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Abstract

The Hidden Markov models are used for a more than a sixty years and
here we present the quantum generalization of these, with all of basic sta-
tistical quantities used for describing them, and prove they can model some
real physical experiments. In the second part we propose the Free Will ex-
periment, the experiment which could possibly determine whether the tested
person has or has not the free will based on the delayed choice quantum
eraser. We also show that none of the similar Free Will test can be done and
prove e�ectively that any information cannot be send through the entangle-
ment alone.
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Introduction

Most of this work has been created during my 3-month-long internship at the
University of Leeds, where I have been working on Hidden Quantum Markov
models with Dr. Almut Beige, Tom Barlow and Ben O'Neill in the Quantum
Physics group. Meanwhile, I have been visiting Dr. Jacob Dunningham to
consult my former idea which I have been working on with ing. Petr Jizba
Ph.D. From both of these sessions many thoughts came out and I had written
most of them here. Those two areas were a little di�erent, although both of
them are parts of the Quantum Information physics, so the structure of this
work is also divided into two main sections. The Hidden Quantum Markov
models and Entanglement.

In the �rst part I present mainly basic ideas leading to a consistent theory
of Hidden Quantum Markov models, I introduce a main de�nition based on
the physical background and prove that such Markov models could model
some real physical systems and that the name is also well-describing, since
the Hidden Quantum Markov models generalize the classical Hidden Markov
Models. I brie�y introduced both Markov models and Hidden Markov models
in the appendix, so if you are getting lost, feel free to take a look. I did also
enclosed some examples of Quantum Markov models there. Still, this work is
mainly about mathematical consistence of the idea, since only 2 papers has
been published [2], [7], and is continuing of the �rst. But some application
may be found in future. For example Hidden Markov models are widely used
for the analysis of the sequences of the DNA cite. But the DNA is so small
that the quantum e�ects may matter and thus the Hidden Quantum Markov
models could come to stage. Concrete applications are not known nowadays
and have to be the objects of the further research.

In the second part I brie�y introduce the Delayed Choice and Quantum
Eraser experiments both with one example and consequences their analysis
bring to the quantum mechanics. Then I talk about the Free Will experiment,
which is the delayed choice quantum eraser experiment, and could possibly
test the person's free will. We will show that such free will experiments are
predetermined not to work and also a very e�ective proof why entanglement
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alone cannot be used for sending any information.
At the very end we will be engaged with the Wigner's friend, which is

the expansion of the Schrödinger's cat and derive that this approach to a
measurement predicts there is not an absolute reality.
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Chapter 1

Quantum Markov Models

Introduction

1.1 De�nition of QuantumMarkov Model, The-

orems

De�nition 1.1.1. LetH be n-dimensional Hilbert space, K = {K1,K2, ...,Km}

set of linear operators on H. We call couple (H,K) n-dimensional quantum
Markov model with m possible outputs if and only if the following conditions
are satis�ed:

1. K�
1K1 +K

�
2K2 +⋯ +K�

mKm = I

2. Vectors from H form a growing chain in the following sense:

(a) Each segment of the chain is represented by normalized1 vector(≡
state) from H.

(b) In each segment a value from {1,2, ...,m} is produced.

(c) If the segment≡state is ∣ψ⟩, then probability of producing value
i ∈ {1,2, ...,m} from the previous clause is P (i) = ⟨ψ∣K�

iKi∣ψ⟩.

(d) If value i is produced, next segment of the chain is Ki∣ψ⟩
√

⟨ψ∣K�
iKi∣ψ⟩

.

Probability from item c) is correctly de�ned, since

0 ≤ ⟨ψ∣K�
iKi∣ψ⟩ ≤ 1 ,

1∣ψ⟩ ∈ H such that ⟨ψ∣ψ⟩ = 1. Futhermore, we will always talk about normalized and
thus non-zero vectors.
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m

∑
i=1

P (i) =
m

∑
i=1

⟨ψ∣K�
iKi∣ψ⟩ = ⟨ψ∣I ∣ψ⟩ = 1 .

Moreover, the quantum Markov model form a Markov model in the classical
sense, because the next state in the chain depends only on the previous. The
�rst condition says that the set K = {K1,K2, ...,Km} is a set of so-called
trace-preserving Kraus operators [1].

The question arises. Can be such Markov model physically implemented?
Yes, it can. In fact, any Quantum Markov model can be in principle imple-
mented. The precise algorithm together with some examples will be pre-
sented in 1.3.2.

The special case of the n-dimensional quantum Markov model with m
possible outputs is 1-qubit (2-dimensional) quantum Markov model with two
possible outputs {0,1}. Later, we will look closer at them.

1.1.1 Probability distribution of possible states after n

iterations

We have de�ned how such model is evolving, but what if we want to predict
the evolution? We know that the next state depends only on the previous,
but it di�ers if another value is produced and we cannot predict which value
will be produced. If we know the previous state and the output, we are able
to calculate the actual state, but if we want to predict what the next state
will be, we need to use density operator.

Suppose that we know the initial state ∣ψ⟩. The initial state will be then
described by density operator

ρ0 = ∣ψ⟩⟨ψ∣ . (1.1)

If the outputted value is i, the next state will be characterized by density
operator

ρ(i) =
Ki∣ψ⟩⟨ψ∣K

�
i

⟨ψ∣K�
iKi∣ψ⟩

. (1.2)
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But we do not know the outputted value, so the best thing to do is to
characterize the next state by the weighted average of all possible density
operators.

ρ1 =∑
i

p(i)ρ(i) =∑
i

⟨ψ∣K�
iKi∣ψ⟩

Ki∣ψ⟩⟨ψ∣K
�
i

⟨ψ∣K�
iKi∣ψ⟩

=∑
i

Kiρ0K
�
i . (1.3)

For writing the above in a compact form we de�ne the linear operator (usually
called superoperator) K as

∀ρ, K(ρ) =∑
i

KiρK
�
i . (1.4)

The probability distribution after n iterations (i. e. n steps after initial state
ψ) will be then described by density operator

ρn = K
n
(ρ0) . (1.5)

1.1.2 Stationary distribution

De�nition 1.1.2. We de�ne stationary distribution (or incorrectly station-
ary state) of the quantum Markov model (H,K) as a density operator ρs
satisfying

ρs = K(ρs) .

The stationary distribution is distribution on the set of states from H
which does not change with iterations. In other words, if one element of the
Markov chain is characterized by a stationary distribution ρs, then the next
one will also be characterized by the same distribution ρs.

We have already mentioned the distribution after n iterations ρn. What
if the limit of such distributions exist? The limit would well characterize the
distribution on the states after the machine has been running for a long time.
Moreover, such limit is a stationary distribution and thus does not change
anymore.

Theorem 1.1.1. Suppose that the limit limn→∞ ρn = limn→∞K
n
(ρ0) exist.

Then the limit is a stationary distribution.

Proof.

K( lim
n→∞

K
n
(ρ0)) − lim

n→∞
K
n
(ρ0) = lim

n→∞
K
n+1

(ρ0) − lim
n→∞

K
n
(ρ0) = 0
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1.1.3 Word probabilities

What is the word in any language? Some sequence of characters which the
language use. Still, in any language there are sequences which does not make
sense, but for us the word will be just arbitrary sequence of such characters.

De�nition 1.1.3. The word of the length k is any ordered sequence of values
from the set of possible characters {1,2, ...,m}. For example, 1925483 is the
word of length 7 from {1,2, ...,9}.

Suppose we know the initial state ∣ψ⟩ and set of possible values is {1,2, ...,9}.
What is the chance of obtaining the word 43? It is just multiple of some other
probabilities.

P (43, ∣ψ⟩) = P (4, ∣ψ⟩)P
⎛
⎜
⎝
3,

K4∣ψ⟩
√

⟨ψ∣K�
4K4∣ψ⟩

⎞
⎟
⎠
= ⟨ψ∣K�

4K4∣ψ⟩
⟨ψ∣K�

4K
�
3K3K4∣ψ⟩

⟨ψ∣K�
4K4∣ψ⟩

.

Theorem 1.1.2. Suppose we know the initial state ∣ψ⟩. The probability of
obtaining word v = (v1v2...vk), where vi ∈ {1,2, ...,m}, is

P (v, ∣ψ⟩) = ⟨ψ∣K�
v1K

�
v2 ...K

�
vk
Kvk ...Kv2Kv1 ∣ψ⟩ .

If we do not know the initial state but rather density operator ρ describing
the actual state (with special case of stationary distribution), derivations are
very similar. The chance of measuring 4 is

P (4, ρ) = Tr(K4ρK
�
4) .

After that, density operator describing the actual state passes on density
operator

ρ =
K4ρK

�
4

Tr(K4ρK
�
4)

(1.6)

describing the next state.

P (43, ρ) = Tr(K4ρK
�
4)
Tr(K3K4ρK

�
4K

�
3)

Tr(K4ρK
�
4)

.

Theorem 1.1.3. Suppose we have density operator ρ describing the ac-
tual state. The probability of obtaining word v = (v1v2...vk), where vi ∈

{1,2, ...,m}, is

P (v, ρ) = Tr(KvkKvk−1 ...Kv1ρK
�
v1 ...K

�
vk−1K

�
vk
) .
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Using theorems 1.1.2, 1.1.3 and de�nition (1.6) we can obtain any other
thinkable word probability. For example, suppose that we want to obtain
probability of obtaining word 43XX2 in the fourth step with initial state ∣ψ⟩
� initial density operator ρ0 = ∣ψ⟩⟨ψ∣, where X is an arbitrary letter. Such
probability will be

P (XXX43XX2) =

P (4,K3
(ρ0))P(3,

K4K
3
(ρ0)K

�
4

Tr(K4K
3
(ρ0)K

�
4)

)P(2,K2
(

K3K4K
3
(ρ0)K

�
4K

�
3

Tr(K3K4K
3
(ρ0)K

�
4K

�
3)

)) =

= Tr (K2K
2
(K3K4K

3
(ρ0)K

�
4K

�
3)K

�
2) .

As you can see, passing into the next state without knowing the out-
come value is represented by acting of superoperator K on the actual density
operator ρ, by contrast, passing into the next state with known outcome is
represented by reduction of the density operator in accordance with de�nition
(1.6). The �nal probability is then a multiple of probabilities of outcomes in
di�erent steps.

1.1.4 Parametrization of the quantum Markov model

The only free parameters are hidden in the operators {K1,Kn...,Km} so
if we parametrize these operators, we have parametrized the whole model.
Suppose that we have some orthonormal (ortogonal and normalized) basis.
Matrices of operators Kk ∈ Cn×n will be in such basis parametrized as

∀k = 1,2, ...,m, Kk =

⎛
⎜
⎜
⎜
⎜
⎝

K
(k)
11 K

(k)
12 . . . K

(k)
1n

K
(k)
21 K

(k)
22 . . . K

(k)
2n

⋮ ⋮ ⋱ ⋮

K
(k)
n1 K

(k)
n2 . . . K

(k)
nn

⎞
⎟
⎟
⎟
⎟
⎠

. (1.7)

From K�
1K1 +K

�
2K2 + ... +K

�
mKm = I we get n real-number constraints

∀j = 1,2, ..., n,
m

∑
k=1

n

∑
i=1

∣K
(k)
ij ∣2 = 1 (1.8)

and (n−1)(n)
2 constraints with both real and imaginary part

∀i = 1,2, ..., n, ∀j = i + 1, ..., n,
m

∑
k=1

n

∑
l=1

K
(k)
il K

(k)
lj = 0 . (1.9)

Eventually, we have n+2 (n−1)(n)2 = n2 real-number constraints and thus 2mn2−

n2 = n2(2m − 1) free real parameters.
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Theorem 1.1.4. n-dimensional quantum Markov model with m possible out-
puts can be parametrized by n2(2m−1) real parameters. The parametrization
can be computed from constraints (1.8) and (1.9).

Conditions (1.8) and (1.9) are in general hard to solve, but for the 1-
qubit quantum Markov model with 2 possible outputs we have found explicit
solution. We used parametrization of hypersphere (in this case 4-sphere) to
solve (1.8) and (1.9) led to 2 additional constraints.

K0 = e
iξ (

cosφ1 cosϕ1eix

sinφ1 cosφ2eiy sinϕ1 cosϕ2ei(x+y+z)
) , (1.10)

K1 = e
iσ (

sinφ1 sinφ2 cosφ3 sinϕ1 sinϕ2 cosϕ3eiv

sinφ1 sinφ2 sinφ3eiw sinϕ1 sinϕ2 sinϕ3ei(v+w+u)
) , (1.11)

where

φ2 = −arctan(
sin(x + z) − tan(x) cos(x + z)

X tanϕ2

) ,

φ1 = −arctan(
cos(x)

Y tanϕ1

) ,

X = cosφ3 cosϕ3(sin(v) − tan(x) cos(v))+

+ sinφ3 sinϕ3(sin(v + u) − tan(x) cos(v + u)) ,

Y = cosφ2 cosϕ2 cos(x + z)+

+ sinφ2 sinϕ2(cosφ3 cosϕ3 cos(v) + sinφ3 sinϕ3 cos(v + u)) ,

where ϕ1, ϕ2 ∈ [0, π], φ3, ϕ3, x, y, z, u, v,w, ξ, σ ∈ [0,2π].
This parametrization has 12 real parameters, exactly how the theorem

1.1.4 predicted. Still, parameters ξ and σ, which characterize overall phase
shift, have no physical meaning. They do not in�uence any probabilities and
cannot be observed. So the e�ective number of substantial real parameters
is n2(2m − 1) −m.

1.2 Implementation Markov model via Quan-

tum Markov model, comparison of the clas-

sical and quantum

The crucial question is: "Are quantum Markov models more powerful than
classical ones?" No, they are not. Still, we show that some Markov mod-
els can be implemented by quantum Markov models and some cannot. "So
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are the classical ones more general? Neither they are. These models are
just di�erent. For example, quantum models possess the great property of
superposition, which classical models pray to possess. Moreover, the clas-
sical Markov models do not have memory, since this Markovian property.
By contrast, quantum models do have a memory � exactly one qu-n-digit,
information, which can be stored in n orthogonal states. Thus the quan-
tum Markov models are not by de�nition the pure Markov models, because
the next state, in fact, does depend on the former states, although only vi-
cariously. In the next chapter we will see that the extended de�nition of
Quantum Markov model, Hidden Quantum Markov models, which possess
also some kind of classical uncertainty, generalize both Markov and Hidden
Markov models.

So how to implement classical Markov model via quantum? What exactly
is the implementation? The implementation must have the very same prop-
erties as the classical Markov model, namely we require two characteristics:

1. The following state must be determined unambiguously only by the
outputted value.

2. Probabilities of passing from the one state to another must remain the
same as in its classical version.

Since in the classical version outputted value are identi�ed with states
themselves it follows that n ≡m. Let the {∣i⟩}ni=1 be an orthonormal base the
Hilbert spaceH. We must identify each state si from the classical model with
one basis vector ∣i⟩. If we would not, some information could be stored be-
tween passings and the �rst characteristic would be broken. Classical Markov
models do not allow any superposition and according to the characteristic 1)
Kraus operators {Ki} must take the form

∀i = 1,2, ..., n, Ki = ∣i⟩⟨ψi∣. (1.12)

where ∣ψi⟩ is partially determined by the characteristic 2). All probabilities
must remain the same, so ∣ψi⟩ must be of the form

∣ψi⟩ = e
−iϕi1

√
Ti1∣1⟩ + e

−iϕi2

√
Ti2∣2⟩ +⋯ + e−iϕin

√
Tin∣n⟩ , (1.13)

where Tij are the elements of the transition matrix, ϕi1, ..., ϕin are some real
parameters, which will be determined later.

In matrix representation

K1 =

⎛
⎜
⎜
⎜
⎝

eiϕ11
√
T11 eiϕ12

√
T12 . . . eiϕ1n

√
T1n

0 0 . . . 0
⋮ ⋮ ⋱ ⋮

0 0 . . . 0

⎞
⎟
⎟
⎟
⎠

, (1.14)
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. . . ,

Kn =

⎛
⎜
⎜
⎜
⎝

0 0 . . . 0
0 0 . . . 0
⋮ ⋮ ⋱ ⋮

eiϕn1
√
Tn1 eiϕn2

√
Tn2 . . . eiϕnn

√
Tnn

⎞
⎟
⎟
⎟
⎠

(1.15)

.
Still, the operators K1, ...,Kn must be trace-preserving, i. e. must satisfy

the relationK�
1K1+K

�
2K2+...+K

�
nKn = I. This gives us additional constraints

on the real parameters ϕij. It follows that only Markov models, for which
the solution of

n

∑
k=1

√
Tki

√
Tkje

i(ϕkj−ϕki) = δij (1.16)

exists, can be implemented. This solution may or may not exist, as you will
see in the following example.

Suppose 1-qubit quantum Markov model with 2 possible outputs. The
condition for i = j is always satis�ed due to theorem A.1.1. Conditions for
i ≠ j then look like

√
T12

√
T11e

i(ϕ11−ϕ12) +
√
T22

√
T21e

i(ϕ21−ϕ22) = 0 (1.17)
√
T11

√
T12e

i(ϕ12−ϕ11) +
√
T21

√
T22e

i(ϕ22−ϕ21) = 0 (1.18)

From the �rst condition it follows
√
T12

√
T11e

i(ϕ11−ϕ12) = −
√
T22

√
T21e

i(ϕ21−ϕ22) ⇒ (1.19)

⇒ T12T11 = T22T21. (1.20)

If we put ϕ11 −ϕ12 = 0 and ϕ21 −ϕ22 = π the conditions (1.17) and (1.18) are
satis�ed. From equation (1.20) and theorem A.1.1 we can easily derive that
only Markov models of the form

T = (
α 1 − α

1 − α α
) (1.21)

can be implemented. For example, Markov model with transition matrix

T = (
1
2

1
4

1
2

3
4

) (1.22)

cannot be implemented.
We have seen that there is a di�erence between quantum and classical

Markov models, that one cannot be in general implemented by the other,
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nevertheless, many properties and their description remain analogous. The
next table show the comparison.

classical quantum

Every segment of the chain
is represented by a state
from a �nite set of states.

Every segment of the chain is
represented by a state from
�nite-dimensional Hilbert
space.

Producing value and passing
onto next state is arranged by
a set of conditional probabili-
ties.

Producing value and passing
onto next state is arranged
by a set of Kraus operators.

After measuring the value i the
state sj passes onto state si.

After measuring value i state
∣ψ⟩ passes onto state Ki∣ψ⟩

∣∣Ki∣ψ⟩∣∣
.

Prediction is described by
probability vector pn and act-
ing of the transition matrix T.

Prediciton is described by den-
sity operator ρn and act-
ing of the superoperator K.

Word probabilities are calcu-
lated using multiplication of
the probabilities and acting of
the transition matrix T.

Word probabilities are calcu-
lated using Kraus operators
and acting of the superopera-
tor K.

1.3 Physical implementation of the Quantum

Markov model

Are quantum Markov models physical? Or are they only some mathematical
construct which have a little connection to reality? No, they are not only a
mathematical construct. In the next two sections we show that there exist a
lot of physical system which leads to the quantum Markov models. Moreover,
in the second we show that every thinkable quantum Markov model is in
principle realizable.
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1.3.1 Physical example which leads to a quantumMarkov

model

The �rst example which leads to quantum Markov model is very simple. Sup-
pose that instead of general operators we use the projective measurements.
Suppose that we have observable

A =
n

∑
i=1

i∣i⟩⟨i∣, (1.23)

initial state ∣ψ⟩ and we measure such observable repeatedly on the system.
Kraus operators are nothing but the projectors themselves:

K1 = ∣1⟩⟨1∣, K2 = ∣2⟩⟨2∣, ...,Kn = ∣n⟩⟨n∣ , (1.24)

but this system is very simple. That is because after we measure value i on
the state ψ, the state passes onto

∣i⟩⟨i∣ψ⟩

∣∣∣i⟩⟨i∣ψ⟩∣∣
(1.25)

and iterative measurement will always lead to the value i. The only possible
output string will be of the form

iiiiiiiiiiiiiiiiii... (1.26)

For that reason we present more complicated example.
Suppose we have auxiliary m-dimensional Hilbert space HA with or-

thonormal base {∣i⟩A}mi=1. We take one of the basis states, for example ∣1⟩A,
and create composite system ∣1⟩A∣ψ⟩ ∈ HA ⊗ H. We entangle the system
∣1⟩A∣ψ⟩ using some unitary transformation U on the tensor product HA⊗H,
getting

U∣1⟩A∣ψ⟩ . (1.27)

Now we measure observable

AA =
m

∑
i=1

i∣i⟩AA⟨i∣ (1.28)

on the auxiliary system. After measuring the value i the composite system
passes onto

∣i⟩AA⟨i∣U∣1⟩A∣ψ⟩ . (1.29)

After the measurement the composite system is no longer entangled (the
result is written as the tensor product of the subsystems) and thus we can
reset the auxiliary system ∣i⟩A to the default setting ∣1⟩A, obtaining

∣1⟩AA⟨i∣U∣1⟩A∣ψ⟩ . (1.30)
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The A⟨i∣U∣1⟩A can be now comprehend as the linear operator on the system
H, in fact, we put

Ki = A⟨i∣U∣1⟩A . (1.31)

These operators satisfy the requested relationK�
1K1+K

�
2K2+...+K

�
mKm = IH:

m

∑
i=1

A⟨1∣U
�∣i⟩AA⟨i∣U∣1⟩A = A⟨1∣U

� (
m

∑
i=1

∣i⟩AA⟨i∣)U∣1⟩A = A⟨1∣1⟩A = IH,

where we wrote projectors in this simpli�ed form ∣i⟩AA⟨i∣⊗ IH ≡ ∣i⟩AA⟨i∣.
Now we know that after measuring value i state ∣ψ⟩ passes onto state

Ki∣ψ⟩. If we require normalization, resultant state is

Ki∣ψ⟩

∣∣Ki∣ψ⟩∣∣
=

Ki∣ψ⟩
√

⟨ψ∣K�
iKi∣ψ⟩

. (1.32)

All we need to do to be our image complete is to verify that the probabil-
ities of the obtaining value i remain the same as in de�nition 1.1.1. To do
that we need to introduce density operator of the whole system before the
measurement.

ρ =U∣1⟩A∣ψ⟩⟨ψ∣A⟨1∣U
� (1.33)

Probability of measuring value i on the subsystem HA is

P (i) = TrH(A⟨i∣U∣1⟩A∣ψ⟩⟨ψ∣A⟨1∣U
�∣i⟩A) =

= Tr(Ki∣ψ⟩⟨ψ∣K
�
i ) = ∣∣Ki∣ψ⟩∣∣

2 = ⟨ψ∣K�
iKi∣ψ⟩ ,

(1.34)

exactly as the de�nition required. If we want to generate the whole Markov
chain, we just keep putting the state from Hilbert space H to the machine
again and again. In the next section we show that every thinkable quantum
Markov model can be physically implemented using this scheme.

1.3.2 Constructing the physical model for a given quan-

tum Markov model

Suppose we have given a quantum Markov model and we want to know
how to implement it physically. One way and only way we show here is to
use scheme sketched in the previous section. We will use a bigger Hilbert
space, to be speci�c, a tensor product of the original space and auxiliary m-
dimensional Hilbert space HA ⊗H. We will construct the unitary operator
on this bigger Hilbert space such that its reduction lead to Kraus operators.
Concretely we require

∀i = 1,2, ...,m, A⟨i∣U∣1⟩A =Ki . (1.35)
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So the unitary operator will be in the basis {∣i⟩ ⊗ ∣j⟩}m,ni=1,j=1 represented as
m ⋅ n ×m ⋅ n complex matrix

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1
u
(12)
11 u

(12)
12 . . .
⋯

. . .
u
(1m)
11 u

(1m)
12 . . .
⋯

K2
u
(22)
11 u

(22)
12 . . .
⋯

. . .
u
(2m)
11 u

(2m)
12 . . .
⋯

⋮ ⋮ ⋱ ⋮

Km
u
(m2)
11 u

(m2)
12 . . .
⋯

. . .
u
(mm)
11 u

(mm)
12 . . .
⋯

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.36)

All we need is to �nd complex numbers u(kl)ij such that U is unitary, i. e.,

U�U = I . (1.37)

From the condition K�
1K1 +K

�
2K2 + ... +K

�
mKm = I we have many equations

from the (1.37) already ful�lled and we can always �nd solutions of the rest.
Though, the solutions are not determined unambiguously. Let us compute
the number of free real parameters. To do that we need to identify number
of real parameters and number of constraints given by equation (1.37) and
then subtract these.

Number of the real parameters is 2n2m(m−1). The following table shows
the number of constraints.

orthogonality of the �rst n columns to the others
2n2(m − 1)
orthogonality of the others among themselves
n(m − 1)(n(m − 1) − 1)
normalization of the others
n(m − 1)

Number of the free real parameters is then 2n2m(m − 1) − 2n2(m − 1) −
n(m − 1)(n(m − 1) − 1) − n(m − 1) = n2(m − 1)2.

The concrete solution of the (1.37) is very hard to �nd, but at least we
know that it is possible. If we manage to �nd the solution we are facing
other problem � how to construct such unitary matrix? Nonetheless, such
question goes far beyond the scope of this work.

15



Chapter 2

Hidden Quantum Markov Models

De�nition 2.0.1. Let H be n-dimensional Hilbert space,

K = {K
(1)
1 ,K

(2)
1 , ...,K

(d1)
1 ,K

(1)
2 ,K

(2)
2 , ...,K

(d2)
2 , ...,K

(1)
m ,K

(2)
m , ...,K

(dm)
m }

set of linear operators on H. We call couple (H,K) n-dimensional Hidden
Quantum Markov Model withm possible outputs and degenerations d1, d2, ..., dm
if and only if the following conditions are satis�ed:

1. ∑
m
i=1∑

di
p=1K

(p)
i

�
K
(p)
i = I

2. Vectors from H form a growing chain in the following sense:

(a) Each segment of the chain is represented by normalized vector(≡
state) from H.

(b) If the segment is ∣ψ⟩, the next segment of the chain will be
K
(p)
i ∣ψ⟩

∣∣K
(p)
i ∣ψ⟩∣∣

with probability

P = ∣∣K
(p)
i ∣ψ⟩∣∣2 = ⟨ψ∣K

(p)
i

�
K
(p)
i ∣ψ⟩

while value i is produced. (i ∈ {1,2, ...,m})

As you can see, the de�nition is very similar to the �rst one 1.1.1. The
only change is that now we do have more Kraus operators than outputted
values. The change is than now some new classical uncertainty comes to the
stage. In the non-hidden Quantum Markov models, knowing the initial state
and outputted values we could have compute every following state. It is not
possible, because the outputted value still gives us some uncertainty about
the state. For instance, if the outputted value is number 2 with degeneration
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d2 = 3 and the initial state is ∣ψ⟩, there are still three possibilities of the next
state

K
(1)
2 ∣ψ⟩

∣∣K
(1)
2 ∣ψ⟩∣∣

,
K
(2)
2 ∣ψ⟩

∣∣K
(2)
2 ∣ψ⟩∣∣

,
K
(3)
2 ∣ψ⟩

∣∣K
(3)
2 ∣ψ⟩∣∣

.

These states remain hidden, the only thing we see now are the outputted
values, what makes the Hidden Quantum Markov Models totaly analogous
to the classical ones (see appendix B). This uncertainty about the next states
gives us no other choice than using the density operators for describing them,
which is analogous to the probability vector1 in Hidden Markov Models.

2.1 Evolution and the word probabilities

In order to obtain very compact and e�cient expression of the word proba-
bilities and density operator evolution we need to de�ne new linear superop-
erators. Let ρ be a density operator. We de�ne

� Evolution superoperator for the unknown outputted value

K(ρ) =
m

∑
i=1

di

∑
p=1

K
(p)
i ρK

(p)
i

�
(2.1)

� Evolution superoperator for the outputted value i

Ki(ρ) =
di

∑
p=1

K
(p)
i ρK

(p)
i

�
(2.2)

If one of the k-th segment≡state of the chain is described by a density
operator ρk and we do not know the outputted value or we want to predict
the future, the next state will be described by density operator

ρk+1 = K(ρk) . (2.3)

If the outputted value is i, the next state will be described by density
operator

ρk+1 =
Ki(ρk)

Tr(Ki(ρk))
. (2.4)

Let ρ0 be an initial state. Probability of the word 123XX43X2, where
X refers to an arbitrary character, is

P (123XX43X2) = Tr(K2KK3K4KKK3K2K1(ρ0)) (2.5)
1describing the probability distribution over the set of the hidden states
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and the density operator describing the following state is

ρ9 = ρ∣123XX43X2 =
K2KK3K4KKK3K2K1(ρ0)

Tr(⋅)
. (2.6)

2.2 Implementation of the Hidden Markov mod-

els and Markov models via Hidden Quan-

tum Markov models

The idea of implementation of the classical Hidden Markov models is quite
easy. For each hidden state we just assign the quantum state which is or-
thogonal to the others and the density operator will take the role of the
probability vector. The relatively hard part is �nding such set of Kraus op-
erators that represent a given Hidden Markov model accurately, i. e., the
statistical behavior like word probabilities and probability distribution over
the set of hidden states have to be the very same. Since number of the hidden
states in Hidden Markov model is n we will use the n-dimensional Hilbert
space with orthonormal basis {∣p⟩}np=1.

Theorem 2.2.1. Let P (Y = y,X = s∣X̃ = s̃) ≡ Pyss̃ be the transition probabil-
ities of the Mealy Hidden Markov model (see appendix B). The set of Kraus
operators which represent the given Hidden Markov model accurately is

i = 1, ...,m, p, q = 1, ..., n, K
(p,q)
i =

√
Pipq ∣p⟩⟨q∣ (2.7)

Proof. First, we need to verify that de�nition (2.7) is a set of trace-preserving
Kraus operators. Indeed it is, since

m

∑
i=1

n

∑
p=1

n

∑
q=1

K
(p,q)
i

�
K
(p,q)
i =

m

∑
i=1

n

∑
p=1

n

∑
q=1

√
Pipq ∣q⟩⟨p∣

√
Pipq ∣p⟩⟨q∣ =

=
m

∑
i=1

n

∑
p=1

n

∑
q=1

Pipq ∣q⟩⟨p∣p⟩⟨q∣ =
n

∑
q=1

∣q⟩⟨q∣
m

∑
i=1

n

∑
p=1

Pipq = I .

We may suppose that the initial state is one of the basis states. If not, we
just wait for one iteration and we can be sure that the state will be basis
vector, since all of K(p,q)i project to some.2 If the initial state is ∣p̃⟩, the
probability of passing onto basis state ∣p⟩ while outputting the value i is

n

∑
q=1

Tr(K
(p,q)
i ∣p̃⟩⟨p̃∣K

(p,q)
i

�
) =

n

∑
q=1

n

∑
q̃=1

⟨q̃∣K
(p,q)
i ∣p̃⟩⟨p̃∣K

(p,q)
i

�
∣q̃⟩ = Pipp̃ .3

2In fact, the �rst iteration is the only one where HQMM may di�er from HMM.
3Actually, this is the probability of obtaining eigenvalues i, p, q̃ in the measurement.
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So the implementation via Hidden Quantum Markov model behaves in the
very same way as the original, thus all of the statistical behaviour must be
the same. The density operator is now diagonal in the orthonormal basis
{∣p⟩} and its diagonal elements are now the very same as in the probability
vector p in classical version.

Implementing of the non-hidden Markov model via HQMM can be done
using set

i = 1, ...,m, p, q = 1, ..., n, K
(p)
i =

√
Tip∣i⟩⟨p∣ ,

so after measuring i the states passes onto state ∣i⟩ which is exactly what we
expect from the Markov model.

Now, we can easily compute the number of Kraus operators needed for
implementing hidden and non-hidden Markov models. It is m ⋅ n2 for the
Hidden Markov models and n2 for the non-hidden. Such huge amount of
resources seem to be practically impossible to obtain, so the previous theorem
may be simply a fundamental statement without any practical usage.

2.3 Physical Realization of the Hidden Quan-

tum Markov Model

Once we achieve to physically realize any Quantum Markov Model, we can
easily construct any Hidden Quantum Markov Model. In the non-hidden case
we assign one Kraus operator Ki to each outputted value i. We can think of
the hidden case in the very same way. We assign one Kraus operator K(p)i
to each couple of outputted values i, p but the only di�erence is that we do
not see the hidden value p. That makes from the Quantum Markov Model
the Hidden Markov Model. It is just omitting some information classically.

Practically, if we have the couple of outputted values i, p on our monitor,
we just do not look at the value p and from the Quantum Markov model
we have immediately gained the Hidden QMM. Another example would be
the case, where the measurement device knows about both hidden and non-
hidden outputted value and is able to project the previous state ∣ψ⟩ to an-

other K
(p)
i ∣ψ⟩

∣∣⋅∣∣
, but for some reason it shows only the value i. Mathematically

Since we are in Hidden Quantum Markov model, we throw information about values p, q
out, so we do not know what is the consequent state, but that does not mean that the
Machine does not know. This is the reason why we can calculate the probability in this

way. From the form of the Kraus operator K
(p,q̃)
i it is obvious that after measuring

�hidden� eigenvalues p, q̃ and non-hidden i the consequent state will be K
(p,q̃)
i ∣p̃⟩. We sum

over q's since for all q K
(p,q)
i lead to eigenvector ∣p⟩.
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speaking, we are using a projective function

f ∶ (i, p)Ð→ i (2.8)

and we can formally write

HQMM = QMM⊕ f . (2.9)

2.4 Comparing Hidden Markov Models and Hid-

den Quantum Markov Models

As we have seen, the Hidden Quantum Markov models are the generalization
of the non-quantum. But are they more e�ective? What makes them better?
And what are the other di�erences? Does exist an e�ective way of comparing
them? As we said earlier, the superpositions make them more �exible and
the statistical behavior has to be more complex. In the classical version we
have �xed and �nite amount of the transition probabilities. By contrast, we
have in�nite, even uncountable set of possible states in the quantum ver-
sion and thus potentially in�nite number of transition probabilities. Also
the de�nition 2.0.1 gives us more freedom in the number of Kraus opera-
tors (In the classical version for the given number of states and outputs we
had �xed amount of transitions), which may be a big problem in comparing
these (what amount of Kraus operators should we use?). This problem may
be solved using the Stinespring theorem [3] about superoperators and their
decomposition onto set of Kraus operators, but we do not know now. That
and whether other di�erences are statistically important or not would be the
task of the further research.
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Chapter 3

Entanglement

Entanglement is one of the mightiest mystery in the quantum mechanics. It
shows us how the quantum world di�ers from the classical. Suppose you have
two particles which once interacted to each other. Now they are entangled.
What does it mean? It means that by measuring one at the arbitrary time
we can gain some information about the other. You could argue that it
is the same in the classical mechanics: If you measure the momentum of
the �rst particle and know the total momentum, you can easily calculate
momentum of the second, so you gained information about the other. But
these correlations are in quantum mechanics much stronger than in classical.
The above classical example was a simple law of conservation and that is
all what the classical case can o�er. By contrast, in quantum mechanics
we can predict the probability of the measurement outcome of the second
particle knowing something about the �rst, but it is not just a simple law
of conservation, because actually nothing is conserved actually1 To prove
that, suppose a simple yes-no experiment, denote the �rst particle A and the
second B. In quantum mechanics it is possible to obtain multiple possible
outcomes with the same initial state and measuring device setting

A yes B yes, A no B yes, A yes B no, A no B no, (3.1)

It cannot be the law of conservation, because the conserved value has to be
the same for system before the measurement and after that. This is the main
behavior of the quantum mechanics. We have the very same beginning and
still we can end in di�erent results. There has been done a lot of work about
studying the upper problem. It is known as EPR paradox and we will not
deal with it here.

1To be honest, some people think that the quantum information hidden in the system
is conserved, which is pretty new topic and nowadays under strong investigation. See [11].
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Now a little of mathematical formalism. Let {∣0⟩, ∣1⟩} be an orthonor-
mal basis. One of the possible entangled state (which is called Bell state �
maximally entangled state) of two particles can be

1
√
2
(∣0⟩⊗ ∣1⟩ + ∣1⟩⊗ ∣0⟩) . (3.2)

If the Alice measure the 0 on the �rst particle we know that the Bob will
measure the 1 and vice versa, if the Alice measure the 1 on the �rst particle,
Bob will measure 0 on the second. This is exactly what we have been talking
about in the beginning. Making a measurement on the �rst particle provide
us some information about the other. If we choose to measure in another
orthonormal base (for example { 1

√

2
(∣0⟩+ ∣1⟩), 1

√

2
(∣0⟩− ∣1⟩)}), we can get every

possible result sketched in the equation (3.1).
The one of the possible study of the entanglement with all of its con-

sequences are the Delayed Choice and the Quantum Eraser experiments of
which we will talk in the next chapter.

At the end of this very brief introduction we would like to point out that
entangled states are very usual in the quantum mechanics - every interact-
ing system of many particles will became entangled through the interaction.
On the other hand, every system can be in principle disentangled either of
measuring one part of the complex system or by using the inverse unitary of
that which entangled the system.2

2Closed system always evolve through some unitary operator U and for every unitary
there exist the inverse U−1, applying the U−1 to the entangled system will push it back-
wards and disentangle it. The question is if every inverse can be physically implemented.
Specially, for large systems with interacting particles it seems quite impossible to make
them separated again.
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Chapter 4

Delayed Choice and Quantum

Eraser

The Delayed Choice and Quantum Eraser experiment exploit how the quan-
tum world di�ers from our everyday experience. It shows the non-locality
of quantum particles, their wave-like behavior and how closely attached the
observer is to the observed system. It also demonstrate how irrelevant the
system is when no-one is looking.

Let us brie�y explain the main ideas of the Quantum Eraser and Delayed
choice. Both of these study the interference or not interference patterns
depending on the system setting.

The Quantum Eraser experiments are based on the simple idea that dis-
tinguishable (even in principle) histories (space-time trajectories) of one par-
ticle cannot interfere. But if we make these histories again indistinguishable,
they will interfere. We erase the information about the histories and we
regain the interference. The simple quantum eraser experiment is shown on
�gure 4.1.

On the other hand, the Delayed Choice experiments are trying to ex-
pose di�culties with the classical interpretation and understanding physics
in a way �One particle is here a the second there.� It shows that asking
questions as �Where exactly the particle is?� or �What is happening right
now?� is irrelevant, unless it refers to a speci�c measurement. The Delayed
Choice experiments shows that unambiguous answers to such questions would
lead to logical paradoxes. The original (although with some improvements)
Wheeler's Delayed Choice experiment is shown on the �gure 4.2

In the classical point of view when the particle of light (photon) hits the
beam-splitter it has 50 percent chance to be re�ected and 50 percent to go
through. Then it is re�ected from a mirror and go through a lens. After that
it hits the mirror and is re�ected to the one of two possible measurement
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Figure 4.1: Quantum Eraser. On the �rst picture we have the classical double-slit

experiment and we do see the interference pattern. But if we put the half-wave

plate in front of one slit, it turns the polarization of the light and stop interfere,

because we could in principle distinguish the path by a polarization measurement.

Still, we can erase this information by putting the polarization �lter and regain

interference.

apparatus. Which one of the measuring devices we choose to use is decided
by the position of rotatable mirror. If the mirror is positioned vertically we
measure whether the particle went through upper part of the experiment
(has gone through the beam-splitter) or lower part (has been re�ected from
the beam-splitter), if the mirror is positioned horizontally we measure the
interference pattern. The point is we can rotate the mirror anytime, for
instance right after the photon went through the beam-splitter. This is called
a delayed choice.

If we have the rotatable mirror positioned vertically we will �nd out
whether the particle went through upper or lower part. So there is not a
paradox with the classical point of view. But we can also set the mirror hor-
izontally and we will see the interference pattern. The question whether the
particle went through upper or lower part now seems to be irrelevant, since
it must have gone through both paths simultaneously, in order to interfere.

The problem is with the wrong deduction: if the photon has been detected
in the detector D1, it must have gone through the lower part. But the
measurement says nothing about what happened before the measurement
was done. Whether the particle will hit detector D1 or detector D2 is not
decided at the time of the passing through the beam-splitter but at the time
detecting.

This experiment shows us that we have to stop ask what is happening
when we are not looking. What has happened is decided at the time of
the measurement. All we can imagine is that the photon go through every
possible history simultaneously and calculate the probabilities of possible
outcomes. To highlight this fact, let me o�er you the real (not only thought)
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Figure 4.2: Wheeler's original delayed choice experiment

experiment which has been done [8]. In this experiment there a photon
which decays with some probability at a given time (when passing the BBO
crystal) into two other lower-energy photons. So we have one photon in the
beginning and two at the end. The interesting thing is that there are two
possible times when the decay can happen. And the two photons created at
this �rst time interfere with those created at the second time. If you start to
ask what is actually happening in the system, you will get to the conclusion
that the energy conservation law has been violated! Because there must
have been a time where the original photon and two created photons existed
simultaneously! In fact, the conservation law has not been violated, because
always when you look at the system, you will �nd either two less-energy
photons or one high-energy. The conservation laws apply to measurements
only, not on what is happening between them!

These experiments show us that we need to throw out the old compre-
hending of reality and thinking in a new way. All systems are evolving
through every possible history and the only relevant questions are those re-
ferring to some measurement. A little insight about the measurement may
o�er you chapter ??.
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Chapter 5

Free Will Experiment

5.1 The idea

The Free Will Experiment is a Delayed Choice Quantum Eraser experiment,
which combine both Delayed Choice and Quantum Eraser. We have it based
on the work of [5] and using very similar experimental setup but for a dif-
ferent purpose. The main idea is the following. Having an entangled pair
of particles, keeping one and letting the other for Alice, could we predict by
measuring the �rst of the pair what Alice will do with the second? If this is
possible then it would mean that the Alice has not the free will. She would
be only the actress who plays her role, but everything she does would be
predetermined.

The scheme is on �gure 5.1.

Figure 5.1: Free Will experiment. The tested person decides whether to push the

button or not.
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A high-energy photon goes through a double-slit and hits the BBO1 crys-
tal. Then it splits into an entangled (in polarizations) pair of photons of
which one (1) goes up and one (2) goes down. But we will not use the en-
tanglement in polarizations but rather in position. The state of the original
photon just after it passed the double-slit and before it hits the crystal is
superposition of states �Went through the upper slit��∣Upper⟩ and �Went
through the lower slit��∣Lower⟩:

1
√
2
(∣Upper⟩ + ∣Lower⟩) . (5.1)

Then it hits the crystal and since the superposition is hereditary, the position-
entangled pair is produced:

1
√
2
(∣UP1⟩∣UP2⟩ + ∣DOWN1⟩∣DOWN2⟩) . (5.2)

Where ∣UP1⟩ means the state where the �rst photon went through the upper
path (Light green on the picture), and ∣DOWN1⟩ the state where the �rst
photon went through the lower path (Dark green). The entanglement (5.2)
just means that the two photons had to have the common place of creation.
If the �rst was created in the place just after the upper slit, the second would
have been created in the same place. We measure whether the �rst photon
will interfere or not by detector D0.2 From the (5.2) we know that if we try
to measure which way the second photon went (person-Alice decides to push
the red button which pushes the detectors D3 and D4 in both possible ways
of the second photon) we will also �nd out the path of the �rst photon. If the
second photon went through the lower path ∣DOWN2⟩, the �rst would have
to go through the lower path too ∣DOWN1⟩. So the �rst photon cannot
interfere, because the paths are in principle distinguishable. But if Alice
decides not to push the red button, the information about the path would
be erased by a beam-splitter. By hits in detectors D1 and D2 we cannot say,
which way did the second and thus also the �rst photon went. So the �rst
photon should to interfere again.

Notice one thing. Our reasoning did not depend on the time at all. It does
not matter if you make the path of the �rst photon longer or shorter than the
path of the second. Also the time evolution was only some irrelevant phase
factor. So we can make the trajectory of the �rst photon much smaller than
the trajectory of the second (We put the detector D0 closer than detectors

1Beta Barium Borate
2In fact, we measure position of hits of single photons, which may or may not form an

interference pattern.
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D1,2,3,4). Now, we are able to predict what the Alice do! If we will see the
interference pattern, we know that Alice will decide not to push the button
and erase the information. If we will not see the interference pattern, Alice
will decide to push the button and �nd out which way the second photon
went and destroy the interference of the �rst. The problem is, it does not
work. Why it does not work can be easily seen from the calculations.

Let ∣D1⟩, ∣D2⟩ be the states representing the hit on the detectors D1, D2
respectively. The �nal state after the second photon went through beam-
splitter and the �which-path� information has been erased is

1

2
(∣UP1⟩ + ∣DOWN1⟩)∣D1⟩ +

1

2
(∣UP1⟩ − ∣DOWN1⟩)∣D2⟩ . (5.3)

So if the second photon hit the detector D1 the state of the �rst is

1
√
2
(∣UP1⟩ + ∣DOWN1⟩) (5.4)

and it interferes. If the second photon hit the detector D2 the state of the
�rst is

1
√
2
(∣UP1⟩ − ∣DOWN1⟩) (5.5)

and it interferes too. The problem is the minus sign. Because the interference
pattern cannot be seen as a whole with a single photon, we need to use many
of them. But half of the second photons will be detected at the detector
D1 and half of them will be detected at the detector D2, so half of the �rst
photons will form the interference pattern in the shape of (5.4) and half of the
�rst photons will form the interference pattern in the shape of (5.5) and we
will not see the interference pattern at all. Since these interference patterns
are exactly π/2 shifted, they add together and form the very same pattern as
the non-interference one. The interference could be seen only when we �lter
out the �rst photons which refers to the hits on the detector D1 and then we
will see the pattern in the shape of (5.5), but that cannot be done without
some information from Alice! That ruins the Free Will test entirely. Can be
this experiment corrected somehow, in order to work? No. As we will see
in the next section, every Free Will test based on this entanglement idea is
predetermined to fail.

But this experiment shows another nice thing. It shows that past is
correlated with future and vice versa, future is correlated with past. It does
not really matter if you measure the interference of the �rst photon �rst,
or if Alice is deciding �rst. The correlations only mean that if you know
some information from the measurement about the second, you are able
to predict better the measurement outcomes of the �rst particle. The old
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view of the collapse of the wave function as a time-bounded event totaly
fail. Usually the collapse of the wave function is considered at the time
of the measurement. This approach is illegitimate, since it really does not
matter what measurement happened �rst and for some (for example moving)
observers it may appear that the measurement number one happened �rst
and for other (for example moving in the opposite way) observers it may
appear that the measurement number two happened �rst. In fact, the only
relevant time, when the state function collapses, is the time of hearing some
new information about the system. Suppose that I hear from the Alice that
she has detected the second particle in the detector D1. Then I know I
should expect a hit somewhere where it is allowed to by (5.4). This is the
time when the state function collapses. As we will see in the next section, the
collapse of the wave function is generally the change from using one density
operator describing our system to the conditioned one, which describes our
system better. Or, in this special case of free will, from the density operator
to a pure state.

5.2 Is there any general rule, why does it fail?

Correlations are not causality, information

cannot be send through entanglement

Suppose again that the Alice is the tested person and we are measuring the
�rst photon in order to �nd out what she decides to do. The whole system
before Alice decides what to do is described by a density operator

ρ = ∣ψ⟩⟨ψ∣ , (5.6)

where ∣ψ⟩ is the state (5.2). Denote the system consisting of the �rst photon
System A and the Alice's photon System B. We have access to the system
A only, so our system is described by a density operator

ρA = TrB(ρ) . (5.7)

For now, suppose that Alice is deciding to apply some Unitary U to her
photon=System B. This unitary will act on the whole system ρ as a tensor
product, unitary

Ũ = IA ⊗U . (5.8)

Does it a�ect our system somehow? Will we notice that Alice have just done
something? No! Because our system is now described by a density operator

ρA,After Alice's decision = TrB(ŨρŨ
�) = TrB(ŨρŨ

−1) = TrB(Ũ
−1Ũρ) = ρA , (5.9)
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So we will not recognize a thing, because the density operator describing our
system is the very same as it was before.

Now, suppose that Alice is deciding to apply some non-unitary K to her
photon. To prove that we will get the very same result as before we need
to do a little trick - which is in fact correct. Now, because she herself is
the tested person, she must be considered as a part of the tested system.
She decides if she apply to one measurement device or the other. And the
measurement devices are also part of tested system. We need to expand our
Hilbert space! We expand the system B to the new system Bnew, which is
now

Bnew = B ⊗ (Measurement devices)⊗ (Alice) , (5.10)

And the whole system is now Hilbert space

H = A⊗Bnew (5.11)

Now, whatever Alice decides to do, it must be some unitary U on the com-
posite system Bnew, since Bnew is a closed system. The unitary U is the
expansion of her decision operator K

K = TrMeasurement devices and Alice(U) (5.12)

and the unitary U acts on the whole systemH again as the unitary Ũ = IA⊗U .
Let ∣ϕ⟩ be an initial state of the measuring devices and Alice. The initial
density operator before the Alice's decision is now

ρ = ∣ψ⟩∣ϕ⟩⟨ϕ∣⟨ψ∣ (5.13)

and density operator describing our system after the decision is now

ρA,After Alice's decision = TrB,Measurement devices and Alice(ŨρŨ
�) = ⋯ = ρA . (5.14)

We have proved that no matter what Alice do we do not see the dif-
ference on our system. That is because the entanglement is yielding some
information about what happened only, what made the particles entangled,
not about what will happen. The entanglement yield the information about
the past, not about the future. Still, it can be used for example for quantum
teleportation [9], which actually happen later after the particles are entangled,
but to complete the teleportation successfully sending classical information
is required.

Since the above derivation was entirely general (the example with Alice
was used only for a better understanding), we have proved e�ectively

that no information can be send through entanglement. That is
because correlations are not causality.
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Moreover, if the that was not true, we could predict the future and com-
municate with past. On the other hand, the presumption that the evolution
is unitary process was the crucial part of the proof. If the evolution of the
closed system had not been unitary, such free will experiments would have
been possible.
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Chapter 6

Wigner's friend as one of the

possible explanations what is

happening, relative reality

Wigner's friend is an extension of the Schrödinger's cat and is one of possible
looks on the measurement. The cat, the experimenter and his friend (the
Wigner's friend). The idea is that when the experimenter open the box, he
will see the dead or alive cat. But when he opened the box, he stopped being
the outer observer. He just entangled himself with the system, so now he is
the part of the (bigger) system

cat⊗ experimenter. (6.1)

Suppose he likes cats and his happy when the cat is alive and sad when
the cat is dead. So from the outside the state of the composite system
cat⊗ experimenter will look like

∣alive cat⟩∣,⟩ + ∣dead cat⟩∣/⟩ . (6.2)

So when the friend come he will measure not only the system of the cat in
the box, he will measure the whole system cat ⊗ experimenter and see the
alive cat and happy experimenter or dead cat and sad experimenter. By this
second measurement he also entangled himself with the system.

Why the measurement is not the unitary evolution is because both ex-
perimenter and his friend cannot see themselves as part of the superposition.
But that does not mean that from the outside they cannot be seen in super-
positions and could not for example interfere.

While the experimenter is opening the box, it seems to the friend that
system cat⊗ experimenter is evolving through Unitary U,

(∣alive cat⟩ + ∣dead cat⟩)∣ ∶ −∣⟩
U
Ð→ ∣alive cat⟩∣,⟩ + ∣dead cat⟩∣/⟩ . (6.3)
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This is what we have used in the previous section. We have considered
Alice as part of the system and from our point of view she and system B
evolve through unitary U .

The Wigner's friend approach also predict the existence of relative reali-
ties, still, no logical paradoxes are not coming out. Each observer has his own
reality. To prove that, suppose we have a double slit and the experimenter
will look which way the photon went. Then he �nd out that the photon
went through upper or lower slit only and from his point of view the photon
cannot interfere. But for the (Wigner's) friend he is now in entangled state

U ∣experimenter⟩∣photon⟩ . (6.4)

If the friend decide to look at the (composite) system he �nds out that the
photon went really through one slit only. So there is not a logical paradox.
But if he will not decide to look at the system and applies the U−11 to the
system instead. He will regain interference. Because the system he looks at
then is again

U−1U ∣experimenter⟩∣photon⟩ = ∣experimenter⟩∣photon⟩ . (6.5)

So by applying this inverse unitary he changed the system back again before
the experimenter looked at the slits. But that completely erased his memory!
So there might have been a time when he knew that the photon went through
one slit only, and for you it seems that the photon went through both slits
simultaneously. But at a given time there is not logical paradox, because
before you have seen the interference you had to erased memory of all people
who knew that the photon cannot interfere. It seems that changing the
reality is OK as long as nobody notices.

This is actually a real Quantum Eraser experiment and it works for tiny
particles (as photons or electrons) already. The problem is with a bigger
system it might be almost impossible to apply the inverse unitary. Just
consider Alice looking at the slits. How could you make her unlook when she
is consisted of so many particles?

1Which is in principle possible to apply. For example for the Beam-splitter U the
inverse unitary U−1 is again a Beam-splitter.
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Chapter 7

Conclusion

In this work we have shown that the idea of Hidden Quantum Markov models
is consistent, that they generalize the classical case and may model some real
physical systems. We have also shown the basic statistical quantities for
this models and how to calculate them, for example the density operator
describing each segment of a chain and the word probabilities. What we
do not know is how much these models generalize the classical case if some
applications may be found. These are the main aims for the further research.

In the second part of the work we have talked about the Free Will test
based on the delayed choice quantum eraser experiments and explained why
this kind of experiments could not work. We have also proved e�ectively that
the correlations are not causality and that any form of information cannot be
send through the entanglement alone. At the very end we have shown how
it is related to the Wigner's friend approach and what else can be derived
from this approach.
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Appendix A

Markov Models

In this chapter we present simpli�ed classical Markov models in a way which
is necessary for the understanding of the quantum Markov models. For better
understanding the classical ones see, for instance, [4], [6] or [10].

De�nition A.0.1. Let S = {si}i∈I be a �nite or countable set of di�erent
states, I = {1,2,3, ...} is an index set. Makrov chain is an growing chain of
such states, where probability of the next being in the state si depends only the
previous state sj, this is called Markovian property. For explicit formulation,
let the X1,X2, ...,Xn be the random variables describing elements 1,2,...,n in
a Markov chain. The Markovian property can be now written as

P (Xn = si∣Xn−1 = sj,Xn−2 = sjn−2 , ...,X1 = sj1) = P (Xn = si∣Xn−1 = sj)

for all n ∈ N.
The Markov model is the set of states S together with all conditional

probabilities P (Xn = si∣Xn−1 = sj), n ∈ N, i, j ∈ I.

The states in Markov chain are directly observable. For the analogy to
the quantum Markov model we can consider that in each step a value i from
the index set I is produced with some probability and then the state passes
onto state si. So the index set takes place of the set of outputted values.

Usually, only Markov models with non-evolving probabilities are consid-
ered. By non-evolving we mean

∀n ∈ N, P (Xn = si∣Xn−1 = sj) = P (Xn−1 = si∣Xn−2 = sj), (A.1)

so the probability of obtaining value i does not depend on the actual position
in the Markov chain, it does depend only on the previous state. In this paper
we will consider only the non-evolving Markov models with �nite set of states.
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A.1 Probability distribution after n iterations

Suppose we want to predict in what state will be the n-th element of the
chain or equivalently, which value will be produced, knowing the initial state
sini. Denote

P (Xn = si∣Xn−1 = sj) = Tij, pn = (P (Xn = s1), ..., P (Xn = sm))T , 1 (A.2)

From the Bayes' theorem we know that

P (Xn = si) = P (Xn = si∣Xn−1 = s1)P (Xn−1 = s1) +⋯+

+ P (Xn = si∣Xn−1 = sm)P (Xn−1 = sm) =
m

∑
j=1

Tij(pn−1)j
(A.3)

or in the more compact form

pn = Tpn−1. (A.4)

So if we know probability distribution on the set of states in the previous
segment of the chain, we can easily calculate the probability distribution in
the actual segment only by multiplication of the matrix T, usually called
transition matrix. For example, if the initial state is s2, then the initial
probability distribution is p0 = (0,1,0, ...,0)T . Probability distribution on
the n-th state will be then

pn = Tnp0. (A.5)

From the construction of the Markov model it is obvious that

P (Xn = s1∣Xn−1 = sj) +⋯ + P (Xn = sm∣Xn−1 = sj) = 1 (A.6)

(each segment of the chain must be represented by some state from S), what
implies

Theorem A.1.1. Transition matrix T satisfyies following relations:

∀i, j ∈ I, 0 ≤ Tij ≤ 1 , (A.7)

∀j ∈ I, ∑
i∈I

Tij = 1 . (A.8)

From the above theorem can be easily derived that for all n is pn prob-
ability distribution. Furthermore, we call every matrix satisfying the above
theorem transition matrix.

1 T is a transpose. We consider vectors as columns.
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A.2 Stationary distribution

De�nition A.2.1. We de�ne stationary distribution of the Markov model as
a probability distribution ps satisfying

ps = Tps .

The stationary distribution is distribution on the set of states S which
does not change with iterations. In other words, if one element of the Markov
chain is characterized by a stationary distribution ps, then the next one will
also be characterized by the same distribution ps.

We have already mentioned the distribution after n iterations pn. What
if the limit of such distributions exist? The limit would well characterize the
distribution on the states after the machine has been running for a long time.
Moreover, such limit is a stationary distribution and thus does not change
anymore.

Theorem A.2.1. Suppose that the limit limn→∞pn = limn→∞Tnp0 exist.
Then the limit is a stationary distribution.

A.3 Word probabilities

We have already mentioned word in the de�nition 1.1.3. The word proba-
bilities of the classical Markov model are much simpler than in the quantum
case. For example, probability of obtaining of the word 436 with the initial
state s2 is

P (436, s2) = P (4, s2)P (3, s4)P (6, s3) = T42T34T63 . (A.9)

It happens little complicated when some uncertainties comes on the stage.
For example, if we don't know initial state exactly or some character are
omitted. Denote vector psi = (0, ...0,1,0, ...,0)T , where only i-th element is
non-zero and equal to 1. Let the p0 be a probability distribution describing
the �rst segment of the chain. Then

P (XXX43XX2) = (T4p0)4T34(T
3ps3)2 . (A.10)
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Appendix B

Hidden Markov Models

The di�erence between Markov models and Hidden Markov models is that in
Hidden Markov models we do have states and the outputs, which are not the
same. In fact, we consider states always hidden (that is the word in the name)
so we cannot see them directly, but we still can observe outputs, which gives
us at least some information about hidden states. Predicting the probability
distribution over the set of states given the outputs is the main task which
the people usually do and for that there are many algorithms, but we will
not describe this whole problem. We will rather explain the main overview
in order to make you better understand the �quantum� version and why this
quantum version generalize the classical. There are two main types of the
Hidden Markov models. Older and more discussed one is the Moore Hidden
Markov model, or occasionally called state-emitting. Usually, when people
talk about this Hidden Markov models they consider this Moore model. But
it is not the only one. The other is Mealy Hidden Markov model, or edge-
emitting, which is in fact more general and include the Moore model. More
information can be found in many publications, for example cite.

B.1 Moore and Mealy Hidden Markov models

The schematic example of the Moore and Mealy model is on pictures B.1 and
B.2 respectively. Both types are fully characterized by set of conditional prob-
abilities as in the non-hidden case and also possess the Markovian-forgetful
property, probability of being in the next state s from the set of states S
with output y from the set of outputs O depend only on the previous state.

In Moore model the output is produced with some probability depen-
dent on the initial state and then the state passes onto next, also with the
probability dependent on the previous state only. Thus the Moore model is
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Figure B.1: Moore Hidden Markov model

Figure B.2: Mealy Hidden Markov model
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characterized by a set of conditional probabilities

P (Y = y∣X̃ = s̃) ≡ Pys and P (X = s∣X̃ = s̃) ≡ Tss̃ . (B.1)

In contrast, in Mealy model the output and the passing onto next state
happens simultaneously with joint probability

P (Y = y,X = s∣X̃ = s̃) ≡ Pyss̃ (B.2)

From the pictures it is quite obvious that the Mealy model is just a
generalization of the Moore. Given the Moore model we can de�ne the Mealy
model just by multiplying probabilites:

P (Y = y,X = s∣X̃ = s̃) = P (Y = y∣X̃ = s̃) ⋅ P (X = s∣X̃ = s̃) (B.3)

So the Moore model considers only cases where random values outputs
and next states are independent.

Since the machine has to be in some state and some output has to be
produced we gain simple conditions for the probabilities B.1 and B.2

∀s̃ ∈ S, ∑
y∈O

Pys̃ = 1, ∑
s∈S

Tss̃ = 1 , (B.4)

∀s̃ ∈ S, ∑
y∈O,s∈S

Pyss̃ = 1 , (B.5)

from which we can easily derive number of free real parameters which charac-
terize the whole model. Suppose that we have Hidden Markov model with n
possible states and m outputs. The Moore model is then fully characterized
by n ⋅ (n +m − 2) and Mealy model by n ⋅ (m ⋅ n − 1) free parameters.

One last notion for the Hidden Markov model in this section: non-hidden
Markov models are subsets of the Hidden ones. That is because we can
always identify each �hidden� state to one �non-hidden� outputted value and
thus reveal the hidden states. Technically speaking, we simply use the Moore
model and put Pys = δys.

B.2 Word probabilities

Since the Moore model is a trivial subset of the Mealy, we can simply derive
the word probabilities for the Mealy model and Moore model will be included.
Since in Hidden Markov model the states remain hidden, we do not know the
initial state. We can only estimate probability with which the initial state
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is the state s0. This probability is characterized by a probability vector p,
(p)s0 = P (X0 = s0). We usually consider the uniform distribution

p0 = (
1

n
,
1

n
, ...,

1

n
) , (B.6)

but other distributions may be more suitable - for example one of the station-
ary probability distributions, which is more in accordance with our knowledge
about the system1 The probability of obtaining word y1y2...yk is a simple mul-
tiple of the probabilities summed over the every possible way of obtaining
this word.

P (y1y2...yk) = ∑
s0,s1,...,sk∈S

Pyksksk−1Pyk−1sk−1sk−2⋯Py1s1s0ps0 (B.7)

We may also ask what is the most probable distribution over the set of
states given the observed outputs. In this derivation we use only the ordinary
de�nitions of joint and conditional probabilities.

P (X0 = s0,X1 = s1, ...Xk = sk∣Y1 = y1, Y2 = y2, ..., Yk = yk) =

=
P (X0 = s0,X1 = s1, ...Xk = sk, Y1 = y1∣Y2 = y2, ..., Yk = yk)

P (Y1 = y1∣Y2 = y2, ..., Yk = yk)
= ⋯ =

=
P (X0 = s0,X1 = s1, ...Xk = sk, Y1 = y1, Y2 = y2, ..., Yk = yk)

P (Y1 = y1, Y2 = y2, ..., Yk = yk)
=

=
Pyksksk−1Pyk−1sk−1sk−2⋯Py1s1s0ps0

P (y1y2...yk)
,

(B.8)

where P (y1y2...yk) is the normalization constraint and thus has to be equal
to sum of the numerators over s's. 2

1We usually know the parameters of the model B.1 and B.2. In Mealy model we de�ne
transition matrix between states as Tss̃ = P (X = s∣X̃ = s̃) = ∑y∈O P (Y = y,X = s∣X̃ = s̃).
The stationary states can be then calculated in the very same way as in the Markov model
in section A.2.

2Which is an e�ective proof of the equation (B.7).
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Appendix C

Examples of Quantum Markov

models

Here we present some examples of QuantumMarkov models together with the
"forgetful" evolution of the density matrix ρk = Kk(ρ0) and graphs showing
the convergence of the density matrix to the stationary distribution. The
initial matrix is denoted ρ0.

1. The non-converging density matrix.

K0 = (
0 1
0 0

) , K1 = (
0 0
1 0

)

ρ0 = (
0.7 0.2
0.2 0.3

) , ρ1 = (
0.3 0
0 0.7

) , ρ2 = (
0.7 0
0 0.3

) , ρ3 = (
0.3 0
0 0.7

)

2. The density matrix converging to a pure state

K0 = (
0.5 0
−0.5 −0.707

) , K1 = (
0.5 0
−0.5 0.707

)

ρ0 = (
0.7 0.2
0.2 0.3

) , ρ1 = (
0.350 −0.350
−0.350 0.650

) , ρ2 = (
0.175 −0.175
−0.175 0.825

)

3. The density matrix converging to the ρs

K0 = (
0.966 0.105
−0.237 0

) , K1 = (
−0.092 0.703
−0.051 0.703

) , ρs = (
0.880 −0.123
−0.123 0.120

)
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Figure C.1: Evolution of the density matrix 3.

ρ0 = (
0.500 0.300
0.300 0.500

) , ρ1 = (
0.745 0.097
0.097 0.255

) , ρ2 = (
0.837 −0.053
−0.053 0.163

)

4. The density matrix converging to the totaly mixed state.

K0 = (
0.400 + 0.131i −0.569 + 0.699i
0.143 − 0.890i −0.364 − 0.211i

)

K1 = (
0.049 0.085 + 0.024i

−0.085 − 0.021i 0.049 − 0.002i
)

5. The density matrix converging to the ρs

K0 = (
0.849 0.423 + 0.113i

−0.364 − 0.364i 0.264 − 0.687i
)

K1 = (
0.031 0.024 + 0.225i

0.1030.048i −0.298 + 0.355i
)

ρs = (
0.334 −0.049 − 0.164i

−0.049 + 0.164i 0.666
)
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Figure C.2: Evolution of the density matrix 4.

Figure C.3: Evolution of the density matrix 5.

6. Always converging density matrix, but the limit stationary density ma-
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trix depends on the initial state.

K0 =
⎛
⎜
⎝

0 0 0
0 0 0.707
0 0.707 0

⎞
⎟
⎠
, K1 =

⎛
⎜
⎝

1 0 0
0 −0.707 0
0 0 0.707

⎞
⎟
⎠
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