
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

DIPLOMA WORK

Spectra Of Quantum Graphs

Gabriela Malenová
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Supervision:

Pavel Kurasov
Department of Mathematics, Stockholm University,

Stockholm, Sweden

David Krejčǐŕık
Nuclear Physics Institute in Řež, Academy of Sciences,

Prague, Czech Republic

Acknowledgments
Special thanks to:

Pavel Kurasov (Stockholm University), for excellent help, advice and
mentoring of the project and countless suggestions along the way. His personal
support was absolutely invaluable, which I am very grateful for.

David Krejčǐŕık (Academy of Sciences of the Czech Republic), for
mentoring the thesis, inspiring suggestions, kind support and for carefully
reading the drafts.

Erik Wernersson (Uppsala University), for valuable help while struggling
with the numerics in the early stages.

Nick Hale (Oxford University), for great deal of amazing work on Chebfun
and kind support while implementing the code.

Prohlášeńı
Prohlašuji, že jsem svou práci vypracovala samostatně a použila jsem pouze

podklady uvedené v přiloženém seznamu.

Declaration
I declare that I wrote my research work independently and exclusively with

the use of cited bibliography.

Praha, 2013

Gabriela Malenová

2

Abstrakt
Název práce:
Spektra kvantových graf̊u

Autor: Gabriela Malenová

Obor: Matematické inženýrstv́ı

Druh práce: Diplomová práce

Vedoućı práce: Mgr. David Krejčǐŕık, DSc. ÚJF AV ČR, Řež

Abstrakt: Kvantový graf je struktura, která je determinována metrickým
grafem, skládaj́ıćım se z množiny hran a vrchol̊u, diferenciálńım operátorem,
definovaným na hranách, podmı́nkami spojitosti ve vnitřńıch a hraničńımi
podmı́nkami ve vněǰśıch vrcholech. Jelikož můžeme určit spektrum kvantového
grafu analyticky pouze v omezeném množstv́ı př́ıpad̊u, je pro obecný graf za-
potřeb́ı numerických metod. Pro tento účel se jev́ı nejvhodněǰśı spektrálńı
metody odvozené od Galerkinovy tau-metody. Pro výpočet vlastńıch hodnot
obecného grafu byl v prostřed́ı Matlab vyvinut numerický algoritmus. T́ım
źıskáme rozsáhlý soubor dat, který nám umožńı pochopeńı základńıch vlast-
nost́ı kvantových graf̊u.
Zkoumána byla zejména spektrálńı mezera, neboli druhá vlastńı hodnota stan-
dardńıho laplaciánu na metrickém grafu, a jej́ı vztah k algebraické konek-
tivitě, předevš́ım pak d̊usledky odebráńı nebo přidáńı hrany do grafu. Přestože
spolu některé vlastnosti kvantových a kombinatorických graf̊u koresponduj́ı, je-
jich vztah neńı vzájemně jednoznačný. Velikost spektrálńı mezery záviśı ne-
jen na topologii metrického grafu, ale také na jeho geometrických vlastnos-
tech. Je dokázáno, že přidáńım dostatečně dlouhé hrany nebo odebráńım
dostatečně krátké části hrany dosáhneme zmenšeńı spektrálńı mezery. V textu
jsou zahrnuta i př́ıslušná explicitńı kritéria.
Daľśı z d̊uležitých výsledk̊u ř́ıká, že řet́ızkový graf má vždy nejnižš́ı spektrálńı
mezeru mezi grafy stejné celkové délky.

Kĺıčová slova: kvantový graf, spektrálńı mezera, Rayleigh̊uv teorém,
spektrálńı metody, Chebfun

Abstract
Title:
Spectra of Quantum Graphs

Author: Gabriela Malenová

Abstract: Quantum graph is a network structure determined by a metric graph
consisting of sets of edges and vertices, a differential operator acting on the edges
and matching and boundary conditions on internal and external vertices respec-
tively. Since the spectra of quantum graphs can be calculated analytically in a
few special cases only, numerical methods have to be employed. Spectral meth-
ods based on Galerkin tau-methods appear to be the most convenient for that
purpose. The code in Matlab environment has been evolved for computing
eigenvalues of a general graph. Employing numerics, we obtain extensive com-
putational data that may be helpful for understanding fine spectral properties
of quantum graphs.
Above all, the spectral gap, i. e. the second eigenvalue of the standard Laplacian
on metric graphs and the relation to the graph’s algebraic connectivity has been
closely investigated, in particular what happens to the gap if an edge is added
to (or deleted from) a graph. In spite it bears some similar characteristic to
discrete graphs the connection between the connectivity and the spectral gap is
not one-to-one. The size of the spectral gap depends not only on the topology
of the metric graph but on its geometric properties as well. It is shown that
adding sufficiently large edges as well as cutting away sufficiently small edges
leads to a decrease of the spectral gap. Corresponding explicit criteria are given.
Another important result says that a string has always the lowest spectral gap
among all graphs of the same total length.

Key words: quantum graph, spectral gap, spectral methods, Rayleigh
theorem, Chebfun.

4

Contents

1 Introduction 6

2 Quantum graphs 8
2.1 Metric graph . 8
2.2 Differential operator . 9
2.3 Matching conditions . 10
2.4 Elementary spectral properties 12

3 Explicit solutions 13
3.1 Interval . 13
3.2 Loop graph . 14
3.3 Lasso graph . 15
3.4 3-star graph . 17
3.5 Equilateral star graph . 18

4 Numerical analysis 20
4.1 Chebyshev spectral methods . 21

4.1.1 Chebyshev nodes . 22
4.1.2 Chebyshev polynomials 22
4.1.3 Differentiation matrix . 23
4.1.4 Eigenvalue problem and boundary conditions 25

4.2 Chebfun . 26
4.2.1 Current features . 27
4.2.2 Developing graph class 31
4.2.3 Adding potentials . 37
4.2.4 Implementation . 39

5 Applications 39
5.1 Trace formula . 39
5.2 Spectral gap . 41

6 Spectral gap 44
6.1 Discrete graphs . 45
6.2 Continuous graphs . 48

6.2.1 Increasing connectivity - gluing vertices together 48
6.2.2 Adding an edge . 49
6.2.3 Decreasing connectivity - cutting edges 55
6.2.4 Deleting an edge . 56

6.3 Rayleigh theorem for quantum graphs 59

7 Conclusion 61

8 References 62

9 Appendix 64

5

1 Introduction

A remarkable progress in the nanotechnology has been made in the last decades.
It enabled one to exhibit quantum phenomena in the nanodevices because their
typical length is comparable to the atom size. This raised the demand on
mathematical studies of the quantum networks since they may be used to model
such systems.

The origin of quantum graph theory may be traced back to 80’s when the
initial concept has been introduced (see [12] and the references therein). In the
recent years, articles related to this topic were published on a regular basis as
the concept gained enormous popularity. [11], [19], [18] are counted among the
crucial papers. Furthermore, we refer to the survey [20]. The definitions are
mainly taken from [21].

More specifically, quantum graphs consist of a metric graph Γ, i. e. linear
network-shaped structure nesting set of edges E and vertices V, a differential
operator acting on the edges with matching conditions imposed at the vertices.
An intuitive quantum graph model employs the standard Laplacian, i. e. Lapla-
cian on H2(Γ\V) satisfying the standard matching conditions in each vertex:{

continuity of the functions
the sum of normal derivatives is zero.

This guarantees that the Laplacian is self-adjoint on the graph Γ. More precise
definition is provided in Section 2.

In this thesis, we consider compact quantum graphs. In general, it is not
always possible to analytically find the spectrum since the number of explicitly
solvable models is restricted. Some of them, e. g. the string, star, loop and lasso
graphs, are presented in Section 3.

In more complicated cases, the numerical methods have to be applied. In
Section 4, the spectral method approach is described that enables us to compute
spectrum of a Schrödinger operator on an arbitrary quantum graph. Spectral
methods based on the Chebyshev polynomials interpolation grant excellent ac-
curacy.

Once having a tool computing the spectra in hand, we drew our attention to
the inverse problems. As a first application, we computed the Euler character-
istic derived from the trace formula in Subsection 5.1. This gives us the feeling
about the number of terms in the sequence that are necessary for achieving
requested accuracy.

However, the main objective of the current thesis is the spectral gap, the
second eigenvalue of the standard Laplacian, in particular its relation to the
graph’s algebraic connectivity. As we carried out extensive numerical experi-
ments on spectral gap (see Subsection 5.2), some theoretical observations and
predictions have been formulated. Based on this proposals, theorems in Section
6 were proved that led to publications [24] and [23]. Our studies were inspired
by classical results going back to Czechoslovak mathematician M. Fiedler [13]
on the second eigenvalue of discrete graphs and by the recent paper by P. Exner
and M. Jex on the ground state for quantum graphs with delta-coupling [10].

6

M. Fiedler proposed to call the second lowest (the first excited) eigenvalue of
the discrete Laplacian the algebraic connectivity1 of the corresponding discrete
graph. This name proposal is explained by the close relation between algebraic
connectivity and standard vertex and edge connectivities.

Recently, the spectral gap was also investigated numerically on large random
graphs in [16]. The research concluded, vaguely said, that the algebraic con-
nectivity may be taken as a measure of synchronizability and robustness. This
found its application in neuron networks or signal transfer area.

P. Exner and M. Jex investigated the behavior of the ground state for (contin-
uous) Laplacians on metric graphs as one of the edges is shortened or extended.
It was shown that the bound state may increase as the length of an edge is
increasing, however the opposite behavior may also occur.

Our goal is to study the behavior of the first excited eigenvalue when edges
are either deleted or added to a metric graph. Bearing in mind that the ground
state for standard Laplacian on the compact graph is zero, the first excited
eigenvalue gives us the spectral gap (provided the graph is connected).

Spectral properties of the quantum graphs, especially with equilateral
lengths of edges, are closely related to spectral properties of the corresponding
discrete Laplacian. Therefore one might expect that the qualitative behavior of
eigenvalues for discrete and continuous Laplacians is the same. However, it has
been shown that the spectral gap for discrete and continuous Laplacians may
behave differently as edges are added or deleted without altering the vertex set.
This is connected to the fact that adding an edge to a discrete graph does not
change the phase space, while adding an edge to a quantum graph enlarges the
corresponding phase space.

Adding or deleting an edge without altering the vertex set has an influence
on the graph’s Euler characteristic. More precisely, it has been proven that the
Euler characteristic is determined by spectral asymptotics and therefore can not
be retrieved from the first few eigenvalues themselves, unless the metric graph
consists of edges that are integer multiples of a basic length [22],[26].

It has been proven in [24] that the graph formed by just one edge (or a
chain of edges) has the lowest spectral gap among all quantum graphs having
the same total length L. The proof is provided in Section 6.3. Therefore it is
natural to expect that the spectral gap increases with the connectivity. On the
other hand, adding an edge increases the total length as well and it might tempt

one to expect the eigenvalues to drop according to Weyl’s law as λn ∼
(
π
L
)2
n2.

Taking into account these influences it turns out that both an increase and a
decrease of the spectral gap are possible. We prove that unlike in the discrete
case, the spectral gap is not granted to be monotonously dependent on the
number of edges.

Note that the dependence of the graph’s spectrum on the coupling constant
at the vertices and the edge lengths has been also investigated in the interesting
paper [2] (see also the recent book by the same authors [3]). A thorough analysis
of quantum graphs and their approximations is also provided in the book by

1Whereas it is sometimes called the Fiedler value.

7

Edge Vertex

Figure 1: General metric graph.

Olaf Post [27].

2 Quantum graphs

Rigorous definition of the quantum graph contains three main parts:

1. the metric graph,

2. the differential operator acting on the edges,

3. the matching and boundary conditions at internal and external vertices
respectively.

These conditions are not completely independent as will be explained below.
The definitions are taken from the draft of the book by Pavel Kurasov [21].

2.1 Metric graph

In a broad sense, a metric graph is said to be a finite set of edges and vertices
of given edge lengths (Figure 1). The edges may have finite or infinite length.
More precisely, let us define the set {En}Nn=1 of N compact or semi-infinite
intervals En, each one of them being a subset of R, as:

En =

{
[x2n−1, x2n] , n = 1, 2, . . . , Nc
[x2n−1,∞) , n = Nc + 1, . . . , Nc +Ni = N,

where Nc, respectively Ni, denotes the number of compact, respectively infinite,
intervals. The intervals En are called edges.

Let us define the set V of all endpoints

V = {x2n−1, x2n}Ncn=1 ∪ {x2n−1}Nn=Nc+1,

and its arbitrary partition into M equivalence classes Vm, m = 1, 2, . . . ,M ,
called vertices. The equivalence classes have the following properties:

V = V1 ∪ V2 ∪ . . . ∪ Vm
Vm ∩ Vm′ = ∅, when m 6= m′.

8

The endpoints belonging to the same equivalence class will be identified

x ∼ y ⇔
[
∃n : x, y ∈ En & x = y,
∃m : x, y ∈ Vm.

Definition 1. Let us have N edges En and a the set of M disjoint vertices
Vm. Then the corresponding metric graph Γ is the union of all edges with the
endpoints belonging to the same vertex identified

Γ =

N⋃
n=1

En|x∼y.

The number vm of elements in the class Vm will be called the valence of Vm.

We will mainly concentrate on compact graphs which occur when Ni = 0,
i. e. all the edges are of finite length and N = Nc. Let us consider a complex-
valued function u defined on the graph. Then the corresponding Hilbert space
yields

L2(Γ) =
⊕ N∑

j=1

L2(Ej).

2.2 Differential operator

To properly implement dynamics of the waves on the graph, one introduces a
differential operator. In general, magnetic Schrödinger operator

Lq,a =

(
i
d

dx
+ a(x)

)2

+ q(x), (1)

is a standard choice for describing quantum phenomena, where a denotes the
magnetic potential and q the electric potential respectively. More precisely, we
assume a(x), q(x) ∈ R satisfying:

1. q ∈ L2(Γ),

2.
∫

Γ
(1 + |x|) · |q(x)|dx <∞,

3. a ∈ C1(Γ).

Let us take a function u belonging to the Sobolev space H2(En). Even if the
endpoints coincide, one may set the boundary value of the function as a limit

u(xj) = lim
x→xj

u(x).

For the boundary points, the extended normal derivatives are defined following
the convention that the limits are taken in the direction pointing inside the
respective interval:

∂nu(xj) =

{
limx→xj

(
d
dx − ia(x)

)
u(x), xj is the left end point,

− limx→xj
(
d
dx − ia(x)

)
u(x), xj is the right end point

. (2)

9

Putting the magnetic potential in (1) equal to zero a = 0 we obtain Schrödinger
operator

Lq = − d2

dx2
+ q(x). (3)

Setting the potentials a = 0 = q we get the Laplace operator describing the free
motion:

L = − d2

dx2
. (4)

Then the normal derivatives (2) in the endpoints simplify to

∂nu(xj) =

{
limx→xj

d
dxu(x), xj is the left end point,

− limx→xj
d
dxu(x), xj is the right end point

. (5)

Hereby we list some types of domains the Laplacian may be defined on. Firstly,
let us consider the maximal operator Lmax corresponding to (4) defined on the
domain D(Lmax) = H2(Γ\V), where H2 denotes the Sobolev space of all square
integrable functions having square integrable first and second derivatives. This
domain may be written in the decomposed fashion as the sum of Sobolev spaces
on the intervals En

D(Lmax) =
⊕ N∑

n=1

H2(En),

independently on how the edges are connected to each other. Similarly, the
operator Lmax can be decomposed as

Lmax =
⊕ N∑

n=1

Ln,

where Ln is given by (4) on the domain H2(En).
Similar relations hold for the minimal operator Lmin defined on C∞0 (Γ\V).

2.3 Matching conditions

The vertices may be divided into two groups. The first group is formed by
internal vertices which have valence greater than one, in other words there are
at least two edges meeting in the vertex. The subset of all conditions introduced
at the internal points is called matching conditions. The other group is made
up of vertices of valence equal to one called boundary vertices and boundary
conditions are enforced there (see Figure 1).

The maximal operator Lmax is neither self-adjoint nor symmetric. The self-
adjointness may be achieved by imposing certain conditions on u, v ∈ D(Lmax):

〈Lmaxu, v〉 − 〈u, Lmaxv, 〉 =

N∑
n=1

(∫
En

−u′′(x)v(x) dx+

∫
En

u(x)v′′(x) dx

)
=

=
∑
xj∈V

(
∂nu(xj)v(xj)− u(xj)∂nv(xj)

)
, (6)

10

where the normal derivative at the endpoints is recalled from (5). Thus the
operator Lmax to be symmetric requires the boundary form in (6) being equal
to 0.

What comes to one’s mind at first is to require that the functions are equal
to zero at the vertices.

Definition 2. The Dirichlet Laplace operator LD is defined by the differen-
tial expression (4) on the Sobolev space H2(Γ\V) ↪→ C1(Γ\V) satisfying the
Dirichlet conditions

u(xj) = 0, xj ∈ V,

at all end points.

The Dirichlet Laplacian, may by presented in the decomposed way as:

LD =
⊕ N∑

n=1

Ln,D,

where Ln,D is the differential operator (4) restricted to the set of all functions
from the Sobolev space H2(En) satisfying the Dirichlet boundary conditions
at endpoints. However, this is not an interesting case, since such an operator
builds a graph model where all the edges are separated from each other and
behave independently.

Another way how to impose conditions (6) without separating the edges is
through the standard matching and boundary conditions2 introduced in each
vertex Vm: {

u is continuous at Vm∑
xj∈Vm ∂nu(xj) = 0.

(7)

For boundary vertices this simply yields the Neumann boundary condition

∂nu(xj) = 0, xj ∈ Vm, Vm is a boundary vertex.

If there were two edges connected in a vertex this would imply nothing else
than the continuity of the function and its first derivative. In that case, the
vertex may be removed and the two intervals may be substituted by one of the
sum of original sizes. The matching conditions give us a tool for setting up a
self-adjoint operator called standard Laplace operator Lst:

Definition 3. The standard Laplace operator Lst is defined by the differen-
tial expression (4) on the domain H2(Γ\V) satisfying the standard matching
conditions (7) at all vertices.

Since the standard Laplace operator is self-adjoint, is possesses real spec-
trum.

2Standard matching conditions are sometimes called Free, Neumann or Kirchhoff condi-
tions.

11

2.4 Elementary spectral properties

Since we consider compact graphs formed by finitely many edges, spectral prop-
erties may be characterized by the following theorem.

Theorem 2.1 ([21]). Let Γ be a finite compact graph and Lq = Lst + q the
corresponding Schrödinger operator (3). Then the spectrum is purely discrete
and consists of infinite sequence of real eigenvalues with one accumulation point
+∞.

The proof may be found in [21]. Note, that the standard Laplacian as well
as the Dirichlet Laplacian are in fact the extensions of the symmetric operator
defined by the same formula (4) on the domain of all continuous functions from
H2(Γ\V) subject to the following conditions:{

u(Vm) = 0∑
xj∈Vm ∂u(xj) = 0

,

for all vertices.
Some important facts regarding the standard Laplacian remain to be proven.

Above all, the first eigenvalue of the compact graph is always equal to zero.

Proposition 2.2. λ0 = 0 is the first eigenvalue of the standard Laplace operator
Lst on finite compact graph Γ with multiplicity n equal to number of connected
components. The corresponding eigenvector is equal to 1 ∈ L2(Γi) on the i-th
component and zero elsewhere.

Proof. The eigenvectors corresponding to λ0 = 0 are linear functions since they
satisfy

−ψ′′ = 0, ψ(x) = αnx+ βn,

on each edge En. Application of the standard matching conditions (7) preserves
continuity of the eigenvectors which makes their maxima attainable on the end-
points only. Say, we achieved the global maximum. Sum of the derivatives is
zero at each node, but in this point, they have to be non-positive (due to the
maximum). This necessarily implies, they are identically equal to zero. All in
all, ψ is constant on every edge attached to the maximum. We conclude that
the function is constant on all such edges. Consider another neighboring vertex
and repeat the arguments. We continue in this way until the whole connected
component is covered. This brings us to the claim, that the spectral multiplicity
of the eigenvalue λ0 = 0 is the number of connected components.

However, it is not always necessary to compute the whole infinite sequence
of eigenvalues. For example if the lengths of all edges are integer multiples of a
basic length then the spectrum is periodic and it is enough to calculate just the
first few eigenvalues to know the whole spectrum.

Proposition 2.3 ([21]). Let k2 6= 0 is an eigenvalue of the Schrödinger operator
Lst (4) and the quadratic form (6) is equal to zero on a graph Γ formed by edges
having basic length ∆ : `j = mj∆, mj ∈ N, then (k + 2π

∆)2 also belongs to the
spectrum.

12

Proof. Let us consider k2 ∈ σ(Lst(Γ)). Then the eigenvector ψ restricted to the
n-th edge [x2n−1, x2n] is given by (for the derivation see [21]):

ψ(x)|En = a2n−1e
ik|x−x2n−1| + a2ne

ik|x−x2n|.

Shifting the frequency

k −→ k +
2π

∆
,

we obtain a new function ψ̃:

ψ̃(x)|En = a2n−1e
i(k+ 2π

∆)|x−x2n−1| + a2ne
i(k+ 2π

∆)|x−x2n|.

Comparing the boundary values we get

ψ̃(x2n) = a2n−1e
ikmn∆ + a2n = ψ(x2n).

Similarly,
ψ̃(x2n−1) = ψ(x2n−1).

Analogously, the derivatives are carried out:

ψ̃′(x2n−1) = i

(
k +

2π

∆

)
(a2n−1 + a2ne

ikmn∆) =

(
1 +

2π

∆k

)
ψ′(x2n−1),

and

ψ̃′(x2n) =

(
1 +

2π

∆k

)
ψ′(x2n).

This means, ψ̃ is the eigenfunction corresponding to the eigenvalue
(
k + 2π

∆

)2
.

Therefore the matching conditions are satisfied.

3 Explicit solutions

Let us first introduce some elementary cases of quantum graphs where the spec-
trum can be calculated explicitly. The most natural starting point is to consider
the Laplacian on a single interval.

3.1 Interval

We have the Dirichlet Laplacian (Def 2) on a single interval [x1, x2]. Conse-
quently, we may reparametrize it to [0, l]. Thus we are to solve the problem{

−u′′ = λu
u(0) = 0, u(l) = 0.

Any solution to the differential equation can be obtained in the form

u(x) = A cos kx+B sin kx, A,B ∈ C, (8)

13

x1

x2

x1

x2

x3 x4

Figure 2: Loop and lasso graphs.

where k2 = λ which implies the eigenvalues being in the form of infinite sequence

λn =
π2

l2
n2, n = 1, 2, . . . , (9)

with the eigenvectors

u(x) = sin
πnx

l
, n = 1, 2,

Similar calculations can be carried out for the standard operator (Def 3) on
the same interval. Thus we need to solve the problem given by{

−u′′ = k2u
u′(0) = 0, u′(l) = 0,

(10)

where the solution form is recalled from (8). Then the constraint to be solved
is

k sin kl = 0,

whose solution is the sequence

λn =
π2

l2
n2, n = 0, 1, 2, . . . (11)

as before, with the eigenvectors

u(x) = cos
πnx

l
, n = 0, 1, 2,

Notice, that in addition there is the zero eigenvalue λ0 = 0 included as well,
with the eigenvector u(x) = 1.

3.2 Loop graph

Another case of a graph formed by just one edge is a loop (Figure 2, left). Here,
the endpoints are identified and the edge consists of one interval [x1, x2] = [0, l].
The stationary Schrödinger equation yields

−u′′ = k2u,

14

where λ = k2 is the eigenvalue of the differential operator Lst. Matching condi-
tions imply that {

u(0) = u(l)
u′(0) = u′(l)

.

Plugging this into Ansatz (8) we arrive at the constraint

2k(1− cos kl) = 0.

The eigenvalue λ = 0 is a simple eigenvalue with the eigenfunction u = 1. The
eigenvalues

λn =
4π2

l2
n2, n = 1, 2, . . . , (12)

are of the multiplicity 2. The eigenvectors may be split into two groups according
to criterion whether they are or are not invariant under the change of variables
x 7→ l − x. Then the even, respectively odd functions are denoted by ue,
respectively uo, and they satisfy

ue(x) = cos
2π

l
nx, uo(x) = sin

2π

l
nx.

3.3 Lasso graph

The obvious way to proceed further is to start connecting the intervals together.
The lasso graph (Figure 2, right) is built up by attaching an interval to a loop.
Mathematically, this graph Γ may be defined as a union of two intervals E1 =
[x1, x2] and E2 = [x3, x4] with the endpoints x1, x2, x3 identified in one vertex
V1 = {x1, x2, x3}. In the view of symmetry, it is more convenient to choose the
parametrization of edges as follows:

[x1, x2] = [−l/2, l/2], [x3, x4] = [0, L].

The operator is invariant under the change of variables

J : x 7→
{
−x, x ∈ E1,
x, x ∈ E2.

This transformation can be lifted to act on functions

(Jf)(x) = f(Jx).

We see that the Laplacian is commuting with J

JL = LJ,

hence the corresponding Laplacian eigenfunctions may be chosen symmetric and
antisymmetric with respect to J :

Jfsym = fsym, Jfasym = −fasym.

15

1 2 3 4 5
k

-5

5

10

Figure 3: Graphical solution of equation (15) for L = 5 and l = 3.

The Laplacian is self-adjoint when defined on functions satisfying the following
conditions u(x4) = 0,

u(x1) = u(x2) = u(x3)
u′(x1)− u′(x2) + u′(x3) = 0.

(13)

Let us first start with the antisymmetric functions. They are necessarily
equal to zero on the second interval. On the loop, the eigenfunctions are of the
form u(x) = A sin kx due to the antisymmetry. This requires zero value in the
middle point, i. e. the condition

A sin kl/2 = 0, (14)

which is satisfied if

λn =
4π2n2

l2
, n = 1, 2,

The third condition in (13) obviously holds due to antisymmetry. The sym-
metric eigenfunctions are of the form

u =

{
D cos kx, x ∈ E1

C sin k(x− L), x ∈ E2.

To satisfy the second condition in (13), the following constraint has to hold true:

D cos kl/2 = C sin (−kL).

The third condition in (13) implies the equation:

2D sin kl/2 + C cos kL = 0.

The two equations form a 2×2 linear system which has a nontrivial solution
if and only if the corresponding determinant is equal to zero:

cot kL = 2 tan kl/2. (15)

16

0

l1

l2l3

0

u1

u2

u3

u4

u5

un

Figure 4: 3-star and n-star graph.

The graphical solution for cases L = 5 and l = 3 is depicted in Figure 3.
Finally, joining symmetric and antisymmetric constraints (14) one obtains the
eigenvalues condition:

(cot kL− 2 tan kl/2) sin kl/2 = 0.

Thus the solution can be computed explicitly only in case L and l are rationally
dependent.

3.4 3-star graph

Let us consider a star-shaped graph, namely a set of edges of arbitrary lengths
meeting in one central point (see Figure 4, left). The three edges’ lengths are
denoted by l1, l2 and l3 respectively. The most convenient way of parametriza-
tion is to design each edge as En = [0, ln]. Thus the solution (applying standard
matching conditions) satisfies the following system of equations: u1(0) = u2(0) = u3(0),

u′1(0) + u′2(0) + u′3(0) = 0,
u′1(l1) = u′2(l2) = u′3(l3) = 0,

where uj denotes the values of the function u on one of the three intervals. The
functions uj are of the form (8):

uj(x) = Aj cos k(x− lj) +Bj sin k(x− lj).

Applying the conditions mentioned just above, we end up with the matrix equa-
tion cos kl1 − cos kl2 0

0 cos kl2 − cos kl3
sin kl1 sin kl2 sin kl3

︸ ︷︷ ︸

=:M

 A1

A2

A3

 = 0̂

17

The requirement of the solution to be non-trivial leads to the condition that the
determinant of the matrix M is zero:

detM = 0.

The equation may be re-written as

0 = cos kl1 cos kl2 sin kl3 + cos kl1 sin kl2 cos kl3 + sin kl1 cos kl2 cos kl3 =

= cos kl2 sin k(l1 + l3) +
1

2
sin kl2[cos k(l1 − l3) + cos k(l1 + l3)], (16)

or similarly, after some algebra:

0 = 3 sin kL+ sin k(−l1 + l2 + l3) + sin k(l1 − l2 + l3) + sin k(l1 + l2 − l3),

where L = l1 + l2 + l3. Solutions to this equation may be computed numerically.

Special case of two edges of the star graph having the same length was
considered. Here on we set l1 = l3 = l, which brings us to the constraint

0 = cos kl(2 cos kl2 sin kl + sin kl2 cos kl) =

= cos kl(cos kl2 sin kl + sin k(l + l2)).

This implies two types of solution. First we have

cos kl = 0 =⇒ kn =
π

l

(
1

2
+ n

)
, n = 0, 1, (17)

The other equation has to be evaluated numerically, k is the solution of the
following equation:

0 = 2 cos kl2 sin kl + sin kl2 cos kl. (18)

The solutions of the above equations coincide only if there are some n,m ∈ Z
such that

l2 − l
2

= ml − nl2.

3.5 Equilateral star graph

In general, a star graph may be built up from a higher number of branches. The
computations, as the number rises, are getting excessively large. The only case
we are able to solve the problem analytically occurs when all the edges have the
same length l.

Let us start with an n-star graph presented in Figure 4. Taking standard
matching conditions into account, we require u1(0) = u2(0) = . . . = un(0),∑

i u
′
i(0) = 0,

u′1(l) = u′2(l) = . . . = u′n(l) = 0.
(19)

18

We take advantage of the graph being rotationally symmetric with respect
to the central node. Let us define the operator of rotation R as

R(u1, u2, u3, . . . , un) := (u2, u3, . . . , un, u1).

The operators Lst and R commute

RLst = LstR.

This leads to the eigenvalue problem

Lstu = λu, where Ru = µu,

with u being the eigenvector of both Lst and R since they are self-adjoint.
Due to the fact

Rn = 1

eigenvalues of R are n-th roots of 1. As we already mentioned, the thresh-
old eigenvalue λ0 of a standard Laplacian is always 0 and the corresponding
eigenvector is 1 ∈ L2(Γ). This is the case of µ0 equal to one:

R(1, 1, 1, . . . , 1) = 1 · (1, 1, 1, . . . , 1).

The eigenvector corresponding to µ1 = ei
2π
n obeys

R
(

1, ei
2π
n , e2i 2π

n , . . . , e(n−1)i 2π
n

)
=
(
ei

2π
n , e2i 2π

n , . . . , e(n−1)i 2π
n , 1

)
=

= ei
2π
n

(
1, ei

2π
n , e2i 2π

n , . . . , e(n−1)i 2π
n

)
.

Similarly, we may proceed further by analogously applying multiple rotations
on the vector, henceforth we arrive at

µk = eki
2π
n

and the respective eigenspaces read as follows:

(1, z, z2, . . . zn−1)× L2([0, l]),

(1, z2, z4, . . . z2(n−1))× L2([0, l]),

...

providing z = ei
2π
n . It means that one can look for eigenfunctions of L of the

form
Rf = zkf, k = 0, 1, . . . n− 1.

Setting k = 0 gives us symmetric functions while k = 1, 2, . . . n − 1 defines
quasi invariant functions. Functions from the latter class satisfy the standard
matching conditions only if they are zero at the central vertex. Indeed, from
the continuity condition in (66), it follows that

u1(0) = ei
2π
n u1(0)︸ ︷︷ ︸
u2(0)

=⇒ u1(0) = 0,

19

since ei
2π
n 6= 1.

The condition on the derivative in (66) is satisfied due to quasi invariance,
indeed:

u′1(0) + u′2(0) + . . .+ u′n(0) =
(

1 + ei
2π
n + e2i 2π

n + . . .+ e(n−1)i 2π
n

)
u′1(0) =

=

(
1− eni 2π

n

1− ei 2π
n

)
u′1(0) = 0,

and the same holds for its powers. Hence, we have{
u1(0) = 0,
u′1(l) = 0.

The solution is the sinus function

u1(x) = B sin kx,

which after some algebra implies

kn =
π

2l
+
nπ

l
,

whose multiplicity is n− 1.
Let us proceed further with the symmetric part. For the conditions on the

derivative in (66) to be satisfied we need

0 =
∑
i

u′i(0) = nu′1(0),

which implies the solution in the form{
u′1(0) = 0,
u′1(l) = 0.

This is satisfied by the function

u1(x) = A cos knx.

if
kn =

πn

l
.

Multiplicity of such an eigenvalue is 1.

4 Numerical analysis

In the preceding chapter, we have presented some of the explicitly solvable (or
nearly explicitly solvable, by transforming into root-finding task) eigenvalue
problems. However, their number is very limited. The problem gets excessively
arduous when adding electric or magnetic potential. In further investigation,
numerical computation plays an important role. The question arises which
numerical method to choose to compute the spectrum of a general quantum
graph endowed with Schrödinger operator and various boundary conditions.
For reasons to be explained below, we use Chebyshev spectral methods and
object-oriented MATLAB environment.

20

10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

er
ro

r

Error comparison for the third eigenvalue of the loop graph

Spectra method

Finite difference method

Figure 5: Compare the accuracy rate for spectral method and finite difference
method of the first order of the eigenvalue λ3 in the loop case (where the value
is exactly known).

4.1 Chebyshev spectral methods

The first method that immediately comes to one’s mind is some kind of finite
difference formula. MATLAB takes use of sparse matrices, so the codes run
in the fraction of seconds. However, the speed of such computation is at the
expense of accuracy. From this point of view, spectral methods are more suit-
able for problems requiring high order of precision. In broad terms, while finite
difference methods make use of local interpolation by low degree polynomials,
spectral methods implement high degree polynomials globally. Spectral accu-
racy is remarkable, however, there is a price to be paid: full matrices replace
sparse matrices, stability restrictions may become more severe, and computer
implementations may not be so straightforward.

As the number of grid points N increases, the error for finite difference
and finite element scheme typically decreases like O(N−m) for some constant
m depending on the order of approximation and the smoothness of the solu-
tion. For the spectral method, convergence of the rate O(N−m) for arbitrary
m is achieved, provided the solution is infinitely differentiable, and even faster
convergence at a rate O(cN), 0 < c < 1 is achieved if the solution is analytic
[28].

This behavior is illustrated by Figure 5. The error of spectral and finite
difference methods is plotted in the case of loop graph, where the solution (12)
is explicitly known. Obviously, finite difference method result is improved very
slowly compared to spectral method. Reaching N = 20 interpolation points,

21

spectral methods achieve the accuracy 10−12 where the truncation error does
not allow the error to drop more. This is the typical spectral accuracy behavior.

4.1.1 Chebyshev nodes

The eigenvectors of Schrödinger operator (1) are smooth functions, thus ac-
cording to [28] it is customary to interpolate them by algebraic polynomials
p(x) = a0 + a1x+ . . . anx

N . To avoid Runge phenomenon (oscillations near the
endpoints) it is convenient not to interpolate the function on equispaced points
but to introduce the discretization on unevenly spaced points.

Various different sets of points are effective but they shall be distributed
asymptotically as N →∞ with the density per unit length as

density ∼ N

π
√

1− x2
,

which means that they cluster near the endpoints. The canonical interval is
[−1, 1]. If a function is to be evaluated on general interval [a, b], a mapping
comes handy when converting to [−1, 1] through the change of variables

x 7→ (b− a)x+ (b+ a)

2
.

One of the node sets satisfying the density property on the bounded interval
are Chebyshev points. There exist more types of them, the most commonly
used ones as they are nearly optimal [4] are so called Chebyshev Gauss-Lobatto
quadrature points [5]:

xj = cos
jπ

N
, j = 0, 1, . . . , N. (20)

In the literature, the Chebyshev points of the second kind are sometimes used
too:

xj = cos
(j − 1)π

N − 1
, j = 1, 2, . . . , N. (21)

Note, that the ordering is defined from right to left.

4.1.2 Chebyshev polynomials

Chebyshev points (20) are the roots of Chebyshev polynomials of the first kind,
Tk(x) where k = 0, 1, . . ., see Figure 6. Similarly, Chebyshev nodes (21) are the
roots of Tk−1(x) on [−1, 1]. In fact, Chebyshev polynomials are the eigenfunc-
tions of the Sturm-Liouville problem(√

1− x2 T ′k(x)
)′

+
k2

√
1− x2

Tk(x) = 0.

The polynomials may be also given by the recursion relation

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x.

22

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

Figure 6: First six Chebyshev polynomials.

For more details see [5].
Chebyshev polynomials are real and orthogonal with respect to the weight

w(x) = 1√
1−x2

on (−1, 1)

∫ 1

−1

Tn(x) Tm(x)
dx√

1− x2
=

 0, n 6= m,
π, n = m = 0,
π/2, n = m 6= 0,

and build the basis in the weighted space L2
w(−1, 1). Chebyshev expansion of a

function u ∈ L2
w(−1, 1) is

u =

∞∑
k=0

ûkTk(x), ûk =
2

πck

∫ 1

−1

u(x)Tk(x)w(x) dx,

where

ck =

{
2, k = 0,
1, k ≥ 1.

4.1.3 Differentiation matrix

There are two options for to accomplish differentiation of a function depending
on its representation, we can either stay in the transform space L2

w(−1, 1) or
express the function in physical space L2(−1, 1). The other way is preferred.

To carry out the computation in the physical space one needs to define its
base first. Characteristic Lagrange polynomials ψl are natural choice- they are
unique polynomials that satisfy

ψl(xj) = δjl, j = 0, . . . , N.

The general expression for such polynomials is

ψl(x) =
∏

j 6=l,0≤j,l≤N

x− xj
xl − xj

. (22)

23

For numerical stability reasons, often the Lagrangian polynomials are reformu-
lated in barycentric form as

ψl(x) =

λl
x−xl∑N
k=0

λk
x−xk

, λl =
1∏

k 6=l(xl − xk)
. (23)

Differentiation in physical space is realized by replacing truncation by inter-
polation. Given a set of N + 1 nodes in [−1, 1] the polynomial

DNu =

(
N∑
l=0

u(xl)ψl

)′
is called the Jacobi interpolation derivative of u. The coefficients are given
by (DN)jl = ψ′l(xj), they form the entries of the first-derivative interpolation
matrix DN .

In our case it may be shown, that the characteristic Lagrange polynomials
(22) at the Chebyshev Gauss-Lobatto points (20) may be expressed as

ψl(x) =
(−1)l+1(1− x2) T ′N (x)

c̄lN2(x− xl)
,

where

c̄j =

{
2, j = 0, N,
1, j = 1, . . . , N − 1.

From this, one gets the derivative interpolation matrix:

(DN)jl =

c̄j(−1)j+l

c̄l(xj−xl) , j 6= l,

− xl
2(1−x2

l)
, 1 ≤ j = l ≤ N − 1,

2N2+1
6 , j = l = 0,

− 2N2+1
6 , j = l = N.

Numerically more stable code takes advantage of the barycentric formula
(23):

(DN)jl =

δj
δl

(−1)j+l

xj−xl , j 6= l,

−
∑N
i=0,i6=j

δi
δj

(−1)i+j

xj−xi , j = l,
(24)

where δl = 1/2 if l = 0 or N , δl = 1 otherwise.
The ready-made function chebdif.m by Weideman and Reddy implements

the expression similar to (24) 3 on Chebyshev nodes of the second kind (21).
The documentation to the MATLAB suite may be found in [29]. The program
makes use of the fact, that for spectral differentiation matrices it holds

D
(l)
N = (D

(1)
N)l, l = 1, 2, . . . , (25)

thus any higher order differentiation matrix can be computed from (24).

3The spectral Chebyshev matrix is also included in the Matlab’s Matrix Computation
Toolbox under chebspec label.

24

4.1.4 Eigenvalue problem and boundary conditions

Let us concentrate on the eigenvalue problem of the Laplace operator. In the
discretized way, we are to solve:

−D(2)
N u = λu, u = [u0, . . . uN]T , (26)

where ui := u(xi) and D
(2)
N is the second order differentiation matrix (25). In

(26) we did not take into account boundary and matching conditions yet.
For finding the eigenvalues, MATLAB’s command eig is a very powerful

tool. Note, that by calling it, finite set of eigenvalues is returned. However,
the accuracy decreases with the number of the eigenvalue. Quantum graphs
have infinitely many eigenvalues and in order to get many one needs to consider
large N . In the case of a graph with rationally dependent lengths of edges we
recall that the eigenvalues are repeating within certain period (as proved in
Proposition 2.3).

It might happen that one is interested in merely few first eigenvalues or would
be working with extensive matrices where the computations are not in the power
of modern computers. Iteration methods may solve the problem. One of the
most frequently used techniques for computing a few dominant eigenvalues is
the Lanczos algorithm [25]. However, in our thesis we work with adequately
small matrices and smooth solutions, so the eig command is customary enough
for our purpose.

For the Laplace operator to be self-adjoint, one needs to endow the boundary
conditions. In general, there are two different approaches of implementing the
boundary conditions for spectral methods:

1. restrict the set of interpolants to those, that satisfy the boundary condi-
tions

2. do not restrict, but add additional equations to enforce the boundary
conditions.

The first method is based on changing the form of interpolant basis to the so-
called boundary adapted form. For theoretical background read the paper by
Huang and Sloan [17], where the general form of the interpolant is provided.
This method has been incorporated into the program cheb2bc.m by Weideman
and Reddy, for more information see [29].

The second method is more flexible and suitable for more complicated prob-
lems. It is related to the so-called tau methods that appear in the field of
Galerkin spectral methods. The boundary conditions are imposed in standard
ways as described in Chapters 7 and 13 of [28]. Each boundary condition at
the left endpoint modifies the initial row of the differentiation matrix, and each
boundary condition on the right endpoint involves the modification in the final
row.

Let us demonstrate the boundary condition implementation on the interval
[−1, 1]. In the literature, the authors mainly concern about the Dirichlet bound-
ary conditions u(±1) = c1,2 since they are easy to implement. Given c1,2 = 0,

25

which is the most commonly considered case, according to [28], this may be
achieved by omitting the outer rows and columns of the differentiation matrix
and adjusting the length of vector u by setting u0 = uN = 0.

To present the eigenvalue problem with Neumann boundary conditions (10),
let us fist recall the differentiation matrix of the second order (25). Then the
discretized problem yields {

−D(2)
N u = λu,

u′0 = u′N = 0,

where u′i = (D
(1)
N u)i is the i-th element of the differentiated vector u. In other

words, we impose N − 1 equations using the second order differentiation matrix
and 2 equations using the first order differentiation matrix. So we will end up
solving (N+1)×(N+1) linear system of equations where N−1 equation enforce
the condition −u′′ = λu at the interior grid and 2 equations enforce u′ = 0 at
the outer grid points:

−Au = λBu, (27)

where A is the modified differentiation matrix D
(2)
N . The technique of imple-

menting Neumann boundary condition consists of replacing the first row in D
(2)
N

by the first row in D
(1)
N , respectively last row in D

(2)
N by the last row in D

(1)
N .

The matrix B is singular

B =

0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 0

,

thus this is a generalized eigenvalue problem, which may be solved by the Mat-
lab command eig(A,B). Similarly, we enforce the non-homogeneous Dirichlet
conditions.

4.2 Chebfun

There exist more add-ons for Matlab implementing the techniques described
above, see for instance [29]. The most complex toolbox utilizing Chebyshev
spectral methods is Chebfun- an ongoing Oxford University project super-
vised by Lloyd Nick Trefethen that goes back to 2002 [1]. Chebfun is an
open source package extending Matlab environment providing one may con-
duct the computations in functional form (instead of vectorized form). The
goal of Chebfun is to solve the problems with ”symbolic feel and numerical
speed“. It is designed to aim on users which are already familiar with Mat-
lab as overloading the commands into Chebfun language offers completely new

26

view on their functionality. The current version of Chebfun is available at
http://www2.maths.ox.ac.uk/chebfun/.

As was already mentioned in the introduction, a convenient advantage of
spectral methods is that the error decreases rapidly as the number of interpola-
tion points grows. One of the Chebfun features is the adaptivity- the number of
polynomials necessary is computed during the process and their number aims
to achieve the error drops to the magnitude of machine precision (∼ e−16).

When an operator in Chebfun is constructed, the aim is always accuracy
close to machine epsilon, however, because of the ill-conditioning associated with
spectral discretizations, accuracy lost is almost universal [8]. As the examples
in this thesis show, it is common to lose three or four digits of accuracy in such
computations.

4.2.1 Current features

To present the ease of use for the spectral discretization described in the previous
section, we employ Chebfun for computing the differentiation matrices. For
example, the second order differentiation matrix evaluated at 5 points on the
interval [−1, 1] without boundary conditions can be obtained by command

d = domain(-1,1);

D2 = diff(d,2);

D2(5)

ans =

17.0000 -28.4853 18.0000 -11.5147 5.0000

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

5.0000 -11.5147 18.0000 -28.4853 17.0000

If we want to apply Dirichlet boundary conditions, we simply call the below
command. Note, that corresponding identity rows replace the first and last
row4.

D2.bc = ’dirichlet’;

D2(5)

ans =

4In the future release of Chebfun, the so called rectangular projection is about to be
implemented. This maps the interior rows to slightly different set of points as the computation
coefficients appear to be more stable.

27

http://www2.maths.ox.ac.uk/chebfun/

1.0000 0 0 0 0

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

0 0 0 0 1.0000

With Neumann boundary conditions, the first and last rows are replaced by
corresponding rows of the first derivative operator:

D2.bc = ’neumann’

D2(5)

ans =

-5.5000 6.8284 -2.0000 1.1716 -0.5000

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

0.5000 -1.1716 2.0000 -6.8284 5.5000

Invisibly for the user, Chebfun defines D2 as a differential operator (not a
matrix) from the class chebop where boundary conditions are among many of
its available characteristics. For the presentation of Chebfun’s symbolic compu-
tation ability, one may define any function f (as a entity from class chebfun)
and apply the operator on it. In the example to come, not just complicated
function f is defined and differentiated, but also the solution of the backward
equation with Dirichlet boundary conditions is found. Note, that results from
the previous computations (implicit functions) are used as arguments at the
right-hand side of the equation. This is a feature Matlab itself is not able to
offer.

d = domain(-5,5); % define domain

% some wild function

f = chebfun(’exp(-x.^2/16).*(1+.2*cos(10*x))’,[-5,5]);

plot(f)

D1 = diff(d,1); % differential operator

g = D1*f; % apply the operator to a function

plot(g)

D2 = diff(d,2); % define another operator

D2.bc = ’dirichlet’; % including boundary conditions

h = D2\(f+g); % find solution of the equation D2*h = f+g

plot(h)

28

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
f(x) = exp(−x2/16)*(1+0.2*cos(10*x))

x

f(
x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
g(x) = f(x)‘

x

g(
x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−12

−10

−8

−6

−4

−2

0
Solution to h(x)‘‘ = f(x)+g(x)

x

h(
x)

Figure 7: A function defined via symbolic Chebfun, its derivative and the solu-
tion to a differential equation with boundary conditions.

29

Results of the computation are on Figure 7. If we want to learn more about
the function h obtained, let us just suppress the semicolon in the command line:

h

h =

chebfun column (1 smooth piece)

interval length endpoint values

[-5, 5] 88 -6.2e-13 -1.4e-15

vertical scale = 10

These are all important information about the function. First, it made us
sure, that the Dirichlet boundary conditions are satisfied due to the endpoint
values printed out. Moreover, the length property informs about the degree of
Chebyshev polynomial used.

The last overloaded function we will concern about is eigs. The singular
matrix B on the right-hand side of 27 is automatically generated while recalling
the boundary conditions, thus it is not surprising that for obtaining eigenvectors
and eigenvalues of an operator with given boundary conditions one only needs
to use the command eigs.5

d = domain(-1,1);

D2 = diff(d,2);

D2.bc = ’dirichlet’;

format long

eigs(-D2,5)

ans =

2.467401100272662

9.869604401089157

22.206609902451021

39.478417604357745

61.685027506808595

One may observe, that the result is accurate up to 12 digits (compare to the
exact result (9)).

We will not go further into details regarding the features of Chebfun and
redirect an interested reader to http://www2.maths.ox.ac.uk/chebfun/ where
one can find not just the guide but also illustrative examples.

5In Matlab notation, eigs call for eigenvalues and eigenfunctions of a stiff problem. How-
ever, in Chebfun, eigs is meant to return a set of finite number of eigenvalues, respectively
eigenvectors, regardless of the problem posedness.

30

http://www2.maths.ox.ac.uk/chebfun/

In Chebfun, there is a class called domain where you can specify the required
computational interval. However, Chebfun is not capable of considering other
types of grids yet (or rectangle in 2D version even though Chebfun is at heart
1D program). Hence, the goal of the present thesis, among all, is to extend
the current features by a new class called graph, that provides the user the
opportunity to define functions and operators on graph-like domains given there
are matching conditions satisfied at the internal vertices. More specifically, we
are interested into function computing spectra of quantum graphs as described
above.

4.2.2 Developing graph class

First of all, the underlying metric graph should be defined. For this purpose, we
introduced a new class graph where incidence matrix is on the input. Incidence
matrix I is defined as N ×M matrix where N is the number of vertices and M
is the number of edges such that

Iij =

 −1 if Vi is the left endpoint of the j-th edge
1 if Vi is the right endpoint of the j-th edge
0 otherwise.

Let us start with the simplest case of two connected intervals with edge lengths
1 and 5:

A = [-1 1 0;

0 -1 1]’; % incidence matrix

len = [1 5]; % edge lengths

t = graph(A,len)

t =

2x3 graph defined by incidence matrix:

-1 0

1 -1

0 1

with 2 edges and 3 vertices

and edge lengths: 1 5

In the preceding subsection, we demonstrated how Dirichlet or Neumann
boundary conditions can be introduced on a single interval. However, in more
topologically complicated cases we wish to impose the matching conditions as
well. The method is based on the same pattern, but needs one to be more
careful with the signs and row/columns position.

A function grapheig has been developed in the graph directory. In broad
terms, providing the incidence matrix, edge lengths and number of eigenval-
ues requested (and optionally boundary conditions and potentials), the set of
eigenvalues and eigenvectors is returned.

31

v0 v1 v2 vN = w0 w1 wNw2

Figure 8: The grid for two connected intervals.

Mathematically, for two intervals glued together (see the grid on Figure 8)
standard matching conditions mean that we are solving the discretized problem
(following the formalism introduced in (5)):

−D(2)
N v = λv,

−D(2)
N w = λw,

v′0 = w′N = 0,
vN = w0,
v′N = w′0,

(28)

where v = [v0, . . . , vN]T and w = [w0, . . . wN]T . The Laplace matrix of the whole
system (before implementing the matching conditions) is now block diagonal
matrix of the size 2(N + 1)× 2(N + 1). We aim to get the linear problem in the
generalized form (27).

While calling for grapheig, second order differentiation matrix with bound-
ary conditions is created:

D2(5)

D2(5) =

Columns 1 through 7

13.1962 -21.3485 12.0000 -6.6515 2.8038 0 0

-1.0000 4.0000 -6.0000 4.0000 -1.0000 0 0

2.8038 -6.6515 12.0000 -21.3485 13.1962 0 0

0 0 0 0 0 13.1962 -21.3485

0 0 0 0 0 -1.0000 4.0000

0 0 0 0 0 2.8038 -6.6515

5.5000 -6.8284 2.0000 -1.1716 0.5000 0 0

0 0 0 0 0 0.5000 -1.1716

0.5000 -1.1716 2.0000 -6.8284 5.5000 5.5000 -6.8284

0 0 0 0 1.0000 -1.0000 0

Columns 8 through 10

0 0 0

0 0 0

0 0 0

12.0000 -6.6515 2.8038

-6.0000 4.0000 -1.0000

32

12.0000 -21.3485 13.1962

0 0 0

2.0000 -6.8284 5.5000

2.0000 -1.1716 0.5000

0 0 0

The matching conditions in (28) indicate that the first and last rows of both

D
(2)
N ’s shall be replaced by the respective identity or first order rows. This

may be seen from the output: Neumann boundary conditions are implemented
in 7th and 8th rows while the continuity conditions are placed in the last two
rows. At the same time, singular matrix B has to be adjusted accordingly. In
this specific case, B becomes identity matrix of the same size with the last four
diagonal elements excluded and replaced by zeros. Note, that we always end up
with a square matrix D2.

For instance, resuming the string graph t defined above, we impose Neumann
boundary conditions at the endpoints (if not specified, Neumann is a default
choice). The electric potential is set to be zero (for potential usage see Section
4.2.3). The result of the computation is listed below:

bcd = []; % vertices with Dirichlet BC

bcn = [1,3]; % vertices with Neumann BC

numeig = 3; % number of eigenvalues required

q = @(x,u) 0.*x.*u; % electric potential

[V,lam] = grapheig(t, numeig, bcd, bcn, q)

V =

chebfun column 1 (2 smooth pieces)

interval length endpoint values

[0, 1] 15 0.41 0.41

[1, 6] 20 0.41 0.41

Total length = 35 vertical scale = 0.41

chebfun column 2 (2 smooth pieces)

interval length endpoint values

[0, 1] 32 0.58 0.5

[1, 6] 25 0.5 -0.58

Total length = 57 vertical scale = 0.58

chebfun column 3 (2 smooth pieces)

interval length endpoint values

[0, 1] 28 0.58 0.29

[1, 6] 29 0.29 0.58

Total length = 57 vertical scale = 0.58

33

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Eigenvectors for two edges connected

λ
1

λ
2

λ
3

Figure 9: First three eigenvectors for two edges (of lengths 1 and 5) glued into
one.

lam =

0.000000000545866

0.274155678623759

1.096622711782822

A simple plot is showed on Figure 9. The dashed line represents the merge
point as the edge lengths are 1 and 5. It is also worth noticing how the Cheby-
shev points are spread along the lines. They are clustered near the endpoints,
thus their density is obviously growing at the breakpoint.

For the results to be more expressive, we define the visualization function
plottree which is invoked when plotting the results. The incidence matrix and
the chebfuns to be plotted are required on the input, optionally also the vertices
defined on the plane. If not specified, they are symmetrically spread along the
unit circle.

To present the computational power and abilities of plottree we visualize
the first two eigenvectors of an equilateral graph consisting of 6 vertices and 12
edges:

A = [-1 1 0 0 0 0;

0 -1 1 0 0 0;

0 0 -1 0 1 0;

0 0 0 -1 0 1;

0 0 -1 1 0 0;

0 0 0 -1 1 0;

0 0 0 0 -1 1;

-1 0 0 0 0 1;

1 0 0 -1 0 0;

0 -1 0 1 0 0;

34

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
A graph with 6 edges and 12 vertices

−1 −0.5 0 0.5 1
−1−0.500.51

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Second eigenvector

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
0

1−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fourth eigenvector

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
0

1−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ninth eigenvector

Figure 10: A graph and some of its eigenvectors.

0 -1 0 0 0 1;

0 -1 0 0 1 0]’; % incidence matrix

len = 2; % all lengths set to 2

numeig = 9; % number of eigenvectors

[V,lam] = grapheig(A, numeig, len);

plottree(V,A)

The result is plotted on Figure 10. We picked some of the first eigenvec-
tors while keeping in mind that for connected graph with standard matching
conditions the first eigenvector is always a constant function.

However, writing down the incidence matrix and other input arguments gets
tedious as the number of edges grows. One also needs to keep track of the node
and edge numbering while changing their boundary conditions or lengths re-
spectively. Another option of defining the problem offers a function drawgraph.

As the name prompts, it enables the user to draw a graph on the plain canvas,
connect the vertices with edges and finally select the boundary conditions (Neu-
mann is default in case none is chosen), all just by mouse clicking on the screen.
Invisibly, the program resumes the incidence matrix from the plot, computes
the edge lengths and marks the boundary vertices with respective conditions.
Successively, the first few eigenvectors are plotted on the graph. This procedure
may be followed step-by-step on Figure 11 (even though the reader is advised
to try this out by himself/herself).

35

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Pick the nodes. Right mouse button picks the last point.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Connect points by edges. Right mouse click marks the last point.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Press any key when done.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

1

−0.5

0

0.5

First few eigenvectors

Figure 11: Usage of drawgraph: pick the points, connect them with edges,
define boundary conditions at pending vertices and wait for Chebfun to do the
rest.

36

−3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Star graph without electric potential

−3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Star graph with electric potential

Figure 12: The eigenvectors of a graph affected by a complicated potential lose
its trigonometric properties.

4.2.3 Adding potentials

Until now we have considered electric and magnetic potentials to be zero. How-
ever, it might come handy to be able to express the Laplacian in more general
form 1 as Schrödinger operator. This requires subtle changes in the code.

First, for to obtain Laplacian as in (3) we implement an electric potential q
and modify the discretized problem (26) to

−D(2)
N u+Qu = λu, u = [u0, . . . uN]T , (29)

where Q is (N + 1)× (N + 1) diagonal matrix

Q =

q0 0 . . . 0
0 q1 . . . 0
...

...
. . .

...
0 0 . . . qN

 ,

and qi is the potential q evaluated in the Chebyshev node xi (20):

qi := q(xi).

Similarly, for k edges, the potential matrix Q would be diagonal of the size k(N+
1)× k(N + 1) with q1

0 , q
1
1 . . . , q

1
N , q

2
0 , . . . q

2
N , . . . , q

k
N on the diagonal, where qji is

q evaluated the ith node on jth edge. Straightforward computation follows this
pattern and allows one to specify the potential using the function getpotential.
The syntax is as follows:

A = [-1 1 0 0;

0 -1 1 0;

0 -1 0 1]’; % incidence matrix

len = [5,3,2]; % edge lengths

G = graph(A,len); % build graph

37

numeigs = 4; % number of eigenvalues

bcd = [1,4]; % Dirichlet BC in two vertices

bcn = [3]; % Neumann BC in one vertex

% potentials are stored in a cell

q{1} = @(x,u) 20*x.^5.*u; % potential on the first edge

q{2} = @(x,u) cos(30*x).*u; % on the second edge

q{3} = @(x,u) 20*exp(-x.^3).*u; % on the third edge

[V1,D1] = grapheig(G,numeigs,bcd,bcn); % without potential

[V2,D2] = grapheig(G,numeigs,bcd,bcn,q); % with potential

a = len(1)*1; % define the nodes in space

b = len(2)*(-1+1i)*(sqrt(3)/2);

c = len(3)*(-1-1i)*(sqrt(3)/2);

plottree(V1,A,[a 0 b c])

plottree(V2,A,[a 0 b c])

The plots are presented on Figure 12. Here we chose the potentials to be
successively: 20x5, cos(30x), 20 exp(−x3). One may observe that the compli-
cated potentials affect the eigenvectors in the sense that they are no longer
trigonometric.

While defining the electric potentials for computations, keep in mind that
each edge is viewed as a subset [−`/2, `/2] of the real line where ` is the respective
edge length.

Magnetic potential a in the Schrödinger operator (1) may be partially ex-
cluded by introducing an appropriate transformation. Let us define the unitary
mapping

Ua|En : u(x)|En 7→ exp

(
−i
∫ x

x2n−1

a(y)dy

)
u(x)|En , (30)

which transforms the magnetic Schrödinger operator to

Lq,a = U−1
a Lq,0Ua.

However, the magnetic potential still remains present in the boundary terms.

Defining ũ(x)|En = exp
(
−i
∫ x
x2n−1

a(y)dy
)
u(x)|En we can rewrite the endpoint

values as
ũ(x2n−1) = u(x2n−1), ũ(x2n) = e−iϕnu(x2n), (31)

where ϕn denotes ϕn :=
∫ x2n

x2n−1
a(y)dy. Similarly, recalling the definition (2),

the derivatives obey

∂ũ(x2n−1) = ∂u(x2n−1),

∂ũ(x2n) = e−iϕn∂u(x2n)), (32)

where ∂u(x2n−1) and ∂u(x2n) denote the normal derivatives defined by (5).

38

The extension of the discrete problem (29) thus yields

−D(2)
N ũ+Qũ = λũ, ũ = [ũ0, . . . ũN]T ,

where the matching and boundary conditions are making use of the formulation
(31) and (32). The algorithm grapheig is capable of invoking magnetic potential
too, for example, we apply magnetic potential to the graph defined above:

q = @(x,u) 0.*x.*u; % zero electric potential

a = @(x) 3.*exp(x).*x.^3; % magnetic potential

[V,D] = grapheig(G,numeigs,bcd,bcn,q,a)

D =

0.0987 + 0.0000i

0.3492 - 0.0000i

0.8883 + 0.0000i

1.7488 + 0.0000i

4.2.4 Implementation

All functions described above plus some supporting procedures have been
implemented and included into the graph directory in Chebfun. As it
is not a part of the official release yet, you may download the pack-
age which has been created only for the purpose of the present thesis in
http://gemma.ujf.cas.cz/∼malenova/download.html and place it to your Mat-
lab path. Besides, the code is attached in Appendix.

As the output of drawgraph and grapheig respectively, we get the eigen-
vectors and eigenvalues corresponding to the general quantum graph defined by
its incidence matrix, edge lengths and optionally boundary conditions or elec-
tric and magnetic potentials. The computations are very accurate for spectral
methods generate the error dropping rapidly.

5 Applications

Once we have a program computing the spectrum of a magnetic Schrödinger
operator on a general graph, it is handy to draw our attention to inverse prob-
lems. Does the spectrum carry any information about the properties of the
graph? We investigated some interesting issues including the trace formula and
the spectral gap.

5.1 Trace formula

The Euler characteristic χ for graphs is given by

χ = M −N, (33)

39

http://gemma.ujf.cas.cz/~malenova/download.html

Figure 13: Complete graph with 5 nodes denoted by K5.

where M,N is number of vertices and edges respectively. Trees have χ = 1,
whereas all the other connected graphs have χ ≤ 0.

As a function of a quantum graph’s spectrum, Euler characteristic χ also
comes out from a trace formula [21] as a byproduct:

χ = 2ms(0) + 2 lim
t→∞

∑
kn 6=0

cos (kn/t)

(
sin (kn/2t)

kn/2t

)2

, (34)

where ms(0) is the spectral multiplicity of eigenvalue 0 and k2
n is n-th eigenvalue.

Limit and sum may not be exchanged for the expression not to diverge (as

cos (kn/t)
(

sin (kn/2t)
kn/2t

)2

−→ 1 providing t→∞).

Let us define the residual

RN :=

∞∑
n=N

cos (kn/t)

(
sin (kn/2t)

kn/2t

)2

.

A rough estimate is made utilizing the upper bound for goniometric functions
and Weyl’s asymptotics kn ∼ πn

L , where L is the total length of the graph:

|RN | =

∣∣∣∣∣∣∣∣
∞∑
n=N

cos
(πn
Lt

)
︸ ︷︷ ︸
≤1

sin2
(πn

2Lt

)
︸ ︷︷ ︸

≤1

(
2Lt

πn

)2

∣∣∣∣∣∣∣∣ ≤
4L2t2

π2

∣∣∣∣∣
∞∑
N

1

n2

∣∣∣∣∣ ≤
≤ 4L2t2

π2

∫ ∞
N−1

1

x2
dx =

4L2t2

π2

1

N − 1
. (35)

Example 1. Say we want to compute Euler characteristic of a K5 graph (Figure
13) using the formula (34) achieving precision |RN | < 0.25. The estimate (35)
states, that one would need to take approximately N = 650 terms at time t = 1
to meet the requirements.

As to theoretical estimation, the number of terms necessary for the numerical
computation is far lower. According to (33), the correct answer is χ = 5− 10 =
−5. We may take use of Proposition 2.3 and compute only the first period which
makes the process much more precise and faster, since we need large amount
of eigenvalues. In Figure 14 one may observe the convergence of χ for various

40

10
2

10
3

10
4

10
5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

χ convergence for K
5

graph

M

χ
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10

10
2

10
3

10
4

10
5

−100

0

100

200

300

400

500

600

X: 1e+005
Y: −4.595

χ convergence for K
5

graph in time t = 100

M

χ

Figure 14: Euler characteristic χ for K5 graph (Figure (13)) at time t = 1. On
the x-axis, there is number of terms used.

times. In case t = 1 the curve needs barely N = 20 terms to achieve the same
precision as required.

5.2 Spectral gap

In the literature, the spectral gap has been previously investigated on discrete
(combinatorial) graphs and denotes the second eigenvalue of the Laplacian (on
a connected graph). It is also referred to as algebraic connectivity or Fiedler
value. Recalling the well-known properties for discrete graphs, we investigate
the spectral gap on continuous quantum graphs too and compare the results
obtained. It is shown that the correspondence is not one-to-one as the behavior
differs while adding or deleting the edges which is the main objective of the
forthcoming section.

Firstly, let us a have a fixed vertex set. The theory claims that the combina-
torial graph’s algebraic connectivity is a monotonous function of the set of edges
in the sense that adding an edge (without altering the set of vertices) leads to
an increase of its connectivity. Section 6 involves proof of this proposition.

However, the same can not be said about the spectral gap of a quantum
graph. As a counterexample, we take an equilateral hexagon-like graph with 13
edges (first line of Figure 15). Spectral gap and the corresponding eigenfunction
are again computed by calling grapheig, for more details see Section 4.2.

Afterwards, two graphs are created from the original one by cutting off an
edge, one each. In the first case, the edge deletion causes an increase of the
spectral gap, while for the latter graph where different edge has been omitted,
the spectral gap decreases moderately. Indeed, both options are possible irre-
spectively of the graphs having the same total length, number of vertices and
edges. The precise spectral gap values obtained are successively:

>> lam(2) % spectral gap of the...

ans =

41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Metric graph

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
0

1−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Second eigenvector

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Metric graph

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
0

1−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Second eigenvector

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Metric graph

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1
0

1−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Second eigenvector

Figure 15: The first graph consists of 13 edges and in the two following graphs,
an edge is cut off from each. However, for the second graph the spectral gap
increases while in the third graph it decreases. The figures in the right-hand
side column represent the eigenfunctions corresponding to the spectral gap.

42

b)

a)

c)

d) e) f)

Figure 16: Equilateral graphs of the same total length. One can see that the
more branching, the higher is the spectral gap. The spectral gap is successively:
a) 0.0685, b) 0.0786 c) 0.0947 d) 0.1086 e) 0.1963 f) 0.6169

0.534093660067314 % ... first graphs = original

0.536312125512350 % ... second graph -> increase

0.476145255583854 % ... third graph -> decrease

This discovery lead to the investigation on what are the conditions for the
spectral gap to decrese/increase and how is this connected to the algebraic
connectivity of the underlying metric graph. The answer is partially given in
Section 6.

Let us further consider a single string of the length L (Figure 16a). Spectral

gap of the standard Laplacian is well-known from (11): λ1 = π2

L2 . Now, let us
modify this graph by parallelizing two of its edges while keeping the same total
length L, see Figure 16b. This splitting is sometimes called a branching, i. e.
including a vertex having valency at least 3. It has been numerically computed
that this causes increase of the second eigenvalue. Indeed, the spectral gap raised
from 0.0685 to 0.0786, three branches (Figure 16d) brought further increase of
0.1086, given we have equilateral graphs with all edge lengths equal to 2.

Generally, if we had a building kit consisting of 7 nodes and 6 edges, each
of the possible combinations would have lower spectral gap than the string
graph. The list of options is not complete on Figure 16 (there are three missing),
however, the computation suggests a hypothesis, that the simple string of all
graphs of the same total length has the lowest spectral gap. Proof of this
conjecture is the content of Section 6.3.

Finally, as we just presented, comparing string to any other graph of the
same total length always gives higher λ1 for the latter one. However, one may
expect, that enlarging one of the edges of the general graph, there should be
a point where the graph begins to behave like a string. Asymptotically, the
behavior of the two graphs should be the same.

43

5 10 15 20
l

0.1

0.2

0.3

0.4

k (l)

star

string

k(l)

l
5 10 15 20

l

0.05

0.10

0.15

0.20

0.25

0.30

k l

star

string

k(l)

l

Figure 17: Comparison of the spectral gap for star and string graph. One
length l of the star graph is variable, the other two are fixed. Edge lengths are
a) l1 = 2, l2 = 5 and b) l1 = l2 = 5.

Let us show this behavior on the 3-star graph. As shown above, the string’s

first excited eigenvalue is π2

L2 while the spectral gap for star graph is given by
(16).

In Figure 17a, the comparison is performed. There are two edges of the
star graph fixed (l1 = 2, l2 = 5) and l3 is variable on the horizontal axis. Blue
plot represents the star while red line depicts the string graph of the same total

length, i. e. the eigenvalue π2

(l1+l2+l3)2 .

One can observe that the difference increases for small l3. The length of the
edges in the star graph are comparable in this regime. However, while increasing
one of the lengths to infinity, the star graph begins to act more and more like a
string and their spectra almost coincide.

This is even more distinct in the special case of two edges of the star graph
having the same length. The case l1 = l3 = l was analytically resolved in Section
3.4.

Numerical solution is presented in Figure 17b. We set the values to l1 =
l3 = 5 and adjust the third star graph edge. In the first part, the eigenvalue
follows the first type of solution given by (17), what changes to solution of (18)
while crossing the point l = 5.

The first type of solution corresponds to the case when the eigenfunction
on the edge e2 stays constant. Whereas after crossing the equilateral state
l1 = l2 = l3 the solution becomes wavy on all the edges.

The spectral asymptotics is particulary considered in Theorem 6.6 of Section
6.2.2 which proves that adding an edge to a graph where the length of this
additional edge is greater than the total length of the original graph makes the
spectral gap always decrease.

6 Spectral gap

Based on the observations from the previous section we formulate specific the-
orems and successively prove the statements obtained. For to compare the

44

behavior, we first begin with similar claims regarding the discrete graphs. In
spite they in general do not show the same properties as continuous graphs,
some degree of coherence has been observed.

The forthcoming section concerning the spectral gap is the content of the
paper [23] that is about to be published.

6.1 Discrete graphs

Let G be a discrete graph with M vertices and N edges connecting some of the
vertices. Then the corresponding Laplace operator L(G) is defined on the finite
dimensional space `2(G) = CM by the following formula

(L(G)ψ) (m) =
∑
n∼m

(ψ(m)− ψ(n)) , (36)

where the sum is taken over all neighboring vertices. The Laplace operator can
also be defined using the connectivity matrix C = {cnm}

cnm =

1, the vertices n and m are neighbors,

i.e. connected by an edge;

0, otherwise,

and the valence matrix V = diag {v1, v2, . . . , vM}, where vm are the valencies
(degrees) of the corresponding vertices

L(G) = V − C,

which corresponds to the matrix realization of the operator L(G) in the canon-
ical basis given by the vertices. In the literature one may find other definitions
of discrete Laplacians. In [6], [7] one uses essentially the congruent matrix

L(G) = V −1/2L(G)V −1/2 = I − V −1/2CV −1/2. (37)

Such a definition of the Laplacian matrix is consistent with the eigenvalue anal-
ysis in spectral geometry. The following Laplacian matrix connected with the
averaging operator is similar to (37):

L(G) = V −1L(G) = V −1/2L(G)V 1/2. (38)

The operator (38) is important for studies of quantum graphs, since its eigenval-
ues are closely related to the spectrum of the corresponding equilateral graphs.

We now discuss briefly spectral properties of the standard (sometimes called
combinatorial) Laplace matrix L(G) given by (36), first of all in relation to the
set of edges.

Since the Laplace operator is uniquely defined by the discrete graph G its
eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λM−1 are usually referred to as the eigenvalues
of G. The ground state corresponding to λ0 = 0 has eigenfunction ψ0 = 1,
where 1 ∈ CM denotes the vector built up of ones on G. The multiplicity of

45

the ground state coincides with the number of connected components in G. In
order to avoid artificial complications only connected graphs will be considered
in the sequel.

Spectral gap is a monotonous function of the set of edges, in other words,
cutting off an edge always causes drop of the second eigenvalue or keeps it
unchanged, provided we have the same set of vertices.

Proposition 6.1. Let G be a connected discrete graph and let G′ be a discrete
graph obtained from G by adding one edge between the vertices m1 and m2. Let
L denote the discrete Laplacian defined by (36). Then the following holds:

1. The first excited eigenvalues satisfy the inequality:

λ1(G) ≤ λ1(G′).

2. The equality λ1(G) = λ1(G′) holds if and only if the second eigenfunction
ψG1 on the graph G may be chosen attaining equal values at the vertices
m1 and m2

ψG1 (m1) = ψG1 (m2).

Proof. The first statement follows from the fact that

L(G′)− L(G) =

...
...

. . . 1 . . . −1 . . .
...

...
. . . −1 . . . 1 . . .

...
...

(39)

is a matrix with just four non-zero entries. It is easy to see that the matrix is
positive semi-definite, since the eigenvalues are 0 (with the multiplicity M − 1)
and 2 (simple eigenvalue) and therefore L(G′) − L(G) ≥ 0 which implies the
first statement.

To prove the last assertion let us recall that λ1(G′) can be calculated using
Rayleigh quotient

λ1(G′) = min
ψ⊥1

〈ψ,L(G′)ψ〉
〈ψ,ψ〉

≥ min
ψ⊥1

〈ψ,L(G)ψ〉
〈ψ,ψ〉

= λ1(G).

Hence the trial function ψ should be chosen orthogonal to the ground state,
i.e. having mean value zero. We have equality in the last formula if and only
if ψ minimizing the first and the second quotients can be chosen such that
(L(G′)− L(G))ψ = 0, i. e. ψ(m1) = ψ(m2).

Next we are interested in what happens if we add a pending edge, i. e. an
edge connected to the graph at one already existing node.

46

Proposition 6.2. Let G be a connected discrete graph and let G′ be another
graph obtained from G by adding one vertex and one edge between the new vertex
and the vertex m1. Then the following holds:

1. The first excited eigenvalues satisfy the following inequality:

λ1(G) ≥ λ1(G′).

2. The equality λ1(G) = λ1(G′) holds if and only if every eigenfunction ψG1
corresponding to λ1(G) is equal to zero at m1

ψG1 (m1) = 0.

Proof. Let us define the following vector on G′:

ϕ(n) :=

{
ψG1 (n), on G,
ψG1 (m1) on G′\G.

This vector is not orthogonal to the zero energy eigenfunction 1 ∈ CM+1, where
we keep the same notation 1 for the vector built up of ones now on G′. Therefore
consider the nonzero vector γ shifted by a constant c

γ(n) := ϕ(n) + c.

Here c is chosen so that the orthogonality condition in l2(G′) = CM+1 holds

0 = 〈γ, 1〉l2(G′) = 〈ψG1 , 1〉l2(G)︸ ︷︷ ︸
=0

+ψG1 (m1) + cM ′,

where M ′ = M + 1 is the number of vertices in G′. This implies

c = −ψ
G
1 (m1)

M ′
.

Using this vector the following estimate on the first eigenvalue may be obtained:

λ1(G′) ≤
〈L(G′)γ, γ〉l2(G′)

‖γ‖2l2(G′)

=
〈L(G)ψG1 , ψ

G
1 〉l2(G)

‖ψG1 ‖2l2(G) + c2M + |ψG1 (m1) + c|2
≤ λ1(G). (40)

The last inequality follows from the fact that

〈L(G)ψG1 , ψ
G
1 〉l2(G) = λ1(G)‖ψG1 ‖2l2(G),

and
‖ψG1 ‖2l2(G) + c2M + |ψG1 (m1) + c|2 ≥ ‖ψG1 ‖2l2(G).

Note that we have equality if and only if c = 0 and |ψG1 (m1) + c|2 = 0 which
implies ψG1 (m1) = 0. If there exists a ψG1 , such that ψG1 (m1) 6= 0, then the
inequality in (40) is strict and we get

λ1(G) > λ1(G′).

47

We see that the first excited eigenvalue has a tendency to decrease if a
pending edge is attached to a graph. It is clear from the proof that gluing
of any connected graph (instead of one edge) would lead to the same result,
provided there is just one contact vertex. If the number of contact vertices is
larger, then the spectral gap may increase as shown in Proposition 6.1.

Note that a different proof of the first part of Proposition 6.1 may be found
in [13], Corollary 3.2. In the same paper, a bit weaker claim related to the first
part of Proposition 6.2 is provided as Property 3.3.

6.2 Continuous graphs

In the previous section, the spectral gap of combinatorial graphs has been in-
vestigated. We want to explore similar concept for continuous quantum graphs.
Our goal here is to study the spectral gap for Laplacians on metric graphs
especially in relation to the connectivity of the underlying metric graphs. Suc-
cessively, we concern about the cases when two vertices are merged into one
(Section 6.2.1), an edge is added into the system (Section 6.2.2), an edge is cut
at one point (Section 6.2.3) or an edge or its parts are deleted from the original
graph (Section 6.2.4). Requiring additional constraints, we may prove an analog
of Proposition 6.1 and Proposition 6.2 respectively.

6.2.1 Increasing connectivity - gluing vertices together

Our original idea was to study the behavior of the spectral gap when a new edge
is added to the metric graph. But this procedure increases the total length of
the graph and it is therefore not surprising that the spectral gap has a tendency
to decrease in contrast to Proposition 6.1 (see Theorem 6.5 below). Hence
let us start our studies by presenting a direct analog of Proposition 6.1 for
quantum graphs. The corresponding theorem answers the following question:
what happens to the spectral gap if two vertices in a metric graph are joined
into one common vertex. This procedure does not change the set of edges
and therefore the total length of the graph is also preserved, but the graph’s
connectivity increases instead.

Theorem 6.3. Let Γ be a connected metric graph and let Γ′ be another metric
graph obtained from Γ by joining together two of its vertices, say V1 and V2.
Then the following holds:

1. The spectral gap satisfies the inequality

λ1(Γ) ≤ λ1(Γ′). (41)

2. The equality λ1(Γ) = λ1(Γ′) holds if and only if the eigenfunction ψ1

corresponding to the first excited state can be chosen such that

ψ1(V1) = ψ1(V2). (42)

48

Figure 18: Flower graph.

Proof. The first excited state can be calculated by minimizing the Rayleigh

quotient
‖u′‖2

‖u‖2
corresponding to the standard Laplacian over the set of functions

from the domain of the quadratic form which are in addition orthogonal to the
ground state eigenfunction ψ0 = 1. For the original graph Γ the domain of
the quadratic form consists of all H1(Γ) functions which are continuous at all
vertices of Γ. The corresponding set for Γ′ is characterized by one additional
condition u(V1) = u(V2) - continuity of the function at the new vertex V1 ∪ V2.
Inequality (41) for the corresponding minima follows.

To prove the second statement we first note that if the minimizing function
ψ1 for Γ satisfies in addition (42), then the same function is a minimizer for Γ′

and the corresponding eigenvalues coincide. It is clear since the domain of the
quadratic form keeps only the continuity of functions at the vertices. Conversely
if λ1(Γ) = λ1(Γ′), then the eigenfunction for Lst(Γ′) is also a minimizer for the
Rayleigh quotient for Γ and therefore is an eigenfunction for Lst(Γ) satisfying
in addition (42).

Proposition 6.1 and Theorem 6.3 appear to be rather similar at first glance.
But the reasons for the spectral gap to increase are different. In the case of
discrete graphs the difference between the Laplace operators is a nonnegative
matrix. For quantum graphs the differential operators are identical, but in-
equality (41) is valid due to the fact that the opposite inequality holds for the
domains of the quadratic forms.

Corollary 1. Theorem 6.3 implies that the flower graph consisting of N loops
attached to one vertex (Figure 18) has the largest spectral gap among all graphs
formed by a given set of edges.

6.2.2 Adding an edge

Our goal in this section is to study the behavior of the spectral gap of the
standard Laplace operator (Definition 3) as an extra edge is added to the metric
graph. We start by proving a direct analog of Proposition 6.2.

Theorem 6.4. Let Γ be a connected metric graph and let Γ′ be another graph
obtained from Γ by adding one vertex and one edge connecting the new vertex
with the vertex V1.

49

1. The first eigenvalues satisfy the following inequality:

λ1(Γ) ≥ λ1(Γ′).

2. The equality λ1(Γ) = λ1(Γ′) holds if and only if every eigenfunction ψ1

corresponding to λ1(Γ) is equal to zero at V1

ψ1(V1) = 0.

Proof. Let us define the following function on Γ′:

f(x) :=

{
ψ1(x), x ∈ Γ,
ψ1(V1) x ∈ Γ′\Γ.

This function is in general not orthogonal to the zero energy eigenfunction
1 ∈ L2(Γ′). Therefore consider the nonzero function g differed from f by a
constant

g(x) := f(x) + c,

where c is chosen so that the orthogonality condition in L2(Γ′) holds

0 = 〈g(x), 1〉L2(Γ′) = 〈ψ1, 1〉L2(Γ)︸ ︷︷ ︸
=0

+ψ1(V1)`+ cL′,

where ` and L′ are the length of the added edge and the total length of Γ′

respectively. This implies

c = −ψ1(V1)`

L′
.

Using this vector the following estimate for the first eigenvalue may be obtained:

λ1(Γ′) ≤
〈Lstg, g〉L2(Γ′)

‖g‖2L2(Γ′)

=
〈Lstψ1, ψ1〉L2(Γ)

‖ψ1‖2L2(Γ) + c2L+ |ψ1(V1) + c|2`
≤ λ1(Γ).

Here L denotes the total length of the metric graph Γ. The last inequality follows
from the fact that

〈Lstψ1, ψ1〉L2(Γ) = λ1(Γ)‖ψ1‖2,

and
‖ψ1‖2L2(Γ) + c2L+ |ψ1(V1) + c|2` ≥ ‖ψ1‖2L2(Γ).

Note that in the last expression the equality holds if and only if c = 0 and
|ψ1(V1) + c|2 = 0 which implies ψ1(V1) = 0. This proves the second assertion.

Remark. In the proof of the last theorem we did not really use the fact that
Γ′ \ Γ is an edge. It is straightforward to generalize the theorem for the case
where Γ′ \ Γ is an arbitrary finite connected graph joined to Γ at one vertex
only.

50

We return now to our original goal and investigate the behavior of the spec-
tral gap when an edge between two vertices is added to a metric graph.

Theorem 6.5. Let Γ be a connected metric graph and Lst the corresponding free
Laplace operator. Let Γ′ be a metric graph obtained from Γ by adding an edge
between the vertices V1 and V2. Assume that the eigenfunction ψ1 corresponding
to the first excited eigenvalue can be chosen such that

ψ1(V1) = ψ1(V2). (43)

Then the following inequality for the second eigenvalues holds:

λ1(Γ) ≥ λ1(Γ′).

Proof. To prove the inequality let us consider the eigenfunction ψ1(Γ) for Lst(Γ).
We introduce a new function on Γ′

f(x) =

{
ψ1(x), x ∈ Γ,
ψ1(V1) (= ψ1(V2)) x ∈ Γ′\Γ.

This function is not orthogonal to the constant function. Let us adjust the
constant c so that the nonzero function g(x) = f(x) + c is orthogonal to 1 in
L2(Γ′):6

0 = 〈g(x), 1〉L2(Γ′) = 〈ψ1(x), 1〉L2(Γ)︸ ︷︷ ︸
=0

+ψ1(V1)`+ cL′ = 0,

where ` is the length of the added edge and L′ is the total length of the graph
Γ′, as before. We have used that the eigenfunction ψ1 has mean value zero, i.e.
is orthogonal to the ground state. This implies

c = −ψ1(V1)`

L′
.

Now we are ready to get an estimate for λ1(Γ′) using Rayleigh quotient

λ1(Γ′) ≤
〈Lst(Γ′)g, g〉L2(Γ′)

‖g‖2L2(Γ′)

.

The numerator and denominator can be evaluated as follows

〈Lst(Γ′)g, g〉L2(Γ′) = 〈Lst(Γ)ψ1, ψ1〉L2(Γ) = λ1(Γ)‖ψ1‖2L2(Γ),

‖g‖2L2(Γ′) = ‖ψ1 + c‖2L2(Γ) + |ψ1(V1) + c|2` =

= ‖ψ1‖2L2(Γ) + c2L+ |ψ1(V1) + c|2` ≥

≥ ‖ψ1‖2L2(Γ)

This implies the inequality
λ1(Γ) ≥ λ1(Γ′),

that was to be proven.

6In what follows we are going to use the same notation 1 for the functions identically equal
to one on both metric graphs Γ and Γ′.

51

Let us illustrate the above theorem by a couple of examples:

Example 2. Let Γ be the graph formed of one edge of length a. The spectrum
of Lst(Γ) is

σ(Lst(Γ)) =

{(π
a

)2

n2

}∞
n=0

.

All eigenvalues have multiplicity one.
Consider the graph Γ′ obtained from Γ by adding an edge of length b, so

that Γ′ is formed by two intervals of lengths a and b connected in parallel. The
graph Γ′ is equivalent to the circle of length a+ b. The spectrum is:

σ(Lst(Γ′)) =

{(
2π

a+ b

)2

n2

}∞
n=0

,

where all the eigenvalues except for the ground state have double multiplicity.
Let us study the relation between the first eigenvalues:

λ1(Γ) =
π2

a2
, λ1(Γ′) =

4π2

(a+ b)2
.

Any relation between these values is possible:

b > a ⇒ λ1(Γ) > λ1(Γ′),

b < a ⇒ λ1(Γ) < λ1(Γ′).

Therefore the first eigenvalue is not in general a monotonously decreasing func-
tion of the set of edges. The spectral gap decreases only if certain additional
conditions are satisfied.

Example 3. Consider, in addition to graph Γ′ discussed in Example 2 , the graph
Γ′′ obtained from Γ′ by adding another one edge of length c between the same
two vertices. Hence Γ′′ is formed by three parallel edges of lengths a, b and c.
The first eigenfunction for Lst(Γ′) can always be chosen so that its values at the
vertices are equal. Then, in accordance with Theorem 6.5, the first eigenvalue
for Γ′′ is less or equal to the first eigenvalue for Γ′:

λ1(Γ′′) ≤ λ1(Γ′).

This fact can easily be supported by explicit calculations.

The above examples and proved theorems show that the spectral gap has
a tendency to decrease, when a new sufficiently long edge is added. It is not
surprising, since addition of an edge increases the total length of the graph,
but the eigenvalues satisfy Weyl’s law and therefore are asymptotically close to
(πn)2/L2. This behavior is in contrast to the one of discrete graphs provided
the set of vertices is not altered.

Condition (43) in Theorem 6.5 is not easy to check for non-trivial graphs and
therefore it might be interesting to obtain another explicit sufficient conditions.

52

a a

b

a

b

c

Figure 19: Graphs Γ, Γ′, and Γ′′.

In what follows we would like to discuss one such geometric condition ensuring
that the spectral gap drops as a new edge is added to a graph. The main
idea is to compare the length ` of the new edge with the total length of the
original graph L(Γ). It turns out that if ` > L(Γ), then the spectral gap always
decreases. We have already observed this phenomenon when discussing Example
2, where behavior of λ1 depended on the ratio between the lengths a and b. If
b ≡ ` > a ≡ L(Γ), then the gap decreases. It is surprising that the same explicit
condition holds for arbitrary connected graphs Γ.

Theorem 6.6. Let Γ be a connected finite compact metric graph of length L(Γ)
and let Γ′ be a graph constructed from Γ by adding an edge of length ` between
certain two vertices. If

` > L(Γ), (44)

then the eigenvalues of the corresponding free Laplacians satisfy the estimate

λ1(Γ) ≥ λ1(Γ′). (45)

Proof. Let ψ1 be any eigenfunction corresponding to the first excited eigenvalue
λ1(Γ) of Lst(Γ). It follows that the minimum of the Rayleigh quotient is attained
at ψ1:

λ1(Γ) = min
u∈H1(Γ):u⊥1

‖u′‖2L2(Γ)

‖u‖2L2(Γ)

=
‖ψ′1‖2L2(Γ)

‖ψ1‖2L2(Γ)

,

where H1(Γ) denotes the set of H1-functions on graph Γ. Let us denote by V1

and V2 the vertices in Γ, where the new edge E of length ` is attached.
The eigenvalue λ1(Γ′) can again be estimated using Rayleigh quotient

λ1(Γ′) = min
u∈H1(Γ′):u⊥1

‖u′‖2L2(Γ′)

‖u‖2L2(Γ′)

≤
‖g′‖2L2(Γ)

‖g‖2L2(Γ)

, (46)

where g(x) is any function in H1(Γ′) orthogonal to constant function in L2(Γ′).
Let us choose the trial function g of the form g(x) = f(x) + c where

f(x) :=

{
ψ1(x), x ∈ Γ,
γ1 + γ2 sin

(
πx
`

)
x ∈ Γ′\Γ = E = [−`/2, `/2],

(47)

with γ1 = (ψ1(V1) +ψ1(V2))/2 and γ2 = (ψ1(V2)−ψ1(V1))/2. Here we assumed
that left end point of the interval is connected to V1 and the right end point -

53

to V2. The function f obviously belongs to H1(Γ′), since it is continuous at V1

and V2 , but it is not necessarily orthogonal to the ground state eigenfunction
1. The constant c is adjusted in order to ensure the orthogonality

〈g, 1〉L2(Γ′) = 0

holds. The constant c can easily be calculated

0 = 〈g, 1〉L2(Γ′) = cL′ + 〈ψ1, 1〉L2(Γ)︸ ︷︷ ︸
=0

+

∫ `/2

−`/2

(
γ1 + γ2 sin

(πx
`

))
dx = cL′ + γ1`

⇒ c = −γ1`

L′
. (48)

The function g can be used as a trial function in (73) to estimate the spectral
gap. Let us begin with computing the denominator using the fact that g is
orthogonal to 1

‖g‖2L2(Γ′) = ‖f + c‖2L2(Γ′) = ‖f‖2L2(Γ′) − ‖c‖
2
L2(Γ′)

= ‖ψ1‖2L2(Γ) +

∫ `/2

−`/2

(
γ1 + γ2 sin

(πx
`

))2

dx− c2L′

= ‖ψ1‖2L2(Γ) + `γ2
1 +

`

2
γ2

2 − c2L′ (49)

The numerator yields

‖g′‖2L2(Γ′) = ‖f ′‖2L2(Γ′) = ‖ψ′1‖2L2(Γ) +

∫ `/2

−`/2

(
γ2

2

π2

`2
cos2

(πx
`

))
dx

= λ1(Γ)‖ψ1‖2L2(Γ) + γ2
2

π2

2`
(50)

After plugging (49) and (50) into (73) we obtain

λ1(Γ′) ≤
λ1(Γ)‖ψ1‖2L2(Γ) + γ2

2
π2

2`

‖ψ1‖2L2(Γ) + `γ2
1 + `

2γ
2
2 − c2L′

.

Using (48) the last estimate can be written as

λ1(Γ′) ≤
λ1(Γ)‖ψ1‖2L2(Γ) + γ2

2
π2

2`

‖ψ1‖2L2(Γ) + `γ2
1

(
1− `

L′
)

+ `
2γ

2
2

≤
λ1(Γ)‖ψ1‖2L2(Γ) + γ2

2
π2

2`

‖ψ1‖2L2(Γ) + `
2γ

2
2

, (51)

where we used that ` < L′ = L+`. It remains to take into account the following
estimate for λ1 proven in [14, 24]

λ1(Γ) ≥
(π
L

)2

. (52)

54

Then taking into account (44) estimate (51) can be written as

λ1(Γ′) ≤
λ1(Γ)‖ψ1‖2L2(Γ) + λ1(Γ)γ2

2`/2

‖ψ1‖2L2(Γ) + γ2
2`/2

= λ1(Γ). (53)

The theorem is proven.

Estimate (52) was crucial for our proof. It relates the spectral gap to the total
length of the metric graph, i.e. compares the geometric and spectral properties
of quantum graphs. Proposition 6.1 states that the spectral gap increases if an
edge is added to the discrete graph. Adding a long edge should correspond to
adding a chain of edges to a discrete graph.

The previous theorem gives us a sufficient geometric condition for the spec-
tral gap to decrease. Let us study now the case where the spectral gap is
increasing. Similarly, as we proved that adding one edge that is long enough
always makes the spectral gap smaller (Theorem 6.6), we claim that an edge
that is short enough makes it grow. We have already seen in Theorem 6.3 that
adding an edge of zero length (joining two vertices into one) may lead to an in-
crease of the spectral gap. It turns out that the criterium for a gap to decrease
can be formulated explicitly in terms of the eigenfunction on the larger graph.
Therefore let us change our point of view and study the behavior of the spectral
gap as an edge is deleted.

6.2.3 Decreasing connectivity - cutting edges

In the following section we are going to study the spectral gap’s behavior when
one of the edges is deleted. The result of such procedure is not obvious, since
cutting of an edge decreases the total length of the metric graph and one expects
that the first excited eigenvalue increases. On the other hand cutting off an edge
decreases the graph’s connectivity and therefore the spectral gap is expected
to decrease. It is easy to construct examples when one of these two tendencies
prevails: Example 2 shows that the spectral gap may both decrease and increase
when an edge is deleted.

Let us discuss first what happens when one of the edges is cut in a certain
internal point. Let Γ∗ be a connected metric graph obtained from a metric
graph Γ by cutting one of the edges, say E1 = [x1, x2] at a point x∗ ∈ (x1, x2).
It will be convenient to denote by x∗1 and x∗2 the points on the two sides of
the cut. In other words, the graph Γ∗ has precisely the same set of edges and
vertices as Γ except that the edge [x1, x2] is substituted by two edges [x1, x

∗
1]

and [x∗2, x2] and two new vertices V ∗1 = {x∗1} and V ∗2 = {x∗2} are added to the
set of vertices.

The spectral gap for the graphs Γ and Γ∗ can be calculated by minimizing
the same Rayleigh quotient over the set of H1-functions with zero average.
The only difference is that the functions used to calculate λ1(Γ) are necessarily
continuous at x∗

u(x∗1) = u(x∗2)

55

(as functions from H1[x1, x2]). The functions used in calculating λ1(Γ∗) do
not necessarily attain the same values at the points x∗1 and x∗2. It follows that
λ1(Γ∗) ≤ λ1(Γ), since the set of admissible functions is larger for Γ∗. If the
minimizing function for Γ∗ has the same values at x∗1 and x∗2, then it is also an
eigenfunction for Lst(Γ) and therefore λ1(Γ∗) = λ1(Γ). Moreover, if the spectral
gap for the graphs is the same, then every function minimizing the quotient
for Γ minimizes the quotient for Γ∗ as well and therefore satisfies the Neumann
condition at x∗. It follows that every eigenfunction for Lst(Γ) corresponding to
λ1 is also an eigenfunction for Lst(Γ∗). The following theorem is proven.

Theorem 6.7. Let Γ be a connected metric graph and let Γ∗ be another graph
obtained from Γ by cutting one of the edges at an internal point x∗ producing
two new vertices V ∗1 and V ∗2 .

1. The first excited eigenvalues satisfy the following inequality

λ1(Γ∗) ≤ λ1(Γ). (54)

2. If λ1(Γ∗) = λ1(Γ) then every eigenfunction of Lst(Γ) corresponding to
λ1(Γ) satisfies Neumann condition at the cut point x∗: ψ′1(x∗) = 0. If
at least one of the eigenfunctions on Γ∗ satisfies ψ∗1(V ∗1) = ψ∗1(V ∗2), then
λ1(Γ∗) = λ1(Γ).

This theorem is a certain reformulation of Theorem 6.3 and implies that the
spectral gap has a tendency to decrease when an edge is cut in an internal point.
Note that the total length of the graph is preserved this time.

6.2.4 Deleting an edge

Let us study now what happens if an edge is deleted, or if a whole interval is
cut away from an edge (without gluing the remaining intervals together). Let
Γ be a connected metric graph as before and let Γ∗ be a graph obtained from Γ
by deleting one of the edges.

The following theorem proves a sufficient condition that guarantees that the
spectral gap is decreasing as one of the edges is deleted.

Theorem 6.8. Let Γ be a connected finite compact metric graph of the total
length L and let Γ∗ be another connected metric graph obtained from Γ by delet-
ing one edge of length ` between certain vertices V1 and V2. Assume in addition
that(

max
ψ1:Lst(Γ)ψ1=λ1ψ1

(ψ1(V1)− ψ1(V2))2

(ψ1(V1) + ψ1(V2))2
cot2 k1`

2
− 1

)
k1

2
cot

k1`

2
≥ (L − `)−1,

(55)
where λ1(Γ) = k2

1, k1 > 0 is the first excited eigenvalue of Lst(Γ), then

λ1(Γ∗) ≤ λ1(Γ). (56)

56

Proof. It will be convenient to denote the edge to be deleted by E = Γ \ Γ∗ as
well as to introduce notation L∗ = L − ` for the total length of Γ∗.

Let us consider any real eigenfunction ψ1 on Γ corresponding to the eigen-
value λ1(Γ). We then define the function g ∈ H1(Γ∗) by

g = ψ1|Γ∗ + c,

where the constant c is to be adjusted so that g has mean value zero on Γ∗:

〈g, 1〉L2(Γ∗) = 0. (57)

Straightforward calculations lead to

0 = 〈ψ1, 1〉L2(Γ∗) + cL∗ = −〈ψ1, 1〉L2(E) + cL∗

⇒ c =

∫
E
ψ1(x)dx

L∗
. (58)

The function g can then be used to estimate the second eigenvalue λ1(Γ∗):

λ1(Γ∗) = min
u∈H1(Γ∗):u⊥1

‖u′‖2L2(Γ∗)

‖u‖2L2(Γ∗)

≤
‖g′‖2L2(Γ∗)

‖g‖2L2(Γ∗)

. (59)

Bearing in mind that 〈ψ1, 1〉L2(Γ) = 0 and using (58) we evaluate the denomi-
nator in (59) first:

‖g‖2L2(Γ∗) = ‖ψ1 + c‖2L2(Γ∗) =

∫
Γ

(ψ1 + c)2 dx−
∫
E

(ψ1 + c)2 dx =

= ‖ψ1‖2L2(Γ) −
∫
E

ψ1
2 dx− 1

L∗

(∫
E

ψ1 dx

)2

. (60)

The numerator similarly yields

‖g′‖2L2(Γ∗) =

∫
Γ

(ψ′1)2 dx−
∫
E

(ψ′1)2 dx = λ1(Γ)‖ψ1‖2L2(Γ) −
∫
E

(ψ′1)2 dx. (61)

Plugging (60) and (61) into (59) we arrive at

λ1(Γ∗) ≤
λ1(Γ)‖ψ1‖2L2(Γ) −

∫
E

(ψ′1)2 dx

‖ψ1‖2L2(Γ) −
∫
E
ψ1

2 dx− 1
L∗
(∫
E
ψ1 dx

)2 . (62)

Let us evaluate the integrals appearing in (62) taking into account that ψ1 is
a solution to the Helmholtz equation on the edge E which can be parameterized
as E = [−`/2, `/2] so that x = −`/2 belongs to V1 and x = `/2 to V2

ψ1|E(x) = α sin (k1x) + β cos (k1x), (63)

where

α = −ψ1(V1)− ψ1(V2)

2 sin(k1`/2)
, β =

ψ1(V1) + ψ1(V2)

2 cos (k1`/2)
. (64)

57

Direct calculations imply∫
E

ψ1(x)dx =
2β

k1
sin

(
k1`

2

)
;∫

E

(ψ1(x))2dx =
α2 + β2

2
`− α2 − β2

2

sin(k1`)

k1
;∫

E

(ψ′1(x))2dx = k2
1

(
α2 + β2

2
`+

α2 − β2

2

sin(k1`)

k1

)
.

Inserting calculated values into (62) we get

λ1(Γ∗) ≤ λ1(Γ)
‖ ψ1 ‖2L2(Γ) −

α2 + β2

2
`− α2 − β2

2

sin(k1`)

k1

‖ ψ1 ‖2L2(Γ) −
α2 + β2

2
`+

α2 − β2

2

sin(k1`)

k1
− 1

L∗
4β2

λ1(Γ)
sin2

(
k1`

2

) .
(65)

To guarantee that the quotient is not greater than 1 and therefore λ1(Γ∗) ≤
λ1(Γ) it is enough that

α2 − β2

2

sin(k1`)

k1
≥ −α

2 − β2

2

sin(k1`)

k1
+

1

L∗
4β2

λ1(Γ)
sin2

(
k1`

2

)

⇐⇒ k1

2

(
α2

β2
− 1

)
cot

(
k1`

2

)
≥ (L∗)−1. (66)

Using (64) the last inequality can be written as(
(ψ1(V1)− ψ1(V2))2

(ψ1(V1) + ψ1(V2))2
cot2

(
k1`

2

)
− 1

)
k1

2
cot

(
k1`

2

)
≥ (L∗)−1.

Remembering that the eigenfunction ψ1 could be chosen arbitrary we arrive at
(55).

Roughly speaking, the condition (55) means that the length ` is sufficiently
small. Indeed, for small ` the cotangent term is of order 1/`. Therefore the right-
hand side of (55) is of order 1/`3 and thus growing to infinity as ` decreases.

Let us apply the above theorem to obtain an estimate for the length of the
piece that can be cut from an edge so that the spectral gap still decreases.
It turns out that such an estimate can be given in terms of the eigenfunction
ψ1 corresponding to the first excited eigenvalue. Consider any edge of Γ say
E1 = [x1, x2] and choose an arbitrary internal point x∗ ∈ (x1, x2). Assume that
we cut away an interval of length ` centered at x∗. Of course the length ` should
satisfy the obvious geometric condition: x1 ≤ x∗ − `/2 and x∗ + `/2 ≤ x2. We
assume in addition that

` <
π

2k1
(67)

guaranteeing in particular that the cotangent function in (55) is positive.

58

The function ψ1 on the edge E1 can be written in a form similar to (63)

ψ1(x) = α sin k1(x− x∗) + β cos k1(x− x∗). (68)

Then formula (66) implies that the spectral gap decreases as the interval [x∗ −
`/2, x∗ + `/2] is cut away from the graph if

|α| > |β|. (69)

and the following estimate is satisfied

cot

(
k1`

2

)
≥ 2

k1L∗
(
α2

β2 − 1
) . (70)

Using the fact that under condition (67) we have cot
(
k1`
2

)
≥ π

2k1`
the following

explicit estimate on ` can be obtained

` ≤ π

4
(L − `)

(
α2

β2
− 1

)
, (71)

of course under condition (69). For the spectral gap not to increase it is enough
that estimate (71) is satisfied for at least one eigenfunction ψ1:

` ≤ min

{
π

2k1
,
π

4
(L − `) max

ψ1:Lst(Γ)ψ1=λ1ψ1

(
α2

β2
− 1

)}
, (72)

where we have taken into account (67).
We see that if the eigenfunction ψ1 is sufficiently asymmetric with respect

to the point x∗ (i.e. (69) is satisfied), then a certain sufficiently small interval
can be cut from the edge ensuring that the spectral gap decreases despite the
total length decreasing. Additional condition (69) was expected, since if ψ1

is symmetric with respect to x∗, then the spectral gap may increase for any
`. Indeed, one may imagine that deleting of the interval is performed in two
stages. One cuts the edge E1 at the point x∗ first. Then one deletes the
intervals [x∗ − `/2, x∗1] and [x∗2, x

∗ + `/2]. If α = 0 (symmetric function), then
the spectral gap may be preserved in accordance to Theorem 6.7. Deleting the
pending edges (intervals [x∗ − `/2, x∗1] and [x∗2, x

∗ + `/2]) may lead only to an
increase of the spectral gap due to Theorem 6.5.

As was already mentioned above, spectral gap is closely related to the total
length of the corresponding quantum graph. Fixing the total length and chang-
ing the topology of the underlying metric graph it becomes apparent, that the
string graph has the smallest spectral gap among all graphs of the same total
length [14, 24]. This is the content of the forthcoming section.

6.3 Rayleigh theorem for quantum graphs

The classical Rayleigh theorem states that the gap between the lowest two
eigenvalues of the Neumann Laplacian in a domain of fixed area is maximal if

59

the domain is a disc. Our aim is to prove an analog of this theorem for Laplace
operators on graphs with standard matching conditions at the vertices. This
section is a content of the article [24] that is currently in preparation.

Theorem 6.9. Let Γ be a connected metric graph with the total length L and
Lst(Γ) the corresponding Laplace operator defined on the domain of functions
satisfying standard matching conditions at the vertices. Consider as well the
graph ∆L formed by one interval of length L and the corresponding standard
Laplacian L(∆). Point λ0 = 0 is a simple eigenvalue for both Laplacians. Then
the following inequality holds for the lowest nontrivial eigenvalues:

λ1(Γ) ≥ λ1(∆).

Proof. Consider the eigenfunction ψ1 corresponding to the eigenvalue λ1(Γ).
This eigenvalue is a minimum of the Rayleigh quotient

λ1(Γ) = min
ϕ⊥1

∫
Γ
|ϕ′(x)|2 dx∫

Γ
|ϕ(x)|2 dx

, (73)

taken over all continuous functions on Γ orthogonal to the ground state ψ0 ≡ 1.
The minimum is attained for ϕ = ψ1 and thus the eigenfunction is a minimizer
of (73).

Consider the graph Γ∗- the double cover of Γ- obtained from Γ by doubling
each edge. The new edges connect the same vertices. Any function from L2(Γ)
can be lifted to L2(Γ∗) in a symmetric way by assigning it the same values on
the pairs of edges as on the edges of the original graph Γ. The function ψ∗1
obtained in this way obviously satisfies

λ1(Γ) =

∫
Γ∗
|ψ∗1
′(x)|2 dx∫

Γ∗
|ψ∗1(x)|2 dx

.

Every vertex in Γ∗ has even valency and therefore there exists a closed
(Eulerian) path P (see [9], [15]) on Γ∗ crossing each edge precisely one time.
The path P can be identified with a loop S2L of length 2L.

Consider now the function ψ∗1 as a function on the loop S2L. It is continuous
function orthogonal to the ground state function on the loop and therefore gives
an upper estimate for the corresponding eigenvalue for the Laplacian on the loop

λ1(S2L) ≤
∫
S2L
|ψ∗1
′(x)|2 dx∫

S2L
|ψ∗1(x)|2 dx

= λ1(Γ).

We obtain the result noticing that

λ1(S2L) = λ1(∆L),

that follows from (11) and (12).

60

7 Conclusion

In the present thesis we focused on spectral properties of quantum graphs. As
the spectra are not explicitly computable in general case we provided a numerical
tool capable of solving the spectral problem for arbitrary compact graph and
standard magnetic Schrödinger operator. This was done using and extending
the functionality of algorithm package Chebfun which implements Chebyshev
spectral methods.

Being able to compute the spectrum we started exploring related proper-
ties of quantum graphs. First, we computed the Euler characteristic (34) from
the trace formula using far less eigenvalues than estimated. Next, we concen-
trated over the first excited eigenvalue, also called spectral gap, in particular its
connection to the underlying metric graph’s algebraic connectivity which has
special significance as a measure of synchronizability and robustness [16]. It has
been shown that dropping one edge does not necessarily mean increase of the
spectral gap but that there is sufficient condition for achieving it. Also, if the
new edge added to the graph is long enough (longer than the original graph
itself), the spectral gap decreases according to Weyl’s law.

We have shown that deleting not so long edges or cutting away short intervals
from edges may lead to a decrease of the spectral gap despite the fact that
total length of the graph decreases. This effect reminds us of the phenomena
discovered in [10], where behavior of the spectral gap under extension of edges
was discussed. It appeared that the ground state may decrease with the increase
of the edge lengths, provided graphs are of complicated topology. Finally, we
proved that the string has the lowest spectral gap among all graphs of the same
total length.

This topic provides possibilities for further extension. As for the numerical
part, Chebfun open source package implementation is the ongoing goal. Regard-
ing the analytical part, some conjectures about the spectral gap of the standard
Laplacian might extend the theory, above all the fact that while string is the
graph with the lowest spectral gap, the equilateral complete graph should be the
one with the highest spectral gap among the graphs with the same total length
and number of vertices.

61

8 References

[1] Z. Battles, L. N. Trefethen, An Extension of MATLAB to Continuous Func-
tions and Operators, SIAM J. Sci. Comput., Vol. 25, No. 5, 2004, pp. 1743-
1770.

[2] G. Berkolaiko, P. Kuchment,Dependence of the spectrum of a quantum
graph on vertex conditions and edge lengths, Spectral geometry, 117137,
Proc. Sympos. Pure Math., 84, Amer. Math. Soc., Providence, RI, 2012.

[3] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Mathemati-
cal Surveys and Monographs, 186. American Mathematical Society, Provi-
dence, RI, 2013.

[4] J. P. Boyd, A Numerical Comparison of Seven Grids for Polynomial Inter-
polation on the Interval, Computers and Mathematics w. Applications, 38
(1999) 35-50.

[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods:
Fundamentals in Single Domains, Springer-Verlag, Berlin, Heidelberg,
2006.

[6] C. Cattaneo, The spectrum of the continuous Laplacian on a graph,
Monatsh. Math. 124 (1997), no. 3, 215-235.

[7] F. Chung, Spectral graph theory, CBMS Regional Conference Series in
Mathematics, 92, American Mathematical Society, Providence, RI, 1997.

[8] F. Bornemann, T. A. Driscoll, L. N. Trefethen, The Chebop System for Au-
tomatic Solution of Differential Equations, BIT Numerical Mathematics
(2008) 48: 701723.

[9] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment.
Academiae Sci. I. Petropolitanae 8 (1736), 128-140.

[10] P. Exner, M. Jex, On the ground state of quantum graphs with attractive
δ-coupling, Phys. Lett. A 376 (2012), no. 5, 713-717.

[11] P. Exner, O. Post, Quantum Networks Modeled by Graphs, Proceedings of
the Joint Mathematics/Physics Workshop ”Quantum Few-Body System”
(Aarhus 2007), AIP Conf. Proc., vol. 998; Melville, NY, 2008, pp. 1-17.

[12] P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep.
Math. Phys., 28 (1989), 7-26.

[13] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical
Journal, 23 (98), 1973, Praha, 298-305.

[14] L. Friedlander, Extremal properties of eigenvalues for a metric graph, Ann.
Inst. Fourier 55 (2005), no. 1, 199211.

62

[15] C. Hierholzer, Chr. Wiener, Über die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren, Math. Ann. 6 (1873),
no. 1, 30-32.

[16] M. Holroyd, Connectivity and Synchronizability of Discrete Complex Sys-
tems, 2006, Williamsburg, VA, Honors thesis.

[17] W. Huang, D. M. Sloan, The Pseudospectral Method for Third-Order Dif-
ferential Equations, SIAM Journal on Numerical Analysis, Vol. 29, 1992,
1626-1647.

[18] V. Kostrykin, R. Schrader Laplacians on Metric Graphs: Eigenvalues, Re-
solvents and Semigroups, Quantum Graphs and Their Applications, Con-
temp. Math., Am. Math. Soc., Providence, 2006, pp. 201-225.

[19] P. Kuchment, Quantum Graphs I: Some Basic Structures, Waves Random
Media, 14, 107-128, 2004.

[20] P. Kurasov, Inverse Problems For Quantum Graphs: Recent Development
and Perspectives, Acta Physica Polonica A, 120 , v6A (2011), 132-141.

[21] P. Kurasov, Quantum Graphs: Spectral Theory and Inverse Problems, to
appear.

[22] P. Kurasov, Schrödinger operators on graphs and geometry. I. Essentially
bounded potentials, J. Funct. Anal., 254 (2008), no. 4, 934–953.

[23] P. Kurasov, G. Malenova, S. Naboko, On the spectral gap for quantum
graphs, to appear in J. Phys. A: Math. Theor.

[24] P. Kurasov and S. Naboko, On Rayleigh theorem for quantum graphs, in
preparation.

[25] G. Meurant and Z. Strakos, The Lanczos and conjugate gradient algorithms
in finite precision arithmetic, Acta Numerica, 15, Cambridge University
Press, 2006, pp. 471-542.

[26] K. Pankrashkin, Spectra of Schrödinger Operators on Equilateral Quantum
Graphs, Letters in Math. Physics (2006) 77: 139-154.

[27] O. Post, Spectral Analysis on Graph-like Spaces, Springer Lecture Notes Vol
2039, 431p, 2012.

[28] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia (2000).

[29] J. A. C. Weideman, S. C. Reddy, A MATLAB Differentiation Matrix Suite,
ACM Transactions on Mathematical Software, Vol. 26, No. 4, 2000, 465-
519.

63

9 Appendix

@GRAPH class

1 function s = char(A,name)
2 % CHAR Convert graph to pretty-printed string.
3

4 % extract information about the graph
5 matrix = A.matrix;
6 m = A.nume;
7 n = A.numv;
8 len = A.lengths;
9 s = ’’;

10

11 if nargin == 1
12 name = ’’;
13 end
14

15 short = isequal(get(0,’Format’),’short’);
16 if short == 3
17 formatSpec = ’%10.4f’;
18 else
19 formatSpec = ’%10.15f’;
20 end
21 % matrix format
22 s = char(s, sprintf(’ %sx%s graph defined by incidence matrix:’...
23 ,int2str(m),int2str(n)));
24 s = char(s, int2str(matrix));
25 s = char(s, sprintf(’ with %d edges and %d vertices’,m,n));
26 s = char(s, sprintf(’ and edge lengths: %s’,num2str(len)));
27 end

1 function D = diff(d,m,varargin)
2 % DIFF Differentiation operator.
3 % D = DIFF(R) returns a chebop representing differentiation for chebfuns
4 % defined on the graph R.
5 %
6 % D = DIFF(R,M) returns the chebop for M-fold differentiation.
7 % D = DIFF(R,0) returns EYE(R)
8 %
9 ne = d.nume; % number of edges

10

11 if nargin == 1, m = 1; end % 1 is default order if none specified
12

64

13 if round(m)˜=m
14 error(’CHEBFUN:domain:diff:fracdiff’,...
15 ’Fractional derivatives are not yet supported as operators.’);
16 end
17

18 % 0th derivative -> identity operator
19 if m == 0
20 D = eye(d);
21 % no domain
22 elseif isempty(d)
23 D = linop;
24 return
25 % matrix is non-empty
26 else
27 % setup domains
28 len = d.lengths; % extract edge lengths
29 dd = [-len/2; len/2]; % symmetric wrt 0
30 dd = dd’;
31 % pre-allocate domain cell
32 dom = cell(ne,1);
33 for kk = 1:ne
34 dom{kk} = domain(dd(kk,:));
35 end
36

37 for ii = 1:ne % zero chebop on off-diagonals
38 for jj = 1:ne
39 D.blocks{ii,jj} = zeros(dom{jj});
40 end
41 end
42 for ii = 1:ne % differentiation matrices on diagonal
43 D.blocks{ii,ii} = diff(dom{ii},m);
44 end
45 D.graph = d.matrix; % remember the incidence matrix
46 D.domain = []; % domain is empty
47 end
48 end

1 function display(A)
2 % DISPLAY Pretty-print a graph.
3 %
4 % DISPLAY is called automatically when a statement that results in a
5 % chebarray output is not terminated with a semicolon.
6

7 % Copyright 2011 by The University of Oxford and The Chebfun Developers.

65

8 % See http://www.maths.ox.ac.uk/chebfun/ for Chebfun information.
9

10 loose = ˜isequal(get(0,’FormatSpacing’),’compact’);
11 if loose, disp(’ ’), end
12

13 disp([inputname(1) ’ = ’]);
14

15 s = char(A,inputname(1));
16 if ˜loose
17 s(all(isspace(s),2), :) = []; % Remove blank lines
18 end
19 disp(s)
20

21 if loose, disp(’ ’), end
22

23 end
24

1 function I = eye(d)
2 % EYE Identity operator.
3 % EYE(G) returns a cell of chebops representing the identity for functions
4 % defined on the graph G.
5 %
6 % setup domains
7 len = d.lengths; % extract edge lengths
8 dd = [-len/2; len/2]; % domain symmetric wrt 0
9 dd = dd’;

10 ne = d.nume; % number of edges
11

12 % pre-allocate domain cell
13 dom = cell(ne,1);
14

15 if isempty(d)
16 I = linop;
17 else
18 % cell of domains
19 for kk = 1:ne
20 dom{kk} = domain(dd(kk,:));
21 end
22 % off-diagonal entries are empty linops
23 for ii = 1:ne
24 for jj = 1:ne
25 I.blocks{ii,jj} = zeros(dom{jj});
26 end

66

27 end
28 % digonal cells are identity matrices
29 for ii = 1:ne
30 I.blocks{ii,ii} = eye(dom{ii});
31 end
32 I.graph = d.matrix; % remember the incidence matrix
33 I.domain = []; % domain is empty
34 end
35 end

1 function D = getpotential(d,varargin)
2 % GETPOTENTIAL transforms the electric potential Q given by user
3 % (anonymous function or cell) to linop. Laplacian is in the form
4 % L = -dˆ2/dxˆ2 + Q
5 % Each edge is a subset [-l/2,l/2].
6 %
7 % D = getpotential(D,Q) returns a linop representing potential Q for
8 % chebfuns defined on the graph D.
9 %

10 % Example:
11 % t = graph([-1 1 0 0; 0 -1 1 0; 0 -1 0 1]’); % star-like domain
12 % q{1} = @(x,u) 20*x.ˆ5.*u; % potential on the first edge
13 % q{2} = @(x,u) cos(30*x).*u; % on the second edge
14 % q{3} = @(x,u) 20*exp(-x.ˆ3).*u; % on the third edge
15 % gpot = getpotential(t,q); % cell of linops
16 %
17 %
18 ne = d.nume; % number of edges
19

20 if nargin == 1 % no potential given
21 q = @(x,u) 0.*x.*u;
22 D = getpotential(d,q);
23 return;
24 end;
25

26 if nargin == 2 % same potential for all edges
27 pote = varargin{:}; % concatenate input
28 if numel(pote) == 1
29 pote = repmat(varargin,1,ne); % repeat if the user has been lazy
30 end
31 end
32

33 if numel(pote)˜= ne
34 error(’CHEBFUN:graph:getpotential’,...

67

35 ’Wrong number of potentials given.’);
36 end
37

38 % no domain
39 if isempty(d)
40 D = linop;
41 return
42 % matrix is non-empty
43 else
44 % setup domains
45 len = d.lengths; % extract edge lengths
46 dd = [-len/2; len/2]; % choose domains symmetric wrt 0
47 dd = dd’; % transpose
48

49 % pre-allocate domain cell
50 dom = cell(ne,1);
51 for kk = 1:ne
52 dom{kk} = domain(dd(kk,:));
53 end
54 for ii = 1:ne
55 for jj = 1:ne
56 D{ii,jj} = zeros(dom{jj}); %#ok<AGROW>
57 end
58 end
59 for ii = 1:ne
60 f = chebop(dd(ii,:)); % empty chebop on correct domain
61 f.op = pote{ii};
62 D{ii,ii} = linop(f); %#ok<AGROW> % linearize chebop to linop
63 end
64 end
65 end

1 classdef (InferiorClasses = {?double}) graph
2

3 properties
4 matrix = []; % incidence matrix
5 nume = []; % number of edges
6 numv = []; % number of vertices
7 lengths = []; % vector of edge lengths
8 end
9

10 methods
11 function t = graph(varargin)
12

68

13 % Parse the inputs
14 if nargin == 0
15 % Return an empty graph
16 return
17 elseif nargin == 1 && isa(varargin{1},’graph’)
18 % Return input graph
19 t = varargin{1};
20 return
21 end
22

23 % first argument defines the matrix
24 m = varargin{1};
25 [nv,ne] = size(m);
26 t.nume = ne;
27 t.numv = nv;
28

29 % second variable defines the edge lengths
30 if nargin >= 2
31 len = varargin{2};
32 else len = 2*ones(1,ne);
33 end
34 % repeat if the user has been lazy
35 if numel(len) == 1
36 len = repmat(len,1,ne);
37 end
38 t.lengths = len;
39

40 % validate the length vector
41 if numel(t.lengths)˜=t.nume
42 error(’CHEBFUN:graph’,...
43 ’Length vector does not have correct number of elements’)
44 end
45

46 % setup the matrix
47 t.matrix = m;
48

49 % validate the input
50 ish = validate(t);
51 if ˜ish
52 error(’CHEBFUN:graph’, ’Incidence matrix mismatch.’);
53 end
54 end
55 end
56 end

69

1 function [V,D] = grapheig(G, numEigs, varargin)
2 % GRAPHEIG(G, numEigs) computes spectrum of Laplace operator on
3 % a graph given by its incidence matrix and edge lengths. There is
4 % a continuity condition imposed at the junctions and Neumann boundary
5 % condition is default on the pending vertices. numEigs defines the
6 % number of eigenvectors and eigenvalues required.
7 %
8 % GRAPHEIG(G, numEigs, bcD) assingnes the vertices given by bcD with
9 % Dirichlet boundary condition. The remaining pending vertices are

10 % endowed with Neumann boundary condition.
11 %
12 % GRAPHEIG(G, numEigs, bcD, bcN) assignes pending vertices bcD
13 % with Dirichlet boundary conditions and bcN with Neumann boundary
14 % conditions respectively.
15 %
16 % GRAPHEIG(G, numEigs, bcD, bcN, q) adds electric potential to the
17 % Laplace operator L = diffˆ2 + q. Define the potential as anonymous
18 % function on each edge, mind the edge parametrization [-len/2,len/2]
19 %
20 % GRAPHEIG(G, numEigs, bcD, bcN, q, a) add magnetic potential, the
21 % operator is now in the form L = (i*diff + a)ˆ2 + q. Define the magnetic
22 % potential as an anonymous function on each edge. The potential is
23 % required to be smooth.
24 %
25 % EXAMPLE
26 % A = [-1 1 0 0; 0 1 -1 0; -1 0 1 0; 0 0 1 -1]’;
27 % len = [1,2,3,4];
28 % G = graph(A,len);
29 % q = @(x,u) 0.*x.*u;
30 % a = @(x) 1 + 2.*x.ˆ2;
31 % [V,D] = grapheig(G,4,[],[4], q, a)
32

33 % extract information about graph
34 A = G.matrix;
35 len = G.lengths;
36 nv = G.numv;
37 ne = G.nume;
38

39 % find which indicies are pending vertices or junctions
40 pen = find(sum(abs(A),2) == 1);
41 jun = 1:nv;
42 jun(pen) = [];
43 npen = numel(pen); % number of pending vertices
44

45 % Neumann BC and zero potentials are default setting
46 q = @(x,u) 0.*x.*u;

70

47 bcD = [];
48 bcN = pen;
49 mag = @(x) 0.*x;
50 % check for varargin
51 if numel(varargin) >= 1 && isa(varargin{1},’double’)
52 bcD = varargin{1};
53 % if only one BC set defined, the other is complement
54 bcN = setxor(pen,bcD);
55 end
56 % both Dirichlet and Neumann are defined
57 if numel(varargin) >= 2 && isa(varargin{2},’double’)
58 bcN = varargin{2};
59 end
60 % electric potential
61 if numel(varargin) >= 3 && (isa(varargin{3},’function_handle’)...
62 || isa(varargin{3},’cell’))
63 q = varargin{3};
64 end
65 % magnetic potential
66 if numel(varargin) == 4 && (isa(varargin{4},’function_handle’)...
67 || isa(varargin{4},’cell’))
68 mag = varargin{4};
69 end
70

71 % boundary conditions for pending edges (note, always homogeneous)
72 bcN_val = zeros(1,numel(bcN)); % Neumann values
73 bcD_val = zeros(1,numel(bcD)); % Dirichlet values
74

75 % check for number of BC inputs
76 if numel([bcD bcN]) > npen
77 error(’CHEBFUN:graph:diff’,...
78 ’Too many boundary condition inputs.’);
79 end
80

81 if numel([bcD bcN]) < npen
82 error(’CHEBFUN:graph:diff’,...
83 ’Not enough boundary condition inputs.’);
84 end
85

86 % BC’s not allowed at junctions
87 if any(intersect([bcD bcN],jun))
88 error(’CHEBFUN:graph’,...
89 ’Boundary condition must not be defined at the junction.’);
90 end
91

92 %% build differential operator

71

93 graphD2 = diff(G,2); % structure
94 % build electric potential operator
95 graphP = getpotential(G,q); % cell of linops
96 % add potential to the operator
97 for i = 1:numel(graphD2.blocks)
98 graphD2.blocks{i} = graphD2.blocks{i} + graphP{i};
99 end

100

101 D2 = chebarray(graphD2); % build linop
102 Akeep = A; % store the incidence matrix
103

104 %% initialise bcvals (for rhs)
105 bcvals = zeros(2*ne,1);
106

107 % initialise domains
108 d = zeros(2,ne);
109 for o = 1:ne
110 d(:,o) = D2.blocks{o,o}.domain; % domain
111 end
112 %% MAGNETIC POTENTIAL
113 if numel(mag) == 1
114 a = cell(ne,1);
115 for mm = 1:ne
116 a{mm} = mag; % repeat if the user has been lazy
117 end
118 end
119 % get magnetic fluxes
120 flux = zeros(ne,1); % initiate
121 for ii = 1:ne
122 flux(ii) = sum(chebfun(a{ii},d(:,ii)));% integrate over the edge
123 end
124 flux = exp(1i*flux);
125

126 % check for correct number of magnetic potentials
127 if numel(a) ˜= ne
128 error(’CHEBFUN:graph’,’Wrong number of magnetic potentials’)
129 end
130 %% Initiate boundary and matching conditions
131 % Dirichlet + pending edge
132 npen_d = numel(bcD);
133 ajD = A(bcD,:); % respective incidence matrix columns
134 bcvals(1:npen_d) = bcD_val; % restore bc values
135

136 % Neumann + pending edge
137 npen_n = numel(bcN);
138 ajN = A(bcN,:);

72

139 bcvals(npen_d+(1:npen_n)) = bcN_val;
140

141 % Neumann + junction
142 ajJ = A(jun,:);
143

144 % Dirichlet + junction
145 ndir = sum(sum(abs(A),2) - 1); % number of dirichlet conditions
146

147 % initialise
148 bc_pen_d = [];
149 bc_pen_n = [];
150 bc_jun_d = [];
151 bc_jun_n = [];
152

153 % initiate loops
154 l = 1;
155 m = 1;
156 n = 1;
157 o = 1;
158

159 % chebarray block array does not support different domains
160 for ii = 1:ne
161 d2 = d(:,ii);
162 d2 = domain(d2);
163 fr = feval(d2,1); % eval at 1 (right)
164 zr = fr*zeros(d2); % zero row
165 bc_jun_d{ii} = zr; %#ok<AGROW>
166 end
167 bc_jun_d = repmat(bc_jun_d,ndir,1);
168

169 for jj = 1:nv % loop through all vertices
170 %% Dirichlet condition for pending vertices
171 if any(jj == bcD) % hit the pending edge with Dir BC
172 % setup operators
173 j = find(A(jj,:)); % index of the edge
174 d1 = domain(d(:,j)); % respective domain
175 for k = 1:ne
176 alk = ajD(l,k);
177 eend = d1.ends; % edge ends
178 eend = alk*abs(eend(1)); % retrieve the sign
179 % absolute value to get rid of 0
180 bc_pen_d{l,k} = abs(alk)*feval(d1,eend); %#ok<AGROW>
181 end
182 l = l + 1;
183 end
184

73

185 %% Neumann condition for pending vertices
186 if any(jj == bcN) % hit the pending edge with Neu BC
187 % setup operators
188 j = find(A(jj,:)); % index of the edge
189 d1 = domain(d(:,j)); % respective domain
190 df = diff(d1); % differential operator on domain
191 for k = 1:ne
192 alk = ajN(m,k);
193 eend = d1.ends;
194 eend = alk*abs(eend(1));
195 bc_pen_n{m,k} = alk*feval(d1,eend)*df; %#ok<AGROW>
196 end
197 m = m + 1;
198 end
199

200 %% neuman condition at junction
201 if any(jj == jun) % hit the junction with Neu BC
202 for k = 1:ne
203 d1 = domain(d(:,k)); % respective domain
204 df = diff(d1); % differential operator on domain
205 alk = ajJ(n,k); % determines sign and where we evaluate
206 eend = d1.ends;
207 eend = alk*abs(eend(1));
208 if alk == 1 % magnetic potential if right endpoint
209 alk = alk*flux(k);
210 end
211 bc_jun_n{n,k} = alk*feval(d1,eend)*df; %#ok<AGROW>
212 end
213 n = n + 1;
214 end
215

216 %% dirichlet condition at junction
217 if any(jj == jun)
218 k = find(A(jj,:),1);
219 ajk = A(jj,k);
220 A(jj,k) = 0; % erase nonzeros
221 while any(A(jj,:))
222 d1 = domain(d(:,k)); % respective domain
223 eend = d1.ends; % retrieve endpoints
224 eend = ajk*abs(eend(1));
225 if ajk == 1 % add magnetic potential
226 bc_jun_d{o,k} = flux(k) * feval(d1,eend);
227 else
228 bc_jun_d{o,k} = feval(d1,eend);
229 end
230

74

231 k = find(A(jj,:),1);
232 d1 = domain(d(:,k)); % respective domain
233 ajk = A(jj,k);
234 A(jj,k) = 0;
235 eend = d1.ends;
236 eend = ajk*abs(eend(1));
237 if ajk == 1 % magnetic potential if right
238 bc_jun_d{o,k} = -flux(k) * feval(d1,eend);
239 else
240 bc_jun_d{o,k} = -feval(d1,eend);
241 end
242 o = o+1;
243 end
244 end
245 end
246

247 %% combine
248 bc = [bc_pen_d ; bc_pen_n ; bc_jun_n ; bc_jun_d];
249 % create struct to keep the graph information
250 chebbc = {};
251 chebbc.blocks = bc;
252 chebbc.domain = [];
253 chebbc.graph = Akeep;
254

255 % retrieve chebarray
256 chebbc = chebarray(chebbc);
257 D2.bc = chebbc;
258 D2.bcvals = bcvals;
259 D2.lengths = len;
260

261 % compute eigenvalues
262 [V D] = eigs(-D2,numEigs,’SM’);
263 D = sort(diag(D));

1 function e = isempty(A)
2 %ISEMPTY True for empty graph.
3

4 e = isempty(A.matrix);
5

6 end

1 function e = isnan(A)
2 %ISNAN True for NaN.

75

3

4 e = isnan(A.matrix);
5 end

1 function out = subsref(A,t)
2 % SUBSREF Retrieve information from a graph.
3 %
4 % SUBSREF can be used to call:
5 % ’.MATRIX’ - The incidence matrix
6 % ’.NUME’ - Number of edges
7 % ’.NUMV’ - Number of vertices
8 % ’.LENGTHS’ - Vector consisting of edge lengths
9 %

10

11 switch t(1).type
12

13 case ’.’
14 switch t(1).subs
15 case ’matrix’
16 out = A.matrix;
17 case ’nume’
18 out = A.nume;
19 case ’numv’
20 out = A.numv;
21 case ’lengths’
22 out = A.lengths;
23 otherwise
24 error(’CHEBFUN:chebarray:subsref:unknown’, ...
25 ’Unknown property: %s.’,t(1).subs);
26 end
27 if numel(t) >1
28 out = subsref(out,t(2:end));
29 end
30 end
31 end

1 function ish = validate(A)
2 % VALIDATE Validate the incidence matrix
3 %
4 % ISH = VALIDATE(A) validates the domain and dimensions of a graph.
5

6 mat = A.matrix;
7 ish = true;

76

8 % check whether all elements are +-1,0
9 for ii = 1:A.nume

10 edge = nonzeros(mat(:,ii));
11 if ˜(edge == [-1; 1] | edge == [1; -1])
12 ish = false;
13 end
14 end
15 end

MAIN DIRECTORY

1 %%
2 % DRAWGRAPH This allows the user to draw a graph on the plain canvas,
3 % boundary conditions may be set by hand. After the metric graph is
4 % drawn, its incidence matrix and edge lengths are computed and given
5 % to grapheig.m and plottree.m to compute and plot the resulting
6 % eigenvectors and eigenvalues.
7 % Neumann conditions are default in case the user forgets to define
8 % it. Isolated points are treated as useless and are removed from the
9 % computations.

10 % Follow the instructions in the figure title.
11

12 % number of eigenvectors required
13 numEigs = 4;
14

15 axis([0 10 0 10])
16 hold on
17 % Initially, the list of points is empty.
18 xy = [];
19 n = 0;
20

21 % Loop, picking up the points.
22 but = 1;
23 figure(1);
24 title(’Pick the nodes. Right mouse button picks the last point.’,...
25 ’FontSize’,16)
26 while but == 1
27 [xi,yi,but] = ginput(1);
28 plot(xi,yi,’o’)
29 n = n+1;
30 xy(:,n) = [xi;yi]; %#ok<AGROW>
31 end
32

33 % the list of edges is empty

77

34 ed = [];
35 but2 = 1;
36 title(’Connect points by edges. Right mouse click marks the last point.’,...
37 ’FontSize’,16)
38 % Plot the lines inbetween the points
39 while but2 == 1
40 % pick starting point
41 [xi,yi] = ginput(1);
42 [lend,inl] = findclosest(xy,[xi;yi]); % find closest point
43 plot(lend(1),lend(2),’mo’) % indicate the selection
44

45 % pick ending point
46 [xi2,yi2,but2] = ginput(1);
47 [rend,inr] = findclosest(xy,[xi2;yi2]); % find closest point
48 plot(rend(1),rend(2),’mo’) % indicate the selection
49

50 ts = [linspace(lend(1),rend(1),36);...
51 linspace(lend(2),rend(2),36)]; % walk the line
52

53 % plot the interpolating line
54 plot(ts(1,:),ts(2,:),’k’)
55 % and make the points blue again
56 plot(rend(1),rend(2),’o’)
57 plot(lend(1),lend(2),’o’)
58

59 % check whether the edge is not degenerated
60 if ˜all(lend == rend)
61 % save the endpoints along with their indices
62 ed = [ed, [lend; rend; inl; inr]]; %#ok<AGROW>
63 end
64 end
65

66 % Drop the double edges
67 ed = unique(ed’, ’rows’);
68 ed = ed’;
69

70 % number of edges and vertices
71 ne = size(ed,2);
72 nv = size(xy,2);
73

74 % retrieve incidence matrix and edge lengths
75 len = sqrt((ed(1,:) - ed(3,:)).ˆ2 + (ed(2,:) - ed(4,:)).ˆ2);
76 % initialize incidence matrix
77 incm = zeros(ne, nv);
78 for i = 1:ne
79 incm(i,ed(5:6,i)) = [-1,1];

78

80 end
81

82 % define the boundary conditions- either Neumann or Dirichlet
83 % if not specified, Neumann is default
84 ede = ed(5:6,:); % edge endpoints
85 numoc = histc(ede(:)’,1:nv); % number of occurence of each endpoint
86 neu = find(numoc == 1); % those occuring once are pending vertices
87 dir = [];
88

89 % initiate counter
90 but3 = 1;
91

92 title(’Set BC. Neumann by left-click (green), Dirichlet by right-click (red).’,...
93 ’FontSize’,16)
94 while but3 == 1 || but3 == 3
95 % pick starting point
96 [xi,yi,but3] = ginput(1);
97 [l,in] = findclosest(xy,[xi;yi]); % find closest point
98 title(’Boundary conditions. Press any key when done.’,’FontSize’,16)
99 % Neumann case when left-clicking

100 if but3 == 1
101 plot(l(1),l(2),’go’) % indicate the selection
102 % check if it is not a junction
103 if numoc(in) > 1 % number of occurance
104 error(’Boundary condition must not be defined at the junction.’)
105 end
106 neu = [neu in]; %#ok<AGROW>
107 % remove from dirichlet set in case it already has been labeled
108 dir = setdiff(dir,in);
109

110 % Dirichlet when right-click
111 elseif but3 == 3
112 plot(l(1),l(2),’ro’) % indicate the selection
113 % check if it is not a junction
114 if numoc(in) > 1 % number of occurance
115 error(’Boundary condition must not be defined at the junction.’)
116 end
117 dir = [dir in]; %#ok<AGROW>
118 % remove from neu set in case it already has been labeled
119 neu = setdiff(neu,in);
120 end
121 end
122

123 % in case the user labeled one vertex more times
124 neu = unique(neu);
125 dir = unique(dir);

79

126

127 % remove all isolated points
128 rem = find(numoc == 0); % isolated points
129 neu = setdiff(neu,rem); % remove it is has been assigned by Neumann bc
130 dir = setdiff(dir,rem); % same for Dirichlet
131 % shift the node numbering
132 iso = numoc == 0;
133 iso = cumsum(iso); % shifts for each node
134 if ˜isempty(neu) % if there is any neumann vertex
135 neu = neu - iso(neu);
136 end
137 if ˜isempty(dir) % if there is any dirichlet vertex
138 dir = dir - iso(dir);
139 end
140

141 incm(:,rem) = []; % remove from incidence matrix
142 xy(:,rem) = []; % remove from the set of edges
143

144 % assemble the graph
145 G = graph(incm’,len);
146

147 % generate graph and compute eigenvalues/vectors
148 [V,D] = grapheig(G, numEigs, dir, neu);
149

150 % plot the result
151 plottree(V,incm’,xy(1,:) + 1i*xy(2,:))
152 title(’First few eigenvectors’,’FontSize’,16)
153 shg

1 function [xx,in] = findclosest(xset,x)
2 % FINDCLOSEST
3 % Given a set of points xset and a simple point x, we compute the distance
4 % to the original set, pick up the closest point and return its
5 % coordinates and index
6

7 [dist,in] = min((xset(1,:) - x(1)).ˆ2 + (xset(2,:) - x(2)).ˆ2);
8 xx = xset(:,in);
9 end

1 function plottree(f,A,v,varargin)
2 % PLOTTREE(F,A,V) plots the chebarray/quasimatrix F on the directed
3 % tree/graph defined by the adjacency matrix A and vertices V
4 % (complex-valued). If V is not given, the vertices are equaispaced around

80

5 % the unit circle.
6

7 % If we’re not given an adjacency matrix, just plot the chebarray
8 if nargin < 2
9 plot(f)

10 return
11 end
12

13 % Count the number of edges and vertices
14 nv = size(A,1);
15 ne = size(A,2);
16

17 % Hold the plot?
18 ish = ishold;
19 % Clear the axis if it’s not.
20 if ˜ish
21 cla(gca, ’reset’)
22 end
23

24 % make up some vertices if none are given
25 if nargin < 3
26 v = exp(2*pi*1i*linspace(0,1,nv+1));
27 end
28

29 if min(size(f)) > 1
30 hold on
31 for k = 1:size(f,2)
32 g = f;
33 g = g(:,k);
34 plottree(g,A,v,varargin{:});
35 end
36 % deal with ’hold on’
37 if ˜ish, hold off, end
38 return
39 end
40

41 % setup
42 d = domain(f);
43 cols = get(0,’DefaultAxesColorOrder’);
44 cols = repmat(cols,5,1);
45

46 for k = 1:ne
47 int = d([k k+1]); % k-th particular interval
48 a = v(A(:,k)==-1); % start of edge
49 b = v(A(:,k)==1); % end of edge
50 x = chebfun([a b],int); % a linear chebfun

81

51 ek = f(int); % the kth edge
52 % plot the vertices
53 if isnumeric(ek)
54 vals = ek;
55 else
56 vals = [get(ek.funs(1),’lval’) get(ek.funs(end), ’rval’)];
57 end
58 plot3(real([a b]),imag([a b]),vals,’ok’,varargin{:}); hold on
59 % plot the edge
60 plot3(real(x),imag(x),ek,’color’,cols(k,:),varargin{:});
61 end
62

63 view(-10,20);
64

65 % deal with ’hold on’
66 if ˜ish
67 hold off
68 end

82

	Introduction
	Quantum graphs
	Metric graph
	Differential operator
	Matching conditions
	Elementary spectral properties

	Explicit solutions
	Interval
	Loop graph
	Lasso graph
	3-star graph
	Equilateral star graph

	Numerical analysis
	Chebyshev spectral methods
	Chebyshev nodes
	Chebyshev polynomials
	Differentiation matrix
	Eigenvalue problem and boundary conditions

	Chebfun
	Current features
	Developing graph class
	Adding potentials
	Implementation

	Applications
	Trace formula
	Spectral gap

	Spectral gap
	Discrete graphs
	Continuous graphs
	Increasing connectivity - gluing vertices together
	Adding an edge
	Decreasing connectivity - cutting edges
	Deleting an edge

	Rayleigh theorem for quantum graphs

	Conclusion
	References
	Appendix

