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Abstract

In this thesis we study cellular automata (CA) – discrete dynamic systems

on a regular lattice, which evolve synchronously in discrete time steps according

to prescribed evolution rules. In our work we briefly introduce a concept of CA

and discuss some CA properties such as an ability of CA to perform universal

computation.

In the second part of our work we have demonstrated a wide applicability of

CA in numerous systems. These included biological systems, such as ants complex

behavior or elementary reversible CA systems (ERCA). Particularly for ERCA

we have shown that they are very rich in their long-time statistical structure.

An important result of this work is, that we have identified a proper (but non-

classical) probability space for each ERCA in which the evolution rule is ergodic.

Key words Cellular automaton, ergodicity, entropy, universal Turing ma-

chine, self organization, ant trails.

Tato práce se zabývá aplikacemi celulárńıch automat̊u (CA) - diskrétńıch dy-

namických systémů definovaných na pravidelné mř́ıžce, které se synchronně vyv́ıj́ı

v diskrétńıch časových kroćıch na základě předem definovaných pravidel. V rámci

rešeršńı části této práce jsou zavedeny př́ıslušné definice a uvedeny základńı vlast-

nosti CA, např́ıklad schopnost některých CA provádět libovolné početńı úkony.

Ve druhé části této práce jsou předvedeny možnosti aplikace CA při popisu

r̊uzných fyzikálńıch a biologických systémů, jako např. komplexńı chováńı mra-

venc̊u. Dále se zabýváme statistickými vlastnostmi tak zvaných elementárńıch

reverzibilńıch celulárńıch automat̊u (ERCA). Důležitý výsledek této práce je, že

jsme našli pro každý ERCA takový pravděpodobnostńı prostor, ve kterém se

evolučńı pravidlo chová ergodicky.

Kĺıčová slova Celulárńı automat, ergodicita, entropie, univerzálńı Turing̊uv

stroj, samoorganizace, mravenč́ı cesty.
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Chapter 1

Introduction

Cellular automata (CA) were invented by John von Neumann and his close friend

Stanis law Ulam in the early 1950, when the former outlined a plan for create self-

replicating machines [1]. These machines were referred by von Neumann as the

automaton [2].

In this first chapter, we briefly describe what is a cellular automaton and give

arguments why it is useful to study them. In the second chapter an abstract

CA is defined mathematically and some classical results about CA are given.

The chapters three and four contains two CA applications in describing complex

systems: Ergodicity of the deterministic universe and the ant trail simulation.

The last, fifth chapter concludes this thesis.

1.1 What is cellular automaton

In order to provide some insight into cellular automata, we will specify a rough list

of properties that common CA has in most cases [3]. Abstract cellular automaton

is a mathematical object with following properties:

• Discrete lattice of cells: Cellular automaton consist of finite (or infinite)

number of elementary units called cells, that form in the lattice. All cells

are supposed to be equivalent.

• Discrete states: Each cell takes one of finite number of possible discrete

states.

1



1. INTRODUCTION

• All cells are updates synchronously in a discrete time steps according to a

local transition rule.

• Transition rule is deterministic. It provides a state of each individual cell in

the next time step taking into account the states of cells in a neighborhood

of the evaluated cell. The local transition rule should be same for all cells

in the lattice.

In this thesis we will call this CA rules as generic CA. Although CA described

by these properties often perform very rich and complex behavior, various gener-

alizations and extensions are studied not less frequently. Such a generalizations

are usually obtained by omitting any of the aforementioned properties. In other

words, above defining rules serves as base for further generalizations.

1.2 Why study cellular automata

There are several motivations for study CA. In order to demonstrate usefulness

of CA, let us give various examples of CA applications.

1.2.1 Powerful, inherently parallel computation

Individual cells can be constructed in form of hardware, which would consider-

ably improve the speed of parallel computation. The fluid flow near and around

aeroplane wings modeled by lattice gases CA [4, 5] is an example of such an ap-

plication. This concept was suggested by Tommaso Toffoli in his article about

Programmable Matter [6]. Toffoli and MIT’s Information mechanics Group have

build several Cellular Automata Machines (CAM), which work inherently paral-

lel. Other promising way is the model of Asynchronous Logic Automata (ALA),

which is derived by adding the temporal locality, i.e., the cells are updated asyn-

chronously. The logical circuit for such a machine were proposed by Kailiang

Chen [7].

2



1. INTRODUCTION

1.2.2 Fundamental study of complex systems

Behavior of some complex systems, both abstract and real, is irreducible, i.e. each

attempt to predict long term behavior by some simplifying like, say, solution of

motion for 2-body problem, will fail [8]. These systems therefore define the most

efficient way to simulate its own behavior [3]. CA are the most simple example

of dynamical system, which are capable to exhibit complex behavior. They were,

as simple models of complexity in nature, systematically investigated by Stephen

Wolfram [9, 10, 11].

1.2.3 Discrete approximation to dynamical systems be-

havior

Wherever a lot of equivalent objects interact with each other, CA may be good

approach to simulate their dynamic. We will give a few examples: CA can

help in physics with simulation of Road Traffic, Lattice Gas, Diffusion phenom-

ena, Non-equilibrium Phase Transitions or Modeling a Snow Transport by Wind

(chapters in the book [12]). Chemical systems were simulated using cellular au-

tomata [13], as well as biological ones [14].

1.2.4 Models of fundamental physics

John Bell proved in 1964 [15], that any physical hidden variable theory is incom-

patible with statistical predictions of quantum mechanics. However, recent works

[16] shows that quantum mechanics may be an emergent phenomenon in sense of

t’ Hooft’s pre-quantization [17].

In principle, CA may represent appropriate underlying structure of quantum

theory. Till now, partial progress has been achieved in this direction. Cellular

automata with additional algebraic structure equivalent to the that of quantum

mechanic harmonic oscillator were constructed [18, 19]. Moreover, an interesting

consideration about CA model that could describe quantum mechanics has been

made by G. t’ Hooft [20].

3



Chapter 2

Definition, classical results

In this chapter we would like to formulate CA algebraically and give several ex-

amples of the most common CA. Then, we will briefly review the most interesting

CA properties and classifications.

2.1 Abstract definition of generic cellular au-

tomata

The definition of generic cellular automata will follow the terminology of the

Ilachinski’s monograph [3] and is also inspired by the article [21].

Definition 1 (CA space). Let Σ = {0, 1, 2 . . . , k − 1} be a finite set of k cell-

states. The space, where cellular automaton lives is a d−dimensional discrete

Euclidean space. The configuration of a cellular automaton at a time t can be

than represented by a map σ(t) : Zd → Σ, where t ∈ N0. The set of all CA

configurations σ is denoted as P .

Definition 2 (CA evolution rule). An evolution step from time t to (t+ 1) is

specified by local evolution rule ϕ : Σ× Σ · · · × Σ︸ ︷︷ ︸
n

→ Σ, where n denotes a size of

cell’s neighborhood. The neighborhood itself can be identified with set of indices

N~i = N~0 +~i,

4



2. DEFINITION, CLASSICAL RESULTS

where N~0 is the neighborhood of the origin.

Corresponding global evolution rule which updates all cells is called Φ, and

maps σ(t) 7→ σ(t + 1). The value of the cell at position ~i and time t can be

expressed as σ(~i; t), or simply σ~i. Using this notation, the state of the i− th cell

in the next time step is given by following equation

σ~i(t+ 1) = ϕ
(
σ~j(t)

)
, ~j ∈ N~i (2.1)

Remark 1. In general, a lattice of CA is supposed to be infinite. However, when

performing computer simulations, one can work only with a finite lattice. There-

fore, it is convenient to introduce periodic boundary condition (Born–von Carman

boundary conditions). For example, boundary conditions of two dimensional CA

are

(∀t ∈ N) (∀i, j ∈ Z) (σi+M,j = σi,j ∧ σi,j+N = σi,j) , (2.2)

where M,N ∈ N are the periods of the lattice.

Remark 2. Let n be a given size of neighborhood and k a number of cell states.

The question is how many possible distinct evolution rules are there for given

n andk. A local evolution rule is uniquely defined when a certain value of a cell

is assigned for all kn states of neighborhood. Hence, the local evolution rule is

defined by an kn-digit number in a base-k number system, which gives us kk
n

distinct evolution rules for given n and k.

This makes systematic study of all rules (with given n and k) quite difficult,

unless both n and k are sufficiently small natural numbers.

2.2 CA examples

2.2.1 One-dimensional Cellular automata

We can assume a symmetric neighborhood of range r. Thus, the general local

evolution rule of 1-dimensional CA has a form

σi(t+ 1) = ϕ (σi−r(t), σi−r+1(t), . . . , σi+r(t)) . (2.3)

5



2. DEFINITION, CLASSICAL RESULTS

The simplest non-trivial class of CA is range r = 1 and Σ = {0, 1}. The evolution

rule of such CAs is given by

σi(t+ 1) = ϕ (σi−1(t), σi(t), σi+1(t)) . (2.4)

Equation (2.4) is commonly represented graphically (see Fig. 2.1). Since there

are only 223 = 256 distinct local evolution rules of the form (2.4), all rules have

been studied systematically by Stephen Wolfram [11].

a b c d

e f g h

Figure 2.1: General one-dimensional (r = 1,k = 2) CA with two states: Σ =
{0, 1}. The black square ≡ 1, white square ≡ 0. All letters a, b, . . . h take values
from the set Σ, according to particular rule.

Wolfram introduced (today standard) naming system of such CA [22]. Each

rule is associated with an eight digit binary number (abcdefgh) and with its

corresponding decimal form.

2.2.2 Two-dimensional CA

In this section we explain the notation commonly used in description of two

dimensional CA. In two dimensions one have more possibilities in choosing a

neighborhood shape. CAs of our interest live in regular Euclidean lattice and

two the most common types of neighborhoods are considered (see Fig. 2.2).

(a) Five cell neighbourhood (b) Nine cell neighborhood

Figure 2.2: Examples of neighborhoods in two dimensions.

6



2. DEFINITION, CLASSICAL RESULTS

Having 2-dimensional lattice, the equation (2.1) is usually expressed with the

help of two indices

σij(t+ 1) = ϕ (σkl(t)) , (k, l) ∈ Nij. (2.5)

Example 1 (Conway’s Game of Life). Life was invented by John Conway in

1970 and is indisputably the most famous 2–dimensional CA at all. It is two–

dimensional, two–state CA defined on a lattice equipped with nine-point neigh-

borhood. The local evolution rule is described in s following way [23]:

1. Any live cell with fewer than two live neighbors dies, as if by needs caused

by under-population.

2. Any live cell with more than three live neighbors dies, as if by overcrowding.

3. Any live cell with two or three live neighbors lives, unchanged, to the next

generation.

4. Any dead cell with exactly three live neighbors cells will come to life.

The popularity of the “Life” comes from its theoretical significance as well as

from a beauty of its evolution. The behavior of the Life appears like evolution of

living organism. Often, the evolution is quite surprising; one never knows, how

will the pattern develop. The rule is chosen carefully so that small structures

(gliders and spaceships) can propagate across the lattice while remaining local.

Interactions of these structures allow complex patterns to emerge. Among many

interesting properties we review here the most important theoretical results.

1. Game of Life is universal CA [24] 1

2. Self replicating machines were explicitly constructed [25].

3. Life obey so called Halting theorem [8]. In general, one can not decide,

whether the computation terminates after finite amount of time or continues

forever 2.

1The universality of CA is described in the section 2.3.2
2In fact, the items 2 an 3 are the results of the universality, which is a very strong property

7



2. DEFINITION, CLASSICAL RESULTS

Further information, Java applets and articles on Conway’s Game of Life can be

found in [23, 26, 27]

2.2.3 Reversible CA

Physical phenomena at a microscopic level are typically considered as being time

reversible, i.e., backward deterministic1. This is a motivation for study of CAs,

which are supposed to be reversible at their primordial (i.e., microscopic) level.

For CA can be the definition of reversibility formulated more precisely:

Definition 3. A CA with the global evolution rule Φ is called reversible, if exists

an inverse global evolution rule Ψ, such that Φ ◦Ψ = Id.

We will mention several reversible CA examples, that are used in literature.

In order to simplify the notation, we will often use 1-dimensional (r, k) CA for

illustration of CA analysis. Generalization for other CA types is in most cases

straightforward. In the next chapter, we will analyze some of them using various

methods.

Example 2. elementary reversible CA

N. Markolus introduced in his article [29] a straightforward way to write down

a reversible rule with help of irreversible one. For ϕ - arbitrary (r, k) CA, the

reversible rule is defined as

σi(t+ 1) = ϕ [σi−r(t), . . . , σi+r(t)]	k σi(t− 1), (2.6)

where 	k denotes subtraction modulo-k. The rules obtained from this process are

frequently called elementary–reversible CA (ERCA), see Ref. [3].

This class of rules is not only reversible, but it is also invariant under time

reversal in sense of following equation, which is a simple rearrangement of equa-

tion (2.6).

σi(t− 1) = ϕ [σi−r(t), . . . , σi+r(t)]	k σi(t+ 1). (2.7)

1However, kaons, B-meson etc. violate this symmetry [28].

8



2. DEFINITION, CLASSICAL RESULTS

For general d-dimensional Euclidean space take equations (2.6) and (2.7) form

σ~i(t+ 1) = ϕ
(
σ~j(t)

)
	k σ~i(t− 1), ~j ∈ N~i, (2.8)

σ~i(t− 1) = ϕ
(
σ~j(t)

)
	k σ~i(t+ 1), ~j ∈ N~i, (2.9)

where N~i is a neighborhood of the ~i− th cell.

Obviously, rule (2.6) is second order in time1, which makes ERCA rules gen-

eralized ones. However, the following theorem shows, that each second-order rule

can be viewed as a generic one.

Theorem 1. For each CA (not necessary reversible) second order in time with

local evolution rule

ϕ : σi(t+ 2) = ϕ [σi+j(t+ 1), σi+j(t)] , j ∈ {−r, . . . , r}. (2.10)

exists an equivalent first order (r, k2) generic reversible rule, such that cells of the

first order rule consist of two consecutive cells of the original second order rule.

Proof. We merge two consecutive cells together, so that ∀i ∈ Z the new cells

consist of doublets:

σ̃i(t) ≡ [σi(t), σi(t+ 1)]

σ̃i(t+ 1) ≡ [σi(t+ 1), σi(t+ 2)]

. . .

The situation is illustrated in the figure 2.3.

1two consecutive states are necessary to predict new state.

9



2. DEFINITION, CLASSICAL RESULTS
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Figure 2.3: The merged state σ̃i(t+1) (gray cells) can be expressed as a function of
merged cells σ̃ at time t and at coordinates i−r, . . . , i+r (highlighted rectangle).
In this picture: r = 2.

It is not difficult to see, that for ∀i the cell σ̃i(t + 1) can be expressed as a

function of cell states σj(τ), where j ∈ {i − r, . . . , i + r} and τ ∈ {t, t + 1}. We

will show this for both parts of the doublet σ̃i(t+ 1) ≡ [σi(t+ 1), σi(t+ 2)] .

1. σi(t+ 1) is part of both merged cells σ̃i(t) and σ̃i(t+ 1). Hence, statement

of the previous paragraph holds.

2. σi(t+2): According equation (2.10) is σi(t+2) function of σi(t) and σj(t+1),

j ∈ {i− r, . . . , i+ r}, what was to be proved.

Thus, we can write an evolution formula for σ̃i(t+ 1):

σ̃i(t+ 1) = ϕ̃[σ̃i−r(t), . . . , σ̃i+r(t)],

which means, that ϕ̃ is first order generic (r, k2) reversible rule. Rules Φ and

Φ̃ differ only in the definition of cell ; but geometrical pattern remains identical.

Therefore, we can say that rules Φ and Φ̃ are equivalent.

2.3 Behavioral classification and universality

This section introduces commonly used behavioral classification of CA accord-

ing to Stephen Wolfram. Then, computational universality of class c4 CA is

discussed.

10



2. DEFINITION, CLASSICAL RESULTS

2.3.1 Wolfram’s behavioral classes

The simplest way how to characterize CA dynamics is just have a look at the

figure of given CA. Stephen Wolfram introduced four behavioral classes which

enable us to make quick characterization of CA [22].

• Class c1: All cells eventually die out after short period of time.

• Class c2: Simple stable states or periodic and separated structures emerge.

• Class c3: Chaotic non-periodic patterns are generated.

• Class c4: Localized complex patterns are formed; they propagate and in-

teract with each other.

The rules of the last class c4 are probably the most exciting ones. They may

be able to simulate logical operations and therefore, some of them, could serve

as an universal computer, like a Turing machine. The universality of CA is a

subject of the next part of this chapter.

For a better insight into Wolfram’s classes we put some representative pictures

for each class in the Fig. 2.4 and 2.5.

space

tim
e

50 100 150 200

50

100

150

200

(a) Rule R96

space

tim
e

50 100 150 200

50

100

150

200

(b) Rule R10

Figure 2.4: Examples of CA from various behavioral classes introduced by S.
Wolfram. (a) Trivial evolution of the class c1 rule. (b) after a few steps became
the pattern quite trivial and easy to predict. This CA belongs to the class c2.
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(a) Rule R90
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50
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(b) R110

Figure 2.5: Examples of CA behavioral classes (a) Pattern appears highly chaotic;
it is almost impossible to predict the CA state without explicitly running the
simulation. Therefore, CA in is of the class c3. (b) example of the c4 class:
evolution is hard to predict. However, locally some structures propagate across
the lattice and interact with each other.

2.3.2 Computational universality of CA

As we have already noted, there exist CAs capable of universal computing. For

a proper explanation of this term we need to introduce the concept of Turing

machine.

Turing’s machine (TM) is a theoretical (though practically realizable) de-

vice that manipulates symbols on a strip of tape according to a prescribed

rules [30]. The latter are specified in the so-called ”Rules table”. Despite its

simplicity, TM can be made so that it simulates the logic of any computer algo-

rithm – proof of this is not easy but it was proved in 1936 by Alan Turing [8].

TM is particularly useful in explaining the functions of a central processor inside

computers. There are, however, two critical assumptions in TM, namely that

both the time of calculation and the storage space for data are not limited in

their size.

Since TM itself is a computer, it can be simulated by another TM. If TM

12



2. DEFINITION, CLASSICAL RESULTS

is able to simulate any other Turing machine, it is called a universal Turing

machine – UTM. Also the proof of UTM existence is quite complicated; firstly

it was proved by Alonzo Church [31] in 1936.

In fact, all modern computers are based on the notion of UTM. Given the right

instructions, and sufficient memory, any present computer (e.g., the one found in

your fridge) could, for example, simulate a whole operating system. The fact that

it might be ridiculous to waste time using fridge computers to do anything other

than what their were designed for is irrelevant – the point is that they obey the

same model of computation as every other computer and can therefore achieve

the same result.

Since CA is a logical system, which may simulate other logical systems, it

could happen, that there exists a CA which is able to simulate UTM. Such a CA

is called universal cellular automaton. First universal CA was formulated by

John von Neumann. He constructed (see, e.g., [32]) a two-dimensional CA with

four cell neighborhood (Fig. 2.2a) and with cells of 29 cell states, that would be

capable of simulating a UTM for certain configuration of about 200000 non-zero

cells.

Today, a lot of CA rules are known to be universal. The most famous are,

of course, the Game of Life, but the one with the most simple evolution rule is

(according to Wolfram’s notation) the (r = 1, k = 2) rule R110 (see Fig. 2.5b).

2.4 Methods of CA analysis

This section describes various statistical methods of CA analysis. Substantially

more extensive review of such methods can be found e.g., in Illachinsky’s mono-

graph [3]. Here, we recall only a necessary notation that will be used in the next

chapter.

2.4.1 Density

A density is the simplest quantity characterizing configuration of CA at a time

t. Assuming periodic lattice with finite number of unique cells, the density is

13



2. DEFINITION, CLASSICAL RESULTS

defined as a fraction

ρ [σ] (t) =

∑
~i σi(t)∑
~i 1

, (2.11)

where ~i goes over the period. The denominator stands for the number of all cells

in one period.

Though an apparent simplicity, the density is an important quantity describ-

ing a CA thermodynamic behavior. If the density of cells at a long time scales

tends to different value than 1/2 (assuming CA with two possible cell states,

Σ = {0, 1}), than entropy tends to a non-extremal value and the system can not

be ergodic (for equiprobable measure).

2.4.2 Two point correlation

Correlation between individual point is particularly important and easily mea-

surable statistical quantity. Let us first define the two point correlations for two

– states CA. Usually, spin–like cell ζ states are used instead of σ; where

ζi =

+1 if σi = 1

−1 if σi = 0

Definition 4. A two point space correlation in a given time is defined by aver-

aging over the space lattice.

Cr = 〈ζi(t)ζi+r(t)〉i − 〈ζi(t)〉i〈ζi+r(t)〉i, (2.12)

where r ∈ Nd is an index shift.

Similarly is defined a time correlation:

Definition 5. A k – order time correlation of the i-th cell is defined by averaging

over the time.

Cr = 〈ζi(t)ζi(t)〉t − 〈ζi(t)〉t〈ζi+r(t)〉t, (2.13)

where k ∈ Nd is an order of the time correlation.

The presence of both time and space correlations is the first indication of

complex behavior. The time correlation between two states is of particular im-

14



2. DEFINITION, CLASSICAL RESULTS

portance when studying a CA dynamics. In general, it contains information

about Markovianity of the system (i.e., memory properties) [34]. CA exhibit-

ing long time local pattern formation, or CA which are not ergodic, must have

time–correlated steps (does not exhibit a pure random walk through all possible

states). Time correlation can be therefore used as a simple indicator of suspicion

of complex behavior.

2.4.3 Entropy

In what follows we will describe entropic methods as a mean of CA analysis. At

first, we introduce here a concept of Shannon entropy.

Definition 6 (Shannon entropy). Let (Ω, p) be a discrete probability space, where

Ω = {ω1, . . . , ωn} is a finite set of possible events, and each element has a proba-

bility pi. The Shannon entropy of Ω is

H(A) = −
n∑

i=1

pi log2 pi (2.14)

A probability distribution p can be obtained from CA simulations in three

possible ways.

1. Averaging over sufficiently long time - gives a probability distribution of

each single cell.

2. Averaging over sufficiently large area - results in time-dependent probability

distribution.

3. Averaging both over space and over time - now the probability distribution

depends only on CA itself and on the initial conditions.

However, Shannon’s entropy is syntactic, not semantic entropy. It measures

only overall randomness and does not take into account further structures and

patterns of CA. Therefore, it is helpful to introduce other kinds of entropies and

complexity measures, which will manage to do this.

15
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Definition 7 (Local Shannon entropy). Let us consider an arbitrary CA. Let Ni

be a neighborhood of the i-th cell (distinguished from domain of definition of the

local evolution rule). The local Shannon’s entropy Hloc(i) of the i-th cell is also

evaluated according to equation (2.14), with probabilities redefined as

pi =
number of cells σ ∈ Ni in the i-th state

number of cells in N
. (2.15)

The last entropic measure which we will use in the next chapter is a k−order

conditional Shannon entropy. It quantifies the uncertainty of the state at the

time t, which remains when the state of the system at the time t − k is known.

This measure is useful when studying non-Markovian processes.

Definition 8 (Conditional k-order Shannon entropy). Conditional k-order Shan-

non entropy of given CA at time t is [35]

H(σ(t)|σ(t− k)) = −
n∑

i=1

p(i, t− k)
n∑

j=1

p(j, t|i, t− k) log2 p(j, t|i, t− k). (2.16)

The meaning of this entropic measure (already mentioned above – remaining

entropy in case that the state at the time t − k is known) may be clarified by

a following equation, which can be derived directly from the definition 2.16 (see

e.g. [35]).

H(σ(t)|σ(t− k)) = H(σ(t), σ(t− k))−H(σ(t− k)),

where H(σ(t), σ(t− k)) is the joint entropy of the two states σ(t) and σ(t− k).
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Chapter 3

Statistical properties of ERCA

In this chapter, we analyze statistical properties of selected 2-dimensional ERCA

with the help of methods described in the previous chapter. We will also mention

some of their theoretical properties.

3.1 Ergodic theory of cellular automata

Since CA simulation is nothing than an interaction of a huge amount of interact-

ing cells, our attention may be turned to statistical properties of CA evolution,

namely, we will concern ourselves with ergodicity of elementary reversible rules

(defined on the page 8).

While in a conventional statistical physics there is a natural state-ensemble

measure – phase-space measure (also known as Liouville measure), no such nat-

ural measure exists in general for CA. Hence, we have to recall an appropriate

notion of probability space and give some definitions allowing us to study the

ergodicity with means of mathematics.

Probability space (P,F, µ) consists of

P . . . the set of all CA states (set of elementary events),

F . . . is a σ−algebra, where F ⊂ 2P ,

µ . . . is a probability measure µ : F → [0, 1].
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3. STATISTICAL PROPERTIES OF ERCA

Definition 9. Let (P,F, µ) is a probability space. F is a measurable map Φ :

P → P . Than Φ is measure-preserving, if (∀A ∈ F) (µ(Φ−1(A)) = µ(A)).

Finding an appropriate measure in whose framework we can ensure ergodicity

of a transition rule Φ is an important result of this chapter. In fact, generally can

exist (and in mathematical ergodic theory invariably do exist) various different

measures that can do the job. We will stress this point again at the later stage

of the present chapter.

Let us first define ergodicity of a transition rule Φ. Intuitively, CA are said to

be ergodic if they can pass in the course of their time evolution (which might be

very long) through all possible feasible configurations. This definition deserves

some specification. Mainly, the definition should include dependence of ergodicity

on the probability measure:

Definition 10. Let Φ be measure preserving transformation on P . Than Φ is

ergodic if

(∀A)
(
FΦ−1(A) = A

)
⇒ (µ(A) = 1 ∨ µ(A) = 0) .

The most important is the fact, that ergodicity is supposed to identify large

time averages with state ensemble averages. This is a tenor of the Ergodic theo-

rem:

Theorem 2 (Ergodic theorem [36]). Let Φ be measure-preserving and ergodic on

P. Then for ∀g : P → R satisfying∫
|g(x)|dµ(x) < +∞ ,

we have

lim
n→∞

n−1∑
k=0

g
(
Φkω

)
n

=

∫
g(x)dµ(x)

for all ω except a set of measure zero.

The following theorem gives a necessary and sufficient condition to ensure

that Φ is not ergodic. This theorem is taken from [37]. While majority CAs are

not ergodic, this theorem can serve as simple way how to show it.
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3. STATISTICAL PROPERTIES OF ERCA

Theorem 3. Let (P,F, µ) is a probability space, and Φ is a transformation pre-

serving the measure µ. Than, the transformation Φ is not ergodic if and only if

there exist an invariant set S, invariant measures µ1, µ2, such that for certain

λ ∈ (0, 1)

µ = λµ1 + (1− λ)µ2,

and

µ1(S) = 1, µ2(S) = 0,

Proof. See for example [37].

Generally, despite simplicity of CA, the ergodicity of an ergodic CA is not

easy to prove. There exists no general recipe how to do it. Nevertheless, some

theoretical results concerning special CA classes can be found in literature, e.g.,

in Refs. [38, 36, 39].

3.2 Ergodicity of ERCA

Let us now turn our attention to the ergodic properties of ERCA defined by

the equation 2.8. The most important object of the ergodic theory is Ergodic

transformation

Φ : P → P

(see definition 10). However, ERCA are of second order in time, which means

that the global evolution rule is

Φ : P × P → P.

Hence, strictly speaking, the global evolution rule of ERCA can not be consid-

ered as an ergodic rule. However, in sense of the Theorem 1 the ERCA can be

equivalently viewed as a transition rule between two-states

Φ̃ : P × P → P × P.

Let us denote P̃ ≡ P × P . Now, it makes sense to find (for given Φ̃ : P̃ →
P̃ ) a measure µ and the sigma algebra F, such that the mapping Φ̃ is ergodic
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3. STATISTICAL PROPERTIES OF ERCA

transformation.

Before analyzing ergodic properties of ERCA we will remark on some elemen-

tary properties of global transformation Φ̃.

Remark 3. Let Φ̃ is a global evolution rule of ERCA. Than, Φ̃ is a bijection.

Proof. Inverse mapping of Φ̃ can be derived using the equation (2.9). Hence, Φ̃

is bijective mapping.

Remark 4. Assuming Born–von Carman periodic boundary conditions on, WLOG,

two-dimensional lattice, the number of possible distinct states of CA is necessar-

ily finite and is equal to the number 2MN , where M,N are the periods of the

lattice. Therefore, an arbitrary initial conditions result into a periodic evolution.

Remark 5. There is no Garden of Eden, i.e. each two-cell σ̃ has its predecessor.

Proof. The existence of a predecessor can be proved with the help of the equa-

tion (2.9), or using following argument: Let us suppose, on contrary, that there

is a state σ̃, such that for ∀σ̃1 ∈ P, Φ̃σ̃1 6= σ̃. From the last Remark 4 follows,

that for each initial condition there exist a evolution period N , such that

Φ̃N σ̃ = σ̃.

Thus, the predecessor of the state σ̃ is (Φ̃N−1σ̃).

From the previous remarks follows that the state-space P̃ of each ERCA is

divided into several cycles - set of states that are periodically visited during the

simulation. Depending on initial conditions, the simulation starts in a certain

cycle and never reaches a state of a different cycle.

Definition 11 (ERCA cycle). A set C ⊂ P̃ is called a cycle of ERCA Φ̃ if there

exist a finite period N , so that and

(∀σ̃ ∈ C)(Φ̃N σ̃ = σ̃)

(∀σ̃1σ̃2 ∈ C)(∃M ≤ N)(Φ̃M σ̃1 = σ̃2)
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3. STATISTICAL PROPERTIES OF ERCA

Two distinct probability spaces (P̃ , µ1,F1), resp. (P̃ , µ2,F2), are considered,

where F1 = 2P̃ –set of all subsets of P̃ ; and µ1(σ) = 1
n1

, where n1 is cardinality

of P̃ . Let C ⊂ P̃ be a cycle of cardinality n2. The letter sigma algebra is also

F2 = 2P̃ ; the measure µ2 is non-zero only for σ̃ ∈ C:

µ2(σ̃) =

1/n2 if σ̃ ∈ C

0 if σ̃ ∈ P \ C

Remark 6. If given ERCA consists of more than one cycle, automatically, it is

not ergodic with respect to the probability space (P̃ , µ1,F1).

Proof. To prove this, let us suppose, on contrary, that Φ̃ preserves the measure

µ1 and is ergodic. The probability space can be decomposed into two sets

P̃ = C ∩ (P̃ \ C) ,

where C ⊂ P̃ is a cycle. Similarly, the probability measure µ1 can be decomposed

as

µ1 =
n2

n1

µ2 +

(
1− n2

n1

)(
n1

n1 − n2

[
µ1 −

n2

n1

µ2

])
. (3.1)

The above equation can be verified by algebraical modifications of the right side.

Since the set P̃ \ C is non-empty, an expression(
n1

n1 − n2

[
µ1 −

n2

n1

µ2

])
is a complementary measure of µ2, i.e., it is an uniform measure on P̃ \ C and

is also invariant under Φ̃. The equation 3.1 represents a convex decomposition

of µ1 for λ = n2/n1. Hence, according to the Theorem 3, the measure µ1 is not

ergodic.

Theorem 4. Each ERCA transformation Φ̃ is measure preserving and ergodic

with respect to the probability space (P̃ , µ2,F2).

Proof. This can be proved directly from the definition 10. Suppose, that A is an
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3. STATISTICAL PROPERTIES OF ERCA

invariant set, i.e. Φ̃−1(A) = A. Clearly, A can be written as an union of cycles Ci

A =
⋃
i

Ci

Using the fact that mu2 is non-zero only on the cycle C, we obtain a relation for

µ2(A):

µ2(A) =

1 . . . if C ⊂
⋃

iCi

0 . . . if C ⊂ P \
⋃

iCi,

And therefore, Φ̃ is ergodic.

Note, that there are as many similar (and ergodic) measures as is the number

of distinct cycles. However, there is an important drawback of the measure µ2.

The µ2 is non-zero on the cycle C, which means that knowledge of ERCA tra-

jectory is necessary when evaluating the measure. Hence, in fact, both sides of

the equation (2) from the Ergodic theorem depend explicitly on the trajectory in

time. This, unfortunately, substantially reduces the practical usefulness of ERCA

ergodicity with respect to the measure µ2.

3.3 Definition of simulated rules

Let us define three selected two–dimensional ERCA rules. In the text below,

we will denote them A, B and C. In order to obtain greater variety of their

behavior, we derive these ERCA rules from generic evolution rules of different

Wolfram’s behavioral classes.

Definition 12 (A). A reversible rule A on Euclidean lattice with five cells neigh-

borhood (see the Fig. 2.2a) is defined by the equation (2.8), where local evolution

rule ϕ is graphically represented in the Fig. 3.1.
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3. STATISTICAL PROPERTIES OF ERCA

Figure 3.1: The local evolution rule A. This rule is invariant under 90-degrees
rotation. This means, for instant, that the second diagram describes in fact
evolution of four distinct neighborhood states. No matter whether the black is
on the left, on the right, at the top or below; always, in that cases, the resulting
cell will become black.

Definition 13 (B). Rule B is defined in the same way as A, but the local evolution

rule ϕ is different – see the Fig. 3.2

Figure 3.2: Local evolution rule of B. The symmetry of the local evolution rule
is described in the caption of Fig. 3.1.

Definition 14 (C). The third rule is defined in the Euclidean space with a nine

point neighborhood (see fig. 2.2b). We chose a local evolution rule ϕ as a well

known Conway’s Game of Life. The overall evolution is given by the equation

(2.8) with the Conway’s rule as the local rule ϕ.

Each ERCA rule was derived from a generic rule of different behavioral class.

The evolution of the rule 12 is of high randomness which place it into the class
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c3. Rule 13 just replicate the original pattern, when the time is power of two

[12], witch allows high predictability. Hence, B is class c2. At last, the Life is

known to universal c4 class.

3.3.1 Initial conditions

Here, we define initial conditions that will be mostly used in our simulations.

The initial conditions consist of two consecutive states of CA, say σ(0), σ(1).

Note, that both slides σ(0), σ(1) can be chosen completely arbitrarily. In our

simulations, we always let the slide σ(0) blank; as σ(1) we choose one of the

slides of the Fig. 3.3. The initial condition 3.3a is chosen so that the initial

pattern is as simple as possible, but not symmetric. In the Fig. 3.3b, the initial

condition is set as a state with maximum entropy, i.e. is completely random.

20 40 60 80 100

20

40

60

80

100

(a) Initial conditions ”CA”

20 40 60 80 100

20

40

60

80

100

(b) Random initial conditions

Figure 3.3: Initial conditions. This Fig. shows only slides σ(1), while σ(0) are
left blank.

3.4 Simulation results

The simplest analysis is just run and look at the ERCA evolution. Several snap-

shots evolved from the ”CA” initial condition after, 5, 50 and 500 time steps are

in the Fig. 3.4
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(c) rule A, t = 500
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(e) rule B, t = 50
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(f) rule B, t = 500
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(g) rule C, t = 5
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(h) rule C, t = 50
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(i) rule C, t = 500

Figure 3.4: Evolution of rules A, B and C

The Fig. 3.4 shows, that all three create highly disordered pattern after some

time. Nevertheless, all ERCA must after certain amount of time (probably very

long) return to the initial state. We shall also note, that while the rule A perform

high space correlation, the rule C is highly time correlated.
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(e) rule C, init. cond. ”CA”
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(f) rule C, random init. cond

Figure 3.5: Analysis of local ergodicity. Number of time steps needed until CA
goes through all states of the neighborhood of given size. 50 independent ex-
periments were done for each neighborhood size. In case that some states were
never reached, the average fraction of reached neighborhood states is displayed
(picture (c)). Evolution of ”CA” initial conditions (always on the left) is com-
pared with that of random ones (on the right). Simulations ran on the 100×100
lattice. All simulation (except 3.5c) seem to confirm local ergodicity up to the
size of neighborhood of 12.

26



3. STATISTICAL PROPERTIES OF ERCA

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

mean entropy density
density of black cells

(a) rule A

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

local entropy
cond. entropy|(t−1)
cond. entropy|(t−2)

(b) rule A

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

mean entropy density
density of black cells

(c) rule B

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

local entropy
cond. entropy|(t−1)
cond. entropy|(t−2)

(d) rule B

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

mean entropy density
density of black cells

(e) rule C

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T [steps]

E
nt

ro
py

 [a
.u

.]

 

 

local entropy
cond. entropy|(t−1)
cond. entropy|(t−2)

(f) rule C

Figure 3.6: We analyzed a time dependence of Shannon entropy, density of black
cells (on the left), local and conditional entropy. For all entropy analysis we used
the ”CA” initial conditions. Simulations ran on the 100×100 lattice.
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Though none of ERCA rule is ergodic with respect to the measure µ1, many

ERCA rules reach thermodynamic equilibrium – the measures are stabilized in

time (see Fig. 3.6a 3.6e, 3.6f). We can show (see Fig. 3.5) that the ERCA rule

may become ergodic, if we introduce classes of equivalence for ERCA states:

Definition 15. The ERCA state σ(1) is equivalent with the state σ(2) with respect

to the neighborhood N (distinct from rule neighborhood) if and only if(
∀~i ∈ N

)(
σ
(1)
~i

= σ
(2)
~i

)
We say, that the rule Φ is locally ergodic in the neighborhood N, if it can

pass in the course of their time evolution through all possible feasible classes of

equivalence of N. Simulations showed, that (except rule B with ”CA” initial

conditions) all rules are locally ergodic in neighborhoods up to the neighborhood

size of 12 cells.

In the figure 3.6 is shown a time dependence of various entropic measures.

All simulation started from ”CA” initial condition and therefore have low initial

entropy. After approximately 300 time steps the entropic measures often tends

to stabilize at certain values (there are, however numerous exceptions).

Interesting behavior perform the rule B. When the time is equal to the power

of two (and its multiple) the pattern jumps to a highly ordered state. In the

next steps, it becomes highly chaotic again. This results in the beats of entropy

dependence.

Finally the Figs. 3.7 and 3.8 show the time correlations of selected ERCA

rules (averaged over 500 time steps). Note, that time correlations depend on

both specific ERCA rule and initial conditions.
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Figure 3.7: Time correlation analysis of rules A,B and C averaged over first
512 time steps, where k is the order of correlation. Starting form random initial
condition. While rules A and B remain practically uncorrelated, the rule C creates
local areas with high second order time correlation.
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Figure 3.8: Time correlation analysis, same as in the Fig. 3.8, but starting with
”CA” initial conditions.
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Chapter 4

CA application in biology

CA can be used in simulation of biological system, provided that this system is

made of large number organisms and behaviour of each organism is reducible to

the finite number of possible responds. This assumption fulfilled if, for instant,

observed object is rather simple (like unicellular organisms). However, more com-

plex organisms could be simulated as well, if we consider only the most important

behavioural characteristics. For example, the bird flocking was successfully sim-

ulated using CA [40].

In the natural world occur many forms of cooperation of live organisms. We

will give several examples. Complex societies are created by number of insect

species, among them the most remarkable are the societies of ant and bees [41].

In this chapter, we will describe simulations of ant movement and a sponta-

neous trail creation. In order to keep things as simple, as possible, only one ant

caste (forager ants) is supposed. In other words we will simulate only ants, whose

task is to find food an deliver it to the nest.

4.1 Ant trail simulation

Here, we will summary empirical evidences on ant’s orientation and movement

in the environment. Later, these facts will inspire us to formulate a simplified

CA model. Forager ants searching for food usually lay down chemicals called

pheromones, as they return to the nest [42, 43]. The pheromone trail is renewed
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4. CA APPLICATION IN BIOLOGY

as long as the supply hold out.

There are several mechanisms of ant orientation. It is suggested that ants

remember number of steps they taken [44]. Also, they have a visual memory of

surrounding objects if available [45]. The return to the nest is also simplified by

position of the Sun [46] and gravity vector evaluation. Moreover, some species

are able to orient to Earth’s magnetic field [47]. It can be said, that any ant

knows the direction and the distance to its nest.

4.2 One dimensional model

The ant trail simulation on one-dimensional lattice was published in detail in the

twelfth chapter of the book [48]. Here, we will follow this definition.

Definition: The ants live on the one-dimensional ring of size N, i.e. in terms

of CA, there is N different cells {σi}Ni=1 with a boundary condition σN+1 = σ1.

Each cell may, or may not be occupied by ant and by a pheromone droplet. Thus,

it is convenient to write a cell state in the vector form

σi =

(
a

p

)
,

where

a =

1 when ant is present

0 when ant is not present
p =

1 when pheromone is present

0 when pheromone is not present
.

Evolution rule: We will follow the formalism of mentioned publication [48].

In this model, all ants are allowed to move in the same direction. The probabilistic

evolution rule is illustrated in the figure 4.1.
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4. CA APPLICATION IN BIOLOGY

t+1:

t:

t:

q Q q

f f f f

ants

pheromones

ants

ants

pheromones

pheromones

Old state:

New state:

Figure 4.1: Ant trail in 1D: evolution rule.

Updating cells proceeds in two stages: 1) Motion of ants; 2) Evaporation of

pheromones.

1. Motion of ants The ant at the i− th position moves forward with proba-

bility pi

pi =


Q if σi+1 =

(
0
1

)
q if σi+1 =

(
0
0

)
0 if σi+1 =

(
1
1

)
∨ σi+1 =

(
1
0

)
.

2. Evaporation of pheromones Each ant creates a pheromone in it’s posi-

tion after stage 1). This means:

σi(t) =

(
1

1

)
∨ σi(t) =

(
1

0

)
⇒ σi(t+ 1) ≡

(
1

1

)
.

Free pheromones (with no ant in same cell) will evaporate with probabil-

ity f :

σi(t) =

(
0

1

)
⇒ σi(t+ 1) ≡


(
0
0

)
with probability f(

0
1

)
with probability (1− f)
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4. CA APPLICATION IN BIOLOGY

When starting from random initial condition (each cell with ant probability

= pheromone probability = 1/3), for parameters Q = 0.75, q = 0.25, f = 0.005,

thick clusters propagating with probability q emerges (see Fig. 4.2).
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Figure 4.2: Fifty ants on a periodic one-dimensional trail starting from random
initial condition. After a few steps clusters moving forward with an average speed
q. All ants join together into one cluster after time of order 105 steps.
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Figure 4.3: Fundamental diagram of ant movement on 1-dimensional trail. Model
parameters were set to: Q = 0.8, q = 0.4, f = 0.05. Compared with the real road
traffic experiment (taken from [49])

34



4. CA APPLICATION IN BIOLOGY

Fundamental diagram of unidirectional ant movement is very similar to that

of highway transport [50].

4.3 Two dimensional model

In this section we would like to simulate the ant trail formation between a food

source and an ant’s nest. One dimensional model and it’s behaviour inspired us

to make an extension in two dimensions. This leads to additional problems which

have to be solved. For instant, somehow, orientation of ants and the pheromone

trail formation have to be defined.

Here, we give a list of requirements, that should our model obey. These

assumptions are inspired by the empirical facts mentioned in the section 4.1.

1. Every ant knows the position of the nest.

2. Maximum one ant per cell is allowed.

3. The ants can carry an item of food.

4. Motion of ants is brownian.

5. Ants carrying food deliver it to the nest.

6. Ants searching for food prefer direction where pheromone is more concen-

trated. Also, the pheromone stimulate ants to go further from their nest.

7. Ants delivering food to the nest drop down pheromone.

8. A pheromone trail diffuse to the environment and slowly evaporate, unless

renewed by other ants.

We will describe the model more technically.

4.3.1 Space definition

The environment is made of three distinct arrays of size N ×N ; let denote them

A,O and P, where N ∈ N is size of the arrays; A,O and P contain information
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4. CA APPLICATION IN BIOLOGY

about ants position, objects position (like the nest and food) and pheromone

distribution respectively. Following equations (4.1),(4.2) and (4.3) explain more

exactly the meanings of arrays A,O and P.

Ai,j =


−1 . . . ant with food at the position (i, j)

0 . . . no ant

1 . . . ant without food

(4.1)

Oi,j =



−1 . . . nest cells at the position (i, j)

0 . . . no object at this position

1 . . . food supply

2 . . . forbidden area

(4.2)

Pi,j ∈ {0, 1, 2, . . . , 255} . . . represents pheromone concentration. (4.3)

There are fixed boundary conditions instead of periodic ones in this model.

We consider such a choice as more natural world for ants.

4.3.2 Pheromone diffusion

A discrete approximation of continuous diffusion equation is used in description

of pheromone spreading into the environment. The classical diffusion equation

can be written as
∂ϕ(r, t)

∂t
= K∆ϕ(r, t), (4.4)

where K is a diffusion coefficient. For grid size h the discrete approximation of

Laplace operator is

∆ϕ(x, y) ' ϕ(x+ h, y) + ϕ(x− h, y) + ϕ(x, y − h) + ϕ(x, y + h)− 4ϕ(x, y)

h2

For our purposes we take the grid size h equal to one. Therefore, we get for

arbitrary discrete array P following definition of discrete Laplacian ∆d:

∆dPi,j ≡ Pi+1,j + Pi−1,j + Pi,j−1 + Pi,j+1 − 4Pi,j
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4. CA APPLICATION IN BIOLOGY

Using this, the diffusion rule including evaporation can be written in two steps

(4.5) and (4.6)

P̃(t) ≡ C(P(t) +K∆dP(t)) (4.5)

P(t+ 1) ≡ min(255,max(0, bP̃(t)c)), (4.6)

where C ∈ (0, 1) is evaporation constant, and bxc denotes the largest previous

integer of x. Note that while equation (4.5) contains whole dynamics, the latter

equation (4.6) only keeps the array P integer non-negative.

4.3.3 Ant motion

The motion of ants has two phases:

1. Decision where to jump

2. If chosen cell is free, jump there. Otherwise something else may happen.

Ad 1) Let an ant is at a position ~x ≡ (i, j). Then, the ant chooses a new

position as a realization of a discrete random variable X.

X = round(F ), (4.7)

where F is normally distributed variable in R2 with a mean value vector ~x + a~n

and a diagonal covariance matrix σ2I. Here, ~n denotes a unit vector to the

certain direction, a and σ2 ∈ R are parameters. From a physical point of view

the first parameter a is proportional to the external accelerating field, whereas σ2

is proportional to the temperature of the Brownian particles (m〈dx
dt

2〉 = kBT ).

F ∼ N(~x+ a~n, σ2I) (4.8)
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4. CA APPLICATION IN BIOLOGY

Ants prefer cells with higher concentration of pheromone. Therefore, ants need

to measure discrete gradient of pheromone concentration ~∇dP, where

(~∇dPi,j)x ≡
1

2
(Pi+1,j + Pi−1,j)

(~∇dPi,j)y ≡
1

2
(Pi,j+1 + Pi,j−1) .
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Figure 4.4: Scheme of 2D ant trail. Freely moving foragers search for food. At
the same time, they are attracted by pheromone (gray), which help them to find
the direction. Loaded ants (marked as x) are delivering the food to their nest.

Depending on whether an ant carry food or not is the direction vector ~n

determined as

~n =

c1(~G− ~S) . . . if ant carry food

c2(~G+ ~S) . . . if search for food
, (4.9)

where c1, c1 are multiplicative constants so that ~n is unit vector and

~S =
~x− ~xnest
‖~x− ~xnest‖

= The unit radius vector of the current position.

~G =


~∇dP

‖~∇dP‖
. . . if ~∇dP 6= 0

random unit vector . . . else;

Remaining constant a and σ2 can be chosen freely as a parameters of the model.

Usually, we choose them close to one.
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4. CA APPLICATION IN BIOLOGY

The whole situation is illustrated in the picture 4.4.

Ad 2) Let suppose, that an ant is at the position ~x and we got a vector ~y:

the realisation of the random variable X (from equation 4.7). We will describe

all possibilities that may happen.

A(~y) = O(~y) = P(~y) = 0 −→


A(~y) ≡ A(~x)

A(~x) = 0

P(~y) = max(P(~y),−sgn(A(~x)))

O(~y) = +1 ∧A(~x) = +1 −→ A(~x) = −A(~x)

O(~y) = −1 ∧A(~x) = −1 −→ A(~x) = −A(~x)

Otherwise (position ~y inaccessible) −→ No action of the ant.

4.3.4 Formulation of the rule

Finally, we have to say is how to put previous sections together. Let do it.

1. Initial condition. We will sum up all objects to be define at the beginning

of the simulation. These are arrays O,P,A. Array O defining the object is

static during the simulation. Initial ant position (encoded in A) is usually

random distribution of given number of ants without food. P is set to the

zero. Furthermore, evaporation and diffusion coefficients C,K have to be

set up.

2. Iterative simulation Similarly to the one-dimensional model proceeds the

iterations in two stages in following order:

(a) Updating ant’s positions Described in the section 4.3.3

(b) Diffusion and evaporation of the pheromone Described in the

section 4.3.2

4.3.5 Results

In all simulations presented here are diffusion and evaporation coefficients C and K

from equation 4.3.2 fixed to C = 0.999 and K = 0.1. The first figure shows the
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4. CA APPLICATION IN BIOLOGY

effect of pheromone (Fig. 4.5). Naturally, the pheromone trail significantly in-

creases ants efficiency.
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Figure 4.5: Dependence of delivered items of food on the time. Comparison
of the model with pheromone with the same situation, but without pheromone.
Simulation ran on in the grid of a size 100×100 points, with 200 ants; parameters
a = 0.6, σ2 = 0.6.

We executed our model in the grid of a size 100× 100 points, with 100 ants;

parameters a = 0.6, σ2 = 0.6. Within several steps some ant found the source of

food and creates pheromone trail (see figure 4.6).

In the Fig. 4.7 is shown ant trail formation in the environment with square

obstacle placed symmetrically between the nest and the source of food. Ants

randomly chose one of two equivalent paths. Sometimes (approximately each

1000 time steps) ants change their mind and by mutual agreement chose the

opposite path.
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Figure 4.6: Illustration of ant trail formation. Figures 4.6a, 4.6b, 4.6c simulate
motion of 100 ants with model parameters a = 0.6, σ2 = 0.6. In the figure
4.6b is remarkable a diffusing and evaporating pheromone trail of single ant (in
the middle). In the figure 4.6c is trail fully established. The last figure 4.6d is
taken from simulation of 600 ants with the same parameters a = 0.6, σ2 = 0.6.
Increased number of ants caused ”traffic jam” on the ant trail.
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Figure 4.7: a) The first foragers decide, which path will be used. b) Most of ants
use bottom path. c) Still, most of ants use bottom path, however, some foragers
discovered second upper path. d) Upper path is fully developed. Original path
is going to disappear.

42



Chapter 5

Conclusions

In our work we have reviewed basic properties of CA and demonstrated their

wide applicability in numerous systems. These included biological systems, such

as ants complex behaviour or reversible CA systems. Particularly for elementary

reversible CA we have shown that they are very rich in their long-time statis-

tical structure. In many case we were able to demonstrate that the latter CA

are not ergodic (with respect to equiprobable measure) at any observable com-

puter time scale. On the other hand, periodicity of such CA ensures that they

must ultimately come back into a low entropy state. This might be of a par-

ticular conceptual importance in statistical physics where, as a rule, ergodicity

is very difficult to analyse. Our results also show that while many systems in

nature might seemingly follow the second law of thermodynamics (even on time

scales that are much larger than typical time scales inherent to a dynamics) they

ultimately conspire against it. On the same vein this is the scenario which is

predicted in many cosmological scenarios (see, e.g., R. Penrose, Cycles of Time:

An Extraordinary New View of the Universe [51]).

In the last section which is devoted to the CA application in biology we created

a model that simulates self-organization of ants while creating ant trails. This

specific application of CA nicely characterizes a complex behaviour which can be

achieved through simple CA rules.
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Appendix A

This appendix contains the most important part of the MATLAB code (for ver-

sion R2009b) simulating and analysing two dimensional reversible rules (ERCA).

function [T S R aveg period condprobabs]=rever2d(rule,c,c0,t,draw)

% INPUT

% c - initial configuration at the time 1

% c0 - initial configuration at the time 0

% rule - number of simulated rule

% t - maximum time

% draw - logical; if the evolution is showed or not

% OUTPUT

% T - time vector

% S - structure of entreopies evolution

% R - space density evolution

% aveg - mean density over time

% period - period, if 0 than period is grater than t

% condprobabs - condition probabilities (odrder 1 and 2);

% -> INITIALIZATION

rulebin=dec0bin(rule);

c=boundconds(c);

initstate=c; %initial condition for the period control

period=0;c0=0*c;aveg=c0;c3=c0;sc=c0;sc0=c0;sc3=c0;ck1=c0;ck2=c0;

T=1:t;R=0*T;S.loc=R;S.glob=R;S.glob1=R;S.glob2=R;

S.loc1=R;S.loc2=R;

% <- INITIALIZATION

% -> CA ANALYSIS

for t=T %time iteration

% CA density
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R(t)=sum(sum(c))/n^2;

% local entropy per point

S.loc(t)=sum(sum(entropyfilt(c,true(7))/n^2));

% global entropy per point

S.glob(t)=entropy(c);

% conditioned probabilities

p1=sum(sum(c.*c0))/sum(sum(c0));

p2=sum(sum(c.*(1-c0)))/sum(sum(1-c0));

q=sum(sum(c0))/n^2;

S.glob1(t)=entro2(p1,p2,q);

p1=sum(sum(c.*c3))/sum(sum(c3));

p2=sum(sum(c.*(1-c3)))/sum(sum(1-c3));

q=sum(sum(c3))/n^2;

% conditioned entropy of the second order

S.glob2(t)=entro2(p1,p2,q);

% calculation of conditioned probabilities

if t>=3

% cond.probabs. averaging

sc=sc+c;sc2=sc2+c0;sc3=sc3+c3;

ck1=ck1+c.*c0;

ck2=ck2+c.*c3;

end

aveg=aveg+c;

% <- CA ANALYSIS

% -> CONTROL OF PERIOD

if and(~period,t>1)

if c==initstate

period =t-1;

disp(period);

T(t+1:end)=[];

S.loc(t+1:end)=[];

R(t+1:end)=[];

break;

elseif c==c3

period=2*t-2;

T=1:2*t-3;

S.loc(t+1:end)=[];

R(t+1:end)=[];

S.loc=[S.loc fliplr(S.loc(1:end-3))];

R=[R fliplr(R(1:end-3))];
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break;

end

end

% <- CONTROL OF PERIOD

% -> DRAW THE WORLD

if draw

showtheworld(c)

end

% <- DRAW THE WORLD

% -> CA EVOLUTION

d=0*c;

for i=2:n-1

for j=2:n-1

if rule > 0

x=neumann(c(i-1:i+1,j-1:j+1),rulebin);

else

x=life(c(i-1:i+1,j-1:j+1));

end

d(i,j)=mod(x-c0(i,j),2); %elementary reversible

end

end

c3=c0;c0=c; %shift to the history

c=boundconds(d);

% <- CA EVOLUTION

% -> SNAPSHOT

if sum(t==[5 50 500])==1

makeasnap(c);

end

% <- SNAPSHOT

end % time iteration

% -> CONDITIONED PROBABILITIES

condprobabs.b1=ck1./sc2;

condprobabs.b2=ck2./sc3;

condprobabs.w1=(T(end)-sc-sc2+ck1)./(T(end)-sc2);

condprobabs.w2=(T(end)-sc-sc3+ck2)./(T(end)-sc3);

% <- CONDITIONED PROBABILITIES
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This appendix contains the most important part of the MATLAB code (for ver-

sion R2009b), which simulate ant trail formation.

function [items]=Ants(Nants,jump,variance,show)

% INPUT

% Nants - number

% jump - parameter a

% variance - parameter sigma^2

% swoh - logical, decides, whether show the evolution

% OUTPUT

% items - number of items of delivered food

N=100; %Lattice size

T=1000; %Number of time steps;

pmax=255; %Maximum pheromone value

ant=zeros(N); %Lattice of ants

p=zeros(N); %Lattice of pheromones

obj=zeros(N); %Lattice of objects

anttab=zeros(Nants,3); %List of the ants - number of the ants is conserved.

obj(8:13,13:18)=-1; %Nest cells

obj(85:90,82:87)=1; %Food cells

% obj(40:60,40:60)=2; %Forbidden area

obj(:,1)=2;obj(:,end)=2;%Borders

obj(1,:)=2;obj(end,:)=2;%Borders

nest=[10,15]; %Nest coordinates

food=[87,84]; %Food coordinates

items=zeros(1,T);

store =0;

% Direction from the nest; any ant knows this.
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[x y]=meshgrid(1:N);

DirFromNestX=(x-nest(2));DirFromNestY=(y-nest(1));

ss=sqrt(DirFromNestX.^2+DirFromNestY.^2);

DirFromNestX=DirFromNestX./ss;DirFromNestY=DirFromNestY./ss;

% ant(17,50)=3;

% Ants generation

i=0;

while i<Nants

x=randi(N-2)+1;y=randi(N-2)+1;

if ~(obj(x,y) || ant(x,y))

i=i+1;

anttab(i,:)=[randi(8)-1 x y];

ant(x,y)=1+anttab(i,1);

end

end

sheet([400 400]); % figure initialization

for t=1:T % time iteration

% -> SET BUFFER VARIABLES

nant=0*ant;

nanttab=0*anttab;

[gradpy gradpx] = gradient(p,1,1);

ss=sqrt(gradpx.^2+gradpy.^2);

ss(ss==0)=1;

gradpx=gradpx./ss;gradpy=gradpy./ss;

% <- SET BUFFER VARIABLES

% -> DRAW A WORLD

if show

disp([t, store])

Show(ant,p,obj);

drawnow;

end

% <- DRAW A WORLD

% -> PHEROMONE DIFFUSION

D=0.1;
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koef=0.999;

p(obj==2)=0;

np=koef*min(pmax,max(0,floor(p+D*4*del2(p))));

% <- PHEROMONE DIFFUSION

% -> MOVE OF THE ANT

for i=1:Nants

% Move of the ant:

% the ant try jump according to jump rule.

% if the jump is unsuccessful, the ant stays still.

% movement is not successful if the target cell is not empty.

ii=anttab(i,2);jj=anttab(i,3);d=ant(ii,jj);

% Movement of the ant with food.

if d<0 || 0

xd=+1*gradpx(ii,jj)-DirFromNestY(ii,jj);

yd=+1*gradpy(ii,jj)-DirFromNestX(ii,jj);

% Movement of the ant without food.

% Prefers a direction from the nest if stays on a pheromone.

elseif d>0 && p(ii,jj)>0;

xd=+1*gradpx(ii,jj)+DirFromNestX(ii,jj);

yd=+1*gradpy(ii,jj)+DirFromNestY(ii,jj);

else

%Brownian motion

r=2*pi*rand;

xd=sin(r);

yd=cos(r);

end

% Normalisation of the ant direction

if norm([xd yd])

no=norm([xd yd]);xd=xd/no;yd=yd/no;

end

% Rule for ant jump

x=round(ii+jump*xd+variance*randn);

y=round(jj+jump*yd+variance*randn);

x=min(N,max(1,x));

y=min(N,max(1,y));

% discussion of various situations
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. APPENDIX B

if ~edge(x,y,N) && nant(x,y)==0 && obj(x,y)==0 && ant(x,y)==0

% sucessful jump

nant(x,y)=d;

nant(ii,jj) = 0;

nanttab(i,:)=[d-1 x y];

np(ii,jj)=max(p(ii,jj),-sign(d)*pmax);

elseif d>0 && obj(x,y)==1

% found food

nant(ii,jj)=-d;

nanttab(i,:)=[-(d-1) ii jj];

elseif d<0 && obj(x,y)==-1

% returned to the nest with food

nant(ii,jj)=abs(d);

nanttab(i,:)=[abs(d)-1 ii jj];

store=store+1;

else

% unsuccesful jump

nant(ii,jj)=d;

nanttab(i,:)=anttab(i,:);

end

end %i=1:Nants

% <- MOVE OF THE ANT

% -> UPDATE VARIABLES BEFORE NEW CYCLE

ant=nant;

p=np;

anttab=nanttab;

% -< UPDATE VARIABLES BEFORE NEW CYCLE

items(t)=store; % measure of delivered items of food

end % time iteration
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