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Foreword

The presence of complex chaos in iterative applications of selective dynamics on quantum sys-

tems is a novel form of quantum chaos with true sensitivity to initial conditions. In this work,

we will present techniques needed for study of selective dynamics for purification protocols.

Such processes are important for quantum information and communication. The presented

results are interesting for several reasons. We prove the existence of chaotic dynamics for

generally robust purification protocols, even for the simplest one-qubit pure states. Also, we

present actually unpublished results of chaotic dynamics in entanglement for purification of

highly nontrivial two-qubit states. To achieve both analytical and numerical results, we apply

the latest mathematical framework for the study of discrete dynamical systems generated by

holomorphic maps, especially for rational functions of one complex variable.

Keywords: complex chaos, quantum chaos, purification protocol

PACS: 3.67.Lx, 05.45.Mt, 42.50.Lc, 89.70.-a
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Chapter 1

Introduction

This thesis presents the results of studies of complex chaos in the dynamics of quantum

purification protocols. To study the topic it was necessary to apply the knowledge of quantum

physics, especially its branch of quantum information, together with recent results of complex

dynamical systems. As a result it was possible to study analytically and numerically simulate

the complicated dynamics of the purification protocols.

1.1 Motivation

The existence of entangled systems is at the heart of quantum mechanics as a direct conse-

quence of the linearity principle of quantum theory for composed systems. The entangled

system is a special type of correlated system. Such a system has been used for the famous

EPR paradox [1], a thought experiment presented in 1935 by A. Einstein and his colleagues

B. Podolsky and N. Rosen, which challenged the consistency of quantum theory by discussing

possible measurements of observables for a two particle entangled system. The EPR para-

dox was a clear demonstration of the differences between quantum mechanics and classical

intuition.

Later on, in the sixties, entangled systems were experimentally studied to confirm quan-

tum mechanics predictions against alternative theories, like local hidden variable theories.

In recent years, entangled systems raised in importance as a key element for several tasks of

quantum information physics, a new branch of quantum mechanics which studies the possi-
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bilities of using quantum objects as a medium for the safe storing, transporting and effective

processing of information. Highly entangled states have been crucial for the success of many

processes of quantum cryptography and for the phenomena of quantum teleportation [2] with

high interest for physical realization.

Entangled systems are usually not prepared in the ideal state, additional noise appears

either from the source, producing the state or, from the communication channel distribut-

ing the system to remote parties. Therefore there has been a need to correct the presence of

noise by physically relevant processes, so called purification protocols, investigated in last two

decades together with the theory of entanglement measures [3]. Such a process has been first

introduced by Bennett-Brassard [4] for the purification of two-qubit systems to maximally

entangled Bell state |ψ01〉 = 1√
2

(|01〉 − |10〉). Later on, the Horodecki protocol [5] general-

ized the Bennet-Brassard protocol to purify generally D-level quantum systems and it was

possible to easily setup the protocol to purify towards arbitrary pure entangled state. Both

protocols are part of the class of so called nondeterministic protocols, using a large set of

randomly chosen unitary transformations together with a depolarization channel. The phys-

ical realization of the protocols was experimentally difficult, therefore there was introduced

the class of deterministic protocols, which uses a fixed set of unitary transformations and the

depolarization channel is replaced by projections onto a subensemble of the states. In such

a way, D. Deutsch et. al [6] and later on H. Bechmann-Pasquinucci et. al [7] introduced the

analogues of the Bennet-Brassard protocol and finally G. Albert et. al [8] found the general

deterministic protocol as an analogue of the Horodecki protocol. It has been proven in [8]

that generic purification protocol achieves, for certain level of noise of the initial states, faster

purification than the Horodecki protocol.

The general deterministic protocol [8] selects, in each step of the purification, only certain

quantum states, based on the results of projection measurements on the subensemble of the

states. In this sense, the protocol generates conditional dynamics on the initial ensemble of

quantum states. In each step of the protocol, there exists the spillover of information about

the states, meaning that on one side information about the system is extracted by projection

measurements, on the other hand information about the selection is returned back to the
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system by conditional selection of the states (to purify in the next step of the protocol). Due

to conditional selection of the states, the protocol becomes nonlinear and renormalization of

the states is necessary after each step of the protocol.

The study of nonlinear dynamical systems has a long history [9] in physics and math-

ematics. One of the most spectacular results of this development is the analysis of chaos.

Chaos, firstly introduced by H. Poincaré in 1880, during the study of the three-body mechan-

ical system, was demonstrated by the discovery of nonperiodic orbits which neither escape

forever nor approach any locally attracting state. In 1889 J. Hadamard proved that the three

particle Hadamard’s billiard dynamical system is unstable in the sense, that the evolution

of the trajectories of all particles is exponentially sensitive to initial setting of the billiard.

Hadamard proved that the billiard evolves with the positive Lyapunov exponent, meaning

that for every two arbitrary close settings of the billiard, the distances of the trajectories of

all particles diverge exponentially fast in time of the evolution. Exponential sensitivity of the

system, to initial conditions, defines chaotic regime in the Poincaré sense.

Another problems, studied at the beginnings of chaos theory, were connected to long

time dynamical processes studied under the name of ergodic theory and were motivated

by processes in statistical physics. Later studies were linked to the study of the stability

of differential equations for various physical process: many-body problems, astronomical

problems and radio engineering by Birghoff, Kolmogorov and others.

The interest for the study of chaos intensified after the mid of 20-th century due to the

observation of many nonlinear processes [10], for instance in sociology and represented for

example by the logistics map (see the figure (1.1)). The studies exploded mainly after the

construction of electronic computers, which enabled to visualize the results of long time runs

of the process in real time. In 1961 E. Lorenz, dealing with weather prediction, realized

a strong sensitivity of forecast calculations on the initial conditions. Lorentz’s discovery,

nowadays known as the butterfly effect, showed that even detailed atmospheric modeling can

not give reliable long time predictions and therefore the weather predictions can be done only

for few days ahead.

In modern literature [9; 11–14], a discrete chaotic dynamical system is defined by three
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properties (Devaney, 1960): the density of the set of periodic points, transitivity of the state

space and sensitivity of the system to initial conditions (not necessarily exponential). Later

it was proved, that for general dynamical system, the first two conditions imply the third

condition, nevertheless the property of sensitivity of the system to initial conditions is still

considered to be the essence of chaos [10; 13; 15].

Figure 1.1: Logistics map [10], mathematically defined by the recurrent relation:
xn+1 = µxn (1− xn)

was popularized in 1976 by the biologist Robert May, in part as a discrete-time demographic
model. The discrete real valued variable xn (between 0 and 1) represents the population
at year n, x0 represents the initial population. The parameter µ represents the rate of
reproduction and starvation.
The figure represents the evolution of the system, with fixed initial x0 = 0.5 and various
values of µ, in 103 iterations after the initial 104 iterations. There exists various dynamical
regimes, strongly depending on the setting of parameter µ. On the figure we observe the
regime of bifurcations and period doubling i.e. oscillates in the even length cycle of the
length: 2, 4, 8, . . ., which are the routes to chaos.

7



Figure 1.2: Purification of one-qubit pure states |ψ〉 = N (z|0〉+ |1〉), initially prepared for
z0 = 0 [I]. Purification protocols are specified by different additional unitary gates specified
by the parameter a (for the plot the value of a is purely imaginary). The plot shows the
evolution of |z| in 103 purification steps after the initial 103 steps. We observe, that the
evolution is similar to the Logistics map (1.1). We can identify the areas of strong sensitivity
towards the value of parameter a (purely imaginary). We find bifurcations for a = 0.580ı,
a = 0.728ı and also regions of chaotic behavior (values of a ∈ (0.752ı, 1.332ı)).

Chaos for quantum systems was something difficult to understand for several reasons.

Firstly, in quantum theory it is difficult to define trajectories in the phase space. Also,

unitary evolution of quantum mechanical system guarantees constant distance between any

two states of the system and prevents the existence of chaos in the classical sense. On the

other hand, the correspondence principle demands, that a quantum mechanical system, in

the semiclassical regime, behaves like the classical one and therefore the chaotic regime shall

be observed for the quantum mechanical analogues of the classically chaotic systems. Since

1989 the study of the dynamics of these systems is known as quantum chaos [9; 16]. Quantum

chaos has been proved for various systems, especially for the quantum billiard systems, like
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the evolution of electron states inside a collinear helium atom He++ [9]. Besides the study

of quantum chaos for closed quantum systems, there are results for the dynamics of open

quantum systems with nonunitary evolution, called true chaos. The nonlinear and nonunitary

evolution was based on the conditional dynamics, mainly depending on the measurement

results during the evolution. For example S. Habib [17] simulated a Duffing oscillator with the

precondition of possible continuous measurements on the system and numerically calculated

positive Liapunov exponent (exponential divergency of the trajectories in phase space) far

from the classical limit.

The purification protocol [8] is an example of a truly quantum process, without any classi-

cal analogue, based on principle of superposition and with the nonunitary, selective evolution

of the purified systems based on the projections in each step of the purification. For ex-

ample, for certain settings of the purification, quantum systems may nonlinearly evolve like

ρ 7→ U”ρ2”U † i.e. firstly, the nonlinear part of the purification step ”squares” and ”renor-

malizes” the elements of the density matrices (”ρ2”) and secondly, it is applied an additional

unitary gate U . Such a purification is similar to the nonlinear evolution of social system

under the Logistic map: x 7→ µx (1− x). While the Logistic map induces the nonlinear, real

parameter dynamics, the purification protocol represents complicated, nonlinear complex pa-

rameters dynamics in representation space. Naturally, one can ask the question if there exists

the analogues with the classical systems and what are the tools for the study of the chaotic

dynamics for the quantum process of purification [8].

Independent line of research, dating back to 20-th century, was provided by G. Julia and

R. Fatou, who studied the stability of polynomial maps of one complex variable. Later on,

the mathematicians Milnor, Beardon, Carlesson, Gamelin, Steinmetz, McMullen intensively

studied iterative dynamical systems, generated by a holomorphic map in complex spaces

and formulated strong theorems especially for polynomial and rational maps of one complex

variable [11]. For a dynamical system, generated by such a map of the order two and higher,

J. W. Milnor proved the existence of chaos on its Julia set [11]. Recent results for holomorphic

dynamics, in complex spaces, are presented in the book of Morosawa et. al [13]. While the

theory for one dimensional maps seems to be fully understood and classified, the theory for
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higher dimensional maps is subject to current research with many open problems, intensively

studied by J. E. Fornæs [14].

The framework of complex rational maps is a natural tool for the study of purification

protocols. While mathematically quite well understood there are just a handfull of physics

examples where this theory is applicable. Purification protocols are a surprising and interest-

ing examples (see the figure 1.2) by for not fully understood. Early 2005, our research group

asked the following questions:

1. Is it possible to identify true chaotic regime for iterative dynamical system generated

by the purification protocol [8] for the simplest case of single qubit?

2. Is it possible to identify chaotic regime for two-qubit pure states and also for two-qubit

mixed states, especially for the property of entanglement?

3. Is there a way to classify possible regimes of the purification protocols?

In the thesis I provide the answers to these questions supported by analytical results and

numerical simulations.
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1.2 Content of the thesis

Thesis consists of the five chapters. The first chapter, Introduction, consists of the review

of entanglement property for quantum systems. Then it continues with the brief overview

of quantum computing and purification protocols. Reader learns about the history and

progresses in the study of chaotic dynamical systems and especially about the quantum chaos

with the overview of actual mathematical trends for iterative dynamical systems. Chapter

also includes the thesis content review together with the mathematical symbols review.

The second chapter, Basic concepts review, consists of detailed presentation of purification

protocols of the interest [8]. It contains of the review of the mathematical framework to

study dynamical systems namely for rational maps in one complex variable, together with

the analogues for study of holomorphic maps in higher dimensional complex spaces. Reader

learns also about the Fano representation as the numerically efficient approach to study more

dimensional quantum states dynamics.

The third chapter, Results, consists of the results for the study of chaotic dynamics

for one-qubit pure states purifications, as already published in the papers [I; II] and in

conference poster and the proceedings [III; IV]. There are also present yet unpublished

results of the simulations of various Julia sets, representing sensitivity of the purifications

to initial setting. And mainly, it will be presented yet unpublished results for the chaotic

dynamics for two-qubit pure states and mixed states with the main target to prove chaos in

the entanglement. Reader learns about the convenient representation of purification protocol

dynamics, by rational function, and also about the usage of strong mathematical statements

to achieve both analytic and efficient numerical results for highly physically interesting topic

of the dynamics of purification protocols.

The fourth chapter, Conclusion and outlook, presents the survey of the thesis with the

main conclusions. Also, reader finds here the outlook for the future research. The last chapter,

Appendixes, includes an overview of used computer programs and numerical calculations

stored in an attached data disc.
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Chapter 2

Basic concepts review

Quantum mechanics diffused into the realm of information theory. Quite a number of con-

cepts was adopted, but may acquired a different flavor. The ways we guarantee and process

information has limitations which are not present in the classical case. Let us communicate

some notions we need for own analysis. We do not give a consist review but merely list of

concepts we need for an analysis.

2.1 Quantum information basics

As defined by D. Deutsch [18]: ”computation is a process that produces outputs that depend

in some desired way on given inputs” and a ”computing machine” is a physical object whose

notion can be regarded as the performance of computation.”This definition is valid for classical

electronic computation as well as for quantum computation, the novel branch of quantum

physics, mathematics and informatics which uses the objects and the phenomena of quantum

theory - especially the principle of superposition.

2.1.1 Bit, qubit and qudit

According to Deutsch [18] a bit is the smallest possible quantity of non-probabilistic infor-

mation. A bit can take one of two values such ”true” and ”false” or ”0” and ”1”. In classical

computing a bit is the basic information unit. In quantum computing, the analogue of a bit

is a qubit. A qubit is a physical object represented by a two level quantum system. The state
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of a qubit is represented by a ray in Hilbert space H (2). A qudit is the extension of qubit,

it is realized by a D-level quantum system where D ∈ N. Similarly to a qubit, a qudit state

is represented by the ray in H (D).

2.1.2 Logical and quantum gates

According to Deutsch [18], in classical theory of computation a logical gate is a computing

machine whose inputs and outputs consist of fixed number of bits and which performs fixed

computation in fixed time. A quantum gate is defined in similar way. The only difference is

that the states of the input and the output of quantum gate are not eigenstates of input and

output observables and may be arbitrary mixtures of input or output quantum states.

For the construction of further studied purification protocols (chapter (3)) let us present

here the most important reversible one-qubit gates of SU (2) and Hadamard and two-qubit

gate of XOR, known for two qudits as GXOR gate.

SU (2) (C) one-qubit gates are the linear operators on the Hilbert space H(2), in matrix

representation form a group of unitary transformations

U =

(
α β
−β∗ α∗

)
where α, β ∈ C with unit determinant | α |2 + | β |2 = 1. Because of the equivalency of the

beams in the Hilbert space, one can also define physical equivalency≡ of the {U} ∈ SU (2) (C)

so that U ≡ U.eıψ, then matrix representation of U has 2 real variables φ, ψ ∈ R

U =

(
cos (φ) sin (φ) eıψ

− sin (φ) e−ıψ cos (φ)

)
. (2.1)

Hadamard one-qubit gate H is a linear operator on the Hilbert space H (2) with the

matrix representation

H =
1√
2

(
1 1
1 −1

)
. (2.2)

The H gate is a unitary operator and therefore reversible, it is also a hermitian operator.

One physical realization of H gate, according to [19], can be the dual reil representation of a
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qubit. It is easy to verify that the H gate is identical to the discrete Fourier transformation

[8] for the qubit

H|k〉 ≡ 1√
2

1∑
n=0

eı
2πkn

2 |n〉

where k ∈ {0, 1}.

The XOR and GXOR - two-qubit and two-qudit gates According to [8], the quantum

XOR gate is defined as a linear operator on the Hilbert space H1 (2)⊗H2 (2) by the relation

XOR |i〉1|j〉2 = |i〉1|i⊕ j〉2 = |i〉1| (i+ j) mod 2〉2 (2.3)

where i, j ∈ {0, 1} represent number state values for each qubit. The XOR gate is an unitary

operator and therefore reversible, the XOR gate is also hermitian. Because of i⊕ j = 0 only

if i = j, then XOR|i〉1|j〉2 = |i〉1|0〉2 only if i = j.

The GXOR gate is a generalized XOR gate for D-qudit states, defined by the action

GXOR |i〉1|j〉2 = |i〉1|i⊕ j〉2 = |i〉1| (i+ j) mod D〉2

where i, j ∈ {0, 1, ..., D − 1}. Such an operator is unitary but not hermitian for D > 2.

According to [8], there exists the hermitian definition of the GXOR gate

GXOR |i〉1|j〉2 = |i〉1|i	 j〉2 = |i〉1| (i− j) mod D〉2. (2.4)

For D = 2 the GXOR is equivalent with the XOR. In general, GXOR is an unitary operator,

it is hermitian and i	 j = 0 only if i = j. The physical realization of GXOR gate, according

to [8], can be realized by the nonlinear optical elements by the combination of Kerr interaction

on the two modes of the radiation field, together with the phase shift on the second mode.

The first mode represents one mode system |i〉1, the second mode represents D mode system

of the Fourier transformation of |j〉2.

Application of GXOR gate - generalized Bell states An important application of

GXOR (2.4) is the creation of entangled two qudits systems. Let |i〉1|j〉2, i, j ∈ {0, ..., D−1}
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is a number state basis of Hilbert space H1 (D)⊗H2 (D), then let me define

|ψlm〉 = GXOR12[F |l〉1|m〉2] (2.5)

where F is the discrete Fourier transformation operator [8], defined by the action on the

number basis states

F |k〉 ≡ 1√
D

D−1∑
n=0

eı
2πkn
D |n〉

where k ∈ {0, . . . , D − 1}. From equation (2.5) and for D = 2, one obtains the Bell states

|ψ00〉 =
1√
2

(|00〉+ |11〉) , |ψ01〉 =
1√
2

(|01〉+ |10〉) ,

|ψ10〉 =
1√
2

(|00〉 − |11〉) , |ψ11〉 =
1√
2

(|01〉 − |10〉) . (2.6)

For D > 2 we obtain the generalized Bell states, this is one of the possible definitions. Because

GXOR is unitary operator, then generalized Bell states are clearly orthonormal [20]. The

number of the generalized Bell states is D2, the same as dimension H1 (D)⊗H2 (D), so the

generalized Bell states form a basis in the two qudits Hilbert space. In the next part we will

present, that the Bell states are also maximally entangled states.

2.1.3 Entanglement and quantum states

Entanglement is one of the most important phenomenon for the theory of the quantum

information and quantum computation. For the purpose of the thesis we will provide its

definition for bipartite quantum state according to [3; 21]. Let suppose the bipartite quantum

system with the density matrix ρ on product Hilbert space H = H1⊗H2, we say that system

is separable if ρ can be written as a convex (probabilistic) combination of product states

ρi1 ⊗ ρi2 (where ρi1,2 is the state of the first/second particle) i.e. when

ρ =
k∑
i=1

piρ
i
1 ⊗ ρi2, 0 ≤ pi,

k∑
i=1

pi = 1. (2.7)

Such separable state does not have any quantum-mechanical correlation - entanglement.

When the state ρ is not separable it is called called inseparable or entangled. At this point,
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let us mention a straightforward extension of the definition of separability (2.7) for M -particle

system called M-separability [3]. Such a state ρ is defined on the M -particle Hilbert space

H =
M
⊗
i=1
Hi as

ρ =
k∑
i=1

piρ
i
1 ⊗ . . .⊗ ρiM , 0 ≤ pi,

k∑
i=1

pi = 1. (2.8)

Unfortunately, in contrast to the separable states the m-separable states may be also corre-

lated [3]. Consequently, the dichotomy of the states onto entangled and M -separable is not

generally unique. Therefore in chapter (3) we will study the dynamics of purification at most

for bipartite systems (especially for two-qubit systems).

A very important problem is how to quantify entanglement of the bipartite state i.e. how

to define a proper entanglement measure ([20]). Details of this topic are going beyond the

content of the thesis and may be found in the literature [3]. At this point let us review only

few basic properties.

Information content in the density matrix ρ is measured by its entropy S (ρ), in

quantum mechanics defined by von Neumann as a straightforward generalization of Boltz-

mann entropy in statistical mechanics

S (ρ) = −Tr (ρ ln ρ) . (2.9)

This quantity is zero for pure states and positive for mixed states (mixed state require more

information than pure state to be fully specified) and so the von Neumann entropy (2.9)

measures the deviation from pure state behavior. This quantity is also time independent

where the dynamics of ρ is governed by unitary transformation.

Von Neumann index correlation IC quantifies correlation of bipartite system [22].

Based on (2.9) it has the form

IC = S1 + S2 − S (2.10)
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where S1,2 = S (Tr1,2 ρ) and the reduced density operators Tr1,2 ρ, in respective matrix rep-

resentation, have the elements

(Tr1 ρ)µν =
∑
i

〈iµ|ρ|iν〉

(Tr2 ρ)ij =
∑
µ

〈iµ|ρ|jµ〉.

The kets {|i〉}, {|µ〉} define the respective orthonormal base of the state space of the first and

the second particle. If we order the components of the system so that S2 ≥ S1 then Araki-

Lieb inequality implies Ic ≤ 2S1. The maximum possible value IC will be 2S1. Consequently

from (2.10) the maximum degree of correlation is obtained when S1 = S2 and S = 0 i.e. the

total state is pure. One can conclude, that two particle system which is maximally correlated

must be pure. It has been proven that the Bell states (2.5) are maximally correlated [21; 22].

Let us now calculate the value of IC for two-qubit pure state, derived form will be used

for calculations in section (3.6). Let us suppose pure state |ψ〉 of the form

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

For any pure state |ψ〉 Von Neuman index correlation (2.10) reduces onto

IC = 2SA = 2 (−λ1 lnλ1 − λ2 lnλ2)

where λ1,2 are the eigenvalues of the reduced density matrix

TrA ρ =

(
|α00|2 + |α10|2 α∗00α01 + α∗10α11

α∗01α00 + α∗11α10 |α01|2 + |α11|2
)
.

Then det (TrA ρ− λ1,21) = 0 only if

λ1,2 =
1±

√
1− 4|α01α10 − α00α11|2

2
.

IC may be studied as a function of real variable u = |α01α10 − α00α11|2 as

IC (u) = −
(
1 +
√

1− 4u
)

ln

(
1 +
√

1− 4u

2

)
−
(
1−
√

1− 4u
)

ln

(
1−
√

1− 4u

2

)
. (2.11)

For u = 1/4 index correlation IC (u) reaches the maximum and IC (u) = 2 ln 2. Clearly

two-qubit Bell states (2.6) are maximally correlated.
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Entanglement measures are classified according to the two approaches to quantify

entanglement. The operational approach [3] says that system is more entangled if it allows

for better performance of some task (impossible without entanglement), one such task can

be, for instance, teleportation. The abstract approach [3] tries to introduce entanglement

measures from certain properties which must be fulfilled. Theory of entanglement measures

is still under study of the physicists and the mathematicians, but it has been proved in the

paper [3] that the Bell states (2.5) are maximally entangled states, with respect to operational

measure related to the teleportation process. For two particle pure states IC (2.10) is the

commonly used measure of entanglement.

Werner states are M -partite (D-qudit) states with density matrix W [DM ] (λ) on the

Hilbert space H = H (D)⊗M . According to [23] Werner states are defined in the form

W [DM ](λ) = λ|Ψ〉〈Ψ|+ 1− λ
DM

I [DM ], 0 ≤ λ ≤ 1 (2.12)

where

|Ψ〉 =
1√
D

D−1∑
j=0

|j . . . j〉

and I [DM ] is identity on the DM dimensional Hilbert space H. According to [23], Werner

states are M -separable (2.8) only if

λ ≤
(
1 +DM−1

)−1
.

According to [8], every bipartite, entangled Werner states (2.12) (for M = 2 and (1 +D)−1 <

λ ≤ 1) can be effectively purified by the generic purification protocol [8] to the general Bell

state |ψ00〉 (2.5). Later in the thesis, in chapter (3), we will study the dynamics of purification

for (and close to) the two-qubit Werner states ρW (λ)

ρW (λ) = W [22](λ) = λ|ψ00〉〈ψ00|+
1− λ

4
I [22], 0 ≤ λ ≤ 1, (2.13)

which are entangled for 1/3 < λ ≤ 1.
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2.2 Purification protocols

2.2.1 Review of protocols

Purification protocols are used to increase the degree of entanglement on the ensemble of

states. The protocol is realized by the application of physically relevant local operations and

by the use of classical communication channel - so called LOCC operations. The scheme of

general purification protocol is given on the figure (2.1).

σc

σt

...

σt

•

•
...

•

•

•
...

•

A: LOCCA B: LOCCB

Figure 2.1: General purification protocol scheme

The protocol participants A(Alice) and B(Bob) mutually share the particles of the state

according to the prescribed rule and they also divide the ensemble into control (c) and

target (t) states. Each particle from control resp. target pair belongs to A and B. A and B

perform on the particles local operations. In the end of the protocol step A and B perform

measurement on the particles of target states and according to the results source pairs are

held or discarded. If the source pairs are kept they become the source of target and control

pairs for the next step of the protocol. For the communication of the results A and B use

a classical communication channel. The outputs are purified systems. As already explained

in chapter (1.1), there exist two classes of protocols according to the use of the chosen local

operations: for random local unitaries we obtain so called non-deterministic protocols, or

with the use of fixed local operations in each step of the protocol, so called deterministic
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protocols. Detailed review of the protocols may be found in [5].

In the paper of G. Albert et al., [8], there has been introduced a deterministic analogue of

advanced non-deterministic Horodecki protocol, to purify general qudit states. In paper [8],

it has been proven, that both of the protocols are efficient in purification of the Werner states

(2.12) to the Bell’s state |ψ00〉 (2.5) and it was found by numerical simulations that generic

deterministic protocol, for a certain level of initial noise is faster, meaning that it needs

less purification steps to achieve desired fidelity with the state |ψ00〉. In next paragraph we

present the construction of purification protocol as defined in [8].

The generic deterministic protocol

The protocol, defined in [8], consists of iterative steps where each step is described by the

action of nonlinear map T and unitary transformation U on the ensemble of the one control(c)

and N target(t) M qudits systems

T : B (H)⊗(N+1) 7→ B (H)⊗(N+1), H = H (D)⊗M

T (σc, σt1 , . . . , σtN ) =
A (σc ⊗ σt1 ⊗ . . .⊗ σtN )A†

Tr[A (σc ⊗ σt1 ⊗ . . .⊗ σtN )A†]
,

where the operator A is defined as

A = (Ic ⊗ P )
M∏
j=1

N∏
i=1

GXORj
cti

with control system identity Ic and projections onto target systems P

P =
N∏
k=1

Ptk , Ptk = |pk〉tktk〈pk| , |pk〉tk ∈ {|0 . . . 0〉tk , . . . , |D − 1 . . . D − 1〉tk} .

The operator GXORj
cti represents GXOR gate (2.4) and acts on the j-th qudit of the control

and i-th target system. In the number state basis the action has a form

GXORj
cti |k〉c|l〉ti = |k〉c|̃l

j〉ti , where |k〉c = |k1 . . . kn〉c, |l〉ti = |l1 . . . ln〉ti ,

|̃lj〉ti = |l1 . . . (kj − lj) mod D . . . ln〉ti .

20



Using the fact that both GXOR
(j)
cti and Pti are Hermitian operators, one can derive the action

of the protocol

T (σc, σt1 , . . . , σtN ) = N (Ic ⊗ P )
M∏
j=1

N∏
i=1

GXOR
(j)
cti (σc ⊗ σt1 ⊗ . . .⊗ σtN )

1∏
i=N

1∏
j=M

GXOR
(j)
cti (Ic ⊗ P ) =

(
1c ⊗

N∏
i=1

|pi〉titi〈pi|

)
M∏
j=1

N∏
i=1

GXOR
(j)
cti(∑

k,l

(σc)kl|k〉cc〈l| ⊗ . . .⊗
∑

kN ,lN

(σtN )kN lN
|kN〉tN tN 〈lN |

)
1∏

i=N

1∏
j=M

GXOR
(j)
cti

(
Ic ⊗

1∏
i=N

|pi〉titi〈pi|

)
=

= N

(∑
k,l

(σc)kl(σt1)k	p1,l	p1
. . . (σtN )k	pN ,l	pN

|k〉cc〈l|

)
⊗ P

where i	 p = (i1 	 p1, ..., iM 	 pM) and the normalization N equals to

N =

(∑
k

(σc)kk(σt1)k	p1,k	p1
. . . (σtN )k	pN ,k	pN

)−1

.

If the control and the target systems were initially prepared in the same state σ, the map T

maps a control system σc onto the state

σ̄c = N
∑
k,l

(σ)k,l(σ)k	p1,l	p1
. . . (σ)k	pN ,l	pN

|k〉c〈lc| (2.14)

Such a map is clearly nonlinear.

The action of the unitary transformation U is composed from the actions of local unitary

transformations {Ui}

U : σ̄c 7→ σcout = U1 ⊗ . . .⊗ UM σ̄cU †M ⊗ . . .⊗ U
†
1 . (2.15)

One iterative step F of the purification protocol is composed of the actions of T and U i.e.

F ≡ F |c : σc 7→ σcout =(U ◦ T |c)σc. (2.16)

Let us close the description of the protocols with the study of the scheme describing the

protocol setup and of the protocol efficiency, see the figures (2.2,2.3).
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j = 1 2 . . . M

σc • • . . . •
⊗
σt1 • • . . . •
⊗
...

⊗
σtN • • . . . •

 Pt

G
X

O
R

-

G
X

O
R

-G
X

O
R

-

Figure 2.2: The scheme represents the action of a single step of the nonlinear map. Dots
represent j qudits of the control σc or the i-th target σti system, where i ∈ {1, . . . , N},
j ∈ {1, . . . ,M}. The GXOR gate (2.4) is applied on each of the qudit of control and i-
th target system. Once the GXOR gate is applied, it is followed by the projection Pt =
|p1〉〈p1| ⊗ . . .⊗ |pN〉〈pN | on the target systems σt1 ⊗ . . .⊗σtN , dedicated for the purification
of control state σc.

σ - Ninit
�

��	

@
@@R

σc σt

?

”(σc)
2” - 1

2
Ninitp1

�
��	

@
@@R

”(σc)
2” ”(σt)

2”

?

”(σc)
4” - 1

22Ninitp1p2
...

...

Figure 2.3: Scheme represent the calculation of the efficiency of the purification protocol with
the number of target systems N = 1 and the target system projection Pt = |0〉〈0|. Initially
the ensemble of the Ninit states σ is split into two equal parts of control σc and target σt
states. The first step success with probability p1 and consequently there are 1

2
Ninitp1 states

which form the ensemble for the next iterative step. Protocol runs until the fidelity [8] of
states reaches the expected level or the pool of the states is empty.
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2.3 The Fano representation

This section presents a numerically simple representation of quantum states, similarly to [24].

Any n-qubit density matrix ρ can be written in the Fano form [25] as follows

ρ = N
∑

α1,...,αn

cα1,...,αnσα1 ⊗ . . .⊗ σαn (2.17)

with normalization N = 2−n and σαi ∈ {I,X ,Y ,Z}, I is identity on the Hilbert space H (2)

and X , Y , Z are Pauli matrices. The matrices are represented as

I ≡
(

1 0
0 1

)
, X ≡

(
0 1
1 0

)
, Y ≡

(
0 −ı
ı 0

)
, Z ≡

(
1 0
0 −1

)
.

Since the density operator ρ is Hermitian, all the parameters cα1,...,αn are real. Moreover

Tr (ρ) = 1 implies cI,...,I = 1, the other parameters are

cα1,...,αn = Tr (σα1 ⊗ . . .⊗ σαn .ρ) .

Because of the fixed value of cI,...,I = 1, each n-qubit quantum state may be represented by

4n − 1 real coefficients {cα1 6=I,...,αn 6=I} which form the generalized Bloch vector b. For the

one-qubit case, the Bloch vectors b span the entire unit ball in R3, for two qubits the 15

elements of vector b are

b = (cIX , cIY , cIZ , cXI , cXX , cXY , cXZ , cYI , cYX , cYY , cYZ ,

cZI , cZX , cZY , cZZ) . (2.18)
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2.4 Framework for the treatment of chaos

This section is mainly focused on the summary of existing mathematical framework of the

study of discrete dynamical systems generated by a rational function in one complex variable.

We also provide with the basic definitions to study dynamics of the holomorphic maps in

more complex variables. The presented definitions and theorems will be used to study the

chaotic dynamics of the generic purification protocol. As a source of information it has been

used the books of I. D. Chueshov [15], R. Temam [26] (general theory of finite and infinite

dimensional dynamical systems) and J. W. Milnor [11; 12] (framework to study chaos in

the dynamical system generated by one complex variable map) and S. Morosawa et. al [13]

(framework to study chaos in dynamical system generated by one and two complex variable

maps). In the work of J. E. Fornæs [14] one can find the review of the actual progress and

open problems of multidimensional complex dynamical systems.

First, let me introduce the definitions of a dynamical system and a chaotic dynamical

system

Definition 2.4.1 (Dynamical system - see [15; 26]). Let X be a complete metric space X.

A dynamical system - DS - is taken to mean the pair of objects ({St} , X) where {St} is a

family of continuous maps of the space X into itself with the properties

1. ∀ t, u ∈ T : St+u = St ◦ Su,

2. S0 = I is identity,

where T coincides with either a set R of real numbers ( continues reversible DS) or a set

R+ of nonnegative real numbers ( continues irreversible DS) or a set Z = {. . . ,−1, 0, 1 . . .}

of all integers ( discrete reversible DS) or a set N0 = {0, 1, 2 . . .} of all nonnegative integers

( discrete irreversible DS). Therewith X is called a state space (or phase space), the family

of operators {St} is called an evolutionary operator (or semigroup), parameter t ∈ T plays

the role of time.

In the thesis we will study discrete irreversible DS where Sn ≡ f ◦n, n ∈ N0 means n-times
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apply of f , i.e., f ◦n (x) = f (. . . f (x) . . .) and f : X 7→ X is a holomorphic endomorphism.

We denote such DS by the pair (f,X).

Definition 2.4.2 (Chaotic dynamical system by Devaney - see [13; 14]). Let X be a complete

metric space with a metric ρ. The dynamical system (f,X) is said to be chaotic if

1. the set of periodic points of f is dense in X.

2. the function f has a transitivity property, i.e., for any two open sets U and V of X,

there is a k such that f ◦k (U) ∩ V 6= ∅.

3. the function f has sensitive dependence on initial conditions, i.e., there is a constant

δ such that, for any x ∈ X and any neighborhood N , there are y ∈ N and n satisfying

ρ (f ◦n (x) , f ◦n (y)) > δ.

After Devaney gave this definition, it was proven that the first two conditions imply the

third one [13]. Nevertheless, the third condition, sensitive dependence of chaotic dynamical

system on initial conditions, is the essence of chaos.

Now, let us introduce the definition of a normal family of continuous maps. It will help

us to introduce basic dichotomy of the initial states of dynamical system onto the Julia set

and the Fatou set. Fatou set represents states with regular dynamics while nonempty Julia

set represents irregular dynamics and for certain systems even chaos.

Definition 2.4.3 (A normal family of maps - see [11; 14]). Let X, Y are complete metric

spaces. A set A of continuous maps fα from X to Y is a normal family if every infinite

sequence of maps from A contains a subsequence which converges locally uniformly to a

continuous map from X to Y .

The existence of the locally uniformly convergent subsequence in the series of iterative

evolution {fn} of the system implies regular dynamics. A typical example is represented by

the oscillation between finite number of states like f 2i (z) = 0 and f 2i+1 (z) = 1.

Definition 2.4.4 (The Fatou and the Julia set - see [11; 14]). Let X be a complete metric

space, let f be a continuous endomorphism of X, and let f ◦n : X 7→ X be its n-fold iterate.
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Fixing some point x0 ∈ S, we have the following basic dichotomy. If there exists some

neighborhood U of x0 so that the sequence of iterates {f ◦n} restricted to U forms a normal

family, then we say that x0 is a regular or normal point, or that x0 belongs to the Fatou

set of f . Otherwise, if no such neighborhood exists, we say that x0 belongs to the Julia set

J = J (f).

If f is a holomorphic endomorphism of Riemann surface - either C or the Riemann sphere

≡ Ĉ = C∪{∞} [11; 13] (union of the complex plane with complex infinity) - then the Fatou

and the Julia set definitions coincide with the definitions of Morosawa et. al [13].

2.4.1 Rational functions of one complex variable

Let us focus now on the theory of dynamical systems of rational functions in one complex

variable. According to [11; 13], the rational function f means the holomorphic endomorphism

of Ĉ in the form of the quotient f(z) = p(z)/q(z) of two polynomials, where the polynomials

p(z) and q(z) have no common roots. The degree of f is then equal to the maximum of the

degrees of p, q.

Definition 2.4.5 (Rat set - see [11; 13]). We denote by Rat the set of all rational functions

of degree not less than two.

Particularly, there exists a theorem about the backward invariance of Julia and Fatou

sets which is useful for the numerical calculation of Julia sets.

Theorem 2.4.6 (Invariance of the Julia set and the Fatou set - see [11; 13]). Let f ∈ Rat.

Then the Julia set and the Fatou set are completely invariant

• f (J (f)) ⊂ J (f), f−1 (J (f)) = J (f),

• f (F (f)) ⊂ F (f), f−1 (F (f)) = F (f).

For f ∈ Rat it is easy to calculate all the pre images of the state in the Julia and the

Fatou sets. From a numerical point of view, the backward iteration on the Fatou and the Julia

sets are numerically stable, however because of the non existence of a unique pre-image, the

26



number of possible pre-images grows exponentially with the increase of backward iteration

steps and the simulation becomes computationally demanding.

Also, there exists a theorem which points out an interesting topology of the Julia and

Fatou sets.

Theorem 2.4.7 (Basic topology of the Julia and Fatou sets - see [11; 13]). Let f ∈ Rat.

Then either the Julia set J(f) of f contains no interior points, or the Fatou set F (f) is

empty i.e. J(f) = Ĉ.

Now, let us introduce a classification of the periodic points for dynamical system generated

by one complex variable holomorphic function.

Definition 2.4.8 (Classification of periodic points - see [11; 13]). Let f : D → Ĉ be a

meromorphic function on D, and z0 be a periodic point of f of period l ∈ N i.e. f ◦l (z0) = z0

and f ◦j (z0) 6= z0 (1 ≤ j ≤ l − 1). We define the multiplier λ at z0 of f by

λ =
(
f ◦l
)′

(z0) .

Here, when z0 =∞, we consider that
(
f ◦l
)′

(z0) is the value of(
1

f ◦l (1/z)

)′
at 0.

• When |λ| > 1, we call z0 a repelling periodic point.

• When |λ| < 1, we call z0 an attracting periodic point. In particular, if λ = 0, then we

call z0 a supperatracting periodic point.

• When |λ| = 1, we call z0 indifferent periodic point. When there exists a positive integer

m such that λm = 1, we call z0 a rationally indifferent periodic point, or parabolic

periodic point. Otherwise, we call z0 an irrationally indifferent periodic point.

We call
{
z0, z1 ≡ f (z0) , . . . , zl−1 ≡ f ◦(l−1) (z0)

}
a cycle of z0 with the length l. Espe-

cially, in case l = 1 i.e. f (z0) = z0 we call z0 a fixed point.
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According to [9; 11], one can calculate the multiplier λ using the chain rule

λ =
(
f ◦N

)′
(z0) = f

′
(z0) .f

′
(z1) . . . f

′
(zl−1) . (2.19)

The calculation of the multiplier λ of the periodic point z0 (i.e. of the cycle of z0) is decom-

posed into the multiplication of stability multipliers of each point of the cycle. The chain

rule is a numerically convenient method to evaluate the stability of the cycle. Also, let us

introduce the definition of preperiodic point.

Definition 2.4.9 (Preperiodic point - see [11; 13]). For a general holomorphic endomorphism

f , we say α is preperiodic if α is not periodic but there is positive m ∈ N such that f ◦m(α)

is periodic.

Next let us summarize theorems connecting the Julia set properties with the periodic and

preperiodic points properties. This part is crucial to fully understand the structure of Julia

sets and consequently the chaotic dynamics.

Theorem 2.4.10 (Points in the Julia set - see [11; 13]). Let f ∈ Rat. Then, every repelling

periodic point or parabolic periodic point of f belongs to the Julia set. Every (super)attracting

periodic point belongs to the Fatou set.

It is proved in [13] that every f ∈ Rat has either repelling fixed point or parabolic periodic

point. Direct consequences of this theorem are:

Theorem 2.4.11 (Condition for the nonempty Julia set - see [11; 13]). For every f ∈ Rat

the Julia set J (f) is not empty.

Theorem 2.4.12 (First fundamental theorem for Rat - see [11; 13]). For every f ∈ Rat, the

Julia set J (f) is the closure of the set of the repelling periodic points.

Theorem 2.4.13 (Julia set coincides with C - see [11; 13]). If all the critical points of a

rational function f are preperiodic, then its Julia set J (f) coincides with C.

As a consequence of the theorems (2.4.11,2.4.12) the dynamical system is chaotic on its

Julia set.
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Theorem 2.4.14 (Existence of the chaotic dynamical system on its Julia set - see [13]). For

every f ∈ Rat, the dynamical system (f, J (f)) is chaotic (according to definition (2.4.2)).

There exists an interesting subset of the hyperbolic, rational functions with the property

to be expanding on its Julia set. Then the dynamical system (f, J (f)) is chaotic similar to

the sense of Poincaré.

Definition 2.4.15 (Hyperbolic function - see [13]). A rational function f is called hyperbolic

if there is no intersection of Julia set with the closure of the forward orbit of the critical

points i.e. if J (f) ∩ C+ (f) = ∅, where C+ (f) =
⋃∞
n=1 f

◦n (Cf ) is forward orbit of Cf =

{z ∈ C|f ′ (z) = 0} critical points.

Definition 2.4.16 (Expanding function - see [13]). A rational function f is expanding on

J (f) if there are a Riemannian metric σ (z)2|dz|2 on some neighborhood of J (f) and positive

constants c and λ > 1 such that

σ (f ◦n (z)) |
(
f ◦n

′
(z)
)
| ≥ cλnσ (z)

for all n and z ∈ J (f). This λ is called an expanding constant of f on J (f).

Theorem 2.4.17 (Conditions for expanding function - see [13]). For f ∈ Rat, the following

three conditions are equivalent to each other.

• The function f is hyperbolic.

• All the critical points are in F (f), each of whose orbit converges towards an attracting

cycle.

• The function f is expanding on J (f).

Theorem 2.4.18 (Lebesgue measure of the Julia set - see [13]). The two-dimensional

Lebesgue measure of the Julia set of a hyperbolic rational function is 0.

For hyperbolic rational function the Julia set may exhibit complicated topological struc-

ture (self similarities) and may become a fractal, like famous Mandelbrot set [13]. Shishikura
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proved [13], that the Hausdorff dimension [13] of the boundary of the Mandelbrot set is

2. In the thesis, we are not going to calculate the Hausdorff dimension of the Julia sets,

nevertheless let us mention following interesting theorem.

Theorem 2.4.19 (Hausdorff dimension of the Julia set - see [13]). For the Julia set J (f) of

a hyperbolic rational function f, 0 < dim (J (f)) < 2.

J. W. Milnor presented, in details, the properties for quadratic rational maps [12]. Here

bellow let us present central theorem to distinguish connectivity or total disconnectivity of

the Julia set.

Theorem 2.4.20 (Connected and disconnected Julia set - see [12]). The Julia set J of a

quadratic rational function f is either connected, or totally dis-connected and homeomorphic,

with its dynamics, to the one-sided shift on two symbols. It is totally disconnected if and only

if either

• both critical orbits converge to a common attracting fixed point, or

• both critical orbits converge to a common fixed point of multiplicity two but neither

critical orbit actually lands on this point.

Let us point out that the converge of the critical orbits to a common attracting fixed

point may be well simulated by numerical calculation and consequently one can decide about

the disconnect Julia set J (f) also using numerical methods. By this, one also proves that f

is hyperbolic i.e. expanding on J (f) (2.4.15,2.4.17) - then the dynamical system (f, J (f)) is

chaotic (2.4.14) similar to the sense of Poincaré.

2.4.2 Holomorphic maps of several variables

Let me present the mathematical framework to study the dynamics of holomorphic maps

of several complex or real variables, as presented in [13]. We use the presented framework

especially for the numerical simulations of dynamics for two-qubit protocols.

Definition 2.4.21 (Holomorphic function - see [13]). A complex valued function f defined

in an open set U ⊂ CN is said to be holomorphic if the following two conditions are satisfied
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1. f is continuous in U

2. for each k (1 ≤ k ≤ N), the function f (z1, . . . , zk, . . . , zN) is holomorphic with respect

to the single variable zk.

Definition 2.4.22 (Holomorphic map - see [13; 14]). A map F

F : U 3 (z1, . . . , zM) 7→ (w1, . . . , wM) = (f1 (z1) , . . . , fM (zM)) ∈ CM

defined by an M-tuple of holomorphic functions f1, . . . , fM on an open set U ⊂ CM , is said

to be a holomorphic map.

The (M,N) matrix F ′ (z) = (∂wj/∂zk) is said to be the (complex) Jacobian matrix of the

holomorphic map F . In general, a map (not necessarily holomorphic) F from U ⊂ CN to

CM can be regarded as a map from U ⊂ R2N to R2M with respective real Jacobian matrix.

For the holomorphic map there exist also the definitions of fixed point resp. periodic point

(cycle) equal to the definitions for one complex variable function (2.4.8). Also, there exists

the classification theorem for these points.

Definition 2.4.23 (Classification of periodic points - see [13; 14]). Let F be a holomorphic

map, let z0 be a periodic point of period l, F◦l (z0) = z0. We say that z0 is an attracting

resp. repelling periodic point if all the eigenvalues of the Jacobian matrix
(
F◦l
)′

(z0) are less

resp. greater than 1 in absolute value. We say that z0 is a saddle periodic point if some, but

not all of the eigenvalues of
(
F◦l
)′

(z0) are in absolute value less than 1 and the other are in

absolute value greater than 1.

Similarly to one dimensional maps (2.4.8), an attracting resp. a repelling periodic point

represents locally stable resp. unstable state of the system. A saddle point does not exists

for one dimensional maps, it represents locally stable and unstable submanifolds near z0 [14].

Classification of periodic points can be done using the extended chain rule:
(
F◦l
)′

(z0) ≡

F ′ (z0) . . .F ′ (zl−1).

According to literature [13; 14], there is a significant difference when studying the dy-

namics of one and multi-dimensional maps. For example, rational function of degree two, in
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one complex variable, induces chaos on its Julia set (2.4.14), but this is not generally true for

the two complex variable rational function [14]. For the study of the dynamics of multidi-

mensional maps another dichotomy of the Julia set points on nonwandering and wandering

domains [13; 14] has to be introduced. The point p in the nonwandering domainM satisfies

similar condition compared to the second condition of chaos (2.4.2) - i.e. p ∈M if given any

neigborhood U of p ∈ M, there is an integer n ≥ 1 so that F◦n (U) ∩ U 6= ∅. The points

in wandering domain contradict it. Further details of the theory are beyond the scope of

the thesis and reader can find more details in the existing literature [13; 14]. Note that the

theory is still under the intensive research.

2.4.3 Liapunov characteristic exponents

Liapunov exponents are important characteristics of dynamical systems. According to Licht-

enberg and Lieberman [10], Liapunov exponents of a given trajectory characterize the mean

exponential rate of divergence of trajectories surrounding it. Characterization of the stochas-

ticity of a phase state trajectory in terms of the divergence of nearby trajectories was in-

troduced by Hénon and Heiles in 1964. The study continues and in 1980, Benettin et al.

provided a full description and computational algorithm for Liapunov exponents.

Here bellow will be provided the definition of Liapunov exponents for a discrete dynamical

system, derived from the definition for a continuous dynamical system [10]. We will use this

definition in an application. Let us suppose the dynamical system on an n-dimensional

metric space, with the orthonormal basis {ei}ni=1, generated by the map F . Let us study the

trajectory x (n) = F◦n (x0), where x0 is the initial state. Then the mean exponential rate of

divergency of two initially close trajectories x0, x0 +∆x0, with the deviation ∆x0 = ‖∆x0‖w

in the direction w, is defined as

σ (x0, w) = lim
n→∞

(
lim

‖∆x0‖→0

(
1

n
ln
d (x0, n)

‖∆x0‖

) )
(2.20)

where d (x0, n) is the distance of the evolved, initially closed, points after the n-steps of the

map

d (x0, n) = ‖Fn (x0 + ∆x0)−Fn (x0) ‖.
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We also define the i-th Liapunov characteristic exponent as the mean exponential rate of

divergency in the direction of the i-th vector of the orthonormal basis

σi (x0) = σ (x0, ei) . (2.21)

These can be ordered by magnitude

σ1 (x0) ≥ σ2 (x0) ≥ . . . ≥ σn (x0) .

In 1968 it was proven, by Oseledec, that the Liapunov characteristic exponents are indepen-

dent of the choice of metric for the phase space.

In chapter (3), we provide with the analytical calculation of the positive Liapunov expo-

nent for the chaotic dynamical systems (in Poincareé sense) on the analytically known Julia

set of the circle K(0, 1). For the chaotic dynamical systems on the analytically unknown

Julia sets, we will not provide with the numerical calculations of the Liapunov exponent,

even if the numerical method exists [10]. To numerically calculate the Liapunov exponent

one faces the issue to find a ”sufficiently good” points of the Julia set from the perspective of

long run iterations using finite precision of computation. Secondly one needs to eliminate the

numerical errors during the long run iterations by calculation with a huge amount of digits,

this impacts the performance of the computation.
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Chapter 3

Results

The main interest of the thesis is to study, both analytically and numerically, the dynamics

of a generic purification protocol and the existence of chaos for one and two-qubit systems.

This chapter contains the original results of the study. First of all we analyze the properties

of the protocol to preserve purity and separability of the outputs. Then we start to study the

dynamics for one-qubit states the existence of chaos will be proven. After that we will continue

with the analysis of the dynamics for two-qubit pure separable states. Then we turn our

interest to the dynamics for general two-qubit pure states and we prove a strong sensitivity of

the protocol to converge either to the completely separable of maximally entangled attractors.

Finally we will study the two-qubit mixed states. We will learn that for two-qubit mixed states

also a third attractor appears, which represents completely mixed state. These results are

consistent with our expectations, based only on random numerical sampling of the problem,

and prove a novel form of quantum chaos.

3.1 Generic purification protocol properties

Before we analyze the dynamics of the generic purification protocol, let us point out the

general properties of the protocol acting on the ensemble of pure and separable states. We

will prove that in each step of the protocol (2.16) a pure state is mapped onto a pure state

and a separable state onto a separable state. These properties will be useful for later studies

of the protocol dynamics.
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3.1.1 Action on a pure state

One can ask the question, what is the action of the nonlinear map (2.14) on M -qudits pure

state? Any M -qudits pure state |ψ〉 can be represented, in number state basis, in the form

|ψ〉 =
∑
k

αk|k〉,

where k = (k1, . . . , kM), ki ∈ {0, . . . , D − 1}. Pure state is also represented by the density

matrix σ, in the form

σ = |ψ〉〈ψ| =
∑
k,l

(σ)k,l|k〉〈l|, (σ)k,l = αkα
∗
l .

Consequently, the nonlinear map (2.14) maps the density matrix σc of the pure state onto

the density matrix of the pure state

σ̄c = N
∑
k,l

αkα
∗
lαk	p1α

∗
l	p1

. . . αk	pNα
∗
l	pN
|k〉cc〈l| = |ψ̄〉cc〈ψ̄|

where

N =

(∑
k

|αk|2|αk	p1|2 . . . |αk	pN |2
)−1

and

|ψ̄〉c =
∑
k

βk|k〉c, βk =
√
Nαkαk	p1 . . . αk	pN . (3.1)

The nonlinear map (2.14) behaves like a filter for the pure state |k〉c if βk = 0. Because

the unitary map (2.15) maps a pure state onto a pure state, the whole purification protocol

(2.16) maps a pure state onto a pure state or one step of the protocol behaves like a filter.

3.1.2 Action on separable state

Similarly, one can ask the question, what is the action of the nonlinear map (2.14) on the

M -separable (2.8) state? Such a M -qudits state can be represented by the density matrix σ,

in the form

σ =
k∑
i=1

piσ
i
1 ⊗ . . .⊗ σiM , σij =

D−1∑
kj ,lj=0

(
σij
)
kj ,lj
|kj〉〈lj|,
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where the density matrix σi,j represents the j-th particle, which belongs to the ensemble for

the weight pi and the sum of the weights for all the possible ensembles is 1 i.e.
k∑
i

wi = 1.

Then the coefficient of the density matrix σ is in the form

(σ)k,l =
k∑
i=1

pi
(
σi1
)
k1,l1

. . .
(
σiM
)
kM ,lM

,

where k = (k1, . . . , kM), l = (l1, . . . , lM), ki, li ∈ {0, . . . , D − 1}.

The action of the nonlinear map (2.14) maps the density matrix of the separable state

onto a density matrix which again represents the separable state

σ̄c = N
∑
k,l

[∑
i0

pi0
(
σi01
)
k1,l1

. . .
(
σi0M
)
kM ,lM

]
.

.

[∑
i1

pi1
(
σi11
)
k1	(p1)1,l1	(p1)1

. . .
(
σi1M
)
kM	(p1)M ,lM	(p1)M

]
. . .

. . .

[∑
iN

piN
(
σiN1
)
k1	(pN )1,l1	(pN )1

. . .
(
σiNM
)
kM	(pN )M ,lM	(pN )M

]
|k〉cc〈l| =

= N
∑
k,l

[ ∑
i0,...,iN

pi0pi1 . . . piN

[(
σi01
)
k1,l1

. . .
(
σiN1
)
k1	(pN )1,l1	(pN )1

]
. . .

. . .
[(
σi0M
)
kM ,lM

. . .
(
σiNM
)
kM	(pN )M ,lM	(pN )M

] ]
|k〉cc〈l| =

=
∑

i0,...,iN

pi . . . piN σ̄
(i0,...,iN ),1 ⊗ . . .⊗ σ̄(i0,...,iN ),M

where

σ̄(i0,...,iN ),j = Ni
∑
kj ,lj

(
σi0j
)
kj ,lj

(
σi1j
)
kj	(p1)j ,lj	(p1)j

. . .
(
σiNj
)
kj	(pN )j ,lj	(pN )j

|kj〉〈lj| (3.2)

with

Nj =

∑
kj

(
σi0j
)
kj ,kj

(
σi1j
)
kj	(p1)j ,kj	(p1)j

. . .
(
σiNj
)
kj	(pN )i,kj	(pN )i

−1

≥ 0.

Let us prove that σ̄(i,...,iN ),j represents a hermitian operator with unit trace i.e. a density
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matrix (
σ̄(i0,...,iN ),j

)
kj ,lj

= Ni
(
σi0j
)
kj ,lj

(
σi1j
)
kj	(p1)j ,lj	(p1)j

. . .
(
σiNj
)
kj	(pN )j ,lj	(pN )j

=

= Nj
(
σi0j
)∗
lj ,kj

(
σi1j
)∗
lj	(p1)j ,kj	(p1)j

. . .
(
σiNj
)∗
lj	(pN )j ,kj	(pN )j

=

=
(
σ̄(i0,...,iN ),j

)∗
lj ,kj

=
(
σ̄(i0,...,iN ),j†

)
kj ,lj

,(
σ̄(i0,...,iN ),j

)
kj ,kj

≥ 0,

Tr
(
σ̄(i0,...,iN ),j

)
= 1 or the subsystem is filtered out by the purification.

Finally, if none of the subsystems is filtered out, then

Tr (σ̄c) =
∑

i0,...,iN

pi0pi1 . . . piN Tr
(
σ̄(i0,...,iN ),1 ⊗ . . .⊗ σ̄(i0,...,iN ),M

)
=

=
∑

i0,...,iN

pi0 .pi1 . . . piN .1 =
N∏
m=0

∑
im

pim =
N∏
m=0

1 = 1.

The nonlinear map (2.14) behaves like a filter for the separable state σc in the case σ̄
(α0,...,αN ),i
c =

0 for some i ∈ M̂ . As already mentioned for the pure states, the unitary map (2.15) maps

a pure state onto a pure state. Therefore, the whole purification protocol (2.16) maps a

separable state onto a separable state or the protocol behaves like a filter.

3.1.3 Summary

Let us summarize now the main statements, valid for every generic purification protocol

(2.16):

i. generic purification protocol maps a pure state onto a pure state,

ii. generic purification protocol maps a separable state onto a separable state

These statements are valid for every purification protocol under study, meaning for the pu-

rification of the general qudit systems, using arbitrary number N of the target systems per

control one and for every setting of the target system projections Pti . Also the generic

purification protocol may behave like a filter for certain states. If this happens, then the

purification procedure stops, because none of the possible target states pass the selective

projection in the purification step.
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3.2 Representation by rational maps

To represent the dynamics of any physical system by rational map in complex or in real

variables has advantages for analytic studies as well as for numerical calculations. For such a

map there exist efficient algorithms to find its roots i.e. one can calculate its periodic points.

Also, the rational functions are holomorphic, so one can easily calculate their Jacobians and

evaluate the stability of periodic points. By this one can study the dynamics. In particular,

chaotic dynamics generated by rational function in one complex variable can be analytically

treated and numerically studied using extensive mathematical framework (2.4). This has

been the motivation to find an effective representation of purification protocols by rational

functions.

Also the representation shall be minimal in terms of needed variables. Taking into account

only the properties of purified states, n qudits pure state |ψ〉 is represented only by nD − 1

complex parameters, because of normalization and rays equivalence of pure states in the

Hilbert space. Therefore one-qubit pure state dynamics can be represented by one complex

variable. Similarly, each n qudits density matrix σ, the Hermitian operator with unite trace,

is represented by only (nD)2 − 1 real parameters. For two-qubit states it means there are

fifteen real, independent, parameters.

We focus now on finding of the explicit transformation for one-qubit pure states and

for two-qubit pure and general mixed states. Later on, we will apply found results for the

analysis of purification dynamics.

3.2.1 One-qubit pure states

As introduced in the papers [I], [27] a one-qubit pure state

|ψ (α)〉 = α0|0〉+ α1|1〉,

is represented in the number state basis by two complex numbers α0,1. Using the transfor-

mation

z =
α0

α1

∈ Ĉ (3.3)

38



we can write |ψ〉 as

|ψ (z)〉 = N (z) (z|0〉+ |1〉) ,

where N (z) = (1 + |z|2)
−1/2

is the normalization. In this notation, z = ∞ represents the

state |0〉 and z = 0 represents the state |1〉. This is a unique representation of |ψ (α)〉 ≡

|ψ (z)〉.

The nonlinear part of the purification step (2.14), with the parameters M = 1 and D = 2,

maps a pure state |ψ (α)〉 onto a pure state |ψ (ᾱ)〉 = ᾱ0|0〉 + ᾱ1|1〉 and according to the

relation (3.1)

ᾱ0 =
√
Nα0α0	p1 . . . α0	pN

ᾱ1 =
√
Nα1α1	p1 . . . α1	pN

where the projection onto the i-th target qubit is Pti = |pi〉〈pi| with pi ∈ {0, 1}. Consequently,

using the transformation (3.3), we receive

α0	pi
α1	pi

=

{
z, pi = 0
z−1, pi = 1

and one can see, that the nonlinear part of purification is represented by the map T from Ĉ

to Ĉ

T : z → z̄ =
ᾱ0

ᾱ1

=
α0α0	p1 . . . α0	pN
α1α1	p1 . . . α1	pN

= zq, q ∈ Z. (3.4)

The complete purification consists in addition by the action of the additional unitary gate

U =

(
u00 u01

u10 u11

)
.

which maps the pure state |ψ (z̄)〉 onto pure state |ψ (zout)〉, and may be represented by the

map U from Ĉ to Ĉ

U : z̄ → zout =
u00z̄ + u01

u10z̄ + u11

.

Consequently, a complete purification of the one-qubit pure state may be represented by the

rational (or polynomial) map F from Ĉ to Ĉ

F = U ◦ T : z → u00z
q + u01

u10zq + u11

, q ∈ Z. (3.5)
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3.2.2 Two-qubit states - pure and mixed

There is significant difference in the study of the dynamics for one and two-qubit states. Let’s

suppose the two-qubit pure state, in number state basis, it is represented by the state

|ψ (α)〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

Because of the equivalency of beams in Hilbert space H (2)⊗H (2) and the unite norm, only

three of the coefficients α00, α01, α10, α11 are independent. If one represents the pure state

|ψ〉 by three independent complex variables zi = αi/α11 where i ∈ {00, 01, 10}, similarly to

the one-qubit map approach (3.3), difficulties with singularities in zi arise. Namely, for every

state |ψ〉 ∈ span {|00〉, |01〉, |10〉} we have at least one zi = ∞. If two of the zi = ∞ the

representation becomes ambiguous. With this representation one can study the closed sub-

dynamics, which leaves β coordinate strictly nonzero during the purification process. One

can prove, similarly to one-qubit case, that the protocol is represented by a rational map.

The existing mathematical framework allows us to study in depth the sub-dynamics in one

complex variable, I focus on the study of such a case.

The numerically effective approach, to study two and multi-qubit states protocols, is

offered by the Fano representation (2.17). In the Fano representation each mixed state density

matrix σ is represented by a Bloch vector b with 4n − 1 real coordinates. Consequently, one

can realize that the action of the protocol step (2.16) is described by the map F , which

consists of the rational (or polynomial) functions Fi of the Bloch vector coordinates

Fi : bi 7→ N gi (b1, . . . ,b4n−1) (3.6)

with the normalization

N =
1

h (b1, . . . ,b4n−1)

where {gi} , h are polynomial functions of degree at most N+1. Consequently, for two-qubit

state the Bloch vector (2.18) has 15 real coordinates cIX , . . . , cZZ .
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3.3 Purification to be analyzed

Since now we focus on study of the purification protocols (2.16) for one and two-qubit states

and with the fixed projections Pti = |p〉titi〈p| for all the target systems i ∈ N̂ . This choice

of the nonlinear part of the map simplifies the analysis and still allows to prove interesting

chaotic regimes of the protocol. For such a case the action of the nonlinear part of the

protocol (2.14) maps σc onto σ̄c

σ̄c = N
∑
k,l

σk,l (σk	p,l	p)N |k〉cc〈l|. (3.7)

Firstly, we will analyze the simplest case of the one-qubit pure state protocol using the

additional unitary gates U ∈ SU (2) (2.1), which form a one parametric set of the purifica-

tions. This allows us to study the sensitivity of the protocol not only to the continues setting

of the initial state, but also to the continues internal setting of the protocol. Then we will

study the purifications of one-qubit pure states using additional unitary of the Hadamard

gate (2.2). The extension of this protocol, for multi-qubit systems, using one target system

per control one, i.e. for N = 1, was identified by Albert et al. [8] as the efficient purification

for the Werner states (2.12) to the general Bell state |ψ00〉 (2.5). Then we focus our inter-

est on the study of two-qubit pure, separable, states purifications. We will summarize the

scenarios of the composed, one-qubit pure states subdynamics. Finally we focus our interest

for the general two-qubit pure and mixed states. We focus on the protocol using additional

Hadamarad gate, for the several reasons: for the importance of the protocol to the purifica-

tion (as already mentioned), for the sufficient simplicity of the protocol (additional unitary

gate is used as fixed, without the parametrization) and for the existence of the nontrivial

subdynamic (we will be able to prove the existence of chaos).

For further analysis, we will represent the one-qubit pure state purifications by the rational

maps, using the expression (3.5). Then, using the theorems of section (2.4) we find the Julia

sets and we prove chaos on the Julia sets. Numerical calculations prove sensitivity in the

structure of the Julia sets. We will observe the complicated structure of the Julia set itself as

well as the ability to change its topology from connected onto disconnected (and vice versa)
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if we change the setting of the additional unitary gate. As another proof of the sensitivity

of the dynamics we calculate the positive, maximal Liapunov characteristic exponent (2.21).

Finally we prove the sensitivity of the purification to achieve the irregular motion for one of

the critical points.

For the two-qubit separable states purification we re-use the rational maps representation

of one-qubit pure state purifications. We will prove that the two-qubit separable states

dynamics is decomposed onto two one-qubit pure state dynamics.

Then we turn our attention to the dynamics of the purifications for two-qubit nonseparable

pure states, especially for the perturbed Bell states

|ψ (r)〉 = N (r) (r|00〉+ |11〉) , N (r) =
(
1 + |r|2

)−1/2
, r ∈ Ĉ.

We will prove, both analytically and numerically the existence of chaotic sub-dynamics, gen-

erated by rational function in Ĉ. We will numerically calculate its Julia set and consequently

we observe strong sensitivity of the protocol to the setting of the initial state. Using the Fano

representation (3.6) we will effectively simulate the complete purification for various initial

states. We will prove that the initial state may converge to maximally entangled Bell state

(2.6) |ψ (1)〉 = |ψ00〉 or to the cycle of completely separable pure states.

We will also analyze the dynamics of the purifications for the two-qubit mixed states,

especially for the class of perturbed Werner like states (2.13)

ρ (λ, r) = λ|ψ (r)〉〈ψ (r) |+ 1− λ
4
I, 0 ≤ λ ≤ 1, λ ∈ Ĉ

as the extension of two pure states dynamics. By numerical simulations using the Fano

representation (3.6) we will prove, according to our expectation, also the sensitivity of the

purification to converge to the third option - the cycle of completely separable mixed states.
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3.4 Dynamics of one-qubit pure states purifications

Let us start now the detailed study of the dynamics of the purification protocols. First

of all let us focus on the study of one-qubit pure state purifications without the additional

unitary gate. Applying the definitions and the theorems of the section (2.4), we will prove the

existence of the chaos in Poiancareé sense, we will also prove this by direct calculation of the

Liapunov characteristic exponent. From now, when we will speak about a (super)attracting

resp. a repelling resp. an indifferent fixed/periodic point or cycle, it will always be in

coincidence with the definition (2.4.8), if not stated otherwise.

3.4.1 Purification without additional unitary gate

The nonlinear part of the protocol (3.7) maps a pure state

|ψ (α)〉 = α0|0〉+ α1|1〉

onto a pure state |ψ (ᾱ)〉. According to the relation (3.1) , the output depends on the number

of target states N and target state projection Pti = |p〉〈p|, p ∈ {0, 1}:

p = 0 : α 7→ ᾱ =
√
N
(
αN+1

0 , αN+1
1

)
,

p = 1 : α 7→ ᾱ =
√
N
(
α0α

N
1 , α1α

N
0

)
. (3.8)

One observes, that for the projection Pti = |1〉〈1| protocol filters out every state |0〉 or |1〉.

Using the transformation (3.3) and according to (3.4), one express the nonlinear part of

the purification resp. purification itself (in case of no additional unitary) by the map Fp,N :

Fp=0,N (z) = zN+1, (3.9)

Fp=1,N (z) = z1−N , z 6= {0,∞} . (3.10)

Purification with the projections Pti = |0〉〈0|

is represented by the function (3.9)

F0,N (z) = zN+1
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having N + 1 fixed points

z ∈
{

0, ∞, e2ıkπ/N
}
, k ∈ {0, 1, . . . , (N − 1)} .

From those only z ∈ {0, ∞} are supperattracting one, the remaining fixed points are re-

pelling. Also, the map has cycles of n-th order

zn(N+1) = z i.e. z =
{
e2ıkπ/(nN+n−1)

}
, k ∈ {0, 1, . . . , (nN + n− 2)}

all the cycles are repelling.

According to the definition (2.4.4) the Julia set J (F0,N) is the unit circle K (0, 1) ∈ Ĉ.

The states inside resp. outside the Julia set converge to the states |1〉 resp. |0〉. According

to theorem (2.4.14) the dynamical system is chaotic on the Julia set. The map F0,N (z) has

the two critical points z ∈ {0,∞} - see the definition (2.4.15), these are also superattracting

fixed points. Then, according to definition (2.4.15), the map is hyperbolic and from theorem

(2.4.17) the map is expanding on the Julia set K (0, 1). One can demonstrate the property of

expanding map by calculating the mean exponential rate of divergency σ (2.20) between the

two points of Julia sets. For the Julia set K (0, 1), the rate σ is also the maximal Liapunov

characteristic exponent (2.21)

σ = lim
n→∞

(
lim

∆z(0)→0

(
1

n
ln

∆z (n)

∆z (0)

) )
where the distance ∆z (k) of initial points z0, z1 after k steps of the protocol is defined as

∆z (k) = 1− |〈ψ
(
F0,N

◦k (z1)
)
|ψ
(
F0,N

◦k (z0)
)
〉|2 =

= 1− |〈ψ
(
z1

(N+1)k
)
|ψ
(
z0

(N+1)k
)
〉|2.

Without loss of generality one can choose z0 = 1, z1 = exp (iϕ) and then calculate ∆z (k) as

∆z (0) = sin2
(ϕ

2

)
,

∆z (n) = sin2

(
(N + 1)nϕ

2

)
.

Using the symmetry of circle of Julia set K (0, 1) and applying the theorem about the limit

of composed function (c.f.) and two times applying L’Hospital theorem (L’.H.), one can

44



calculate a Liapunov index σ as

σ = lim
n→∞

 lim
ϕ→0

 1

n
ln

sin2
(

(N+1)nϕ
2

)
sin2

(
ϕ
2

)
  = { c.f.} =

= lim
n→∞

 1

n
ln lim

ϕ→0

sin2
(

(N+1)nϕ
2

)
sin2

(
ϕ
2

)
  = { L’.H.} =

= lim
n→∞

(
1

n
ln lim

ϕ→0

(
sin ((N + 1)n ϕ)

sin (ϕ)
(N + 1)n

) )
= { L’.H.} =

= lim
n→∞

(
1

n
ln lim

ϕ→0

(
cos ((N + 1)n ϕ)

cos (ϕ)
(N + 1)2n

) )
=

= lim
n→∞

(
2n

n
ln (N + 1)

)
= 2 ln (N + 1) > 0.

The positivity of the Liapunov index σ = 2 ln (N + 1) implies an exponential divergency

of the trajectories inside the Julia set K (0, 1) and proves there the existence of chaos in

Poincaré sense.

Purification with the projections Pti = |1〉〈1|

is represented by the function (3.10)

F1,N (z) = z1−N , z 6= {0,∞} ,

for z ∈ {0,∞} purification stops (protocol filters out the states |0〉, |1〉). For z 6= {0,∞}

there exist several regimes:

• for the purification with N = 1, using one target system, the protocol behaves like the

constant map

F1,1 (z) = 1, z 6= {0,∞} ,

which leads to the trivial dynamics: |ψ〉 7→ 1√
2

(|0〉+ |1〉), |ψ〉 6= {|0〉, |1〉}.

• for the purification with N = 2, using two target systems, we observe regular dynamics

F1,2
◦2k (z) = z and F1,2

◦(2k+1) (z) = z−1
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After the second step the map behaves like the identity F1,2
◦2 (z) = z, then for each

z ∈ Ĉ r {0,∞} there exists a neighborhood U of z such that the sequence of the

iterates {F1,2
◦n}, restricted to U , contains the subsequence

{
F1,2

◦2k} which converges

locally uniformly on U . Consequently {F1,2
◦n} forms a normal family for each z ∈

Ĉ r {0,∞}, see the definition (2.4.3), then the Fatou set of the map is all Ĉ and there

is no chaotic regime for the map F1,2. The two fixed points {±1}, representing the

states 1√
2

(|0〉 ± |1〉), are indifferent.

• finally for N ≥ 3 the purification is represented by the rational function of degree at

least two

F1,N (z) =
1

F0,N−2 (z)
.

One can see that the Julia set of the map F1,N is again unit circle K (0, 1) and that

the point out of Julia set approaches the value 0 or ∞ (for even or odd number of

purification steps), meaning that the purification approaches to the filtering out of

all the states. The map F1,N (z) has no critical point, then the map is hyperbolic and

expanding on the Julia set K (0, 1). For this Julia set we can also calculate the maximal

Liapunov characteristic exponent σ = 2 ln (N − 1) > 0 (2.21) and to confirm there the

existence of chaos in Poincaré sense.

3.4.2 Purification using SU (2) gates

Now we will analyze the dynamics of one-qubit pure state purification protocol with the

additional, nontrivial, unitary transformation U ∈ SU (2) (2.1). We expect to observe com-

plicated structures of the Julia set together with its possibility to loose the connectivity and

to become totally disconnected. Fine structure of the Julia set, i.e. the area of the existence

of chaotic dynamics, induces the existence of interesting dynamical regimes with the strong

sensitivity either to the initial state (close to the Julia set), but also the sensitivity to the

initial setting of the protocol itself (additional unitary, number of target systems, projection

to the target system). We will analyze numerically the Julia set structure by exploiting two
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approaches, the first using the property of Julia set being close to the backward iterations

and the second using the property of Julia set being the closure of the repelling cycles.

Using the transformation (3.3), the action of the complete protocol step (2.16) can be

represented, depending on the projection parameter p and the additional unitary U ∈ SU (2)

(2.1), by the rational or polynomial map (3.5) Fa,p,N onto Ĉ

Fa,p=0,N (z) =
zN+1 + a

1− a∗zN+1
,

Fa,p=1,N (z) =
1 + a zN−1

zN−1 − a∗
, (3.11)

where a = tanφeıψ and ∗ means complex conjugation. For the case a = 0 we receive the

purification without use of the additional unitary gate. This case was already studied in

section (3.4.1), so we will be interested only for the purifications with a 6= 0. Consequently

the Jacobian F ′a,p,N (z) is equal to:

F ′a,p=0,N (z) =
(N + 1) zN (1 + |a|2)

(a∗zN+1 − 1)2 ,

F ′a,p=1,N (z) =
(1−N) zN−2 (1 + |a|2)

(zN−1 − a∗)2 . (3.12)

According to the absolute value of the Jacobian, evaluated for the given fixed point, one can

classify all the fixed points of the map according to the definition (2.4.8).

Let us start now the detailed study of the nontrivial dynamics of these purification pro-

tocols. We will study two main sets of the protocols according to the setting of the target

system projections Pti .

Purification with the projections Pti = |0〉〈0|

is represented by the rational map Fa,0,N (z) (3.11) of the order at least two in Ĉ. Then, in

agreement with (2.4.14), the Julia set for the map is not empty and the map can be chaotic.

According to the theorems (2.4.6,2.4.10) the Julia set can be numerically calculated as a

backward orbit of repelling periodic point z0 of the map. A list of the numerically calculated

repelling periodic points, for the maps Fa,0,1 (with various values of the parameter a but

using only the one target system per control one) follows:
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• a = 1: z0 = −1.83928676,

• a = 1 + 0.2ı: z0 = 0.51120002− 0.57287547ı,

• a = 0.8: z0 = −2.08139042,

• a = 0.66: z0 = 0.41426801 + 0.50503470ı,

• a = 0.5: z0 = 0.41558860 + 0.42484830ı.

For every map Fa,0,1, each point z of the Julia set has 2 pre-images z−1
1,2 :

z−1
1,2 = ±

√
z − a

1 + za∗
(3.13)

meaning that the Julia set J (Fa,0,1) is centrally symmetric under the point 0. Also, because

the map Fa,0,1 is a rational map of degree two, there exists chaos on J (Fa,0,1) sets (2.4.14).

On figures (3.1-3.4), one can observe strong self similarity of the Julia set structure and its

complicated (fractal) structure. The Julia set can loose its local connectivity and may become

totaly disconnected, see the plots in figure (3.4). If it happens, Fa,0,1 may be hyperbolic i.e.

expanding on J (Fa,0,1) (2.4.17). A sufficient condition for such a dynamics is the convergence

of critical orbits of the only critical points zc1 = 0, zc2 = ∞ (common for every Fa,0,1) to a

common attracting fixed point (2.4.20) - this is the case for the presented disconnected Julia

sets (3.4), proved numerically. For special setting of the purification, as represented by F1,0,1,

we can analytically prove that F1,0,1 is hyperbolic i.e. expanding on J (Fa,0,1) (2.4.17). One

can check, that the critical point z2c = ∞ is part of the superattracting cycle C = (−1,∞)

and the critical point zc1 = 0 follows the orbit 0 7→ 1 7→ ∞ which leads to the cycle C. By

this we proved that F1,0,1 is hyperbolic (2.4.15) and therefore expanding on J (F1,0,1) (2.4.16).

Another way how to calculate the part of the Julia set is to simulate the speed of converge

of the initial states z0 to the superattracting cycle, so the Julia set represents the closure

of the repelling cycles (2.4.10,2.4.12). Numerical results are present on figures (3.5,3.6).

Calculations has been done for the map F1,0,1 with the superattracting cycle C = (−1,∞)

(| ∂
∂z
F◦21,0,1 (z)|z=−1 = 0 resp. | ∂

∂z

(
1/F◦21,0,1 (1/z)

)
|z=0 = 0) (2.4.8).
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From the perspective of existence of irregular motion, it is also interesting to study the

evolution of the critical points (2.4.15), especially if they converge to the attracting cycle.

Let us focus now on the numerical studies of the length of the attracting cycle which may

appear in the evolution of the critical point zc1 = 0 for various maps Fa,0,1. This simulations

reveal strong sensitivity of the protocol properties on the parameter a. One can identify the

set of protocols where the evolution leads to irregular motion. The yellow areas in figure

(3.7) correspond to the irregular motion. We note that there exists also fine structures

corresponding to the convergency to the superattracting cycle including second critical point

zc2 = ∞, see black color areas - these maps Fa,0,1 are hyperbolic and therefore expanding

on their Julia sets (2.4.17). White color areas represent the existence of the other attracting

cycle during the evolution of z0. Figures (3.8) then represent the self similarity in the patterns

of the length of the limiting attractive cycle.

Plots (3.7, 3.8) allow us to identify those protocols which evolve zc1 = 0 in a irregular

fashion. Existence of both regular and irregular evolutions of zc1 for various purifications is

demonstrated on figure (1.2). Qualitatively the plot (1.2) is very similar to the plot enhance

it is natural to expect chaotic behavior in the quantum domain (1.1).
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Figure 3.1: Julia set calculated for 21 backward steps (3.13) - dynamical systems is chaotic
here (2.4.14) and F1,0,1 is expanding here (2.4.16).

Figure 3.2: Details of the Julia set for the parameter a = 1, calculated for 25 backward steps.

50



Figure 3.3: Julia sets calculated for 21 backward steps (3.13) - dynamical systems are chaotic
here (2.4.14).
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Figure 3.4: Totally disconnected Julia sets calculated for 21 backward steps (3.13) - dynamical
systems are chaotic here (2.4.14) and Fa,0,1 are expanding here (2.4.16)
.
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Figure 3.5: Speed of convergence to superattracting cycle (−1,∞) for F1,0,1 (3.11) in at most
100 purification steps. The precision of convergence is set on 10−4.

Figure 3.6: Details of speed of convergence to superattracting cycle (−1,∞) for F1,0,1.
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Figure 3.7: The figure represents the sensitivity of purifications Fa,0,1 (3.11) to evolve the
initial critical state with z0 = 0. Black color marks the evolution which leads to superat-
tracting cycle containing the point ∞. White color represents the evolution which leads to
the attracting cycle without the point ∞. Yellow color represents the evolution without an
attracting cycle. According to the theorem (2.4.17), black color areas identify Fa,0,1 being
hyperbolic and therefore expanding (2.4.16) on its Julia set.
The existence of the cycles, of the length at most 500, is searched in the first 104 iterations
of the protocol. The cycle is recognized with the precision at most 10−5, its stability (2.4.8)
is calculated according to the chain rule (2.19).
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Figure 3.8: The figure represents the lengths of the attracting cycles for various parameters
of Fa,0,1 (3.11), yellow color means the absence of attracting cycle during the evolution of
z0 = 0.
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Purification with the projections Pti = |1〉〈1|

Let us now complete the analysis of the dynamics of one-qubit pure state protocols, which

uses an additional unitary of SU (2) gate. The analysis of the dynamics of the purification,

represented by the map Fa,p=1,N (3.11) has following properties:

• purification filters out the pure states |0〉 and |1〉 and consequently purification stops,

this corresponds to the states with z = {0,∞}.

• if the number of the target systems N = 1, then protocol behaves like the trivial map

Fa,1,1 (z) =
1 + a

1− a∗
= Ca, z 6= {0,∞} , a 6= ±1.

The initial state |ψ (Ca)〉 is a superattracting fixed point and Fa,1,1 purifies to |ψ (Ca)〉.

For a ∈ {±1} no fixed point exists and F◦2±1,1,1 behaves as a filter of pure states (mixed

states are not annihilated in general).

• for N = 2 the map Fa,1,2 is rational of degree 1

Fa,1,2 (z) =
1 + az

z − a∗
.

The map has two fixed points z1,2 = Re a±
√

1 + Re (a)2, both are indifferent.

– If Im (a) = 0 then the action of the map is simple

Fa,1,2◦2 (z) = z

for each z ∈ Ĉ r {−1/a, 0, a,∞} (because there exist the only orbits −1/a 7→ 0

and a 7→ ∞ which contain the points {0,∞}). Then the Fatou set of the map is

Ĉ.

– For general complex value of a, the presence of chaos has not been observed. For

example, if a = ı, then the action of the map is also simple

Fı,1,2◦4 (z) = z

for each z ∈ Ĉr{ı, 0, ı,∞} (because there exist the only orbits ı 7→ 0 and −ı 7→ ∞

which contain the points {0,∞}). Then the Fatou set of the map is again Ĉ.
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• For N ≥ 3 the map Fa,1,N is a rational map with order at least 2. In agreement with

(2.4.14) the Julia set of the map is not empty and the map is chaotic on the Julia set.

There is a subset of the initial setting Re a = 0, so that

Fa,1,N (z) = F−1/a∗,0,N−2 (z)

and the dynamics Fa,1,N may be recursively compared to F−1/a∗,0,N−2. Especially, we

observe F−1,1,3 (z) = F1,0,1 (z) so the Julia set of J (F−1,1,3) is already known (3.1,3.2).

3.4.3 Purification using the Hadamard gate

Now, let us study the dynamics of the purification using the additional unitary gate of

Hadamard (2.2). Still keeping in mind, that the extension of this purification protocol, for

multi-qubit states, has been identified, in the paper [8], as effective deterministic protocol for

purification of Werner states to the general Bell state. The analysis of the dynamics will be

provided in similar way as already done for the protocols using additional unitary gates of

SU (2), presented in section (3.4.2).

Purification of the interest may be uniquely represented by the map Fp,N in the form

Fp=0,N (z) =
zN+1 + 1

zN+1 − 1

Fp=1,N (z) =
zN−1 + 1

1− zN−1
. (3.14)

Consequently the Jacobian F ′p,N (z) is equal to

F ′p=0,N (z) = −2 (N + 1) zN

(zN+1 − 1)2

F ′p=1,N (z) =
2 (N − 1) zN−2

(zN−1 − 1)2 . (3.15)

Let us analyze the dynamical regimes of the two main cases of the purifications.

Purification with the projections Pti = |0〉〈0|

The map F0,N is the rational function of degree at least two. Then in agreement with

(2.4.14), the Julia set of the map is not empty and the map is chaotic there. From the
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relations (3.14,3.11) we receive

F0,N (z) = −F1,0,N (z) .

Consequently, the dynamics of F0,N may be recursively comparable from already studied

dynamics of F1,0,N . Especially, for oddN we receive F0,N
◦n (z) = −F◦n1,0,N (z) so the evolutions

for both the maps are mutually symmetric under the center point 0.

Purification with the projections Pti = |1〉〈1|

From the relations (3.14,3.11) we receive

F1,N (z) = F1,0,N−2 (z)

where z 6= {0,∞} (because the states |1〉, |0〉 are filtered out by the nonlinear part of the

protocol). For different purifications defined by the various number of target systems N we

receive following dynamics:

• for N = 1 the map F1,1 behaves as F1,1 : z 7→ ∞. It means that two steps of the purifi-

cation behaves as the filter for all the pure states (after the first step the purification

filters out only the states |0〉, |1〉).

• For N = 2, the dynamics of F1,2 is fully regular

F1,2
◦4 (z) = z,

the Fatou set of the map is all Ĉ and there is no chaotic regime. The map has two

indifferent fixed points {±ı} which represent the states 1√
2

(ı|0〉 ± |1〉).

• For the protocol with N ≥ 3, the map F1,N = F1,0,N−2 was already studied (3.11). Just

to repeat basic information, such a map is rational function of order at least 2 with

chaotic dynamics on its nonempty Julia set.
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3.4.4 Summary

One can conclude that the dynamics of the protocol (2.16) for one-qubit pure state is com-

plicated, except the cases when the number of iterations the protocol behaves like a filter.

For the protocols with or without the additional unitary transformation U = U1⊗U2, where

U1,2 ∈ SU (2) or U1,2 = Hadamard gate, a chaotic regime exists on the nonempty Julia set

for every protocol with

• the number of the target systems N ≥ 1 and with the target state projection Pt = |0〉〈0|,

• the number of the target systems N ≥ 3.

For the simplest protocols, without additional unitary gate, we proved, using the framework

(2.4), the existence of chaos for the purification on its Julia set and we also directly calculated

positive speed of divergency of the close trajectories in the Julia set - maximal Liapunov

characteristics exponent. Then we focused on the study of more complex protocols. We

again proved the existence of chaotic dynamics on the Julia set. For this protocols, we

also simulated the Julia set and we demonstrated its complicated (fractal) structure for the

several purifications. Especially, we proved the Julia set sensitivity to change its topology

from connected to disconnected set, depending on the setup of the additional unitary gate.

We also searched for the maximal length of the attractive cycle in the evolution of the

critical point during purification. We investigated the fine structure and self similarities,

especially for the appearance of the supper attracting cycles containing both the critical

points {0,∞}. By this analysis we also find the set of the protocols which, for the given

simulation setup, exhibits irregular motion in the evolution of the critical point.

Finally, let us point out that an analysis was possible in such an easy way because we

represented the purification protocol by the rational (or polynomial) map in one complex

variable.
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3.5 Dynamics for two-qubit separable pure states

It is clear, from chapters (3.1.1) and (3.1.2), that the step of the protocol maps a separable

pure state onto a separable pure state. Each two-qubit separable pure state is described by

the density matrix

σ = σ1 ⊗ σ2

where the density matrices σ1,2 ∈ B (H1,2 (2)) represent each qubit and σ1,2 = |ψ1,2〉〈ψ1,2|

where

|ψ1,2〉 = α1,2
0 |0〉1,2 + α1,2

1 |1〉1,2. (3.16)

The dynamics of two-qubit separable pure states is composed from the dynamics of each

qubit. Similarly to the one-qubit pure state parametrization (3.3), we introduce the param-

eters

z1,2 =
α1,2

0

α1,2
1

∈ Ĉ.

The values z1,2 ∈ {0, ∞} represent the states {|1〉, |0〉} for the first and the second qubit.

3.5.1 Purification using SU (2) gates

The protocol setting depends on the additional unitary transformation U = U1 ⊗ U2, now

let me suppose U1,2 ∈ SU (2) as defined by (2.1). The action of the complete protocol step

(2.16) can be represented, depending on the target systems projections Pti = |p〉〈p| with

p = p1 ◦ p2 ∈ {00, . . . , 11}, by the pair of maps (3.4.2) Fa,p1,2,N onto Ĉ

Fa,p1,2=0,N (z1,2) =
z1,2

N+1 + a1,2

1− a1,2
∗ z1,2

N+1

Fa,p1=0,N (z1) =
z1
N+1 + a1

1− a1
∗z1

N+1
, Fa,p2=1,N (z2) =

1 + a2 z2
N−1

z2
N−1 − a2

∗

Fa,p1=1,N (z1) =
1 + a1 z1

N−1

z1
N−1 − a∗1

, Fa,p2=0,N (z2) =
z2
N+1 + a2

1− a2
∗ z2

N+1

Fa,p1,2=1,N (z1,2) =
1 + a1,2 z1,2

N−1

z1,2
N−1 − a1,2

∗
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where a1,2 = tanφ1,2e
ıψ1,2 6= 0.

The dynamics for each qubit was already studied in details for one-qubit pure states. Let

us point out important regimes:

• the maps with the projections Pt = |00〉〈00| are represented by the rational map of

degree at least two, then the dynamical system for each i − th qubit is chaotic on

nonempty Julia sets.

• the nonlinear map (3.4.2) with the partial projections |1〉〈1| onto the first or the second

qubit of the target system filters out every two-qubit separable pure state where i-th

qubit is in state |0〉 or |1〉 - those are represent by zi = {0,∞}.

– If the number of the target systems N = 1, then dynamics is trivial, the protocol

behaves like the constant map or like a filter (in the case of the unitary parameter

ai ∈ {±1}).

– For N ≥ 2 the protocol exhibits complicated dynamics, with either regular dy-

namics with empty Julia set or chaotic dynamics on nonempty Julia set.

3.5.2 Purification using the Hadamard gate

uses unitary transformation U = H ⊗ H, where H is a Hadamard gate (2.2). The action

of the complete protocol step (2.16) represented by the pair of the maps Fp1,2,N : Ĉ 7→ Ĉ

follows. In the same notation as before, one can study the dynamics for each of the qubit by

the maps (3.4.3) Fp1,2,N with the actions:

Fp1,2=0,N (z1,2) =
z1,2

N+1 + 1

z1,2
N+1 − 1

Fp1=0,N (z1) =
z1
N+1 + 1

z1
N+1 − 1

, Fp2=1,N (z2) =
z2
N−1 + 1

1− z2
N−1

Fp1=1,N (z1) =
z1
N−1 + 1

1− z1
N−1

, Fp2=0,N (z2) =
z2
N+1 + 1

z2
N+1 + 1

Fp1,2=1,N (z1,2) =
z1,2

N−1 + 1

1− z1,2
N−1

The dynamics of the protocol is characterized by this points:
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• For the partial projection |0〉〈0| onto the i-th qubit of the target system, i ∈ {1, 2}

and for general N the map F0,N is the rational function of degree at least 2, then the

dynamics is chaotic on an nonempty Julia set.

• For the partial projection |1〉〈1| and for N ≤ 3 the dynamics of the map Fp1,2=1,N is

completely regular.

• For N ≥ 3, the map F1,N is a rational map of the order at least 2 (and the map F0,N has

degree at least 4). Then, independent of the chose partial projections, the dynamical

system generated by the purification protocol is chaotic on the Julia set.

3.5.3 Summary

One can conclude that the dynamics of the protocol (2.16) for two-qubit separable states

is composed from the completely separated dynamics of the one-qubit systems (3.4.2,3.4.3),

except the cases when after the certain iterations the protocol behaves like a filter. For the

protocol with the additional unitary transformation U = U1 ⊗ U2, where U1,2 ∈ {SU (2) , H}

(2.1,2.2), chaotic regime exists for each particle for every protocol with

• the number of the target systems N ≥ 1 and for the projections Pti = |0〉〈0|, i ∈ {1, 2}.

• the number of the target systems N ≥ 3.

There exist various dynamics for the purifications of two-qubit separable states. For example,

for the cases N = 1, Pt1 = |01〉〈01| and for U1,2 ∈ SU (2) there exists chaotic regime for the

first qubit of the control system, but the dynamics of the second qubit of the control system

is fully regular and the protocol may even behave like a filter for the initial states |ψ〉1 ⊗ |0〉

resp. |ψ〉1 ⊗ |1〉 or the protocol may completely filter out all the separable pure states. For

the same configuration of the purification except for U1,2 = Hadamard gate latest after the

second step of the purification all the separable pure states are filtered out.
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3.6 Dynamics for two-qubit pure states close to sepa-

rable pure states

So far, we studied the states with no entanglement. From chapters (3.1.1) and (3.1.2), we

already know that the purifications map pure states onto pure states. Also, it is clear that the

additional unitary gate U = U1 ⊗ U2 (2.15) maps separable states onto separable states and

that U preserves the norm of the input resp. distance between the states [20]. Finally, we can

conclude that in a given step of purification it is the nonlinear part of the purification (2.14)

which influences the entanglement of the output and the additional unitary gate U influences

the input for next step of the purification. This forms generally complicated evolution and

it is not easy to predict analytically the outcomes even for small perturbations of the initial

states. However we can study the impact of one purification step on the perturbed separable

states - we show, that the combination of certain perturbations together with the purification

may lead to effective increase of entanglement.

Let be |ψSep〉 a two-qubit separable pure state of the form |ψSep〉 = |ψ1〉 ⊗ |ψ2〉, where

|ψ1,2〉 is the state of individual qubit (3.16). Let |ψ (α)〉 be a pure state close to |ψSep〉 of the

form

|ψ (α)〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

where α = (α00, . . . , α11) =
√
N (α1

0α
2
0 + ε1, α

1
0α

2
2 + ε2, α

1
1α

2
0 + ε3, α

1
1α

2
1 + ε4) and

ε = (ε1, . . . , ε4) represents an initial deviation of |ψ (α)〉 from |ψSep〉.

The action of the nonlinear map (3.7) maps the pure state |ψ (α)〉 onto the pure state

|ψ (ᾱ)〉. The action depends on the number of the target states N and on the chosen target

systems projections Pti = |p〉〈p|, p ∈ {00, . . . , 11}:

p = 00 : α 7→ ᾱ =
√
N
(
αN+1

00 , αN+1
01 , αN+1

10 , αN+1
11

)
,

p = 01 : α 7→ ᾱ =
√
N
(
α00α

N
01, α01α

N
00, α10α

N
11, α11α

N
10

)
,

p = 10 : α 7→ ᾱ =
√
N
(
α00α10

N , α01α
N
11, α10α00

N , α11α01
N
)
,

p = 11 : α 7→ ᾱ =
√
N
(
α00α11

N , α01α
N
10, α10α01

N , α11α00
N
)
. (3.17)

63



Let us focus on study of the purification step with projections Pti = |00〉〈00|. It is easy to

verify that for finite N and small deviations ε → 0 the |ψ (ᾱ)〉 remains close to the output

of purification of |ψSep〉 = |ψ1〉 ⊗ |ψ2〉 i.e. close to the separable state.

If the purification protocol uses huge number of target systems N � 1, then the nonlinear

part simply factors out the nondominant coordinates (in absolute value) of |ψ (α)〉 i.e. the

output |ψ (ᾱ)〉 has nonzero coordinates only on positions of dominant coordinates of |ψ (α)〉.

One can verify, that any two-qubit separable pure state |ψSep〉 may have one, two or four

dominant coordinates, depending if

|α1
i | < |α1

j | ∧ |α2
i | < |α2

j |

or in the case of

|α1
i | = |α1

j | ∧ |α2
i | < |α2

j | ( or vice versa)

or when

|α1,2
i | = |α

1,2
j |

for i, j ∈ {0, 1}. If the deviation keeps the dominant coordinates of |ψ (ᾱ)〉 in one of these

combinations i.e. either there is the only one dominant coordinate αij or two dominant

coordinates αij,αik resp. αij,αik or all the coordinates are dominant, then the output state

|ψ (ᾱ)〉 remains separable. It is mainly true when ε → 0. On the other hand, if there is a

significant deviation, and α00, α11 (or α01, α10) become to dominant, then |ψ (ᾱ)〉 becomes

strongly entangled (the index of correlation is close to the maximal value Ic = 2 ln 2 (2.11))

- especially if α00 = α11 (α01 = α10) then |ψ (ᾱ)〉 is close to the Bell state |ψ00〉 (|ψ01〉) (2.6).

Hence we can expect that the combination of significant deviation and a large number of

target systems significantly increase the entanglement of the output state.

Let us demonstrate the loss of separability on an example. Let us suppose purification

with Pti = |00〉〈00|, N � 1 and let |ψSep〉 = |00〉. Let |ψ (α)〉 be a perturbed state with

α00 = 1 + ε1, α10 = ε2, α01 = ε3, α11 = ε4.
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If |1 + ε1| > max {|ε2|, . . . , |ε4|} then |ψ (ᾱ)〉 stays close to the separable state |00〉. If

|1 + ε1| = |ε2| = max {|ε3|, |ε4|} then |ψ (ᾱ)〉 stays close to the separable orbit

1√
2

(
eı(N+1)η|00〉+ eı(N+1)θ|01〉

)
where η, θ are the phases of 1 + ε1, ε2. If |1 + ε1| = |ε4| = max {|ε2|, |ε3|} then |ψ (ᾱ)〉 stays

close to the maximally entangled orbit

1√
2

(
eı(N+1)η|00〉+ eı(N+1)ϑ|11〉

)
where η, ϑ are the phases of 1 + ε1, ε4. For the cases, when the nonlinear part of the

purification maps the initial state |ψ (α)〉 close to separable state, the action of the additional

unitary gate does not affect the separability of the output |ψ (ᾱ)〉. For the cases when the

nonlinear part maps |ψ (α)〉 close to the entangled state the system may stay entangled - we

can demonstrate it on the example of purification with the unitary gate U = H ⊗H where

H is the Hadamard gate (2.2). Let us suppose |ψ (ᾱ)〉 is of the form

|ψ (ᾱ)〉 =
1√
2

(ᾱ00|00〉+ ᾱ11|11〉) ,

and |ᾱ00| = |ᾱ11| = 1, then

U |ψ (ᾱ)〉 =
1

2
((ᾱ00 + ᾱ11) |00〉+ (ᾱ00 − ᾱ11) |01〉+ (ᾱ00 − ᾱ11) |10〉+ (ᾱ00 + ᾱ11) |11〉) .

One can see that the system is separable only if (ᾱ00 + ᾱ11)2 = (ᾱ00 − ᾱ11)2 i.e. ᾱ00 = 0 or

ᾱ11 = 0, which can not happen for the studied case. One can verify that in this case the

purification keeps the system in the completely entangled state.

Finally, let us investigate the purifications with the other purifications i.e. with the

target system projections Pti = |p〉〈p| 6= |00〉〈00|. Except the regimes already observed for

the purification with Pti 6= |00〉〈00| the possibility to annihilate the initial states appear.

In other words the purification (3.17) stops. It happens whenever at least two different

coordinates of α satisfy

αk = αl = 0 ∧ k	 l 6= 0.

Except the annihilation, ”mixing” of the components during purification (3.17) may be re-

sponsible for a significant increase/decrease of the entanglement of purified states.

65



3.7 Dynamics for two-qubit nonseparable pure states

Let us study now the dynamics of purification for two-qubit nonseparable pure states |ψ〉 ∈

H1 (2)⊗H2 (2). The input state is given by

|ψ (α)〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉.

The action of the nonlinear map (3.7) maps the pure state |ψ (α)〉 onto the pure state |ψ (ᾱ)〉.

The action depends on the number of the target states N and on the chosen target systems

projections Pti = |p〉〈p|, p ∈ {00, . . . , 11} (3.17). The general analysis of the purification

protocols is very difficult. The mathematical framework do not seem to be fully developed.

To prove the existence of chaos it is easier and sufficient to find a special example. Therefore,

let us focus on the one complex parameter subdynamics and let us prove the existence of

chaos in the entanglement. For this reason let us study the protocol [8] with the additional

unitary transformation U = H ⊗ H, composed from the Hadamard gates (2.2), and let us

study the subdynamics for the ensemble of initial states

|ψ (r)〉 = N (r) (r|00〉+ |11〉) , N (r) =
(
1 + |r|2

)−1/2
, r ∈ Ĉ. (3.18)

Clearly, |ψ (1)〉 = |ψ00〉 represents Bell state (2.6) and therefore {|ψ (r)〉} represent one

parametric set of perturbed Bell state |ψ00〉.

Depending on the setting of the projection P onto target states, the various actions of

the nonlinear part of the protocol step appear:

• if Pti ∈ {|01〉〈01|, |10〉〈10|} then the nonlinear part behaves as a filter for every |ψ (r)〉

and the protocol stops,

• if Pti = |00〉〈00| then the nonlinear part maps |ψ (r)〉 7→ |ψ
(
rN+1

)
〉 i.e. the form of the

output state is preserved,

• finally, if Pti = |11〉〈11| then the nonlinear part maps |ψ (r)〉 7→ |ψ
(
r1−N)〉, r 6= {0,∞}

(the form of the output state is also preserved) and for r = 0 or r =∞ protocol stops.
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Therefore the nontrivial subdynamics exist for the purifications with the projection Pti ∈

{|00〉〈00|, |11〉〈11|}. Two steps of complete purification maps initial state |ψ (r)〉 (3.18) as

|ψ (r)〉 7→ |φ (s)〉 = N (|00〉+ s|01〉+ s|10〉+ |11〉) 7→ |ψ (t)〉,

where N = 2 (1 + |s|2)
−1/2

and the values s, t ∈ Ĉ depend on the projections Pti . Especially,

for Pti = |00〉〈00|:

s =
rN+1 − 1

rN+1 + 1

t =

(
rN+1 + 1

) (
rN+1 + 1

)N
+
(
rN+1 − 1

) (
rN+1 − 1

)N
(rN+1 + 1) (rN+1 + 1)N − (rN+1 − 1) (rN+1 − 1)N

(3.19)

and for Pti = |11〉〈11|:

s = −r
N−1 − 1

rN−1 + 1

t =

(
rN−1 + 1

) (
rN−1 + 1

)N − (rN−1 − 1
) (

1− rN−1
)N

(rN−1 + 1) (rN−1 + 1)N + (rN−1 − 1) (1− rN−1)N
. (3.20)

Regarding the fixed points, maximally entangled Bell state (2.6) |ψ00〉 = |ψ (1)〉 7→ |φ (0)〉 =

|ψ00〉 is the fixed point for both the purifications. Especially, for the purification (3.19)

|ψ (∞)〉 7→ |φ (1)〉 7→ |ψ (∞)〉, this forms a cycle C of separable states (2.7)

C =

(
|00〉, 1

2
(|0〉+ |1〉)⊗ (|0〉+ |1〉)

)
. (3.21)

Now let us continue with the analysis for the purification, using N = 1 target systems and

with the projections Pti = |00〉〈00|. Such a purification exhibits nontrivial dynamics in

contrast to the purification with the projection Pti = |11〉〈11| when |ψ (r)〉 7→ |φ (0)〉 = |ψ00〉,

r 6= {0,∞}. Purification with Pti = |00〉〈00| and N = 1 has following evolution

|ψ (r)〉 7→ |φ (f (r))〉 7→ |ψ (g (r))〉

where

f (r) =
1− r2

1 + r2
, g (r) =

1 + r4

2r2
i.e. g =

1

f
◦ 1

f
, r ∈ Ĉ.

We can study one dimensional subdynamics of the purification in even (2l) resp. odd (2l+1)

steps of the purification. The initial state |ψ (r)〉 is mapped:
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• after 2l steps onto the state |ψ
(
g◦l (r)

)
〉,

• after 2l+1 steps onto the state |φ
(
f ◦ g◦l (r)

)
〉. Because f ◦g = −f ◦3 and f(−x) = f(x)

we can use the induction to prove f ◦ g◦l = −f ◦2l+1.

Finally, we can conclude that the dynamics of the purification in even resp. odd steps is

generated by the maps G ≡ g resp. F ≡ −f ◦2

G (r) =
1 + r4

2r2
, F (s) =

1

G(s)
(3.22)

with the closed evolutions of the states in even (2l) resp. odd (2l + 1) steps

|ψ (r0)〉 7→ |φ (s0)〉 7→ . . . 7→ |ψ
(
G◦l (r0)

)
〉 7→ |φ

(
F◦l (s0)

)
〉 s0 = f (r0) . (3.23)

By calculating stability 2.4.8) of the maps G resp. F for the points r ∈ {1,∞} resp. s ∈ {0, 1}

one can verify that a fixed point |ψ00〉 (2.6) and the cycle C (3.21) are superattracting for

the purification. Functions F , G are the rational functions of order four i.e. they belong

to Rat (2.4.5). Consequently, according to the theorems (2.4.11,2.4.14), their Julia sets

J (F), J (G) are nonempty and generated subdynamics are chaotic on the Julia sets. Figures

(3.9) represent the numerical calculations of J (G), J (F) as the backward orbits of repelling

periodic points r0 = 1.83928676, s0 = −0.77184451+1.11514251ı (2.4.6). For the calculations

we used the expressions of backward orbits r−1,G
1,...,4 and s−1,F

1,...,4 of the points r in J (G) resp. s

in J (F) of the form

r−1,G
1,...,4 = ±

√
r ±
√
r2 − 1, s−1,F

1,...,4 = ±

√
1±
√

1− s2

s
(3.24)

i.e. r−1,G
1,...,4 (1/x) = s−1,F

1,...,4 (x). From the relations F ≡ 1/G and G(x) = G(1/x) one can prove

the equivalency in the evolution F◦n (x0) = 1/G◦n (x0) which induces similar dynamics of F ,

G and the equivalence of their Julia sets. The Julia sets also correspond to the structure of

the Julia set (3.1) generated by the map F1,0,1 (3.11), G◦n (x0) = −F◦2n1,0,1 (x0).

Let us turn our attention to the existence of chaos in entanglement. Instead of calculation

of von Neuman index correlation Ic (2.11) during purification, we can numerically prove the

existence of chaos in entanglement by study of the entanglement of the limit states being
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purified for various initial states. For numerical calculation let us use the Fano representa-

tion (2.17) for two-qubit states, as an numerically effective method using only 15 real (not

complex) variables, which make the calculation easier and faster. The action of studied purifi-

cation for general two-qubit state may be represented by the rational map FFano : R15 7→ R15

with the net effect

cIX 7→ 2N (cIZ + cZIcZZ) ,

cIY 7→ −2N (cIX cIY + cZX cZY) ,

cIZ 7→ N
(
c2
IX − c2

IY + c2
ZX − c2

ZY
)
,

cXI 7→ 2N (cZI + cIZcZZ) ,

cXX 7→ 2N (cIZcZI + cZZ) ,

cXY 7→ −2N (cIYcZX + cIX cZY) ,

cXZ 7→ 2N (cIX cZX − 2cIYcZY) ,

cYI 7→ −2N (cXIcYI + cXZcYZ) ,

cYX 7→ −2N (cXZcYI + cXIcYZ) ,

cYY 7→ 2N (cXYcYX + cXX cYY) ,

cYZ 7→ −2N (cXX cYX − cXYcYY) ,

cZI 7→ N
(
c2
XI + c2

XZ − c2
YI − c2

YZ
)
,

cZX 7→ 2N (cXIcXZ − cYIcYZ) ,

cZY 7→ −2N (cXX cXY − cYX cYY) ,

cZZ 7→ N
(
c2
XX − c2

XY − c2
YX + c2

YY
)
. (3.25)

where

N =
(
1 + c2

IZ + c2
ZI + c2

ZZ
)−1

.

According to the definition (2.4.23), by evaluating the eigenvalues of the Jacobian matrix

F ′Fano (cIX , . . . , cZZ) =
∂

∂cαβ
FFano (cIX , . . . , cZZ) , α, β ∈ I,X ,Y ,Z ∧ cαβ 6= cII , (3.26)
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one can reconfirm that the fixed point |ψ00〉 (2.6) and the cycle C (3.21) are both attracting

(2.4.23) for the studied purification. Now, let us calculate the coordinates of the Bloch vector

bρ(r) (2.18) for the initial state |ψ (r)〉 (3.18)

cIX = cIY = cXI = cXZ = cYI = cYZ = cZX = cZY = cZY = 0,

cIZ = cZI =
|r|2 − 1

1 + |r|2
,

cXX = −cYY = 2
Re (r)

1 + |r|2
,

cXY = cYX = −2
Im (r)

1 + |r|2
,

cZZ = 1.

Finally, let us purify various initial states. Then the figure (3.10) clearly demonstrates strong

resistance as well as significant sensitivity of purification to converge the initial state |ψ (r)〉

(3.18) either to maximally entangled Bell state ψ00 (2.6) - blue area - or to the separable

cycle C (3.21) - green area. Blue and green areas represent existence of regular dynamics.

Chaos in entanglement appears on the border of both areas.
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Figure 3.9: The Julia sets for one complex parameter subdynamics generated by the maps
G (red color), F (blue color) (3.22) - calculated for 10 backward steps (3.24). Structures of
the Julia sets correspond to similar dynamics generated by the maps G, F as F◦n (x0) =
1/G◦n (x0). The Julia sets also correspond to the structure of the Julia set (3.1) generated
by the map F1,0,1 (3.11), G◦n (x0) = −F◦2n1,0,1 (x0).
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Figure 3.10: Sensitivity and robustness of the purification of Bell like states (3.18) either
to the attracting maximally entangled Bell state |ψ00〉 (2.6) - blue color, or to attracting
separable cycle C (3.21) - green color. Purification was simulated for 200 steps, precision of
convergence was 10−4.
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3.8 Dynamics of the two-qubit mixed states

For the general mixed state, one can nicely prove the existence of chaotic dynamics by

numerical simulation, using the Fano representation (3.25) as we applied successfully for the

simulation of two-qubit pure state dynamics. Let us focus now for the simulation of the

purification of the perturbed Werner like states

ρ (λ, r) = λ|ψ (r)〉〈ψ (r) |+ 1− λ
4
I, 0 ≤ λ ≤ 1, λ ∈ Ĉ. (3.27)

One can see that for λ = 1 we received the set of the pure states, already studied (3.18), so we

are going to analyze an extension of previously studied pure states to observe the sensitivity

of the purification, when the initial system loose the purity.

The initially perturbed Werner state (3.27), in Fano representation (2.17), is represented

by the Bloch vector bρ(λ,r) (2.18) with the coordinates

cIX = cIY = cXI = cXZ = cYI = cYZ = cZX = cZY = cZY = 0,

cIZ = cZI = λ
|r|2 − 1

1 + |r|2
,

cXX = −cYY = 2λ
Re (r)

1 + |r|2
,

cXY = cYX = −2λ
Im (r)

1 + |r|2
,

cZZ = λ.

The figures (3.11,3.12) illustrate the convergence of purification for various initial states (3.27)

to three attracting periodic points: maximally entangled Bell state |ψ00〉 (2.6), separable pure

states cycle C (3.21) (these were already introduced for (3.10)) and finally separable mixed

state cycle C̃

C̃ =

(
1

2
(|00〉〈00|+ |11〉〈11|) , 1

4
(|00〉〈00|+ |11〉〈11|+ (|01〉+ |10〉) (〈01|+ 〈10|))

)
(3.28)

The convergence to the third, completely mixed state C̃ is in coincidence with our expectation

that initial mixed state (3.27) may converge also to the mixed state. The areas of convergence

to the three attracting states are islands of regular dynamics, border between the areas

represent sensitivity of purification to the initial conditions - chaos in entanglement.
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Figure 3.11: Sensitivity and robustness of the purification of Werner like states ρ(λ, r) (3.27)
either to maximally entangled Bell state |ψ00〉 (2.6) - blue color - or to separable pure cycle
C (3.21) - green color - or to separable mixed cycle C̃ (3.28) - yellow color. Purification was
simulated for 200 steps, precision of convergence was 10−4.
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Figure 3.12: More the initial Werner like states ρ(λ, r) (3.27) looses purity by decreasing λ,
more the purification converge to separable mixed cycle C̃ (3.28) - yellow color. On contrary,
the size of the areas of convergence to maximally entangled Bell state |ψ00〉 (2.6) - blue color
- and to separable pure cycle C (3.21) - green color - are decreasing.
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3.9 Example of holomorphic dynamics

As mentioned in section (3.2.2), two-qubit pure state dynamics can be generally described by

three complex variables. For the purpose of the thesis, we introduced necessary mathematical

framework for study of dynamics of multidimensional holomorphic maps (2.4.2) which we

applied for calculation of chaos in entanglement (3.7,3.8). We also mentioned (2.4.2), that

the theory of dynamical systems for multidimensional maps is far more complicated than for

one dimensional maps [13; 14]. An interesting example of the different dynamics for one and

multidimensional holomorphic maps provides the analysis of motion for the states in the basis

of attraction. While for one dimensional map the motion can be linearized, for two complex

variable map there exist nonlinear regimes (Lattés theorem (3.9.1) [13]). Let us prove, that

the motion for three complex variables map is even more complicated than a behavior of the

map of two complex variables. Now, let us present the theorem of Lattés [13].

Theorem 3.9.1 (Lattés - the C2 map behavior close to the attracting fixed point - see [13]).

Let F be an invertible holomorphic map with an attracting fixed point a ∈ C2. Suppose that

the eigenvalues λ, µ of the Jacobian F ′ (a) satisfy the condition 0 < |µ| ≤ |λ| < 1. Let us

define the holomorphic maps from C2 to C2

Lλ,µ : (x, y) 7→ (λx, µy) , (λ, µ 6= 0) ,

Eλ,k : (x, y) 7→
(
λx, λk

(
y + xk

))
, (λ 6= 0, k = 1, 2, . . .) .

Following claims are valid:

1. if λk 6= µ for any positive integer k, then F is conjugate by Lλ,µ,

2. if λk = µ for some positive integer k, then F is conjugate either to Lλ,µ or to Eλ,µ.

Let us present, in main steps, the prove of the similar claims to Lattés theorem (3.9.1)

for the map of three complex variables.

Theorem 3.9.2. Let F be an invertible, holomorphic map with attracting fixed point a ∈ C3.

Suppose that the eigenvalues λ, µ, ν of Jacobian F ′ (a) satisfy the condition 0 < |µ| ≤ |ν| ≤
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|λ| < 1. Then the map F in iteration limit converges uniformly in the neighborhood of a to

the map I where

I : (x, y, z) 7→ (λx, µy + g (x, z) , νz + h (x, y)) ,

g, h are holomorphic. Let us define

Iλ,µ,ν : (x, y, z) 7→ (λx, µy, νz)

Iλ,k,ν : (x, y, z) 7→
(
λx, λk

(
y + xk

)
, νz
)
.

If g (x, z) ≡ g (x) and h (x, y) ≡ h (x) then:

1. if λk 6= µ and λl 6= ν for every k, l, then I = Iλ,µ,ν,

2. if there exists k such that λk = µ and if λl 6= ν for every l, then I = Iλ,k,ν.

Proof. Firstly, it can be seen that the behavior of F in iteration limit converges on a suffi-

ciently small neighborhood U of a to the map

(x, y, z) 7→ (λx, g (x, y, z) , h (x, y, z)) ,

where g, h are holomorphic. Moreover, F can be reduced to

(x, y, z) 7→
(
λx, µy + ḡ (x, z) , νz + h̄ (x, y)

)
,

where ḡ, h̄ are holomorphic.

Let F ≡ (f, g, h). Let us deal with the sequence{
1

λn
f ◦n (p)

}
, p ∈ U.

where f ◦n (p) represents x-th coordinate of F◦n (p) (n-th iterate of F). One can prove that{
1

λn
f ◦n (p)

}
U

⇒ ϕ (p) .

Because f (F◦n) = f ◦n+1 (z) then both sides of the equation{
1

λn
f ◦n (F (p))

}
= λ

{
1

λn+1
f ◦n+1 (p)

}
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converge uniformly to

ϕ (F (p)) = λϕ (p) .

Thus, by regarding (ϕ (x) , y, z) as local coordinates, the map F is reduced to the form

F : (x, y, z) 7→ (λx, g (x, y, z) , h (x, y, z)) .

Secondly, F can be expanded into Taylor series in each coordinate and in iteration limit F

behaves as

(x, y, z) 7→ (λx, µy + . . . , νz + . . .) .

One can prove that{
1

µn
∂

∂y
g◦n (p)

}
U

⇒ χ (p) and

{
1

νn
∂

∂z
h◦n (p)

}
U

⇒ ψ (p)

where χ (a) = ψ (a) = 1, consequently

F : (x, y, z) 7→
(
λx, µy + ḡ (x, z) , νz + h̄ (x, y)

)
.

To prove the final tuning of F , one need to find out the coordinates where F behaves

as Iλ,µ,ν or Iλ,k,ν . For the two complex variables case it was proved in [13] that the final

tuning depends on the value of the power of λ with respect to the remaining eigenvalues.

For our F the situation is more complicated: ḡ and h̄ mix the values of coordinates. One

can study less complicated cases in the sense of [13] and tune F when ḡ (x, z) ≡ ḡ (x) and

h̄ (x, z) ≡ h̄ (x). One can find out local coordinates η1, η2 in the forms η1 (p) ≡ (x, q1 (x) , z)

and η2 (p) ≡ (x, y, q2 (x)) such that F has desired form in the new coordinates η1 ◦ η2.

According to the theorem a general invertible, holomorphic map F in the iteration limit

behaves as linear in the direction corresponding to the basis vector associated with the largest

eigenvalue. In the remaining directions, in general, the behavior is different. For special cases

when the map depends in these directions only on two specific variables, we have linear or

exponential behavior in these directions as well.
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Chapter 4

Conclusion and outlook

This thesis has been dedicated to the study of dynamics for the discrete dynamical system

generated by the purification protocol [8]. The results clearly proved the existence of true

chaos for conditional dynamics of the purification protocol on the set of the qubits.

The results are unique for several reasons. Firstly we proved the existence of true chaos

for the truly quantum dynamical system, without any classical analogue. Also, our results

pointed out that the purification protocols, designed for purification of wide set of the initial

states [8], may exhibit strong sensitivity in the initial setting. To achieve both analytical

and numerical results, it was necessary to combine the mathematical results from several

branches. Mainly, we used the recently developed mathematical framework for the study

of discrete dynamical system, generated by rational and polynomial maps in one complex

variable [11; 13].

Before we started to study the dynamics of the purification, we summarized the general

properties of the purification protocols. Namely the property to map pure resp. separable

states onto pure resp. separable states. Then we proved the possibility to represent purifi-

cation dynamics of qubit by the rational(or polynomial) map in one complex variable. To

achieve this, we used the knowledge about the conformal maps of qubit state space onto the

Riemann variet of Ĉ. Empowered with this knowledge, we started to analyze the dynamics

of the purification.

Firstly, we studied the one parametric class of the one-qubit pure state protocols, parametrized

by the various additional unitary transformations of SU(2) gates. We also studied the pu-
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rification for the protocol using the additional unitary of Hadamard gate (general protocol

recommended by [8] for the purification of the Werner states (2.13)). We observed strong

sensitivity of the protocol dynamics either for the setting of the initial state, represented by

the complicated structure of the Julia set for the purification map. We also observed strong

sensitivity of the purification for the internal setting of additional unitary gate. This we

proved by the possible change of the Julia set topology, from connected to disconnected and

vice versa. Also, we observed the complicated structure of the patterns, describing the length

of attracting cycles during the purification of the critical point state and consequently we

could identify the set of the protocols, so the evolution of the critical point was irregular.

Then we studied the two-qubit purification. Firstly, we focused on the study of sub-

dynamics for the purification of the perturbed Bell states |ψ(r)〉 (3.18) and namely for the

protocol using one target system and for the target state projections Pti = |00〉〈00| (for the

other projections the dynamics was trivial). Such a simple subdynamics allowed us to de-

scribe the purification by rational map in one complex variable and to prove the existence of

chaotic dynamics on its Julia set. Using Fano representation (2.17) of the purified states, it

was possible to prepare efficient numerical simulations and to prove strong sensitivity of the

process to purify either to completely separable cycle or to maximally entangled Bell state

|ψ00〉.

On the example of the perturbed Werner states ρ (λ, r) (3.27), we proved the strong

sensitivity of the purification protocol also for the mixed states. We studied the same protocol

setting, as for the perturbed Bell states, and using the Fano reperesentation we proved the

protocol sensitivity to evolve the states either to the pure, separable or maximally entangled

states or to the completely mixed, separable state. We also observed a lost of fine structure

in the purification patterns as we increased the mixture of the initial state.

As already mentioned, the complete analysis of the multi-qubit dynamics is limited by

the lack of the mathematical framework. Nevertheless, with the existing knowledge, it is still

possible to explore many subdynamcs of the purification protocols, similarly as done in the

thesis. From this point of view the field of future research is still open, namely for the qudits

purifications.
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In the end, I would like to point out, that the physical realization of the purification

protocol faces certain difficulties as we need huge (exponentially large) sets of qubits to

follow the chaotic dynamics. However at least to prove rudiments we can limit ourselves to

moderate numbers.
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Appendix A

Numerical framework

The verification of mathematical relations necessary for the analysis of various problems dis-

cussed in thesis, were using Mathematica 6.0 program from Wolfram Research, Inc. All the

numerical simulations have been programmed in C language, using the GNU GCC compiler

(Mingw 32-gcc.exe) integrated inside the developer environment of Code::Blocks. Certain cal-

culations in C using complex numbers operations are stored in the files complex.c, complex.h,

the correctness of the implemented functions were reviewed by the author of the thesis. For

the creation of the figures in EPS format from the txt data files the open-source software of

GNU Plot 4.4. has been used. For the transformation EPS figures into JPG format the open

source-source software of GIMP 2.6.8 has been used. All the simulations and calculations are

stored in the attached DVD disc under the path: ”Thesis SV\Calculations” and may be run

on a personal computer with the operational system of Windows of 32bit from Microsoft Inc.

A.1 List of Mathematica notebooks

Mathematica notebooks are stored on the attached DVD disc under the path:

”Thesis SV\Calculations\Mathematica”. There are following notebooks:

OneQubitPurifCalc.nb - calculates repelling fixed points and verifies regular dynamics for

one qubit pure states purifications - used for results of section (3.4).

JuliaPropertiesSU2.nb - dynamical plot of the Julia sets for various one-qubit pure state
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purifications with unitary gate of SU (2) - connected/disconnected Julia sets properties

of figures (3.1-3.4)

TwoQubitsPurifCalc.nb - calculates the equation for one parametric subdynamics for

two-qubit Bell like states purification, also calculates repelling fixed points - used for

results of section (3.7,3.8).

FanoCalc.nb - calculates equations of two-qubit purification in Fano representation and

Bloch vector coordinates for various two-qubit states - used for results of section

(3.7,3.8).

A.2 List of C programs

C programs are stored on the attached DVD disc under the path: ”Thesis SV\Calculations\C”

Following programs are available:

LogisticsMap : calculates the evolutions of the system under logistics maps with the output

for the figure (1.1).

EvolutionAbsZ : calculates the evolutions of one-qubit pure state under various purifica-

tions with the output for the figure (1.2).

JuliaSetBackward1Q : calculates the Julia set of the dynamical system for one-qubit pure

state purification. Calculations are used to generate the figures (3.1-3.4).

JuliaSetClosure : calculates the speed of purification to super attracting cycle for various

initial one-qubit pure states. Calculations are used to generate the figures (3.5,3.6).

AttrCycleCommon : evolves one of the critical points for various one-qubit pure state

purifications and calculates if there exist attractive cycle during the evolution, especially

if the evolution contains also the second critical point. The calculation is used to

determine the purifications with disconnected Julia set and to generate the figure (3.7).
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AttrCycleLength : evolves one of the critical points for various one-qubit pure state pu-

rifications and calculates the length of attractive cycle during the evolution. The cal-

culation is used to to generate the figures (3.8).

JuliaSetBackward2Q : calculates the Julia set of the subdynamics for two-qubit pure

state purification. The calculations are used to generate the figure (3.9).

FanoCalc : calculates the final states of the purification of two-qubit states in Fano repre-

sentation. The calculations are used to generate the figures (3.10-3.12).
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