx+by+cz))+cos(n(—cx+ay—ax—-bx+bz+cz))+
+cos(m(bx+cx—cy+az+bz+cz—ay—-"by))],

where (a,b,¢)q € P;; and (x,p,z)av € F*F.
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The explicit form of the grid Fj; for any natural M is

b c
Fﬁ:{%wi/*'ﬁwg*'ﬁwg | a,b,c,deZ*,d+a+2b+2c:M}

b+2
U{iw}/+TCw¥_ﬁwgf | a,b,dezg,ceIN,d+a+2b+2c:M}.

The explicit form of the grid Aj}; for any natural M is

Ay ={aw; +bwy +cws | a,b,c,d € Z{, d +2a+2b+c = M}
Ufaw; + (b+c)wy —cws | a,beZ{, c,d e N, d +2a+2b+c=M}.

The discrete (2.9))) othogonal relations hold.

2" — function of B
The explicit form of E* of Bj is

':'l+

u(a’b’c)o(x,y,z)Av =2[cos(mt (-bx—cx+az+bz+cz—ay—-by))+

(
+cos(m(ax+bx+cx—by—cy+cz))+
+cos(m(cx—ay—-by—cy+ax+bx+bz+cz)+
+cos(m(—ax—by—-cy+cz))+cos(m(bx+az+bz+cz—ay—-by))+
+cos(m(ay—ax—bx+bz+cz)+
+cos(mt(bx+cx—cy+az+bz+cz—ay-by))+
+cos(m(ax+by+cz))+cos(n(-bx—cy+az+bz+cz—ay—-by))+
+cos(m(—ay—by—-cy+ax+bx+bz+cz))+
+cos(m(—ax—bx—cx+by+cz))+cos(n(—cx+ay—ax—bx+bz+cz))]

where (a,b,¢)q € By and (x,9,2)pv € F'*.
The explicit form of the grid F ]l\} for any natural M is

b
Fi}:{%w}’+ﬁw§+ﬁw§ | a,b,c,dezg,d+a+2b+2c:M}

- +b
U{—aw}/+a7w;’+ﬁwg | ceZ*,a,b,delN,d+a+2b+2c:M}.

The explicit form of the grid Aé\j} for any natural M is

Aé\}:{aw1+bw2+cw3 | a,b,c,d € Z{, d +2a+2b+c= M}
Uf-awi+(a+b)wy+cws | c,d € Z,a,beN,d+2a+2b+c=M}.

The discrete (2.11) othogonal relations hold.
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E¢” — function of B;

The explicit form of Z°~ of Bj is
SARNCIEIEE

2in (—cx+ay+2by+cy—ax—bx—-2bz—cz) + e—ZiT((—bx—Zaz—sz—cz+ay+by)+

—2in(—ax-2bx—cx+by+cz) _ eZin(bx—Zaz—sz—cz+ay) _ eZin(ay+by+cy—ax—cz)+

+e

+ e—2irc(ay+2by+cy—ax—bx—2bz—cz) _ eZiTc(—ax—bx—sz—czH)y)_

_ eZiT[(2by+cy—bx—2az—2bz—cz+ay) _ eZiTc(ax+bx+cy—2bz—cz+by)_

_ e—2in(—ux—hx—cx+cy—2hz—cz+by) + e—21n(ax+by+cy—cz) _ e—21n(ay+by—ax+cz)+

—2in(—cx+ay—ax—bx+2bz+cz) 2in(ax+by+cz) _ 6—2171(cx+bx—2az—2bz—cz+ay)+

+e
2in(-bx—cx+cy—2az-2bz—cz+ay+by) +e2i7z(ay—ax—bx+2bz+cz)+

+e

+e

+ p2im (—ax—-2bx—cx+by+cy—cz) _ p2im (-2bx—cx+ay+by—ax+cz)_

_ e—ZiT((—cx+2by+cy—bx—2az—2bz—cz+ay) _ e—2in (ax+bx+cx—2bz—cz+by)_

_ e—Zin(—2bx—cx+ay+by+cy—ax—cz) + eZin(bx+cx—2az—2bz—cz+ay+by)+
+ e—ZiTc(bx+cy—2az—2bz—cz+uy+by),
where (a,b,c)q € P,_ and (x,y,z)av € F¢.

The explicit form of the grid Fj, for any natural M is

b
Pﬁ:{]\%w}’+ﬁw}/+ﬁw§ | a,b,c,d € Z3, (a+b+C)-(C+d)¢01d+“+2b+ZC:M}

b+2
U{%w}/+7cw}/—ﬁw¥ | a,b,c,delN,d+a+2b+2c:M}.

The explicit form of the grid A$, for any natural M is

NS ={awy +bwy +cws | a,b,c,d € Z§, (a+b+c)-(c+d)#0,d+2a+2b+c=M)
Ulawy + (b+c)wy —cws | a,b,c,d € N, d +2a+2b+c=M}.

The discrete (2.14) othogonal relations hold.

&5~ — function of B;

The explicit form of Z°~ of Bj is
—s— _ —2in(-ax-2bx—cx+by+cz 2in(ay+by—ax+cz —2int(ay+by+cy—ax—cz)
~<a,h,c)Q(x’sz)AV—e y+cz) _  2in(ay+by ) _ p2in(ay+by+cy -

_ eZin(cx+bx—2a272bzfcz+ay) + eZin(—cx+ay+2hy+cy7ax—bx—2hzfcz)+

+ e—Zin(—bx—2az—2bz—cz+ay+by) + e—2i7t(ay+2 by+cy—ax-bx-2bz—cz)_

_ e—2ir((2by+cy—bx—2az—sz—cz+ay) _ p2in(=2 bx—cx+ay+by+cy—ax—cz)+

+ 672i7'c(ax+by+cy7cz) _eZin(ax+bx+cx72hz—cz+by) + efzirc(—cx+ay7ax7bx+2bz+cz)+

+ e2in(ax+by+cz) _ 6—2171(72bx7cx+ay+hy—ax+cz) _ ef2i7z(bx72azf2 bzfczﬂzy)_’_

+ eZin(—bx—cx+cy—2az—2bz—cz+ay+by) + ezin(uy—ax—bx+2bz+cz) +62171(—ax—2bx—cx+by+cy—cz)_
_ eZiT((—ax—bx—cx+cy—2 bz—cz+by) _ e—Zin(—ax—hx—sz—cz+by)_
_ eZin(—cx+2by+cy7bx72azf2 bz—cz+ay) + eZiT((bx+cx72a272bzfcz+ay+by)+

+ e—Zin(bx+cy—2az—2hz—cz+ay+hy) _ e—Zin(ax+hx+cy—2 bz—cz+by)
s

where (a,b,c)q € P, and (x,y,z)Av € F*.
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The explicit form of the grid Fy, for any natural M is

b
Pﬁ:{%w¥+ﬁw;’+ﬁw;’ | a,b,c,d € Z§, (a+b)-d¢0,d+a+2b+2c:M}

b+2c c
U{iw}/+7w¥—ﬁw¥ | a,b,c,deIN,d+a+2b+2c:M}.

The explicit form of the grid A}, for any natural M is
Ay ={awy +bwy +cws | a,b,c,d € Z{, (a+b)=0,d+2a+2b+c=M]}

Ufaw; +(b+c)wy—cws | a,b,c,d € N, d+2a+2b+c=M}.

The discrete (2.16) othogonal relations hold.

E!- - function of B;
The explicit form of B of By is

”f;bc (%,9,z2 )Av:2i[—sin(27{(ux+2bx+cx—by—cy+cz))—

bx-2az-2bz-cz+ay+by))+sin(2n (ax+2bx+cx—-by—cz))-
bx+cy—2az-2bz—cz+ay+by))+sin(2nw(ax+by+cz))+
cx+ay+2by+cy—ax—-bx-2bz-cz))+

—cx+ay—ax—-bx+2bz+cz))-sin(2w (ax+by+cy—cz))+

in(27 (-
in (27 (
in (27 (-
+s1n(27t( bx—cx+cy—2az-2bz-cz+ay+by))-
(2m (-
in(2rw (bx+cx—2az-2z,b—cz+ay+by))+sin(2n (ay—ax—-bx+2bz+cz))-
in (27 (

ay+2by+cy—ax—bx—-2bz—-cz))],
where (a,b,¢)q € P and (x,9,2)pv € Fl-.
The explicit form of the grid F le} for any natural M is

b
Fﬁ:{%w{+ﬂw}’+ﬁwg’ | a,b,c,deZS,c¢0,d+a+2b+2c:M}

- b
U{]\/? }/Jra;I W, +ﬁw§ | a,b,c,deIN,d+a+2b+2c:M}.

The explicit form of the grid Aé\z for any natural M is

Aﬁ\}:{aa)1+ba)2+cw3 | a,b,c,deZ{,c+d=+0,d+2a+2b+c=M)}
U{-aw;i +(a+b)wy +cws | a,b,c,d € N, d+2a+2b+c=M}.

The discrete (2.18) othogonal relations hold.

4.2 Weyl group and Affine Weyl group of type C;

4.2.1 Basic properties of the Weyl group of type C;

The Coxeter-Dynkin diagram (numbers are marks m;) and Cartan matrix with its inverse
are the following

NN
>N

PEPe c=(2239) c'=

N —
iy
WN =
S —



Hence aj is the long root and a; , a, are short roots. The relative lengths of the simple roots
are set as (ay,a1) ={(ay,a,) =1 and (a3, a3) = 2. The bases of simple roots and fundamental
weights are thus related by

a) = 2w — Wy, w] =a]+ar+ %(X:)), (11/ =2ay, C()i/ =2wq,
) = —wq +2(1)2-C()3, wy) = o +2a2+a3, a;/ :2a2, C();/ :20)2,
a3 = —2a)1 + 2(1)3, w3 =aq + 20[2 + %0[3, CK;’/ = as, C();/ = ws3.

The four bases are

A=A{ay,ayas), A ={af a),a)
Q = {a)l,a)z,a)g,}, QV {C()l,CUZ,C()3}

In the orthonormal basis these vectors have the form

ay = (\%,—%,0) \/%(31 —-e), W= (%:0'0) = \/%31: ' =(¥2,0,0),
ay = (0, %5;—%5) = \%(32 —e3), wy= (%; \%,0) \%(61 +e), wy =(V2,V2,0),
a3:(070'\/§):‘/§e3' :(\}“1 \}»; \f): \lf(el+€2+e3) ;/:(\/LE,\/LE’\/LE)

The highest root of Wng and the highest dual root ngf are given by these formulas

&=2a1+2ay+a3=(V2,0,0), n=a)+2a)+2a) =(V2,V2,0).

The extended Coxeter-Dynkin diagrams (numbers above vertices are the marks m; respec-
tively marks m)’) of ngf and Wéﬁf are

\Y
0 2 2 1 1 20
om o W) :
Ay ay A, as a) af af

4.2.2 E-functions of C;

In the explicit form of E-functions, the vector from the weight lattice will be in Q) basis and
the variable will be in AY basis, denoted (a,b,¢)q and (x,y,2)av
For M =5, the grid F5 has 20 elements and its explicit form is

1 1 1 1 1
Fs :{5(0, 0,0,5),5(0,0,1,4),£(0,0,2,3),£(0,0,3,2), £(0,0,4,1),

5

1 1 1 1
-(0,1,1,2),=(0,1,2,1),=(0,1,3,0),=(0,2,0,1),
£(0.1,1,2),£(0,1,2,1),(0,1,3,0),£(0,2,0,1)

1
=(1,0,2,1),

1
(0,0,5,0), (0,1,0,3),

1
(0,2,1,0),(1,0,0,3),=(1,0,1,2),

Qi = | —

1
5

1 1 1
_(11 11 O; 1)1 5(11 11 1; O); 5(21 O; O; ]-);

1
~(1,0,3,0),

1
2,0,1,0),.
: 2010)

5
For M =5, the grid A5 has 20 elements and its explicit form is

As5={(0,0,0,5),(0,0,1,3),(0,0,2,1),(0,1,0,3),(0,1,1,1),(0,2,0,1),(1,0,0,4),
(1,0,1,2),(1,0,2,0),(1,1,0,2),(1,1,1,0),(1,2,0,0),(2,0,0,3),(2,0,1,1),
(2,1,0,1),(3,0,0,2),(3,0,1,0),(3,1,0,0),(4,0,0,1),(5,0,0,0)}.
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Table 4.2: The coefficients for discrete calculus of Cs. Positive values of gy, uy,uy, uz > 0 and

to,t1,tr, t3 > 0 are assumed.

XE€FM(Cs) |eln) | ) | €(x) | e'n) AeAn(Cs) | hY | hYY | nyY | Y
[ug, Uy, Uy, uz] | 48 24 24 24 [to,t1,t0,t3] | 1 1 1 1
[1g, 11, u,,0] 24 24 12 12 [to,t1,t2,0] | 2 1 1 2
[tg,uy,0,u3] | 24 24 24 12 [t0,t1,0,t3] | 2 1 2 1
[10,0,up,u3] | 24 24 24 24 [t0,0,t5,t3] | 2 | 1 2 1
[0, 11, Uy, uz] 24 24 12 24 [0,t1,t5,t3] | 2 1 1 2
[1g,11,0,0] 6 6 6 3 [to,t1,0,0] 8 4 4 4
[140,0,u,,0] 12 12 12 12 [t0,0,£,,0] | 4 2 4 2
[0, uy,u,,0] 12 12 6 12 [0,t1,t,0] | 4 2 2 4
[140,0,0, u3] 8 8 8 8 [£0,0,0, %3] 6 3 6 3
[0,11,0,uz] 12 12 12 8 [0,11,0,13] 6 2 2 2
[0,0,uy, uz] 6 6 6 12 [0,0,t5,t3] | 4 4 4 4
[140,0,0,0] 1 1 1 1 [t0,0,0,0] |48 | 24 | 24 | 24
[0,0,15,,0] 3 3 3 3 [0,0,t,,0] 8 8 8 8
[0,u7,0,0] 3 3 3 3 [0,t1,0,0] |48 | 8 8 8
[0,0,0, u3] 1 1 1 1 [0,0,0,¢3] |24 | 24 | 24 | 24
— function of C3
The explicit form of Z¢" of Cj is
—e+ eZin(ax+2bx+2cx—by—bz—2cz) + e2in(ay+by+2cy—ux+uz+bz) + e—Zin(ax+bx+26x—2¢fz—bz+by)+

H(ﬂbCQ(x’y’ )

—2in(ay+by—ax+az+bz+2cz) —2int (bx+2cx-2cy+az+bz—ay-by) + eZin(bx+2cz+az+bz—ay—by)+

+e +e
+ g2im(2 by+2cy-bx—az+ay) + 6—2171(bx+2£y—az—bz+ay+by) + e2in(ax+bx+2cx—2cy+bz—by)+
—2in(2cx—ay-2by-2cy+ax+bx—az) —2in(2bx+2cx—ay-by+ax—az-bz-2cz)

+e +e +

+ 62171(bx+26x—262—az—bz+ay+by) + e—2in(ax+by+26y+bz) + e—2in(ax+bx+2cz+hz—by)+

2int(2cx-2by-2cy+bx+az—ay) + eZin(2£x—ay+ax+bx—az—2bz—2cz)

+e +

—2in(ay+2by+2cy—ax—-bx+az) -2in(-bx+2bz+2cz+az—ay) + ezin (ax+by+bz+2cz)

+e +e +

2in(ay—ax—bx+az+2bz+2cz) 2imt(ax+bx+2cy-bz+by) + 672i7'c(ax+2hx+2cx7by72c;usz)+

+e +e

—2in(2cx+bx-2bz-2cz—az+ay) 2in (2bx+2cx—ay-by-2cy+ax—az—bz)
+e +e )

where (a,b,¢)q € P,, and (x,y,2)Av € F*'.
The explicit form of the grid F{; for any natural M is

b
Pﬁ:{%wlv+Mw2+ﬁw3 |a,bcdeZ+,d+2a+2b+c_M}

b+
U{%w}%vcwzv—ﬁwg | a,b,c,deIN,d+2a+2b+c:M}.

The explicit form of the grid A$; for any natural M is

A =law; +bwy +cws | a,b,c,d € Z§, d +a+2b+ 2c = M}
U{aw; + (b + 2¢)wy; —cws | a,b,c,d €N, d +a+2b+ 2c = M}.

The discrete othogonal relations hold.
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E5* — function of C3

The explicit form of Z°* of Cj is

r:s+

‘—‘(a,b,c)u(x’y’z)ﬁv — 62171(ax+2bx+2cx—hy—bz—2cz) +e21n(ay+by+2cy—ux+az+bz) + 6—2171(ax+bx+21:x—21:z—bz+hy)+

+ e—2in(ay+by—ax+az+bz+Zcz) + e—Zin(bx+2cx—2cy+az+bz—uy—by)+

4 p2im(bx+2cztaztbz—ay-by) eZirc(Zby+2cy—hx—az+ay) +e—2in(bx+2c;u—az—bz+uy+b;u)+

+eZin(ax+hx+26x—26y+bz—by) +672in(ZCx—uy72by72cy+ax+bx7az)+

+ e—2i7z(2bx+2cx—ay—by+ax—az—bz—2cz) + eZin(bx+2cx—2cz—az—bz+ay+by)+
+ e—2in(ax+by+2cy+bz) + e—2in(ux+bx+2cz+bz—by) + eZiT((Zcx—Zhy—ch+bx+az—ay)+

2im(2cx-ay+ax+bx-az-2bz-2cz) | -2in(ay+2by+2cy-ax-bx+az)

+e
+ e—2i7‘c(fhx+2hz+262+uzfay) + eZin(ax+hy+bz+2cz) + eZiTz(ayfaxfhx+az+2hz+262)+
+ eZin(ax+bx+2cy—bz+by) + e—Zin(ax+2bx+2cx—by—2cy—hz) + 6—2171(26x+bx—2bz—2cz—uz+ay)+

+ ezin(2bx+25x—ay—by—2cy-mx—az—bz),
where (a,b,¢)q € P, and (x,9,2)5v € F**.
The explicit form of the grid Fj; for any natural M is

b
Fyf = %w}’+ﬁw§+ﬁw§ | a,b,c,de€Z,d+a+2b+2c=M

- +b
2oV a—w§/+ia)§/ |c,deZ,a,beN,d+a+2b+2c=M

U +
M1 T M M

The explicit form of the grid Aj; for any natural M is

A3 ={awy +bwy +cws | a,b,c,d € Z§, d +a+2b+2c = M)
U{-aw; +(a+b)wy +cw3 | c€ Z{,a,b,d €N, d+a+2b+2c=M}.

The discrete (2.9)) othogonal relations hold.

2™ — function of C;

The explicit form of Z* of Cj is

=+ ax+2bx+2cx-by-bz-2cz) + eZin(ay+by+2cy—ax+az+bz) + e—2i7r(ax+bx+2cx—2cz—bz+by)+

Y
=(a,b,0)q (x,9,2)av =€ fr{

+ e—2ir((ay+by—ax+az+bz+2cz) + e—2in(bx+2£x—2£y+az+bz—ay—by) + ezin(bx+2cz+az+bz—ay—hy)+

+ eZin(Zby+2cy—bx—az+uy) 4+ ¢ 2im(bx+2cy-az=bztay+by) +eZin(ax+bx+2cx—2cy+bz—hy)+

+ 672i7'c(Zfoay—Zhy—26y+ux+bx—az) + 672i7z(2 bx+2cxfay—heraxfaszszcz)_’_

+ 62171(bx+26x—2¢fz—az—bz+uy+by) + e—2in(ax+by+2cy+bz) + e—2in(ux+bx+2cz+bz—by)+

+ eZiT((Zcx—Zby—25y+bx+az—ay) +eZirz(2cx—ay+ax+bx—az—2bz—2€z)+

+ e—2irc(ay+2by+2cy—ax—bx+az) + e—2in(—bx+2hz+2cz+az—ay) + eZin(ax+by+bz+2cz)+

2in(ay—ax—bx+az+2bz+2cz) 2imt(ax+bx+2cy-bz+by) + e*Zin(ax+2hx+2cx7by72cy7bz)+

+e +e

+ e—2in(26x+bx—2bz—26z—az+uy) + eZin(2bx+2cx—uy—by—2cy+ax—az—bz)’

where (a,b,¢)q € By and (x,9,2)pv € F'*.
The explicit form of the grid F]l\} for any natural M is

a b

Fit = MwY+Mw2+A%w§|a,b,c,deZ+,d+2a+2b+c:M
b+
U %w}%vcwg—ﬁwg|c,delN,a,beZ*,d+2a+2b+c:M
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The explicit form of the grid Aé\j} for any natural M is

Aé\}:{aw1+bw2+cw3 | a,b,c,d € Z{,d+a+2b+2c =M}
Ufaw, +(b+2¢)wy —cws | ceN,a,b,d € Z{,d+a+2b+2c=M}.

The discrete othogonal relations hold.

E°¢" — function of Cy

The explicit form of 2°” of Cj is

JAv = e—2i71(—ax—2bx—2£x+by+hz+2cz) _ eZin(ay+by+2cy—ax+az+hz) _ e—Zin(ax+bx+2cx—2cz—bz+by)_

a,b,0)0 (x,9,2

=
_ef2i7't(ay+by7ax+az+bz+2cz) +eZiTz(—bx—Zcx+26y7aszz+ay+by)+
+ e—Zin(—bx—2€z—az—bz+ay+by) _62in(2 by+2cy-bx—az+ay) + e—2in(bx+2cy—az—hz+ay+hy)_

_ 6—2171(—ux—bx—2cx+2cy—bz+hy) + eZin(—26x+uy+2 by+2cy—ax—bx+az)_

_ p2in(=2 bx-2cx+ay+by—ax+az+bz+2cz) + ezin(bx+2cx—2€z—az—bz+ay+by)+

+ 672in(ax+by+26y+bz) _62in(—ax7bx72cz—bz+by) _ e—ZiTL(72cx+2by+2cy7hx7az+ay)+

+ e—Zin(—2cx+ay—ax—bx+az+2bz+2cz) +6—2171(ay+2by+2cy—ax—bx+az)_

_62in(bx—2bz—26z—az+a;}) + ezin(ux+by+bz+2cz) + eZin(uy—ax—bx+az+2bz+2€z)_
_ezin(ax+hx+2cy—bz+by) + ezin(—ax—2bx—2cx+by+2cy+bz)_

_ 6—2171(2cx+hx72bzf2czfaz+ay) _ 672irz(—2 bx-2cx+ay+by+2cy—-ax+az+bz)
’

where (a,b,¢)q € P,_ and (x,9,2)av € F*".
The explicit form of the grid F5, for any natural M is

b
F§ = %wlv+]\—4w¥+%w;’ | a,b,c,d € Z{,ab+cd =0,d+2a+2b+c=M

b+
U %w1v+76w¥—ﬁw§/ | a,b,c,de N, d+2a+2b+c=M

The explicit form of the grid A$; for any natural M is

A ={awy +bwy +cws | a,b,c,d € Z§,ab+cd #0,d +a+2b+2c = M}
Ufaw; +(b+2c)wy —cws | a,b,c,d € N, d +a+2b+2c=M}.

The discrete (2.14) othogonal relations hold.

2%~ — function of C;

The explicit form of Z°~ of Cj is
3
—=s— —2inm(ax+2bx+2cx-by-bz-2cz =2inm(ay+by+2cy—ax+az+bz
b, (09 2)av =€ ( y ) _ p=2in(ay+by+2cy )_
_ eZin(ax+bx+2cx—2cz—bz+by) _ eZin(ay+by—ax+az+bz+2cz) + eZin(bx+2cx—2£y+az+bz—ay—by)+
+ e—2in(bx+2cz+az+bz—ay—by) _e—Zin(Zby+2cy—bx—az+ay) ++62irz(bx+2cy—az—bz+ay+by)_
_e—Zin(ax+bx+2cx72cy+hz—by) + eZiTc(2cx7ay72hy72cy+ux+bx—uz)_

_ezin(2bx+26x7ay—by+ax7aszZ—ZCz) +6—2171(bx+2cx72cz—uz—bz+ay+by) + eZin(ax+hy+2cy+hz)_

_ eZin(ax+bx+2cz+bz—by) _ e—Zin(Zcx—Z by-2cy+bx+az-ay) + 6—2171(ZCx—ay+ax+bx—az—2bz—2cz)+

+ eZin(ay+2by+2cy—ax—bx+uz) _ezir((—hx+2bz+2cz+az—ay) + e—2irz(ax+by+hz+2cz)+

+ 672i7'c(ay—ux—bx+az+2bz+2cz) _672in(ax+bx+2cy—bz+hy) + e2in(ax+2bx+2cx7by—2cy7bz)_

_ eZin(26x+bx—2bz—2cz—az+ay) _ 6—2171(2 bx+2cx—ay-by-2cy+ax—az-bz)
s
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where (a,b,¢)q € P,_ and (x,y,z)pv € F*".
The explicit form of the grid Fy, for any natural M is

b
F;;:{%whﬁwpﬁwg | a,b,c,deZ*,cd¢0,d+a+2b+2c:M}
—-a a+b c
U{Mw¥+7w¥+ﬁwg | a,b,c,dEIN,d+a+2b+2C:M}.

The explicit form of the grid A}, for any natural M is

Ay ={aw) +bwy + cws | a,b,c,d € Z§, c#0,d +a+2b+2c=M)|
U{-aw; + (a+b)w, +cws | a,b,c,d e N, d+a+2b+2c=M]}.

The discrete (2.16) othogonal relations hold.

E!- - function of C;
The explicit form of Z°~ of Cj is

Eéa_bc)o(x'yfz)AV =2i[-sin(2w (-2cx+ay—ax—bx+az+2bz+2cz))-

—sin(2m (bx+2cy—az—-bz+ay+by))+
+sin(2m (-2cx+ay+2by+2cy—ax-bx+az))-
—sin(2m(ay+2by+2cy—ax—bx+az)+sin(2n (—ax-2bx—-2cx+by+2cy+bz))+
—sin(2m(ax+by+2cy+bz))—sin(2m (-bx—-2cx+2cz+az+bz—ay—-by))+
+sin(2m (ay—ax—bx+az+2bz+2cz)+sin(2n (ax+by+bz+2cz))+

(27
(27 (
(27 (
+sin(2m (bx+2cz+az+bz—ay-by))—sin(2w (-ax—2bx—-2cx+by+bz+2cz))-
(27 (
(27 (
+sin (27 (

-bx-2cx+2cy—az-bz+ay+by))]

where (a,b,c)q € P_and (x,9,z)av € Fl-.
The explicit form of the grid F ]lv_f for any natural M is

b
F}\Z:{%wi/+ﬁw}/+]\%w;/ | a,b,c,deZE,ab¢O,d+2a+2b+c:M}

b
U{%wi/-f-%w}/—ﬁw;/ | a,b,c,d €N, d+2a+2b+c:M}.
The explicit form of the grid Ag\j} for any natural M is

Aﬂ:{aw1+bw2+cw3 | a,b,c,d € Z{, abd #0,d +a+2b+ 2c = M}
U{awq + (b + 2¢c)wy; —cws | a,b,c,d €N, d +a+2b+2c = M}.

The discrete (2.18)) othogonal relations hold.
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Conclusion

The properties of E-functions of rank two have been already proven in [1]]. In the present
thesis, we succeeded in the verification of the useful properties of E-functions of rank three
generalized from E-functions of rank two, especially discrete orthogonality with its utiliza-
tion in data processing.

In addition, the present thesis raises new questions. First of all, it is unknown if the
properties of E-functions are valid for any rank in the same form as stated in chapter two,
especially taking the case of the special Weyl group of type F4. Another matter which re-
quires further study are the properties of E-functions indexed by a general point in R” (not
from the weight lattice). Last but not least, it would be beneficial if we would know under
which conditions do the series of functions {gys}3;_,, for any type of E-function, converge to
the functions g.

Potentially, the E-functions can be applied in data processing (image recognition). This
may help in data acqusition and data processing in physics (e. g. crystallography), medicine
(e. g. magnetic resonance imaging, MRI) and informatics (e. g. data compression and data

hiding).
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