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Author: Štěpán Timr

Supervisor: prof. RNDr. Pavel Exner, DrSc.

Academic year: 2010/2011



Acknowledgment

I would like to express my gratitude to prof. RNDr. Pavel Exner, DrSc.,
who kept giving my work its direction and was willing to spend his precious
time discussing it with me. I would like to thank him for all the kind advice
he gave me, and for the many invaluable comments on the text of this thesis.

2



Prohlášeńı
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Abstrakt:
V této práci se zabýváme analýzou kvantových graf̊u ve tvaru nekonečného

hřebene, tzn. sestávaj́ıćıch z př́ımky a nekonečného počtu úseček k ńı při-
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aby jimi definovaný laplacián př́ıslušej́ıćı grafu byl samosdružený. Provád́ıme
analýzu pásového spektra v př́ıpadě periodického systému a diskutujeme vliv
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The work is devoted to analysis of quantum graphs in the form of an

infinite comb, i.e. an infinite family of segments attached to a straight line
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as a self-adjoint operator. The band spectrum corresponding to the situation
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Chapter 1

Introduction

Quantum graphs are simplified models developed to describe behavior of par-
ticles and waves in thin graph-like structures. Such structures are frequently
encountered in nanotechnology and other disciplines dealing with mesoscopic
systems. Mesoscopic systems are physical systems that are small enough to
be described by means of quantum mechanics, and large enough to be de-
signed and fabricated by today’s experimentalists. As a typical example one
can mention a network consisting of quantum wires, 1 in which quantum ef-
fects influence the motion of electrons. In order for those effects to appear,
the transverse dimensions of such wires must be small enough (sometimes as
small as a few atomic radii), and the purity of the material must be suffi-
ciently high so that the mean free path of the electrons exceeds the lengths
of the wires.

The approach taken by quantum graphs is to model such a quantum wire
network as a metric graph equipped with a Hamiltonian (these terms will
be specified in more detail in Chapter 2). Simply speaking, one replaces the
wires with one-dimensional curves intersecting at point-like junctions (the
former will represent the graph’s edges, the latter its vertices) and solves
the Schrödinger equation for a quantum particle living in such a system.
At first place, one is usually interested in the spectrum of the quantum
graph Hamiltonian, which is expected to exhibit a complex dependence on
the topology and geometry of the graph, and on the choice of boundary
conditions at the vertices.

In this work we address a particular example of an infinite periodic quan-
tum graph possessing a comb-like geometry. The graph consists of a straight
line to which an infinite number of equally long line segments is attached

1It remains to add that the range of applications of quantum graphs is by far not
restricted to quantum wire networks. Quantum graphs are of interest in many other fields,
such as waveguide theory, photonics or quantum chaos (see [Kuc02] for a detailed survey).
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at uniform distances. We study the spectrum of a Hamiltonian defined as
a negative second-derivative operator associated with the graph assuming a
general class of local vertex conditions that guarantee its self-adjointness. It
is shown that, except in a trivial case, the spectrum consists of an infinite
number of spectral bands separated by open intervals, and implicit relations
determining positions of spectral bands are derived both for positive and
negative part of the spectrum. Apart from this, a necessary and sufficient
condition for the existence of a negative spectral band is formulated, and
a lower bound of the spectrum is given. Subsequently, we introduce a local
perturbation by modifying the length of a selected ”tooth” and/or the ver-
tex conditions at the point of its attachment to the straight line. We derive
implicit relations describing positions of newly arising eigenvalues in spectral
gaps and then treat a simple tooth prolongation in more detail. Finally, we il-
lustrate our findings with several examples of spectra calculated numerically
for graphs exposed to local perturbations.
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Chapter 2

General concepts

In this chapter we will introduce the general concept of the quantum graph
as a metric graph equipped with a second-order differential operator. We will
also discuss the family of vertex boundary conditions defining a self-adjoint
extension of an operator.

2.1 Metric graphs

A graph is an ordered pair Γ = (V, E) consisting of a set V = {vi, i ∈ I} of
vertices and a set E = {ej, j ∈ J} of edges connecting the vertices. Each edge
can be identified with a pair of vertices which represent the edge’s endpoints.
The pair can be either ordered or inordered. The former corresponds to an
undirected graph, the latter to a directed one. The degree dvi of a vertex vi
expresses the number of edges containing vi as one of its endpoints.

A graph Γ becomes a metric graph if each of its edges ej is assigned a
positive (finite or infinite) length lj. Such a graph possesses a local metric
in that each edge ej is isometric with a finite or infinite real interval [0, lj].
This enables us to introduce the Hilbert space of quadratically integrable
functions defined on Γ as a direct sum of L2([0, lj]) for all edges ej:

L2(Γ) =
⊕
j∈J

L2([0, lj]).

We will write the elements of L2(Γ) as f = {fj}.
Let us add that in the case of an infinite graph, which will be of primary

interest to us, one assumes that in any finite distance from each vertex, there
is only a finite number of edges and other vertices. Such a graph is called
locally finite.
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2.2 Hamiltonians

Now that we have introduced the Hilbert space of quadratically integrable
functions defined on Γ, we will mention a few typical examples of operators
acting on that Hilbert space. Motivated by physical problems, one usually
concentrates on second-order differential operators, for simplicity choosing
the system of units in such a way that ~/2m∗ := 1, where m∗ is the effective
mass of the electron. The most elementary case is a Hamiltonian acting as
the negative Laplacian along each edge

fj(x) 7→ −d
2fj
dx2

(x) (2.1)

for all x ∈ (0, lj). It corresponds to the free motion along the edges. Further-
more, one can include a scalar potential V (x) as

fj(x) 7→ −d
2fj
dx2

(x) + V (x)fj(x).

Another example is a general electromagnetic Hamiltonian defined as

fj(x) 7→ −
(

1

i

d

dx
− A(x)

)2

fj(x) + V (x)fj(x).

For the sake of simplicity, we will consider the first of these operators, given
by the formula (2.1), in the following text and denote it by H.

For a complete definition of an operator, its domain must be specified.
In the case of an operator defined on L2(Γ), the domain can be restricted
by some boundary conditions imposed on the values of the functions fj and
their derivatives at the vertices. We will call these boundary conditions vertex
conditions.

Typically, one requires the graph operator to be self-adjoint, which en-
sures that it can be interpreted as a quantum mechanical observable (see for
example [BEH08] for details). We will determine the class of vertex conditions
making the graph operator self-adjoint in the following section.

2.3 Vertex conditions

In this section, we will describe vertex conditions leading to a self-adjoint
extension of the negative Laplacian H, acting according to (2.1). We will fo-
cus on vertex conditions being local, i.e. binding function and first-derivative
values belonging to the corresponding vertex only. In order for the functions
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fj to have properly defined function and first-derivative values at the interval
endpoints, we need to assume that fj ∈ H2([0, lj]) := H2(ej), the second-
order Sobolev space, for all j ∈ J . The first-derivative values at the interval
endpoints are then defined as

f ′(0) = lim
x→0+

f ′(x) = f ′(0+), f ′(lj) = − lim
x→lj−

f ′(x) = −f ′(lj−),

i.e. always in the outgoing direction from the vertex.
Suppose that a vertex v ∈ V has a degree dv. Let Fv be the dv-dimensional

vector composed of function values at the edge endpoints incident to the ver-
tex. At the same time, let F ′v stand for the dv-dimensional vector comprising
first-derivative values at those edge endpoints, taken in the outgoing direc-
tions from the vertex.

The vertex conditions at each vertex v can be written in a general form

AvFv +BvF
′
v = 0, (2.2)

where Av and Bv are square matrices of order dv. Since we assume a second-
order differential operator, we need two independent boundary conditions for
each edge. Therefore, the number of independent conditions assigned to each
vertex must be equal to its degree. Hence, we require the dv × 2dv matrix
(Av, Bv) to have the maximal rank.

Let us assume that the domain D(H) of the negative Laplacian H, acting
according to (2.1), consists of functions f ∈ L2(Γ) such that

• (∀j ∈ J)(fj ∈ H2(ej)),

• ∑j ‖fj‖H2(ej)
<∞,

• f satisfies (2.2).

We will introduce a theorem which has its origin in [KS99] and gives a nec-
essary and sufficient condition for the matrices Av and Bv so that H is
self-adjoint.

Theorem 2.3.1: Let Γ be a metric graph and H be the negative Laplacian
acting according to (2.1) with a domain D(H) specified above. For each vertex
v ∈ V let the matrix (Av, Bv) have the maximal rank. Then H is self-adjoint
if and only if the matrix

AvB
∗
v

is self-adjoint for every vertex v.

10



As shown in [Kuc04], this theorem applies to both finite and countably
infinite metric graphs, which is a consequence of the locality of vertex con-
ditions.

Let v be a vertex of a degree dv and e1, e2 . . . , edv the edges incident to
this vertex. We will mention a few simple examples of vertex conditions with
the self-adjointness property:

The δ-coupling One assumes that f is continuous at v, which implies that
the functions f1, f2 . . . , fdv attain the same value f(v) at the interval end-
points incident to v. In addition, the first-derivative values at those interval
endpoints, taken in the outgoing directions from v and denoted here by f ′k(v),
are bound by the following condition:

dv∑
k=1

f ′k(v) = δvf(v),

where δv is a real parameter. In the case of δv = 0, one gets the free or
Neumann (Kirchhoff) condition. For the δ-coupling, the matrices Av and Bv

in (2.2) are given by

Av =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 · · · 1 −1
−δv 0 0 0 · · · 0

 , Bv =


0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
1 1 · · · 1

 .

The Dirichlet condition The simplest condition requires the values of
f1, f2 . . . , fdv at the interval endpoints incident to v to equal zero. This makes
the edges effectively decoupled at v. It is evident that Av now equals the
identity matrix and Bv the zero matrix.

Let us add that the matrices Av and Bv in the general expression (2.2)
are not given uniquely. There are some other equivalent formulations of the
condition (2.2), listed for example in [Kuc08] or [CET10].

In addition to the δ-coupling and the Dirichlet condition mentioned above,
we will describe yet another example of vertex conditions in the following
section.

2.4 Infinite comb

We will now introduce the unperturbed system studied in the rest of this
work. As shown in Figure 2.1, the graph Γ consists of an infinite line on
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which vertices of type 1 are placed at uniform distances equal to a. To these
vertices line segments of length c are attached. Their other ends form vertices
of type 2. A function f from the Hilbert space L2(Γ) can be written as
f = {fp}+∞p=−∞ ∪ {gp}+∞p=−∞.

afp−1fp−2 fp fp+1

gp+1gp−1

0

c c

gp

a 0a 0

c

1

2

Figure 2.1: The unperturbed infinite comb Γ

The boundary conditions imposed on the type 1 vertices are

fp(0) = fp−1(a) (2.3a)

gp(0) = βfp−1(a) + γg′p(0+) (2.3b)

f ′p(0+)− f ′p−1(a−) = δfp−1(a)− βg′p(0+), (2.3c)

where p ∈ Z and β, γ, δ ∈ R. The type 2 vertices are equipped with the
Dirichlet condition

gp(c) = 0. (2.4)

A model consisting of a straight line equipped with one single finite-length
appendix has already been studied in [EŠerešová94] assuming the same vertex
conditions.

To verify that such vertex conditions guarantee the self-adjointness prop-
erty, we will express them in the form (2.2). For the type 1 vertices we put

F1 =

fp−1(a)
fp(0)
gp(0)

 , F ′1 =

f ′p−1(a)
f ′p(0)
g′p(0)

 =

−f ′p−1(a−)
f ′p(0+)
g′p(0+)

 .

The matrices A1 and B1 are then

A1 =

 1 −1 0
−β 0 1
−δ 0 0

 , B1 =

0 0 0
0 0 −γ
1 1 β

 .
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The matrix A1B
∗
1 becomes

A1B
∗
1 =

0 0 0
0 −γ̄ −β + β̄
0 0 −δ

 =

0 0 0
0 −γ 0
0 0 −δ


since we assume that β, γ and δ are real. We see that A1B

∗
1 is self-adjoint if

and only if β, γ, δ ∈ R. On this assumption, A1B
∗
1 satisfies the condition given

by Theorem 2.3.1. The case of the type 2 vertices is trivial and therefore, we
can conclude that the choice of the vertex conditions (2.3a)–(2.3c) and (2.4)
guarantees the self-adjointness of the Hamiltonian H.

Finally, note that if β = 0, the teeth of the comb, i.e. the line segments
of length c, become decoupled from the straight line. In this case, the system
reduces to the Kronig-Penney model on the real line (studied in [AGHH04])
and an infinite number of independent subsystems created by the individual
teeth. From now on we will assume β 6= 0 to exclude this simple case.
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Chapter 3

Unperturbed system

In the following chapter we will examine the band spectrum of the Hamilto-
nian H acting according to (2.1) which is associated with the unperturbed
comb Γ assuming the vertex conditions (2.3a)–(2.3c) and (2.4). We will treat
the positive and negative part of the spectrum separately and finally derive
a necessary and sufficient condition for the existence of a spectral band in
the negative part of the spectrum.

3.1 Bloch-Floquet decomposition

The inspection of the continuous spectrum of H is significantly facilitated
by the periodicity of Γ. It enables us to use the Bloch-Floquet decomposition,
which makes it possible to work with one single unit cell instead of dealing
with the whole infinite graph. However, before performing the Bloch-Floquet
decomposition, we need to explain some theory behind it.

First, let us introduce the notion of a constant fiber direct integral. Sup-
pose that H′ is a separable Hilbert space and M is a space equipped with a
σ-finite measure µ. Then we can construct the Hilbert space L2(M, dµ, H′),
consisting of square integrable H′-valued functions defined on M . Such a
Hilbert space is called a constant fiber direct integral and is written as

H =

∫ ⊕
M

H′ dµ.

Next, suppose that A(.) is a function mapping M to the set of self-adjoint
operators defined on H′. We call A(.) measurable if and only if the function
(A(.)+i)−1 is measurable. Given such a measurable operator-valued function,
we can define an operator A =

∫ ⊕
M
A(m) dµ on the constant fiber direct

integral H as
(Aψ)(m) = A(m)ψ(m)
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for all ψ ∈ D(A) ⊂ H and for all m ∈M . The domain D(A) of the operator
A contains functions ψ ∈ H satisfying

• (∀m ∈M)(ψ(m) ∈ D(A(m))),

•
∫
M
‖A(m)ψ(m)‖2H′ dµ(m) < +∞.

An important thing for us is the relation between the spectra σ(A(m)) of the
fibers A(m) and the spectrum σ(A) of A, described in the following theorem
(see Theorem XIII.85 in [RS78]):

Theorem 3.1.1: Let A =
∫ ⊕
M
A(m) dµ where A(.) is measurable and A(m)

is self-adjoint for each m ∈M . Then:

1. The operator A is self-adjoint.

2. λ ∈ σ(A) if and only if for all ε > 0 the set of m ∈ M such that
σ(A(m)) ∩ (λ− ε, λ+ ε) 6= ∅ has a nonzero measure.

3. λ is an eigenvalue of A if and only if the set of m ∈ M such that λ is
an eigenvalue of A(m) has a nonzero measure.

In the particular case of the infinite comb Γ, the space L2(Γ) can be
decomposed as

L2(Γ) = U−1L2([−π, π), dθ, L2(Γ0)) = U−1
∫ ⊕
[−π, π)

L2(Γ0) dθ

in analogy with the decomposition of L2(R) described in [RS78], Section
XIII.16. The Brillouin zone [−π, π) plays the role of the measure spaceM and
the fiber H′ is formed by L2(Γ0) = L2([−a/2, 0])⊕ L2([0, a/2])⊕ L2([0, c]).
The unit cell Γ0 is depicted in Figure 3.1. For every ϕ ∈

∫ ⊕
[−π, π) L

2(Γ0) dθ and

every θ ∈ [−π, π) let the function ϕ(θ, .) = {ϕL(θ, .), ϕR(θ, .), ϕT (θ, .)} be
the corresponding element of L2(Γ0). U is then a unitary operator

U : f ∈ L2(Γ) 7→ ϕ ∈
∫ ⊕
[−π, π)

L2(Γ0) dθ

with ϕ given by

ϕL(θ, x) =
+∞∑
p=−∞

eipθfp−1(x+ a), x ∈ [−a/2, 0], θ ∈ [−π, π), (3.1)

ϕR(θ, x) =
+∞∑
p=−∞

eipθfp(x), x ∈ [0, a/2], θ ∈ [−π, π), (3.2)

ϕT (θ, x) =
+∞∑
p=−∞

eipθgp(x), x ∈ [0, c], θ ∈ [−π, π). (3.3)
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ϕL(θ, .)
−a

2 0

c

a
2

ϕR(θ, .)

ϕT (θ, .)

Figure 3.1: The unit cell Γ0

The negative Laplacian H defined on L2(Γ) can then be decomposed as

UHU−1 =

∫ ⊕
[0, 2π)

H(θ)
dθ

2π
,

where H(θ) is the negative Laplacian defined on L2(Γ0) with the domain
D(H(θ)) comprising functions ϕ(θ, .) = {ϕL(θ, .), ϕR(θ, .), ϕT (θ, .)} which
satisfy boundary conditions of type (2.3a)–(2.3c) and (2.4), i.e.

ϕR(θ, 0) = ϕL(θ, 0) (3.4a)

ϕT (θ, 0) = βϕL(θ, 0) + γϕ′T (θ, 0+) (3.4b)

ϕ′R(θ, 0+)− ϕ′L(θ, 0−) = δϕL(θ, 0)− βϕ′T (θ, 0+) (3.4c)

and
ϕT (θ, c) = 0. (3.5)

In addition, there are two more boundary conditions imposed on the end-
points of the unit cell:

ϕR(θ, a/2) = eiθϕL(θ,−a/2) (3.6a)

ϕ′R(θ, a/2) = eiθϕ′L(θ,−a/2). (3.6b)

Equipped with the apparatus of the Bloch-Floquet decomposition intro-
duced above, we can examine σ(H) by looking at the spectra of H(θ). For
every θ ∈ [−π, π) the operator H(θ) has a compact resolvent and therefore,
its spectrum is purely discrete. As a result, k2 ∈ R belongs to σ(H(θ)) if and
only if there exists an eigenfunction ϕ(θ, .) = {ϕL(θ, .), ϕR(θ, .), ϕT (θ, .)} ∈
D(H(θ)) ⊂ L2(Γ0) corresponding to k2.

Based on a general result in [EKW10] applied to our graph, we are able
to predict that the edges of the spectral bands potentially present in σ(H)
are attained at θ = 0 or θ = −π.
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3.2 Positive part of the spectrum

Let us suppose that k > 0. The eigenfunction candidate is expected to have
the following form:

ϕL(θ, x) = r(k) cos kx+ s(k) sin kx, x ∈ [−a/2, 0], (3.7a)

ϕR(θ, x) = t(k) cos kx+ u(k) sin kx, x ∈ [0, a/2], (3.7b)

ϕT (θ, x) = v(k) cos kx+ w(k) sin kx, x ∈ [0, c], (3.7c)

where r(k), s(k), t(k), u(k), v(k) and w(k) are complex coefficients depending
on k. The use of this Ansatz enables us to formulate the following statement:

Proposition 3.2.1: Let θ ∈ [−π, π), k > 0, k /∈
{
mπ
a
|m ∈ N

}
and sin kc +

γk cos kc 6= 0. Then k2 ∈ σ(H(θ)) if and only if the following condition is
satisfied:

cos θ = cos ka+
sin ka

2
A(k) := B(k), (3.8)

where

A(k) =

(
δ

k
+

β2 cos kc

sin kc+ kγ cos kc

)
.

Proof. By substituting the Ansatz (3.7a)–(3.7c) into the conditions (3.4a)–
(3.4c), (3.5), (3.6a) and (3.6b), we get the following set of equations for the
coefficients r(k), s(k), t(k), u(k), v(k) and w(k):

r(k) = t(k) (3.9a)

v(k) = βr(k) + γw(k)k (3.9b)

u(k)k − s(k)k = δr(k)− βw(k)k (3.9c)

v(k) cos kc+ w(k) sin kc = 0 (3.9d)

t(k) cos
ka

2
+ u(k) sin

ka

2
= eiθ(r(k) cos

ka

2
− s(k) sin

ka

2
) (3.9e)

−t(k) sin
ka

2
+ u(k) cos

ka

2
= eiθ(r(k) sin

ka

2
+ s(k) cos

ka

2
). (3.9f)

By using the first four equations, we are able to express the coefficients t(k),
u(k), v(k) and w(k) as multiples of r(k) and s(k). Subsequently, from the
fifth and the sixth equation it follows that(

cos
ka

2

(
1− eiθ

)
+ sin

ka

2
A(k)

)
r(k) = − sin

ka

2

(
1 + eiθ

)
s(k) (3.10a)(

sin
ka

2

(
1 + eiθ

)
− cos

ka

2
A(k)

)
r(k) = cos

ka

2

(
1− eiθ

)
s(k) (3.10b)

17



If θ ∈ (−π, 0)∪(0, π), by expressing s(k) from both (3.10a) and (3.10b), and
comparing these two expressions, we obtain the relation (3.8), which forms
a necessary and sufficient condition for the existence of a nontrivial solution
of (3.9a)–(3.9f). In the case of θ = −π we get from (3.10a) that

2 cos
ka

2
+ sin

ka

2
A(k) = 0 (3.11)

since r(k) must not be equal to zero: if r(k) was equal to zero, it would follow
from (3.10b) that s(k) also equals zero and the resulting function would be
the zero function. The condition (3.11) can be rewritten as

−1 = cos ka+
sin ka

2
A(k)

which is merely a special case of (3.8) given θ = −π. The case of θ = 0 can
be treated analogously.

Let us now look at the special cases of k ∈
{
mπ
a
|m ∈ N

}
and sin kc +

kγ cos kc = 0, which we did not include in the previous proposition.

Proposition 3.2.2: Let k ∈
{
mπ
a
|m ∈ N

}
and sin kc+ kγ cos kc 6= 0.

• If m = 2l, l ∈ N, then k2 ∈ σ(H(0)) and k2 /∈ σ(H(θ)) for θ 6= 0.

• If m = 2l − 1, l ∈ N, then k2 ∈ σ(H(−π)) and k2 /∈ σ(H(θ)) for
θ 6= −π.

Proof. Let m = 2l, l ∈ N. Again, we want the set of equations (3.9a)–(3.9f)
for the eigenfunction coefficients to have a nontrivial solution. Like in the
proof of the previous proposition, we can express the coefficients t(k), u(k),
v(k) and w(k) as multiples of r(k) and s(k). The equations (3.10a) and
(3.10b) turn into (

1− eiθ
)
r(k) = 0

and
A(k)r(k) = −

(
1− eiθ

)
s(k),

from which it is evident that there exists a nonzero solution of (3.9a)–(3.9f)
if and only if θ = 0.

For m = 2l − 1, l ∈ N, the equations (3.10a) and (3.10b) transform into

A(k)r(k) = −
(
1 + eiθ

)
s(k)

and (
1 + eiθ

)
r(k) = 0

with a nontrivial solution if and only if θ = −π.
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For a positive k satisfying sin kc+kγ cos kc = 0 we will see that k2 belongs
to σ(H) if and only if k ∈

{
mπ
a
|m ∈ N

}
, and, based on Theorem 3.1.1, that

such a k2 is an eigenvalue of H. Furthermore, we will find out that this
eigenvalue necessarily becomes an isolated point of σ(H):

Proposition 3.2.3: Let k > 0 satisfy sin kc+ kγ cos kc = 0. Then:

• For all θ ∈ [−π, π) it holds that k2 ∈ σ(H(θ)) if and only if k ∈{
mπ
a
|m ∈ N

}
.

• There exists an ε > 0 such that σ(H(θ))∩ (k2− ε, k2 + ε)\{k2} = ∅ for
all θ ∈ [−π, π).

Proof. If sin kc + kγ cos kc = 0 and k ∈
{
mπ
a
|m ∈ N

}
, it can be shown that

the function ϕ(θ, .) = {ϕL(θ, .), ϕR(θ, .), ϕT (θ, .)} defined either as

ϕL(θ, x) =
(
eiθ − 1

)
sin k(x+ a), x ∈ [−a/2, 0],

ϕR(θ, x) =
(
1− e−iθ

)
sin kx, x ∈ [0, a/2],

ϕT (θ, x) =
(
eiθ − e−iθ

) cos ka

β
(sin kx− tan kc cos kx) , x ∈ [0, c].

or as

ϕL(θ, x) =
(
eiθ + 1

)
sin k(x+ a), x ∈ [−a/2, 0],

ϕR(θ, x) =
(
1 + e−iθ

)
sin kx, x ∈ [0, a/2],

ϕT (θ, x) =
tan kc

β

(
2−

(
eiθ + e−iθ

)
cos ka

)
cos kx

+
1

β

((
eiθ + e−iθ

)
cos ka− 2

)
sin kx, x ∈ [0, c].

satisfies the conditions (3.4a)–(3.4c), (3.5), (3.6a) and (3.6b). The choice of
these functions may now seem like a random guess, but it will be justified later
in Chapter 4. On the other hand, given a k > 0 such that sin kc+kγ cos kc =
0 and k /∈

{
mπ
a
|m ∈ N

}
, from the equations (3.9a)–(3.9f) we obtain that

r(k) = s(k) = t(k) = u(k) = v(k) = w(k) = 0, which corresponds to the zero
function.

To prove the second part of the proposition, we will compute limx→k B(x)
with B(.) originating from the spectral condition (3.8) and k satisfying
sin kc + kγ cos kc = 0. Suppose first that k ∈

{
mπ
a
|m ∈ N

}
, too. Given

(c+ γ)− kγc tan kc 6= 0, we get from l’Hôpital’s rule that

lim
x→k

B(x) =
(−1)ma/2

(c+ γ)− kγc tan kc
.
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If (c+γ)−kγc tan kc = 0, the limit equals simply (−1)m ·(+∞). We will show
that |limx→k B(x)| > 1 even in the former case: Suppose that |limx→k B(x)| ≤
1. This can be rewritten as

−2 ≤ a/2

(c+ γ)− kγc tan kc
≤ 0

or equivalently as

(c+ γ)− kγc tan kc ≤ −a
4

Since γ can be expressed as γ = − tan kc
k

and a as a = mπ
k

, we reformulate the
condition as

c− tan kc

k
+ c tan2 kc ≤ −mπ

4k
,

which after multiplying by k and substituting z = kc transforms into

z(tan2 z + 1)− tan z +
mπ

4
≤ 0.

It is not difficult to show that the expression z(tan2 z+1)−tan z+mπ
4

remains
positive for all z > 0: For z ∈ (0, 1) it can be estimated from below as

z(tan2 z + 1)− tan z +
mπ

4
> z − tan z +

mπ

4
> 0

since tan z−z < tan 1−1 < mπ
4

on (0, 1). On the other hand, if z ∈ [1, +∞),
it holds that

z(tan2 z + 1)− tan z +
mπ

4
> tan2 z − tan z +

mπ

4
> 0.

This contradicts the assumption |limx→k B(x)| ≤ 1. Finally, if k /∈
{
mπ
a
|m ∈ N

}
,

it is evident that |limx→k B(x)| = +∞. Therefore, we can conclude that there
exists a neighborhood of k2 that does not contain any element of σ(H(θ))
for any θ ∈ [−π, π).

Let us add that the eigenvalue observed in the case of a k ∈
{
mπ
a
|m ∈ N

}
satisfying sin kc+kγ cos kc = 0 actually corresponds to a degenerated spectral
band of H, that is, the eigenvalue has an infinite multiplicity; from our results
in Chapter 4 it will be evident that there is an infinite number of mutually
orthogonal eigenfunctions with compact supports corresponding to it.

In order to uncover the character of the positive spectral bands and edges
present in σ(H), let us rewrite the condition determining the positive part
of the continuous spectrum of H

|B(k)| =
∣∣∣∣cos ka+

sin ka

2
A(k)

∣∣∣∣ ≤ 1,
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following from Proposition 3.2.1, in a different way as

2 tan
ka

2
≤ A(k) ≤ 2 tan

ka+ π

2
(3.12)

for k ∈
(

(2l−1)π
a

, 2lπ
a

)
, l ∈ N, and

2 tan
ka

2
≥ A(k) ≥ 2 tan

ka+ π

2
(3.13)

for k ∈
(

2lπ
a
, (2l+1)π

a

)
, l ∈ N. The conditions (3.12) and (3.13) can be visu-

alized as shown in Figure 3.2. It is easy to realize that for any choice of the
lengths a and c, and parameters β, γ and δ (keeping in mind the assump-
tion β 6= 0, mentioned above) the positive part of σ(H) contains an infinite
number of spectral bands.

0

0 π
a

2π
a

3π
a

k

tan ka
2

tan ka+π
2

Figure 3.2: Permissible values of A(k) for k2 to belong to the continuous part
of σ(H)

Furthermore, if we assume a choice of parameters β, γ and δ such that A(.)
decreases monotonically on (0, +∞) except at its points of discontinuity, we
can divide the gaps between the spectral bands into the following two groups:

1. exactly one of the gap edges belongs to
{
m2π2

a2
|m ∈ N0

}
,
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2. neither of the gap edges belongs to
{
m2π2

a2
|m ∈ N0

}
and there is a point

k2 within the spectral gap satisfying sin kc+ kγ cos kc = 0.

A point k2 such that sin kc+kγ cos kc = 0, located within a spectral gap,
turns into an eigenvalue if k happens to be an element of

{
mπ
a
|m ∈ N

}
at the

same time.
Finally, let us add that every point k2 ∈

{
m2π2

a2
|m ∈ N

}
is located on the

edge of a spectral band unless A(.) attains zero at k. In the latter case, such
a k2 may be found within a spectral band.

3.3 Zero and negative part of the spectrum

To answer the question of when 0 ∈ σ(H(θ)), one can use an Ansatz in the
form

ϕL(θ, x) = r(k) + s(k)x, x ∈ [−a/2, 0], (3.14a)

ϕR(θ, x) = t(k) + u(k)x, x ∈ [0, a/2], (3.14b)

ϕT (θ, x) = v(k) + w(k)x, x ∈ [0, c]. (3.14c)

It is then possible to formulate the following statement:

Proposition 3.3.1: 0 ∈ σ(H(θ)) if and only if c 6= −γ and

cos θ = 1 +
a

2

(
δ +

β2

c+ γ

)
.

Proof. This statement can be verified in analogy with Proposition 3.2.1 by
substituting the Ansatz (3.14a)–(3.14c) into the conditions (3.4a)–(3.4c),
(3.5), (3.6a) and (3.6b).

The negative parts of σ(H(θ)) can be examined by replacing k with iκ,
κ > 0, in the considerations dealing with the positive parts. The result is the
following:

Proposition 3.3.2: Let θ ∈ [−π, π), κ > 0 and sinhκc + κγ coshκc 6= 0.
Then −κ2 ∈ σ(H(θ)) if and only if the following condition is satisfied:

cos θ = coshκa+
sinhκa

2
Ã(κ) := B̃(κ), (3.15)

where

Ã(κ) =

(
δ

κ
+

β2 coshκc

sinhκc+ κγ coshκc

)
.

However, if a κ > 0 satisfies sinhκc + κγ coshκc = 0, then −κ2 /∈ σ(H(θ))
for all θ ∈ [−π, π).
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3.3.1 Existence of negative spectral bands

In this subsection we will attempt to derive a necessary and sufficient condi-
tion for the negative part of the continuous spectrum of H to be nonempty.

Based on Proposition 3.3.2, we know that −κ2, κ > 0, belongs to the
continuous part of σ(H) if and only if∣∣∣B̃(κ)

∣∣∣ ≤ 1.

In analogy with the positive case, this condition can be reformulated as

−2 coth
κa

2
≤ Ã(κ) ≤ −2 tanh

κa

2
, (3.16)

which is to be solved graphically. In other words, we need to look for com-
binations of parameters a, c, β, γ and δ such that Ã(.) intersects the area
depicted in Figure 3.3.

κ
0

0

-2

Figure 3.3: Permissible values of Ã(κ) for −κ2 to belong to the continuous
part of the spectrum

The first thing one should realize is that limκ→∞ Ã(κ) equals zero for
γ 6= 0 and β2 for γ = 0. Therefore, a sufficient condition for the existence of
a negative spectral band is limκ→0+ Ã(κ) being lower than zero.

Lemma 3.3.1: limκ→0+ Ã(κ) equals to

• −∞ for δ + β2

c+γ
< 0 or γ = −c,

• 0 for δ + β2

c+γ
= 0,
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• +∞ for δ + β2

c+γ
> 0.

Proof. After some manipulations and by applying l’Hôpital’s rule, we get
that

lim
κ→0+

Ã(κ) = lim
κ→0+

(
δ(c+ γ) + β2

κ(c+ 2γ) + tanhκc(1 + γcκ2)
+ κ ·R(κ)

)
, (3.17)

where R(.) is a function bounded by a constant on a right neighborhood of
zero. Let us put

D(κ) := κ(c+ 2γ) + tanhκc(1 + γcκ2).

We get D(0) = 0 and D′(0) = c+ γ. Hence, if γ 6= −c, there exists an ε > 0
such that sgnD(κ) = sgn (c + γ) for all κ ∈ (0, ε). In combination with
(3.17), we obtain

lim
κ→0+

Ã(κ) = sgn (δ(c+γ)+β2) · sgn (c+γ) · (+∞) = sgn (δ+
β2

c+ γ
) · (+∞).

for γ 6= −c, δ + β2

c+γ
6= 0, and

lim
κ→0+

Ã(κ) = 0

for γ 6= −c, δ + β2

c+γ
= 0. Finally, let us examine the case γ = −c. By

substituting γ = −c into (3.17) we get that

lim
κ→0+

Ã(κ) = lim
κ→0+

(
β2

tanhκc(1− κ2c2)− κc + κ ·R(κ)

)
.

We will prove that the denominator, expressed as tanhx ·(1−x2)−x, x = κc,
is negative on a right neighborhood of zero: Provided 0 < x = κc < 1, the
inequality tanhx · (1− x2)− x < 0 can be rewritten equivalently as

tanhx− x

1− x2 < 0.

By performing a third-order Taylor expansion of tanhx and x
1−x2 at zero, we

obtain

tanhx− x

1− x2 = −4

3
x3 +O(x4),

which ensures that tanhx− x
1−x2 is really negative on a right neighborhood

of zero. Based on this, we conclude that limκ→0+ Ã(κ) = −∞ for γ = −c.
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κ0

0

-2

β = 1, γ = 0, δ = 1
β = 1, γ = 0, δ = −2
β = 1, γ = −0.5, δ = 1

Figure 3.4: Shapes of Ã(.) for different parameter values; a = 1, c = 1

From the statement just proven, we see that if δ + β2

c+γ
< 0 or γ = −c,

the existence of a negative spectral band is guaranteed. Apart from that, let
us mention that Ã(.) is continuous on (0, +∞) except at points satisfying
sinhκc+κγ coshκc = 0. As we shall see, the presence of such a discontinuity
guarantees the existence of a negative spectral band, as well.

First, let us examine the presence of a point satisfying sinhκc+κγ coshκc =
0 in (0, +∞) depending on γ. The equation can be rewritten as

tanhκc = −κγ. (3.18)

As demonstrated in Figure 3.5, it follows from the properties of tanh that the
equation (3.18) has exactly one solution on (0, +∞) if and only if γ ∈ (−c, 0)
and no solutions in the remaining cases. In addition, denoting the point
that satisfies the equation (3.18) by κ0, we get for all κ ∈ (κ0, +∞) that
tanhκc < −κγ, or tanhκc + κγ < 0 and therefore, limκ→κ0+ Ã(κ) = −∞,
which ensures the existence of a spectral band in (−∞,−κ2). Thus, based
on this and the previous statements, we can conclude that if γ ∈ [−c, 0) or

δ + β2

c+γ
< 0, there exists a negative spectral band in the spectrum of H.

In the remaining case, namely γ /∈ [−c, 0) and δ+ β2

c+γ
≥ 0, we will prove

that Ã(κ) stays positive for all κ ∈ (0, +∞), which excludes the existence of a
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κ

0

−γκ, γ < −c

−γκ, γ = −c

−γκ, 0 > γ > −c
tanhκc

Figure 3.5

negative spectral band (see the condition (3.16)). First, let us take γ /∈ [−c, 0)

and δ + β2

c+γ
= 0. We get

Ã(κ) = − β2

κ(c+ γ)
+

β2 coshκc

sinhκc+ κγ coshκc
=

β2(κc− tanhκc)

(κc+ κγ)(tanhκc+ κγ)
.

(3.19)
We can make use of the fact that tanhx < x for all x ∈ (0, +∞). Hence,
the numerator in (3.19) is always positive. Furthermore, the signs of κc+κγ
and tanhκc + κγ remain the same, which causes the denominator to stay
positive, as well. Therefore, we get that Ã(κ) > 0 for all κ ∈ (0, +∞). For

γ /∈ [−c, 0) and δ + β2

c+γ
> 0 we finally obtain

Ã(κ) =
δ

κ
+

β2 coshκc

sinhκc+ κγ coshκc
> − β2

κ(c+ γ)
+

β2 coshκc

sinhκc+ κγ coshκc
> 0,

given κ ∈ (0, +∞).
Now we are ready to formulate the necessary and sufficient condition for

the existence of a negative spectral band:

Proposition 3.3.3: The continuous spectrum of H has a nonempty negative
part if and only if γ ∈ [−c, 0) ∨ δ + β2

c+γ
< 0.
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3.3.2 Lower bound of the continuous spectrum

When trying to localize positions of spectral bands numerically, it proves
useful to have at least a rough estimate of the position of the lowest spectral
band. If the negative part of the continuous spectrum of H is empty, zero
can well serve as its lower bound. However, provided the negative part of the
continuous spectrum of H is nonempty, i.e. γ ∈ [−c, 0)∨ δ+ β2

c+γ
< 0, a lower

bound is given by the following proposition.

Proposition 3.3.4: The continuous spectrum of H has a lower bound equal
to −b2, where b is given as

b = max

(
1

a
,

2

|γ| ,
|δ|
2

+ β2

|γ|

tanh(1/2)

)
if γ 6= 0, and

b =
|δ|
β2

if γ = 0.

Proof. Suppose first that γ = 0. It is easy to see that if κ > |δ|
β2 , then Ã(κ) is

greater than zero and therefore, the condition (3.16) cannot be satisfied.
If γ 6= 0, we will find a b ∈ (0, +∞) such that Ã(κ) > −2 tanh κa

2
for all

κ > b. Let us suppose that κ > 1
a
. Then −2 tanh κa

2
< −2 tanh 1

2
. As a next

step, we will derive an upper estimate of
∣∣∣Ã(κ)

∣∣∣ given κ > 2
|γ| . We obtain

∣∣∣Ã(κ)
∣∣∣ =

∣∣∣∣ δκ +
β2

tanhκc+ κγ

∣∣∣∣ ≤ |δ|κ +
β2

κ |γ| − 1
<
|δ|+ 2β2

|γ|

κ
.

Now, putting b = max

(
1
a
, 2
|γ| ,

|δ|
2
+ β2

|γ|
tanh(1/2)

)
, we get for all κ > b that

∣∣∣Ã(κ)
∣∣∣ < |δ|+ 2β2

|γ|

κ
≤ 2 tanh

1

2
< 2 tanh

κa

2

and therefore, Ã(κ) > −2 tanh κa
2

for all κ > b.

3.4 Summary

Finally, let us summarize our findings concerning the spectrum of the oper-
ator H associated with the unperturbed comb:
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Theorem 3.4.1: Let Γ be the infinite comb introduced in Section 2.4. Let
H denote the negative Laplacian acting on L2(Γ) according to (2.1) with the
domain restricted by the vertex conditions (2.3a)–(2.3c) and (2.4) on the
assumption that β 6= 0. Then the spectrum of H is bounded from below and
consists of an infinite number of spectral bands separated by open intervals.
The positive part of the continuous spectrum of H is formed by k2, k > 0,
such that ∣∣∣∣cos ka+

sin ka

2

(
δ

k
+

β2 cos kc

sin kc+ kγ cos kc

)∣∣∣∣ ≤ 1.

0 belongs to the spectrum of H if and only if∣∣∣∣1 +
a

2

(
δ +

β2

c+ γ

)∣∣∣∣ ≤ 1.

The negative part of the continuous spectrum comprises −κ2, κ > 0, satisfy-
ing ∣∣∣∣coshκa+

sinhκa

2

(
δ

κ
+

β2 coshκc

sinhκc+ κγ coshκc

)∣∣∣∣ ≤ 1

and is nonempty if and only if

γ ∈ [−c, 0) ∨ δ +
β2

c+ γ
< 0.

The only eigenvalues in the spectrum of H are the degenerated spectral bands
arising at k2, k > 0, such that

k ∈
{mπ
a
|m ∈ N

}
∧ sin kc+ kγ cos kc = 0.
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Chapter 4

Local perturbation

In this chapter we will introduce a local perturbation into the comb studied
in Chapter 3: we select one of the teeth and change its length to c∗. At
the same time, we consider a simultaneous modification of the parameters
defining the boundary conditions at the vertex where the tooth is attached to
the straight line. The question is how such modifications affect the spectrum.
We will derive relations determining the positions of newly arising eigenvalues
and then examine the case of a simple tooth prolongation without changing
the vertex conditions in more detail. As for the notation, we assign a 0-index
to the perturbed tooth; the remaining teeth are denoted by nonzero integer
indices (positive or negative, see Fig. 4.1).

The boundary conditions imposed on each vertex on the straight line
except the zeroth one are given by (2.3a)–(2.3c); the boundary conditions

0a a

c∗

g0

f−1 f0 f1f−2

g−1 g1

00

c c

β, γ, δ β, γ, δβ∗, γ∗, δ∗

a

Figure 4.1: The infinite comb after perturbation
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with modified parameter values at the zeroth vertex are

f0(0) = f−1(a) (4.1a)

g0(0) = β∗f−1(a) + γ∗g
′
0(0+) (4.1b)

f ′0(0+)− f ′−1(a−) = δ∗f−1(a)− β∗g′0(0+). (4.1c)

In addition, the wavefunction must satisfy (2.4) at the ends of the teeth with
nonzero indices and

g0(c∗) = 0 (4.2)

on the zeroth tooth.
Due to the symmetry of both the comb and the vertex conditions, the

perturbed Hamiltonian H∗ can be decomposed into the direct sum of an even
part H+

∗ and an odd part H−∗ . As a result, when looking for eigenfunctions of
H∗, we can restrict ourselves to even/odd quadratically integrable functions
defined on the graph. This makes our considerations easier since we need
to inspect the quadratic integrability of the wavefunction on the part of the
graph with positive indices only; the quadratic integrability on the part with
negative indices is then guaranteed by the symmetry.

4.1 General case

4.1.1 Positive part of the spectrum

Let us assume that k > 0. The Ansatz for fp, gp, p ∈ N can be chosen as
follows:

fp(x) = Rp(k) cos kx+ Sp(k) sin kx, x ∈ [0, a], Rp(k), Sp(k) ∈ C
gp(x) = Tp(k) cos kx+ Up(k) sin kx, x ∈ [0, c], Tp(k), Up(k) ∈ C.

Analogously, the Ansatz for f0, g0 is

f0(x) = R0(k) cos kx+ S0(k) sin kx, x ∈ [0, a], R0(k), S0(k) ∈ C
g0(x) = T0(k) cos kx+ U0(k) sin kx, x ∈ [0, c∗], T0(k), U0(k) ∈ C.

Transition matrix and integrability Let us first consider the case k > 0,
sin kc+ kγ cos kc 6= 0. From the vertex conditions (2.3a)–(2.3c) and (2.4) we
obtain the following relation between the coefficients belonging to fp and
fp+1, p ∈ N0(

Rp+1(k)
Sp+1(k)

)
= M(k) ·

(
Rp(k)
Sp(k)

)
= Mp+1(k) ·

(
R0(k)
S0(k)

)
, (4.5)
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where M(k) is a transition matrix1 of the shape

M(k) =

(
cos ka sin ka

− sin ka+ A(k) cos ka cos ka+ A(k) sin ka

)
. (4.6)

Based on the knowledge of Rp(k) and Sp(k), the (p+1)th-tooth coefficients
can be computed as(
Tp+1(k)
Up+1(k)

)
=

β

sin kc+ kγ cos kc

(
sin kc cos ka sin kc sin ka
− cos kc cos ka − cos kc sin ka

)
·
(
Rp(k)
Sp(k)

)
(4.7)

The eigenvalues of the matrix M(k) defined in (4.6) are determined by the
equation

0 = λ2 − 2B(k)λ+ 1, (4.8)

where B(k) stands for

B(k) = cos ka+
sin ka

2
A(k),

which is nothing but the expression that defines positive spectral bands in
the unperturbed case. The solutions of the characteristic equation (4.8) are

λ±(k) = B(k)±
√
B2(k)− 1

and the corresponding eigenvectors can be selected as

v±(k) =

(
sin ka

λ±(k)− cos ka

)
provided k 6= mπ

a
, m ∈ N, or

v±(k) =

(
0
1

)
if k = mπ

a
, m ∈ N. It is important to note that λ+(k)λ−(k) = 1. Therefore,

λ+(k), λ−(k) may either be two complex conjugate numbers with modulus
equal to 1, or two real numbers with the same sign, one of them having an
absolute value strictly greater than 1, the other strictly lower than 1. Let us
consider an eigenfunction of H± corresponding to k2, k > 0, with coefficients
(R0(k), S0(k))T determining the component f0. Since the eigenfunction is
quadratically integrable, from transition relations (4.5) and (4.7) it follows

1Please note that the term transition matrix used here should not be confused with the
notion of a transfer matrix used in the theory of ODE.
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that (R0(k), S0(k))T must either be a zero vector or an eigenvector corre-
sponding to that real eigenvalue of M(k) which has a modulus strictly lower
than 1. Consequently, if k2 is an eigenvalue of H±, |B(k)| must be strictly
greater than 1. If B(k) > 1, (R0(k), S0(k))T is zero or an eigenvector cor-
responding to λ−(k); if B(k) < −1, (R0(k), S0(k))T corresponds to λ+(k).
Conversely, if (R0(k), S0(k))T is an eigenvector of M(k) corresponding to
that eigenvalue of M(k) with an absolute value lower than 1, and the bound-
ary conditions at the zeroth vertex are satisfied, the resulting wavefunction
is an eigenfunction of H±.

The case of M(k) having two complex conjugate eigenvalues, which occurs
if and only if |B(k)| ≤ 1, implies that k2 belongs to the continuous spectrum
of H±.

Finally, let us mention how the character of wavefunctions is restricted
by the boundary conditions (2.3a)–(2.3c) and (2.4) in the case of sin kc +
kγ cos kc = 0:

Lemma 4.1.1: Let k > 0, sin kc + kγ cos kc = 0. Then Rp(k) = Sp(k) = 0
for all p ∈ {1, 2, . . . } and Tp(k) = Up(k) = 0 for all p ∈ {2, 3, . . . }.

Proof. First, we will treat the case γ = 0: we have sin kc = 0, therefore,
from (2.4) it follows that Tp(k) = 0 for all p ∈ Z. From (2.3b) one gets that
Rp(k) = 0 for all p ∈ N, and by taking this into account, from (2.3a) one
infers that Sp(k) = 0 for all p ∈ N as well. The condition (4.1c) then gives
the statement Up(k) = 0 for all p ∈ {2, 3, . . . }.

The case γ 6= 0 can be treated similarly to the previous one: using the
condition (2.4), one expresses Up+1(k) as Up+1(k) = − cot kc · Tp+1(k), and
by substituting this into the condition (2.3b), one gets that Rp(k) = 0 for all
p ∈ N again. The remaining considerations are the same as in the previous
case.

Spectrum of H+
∗ We will now consider wavefunctions even with respect

to the axis containing the zeroth tooth. This implies that f−1(a) = f0(0) and
f ′−1(a−) = −f ′0(0+). As a result, the boundary conditions (4.1a)-(4.2) at the
vertex to which the zeroth tooth is attached become

f−1(a) = f0(0) (4.9a)

g0(0) = β∗f0(0) + γ∗g
′
0(0+) (4.9b)

2f ′0(0+) = δ∗f0(0)− β∗g′0(0+), (4.9c)

g0(c∗) = 0. (4.9d)
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As we have already suggested, we are going to forget about the part of the
graph with negative indices and see how the conditions (4.9b)–(4.9d) affect
the choice of (R0(k), S0(k))T :

Lemma 4.1.2: Let k > 0. The coefficient vector (R0(k), S0(k))T of every
eigenfunction of H+

∗ corresponding to k2 is a multiple of

• (1, A∗(k)/2)T – if sin kc∗ + kγ∗ cos kc∗ 6= 0,

• (0, 1)T – if sin kc∗ + kγ∗ cos kc∗ = 0,

where A∗(k) = δ∗
k

+ β2
∗ cos kc∗

sin kc∗+kγ∗ cos kc∗
.

This lemma, which can easily be verified, will help us prove the following
proposition dealing with positive eigenvalues of H+

∗ :

Proposition 4.1.1: (Positive eigenvalues of H+
∗ )

Let k > 0 and sin kc∗ + kγ∗ cos kc∗ 6= 0:

• Given sin kc+kγ cos kc 6= 0, then k2 is an eigenvalue of H+
∗ if and only

if
|B(k)| > 1 ∧ B∗(k) = B(k)− sgn (B(k))

√
B2(k)− 1,

where B∗(k) = cos ka+ sin ka
2

(
δ∗
k

+ β2
∗ cos kc∗

sin kc∗+kγ∗ cos kc∗

)
= cos ka+ sin ka

2
A∗(k).

• Provided sin kc + kγ cos kc = 0, k2 is an eigenvalue of H+
∗ if and only

if
B∗(k) = 0.

Let k > 0 and sin kc∗ + kγ∗ cos kc∗ = 0. Then k2 is an eigenvalue of H+
∗ if

and only if sin kc+ kγ cos kc = 0 and k = mπ
a

, m ∈ N.

Proof. Let us first prove the case sin kc∗ + kγ∗ cos kc∗ 6= 0. According to
Lemma 4.1.2, we can put (R0(k), S0(k))T = (1, A∗(k)/2)T . Since we need
the absolute value of one of λ±(k) to be strictly lower than 1, we can exclude
the case k = mπ

a
, m ∈ N. Consequently, (R0(k), S0(k))T is a multiple of

v±(k), the eigenvector of the matrix M(k), if and only if

0 =

∣∣∣∣∣∣
sin ka 1

A(k)
2

sin ka±
√(

A2(k)
4
− 1
)

sin2 ka+ A(k) sin ka cos ka A∗(k)
2

∣∣∣∣∣∣ ,
which can be rewritten as

B∗(k) = B(k)±
√
B2(k)− 1.
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The rest follows from our previous considerations.
In the case of sin kc+kγ cos kc = 0, we will make use of Lemma 4.1.1. From

the condition (2.3a) we obtain 0 = R1(k) = cos ka + A∗(k)
2

sin ka = B∗(k),
which yields a necessary condition for the existence of an eigenvalue, and
from (2.3c) we get that

U1(k) =
1

β
(−R0(k) sin ka+ S0(k) cos ka) =

1

β

(
− sin ka+

A∗(k)

2
cos ka

)
.

Conversely, if B∗(k) = 0, we can construct an eigenfunction of H+
∗ as an even

wavefunction with a compact support such that
R0(k) = 1, S0(k) = A∗(k)

2
, T0(k) = β∗ sin kc∗

sin kc∗+kγ∗ cos kc∗
, U0(k) = − β∗ cos kc∗

sin kc∗+kγ∗ cos kc∗
,

T1(k) = − tan kc
β

(
− sin ka+ A∗(k)

2
cos ka

)
, U1(k) = 1

β

(
− sin ka+ A∗(k)

2
cos ka

)
,

Rp(k) = Sp(k) = 0 for all p ∈ {1, 2, . . . } and Tp(k) = Up(k) = 0 for all
p ∈ {2, 3, . . . }.

Let us mention the case sin kc∗ + kγ∗ cos kc∗ = 0. The coefficient vector
(R0(k), S0(k))T can now be selected as (R0(k), S0(k))T = (0, 1)T . Assuming
that sin kc+ kγ cos kc 6= 0, (R0(k), S0(k))T is a multiple of v±(k) if and only
if

0 =

∣∣∣∣∣∣
sin ka 0

A(k)
2

sin ka±
√(

A(k)2

4
− 1
)

sin2 ka+ A(k) sin ka cos ka 1

∣∣∣∣∣∣ .
This can be rewritten simply as

0 = sin ka.

Since we have excluded k = mπ
a

, this condition is never satisfied. If sin kc +
kγ cos kc = 0, from Lemma 4.1.1 we get a necessary condition 0 = R1 =
sin ka. On the other hand, if k = mπ

a
, m ∈ N, we can construct an eigen-

function of H+
∗ by putting R0(k) = 0, S0(k) = 1, T0(k) = 2 tan kc∗

β∗
, U0(k) =

− 2
β∗

, T1(k) = − tan kc
β

cos ka, U1(k) = 1
β

cos ka, Rp(k) = Sp(k) = 0 for all

p ∈ {1, 2, . . . } and Tp(k) = Up(k) = 0 for all p ∈ {2, 3, . . . }.

Spectrum of H−∗ Let us focus our attention on the odd part of the per-
turbed Hamiltonian. We require that f0(0) = 0, g0(x) = 0 for all x ∈ [0, c∗]
and f ′−1(a−) = f ′0(0+). It is easy to verify that the following lemma holds:

Lemma 4.1.3: Let k > 0. The coefficient vector (R0(k), S0(k))T of every
eigenfunction of H−∗ corresponding to k2 is a multiple of (0, 1)T .

Using this lemma, we obtain the following statement:
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Proposition 4.1.2: (Eigenvalues of H−∗ ) Let k > 0, then k2 is an eigenvalue
of H−∗ if and only if

sin kc+ kγ cos kc = 0 ∧ k ∈ mπ
a
, m ∈ N.

Proof. From Lemma 4.1.3 it follows that we can put (R0(k), S0(k))T =
(0, 1).

Let sin kc+ kγ cos kc 6= 0. By using the same reasoning as in Proposition
4.1.1 for sin kc∗+kγ∗ cos kc∗ = 0 and sin kc+kγ cos kc 6= 0, we see that there
is no possibility of H−∗ having an eigenvalue in this case.

On the other hand, if sin kc + kγ cos kc = 0, we find out that k2 is an
eigenvalue of H−∗ if and only if sin ka = 0 (again in the same way as in
Proposition 4.1.1, now for sin kc∗ + kγ∗ cos kc∗ = 0 and sin kc + kγ cos kc =
0). The coefficients of the corresponding odd eigenfunction are R0(k) = 0,
S0(k) = 1, T0(k) = 0, U0(k) = 0, T1(k) = − tan kc

β
cos ka, U1(k) = 1

β
cos ka,

Rp(k) = Sp(k) = 0 for all p ∈ {1, 2, . . . } and Tp(k) = Up(k) = 0 for all
p ∈ {2, 3, . . . }.

4.1.2 Zero and negative part of the spectrum

First, let us inspect the case k = 0. The Ansatz of the wavefunction compo-
nents can now be chosen as

fp(x) = Rp(0) + Sp(0)x, x ∈ [0, a], Rp(0), Sp(0) ∈ C
gp(x) = Tp(0) + Up(0)x, x ∈ [0, c], Tp(0), Up(0) ∈ C

for p ∈ N and

f0(x) = R0(0) + S0(0)x, x ∈ [0, a], R0(0), S0(0) ∈ C
g0(x) = T0(0) + U0(0)x, x ∈ [0, c∗], T0(0), U0(0) ∈ C

on the zeroth tooth.
Provided γ 6= −c we can construct a transition matrix M(0) similar to

M(k) for the positive part of the spectrum:(
Rp+1(0)
Sp+1(0)

)
= M(0) ·

(
Rp(0)
Sp(0)

)
= Mp+1(0) ·

(
R0(0)
S0(0)

)
,

where M(0) is defined as

M(0) =

(
1 a

A(0) 1 + A(0)a

)
, A(0) = δ +

β2

c+ γ
.
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Again, we can look at the eigenvalues of the matrix M(0) determined by the
equation

0 = λ2 − 2B(0)λ+ 1, (4.12)

where B(0) is now defined as

B(0) = 1 +
a

2
A(0) = 1 +

a

2

(
δ +

β2

c+ γ

)
.

Like in the positive case, the characteristic equation (4.12) has two solutions

λ±(0) = B(0)±
√

(B(0))2 − 1,

either two complex conjugates with modulus one, or two real solutions of the
same sign, one of them having an absolute value strictly greater than 1, the
other strictly lower than 1. The eigenvectors of M(0) corresponding to λ±(0)
are nonzero multiples of

v±(0) =

(
a

λ±(0)− 1

)
.

On the other hand, if γ = −c, we get the following lemma (analogous to
Lemma 4.1.1)

Lemma 4.1.4: Let k = 0, γ = −c. Then Rp(0) = Sp(0) = 0 for all p ∈
{1, 2, . . . } and Tp(0) = Up(0) = 0 for all p ∈ {2, 3, . . . }.

For H+
∗ , the even part of the perturbed Hamiltonian, the following lemma

(a slight modification of Lemma 4.1.2) holds:

Lemma 4.1.5: Let k = 0. The coefficient vector (R0(0), S0(0))T of every
eigenfunction of H+

∗ corresponding to 0 is a multiple of

• (1, A∗(0)/2)T – if γ∗ 6= −c∗,

• (0, 1)T – if γ∗ = −c∗,

where A∗(0) = δ∗ + β2
∗

γ∗+c∗
.

Now, we can formulate the necessary and sufficient condition for 0 to be
an eigenvalue of H+

∗ :

Proposition 4.1.3: (0 as an eigenvalue of H+
∗ )

Let γ∗ 6= −c∗:
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• Given γ 6= −c, 0 is an eigenvalue of H+
∗ if and only if

|B(0)| > 1 ∧ B∗(0) = B(0)− sgn (B(0))
√

(B2(0))− 1,

where B∗(0) = 1 + a
2
A∗(0) = 1 + a

2

(
δ∗ + β2

∗
c∗+γ∗

)
.

• Provided γ = −c, 0 is an eigenvalue of H+
∗ if and only if

B∗(0) = 0.

Let γ∗ = −c∗. Then 0 is not an eigenvalue of H+
∗ .

The proof of this proposition is analogous to that of Proposition 4.1.1,
dealing with positive eigenvalues of H+

∗ .
As for the odd part H−∗ of the perturbed Hamiltonian, we find out that,

for every eigenfunction of H−∗ corresponding to 0, (R0(0), S0(0))T must be
a multiple of (0, 1)T . Analogously to the previous cases, it is then easy to
verify that:

Proposition 4.1.4: 0 is not an eigenvalue of H−∗ .

The negative parts of the point spectra of H+
∗ and H−∗ can be examined

simply by putting k = iκ and using the relations derived for k > 0. The

expression A(k) then transforms into A(iκ) = −i
(
δ
κ

+ β2 coshκc
sinhκc+κγ coshκc

)
:=

−iÃ(κ) and B(iκ) = coshκa + Ã(κ)
2

sinhκa := B̃(κ). The following two
propositions describe the results concerning the negative eigenvalues of H+

∗
and H−∗ :

Proposition 4.1.5: (Negative eigenvalues of H+
∗ )

Let κ > 0 and sinhκc∗ + κγ∗ cosκc∗ 6= 0:

• Given sinhκc+κγ coshκc 6= 0, then −κ2 is an eigenvalue of H+
∗ if and

only if

|B̃(κ)| > 1 ∧ B̃∗(κ) = B̃(κ)− sgn (B̃(κ))

√
B̃2(κ)− 1,

where B̃∗(κ) = coshκa + sinhκa
2

(
δ∗
κ

+ β2
∗ coshκc∗

sinhκc∗+κγ∗ coshκc∗

)
= coshκa +

sinhκa
2

Ã∗(κ).

• Provided sinhκc + κγ coshκc = 0, −κ2 is an eigenvalue of H+
∗ if and

only if
B̃∗(κ) = 0.
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Let κ > 0 and sinhκc∗ + κγ∗ coshκc∗ = 0. Then −κ2 is not an eigenvalue of
H+
∗ .

Proposition 4.1.6: H−∗ has no negative eigenvalues.

4.1.3 Summary

Before we summarize our findings regarding the eigenvalues arising after a
local perturbation, let us remark that if we use Proposition 4.1.1, putting
β∗ = β, γ∗ = γ, δ∗ = δ, c∗ = c, and Proposition 4.1.2, we get that in the case
of the unperturbed comb, every k2, k > 0, satisfying

sin kc+ kγ cos kc = 0 ∧ k ∈ mπ
a
, m ∈ N

is an eigenvalue of both H+ and H−. If we transform the corresponding
eigenfunctions introduced in those two propositions according to (3.1)–(3.3),
we obtain the two functions ϕ(θ, .) = {ϕL(θ, .), ϕR(θ, .), ϕT (θ, .)} used in
Proposition 3.2.3 to prove that such a k2 is an eigenvalue of H(θ) for all
θ ∈ [−π, π) and therefore, an eigenvalue of H itself.

Finally, let us formulate a theorem summarizing the information obtained
about the spectrum of the Hamiltonian after a local perturbation:

Theorem 4.1.1: Let H∗ be the perturbed Hamiltonian introduced at the be-
ginning of this chapter. The continuous spectrum of H∗ remains the same as
in the unperturbed case. The same holds for the eigenvalues k2, k > 0, such
that sin kc+ kγ cos kc = 0 and k ∈

{
mπ
a
|m ∈ N

}
.

However, in contrast to the unperturbed case, new eigenvalues may emerge
in spectral gaps. In the positive part of the spectrum, these eigenvalues are
given as k2, k > 0, where k satisfies sin kc∗+kγ∗ cos kc∗ 6= 0 and is a solution
of

B∗(k) = B(k)− sgn (B(k))
√
B2(k)− 1. (4.13)

Provided sin kc+ kγ cos kc 6= 0, B(k) is defined as

B(k) = cos ka+
sin ka

2

(
δ

k
+

β2 cos kc

sin kc+ kγ cos kc

)
.

B∗(k) has the same shape as B(k), but with β∗, γ∗ and δ∗ in place of β, γ
and δ. If sin kc+ kγ cos kc = 0, the right-hand side of (4.13) is replaced by

0 = lim
x→k

(
B(x)− sgn (B(x))

√
B2(x)− 1

)
.
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0 is an eigenvalue of H∗ if and only if γ∗ 6= −c∗ and the following condition
holds

B∗(0) = B(0)− sgn (B(0))
√

(B2(0))− 1. (4.14)

If γ 6= −c, B(0) is defined as

B(0) = lim
x→0+

B(x) = 1 +
a

2

(
δ +

β2

c+ γ

)
.

Again, B∗(0) has the same shape as B(0), but with β∗, γ∗ and δ∗ in place of
β, γ and δ. If c = −γ, the right-hand side of (4.14) is replaced by 0. The
negative eigenvalues −κ2, κ > 0, satisfy sinhκc∗ + κγ∗ coshκc∗ 6= 0 and are
solutions of the equation

B̃∗(κ) = B̃(κ)− sgn (B̃(κ))

√
B̃2(κ)− 1. (4.15)

If sinhκc+ κγ coshκc 6= 0, B̃(κ) reads

B̃(κ) = coshκa+
sinhκa

2

(
δ

κ
+

β2 coshκc

sinhκc+ κγ coshκc

)
and B̃∗(κ) has the same shape, but with β∗, γ∗ and δ∗ instead of β, γ and δ.
If sinhκc+ κγ coshκc = 0, the right-hand side of (4.15) becomes

0 = lim
x→κ

(
B̃(x)− sgn (B̃(x))

√
B̃2(x)− 1

)
.

4.2 Tooth prolongation

Now we will deal with a special case of the local perturbation studied above:
we take one of the teeth and simply increase its length from c to c∗ > c. The
lengths of the other teeth remain the same as in the unperturbed system,
and β∗ = β, γ∗ = γ and δ∗ = δ.

Let us a consider a spectral gap (p21, p
2
2), p1 ≥ 0, p2 > 0, situated in the

positive part of the spectrum. The eigenvalues k2, k > 0, potentially present
in the spectral gap, are given by solutions of the following equation (4.13):

B∗(k) = B(k)− sgn (B(k))
√
B2(k)− 1.

For k ∈ (p1, p2), the right-hand side belongs to (0, 1) if B(k) > 1, and
(−1, 0) if B(k) < −1. On the edges of the spectral bands, the right-hand
side becomes:

B(p1,2)− sgn (B(p1,2))
√
B2(p1,2)− 1 = B(p1,2) = ±1. (4.16)
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Furthermore, the first derivative of the right-hand side differs in sign from
the first derivative of B(.):

sgn
(
B(k)− sgn (B(k))

√
B2(k)− 1

)′
= − sgnB′(k) (4.17)

since(
B(k)− sgn (B(k))

√
B2(k)− 1

)′
=

− B′(k)√
B2(k)− 1

sgn (B(k))
(
B(k)− sgn (B(k))

√
B2(k)− 1

)
.

While k2 approaches the edges p21 and p22 which enclose the spectral gap, we

notice that
(
B(k)− sgn (B(k))

√
B2(k)− 1

)′
goes to ±∞ – at least if B′(k)

does not tend to zero at the same time:

lim
k→p1+

(
B(k)− sgn (B(k))

√
B2(k)− 1

)′
= −∞ · sgnB(k), (4.18)

lim
k→p2−

(
B(k)− sgn (B(k))

√
B2(k)− 1

)′
= +∞ · sgnB(k). (4.19)

When looking for eigenvalues present in the spectral gap, we search for
points where the graph of B∗(.),

B∗(k) = cos ka+
sin ka

2

(
δ

k
+

β2 cos kc∗
sin kc∗ + kγ cos kc∗

)
= cos ka+

sin ka

2
A∗(k),

intersects that of B(.)− sgn (B(.))
√
B2(.)− 1. An important thing to realize

is that
∂A∗
∂c∗

(k) = − kβ2

(sin kc∗ + kγ cos kc∗)2
< 0 (4.20)

for all k > 0 where A∗(k) is defined. This means that while c∗ is increased
from its initial value c, A∗(k) decreases for a fixed k > 0 until sin kc∗ +
kγ cos kc∗ = 0.

Let us start with the initial length c∗ = c and increase it gradually.
We suspect that some eigenvalues appear in the spectral gaps. Since H∗,
the perturbed Hamiltonian, continuously depends on c∗ via its domain, it
is reasonable to expect that these eigenvalues start their trajectories on the
edges of the spectral bands (including the degenerated ones) which form the
original spectrum.

First, suppose that p2 is an edge of a non-degenerated spectral band (i.e.
sin pc + pγ cos pc 6= 0) such that p ∈

{
mπ
a
|m ∈ N

}
. It holds that B∗(p) =
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B(p) = (−1)m for all c∗ > c unless sin pc∗ + pγ cos pc∗ = 0. If we assume
for convenience that B′(p) 6= 0, considering (4.17) and (4.18)–(4.19) we find
that there must exist an ε > 0 such that no eigenvalue originates in the
neighborhood of p2 for any c∗ ∈ (c, c+ ε).

Next, let q2 be an edge of a non-degenerated spectral band satisfying
q /∈

{
mπ
a
|m ∈ N

}
. Using (4.20), we infer that ∂B∗

∂c∗
(p) < 0 if sin qa > 0, and

∂B∗
∂c∗

(p) > 0 if sin qa < 0. Hence, if B(q) = 1 and sin qa > 0, we find (taking
into account (4.16) and the continuous dependence of B∗(k) on c∗) that there
exists an ε > 0 such that for all c∗ ∈ (c, c+ε) the graph of B∗(.) intersects that
of B(.)− sgn (B(.))

√
B2(.)− 1, which implies the existence of an eigenvalue

in a neighborhood of q2. Analogously, the same is true for B(q) = −1 and
sin qa < 0. However, in the remaining cases, i.e. B(q) = 1 and sin qa < 0
or B(q) = −1 and sin qa > 0, we infer that there exists an ε > 0 such that
for all c∗ ∈ (c, c + ε) no eigenvalue separates from the edge. This becomes
evident if we rewrite the equation (4.13) as

sin ka (A∗(k)− A(k)) = −2 sgn (B(k))
√
B2(k)− 1

since we know that A∗(k)−A(k) is negative on a neighborhood of q for all c∗
belonging to some (c, c+ ε). In short, we learn that there may be gaps in the
positive part of the spectrum where an eigenvalue arises after an arbitrarily
small increase of c∗ above c, and others where no eigenvalue can be found
while c∗ being in a certain interval (c, c+ ε).

On the other hand, let us remark that as one continues increasing the
length c∗ of the selected tooth, some eigenvalues ultimately appear in ev-
ery positive gap, and what more, their number in each gap eventually goes
to infinity. This is due to the growing number of infinite discontinuities
of B∗(.) in each gap, which make the graph of B∗(.) cross that of B(.) −
sgn (B(.))

√
B2(.)− 1 with an increasing frequency.

To visualize parts of band spectra for different parameters and the be-
havior of eigenvalues originating in spectral gaps, we have performed some
numerical calculations using the relations derived so far. In Section 4.3 several
examples of spectra exposed to modifications of vertex condition parameters
at a single vertex can be found. Here we show the effects of prolonging a single
tooth assuming four different combinations of vertex condition parameters.
The initial geometry of the comb is characterized by the values a = c = 1,
i.e. the lengths of the teeth are the same as their distances. At first place,
one should notice how strongly the choice of vertex condition parameters β,
γ and δ influences the spectrum. In the first two spectra, degenerated spec-
tral bands can be found with energies equal to (π/a)2 and (2π/a)2, which
are absent from the other two spectra. Moreover, in Figure 4.2 and Figure
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4.4 one will recognize the presence of a negative spectral band, which is in
accordance with the necessary and sufficient condition derived in Chapter
3. In Figure 4.4 two spectral gaps are present where, in agreement with our
predictions above, no eigenvalues arise for c∗ in a certain interval (c, c + ε).
Finally, in the first two figures it can be clearly seen how the number of
eigenvalues present in the gaps grows with an increasing c∗.

In the negative part of the spectrum, eigenvalues −κ2 are given by solu-
tions κ > 0 of the following equation (4.15):

B̃∗(κ) = B̃(κ)− sgn (B̃(κ))

√
B̃2(κ)− 1.

Again, it holds that in the spectral gaps the right-hand side belongs to (0, 1) if
B̃(κ) > 1, and to (−1, 0) if B̃(κ) < −1, while together with B̃(κ) it becomes
equal to ±1 on the edges of spectral bands. Analogously to the positive case,

the first derivatives of B̃(.) and B̃(.)− sgn (B̃(.))
√
B̃2(.)− 1 differ in sign:

sgn

(
B̃(κ)− sgn (B̃(κ))

√
B̃2(κ)− 1

)′
= − sgn B̃′(κ).

Concerning

B̃∗(κ) = coshκa+
sinhκa

2

(
δ

κ
+

β2 coshκc∗
sinhκc∗ + κγ coshκc∗

)
we get that

∂B̃∗
∂c∗

(κ) < 0 (4.21)

for all κ > 0 except for points of discontinuity, where sinhκc∗+κγ coshκc∗ =
0.

Let us suppose that there exists at least one negative spectral band in
the spectrum of H. Let −p2, p > 0, denote the lowest edge of the lowest

spectral band. Then B̃(p) = B̃(p) − sgn (B̃(p))
√
B̃2(p)− 1 = 1, B̃(κ) > 1

and B̃(κ) − sgn (B̃(κ))
√
B̃2(κ)− 1 ∈ (0, 1) for all −κ2 ∈ (−∞, −p2). The

limits as −κ2 goes to −∞ are

lim
κ→∞

B̃(κ) = +∞, lim
κ→∞

(
B̃(κ)− sgn (B̃(κ))

√
B̃2(κ)− 1

)
= 0.

For a c∗ > c, B̃∗(.) may have a discontinuity at a κ ∈ (p, +∞). In this case,
from our considerations in 3.3.1 it follows that (0, 1) ∈ B̃∗((p, +∞)). This in

42



-15

0

(
π
a

)2

(
2π
a

)2

60

1 6

E

c∗

Figure 4.2: Trajectories of eigenvalues arising in spectral gaps as a result
of increasing the length c∗ of a selected tooth. Parameters β = 1, γ = 0,
δ = −10; c∗ ranging from 1 to 6. Note the presence of degenerated spectral
bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.3: Trajectories of eigenvalues arising in spectral gaps as a result of
increasing the length c∗ of a selected tooth. Parameters β = 1, γ = 0, δ = 1;
c∗ ranging from 1 to 6. Note the presence of degenerated spectral bands at
E = (π/a)2 and E = (2π/a)2.
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Figure 4.4: Trajectories of eigenvalues arising in spectral gaps as a result of
increasing the length c∗ of a selected tooth. Parameters β = 1, γ = −0.5,
δ = 1; c∗ ranging from 1 to 6.
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Figure 4.5: Trajectories of eigenvalues arising in spectral gaps as a result of
increasing the length c∗ of a selected tooth. Parameters β = 1, γ = 0.5, δ = 1;
c∗ ranging from 1 to 6.
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combination with the fact that limκ→∞ B̃∗(κ) = +∞ implies that the graph
of B̃∗(.) intersects the graph of the right-hand side of (4.15) and hence, an
eigenvalue is present below the lowest negative spectral band. The same holds
even if there is no discontinuity of B̃∗(.) in (p, +∞). Then we simply make
use of the facts that

B̃∗(p) < B̃(p) = B̃(p)− sgn (B̃(p))

√
B̃2(p)− 1,

following from (4.21), and limκ→∞ B̃∗(κ) = +∞. Thus, the following state-
ment holds:

Proposition 4.2.1: Let c∗ > c and let the spectrum contain at least one
negative spectral band. Then an eigenvalue exists below the lowest negative
spectral band.

This finding is illustrated in Figure 4.6, showing the behavior of the lowest
eigenvalue found in the spectrum depicted in Figure 4.4.

-8.56

-8.54

1 6

E

c∗

Figure 4.6: The lowest eigenvalue from Figure 4.4 enlarged.
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4.3 Numerical results for local modifications

of vertex conditions

In the previous section we explored the behavior of eigenvalues which arise
after one of the teeth is prolonged. Here we make use of the general relations
derived in Section 4.1 and show numerical results for spectra exposed to a
modification of the vertex condition parameters at a selected vertex on the
straight line.

The system is chosen to be the same as in the previous section, i.e. a = 1
and c = 1, and the same four combinations of the default vertex condition
parameters β, γ, δ are considered.
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Figure 4.7: Trajectories of eigenvalues while changing β∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = 0, δ = −10; β∗ ranging from 0 to 5. Note the presence
of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.8: Trajectories of eigenvalues while changing β∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = 0, δ = 1; β∗ ranging from 0 to 5. Note the presence
of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.9: Trajectories of eigenvalues while changing β∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = −0.5, δ = 1; β∗ ranging from 0 to 5.
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Figure 4.10: Trajectories of eigenvalues while changing β∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = 0.5, δ = 1; β∗ ranging from 0 to 5.
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Figure 4.11: Trajectories of eigenvalues while changing γ∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = 0, δ = −10; γ∗ ranging from -2 to 2. Note the
presence of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.12: Trajectories of eigenvalues while changing γ∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = 0, δ = 1; γ∗ ranging from -2 to 2. Note the presence
of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.13: Trajectories of eigenvalues while changing γ∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = −0.5, δ = 1; γ∗ ranging from -2 to 2.
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Figure 4.14: Trajectories of eigenvalues while changing γ∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = 0.5, δ = 1; γ∗ ranging from -2 to 2.
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Figure 4.15: Trajectories of eigenvalues while changing δ∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = 0, δ = −10; δ∗ ranging from -10 to 10. Note the
presence of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.16: Trajectories of eigenvalues while changing δ∗ – one of the pa-
rameters determining the boundary conditions at a selected vertex on the
line. Parameters β = 1, γ = 0, δ = 1; δ∗ ranging from -10 to 10. Note the
presence of degenerated spectral bands at E = (π/a)2 and E = (2π/a)2.
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Figure 4.17: Trajectories of eigenvalues while changing δ∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = −0.5, δ = 1; δ∗ ranging from -10 to 10.
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Figure 4.18: Trajectories of eigenvalues while changing δ∗ – one of the param-
eters determining the boundary conditions at a selected vertex on the line.
Parameters β = 1, γ = 0.5, δ = 1; δ∗ ranging from -10 to 10.
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Chapter 5

Conclusion

In the preceding chapters we showed that the spectrum of the Hamiltonian
associated with the infinite comb significantly depends on the geometry of
the graph as well as the choice of vertex conditions. If a local perturbation
is introduced, the newly arising eigenvalues exhibit interesting behavior.

Let us conclude by comparing our system with the bent chain graph
studied in [DET08]. Both of these models have spectra containing an infinite
number of spectral bands. Unlike in the chain, we do not find eigenvalues
incorporated into the edges of positive spectral bands in our model. On the
other hand, eigenvalues formed by degenerated bands can appear in our spec-
tra.

The eigenvalues arising when a single tooth of the comb is prolonged
behave differently from those appearing when the chain is bent. While in the
case of the bent chain there is at least one and at most two eigenvalues in each
spectral gap closure, in the case of the comb we can find spectra containing
gaps with no eigenvalues at all for certain lengths of the prolonged tooth.
Furthermore, the number of eigenvalues in each gap is not bounded from
above if one increases the length of the tooth to infinity. Another difference
is the fact that the eigenvalue trajectories observed in our numerical results
are monotonically decreasing with respect to the length of the prolonged
tooth, which contrasts with the non-monotonic dependence of eigenvalue
positions on the bending angle in the chain. In our model, we can prove the
monotonicity of eigenvalues located below the essential spectrum by using
the technique of Dirichlet-Neumann bracketing, described in [RS78].

Finally, as follows from the spectra shown in Section 4.3, local modifica-
tions of vertex conditions result in substantially different behavior of eigen-
values in the gaps, and are surely worth a further investigation.
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