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Abstrakt

Informačńı teorie a kvantová teorie jsou dnes jedny z nejv́ıce rozv́ıjených
oblast́ı. V prvńı části představujeme a porovnáváme tři typy klasických infor-
maćı a popisujeme některé klasické entropie. V druhé části definujeme qubit a
von Neumannovu entropii a dokazujeme Kleinovu nerovnost (tj. nezápornost
kvantové relativńı entropie), zvláště pak podmı́nky rovnosti, jej́ıž d̊ukaz neńı
vždy prezentován korektně, např. v [13]. Ve třet́ı části zkoumáme Delayed
Choice Quantum Eraser experiment a navrhujeme kvantový test svobodné
v̊ule.
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Information theory and quantum theory are presently fast developing
scientific fields. In the first part of this thesis we introduce and compare
three types of classical information measures and describes some of classical
entropies. In the second part we define qubit and von Neumann entropy
and prove Klein’s inequality (i.e., non-negativity of the relative quantum en-
tropy), and especially the equality conditions, which is not always presented
correctly in literature, see e.g. Ref. [13]. In the third part we scrutinize the
Delayed Choice Quantum Eraser experiment and suggest possible free will
quantum test.
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Introduction

Why I chose this theme? Well, it is because I was very interested in quantum
theory and especially in extraordinary behavior of the quantum particles. I
was too interested in a fashion, how is the quantum mechanics treated, and
wanted to understand it better. My supervisor told me that there exist
a new trend to regard the quantum theory as the theory of information.
My supervisor also did not tell me, that the quantum theory as a theory of
information very differs from the original theory of information and quantum
theory of information too. If I exaggerate a little, the only thing which is
common is the name. But I don’t regret it at all. This misunderstanding
opened me a beautiful domains of the theory of communication, quantum
computation, quantum optics and many others. The other motivation for
this work is rapid developing in these fields. For example, this year has been
successfully performed quantum teleportation of wave packets of light [11]
and also 14-bits entangled state has been created [12].

In the first chapter I will deal with three types of the information and
I also introduce Shannon entropy, where I combine different approaches of
Shannon and Khinchin, and it’s derivations. In the second chapter I, after
necessary mathematical preliminary, define and explain the notion of Qubit,
compare Qubit with the classical bit and introduce von Neumann entropy,
which is in a sense the quantum brother of the Shannon entropy. I also
correctly prove Klein’s inequality (non-negativity of the relative quantum
entropy), whose proof is not presented correctly in [13]. In the third chapter
I analyze the entanglement, probably the most astonishing topic in the quan-
tum mechanics. In the last chapter I discuss a double slit experiment, there I
highlight the most important concepts, which helps us to understand it prop-
erly. I will also scrutinize the Delayed Choice Quantum Eraser experiment
adopted from [4] and suggest free will quantum test.
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Chapter 1

Information Theory

Information theory is one of the most useful tool nowadays. In era of com-
munication, where over 2 billion people use the Internet, where sending a
message over the Atlantic ocean is approximately 17 000 000 000× faster
than it was 5001 years ago, has coding, storing and encrypting information
extraordinary significance.

Nevertheless, there is not much space for being concerned with these three
applications. We rather aim at basic definitions and their meaning. For
better understanding we will combine in the following different approaches
of Shannon and Khinchin. Apart from this we also introduce 3 types of
post-Shannonian information.

1.1 What is the information?

Each of us have a rough understanding what the information is. It is some-
thing necessary in our everyday life, something we cannot live without. Ne-
cessity of being surrounded by information results from our nature — people
need to communicate.

There are variety of types of information. Some of the information is
useless, some is useful and some information, which is useful for one, don’t
have to be useful for other. A question arises; Does there exist any objective
way to measure the information? Well, measuring information by its (subjec-
tive) usefulness is not a good idea. For instance, how would we operationally
quantify information present in the statement: “Attach hot water line to 90◦

elbow and route underneath.” (semantic information)? Semantic informa-
tion play an important role in everyday life but as yet cannot be successfully

1The journey of Christopher Columbus lasted 62 days.
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quantified. Now we get to the type of information, which we can quantify.
For this reason I’ll give here more examples.

• Suppose that all of a sudden we got a taste of banana. We are running
to the shop, meanwhile, we remember that we have forgotten a purse.
That does not matter, because we have some coins in our pocket. That
may suffice! Arriving the shop we fish out of pocket a few coins, but
we do not have enough, because only bananas from Martinique arrived
and Martinique bananas cost more than those ordinary from Colombia.
If we had known!

• Suppose only three people know that next Tuesday will be the new
Black Friday2. What is this information worth?

• Suppose a meteorite with 5 km in diameter is hurtling to Earth, nev-
ertheless we don’t know it yet. What a pity!

These examples look differently, but still have something in common. We
can connect each example with its corresponding probability. We are not
too surprised that something like banana misfortune happened. This kind of
things happens everyday, so importance of this information is quite negligible.
Assume that you are stockbroker and one of the three people mentioned in
the second example is your very best friend. You believe him so much. And
this friend gives you a tip. You sell everything and save billions! Although
we believe that knowledge about third event is much more important. 3

After these considerations we conclude that information can be defined as
functional I on an event space X, i. e. I : X → R (in accordance with [3]).
As we have seen, the importance of an information depends on probability
with which the event may happen. We require for two events x1, x2 ∈ X such
that p(x1) < p(x2), we have I(p(x1)) > I(p(x2)). We also require intuitive
limit conditions (p(x)→ 1⇒ I(p(x))→ 0) and (p(x)→ 0⇒ I(p(x))→∞).
An example of such function is the following.

Definition 1.1. We define an information measure (Hartley’s information)
I : X → R

∀x ∈ X, I(x) = − loga x, (1.1)

where a > 1 is a parameter.

Above definition is ingenious in the sense that an amount of information
measured does not depend on actual events (which the information repre-
sent) but only the ensuing probability distribution. This allows to compare

2Wall Street Crash of 1929
3We also believe that some stockbrokers might disagree.
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between different events without involving our feelings, knowing only the
probabilities. The base of logarithm can be chosen arbitrarily, but for our
purposes we choose a = 2. The unit of such I(x) is the called bit4. 1 bit
of information tells us that event x has exactly 50% chance to happen, in
other words, 1 bit is an information hidden in an answer to the binary (i.e.,
YES–NO) question. Further we will write shortly only log instead of log2.

As we shall se in the next section, the definition of information measure is
fundamental for the information theory and allows to find a way of optimal
coding, minimum physical source for storing an information, error correction
and more (see, e.g., Ref.[14]).

It is necessary to stress that the above definition gives only one specific
information measure — the so-called syntactic information, which is not the
only possible information measure. The other is, for instance, an algorithmic
information, sometimes called after its founder the Kolmogorov complexity.
This information measure is quite different. We will compare them in section
1.4.

1.2 Entropy

Now we will introduce the main function used in Information theory. This
function and its derivations appear in an almost all of the theorems. The
heart of the theory is called Entropy.

Definition 1.2. (Shannon entropy) Suppose that X = {x1, x2, ...xn} is an
event source with corresponding probabilities of occurence p1, p2, ..., pn, where
pi ≥ 0,

∑n
i=1 pi = 1. We define entropy H(p1, p2, ..., pn) as a function satis-

fying following properties:

1. H is a continuous in the pi.

2. If all the pi were equal, namely pi = 1
n

for all i, H is monotonously
increasing function of n.

3. If any occurrence breaks down into two successive possibilities, H should
break down into weighted sum of corresponding individual values of H.

The above definition was obtained from [3], but was primarily introduced
by Shannon in his founding paper from 1948 [14]. Well, we see the definition

4The unit is added artificially in order to tell us, which parameter do we use. For
example if a = 2.718281828... (Euler’s number) the logarithm becomes natural and the
unit added becomes nat
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and ask ourselves, “Does there exist function satisfying 1.–3.?” Yes, such
function exists and it must be of the form5

H = −K
n∑
i=1

pi log pi, (1.2)

where K is an arbitrary positive scaling constant. If we choose K = 1,
(1.2) becomes mean value of information

H = 〈I(x)〉 = −
∑
x∈X

p(x) log p(x) = −
n∑
i=1

pi log pi. (1.3)

This is it what entropy really means. It is an average information hidden in
an event source X or, in other words, it is an average amount of information
what we get if we ask, “Which event will happen?”. It is sometimes said that
the entropy is an amount of uncertainty what we have about the source, or
what information the source can provide. Entropy with K = 1 and logarithm
base a = 2 is called Shannon entropy. However we can choose K differently.
For example if we put K = kB

log e
, where kB is Boltzmann constant and e

Euler’s number, (1.2) changes into

H = −kB
n∑
i=1

pi ln pi (1.4)

which is the so-called Gibbs–Boltzmann entropy. Gibbs–Boltzmann entropy
is the basic building block in the statistical-thermodynamics6, but we will
not pursue this issue here.

The first two requirements in the definition of the entropy are easily un-
derstandable, the last requirement is less obvious7. For a better understand-
ing, we can arrive at the very same entropy using different axioms, which
were firstly found by Khinchin [9].

Definition 1.3. A continuous function with respect to all arguments H(p1, p2, ..., pn)
is called (Shannon’s) entropy if it satisfies following properties:

1. For a given n and for
∑n

i=1 pi = 1, the function takes its largest value
for pi = 1

n
, (i = 1, . . . , n).

5Proof can be found in [3]
6The second law of thermodynamics states that the entropy of an isolated macroscopic

system never decreases.
7Even though it is well explained in the Shannon’s founding paper [14].
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2. H(X, Y ) = H(X) +H(Y |X), where X, Y is the joint event source and
H(Y |X) =

∑n
i=1 piHi =

∑n
i=1 p(X = xi)H(Y |X = xi) conditional

entropy.8

3. H(p1, p2, ..., pn, 0) = H(p1, p2, ..., pn) (adding an impossible event does
not change the entropy).

We would like to add that these definitions of entropy are the special
cases of the so-called Rényi’s entropy. To see it, it is appropriate to rewrite
(1.2) as

H =
n∑
i=1

piI(pi). (1.5)

This can be viewed as the special case of the general averaging which is
defined

Hf = f−1

(
n∑
i=1

pif (I(pi))

)
. (1.6)

The function f is the so-called Kolmogorov–Nagumo function which must
be, of course, invertible and if we demand additivity and continuity of in-
formation with respect to all arguments of such entropy, only two classes
such functions are possible [8]. First is the identity f(x) = x, which gives the
Shannon entropy and the second possible is exponential, i. e., f(x) = 2(1−α)x,
which gives

H[α] =
1

(1− α)
log

(
n∑
i=1

pαi

)
. (1.7)

Another frequently used entropy is Tsallis entropy, which takes the form

Sq =
1

(1− q)

(
n∑
k=1

(pk)
q − 1

)
, (1.8)

where q is a positive parameter. In the q −→ 1 limit Tsallis entropy reduces to
Shannon entropy. In this case classical additivity of independent information
is replaced by so-called pseudoadditivity

Sq(AB) = Sq(A) + Sq(B|A) + (1− q)Sq(A)Sq(B|A), (1.9)

where Sq(B|A) represents the conditional Tsallis entropy. Tsallis entropy
has one more interesting feature. It is a monotonic function of the Shannon
entropy and thus they reaches maximum at the same point pi = 1/n for all i.

For further discussion of both Rényi and Tsallis entropy see, e.g., Ref. [8].

8p(X = xn) is a probability that event xi happen and H(Y |X = xi) is an entropy of
the event source B provided that event xi happened.
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1.3 Joint and conditional entropies, mutual

information, measuring distance

In the previous section we have learned how to define various information
entropies but now we are going to discuss more interesting issue, namely we
will compare different probability distributions and features of the entropies.
We have met the joint and conditional entropy in the alternative definition of
the entropy already (see Def. 1.3). Now we introduce these notions correctly.

Definition 1.4. Let X and Y be event sources with the joint probability
distribution P = {p(x, y)|x ∈ X, y ∈ Y }. Then we define joint entropy

H(X, Y ) = −
∑

x∈X,y∈Y

p(x, y) log p(x, y) ,

conditional entropy9

H(X|Y ) = −
∑

x∈X,y∈Y

p(x, y) log p(x|y) = H(X, Y )−H(Y )

=
∑
y∈Y

p(y)H(X|Y = y) ,

and mutual information

H(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= H(X) +H(Y )−H(X, Y )

= H(X)−H(X|Y ) .

We have used the Bayes’ theorem to derive the other expressions of each
definition. We can see that the definitions are closely related. It is obvious
that joint entropy H(X, Y ) and mutual information H(X;Y ) are symmetric
in its arguments X and Y . The second expression of conditional entropy says
that conditional entropy is an average amount of information what we can
get from joint system X, Y if we have total knowledge about source Y , the
third says that conditional entropy is also a mean value of entropy H(X).
Mutual information is an amount of information what the sources X and Y
have in common.

In order to prove the other properties of entropies we need to introduce
following theorem.

9H(X|Y = y) = −
∑

x∈X p(x|y) log p(x|y).

8



Theorem 1.1 (Jensen’s inequality).

f(λ1z1 + · · ·+ λnzn) ≤ λ1f(z1) + · · ·+ λnf(zn),

where f is a convex function on some set C in R, zi ∈ C, λi > 0, i = 1, ..., n
and λ1 + · · ·+λn = 1. For strictly convex functions equality holds if and only
if z1 = · · · = zn.

Theorem 1.2 (Basic properties of Shannon entropy).

1. H(X, Y ) = H(Y,X), H(X;Y ) = H(Y ;X)

2. H(X|Y ) ≥ 0 and thus H(X;Y ) ≤ H(X) with equality if and only if X
is a function of Y .

3. H(X;Y ) ≥ 0 and thus H(X, Y ) ≤ H(X) + H(Y ) with equality if and
only if X, Y are random variables. (subaditivity)

Proof.

1. Obvious.

2.
H(X|Y ) = −

∑
x∈X,y∈Y

p(x, y) log p(x|y) ≥ 0 ,

because (0 ≤ p(x|y) ≤ 1). Let H(X|Y ) = 0. Then (∀x, y ∈ X, Y )
(p(x, y) log(p(x|y)) = 0). So either10 p(x, y) = 0 or p(x|y) = 1. That is,
if event y happen then either x happen with certainty or do not happen
at all, i.e., X = f(Y ). Let X = f(Y ). Then p(x|y) is equal to either 1
or 0, i.e., H(X|Y ) = 0.

3. In theorem 1.1 we put f = − log, λx,y = p(x, y), zx,y = p(x)p(y)
p(x,y)

. Then
we have

H(X;Y ) = −
∑

x∈X,y∈Y

p(x, y) log
p(x)p(y)

p(x, y)

≥ − log

( ∑
x∈X,y∈Y

p(x, y)
p(x)p(y)

p(x, y)

)
= 0 ,

with equality if and only if

p(x)p(y)

p(x, y)
=
p(x̃)p(ỹ)

p(x̃, ỹ)
= q for all x, x̃ ∈ X, y, ỹ ∈ Y.

We can multiply the equation by p(x, y) and summarize with respect to
all x and y. We get q = 1. That means that X and Y are independent.

10We define 0 log 0 = 0.
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Now we introduce relative entropy between two probability distributions
on the same event set. This is not only a natural distance measure but it
will also help us to find an upper bound of the entropy.

Definition 1.5. Let the P,Q be probability distributions on the same event
set X. We define relative entropy (or equivalently Kullback-Leibler diver-
gence) between distributions P,Q as

D(P ||Q) =
∑
x∈X

p(x) log
p(x)

q(x)
=

〈
log

P (x)

Q(x)

〉
P

= −H(x)− 〈logQ(x)〉P .

As we can see from the definition, the relative entropy cannot be a true
metric because it is not symmetric. However it satisfies another important
property of a distance metric.

Theorem 1.3. D(P ||Q) ≥ 0, D(P ||Q) = 0 if and only if P = Q.

Proof. In theorem 1.1 we put f = − log, λx = p(x), zx = q(x)
p(x)

.

Theorem 1.4. H(X) ≤ logN

Proof. In theorem 1.3 we put q(x) = 1
N

for all x ∈ X.

The previous theorem shows that maximum entropy is achieved only for
uniform distribution, if no extra constraints are imposed. It corresponds
to a following assumption: If we have absolutely no idea about the event
source, the best way how to estimate the distribution is to assign the same
probability to each event. In other words, uncertainty about the event source
rises if and only if the probability distribution approaches the uniform.

At the end we would like to stress that so far we have been concerned
only with finite event sources. Everything can be generalized to an infinite
but still discrete sources. We can make also similar theory for continuous
event sources but many theorems differ and some do not hold at all, see, e.g.,
Ref. [3].

1.4 Kolmogorov complexity

One application of the information theory, which I mentioned in Introduc-
tion, is optimizing coding efficiency. Consider we want to send the sentence
“I like the information theory.” What does our computer do? It decompose
this sentence in the sequence of 1’s and 0’s. Because each character in a

10



language has a different frequency of occurrence, sending a message can be
optimized. We assign shorter expressions (of 1’s and 0’s) to frequently used
characters and longer for rarely used. In this case, the information theory
grasps the sentence like a random sequence, or better, like a random event
source. As we can imagine, the language is not completely random, but this
approach works pretty well in many practical situations. Nonetheless, this is
not the only reasonable approach. We can consider the sentence as a unique
sequence of fixed characters and ask whether there exist any program, which
could generate it. If the program is shorter than the original sentence, a com-
pression is achieved. The length of the shortest of such programs is called
Kolmogorov complexity or equivalently algorithmic information.

Definition 1.6. The Kolmogorov complexity K(x) is the shortest size of a
program q(x) necessary to generate the sequence x. Such program is a finite
set of binary instructions with a length |q(x)| bits.

For illustration, consider that we have a very silly sense of humor and
want to send to a friend an SMS consisting of thousand 01’s, i.e.,

0101010101010101010101010101010101010101....

It would be quite expensive. We may invent a better way — we send him
a program, which generates the message automatically. Such program (in a
binary code) is surely much shorter and thus cheaper. On the other hand,
finding the shortest program is generally a complicated and as yet unsolved
problem.

The complexity is, in contrast with syntactic information, an information
hidden in the sequence. For instance, an entity with huge Kolmogorov com-
plexity is the DNA. In the DNA is hidden an almost complete information
about the person who writes this article.

The definition of Kolmogorov complexity was obtained from [3], where
can also be found an implementation of the program generating the sequence
by the Turing machine. Comparison of syntactic and algorithmic information
with an interesting philosophical reasoning is made in [5].

11



Chapter 2

Quantum information theory

Quantum information theory paves the way to the modern type of compu-
tation and coding. Main motivation for exploring this field are quantum
computer, which is supposed to be at least as powerful as the classical one
and exists some indications that some types of problems can be solved ex-
ponentially faster by a quantum computer. Further important motivations
include quantum cryptography and quantum teleportation.

There is not much place for a comprehensive insight into quantum infor-
mation theory, we rather concentrate onto proper definition and derivations
of the main actor — von Neumann entropy.

2.1 Formalism and basic theorems in quan-

tum mechanics

The quantum mechanics and quantum theory in general are expressed in a
language of mathematics. The specificity of the quantum theory is that the
mathematical formalism is necessary for understanding even the most basic
notions and in fact, it forms the only guiding principle of the theory.

The quantum theory is constructed on Hilbert spaces — complete vector
spaces with, in our case naturally defined, inner product. Each vector in
Hilbert space represents one state and is denoted as |ψ〉, called ket. The
inner product of two vectors |ψ〉, |ϕ〉 is then denoted as 〈ψ|ϕ〉, known as
bra(c)ket1. A linear functional 〈ϕ| : |ψ〉 −→ 〈ϕ|ψ〉 is called bra. This bracket
formalism facilitates the work. I will show only basic definitions and theorems
necessary in the following. For a comprehensive presentation see [1].

1We define inner product linear in the second argument and antilinear in the first.
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Let us suppose that dimension of the Hilbert space is finite. This as-
sumption will allow us to simplify many presented arguments. Many theo-
rems holds even if the dimension is infinite, but some definitions have to be
slightly modified and we have to bother with domains of the operators. This
presumption is also very restrictive in the quantum theory, but in quantum
computation no computer with an infinite number of (qu)bits is possible.

From Riesz representation theorem we know that for each operator A on
a Hilbert space H exists unique operator A† such that

∀|ψ〉, |ϕ〉 ∈ H, 〈ψ|Aϕ〉 = 〈A†ψ|ϕ〉.

This operator is called adjoint. Some of the operators have special properties
that are important for a conceptual development of quantum theory. These
are frequently defined through the use of the adjoint operators.

Definition 2.1. A linear operator is called normal if and only if

AA† = A†A,

hermitian if
A† = A,

unitary if
AA† = I = A†A,

positive if
∀|ψ〉 ∈ H, 〈ψ|Aψ〉 ≥ 0.

We define |ψ〉† = 〈ψ| and 〈ψ|† = |ψ〉. Because of an isomorphism between
Hilbert space and a space of linear functionals, all properties of the † remain
the same. The reason for this notation is that then (A|ψ〉)† = 〈Aψ| = 〈ψ|A†.

Theorem 2.1. Hermitian and unitary operators are normal, positive opera-
tor is hermitian.

The unitary operators have one important property. In a space of a finite
dimension only the unitary operators preserve the inner product. It ensures
that the sum of probabilities of all possible outcomes of any event in quantum
mechanics is always 1.2 Therefore, the evolution in physical system should
be described by an unitary operator.

Theorem 2.2. Operator U is unitary if and only if

∀|ψ〉, |ϕ〉 ∈ H, 〈Uψ|Uy〉 = 〈ψ|y〉.
2It should be stressed that this is true also for anti-unitary operators but these are not

considered in this thesis.
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Proof. ⇒: 〈Uψ|Uϕ〉 = 〈ψ|U †Uϕ〉 = 〈ψ|ϕ〉

⇐: ∀|ψ〉, |ϕ〉 ∈ H, 〈ψ|U †Uϕ− ϕ〉 = 0. We put |ψ〉 = U †U |ϕ〉 − |ϕ〉. Then
for all |ϕ〉 must be U †U |ϕ〉 − |ϕ〉 = 0, it means the operator is unitary.

The subclass of the linear operators — orthogonal projectors is closely
related to bra-vectors. A projector onto subspace spanned by normalized3

vector |i〉 is denoted |i〉〈i| and defined for all |j〉 ∈ H as |i〉〈i|(|j〉) = |i〉〈i|j〉.
A linear operator A is diagonalizable if and only if exist λi, |i〉〈i| such that
A =

∑
i λi|i〉〈i|.

Each linear operator has it’s own characteristic called eigenvalues, which
occupy a special position in a quantum mechanics. The eigenvalues of the
operator are the only values, which you can measure, and after the measure-
ment is done the state of a particle passes to the eigenvector corresponding
to the eigenvalue.

Definition 2.2. Eigenvalue λ of a linear operator A is a value for which
exists a non-zero vector such that A|ψ〉 = λ|ψ〉. The vector |ψ〉 is then called
eigenvector of the eigenvalue λ.

Each observable in a quantum system is expressed as a hermitian linear
operator. The reason why is that the measured values (eigenvalues) are real
and thus we know how to interpret them.

Theorem 2.3. Hermitian operator has real eigenvalues.

Proof. Let |ψ〉 be an eigenvector with an eigenvalue λ. Then

λ〈ψ|ψ〉 = 〈ψ|Aψ〉 = 〈Aψ|ψ〉 = λ〈ψ|ψ〉.

Now I will introduce widely used theorem for normal operators. Proof
can be found in [13].

Theorem 2.4 (Spectral Decomposition). Let H be a Hilbert space of a finite
dimension. Any normal operator A on H is diagonal with respect to some
orthogonal basis for H. That is

A =
∑
i

λi|i〉〈i|.

|i〉 are normalized eigenvectors of the operator A with corresponding eigen-
values λi. Conversely, any diagonalizable operator is normal.

3The state normalization is defined here and throughout as ‖|i〉‖ ≡
√
〈i|i〉 = 1.
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We use the theorem promptly for a construction of the new operators.

Definition 2.3. Let the A =
∑

i λi|i〉〈i| be a spectral decomposition of the
operator A, f a continuous function on C. Then we define operator function

f(A) =
∑
i

f(λi)|i〉〈i|.

The operator function does not depend on spectral decomposition vectors
and thus is uniquely defined.

We often want to work with more than one particle. The mathematical
procedure for this is to make tensor products of one particle systems. Gen-
erally, if we have two Hilbert spaces H,G, dim(H) = m, dim(G) = n and
{|i〉, i = 1, ...,m} is an orthonormal basis for H, {|j〉, j = 1, ..., n} an or-
thonormal basis for G, then tensor product of the spaces H,G is also Hilbert
space H ⊗G, dim(H ⊗G = m · n) and {|i〉 ⊗ |j〉} is an orthonormal basis
for H⊗G. Tensor product of vectors satisfies the following basic properties:

Theorem 2.5. ∀α ∈ C, ∀|ψ〉 ∈ H, ∀|ϕ〉 ∈ G

1. α(|ψ〉 ⊗ |ϕ〉) = (α|ψ〉)⊗ |ϕ〉 = |ψ〉 ⊗ (α|ϕ〉)

2. (|ψ1〉+ |ψ2〉)⊗ |ϕ〉 = |ψ1〉 ⊗ |ϕ〉+ |ψ2〉 ⊗ |ϕ〉

3. |ψ〉 ⊗ (|ϕ1〉+ |ϕ2〉) = |ψ〉 ⊗ |ϕ1〉+ |ψ〉 ⊗ |ϕ2〉

For simplicity it is often written |ψ〉|ϕ〉 or |ψϕ〉 only instead of |ψ〉 ⊗ |ϕ〉
and we will use this notation too.

An inner product on H⊗G is defined naturally:

〈
∑
i

αi|ψi〉 ⊗ |ϕi〉|
∑
j

α̃j|ψ̃j〉 ⊗ |ϕ̃j〉〉 =
∑
i,j

αiα̃j〈ψi|ψ̃j〉〈ϕj|ϕ̃j〉.

We can generalize operators on a tensor product of two spaces.

Definition 2.4. Let A be a linear operator on a space H, B a linear operator
on G. We define

∀|ψ〉 ⊗ |ϕ〉 ∈ H⊗G, (A⊗B)(|ψ〉 ⊗ |ϕ〉) = (A|ψ〉)⊗ (B|ϕ〉),

specially

A(|ψ〉 ⊗ |ϕ〉) = (A|ψ〉)⊗ |ϕ〉, B(|ψ〉 ⊗ |ϕ〉) = |ψ〉 ⊗ (B|ϕ〉).

Theorem 2.6. Tensor product of two unitary operators is unitary, of two
hermitian operators is hermitian, of two positive operators is positive.
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The last notion, which we need to introduce, is the trace of an operator
A.

Definition 2.5. Let {|i〉} be an orthonormal basis of a Hilbert space H, A
a linear operator on H. The trace of the operator A is

Tr(A) =
∑
i

〈i|A|i〉.

The trace does not depend on a choice of the orthonormal basis and has
following properties.

Theorem 2.7. Let A,B be linear operators, U unitary operator, α ∈ C.
Then

1. Tr(αA+B) = αTr(A) + Tr(B) (linearity)

2. Tr(AB) = Tr(BA) (symmetry)

3. Tr(UAU †) = Tr(AU †U) = Tr(A) (conservation in time)

4. |Tr(A†B)|2 ≤ Tr(A†A)Tr(B†B) (Schwarz
inequality) The last is Schwarz inequality for an inner product defined
on the Hilbert–Schmidt operator space

〈A|B〉 = Tr(A†B) =
∑
i

〈i|A†B|i〉 ,

where {|i〉} is an orthonormal basis.

2.2 Qubit

Quantum bit, or for short qubit, is a basic operational unit in the quantum
computation and quantum information theory. The classical bit is an infor-
mation hidden in the event, which has exactly 50% chance to happen. But,
as you probably noticed, there exist one different point of view what the bit
is. We can apprehend one bit as an element of a set {0, 1}. Now the bit is
not the information hidden in an event, but the event itself. In the compu-
tation science, maximal information transfer is achieved, when occurences of
events from {0, 1} are equal4, that means both 0 and 1 have 50% chance to
happen. This is the point where it corresponds with the former definition.
The classical bit can take values of 0 or 1 only, but in quantum mechanics,
any linear combination from a set is also the element of the set. In other
words, qubit is an element of a linear span of a set {|0〉, |1〉}.

4Because binary entropy reaches maximum at p(0) = 1
2 , p(1) = 1

2 , see theorem 1.4.
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Definition 2.6. Qubit is the normalized linear combination of the orthogonal
states α|0〉+ β|1〉, where |α|2 + |β|2 = 1.

What is the physical representation of a qubit? The simplest is the ori-
entation of spin. Orthogonal states of a spin corresponds to the 2 arbitrary
orthogonal directions in space. Qubit differs from classical bit in a very
important feature with profound consequences. In general we cannot distin-
guish between two qubits. If we could, faster-than-light communication is
possible.5 Measuring gives us only the probabilistic predictions. Only if we
know that two qubits are orthogonal to each other and in what directions
are oriented, we can distinguish between them. This is the only way how to
represent a classical bit in a form of the qubit — we assign state |0〉 to 0
and state |1〉 to 1. Furthermore, general qubit cannot be copied6, but can be
teleported at expense the original state is destroyed7.

2.3 von Neumann entropy

How to introduce an entropy in the quantum mechanics? Well, the entropy
is still measure of uncertainty about the system, so it should include prob-
abilities in some way. It should also include states, because these are the
special constituents of the quantum mechanics. If they were not there, what
else should be included in order for we could call the entropy quantum?

Suppose we have a box and exactly defined states {|ψj〉} in it. We fish
out one state. What is the probability the state is actually |ψj〉? We define
it pj. The notion which characterizes collective state in the box is a density
operator.

Definition 2.7. Let {|ψj〉|j = 1, ...,m} be a set of normalized vectors, {pj ∈
R|j = 1, ...,m} such that

∑
j pj = 1. Then we define density operator

ρ =
∑
j

pj|ψj〉〈ψj|. (2.1)

Definition 2.8. We call physical state pure if and only if dim(Ran(ρ)) = 1,
mixed if dim(Ran(ρ)) > 1.8

Theorem 2.8 (basic properties of a density operator).

5We will talk about it in chapter 3.
6This, so-called, non-cloning theorem and is analyzed, e.g., in [13].
7Quantum teleportation.
8By Ran(ρ) we mean the range of values of the operator ρ.
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1. Density operator is positive.

2. Tr(ρ) = 1

3. The state is pure ⇔ ρ = ρ2 ⇔ Tr(ρ− ρ2) = 0⇔ Tr(ρ2) = 1.

von Neumann entropy is a measure of uncertainty which we have about
the mixed state.

Definition 2.9. Let ρ be a density operator. Von Neumann entropy of the
operator ρ is

S(ρ) = −Tr(ρ log ρ). (2.2)

Now we derive another formulation of the Von Neumann entropy. Since
the density operator is positive, it can be spectral decomposed (theorem 2.4).
Let

ρ =
∑
i

λi|i〉〈i|

be a spectral decomposition of the operator ρ. From the definition 2.3 we
know that

ρ log ρ =
∑
i

λi log λi|i〉〈i|. (2.3)

Then

S(ρ) = −Tr(ρ log ρ)

= −
∑
ĩ

〈̃i|(
∑
i

λi log λi|i〉〈i|)|̃i〉

= −
∑
i,̃i

〈̃i|(λi log λi)|i〉〈i|̃i〉

= −
∑
i

λi log λi
∑
ĩ

|〈̃i|i〉|2

= −
∑
i

λi log λi‖i‖2

= −
∑
i

λi log λi,

(2.4)

where the {|̃i〉} is an arbitrary orthonormal basis. On the fourth line we have
used Parseval’s identity.

Whether states |ψj〉 are orthogonal,9 ∀j = 1, ...,m, pj = λj, |ψj〉 = |j〉
and the Von Neumann entropy is the very same as the Shannon entropy.

9For j > m we put λj = 0 and |j〉 can be chosen arbitrarily.
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This is the third case, where the Quantum information theory passes into
the classical one, when the states are orthogonal. Just for remind, the first
was when orthogonal qubits represent one bit and the second was the only
orthogonal states can be copied10. The entropy is nonnegative, because all λi
are nonnegative. If they were not, density operator ρ would not be positive.
We will introduce further properties of the entropy in the next section.

2.4 Other entropies, mutual information and

basic properties of von Neumann entropy

Other entropies are defined in the same way as the classical theory. However,
some properties are different and thus very interesting.

Definition 2.10. Suppose ρ and σ are density operators. The relative en-
tropy (also known as Kullback-Leibler divergence) is defined by

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ) = −Tr(ρ log σ)− S(ρ).

Quantum relative entropy satisfies very similar inequality as the classical
one (theorem 1.3).

Theorem 2.9. (Klein’s inequality)
S(ρ||σ) ≥ 0 with equality if and only if ρ = σ.

Proof. The proof can be seen in Appendix A.

Other entropies which are derived from von Neumann’s entropy are de-
fined similarly as in the classical Shannon’s information theory.

Definition 2.11. Joint entropy is

S(X, Y ) = −Tr(ρXY log ρXY ),

conditional entropy
S(X|Y ) = S(X, Y )− S(Y ),

mutual information

S(X;Y ) = S(X) + S(Y )− S(X, Y ) = S(X)− S(X|Y ) = S(Y )− S(Y |X),

where ρXY =
∑

i,j pij|j〉|i〉〈i|〈j| is a spectral decomposition of the density
operator for the joint system XY , S(X) = −Tr(ρX log ρX), reduced density
operator ρX is defined as ρX =

∑
j̃〈j̃|ρXY |j̃〉 =

∑
i(
∑

j pij)|i〉〈i|.
10Because we can distinguish between them. So we can determine which qubit we have

received and then create some more.
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Theorem 2.10. Basic properties of Von Neumann entropy

1. S(ρ) ≥ 0. The entropy is zero if and only if the state is pure.

2. In a n-dimensional Hilbert space H

S(ρ) ≤ log n.

The equality is achieved if and only if ρ is maximally mixed state I
n

.

3. Suppose a composite system XY is in the pure state. Then S(X) =
S(Y ).

4. Suppose pi are probabilities and the states ρi are such that for all i 6= ĩ,
Ran(ρi) ∩ Ran(ρĩ) = {|0〉}.11 Then

S

(∑
i

piρi

)
= H(pi) +

∑
i

piS(ρi) .

5. Joint entropy theorem

Suppose ρX =
∑

i pi|i〉〈i| is a spectral decomposition of the density
operator for the system X, {ρi} any set of density operators for another
system Y . Then

S(
∑
i

pi|i〉〈i| ⊗ ρi) = S(ρX) +
∑
i

piS(ρi) ,

and thus
S(ρ⊗ σ) = S(ρ) + S(σ) .

6. S(X, Y ) ≤ S(X) + S(Y ) (subaditivity)

Proof.

1.
∑

i pi = 1.

S(A) = −
∑
i

pi log pi = 0⇔ pi log pi = 0 for ∀i

The latter can be fulfilled only for pk = 1 or pk = 0. From
∑

i pi = 1
follows that only one pi = 1 and all other are zero. So S(A) = 0 ⇒
pure state. The reverse implication is trivial.

11In other words, ρi have support on orthogonal subspaces.
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2. From Klein’s inequality 0 ≤ S(ρ||I/n) with equality if and only if
ρ = I/n.

Proof of the others can be found in [13].

The subaditity says that the mutual information is always non-negative.
Notice that the fifth property is very similar to the second in the definition
of Shannon entropy 1.3. If the ρi = ρ(Y |X = xi) would be the probabil-
ity distribution of a system Y provided that event xi happened12, the fifth
equality turns into

S

(∑
i

p(X = xi)|i〉〈i| ⊗ ρ(Y |X=xi)

)
= S(ρX) +

∑
i

piS(ρ(Y |X=xi)).

We put ρ(Y |X=xi) =
∑

j p(j|X = xi)|j〉〈j|, use Bayes’ theorem and get

S(X, Y ) = S

(∑
i,j

p(X = xi)p(j|X = xi)|j〉|i〉〈i|〈j|

)
= S(X)+

∑
i

piS(Y |X = xi)

Which is exactly the same as the conditional entropy in definition 1.3.
Finally we mention how measurements affect the entropy. The following

theorems hold (for details see Ref. [13]).

Theorem 2.11. Projective measurements increase entropy, i.e. ignorance
about the measured system.

Suppose Pi is a complete (i.e.,
∑

i Pi = I) set of orthogonal projectors
and ρ is a density operator. Then

S(ρ′) = S(
∑
i

PiρPi) ≥ S(ρ)

with equality if a only if ρ = ρ′.

Proof. From Klein’s inequality 0 ≤ S(ρ||ρ′).

Theorem 2.12. Generalized measurements can decrease entropy
Suppose M1 = |0〉〈0|, M2 = |0〉〈1|. Then

S(ρ′) = S(M1ρM
†
1 +M2ρM

†
2) < S(ρ).

12In other words, we actually fished out the state xi from the mixed state ρX .
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By projective measurement we mean that the density operator ρ is only
projected onto operator ρ′ in contrast with the generalized measurement,
where ρ has the non-zero chance to be projected onto state which is afterward
changed into something else.

Not all properties of the Von Neumann entropy are identical to these of
Shannon entropy. As we will see in the next chapter, for instance conditional
entropy in quantum theory can be negative.
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Chapter 3

Entanglement

The entanglement is outstanding element of the quantum theory which demon-
strates the most counter-intuitive and fascinating features, especially non-
locality. In nutshell it states that if two particles interact once, they are
forever bound. These properties are now studied experimentally and till this
time the experiments proves that the theory is right.

Entangled state is a joint state, where particles affect each other, inde-
pendently on the space or time distance. It is necessary to add that this
interaction is not causal and thus does not violates any laws of the theory
of relativity. However, the classical point of view malfunctions here. We
must threw off old prejudices and think in a new way, the way of quantum
mechanics.

Consider a joint state of two particles

1√
2

(|0〉|1〉+ |1〉|0〉). (3.1)

This so-called Bell state is one of the maximally entangled states. Suppose
that we have an access to the first of the two particles in this state and Alice
to the second. So that we could imagine what does the measurement do to
the state (3.1) we will remind von Neumann’s measurement axiom of the
quantum mechanics.

After measuring out value a of the observable A on a pure state |ψ〉 sys-
tem |ψ〉 passes onto state PA=a|ψ〉, where PA=a is a projector onto subspace
spanned by eigenvectors of the eigenvalue a. The process is called collapse of
the wave function.

If we have measured |0〉 the (3.1) would pass onto

|0〉 (|0〉〈0|+ |1〉〈1|)︸ ︷︷ ︸
identity

〈0| 1√
2

(|0〉|1〉+ |1〉|0〉) =
1√
2
|0〉|1〉 ' |0〉|1〉, (3.2)
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and Alice must measure |1〉 on the second particle. This is the correlation
between two particles. We, knowing our measurement, automatically know
what Alice have measured. If we could influence in some way what physical
result we get, then we could communicate with Alice instantly. In fact we
could not. From repeated measurements on the same state (3.1) we notice
that we get absolutely stochastic results. This can be seen when we compute
the reduced density matrix related to our measurement.

ρX = TrAlice’s state(PX
1√
2

(|1〉|0〉+ |0〉|1〉) 1√
2

(〈0|〈1|+ 〈1|〈0|)Px)

=
1

2
〈0|(|1〉|0〉+ |0〉|1〉)(〈0|〈1|+ 〈1|〈0|)|0〉

+
1

2
〈1|(|1〉|0〉+ |0〉|1〉)(〈0|〈1|+ 〈1|〈0|)|1〉

=
1

2
|1〉〈1|+ 1

2
|0〉〈0|.

(3.3)

Although, if we compare the list of our results with Alice’s, we see that she
has the very same, only with zeros changed to ones and vice versa. You could
ask, “Isn’t it some sort of conservation law only? The law that tells in each
measurement your outcome + Alice’s outcome gives 1? It other words, sum
of the results is conserved?” No, in fact, it is not the conservation law. The
true quantum behavior comes out when Alice tries to perform measurement
in a little turned basis, say

|a〉 =

√
3

2
|0〉+

1

2
|1〉, |b〉 = −1

2
|0〉+

√
3

2
|1〉. (3.4)

Say that we have measured |0〉. Alice’s state after our measurement is

|1〉 =
1

2
|a〉+

√
3

2
|b〉 (3.5)

and thus she has chance 1
4

to measure value a corresponding to a state |a〉
and chance 3

4
to measure value b corresponding to the state |b〉. If we make

more experiments and then compare the results, we observe that for our |0〉
Alice has more |b〉 than |a〉. Although previously the conservation law fits,
now, because a and b are different and both measurements a and b occur, no
value 0 + (a or b) is conserved.

The more intriguing fact is that Alice can choose anytime in what basis
she wish to measure, for instance, she could change the measuring apparatus
just at the moment you have measured. Then any light signal from your
measurement could not reach her, and yet, Alice’s particle ‘knows’ what you

24



have measured and behaves in that way. We could say that there is some kind
of superluminal signal that tells Alice’s particle what you have measured (and
still the signal cannot yield any information because the theory of relativity
forbids that) or there is no signal at all. I will elucidate why considering
superluminal exchange of information is not the proper approach.

Till now, our understanding was based on the causality premiss, i.e.,

1. first: 2 entangled particles scattered. You have access to the first and
Alice to the second.

2. second: You measure a particle with a result |0〉. Then wave function
collapses. In other words, a superluminal signal flies from you to Alice
and tells the second particle how to behave.

3. third: Alice measure her particle and get a result |a〉 with 1
4

probability
and |b〉 with 3

4
probability.

But our derivation of the possible result does not depend on time at all (we
have stationary states). Indeed, as Ref. [4] shows, probability that Alice’s
outcome will be |a〉 along with your outcome |0〉 does not depend on the
place or time at which the measurements occur.

Consider two entangled particles. We make a mea-
surement on each of them. The result of the exper-
iment then does not depend on a place or time at
which the measurements occur.

It is rather absurd to ask whether the superluminal signal comes from
you to Alice or vice versa, because result of the experiment doesn’t depend
on who measured first. The causal presumption must be comprehend as a
mnemonic or as a tool for computing probabilities of the possible results only.

Again, if you measure in basis {|0〉, |1〉} and Alice in {|a〉, |b〉} the only
thing we could say is that there will be much more 0-b than 0-a results. This
correlation is the true nature of entanglement.

One of the important property of entanglement is that the entangled state
cannot be disintegrate on a tensor product of independent parts. For Bell
state (3.1) it suggests

1√
2

(|0〉+ i|1〉)(|1〉 − i|0〉) =
1√
2

(|0〉|1〉+ |1〉|0〉) +
1√
2

(−i|0〉|0〉+ i|1〉|1〉)

6= 1√
2

(|0〉|1〉+ |1〉|0〉).

(3.6)
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In other words, entangled particles are always dependent on each other and
thus measurement on one particle changes probability distribution on possi-
ble outcomes of the others. The dependency is so strong that if you measure
state of one particle from the entangled state, you can predict results of mea-
surements in the same basis on the others, unless at the beginning you could
not predict any measurement result with certainty. This is the way how is an
entangled state defined. For two particles there are two possible joint states

α|0〉|0〉+ β|1〉|1〉
α|0〉|1〉+ β|1〉|0〉,

(3.7)

where |α|2 + |β|2 = 1, α 6= 0, β 6= 0.
The dependency is closely associated with one notion of the quantum

information theory — the conditional entropy.

Theorem 3.1. Suppose |XY 〉 is a pure state of a composite system. Then
|XY 〉 is entangled if and only if S(Y |X) < 0.

Proof.

1. ⇒: |XY 〉 is entangled⇔ has a form of (3.7). S(Y |X) = S(XY )−S(X).
S(XY ) = 0, because the state XY is pure. For (3.7) S(X) is always
positive. Accordingly S(Y |X) < 0.

2. ⇐: If system |XY 〉 was not entangled, then S(Y |X) = S(Y ), that is,
measurement on X does not change probability distribution of possi-
ble results of the system Y . Again, the state XY is pure and thus
S(Y |X) = −S(X) = −S(Y ), where the second equality comes from
theorem 2.10. S(Y |X) < 0 and thus S(Y ) 6= 0. S(Y |X) = −S(Y ) 6=
S(Y ) so |XY 〉 must be entangled.

At the end of this chapter I would like to remark that not only different
particles can be entangled. A particle can be entangled with itself too. The
entanglement is not only the main actor of the EPR paradox1 but also is
experimentally studied in Quantum eraser experiment we will deal with in
the last chapter.

1Einstein, Podolsky and Rosen suggested that uncertainty principle violates laws of the
Relativity and causality and thus Quantum theory must be incomplete. Later the EPR
paradox was reformulated for an entangled state of spin by David Böhm.
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Chapter 4

Delayed choice experiment

The delayed choice experiment is one of the best examples of how the quan-
tum behavior differs from our usual comprehension of reality. This exper-
iment has been for a long time only in the realm of theory, but presently
several realizations has been performed (e.g. [10, 7]). At first, we will re-
mind double-slit experiment, because almost all delayed choice are based, in
one way or another, on a double-slit or equivalently on a beam splitter. Then
we introduce slightly modified original delayed choice experiment proposed
by Wheeler and finally we will describe quantum eraser experiment proposed
in Ref. [4].

4.1 Double-slit experiment

Double-slit experiment is a basic experiment which shows wave-particle du-
ality of quantum particles. Experimental setup is on figure 4.1. On the first
picture you can see particle source (e.g. light source or electron source),
which produces quantum particles. These particles go through double slit
and then interfere, that is, we can see an interference pattern on the screen
(represented by a transparent red). We can be seen the interference fringes
with the naked eye when a lot of particles are produced. Interestingly enough,
the fringes do not disappear when particles are produced one-by-one. The
only thing that changes is that we have to wait a longer time. If we record
each impact of a particle on a photographic plate, the pattern finally comes
out. This is what the Akira Tonomura’s team did with electrons [15]. Their
record of interference fringes is on the second picture of figure 4.1. We could
ask, “How does the particles interfere, when there is only one at a time?”
Well, that is because these particles interfere with itself! Richard Feynman
in his thesis [2] suggested much stronger statement:
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Figure 4.1: Experimental setup of the double slit experiment and results of Tono-
mura’s realization using electrons as quantum particles. Quantum particles are
red lighted.

Particles interfere with itself only.

That is the opposite of what we have been taught about interference of
other types of waves. For instance, interference of water waves is a conse-
quence of the collective behavior. It is the result of interactions between
many particles and resulting wave is a joint movement of these particles.

In order to quantum particle interfere it has to go through both slits at
once. This very confusing proposition indicates that the particle cannot be
regarded as a point particle1, but rather as a wave function |ψ〉 which expand
anywhere where can. We are meeting the non-locality again.

Feynman’s statement can explain many queries. For example, if we have
not known that interference does not disappear when amount of particles
dwindle, we could ask, “What happens, when particle density goes to zero?”.
Nothing happens, interference pattern is always the same. What changes
is only the intensity of incoming particles. Good visible pattern is only
the statistical consequence of many particles, each interfering with itself.
This statement will help us to understand following, much more complicated
experiment.

What happens, when we try to look which way (which slit) did the particle
go? Suppose that we have measuring device (you can imagine some special
camera) on the lower slit. As already said, the particle has to go through
both ways at once, but we surely cannot measure only a half of the particle.

1How could a point particle go through two different slit at once?
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We will discover that the particle either went through the lower way (your
device noticed it) or some other way (the device did not notice it). For
simplicity we can assume that particle always passes through double slit and
the experimental setup is symmetrical, in other words, there is not a preferred
slit. In that case, our chance of measuring a particle is exactly 50%. As a
result, we will always know which way the particle went. Consequently, the
particle always goes through one slit only and thus the interference pattern
must be destroyed. The sole information about the way which the particle
went destroys the interference pattern. Note that the information do not have
to be necessarily possessed. For the destruction of the pattern is sufficient
that the information is obtainable.

For example, consider two entangled partners. These partners have gen-
erally common origin, that is, they were created (or became entangled) at
the same place and their momenta are also bounded by the momentum con-
servation law. From measuring position or momentum of one of the partners
we are able (at least in principle) to determine position or momentum of the
second and thus gain second’s which-path information too.

As a second example we consider an experimental setup from figure 4.1
with a slight modification. We use the source of polarized light and put cor-
rectly oriented half-wave plate behind the upper slit so that the polarization
of the photon which goes through the upper slit become perpendicular to
the former polarization. Now, the which-path information is in principle ob-
tainable — we can decide to measure polarization and thus determine which
way the particle went but we do not have to even do that. Still, experiments
show that the interference fringes disappear. So only the possibility of mea-
suring polarization and thus determination whether the particle of light went
through an upper or lower slit ensures that there cannot be any interference.
We do not have to even measure.

Accessible, even in principle, which-path information
destroys the interference pattern.

We can reformulate the previous statement as following.

If we are not, even in principle, able to determine
which way the particle went, particle interfere.

We would like to stress that it is not the experimenter’s knowledge, but
the experimental setup, which destroys the interference pattern.
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It is the experimental setup, which destroys the in-
terference pattern.

In some cases, when the which-path information is recorded temporarily
and is irrevocably deleted before a particle impacts the screen, the inter-
ference pattern is recovered. The deletion must be perfect, i.e., we cannot
regain the which-path information even in principle. The experiments which
study this recovering of interference pattern are called Quantum Eraser Ex-
periments and we will deal with them in section 4.3.

4.2 Wheeler’s Delayed Choice

In the previous section we have talked about a device, which could observe
the path along which particle goes. The key point of the delayed choice ex-
periment is that the device can gain which-path information after the particle
passes through double slit. We will describe slightly modified version of the
famous Wheeler’s delayed choice experiment [18]. The experimental setup is
on figure 4.2.

Figure 4.2: Experimental setup of Wheeler’s delayed choice experiment.

Path of the particle is red lighted. The particle goes through beam split-
ter. Consider that the beam-splitter is ideal, i.e., the light beam has 50%
chance to be reflected and 50% to pass through. For a single-particle this
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means that the particle is reflected and passed through at the same time. We
should not be surprised after the experience with the double slit. In double
slit experiment particle also went through both slits at once, or through one
only, that depended upon what kind of measurement we have chosen. If we
have tried to measure which slit did the particle goes through, the particle
always went through one slit only. If we have not, particle interfere and thus
had to go through both slits at once. After passing through beam-splitter,
particle is reflected from the mirror and focused by a lens. Now we can choose
which measurement do we perform. If the rotatable mirror is vertically po-
sitioned, the particle is reflected into detector which observes which way the
particle went. If the rotatable mirror is horizontally positioned, the particle
is reflected towards interference plate and interfere.

Remember that choosing the measurement predetermines whether the
particle goes one way only, or two ways at once. The interesting thing is that
we can turn the mirror anytime, for example just after the particle passed
beam-splitter and before it hit the rotatable mirror, and thus choose the
measurement. In other words, you can choose whether the particle goes one
way only or both ways at once after the particle went through beam-splitter!

In a classical point of view, you influence what happened after it hap-
pened, you influence the past. It leads to an idea that the classical point of
view is not right in this case. Of course, it is not right, because determining
which way the particle went is only our thought construct which helps us to
build a mental picture of what happens. Until the measurement we cannot
say, not even in principle, which way the particle goes.

4.3 Delayed Choice Quantum Eraser Exper-

iment

The delayed choice quantum eraser experiment which we will now present was
adopted from Ref. [4]. As we have said in Section 4.1, the eraser experiment
is a type of an experiment where the which-path information is irreversibly
lost, erased. This experiment also combine the delayed choice. Two outcomes
are possible. Either an interference pattern is gained before the which-path
information is irreversibly erased or interference pattern is destroyed before
the which-path information is revealed. The experimental setup is on figure
4.3.

A photon goes through double slit and hit the BBO2 crystal. The BBO
crystal transforms the photon into an entangled pair via Spontaneous para-

2beta barium borate
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Figure 4.3: Experimental setup of delayed choice quantum eraser experiment.

metric down-conversion. One from the pair (signal photon; green path) goes
up and the second (idler photon; blue path) goes down. Notice that the
creation of pair took place on the two different points simultaneously and
thus each of the pair come along two paths at once too. If the subsequent
measurement reveals that the idler went through lower path (dark blue),
then, because of common origin, signal have to go through lower path too
(dark green). Similarly with the upper path. Idler then meets some beam-
splitters (BS) and mirrors (M) and is detected by one of the four detectors
(D1, D2, D3, D4). Detector D0 is movable and we will use it to explore
possible interference of signal photon.

If the idler hits detector D3 or D4, which-path information is revealed and
signal does not interfere. Since the last beam-splitter irreversibly erases the
which-path information, if the idler is received by detector D1 or D2, signal
photon interfere. Note that if both paths of the signal photon from BBO
crystal to detector D0 is the same, paths of the idler from BBO to the last
beam-splitter must be also the same. Otherwise, knowing when the signal
photon has arrived, we could determine the path just from time difference
between arrivals.

The interesting thing is that we can make way of the signal photon much
shorter than the way of idler so the signal photon is always detected before
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the idler. As we have said in the previous chapter 3 (see also Ref. [4]), the
experiment result does not depend on a place or time at which the measure-
ments occur. The measurement made on one of the pair only changes the
probability distribution of possible outcomes of the other, but probability
distribution of the whole, i.e., outcome of the measurement on signal will
be a along with outcome of the measurement on idler will be b,3 is always
the same and does not depend on which measurement occurs first. Loosely
speaking, if the idler hits detector D3 or D4, we have bigger chance to find
the signal at potential peak of the interference pattern, if the idler hits de-
tector D1 or D2, the signal will not fill the potential interference pattern
and vice versa. If the signal hits peak of the potential interference
pattern, we have the bigger chance that the idler will be received
by detector D1 or D2 than D3 or D4.4

There is one important question that could be asked. Consider the pre-
vious experiment arrangement with one additional detector D5 in the back,
without D3 and D4 and a person ready to quickly put the detector D5 in the
idler way (figure 4.4).

Suppose that detector D0 receive the signal before the idler reaches the
prism. If the person put the detector in the way of the idler right after the
signal is detected does it affect the signal photon interference? Well, the
experiment with a person standing there is an absolutely different experi-
ment. Now, the person and additional detector are, together with signal and
idler photons, parts of a big collective wave function and thus person there
standing, with an ability to determine the path, could affect the interference
pattern. Furthermore, the big collective wave function depends on time now
so the measurements depend on time too. How much the person affects the
measurement on signal photon? We do not know exactly. Analyzing such
a complicated system is far beyond our present capability. Nevertheless, we
can say something about it.

Using the heuristic argument: “The experiment will run so that the result
will be what we expect” will help us to understand what happens. All we
know is that the result should not lead to paradoxes, i.e., if the signal photon
interferes,5 the idler should interfere too no matter what the person does.
Loosely said, if the person put the detector D5 in the assumed way of the
idler, no photon will be detected, because the idler hits somewhere else, filling

3Suppose that we measure observable Â with a possible result a and B̂ with a possible
result b.

4Consider that the interference pattern is not visible as a whole, but is step by step
filled up by isolated hits of signal particles.

5Assume the signal hits the peak of potential interference pattern and this place is very
improbable for photons heading from only one slit.
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Figure 4.4: Experimental setup of delayed choice quantum eraser experiment with
a very quick person and additional detector.

up his own interference pattern. If the signal photon does not interfere,6 the
idler should not interfere neither. Roughly speaking, the person putting the
detector in the way receives the photon.

We would like to stress that one logical trap we could fall into is not
considering photons whose entangled friend is not detected. As we have
shown, we could put the detector D5 in the way in order to obtain the
which-path information of the idler, but this information can not be revealed
while the signal has interfered. For elucidating this, consider experimental
setup on the figure 4.5.

In this case, the which path information of the idler is always revealed and
thus the signal should not never interfere. But is it really so? If the signal
interferes we do probably not detect the idler and, retroactively, the signal
can interfere. In this kind of delayed choice experiments we do not know
exactly whether it is the experimenter or the nature who chooses whether
the which path information will be obtained. In this kind of experiments
the nature could choose by some unknown algorithm whether it allows us to
reveal the information. This problem should be studied experimentally and

6Signal hits the place which is very probably for photons heading from the upper (or
lower) slit and lies in the minimum of the potential interference pattern.
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Figure 4.5: Experiment where the
which-path information is always ob-
tained.

Figure 4.6: Experiment where the
which-path information is always
erased.

is crucial for understanding the logical structure of quantum mechanics.

4.4 Constructing the free will quantum test

At the very beginning we would like to emphasize that the following consid-
erations depend on many experimental results and if some of them emerge
not to be true, constructing such a free will quantum test is not possible.

The first experiment result we need to is that mentioned in the previous
section. We need to know whether the results of the experiments shown on
figures 4.5 and 4.6 are always the same, i.e., in the former signal photon never
interfere and in the latter signal photon always interfere.7 If not, we can not
continue.8 If so, we make another experiment shown on figure 4.7.

We use the timer which pushes automatically the detectors in the way
of the idler in the right time — after the signal photon is detected and
before the idler reaches the prism. The signal photon ‘should know’ what is
preparing and behave accordingly, i.e., since the signal photon is, together
with the idler and detectors and whole pushing mechanism, part of one big
wave function, it has to ‘know’ that the detectors D3 and D4 is going to reveal
the which-path information and therefore does not interfere. This must be
studied experimentally too. If our guess is right, we can step to the free will
quantum test.

The experimental setup of a test, which verify whether we have the free
will or not, is on figure 4.8. The only changed thing is that the mechanism
pushing the detectors is not automatical, but is controlled by a person whom

7Remember that the signal photon is always detected before the idler.
8Unless we change the experimental setup somehow.
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Figure 4.7: Experiment with a mech-
anism which pushes detectors D3 and
D4 into the assumed way of the idler
photon automatically.

Figure 4.8: Experiment where the
person decides whether push the de-
tectors or not.

we test. Now it is the person who decides whether reveal the which-path
information or not. This decision can be made after the signal photon is
detected. But the signal had to ‘know’ what is the person going to do in
order to ‘know’, how to behave — whether interfere or not.

If the signal photon always interfere when the person decides not to push
the button and does not interfere when the person decides to push the but-
ton, the person does not have the free will, because the signal photon has
always known, what is the person going to do. Person’s decision was only
a consequence of former events, influencing and inborn personality, every-
thing what happened in past. Thus the decision is an illusion, because it was
determined what is the person going to do before the decision is made.

If the person has the free will, something unexpected should happen or
some of the presumptions used to the construction of the free will test are
not correct.

Now we see how important the first presumption is — if the result of the
experiment is in some way stochastic, decision of the person does not affect
the experimental result at all and we cannot say anything about it’s free will.

4.5 How is the delayed choice related to in-

formation theory?

In their papers [16, 17] Časlav Brukner and Anton Zeilinger state that a
whole quantum theory is in fact the theory of information. The information is
there introduced as a most fundamental notion and they states that the whole
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quantum theory can be derived from a fact which they called the finiteness of
information. Their construct is also based on propositions, statements which
can the experimenter say about nature. They also define a new measure
of information which is in fact the renormalized Tsallis entropy 1.8 with a
parameter q = 2. Measurements in their interpretation are represented as a
instantaneous changes in a so-called information vector.

If their look on the quantum theory is correct, then also the delayed
choice can be explained using this approach. Nevertheless, their approach
is still in progress and at present it is conceptually difficult to explain the
delayed choice experiment with Brukner et all. approach. The research in
this direction is presently under intense investigation.
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Conclusion

In the first chapter we introduced the concept of information measurement,
compared several types of information and we also axiomatically introduced
Shannon entropy by to different approaches — namely Shannon’s and Khin-
chin’s axiomatics in order to better understand the meaning of the classical
information measure. We also discussed the fact that Shannon’s entropy is
not the only possible logically viable information measure and briefly referred
also to other existent ones. Then we defined entropies derived from Shan-
non’s entropy and specified some of their properties. In the second chapter
we reminded necessary mathematical formalism, defined a quantum bit and
compared it with the classical one and introduced a quantum measure of
average information — von Neumann entropy. We also provide a mathemat-
ically exact proof of Klein’s inequality (i.e., non-negativity of the quantum
relative entropy), especially the equality conditions, because in the literature
it is often mistreated. In the third chapter we wanted to highlight how much
the notion of entanglement is differs from what we know from everyday life.
In the last chapter we reminded the double slit experiment in order to bet-
ter understand the Delayed Choice Quantum Eraser experiment. We also
suggested the free will quantum test.
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Appendix A

Proof of Klein’s inequality

Theorem A.1. (Klein’s inequality)
S(ρ||σ) ≥ 0 with equality if and only if ρ = σ.

Proof. In [13] the proof is not done correctly. Assume that Pij ∈ [0, 1],∑
j Pij = 1. The authors [13] have written:

...Because log(·) is a strictly concave function it follows that
∑

j Pij log qj ≤
log ri, where ri ≡

∑
j Pijqj, with equality if and only if there exist a value of

j for which Pij = 1.

The equality condition is not true. Consider (q1, q2, q3), q1 = 1
4
, q2 = 1

4
,

q3 = 1
2
. If we choose Pi1 = λ ∈ (0, 1), Pi1 = 1− λ, Pi3 = 0, then we have

Pi1 log
1

4
+ Pi2 log
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4
+ Pi3 log

1
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= log
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1

4
+ Pi2

1

4
+ Pi3

1

2

)
(A.1)

λ log
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4
+ 0 log
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= log

(
λ

1

4
+ (1− λ)

1

4
+ 0

1

2

)
. (A.2)

The equality still holds even thought such j does not exist. It is the con-
sequence of the q1 = q2. The statement should be corrected (for clearer
notation we change Pij to Vij):

Suppose that all qi are different, Vij ∈ [0, 1],
∑

j Vij = 1. Then for strictly
concave function log follows that

∑
j Vij log qj ≤ log ri, where ri ≡

∑
j Vijqj,

with equality if and only if there exist a value of j for which Vij = 1.

Proof is the following. Let ρ =
∑

i piPi, σ =
∑

j qjQj, where pi, qi are
nonnegative and different, be an orthonormal decomposition for ρ and σ,
where Pi =

∑
k |ψi,k〉〈ψi,k| is the projector onto the linear subspace spanned
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by orthonormal eigenvectors {|ψi,k〉|1 ≤ k ≤ dim(Ran(Pi)) = Ri} of the
eigenvalue pi.

1 Qj =
∑

l |ϕj,l〉〈ϕj,l| similarly. Let {|k〉} be an orthonormal
basis. Since trace of the operator does not depend on a choice of the or-
thonormal basis so we can assume that {|k〉} is made from eigenvectors of
the density operator σ, that is {|k〉} = {|ϕj,l〉}. Consequently we easily de-
duce that Vij ∈ [0, 1] in (A.5) and ri ∈ [0, 1] in (A.7). Suppose that the kernel
of σ has trivial intersection with the support of ρ. In the case when it has
not we define S(ρ||σ) = +∞.2

1. inequality

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ) =

=
∑
k

〈k|

(∑
i

pi log piPi

)
|k〉 −

∑
k

〈k|

(∑
i

piPi
∑
j

log qjQj

)
|k〉 =

=
∑
i

pi log pi

(∑
k

〈k|Pi|k〉

)
︸ ︷︷ ︸

Ri

−
∑
i,j

pi log qj
∑
k

〈k|PiQj|k〉 =

=
∑
i

(Ripi log(Ripi)−Ripi

(∑
j

(∑
k

〈k|PiQj|k〉
Ri

)
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Vij

log qj+log(Ri)
)

)
(1)

≥

(1)

≥
∑
i

(Ripi log(Ripi)−Ripi(log

(∑
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Vijqj

)
+ logRi)) =

=
∑
i

(Ripi log(Ripi)−Ripi log
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j,k

〈k|PiQj|k〉qj

)
︸ ︷︷ ︸
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)
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≥ 0,

(A.3)

where
Ri = Tr(Pi) = dim(Ran(Pi)), (A.4)∑

j

Vij =
∑
k

〈k|Pi
∑

j Qj|k〉
Ri

=
Ri

Ri

= 1 (A.5)

and since projectors are positive Vij ∈ [0, 1]. The inequality (1) comes

1By Ran(Pi) we mean the range of values of the projector Pi.
2A problem with infinity can be seen on the fourth line of the following derivation.

40



from the corrected statement above

∀i,
∑
j

Vij log qj ≤ log

(∑
j

Vijqj

)
(A.6)

with equality if and only if ∃ji such that Viji = 1.

ri ∈ [0, 1],
∑
i

ri =
∑
i,j,k

〈k|PiQj|k〉qj = Tr(σ) = 1 (A.7)

Ripi ∈ [0, 1],
∑
i

Ripi = Tr(ρ) = 1 (A.8)

and thus the second inequality (2) comes from theorem 1.3 with equality
if and only if

∀i, Ripi =
∑
j,k

〈k|PiQj|k〉qj ⇔ pi =
∑
j

Vijqj. (A.9)

2. equality conditions

(a) ⇐: Trivial.

(b) ⇒: From the equality conditions (A.6),(A.9) we have

∀i, ∃ji, pi = qji . (A.10)

Function f : i −→ ji is injective. For reductio ad absurdum
suppose that both p

(1)
i and p

(2)
i has the same output qji . Then

p
(1)
i = qji = p

(2)
i 6= p

(1)
i (A.10). Now we will prove that for all i

Pi = Qji . From the equality conditions we also have

Viji =
∑
k

〈k|PiQji |k〉
Ri

= 1, (A.11)

Vij 6=ji =
∑
k

〈k|PiQj|k〉
Ri

= 0. (A.12)

Since Ri = Tr(Pi), we can rewrite (A.11) as Tr(Pi) = Tr(PiQji).

Now, using general properties of projectors (Pi = P †i = P 2
i ), (Qj =

Q†j = Q2
j) and Schwarz inequality from theorem 2.7, we get

Tr(Pi)
2 = |Tr(PiQji)|2 ≤ Tr(Pi)Tr(Qji). (A.13)
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We can divide, because Tr(Pi) 6= 0, and we get Tr(Pi) ≤ Tr(Qji).
Now we sum all these inequalities:

dim(H) =
∑
i

Tr(Pi) ≤
∑
i

Tr(Qji) ≤ dim(H) (A.14)

and thus f : i −→ ji is surjective and

∀i, dim(Ran(Pi)) = Tr(Pi) = Tr(Qji) = dim(Ran(Qji)). (A.15)

Now we use (A.12) and derive that Pi = Qji . We also use special
basis made from eigenvectors of the density operator σ defined at
the beginning {|ϕj,l〉}.
For j 6= ji we have

0 = Tr(PiQj) =
∑
m

dim(Ran(Qm))∑
l=1

〈ϕm,l|PiQj|ϕm,l︸ ︷︷ ︸
δjm|ϕm,l〉

〉 =

=

dim(Ran(Qj))∑
l=1

〈ϕj,l|Pi|ϕj,l〉︸ ︷︷ ︸
≥0

(A.16)

and thus

∀l = 1, 2, ..., dim(Ran(Qj)), 0 = 〈ϕj,l|Pi|ϕj,l〉 = ‖Pi|ϕj,l〉‖2.
(A.17)

That is
∀j 6= ji, PiQj = 0. (A.18)

In other words

∀j 6= ji, RanQj ⊂ KerPi = (RanPi)
⊥, (A.19)

RanQj ⊂
⋂
∀i,ji 6=j

(RanPi)
⊥ = RanPi,j=ji . (A.20)

Since dimensions of the subspaces are equal (A.15)

∀i, Pi = Qji . (A.21)

At last we have

(∀i, pi = qji , Pi = Qji)⇔ ρ = σ. (A.22)
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