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projekty, SW atd.) uvedené v přiloženém seznamu.
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Konzultant: Ing. Tomáš Kalvoda
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Abstrakt: Předmětem studia této práce jsou kvantové systémy učené časově závislými Hamiltonovy op-
eratory. Důraz je kladen na návrh nové metody pro studium dřı́ve neřešených otázek stability kvantových
systémů určených Hamiltonovými operátory tvaru H(t) = H0 +V (t), kde V (t) je porucha a H0 je samos-
družený operator s čistě bodovým spektrem a konstantnı́mi mezerami mezi vlastnı́mi hodnotami ve spektru
σ(H0). Existujicı́ teorie týkajı́ı́ se stability kvatových systémů s Hamiltonovými operatory uvedeného tvaru,
kde H0 je samosdružený operator s čistě bodovým spektrem a rostoucı́mi nebo zmenšujı́cı́mi se mezerami
mezi vlastnı́mi hodnotami ve spektru σ(H0) je uvedena v přı́slušné kapitole. Kvůli neaplikovatelnosti
předchozı́ch výsledků se autor se pokoušı́ nalézt nový přı́stup ke studiu výše zmı́něného problému pomocı́
pojmu ”střednı́ hodnota Hamiltova operatoru přes nekonečný časový interval“. Lemma 7 lze interpretovat
jako kvantová varianta ergodického theorému ve velmi vhodném tvaru se kterým se autor nikde nesetkal.
V poslednı́ kapitole autor studuje jednoduchý přı́klad a aplikuje navržené postupy.
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Title:
Hamiltonians with constant spectral intervals and time-dependent perturbation

Author: Bc. Václav Košař

Abstract: This work deals with quantum systems determined by time-dependent Hamilton operators.
Family of quantum systems, whose Hamilton operators take form H(t) = H0 + V (t), where V (t) is
perturbation and H0 is self-adjoint with pure-point spectrum and constant gaps between eigenvalues in
spectrum σ(H0). Existing theory dealing with stability of quantum systems with Hamilton operators of
above form, where H0 is self-adjoint with pure-point spectrum and growing or shrinking gaps between
eigenvalues in spectrum σ(H0) is given in corresponding chapter. Because of non-applicability of existing
theory to the studied cases the author attempts to device a new approach based on term ”mean of Hamilton
operator over infinite time interval“. Lemma 7 can be interpreted as quantum variant of ergodic theorem in
a very nice form that the author have not encountered before. In the last chapter is devoted to the study of
simple example and to the application of devised theory.
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Preface

The subject of this thesis is the study of time-dependent quantum systems, i.e. systems whose Hamiltonian
H(t) depends on time. The special interest is paid to the cases where Hamiltonian of the quantum system
takes form H(t) = H0 + εV (t), where H0 is semi-bounded operator with pure point spectra with constant
gaps between distinct eigenvalues and εV (t) is periodically time-dependent perturbation.

The subject is indeed very complicated and even the existence of time evolution is nontrivial as seen in
the chapter 2. That is why the most attempts for analytical study of this subject address only the most ele-
mentary problems like stability of the evolution, i.e. boundedness of energy in time for some sets of initial
states. To author’s knowledge all existing results regarding stability problems are based on the assumptions
on gaps between distinct eigenvalues in the pure point spectra. So far there are only results in cases where
the gaps between distinct eigenvalues are either shrinking or growing fast enough. The main results of the
previous research are included in this work in the chapter 6.

Since essence of the existing theory is assumption that the gaps between distinct eigenvalues are either
shrinking or growing fast enough, the author did not expect to obtain any results for the case were the gaps
between distinct eigenvalues are constant by any simple modification of the previous results and thus tried
to take a new approach to the problem.

The chapter 7 is devoted to the study of the simple case of the studied problem, which is well defined
for arbitrary dimension of the separable Hilbert space (even for the infinite one). There author presents
his results: the first order perturbation of the time evolution for arbitrary dimension, applicable discrete
symmetries and numerical analysis.

When studying the finite dimensional problem mentioned in the previous paragraph the operator “mean
of Hamiltonian over infinite time interval” is naturally introduced. However introducing similar result for
unbounded operator was complicated and nonintuitive. This led author to the definition of positive operator
valued measure in chapter 4 and to the study of existing results in this area as 6. Attempt to correctly
define all terms regarding integral with respect to positive operator valued measure took the author great
effort since he was unaware of any complete and suitable source on positive operator measures and source
on this subject, although it probably exists. Note that the paper [16] is unavailable to the author and the
paper [17] covers only integration over bounded function in section 7.1. That is why some terms and
relations regarding positive operator measures and integration with respect to positive operator measure
may be largely reinvention of existing terms. The author’s main theoretical results of this paper are in
chapter 5. Lemma 7 can be interpreted as quantum variant of ergodic theorem in a form the author have not
encountered before. The theorem 14 has special importance.

However due to the lack of time, it is unknown whether the theorem 14 leads to some results regarding
stability of some family of quantum systems. There are proposals for possible theorems regarding stability
of the infinite dimensional case of the simple problem studied in the last section 7.7 of chapter 7.
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List of symbols

C complex numbers.
R real numbers.
Rn := R× R · · · × R Cartesian product of real numbers.
Cn := C× C · · · × C Cartesian product of complex numbers.
N natural numbers.
Z integral numbers.
∪,∩,⊂ union, intersection, inclusion .
i imaginary unit (should be evident from context).
1 identity operator (should be evident from context).
〈.|.〉 inner product in correspondingH.
|ψ〉〈φ| operator in corresponding Hilbert spaceH acting as ∀η ∈ H, |ψ〉〈φ|η = 〈φ|η〉ψ.
[a, b] closed interval.
(a, b) open interval.
: “such that” (e.g. ∀ε > 0 : ε < 1 is equivalent to ∀ε ∈ (0, 1))
� restriction.
a complex conjugation of a or closure of a set (should be evident from context).
∂x partial derivative with respect to x.
L2([a, b],X ) set of X-valued functions so that

∫ b
a
‖f‖2X dt <∞ , where X is Banach space.

L∞([a, b],X ) set of X-valued functions so that supesst∈[a,b] ‖f(t)‖X <∞ ,
where X is Banach space.

µ-a.a. should be read as “for µ almost all”, where µ is measure.
µleb. Lebesgue measure on R.
H complex separable Hilbert space.
B(H) set of all bounded operators on the Hilbert spaceH.
Bs(H) strong-topology space of bounded operators on the Hilbert spaceH.
Cn(Rm) set of functions Rm → C with continuous n-th derivative.
Cn(Rm,Bs(H)) set of functions Rm → B(H) with strongly continuous n-th derivative.
a-periodical function function with period a > 0.
C∞(R) set of infinitely continuously differentiable functions Rm → C .
st− lim limit in strong resolvent sense.
u− lim limit in norm resolvent sense.
σ(A) see the chapter 4.
⊗ tensor product of Hilbert spaces resp. vectors resp. operators.
⊕ resp. ⊕⊥ direct sum of Hilbert spaces resp mutually orthogonal Hilbert spaces.
Dom domain of mapping.
Ran range of mapping.
χM characteristic function of the set M .
A∗ adjoint operator of linear operator A on someH.
Tr trace of of linear operator A on someH.
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Chapter 1

Time-dependent Hamiltonians in
classical mechanics

Theorem 1 (Hamilton’s equations for flat phase-space). Let

(1)H ∈ C1(R2n+1)

(2)∀q0, p0 ∈ Rn,∀i ∈ {1, 2, . . . n}, ∂qiH(q0, p0, t), ∂piH(q0, p0, t) ∈ C1(R)

Then ∀i ∈ {1, . . . , n},∀q0, p0 ∈ Rn,∃1qi, pi ∈ C1(R) :

•qi(0) = q0 and pi(0) = p0,

•∀t ∈ R, ∂tqi = ∂piH(q, p, t),

∂tpi = −∂qiH(q, p, t).

Proof. Basic result of theory of ordinary differential equations. (cf. [3]).

Some theorems for Hamiltonians, which do not dependent on time, can be generalized to the time dependent
case. This is done by defining special function called Floquet Hamiltonian and interpreting it as Hamiltonian
on extended phase-space, where two new coordinates t, E are introduced.

Definition 1 (Floquet Hamiltonian for flat phase-space).

Let H(p, q, t) ∈ C2(R2n+1) be Hamiltonian on phase-space R2n.

Then the function K(t, q, E, p) := E +H(q, p, t) is called Floquet Hamiltonian.

Hamilton’s equations for Floquet Hamiltonian with new time variable σ taking t resp. E as spacial resp.
momentum coordinate are equivalent to the former equations. Nevertheless K is time-independent Hamil-
tonian and methods developed for time-independent Hamiltonians can be now applied to study properties
of the former problem.
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Chapter 2

Existence of evolution

In the following text ~ = 1 and H(t) is mapping from R to self-adjoint operators onH.

Question of existence of evolution operator as a solution of Schrödinger equation is treated first.

Definition 2 (strongly continuous unitary propagator). Two parametric jointly strongly continuous unitary
operator valued function U(t, s) which fulfills:

∀t, r, s ∈ R (1) U(t, r)U(r, s) = U(t, s)

(2) U(t, t) = 1

is called strongly continuous unitary propagator.

Following theorem is mainly due to Krein [20].

Theorem 2 (Existence of evolution operator). Assume that

(1) ∀t ∈ R,DomH(t) = D ⊂ H

(2) B(t, s) :=
H(t)−H(s)

t− s
(H(s) + i)−1 ∈ C(R2,Bs(H)))

i.e. can be extended by limit as a strongly continuous function for t = s.

Then

•∀t, s ∈ R,∃K > 0, sup
r∈[t,s]

∥∥(H(r) + i)U(r, s)(H(s) + i)−1
∥∥ ≤ K

•∃1 strongly continuous unitary propagator U(t, s) so that

∀t, s ∈ R U(t, s)D = D and ∀ψ ∈ D, i d
dt
U(t, s)ψ = H(t)U(t, s)ψ.

Proof. Proof of more general theorem regarding one-parametric semi-groups can be found in [2] (theorem
X.70) and is also based on solving easier problem with H(s) by function constant on small intervals. For
Hn(t) := H( [nt]

n ) above Schrödinger equation on D is due to the Stone’s theorem uniquely solved by
strongly continuous unitary propagator Un:

Un(t, s) = e−i(t−
[nt]
n )H(

[nt]
n )

( [nt]−1∏
j=[ns]+1

e
−i
n H( jn )

)
e−i(

[ns]
n −s)H(

[ns]
n ) .

10



Stone’s theorem also implies that Un(t, s)D = D.

It follows that ∀j, k ∈ Z, Un(t, s) ∈ C1(( jn ,
j+1
n )× ( kn ,

k+1
n ),B(H)) as Hn(s) is constant on ( jn ,

j+1
n ) for

all j ∈ Z.

Thus to prove convergence of Un as n→∞ Bochner integral can be used in following way.

‖(Un+p(t, s)− Un(t, s))ψ‖ =
∥∥[Un+p(t, r)Un(r, s)]r=tr=sψ

∥∥ ≤ (2.1)

≤
∫ t

s

∥∥∥∥ ddrUn+p(t, r)Un(r, s)ψ

∥∥∥∥ dr =

∫ t

s

‖Un+p(t, r)(Hn+p(r)−Hn(r))Un(r, s)ψdr‖ (2.2)

≤ a|t− s|
n

sup
r∈[t,s]

‖(Hn(r) + i)Un(r, s)ψ‖ , (2.3)

where supt′,s′∈[t,s] ‖B(t′, s′)‖ ≤ a, which holds true due to uniform continuity ofB(t, s) on every compact
subinterval of R2. It is now enough to estimate supremum on RHS of (2.3) independently of n.

One can reduce previous problem using following

‖(Hn(r) + i)Un(r, s)ψ‖ ≤
∥∥(Hn(r) + i)Un(r, s)(Hn(s) + i)−1

∥∥ ‖Hn(s) + i)ψ‖ ,

since ψ ∈ DomHn(s) and by the closed-graph theorem operator (Hn(r) + i)Un(r, s)(Hn(s) + i)−1 is
bounded.

(
H(

[nr]− 1

n
) + i

)
Un(

[nr]− 1

n
,

[ns] + 1

n
)

(
H(

[ns] + 1

n
) + i

)−1

=

=

[nr]−1∏
j=[ns]+1

(
H(

j

n
) + i

)
e
−i
n H( jn )

(
H(

j − 1

n
) + i

)−1

Now RHS of the above equation can be easily iteratively estimated.∥∥∥∥∥
(
H(

[nr]− 1

n
) + i

)
Un(

[nr]− 1

n
,

[ns] + 1

n
)

(
H(

[ns] + 1

n
) + i

)−1
∥∥∥∥∥ ≤

≤ (
a

n
+ 1)

∥∥∥∥∥
(
H(

[nr]− 2

n
) + i

)
Un(

[nr]− 2

n
,

[ns] + 1

n
)

(
H(

[ns] + 1

n
) + i

)−1
∥∥∥∥∥

≤ (1 +
a

n
)[nr]−[ns]−2 ≤ ea|r−s| .

Where commutation properties of propagators and their generators on D from Stone theorem were used.
This can be used to estimate above supremum in following way. Let φ := (Hn(s) + i)ψ.

sup
r∈[t,s]

∥∥(Hn(r) + i)Un(r, s)(Hn(s) + i)−1
∥∥ ≤ (1 + a)2 ea|t−s|

Thus Un(t, s) strongly converges as n → ∞ to a unitary operator U(t, s) as ‖Un(t, s)‖ = 1, Bs(H) is
complete, scalar product is continuous and all Un(t, s) are unitary.

In an analogous way it can proven, considering uniform boundedness of operator (Hn(r)+i)Un(r, s)(Hn(s)+
i)−1 and closedness of space Bs(H), that

st− lim
n→∞

(Hn(r) + i)Un(r, s)(Hn(s) + i)−1 = (H(r) + i)U(r, s)(H(s) + i)−1.

Now using fact that both U(t, s) and (H(r) + i)U(r, s)(H(s) + i)−1 are on every compact subset of R2

uniform limits of jointly continuous functions one can also get joint continuity of U(t, s) and (H(r) +
i)U(r, s)(H(s) + i)−1.
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To prove that U(t, s) is differentiable in both arguments one can consider:

∀ψ ∈ D,U(t, s)ψ =

∫ s

t

H(r)U(r, s)ψdr =

∫ s

t

H(r)U(r, s)(H(s) + i)−1(H(s) + i)ψdr

Thus using continuity of bounded operator function r → H(r)U(r, s)(H(s) + i)−1 one obtains differen-
tiability of U(t, s).

To prove uniqueness of solution of Schrödinger equations one has to consider following. Let there be
vector-valued function ψ(t) such that

i
d

dt
ψ(t) = H(t)ψ(t) and ψ(s) = ψ0 ∈ H

Then one easily see that

i
d

dt
U(t, s)ψ(t) = U(t, s)(H(t)−H(t))ψ(t) = 0.

Thus using initial conditions U(s, s)ψ(s) = ψ0 one has

ψ(t) = U(t, s)ψ0.

Remark 1. It can be seen from 14 that even if ∀t ∈ R, H(t + T ) = H(t) there still may be states so
that limt→∞

∥∥(Hn(t) + i)Un(t, 0)(Hn(0) + i)−1ψ
∥∥ = +∞. It is also true that the limit above is in quite

general case infinite if vector ψ has nonzero orthogonal projection to the complement of all eigensubspaces
of so called Floquet operator U(T, 0).

From proof of theorem 2 one can easily get following corollary.

Corollary 1. Let

(1) ∀t ∈ R,DomH(t) = D ⊂ H

(2) B(t, s) :=
H(t)−H(s)

t− s
(H(s) + i)−1 ∈ C(R2,Bs(H)))

(3) ∀t ∈ R, H(t+ T ) = H(t).

Then ∃K > 0, supt,s∈R ‖B(t, s)‖ < K and of course the main implication in the previous theorem holds
true.

Lemma 1 (Strong-continuity of evolution operator with respect to some parameter). Let ∀ε ∈ [0, 1], H(ε)(t)
is self-adjoint-operator-valued function.

Let ∀ε ∈ [0, 1],DomHε(t) = D ⊂ H, and that there exist corresponding unique solutions of Schrödinger
equation i.e

∀ε ∈ [0, 1],∃1 strongly continuous unitary propagator U (ε)(t, s) so that

∀t, s ∈ R • U(t, s)(ε)D = D

• ∀ψ ∈ D, i d
dt
U (ε)(t, s)ψ = H(ε)(t)U (ε)(t, s)ψ.

Let following additional assumptions holds true

(1)
∥∥∥(H(ε)(t)−H(0)(t))(H(0)(0) + i)−1

∥∥∥ is locally bounded function,

(2)∀t ∈ R, lim
ε→0

∥∥∥(H(ε)(t)−H(0)(t))(H(0)(0) + i)−1
∥∥∥ = 0,

(3)∀ψ ∈ D,
∥∥∥H(0)(0)U (0)(t, s)ψ

∥∥∥ is locally bounded.

Then
∀t, s ∈ R, st− lim

ε→0
U (ε)(t, s) = U (0)(t, s).

12



Proof. The proof is based on one the ideas of the previous proof. Let ψ ∈ D and t, s ∈ R: t− s > 0 then
one has following estimate.∥∥∥U (0)(t, s)ψ − U (ε)(t, s)ψ

∥∥∥ =
∥∥∥[U (ε)(t, r)U (0)(r, s)ψ]ts

∥∥∥ ≤ ∫ t

s

∥∥∥∥ d

dr
U (ε)(t, r)U (0)(r, s)ψ]ts

∥∥∥∥dr

≤ sup
u∈[t,s]

∥∥∥(H(0)(0) + i)U (0)(t, s)ψ
∥∥∥ ∫ t

s

∥∥∥(H(ε)(r)−H(0)(r))(H(0)(0) + i)−1
∥∥∥dr.

Thus using Lebesgue theorem one has

∀ψ ∈ D, lim
ε→0

∥∥∥U (0)(t, s)ψ − U (ε)(t, s)ψ
∥∥∥ = 0.

Since
∥∥U (ε)(t, s)

∥∥ = 1 and D is dense this completes the proof of the lemma.

13



Chapter 3

The Floquet operator

In quantum mechanics there is, in analogy to classical mechanics 1 , also a way to generalize theorems for
time-independent Hamilton operator to time-dependent case. It is done by considering larger Hilbert space,
defining on it special operator and solving generalized Schrödinger equation. Exact definition however
depends on application. This paper focuses on Hamilton operators that are periodic in time. Note that for
simplicity period will be considered to be 1 and functions from K := L2([0, 1],H) will be sometimes
treated as 1-periodic functions on R. Last note should become clear after reading the following definition.

Definition 3.

∀f ∈ L2([0, 1],H),∀t ∈ [0, 1], (Tσf)(t) := f(t− σ)).

∀f ∈ L2(R,H),∀t ∈ R (T̃σf)(t) := f(t− σ)).

Note that Tσ ∈ B(L2([0, 1],H)), T̃σ ∈ B(L2(R,H)).

Definition 4 (Bounded multiplication operator). Let

(1) a, b ∈ [−∞,+∞], a < b.

(2) Φ ∈ L∞([a, b],B(H)).

(3) ∀f ∈ L2([a, b],H), (Af)(t) = Φ(t)f(t).

Then the operator A ∈ B(L2([a, b],H)) will be called bounded multiplication operator in L2([a, b],H)
generated by Φ.

Bounded multiplication operator generated by scalar function Φ will be called bounded scalar multiplica-
tion operator in L2([a, b],H) generated by Φ.

Following theorem is proposition 1 in [9].

Theorem 3 (Bounded multiplication operator). Let A ∈ B(L2([a, b],H). Then

A is bounded multiplication operator⇔ A commutes with all scalar multiplication operators⇔ A com-
mutes with all scaler multiplication operators generated by characteristic functions of finite open subinter-
vals of [a, b].

Definition 5 (Unitary evolution group). Let

(1.) A(σ) ∈ C(R,Bs(K)) be strongly continuous unitary group in K
(2.) A(σ)T ∗σ be bounded multiplication operator in K.

Then A(σ) will be called unitary evolution group and its self-adjoint generator K (Stone’s theorem) will
be called Floquet Hamiltonian.

14



Definition 6. Let

(1) U(t, s) be strongly continuous unitary propagator

(2) is 1-periodic propagator i.e.∀t, s ∈ R U(t+ 1, s+ 1) = U(t, s)

Then following notation will be used:

V (σ) ∈ C(R,Bs(K)) is called U(t, s)-associated evolution group iff

∀f ∈ K, µleb. − a.a.t ∈ [0, 1], (V (σ)f)(t) = U(t, t− σ)f(t− σ),

Note that L2([0, 1],H) ∼= L2([0, 1], dt)⊗H.

Lemma 2 (Correctness of the previous definition). Let V (σ) be U(t, s)-associated evolution group. Then
V (σ) is strongly continuous unitary group on K and thus corresponding Floquet Hamiltonian exists and is
self-adjoint operator.

Proof. One needs only to take into consideration that continuous function on compact interval is uniformly
continuous and that span of the set {η ⊗ ψ ∈ K : η ∈ L2([0, 1], dt), ψ ∈ H} is dense in L2([0, 1],H) i.e.
L2([0, 1],H) ∼= L2([0, 1], dt)⊗H.

Theorem 4 (Propagator and evolution group). Let A(σ) be strongly continuous unitary group in K. Then
A(σ) is unitary evolution group if and only if ∃U ∈ L∞(R,H) so that

• U(0) = 1,

• ∀t ∈ R, U(t) = U(1)jU(t− j),
• A(σ) = UTσU

−1,

where ∀f ∈ K, a.a.t ∈ [0, T ], (Uf)(t) := U(t)f(t). Further more U(t) is uniquely determined by stated
properties and A(1)= U(1⊗ U(1))U−1.

Proof. Original proof is due to Howland [7]. Only sketch of the proof will be given here. (Some technical
details will be omitted). Proof of ”⇒” is based on Stone-von Neumann theorem e.g. theorem VIII.14 in
[1]. One can define mappings

∀k ∈ Z, gk ∈
(
L2(R,H)→ L2([0, 1],H)

)
: (∀t ∈ [0, 1], gk(f)(t) := f(t+ k)),

which can be used to define following embedding

h ∈
(
B(L2([0, 1],H)) ↪→ B(L2(R,H))

)
,

such that

∀B ∈ B(L2([0, 1],H)),∀f ∈ L2(R,H),∀s ∈ R, (h[B]f)(s) :=
∑
k∈Z

χ[k,k+1](s)(Bgk(f))(s− k).

One can now see that h(A(σ)T ∗σ ) is a multiplication by periodic unitary-operator valued function on
L2(R,H). Let us now define

Ã(σ) := h(A(σ)T ∗σ )T̃σ.

From h(A(σ1)T ∗σ1
)h(A(σ2)T ∗σ2

) = h(A(σ1+σ2)T ∗σ1+σ2
) and h(A(σ1)T ∗σ1

)T̃σ2 = T̃σ2h(A(σ1+σ2)T ∗σ1+σ2
)

and strong continuity of A(σ) one gets that Ã(σ) is strongly continuous unitary group.

One can see that spectral form of Weyl’s form of commutation relations holds true:

Ã(σ)E(S)Ã−1 = E(S + σ),
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where E(S) is bounded multiplication operator generated by χS , S is finite open interval in R.

Thus one can use Stone-von Neumann theorem to prove that there is unitary operator U on L2(R,H) such
that

U∗Ã(σ)U = T̃σ, (3.1)
U∗E(S)U = E(S). (3.2)

Due to (3.2) and 3 one can see that U is bounded multiplication operator on L2(R,H) generated by unitary
operator valued function. Equation (3.1) can be rewritten as:

Ã(σ)T̃ ∗σ = UT̃σU
∗T̃ ∗σ .

This implies that operator on the RHS is bounded multiplication generated by unitary-operator valued func-
tion with period 1 on L2(R,H). Due to U is bounded multiplication operator on L2(R,H) generated by
unitary operator valued function one has

∀f ∈ K,∀σ ∈ R, a.a.t ∈ R (A(σ)f)(t) = U(t)U−1(t− σ)f(t− σ),

a.a.t, s ∈ R, U(t)U−1(s) = U(t+ 1)U−1(s+ 1).

In addition one have uniqueness of U(t) up to multiplication by constant unitary operator, thus one can get
uniqueness requiring U(0) = 1. Due to T1 = 1 and U(t)U−1(s) = U(t+ 1)U−1(s+ 1) one gets

A(1) = UU(1)U−1.

Proof of ”⇐” is easy.

Note that U(t) is not necessarily a group thus not all unitary evolution groups are U(t, s)-associated evolu-
tion groups. However we may now define following term.

Definition 7. Let A(σ) be unitary evolution group and U(t) be unitary operator valued function. Then
unitary operator U(1) will be called Floquet operator.

Following theorem is due to P. Duclos E. Soccorsi P. Šťovicek [4] and it specifies the form of Floquet
Hamiltonian for physically-common cases.

Theorem 5 (Form of Floquet Hamiltonian). Let

(1) ∀t ∈ R,DomH(t) = D ⊂ H.
(2) ∀t ∈ R H(t+ 1) = H(t).

(3) ∃ strongly continuous unitary propagator U(t, s) so that

∀ψ ∈ D, i∂tU(t, s)ψ = H(t)U(t, s)ψ.

(4) R 3 t→
∥∥H(t)(H(0) + i)−1

∥∥ is locally bounded.

(5) ∀ψ ∈ D, R 3 t→ ‖H(t)U(t, 0)ψ‖ is locally square integrable.

Then

•DomK = {f ∈ K : ∀ψ ∈ D, 〈ψ|f (t)〉H is absolutely continuous and

∃gf ∈ K,∀ψ ∈ D, −i∂t〈ψ|f (t)〉H + 〈H (t)ψ|f (t)〉H = 〈ψ|gf (t)〉H}.
•∀f ∈ DomK, Kf = gf .

•K = K0, where DomK0 := {f ∈ C∞(R)⊗D : ∀t ∈ R, f(t) = f(t+ 1)}
and ∀η ⊗ ψ ∈ DomK0, (K0(η ⊗ ψ))(t) := −iη′(t)⊗ ψ + η(t)⊗H(t)ψ.

Corollary 2. Above theorem holds true under assumptions of corollary 1.
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Chapter 4

Positive operator valued measure

Some additional information on the subject of positive operator valued measures can be found in [17] or in
the original paper on Naimarks’s dilation theorem [16]. Note that the author was unaware on any suitable
source on positive operator measures and integration with respect to positive operator measure, although it
probably exists. That is why this section may be largely reinvention of the existing terms. Note that [16]
was unavailable to the author and paper [17] covers only integration over bounded function in the section
7.1.

Definition 8 (POVM := Positive operator valued measure ). Let B ⊂ 2R be σ-algebra of Borel sets, µ(.) :
B → B(H1), whereH1 is complex separable Hilbert space

(1) ∀M ∈ B, µ(M) is bounded positive operator onH1,

(2) µ(R) = 1,

(3) If {Mk}∞k=0 ⊂ B are mutually disjoint sets then

∀ψ ∈ H1, 〈ψ|µ(

∞⋃
k=0

Ms)ψ〉 = lim
N→∞

〈ψ|
N∑

k=0

µ(Ms)ψ〉.

Then in this paper mapping µ will be called Positive operator valued measure or POVM. Mapping
µ(.) : B → B(H1) for which axioms (1),(3) holds true together with relaxed version of the second axiom
“µ(R) is bounded operator” will be called POVM∗ .

Any set M ⊂ R such that µ(M) = 0 will called set of µ-measure zero i.e. ∀ψ ∈ H1, 〈ψ|µ(M )ψ〉 = 0.
Using previous notions µ − a.a. and µ − a.e. are defined in a usual way using previous as well as sets of
concentration of measure and absolute continuity of two POVM measures.

Following notation will be used: µλ := µ((−∞, λ]). In fact in the paper [17] POVM is defined in terms of
µλ.

Lemma 3. The third axiom of previous definition together with other axioms imply

If {Ms}∞s=0 ⊂ B are disjoint sets then

µ(

∞⋃
s=0

Ms) = st− lim
N→∞

N∑
s=0

µ(Ms)

Proof. Due to the fact that bounded positive operators are uniquely defined by their quadratic forms, 0 ≤
µ(
⋃N
s=0Ms) ≤ µ(

⋃N
s=0Ms) ≤ 1 and well-known theorem (c.f. theorem 5.3.4 in [21]).

There is a unique way of decomposing of Borel probability measure µ : B → [0, 1] into sum of three
Borel positive bounded measures µ = µpp + µac + µsc called “extended”-Lebesgue-decomposition. These
three measures are all absolutely continuous with respect to µ i.e. ∀M ∈ B, µ(M) = 0 ⇒ µpp(M),
µac(M),µsc(M) = 0 and are mutually singular i.e. they are concentrated on some mutually disjoint sets,
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which have particular relation to the original measure. In detail µpp is concentrated on the set Mpp =
{m ∈ R : µ(m) 6= 0} and µsc,µac are obtained from Lebesgue’s decomposition theorem of µ − µpp so
that µsc is concentrated on the set M̃sc and µac is concentrated on M̃ac, where M̃ac ∩ M̃ac = ∅. Because
µac(Mpp) = µsc(Mpp) = 0 one can define three mutually disjoint sets on which corresponding measures
of decomposition are concentrated: Mpp, Msc := M̃sc \Mpp, Mac := M̃ac \Mpp.

Previous decomposition regarding Borel probability measures can be generalized to the case of POVM
resulting into not only decomposition of the set R but in case of PVM also in direct decomposition of
carrier Hilbert space defined using the support of certain quadratic forms.

Let µ be POVM. Since bounded operator is uniquely defined by it’s quadratic form, one can apply previous
decomposition of probability measures to the POVM and define POVM∗ µpp, µac, µsc using decomposition
of 〈ψ|µψ〉 for some ψ ∈ H as their evaluation on vector ψ i.e. ∀ψ, 〈ψ|µppψ〉 := (〈ψ|µψ〉)pp and so on. It
is easy to see that obtained operator valued functions fulfill axioms of POVM∗. This is summarized in the
following definition.

Definition 9 (extended Lebesgue decomposition of POVM). Let µ be POVM. Three members of unique
decomposition of µ into POVM∗ studied in above comment will be denoted in the same way µpp,µac,µsc
i.e.

µ = µpp + µsc + µac

and regarded as extended Lebesgue decomposition of POVM .

Since POVM has greater theoretical importance in physics, because it has probability interpretation, it is
natural to ask on whether there are some subspaces ofH for POVM∗ µpp,µac,µsc from extended Lebesgue
decomposition of some POVM µ on which µpp,µac,µsc behave like POVM. In case of µpp one can look for
a such set Hµpp that ψ ∈ Hµpp ⇔ 〈ψ|µpp(R)ψ〉 = 〈ψ|ψ〉 ⇔ µpp(R)|ψ〉 = |ψ〉, where last equivalence can
be obtained form estimate

‖(1− µpp(R))ψ‖2 = 〈(1 − µpp(R))ψ|(1 − µpp(R))ψ〉 ≤ ‖(1− µpp(R)‖ 〈ψ|(1 − µpp(R))ψ〉,

which holds true since 1 − µpp(R) is positive operator. Previous statement holds true also for subspaces
Hµac,Hµsc defined in analogous way. Previous two statements can now be harvested showing that subspaces
Hµpp,Hµac,Hµsc are mutually orthogonal. This can be done by following estimate

∀ψ ∈ Hµpp,∀φ ∈ Hµsc, |〈ψ|φ〉|2 = |〈ψ|µsc(R)φ〉|2 = |〈µsc(R)ψ|φ〉|2 ≤ 〈ψ|µsc(R)ψ〉 ‖φ‖2 = 0

Indeed ‖ψ‖2 = 〈ψ|µ(R)ψ〉 = ‖ψ‖2 + 〈ψ|µsc(R)ψ〉+ 〈ψ|µac(R)ψ〉.

Previous justifies following definition.

Definition 10. Let µ be POVM. Closure of largest subspaces on which three members of unique decompo-
sition of µ into POVM∗ µpp,µac,µsc act like POVM will be denotedHµpp,Hµac,Hµsc.

Hµpp ⊕⊥ Hµac ⊕⊥ Hµsc ⊂ H.

Hcont := span{Hµac,Hµac}

The simplest case when “ ⊂′′ in previous is not equality is any one dimensional POVM with at least two
non-zero members of decomposition µ = µpp + µsc + µac.

Term of following definition has particular importance in theory of self-adjoint operators.

Definition 11 (spectrum (support) of POVM∗). Let ν be POVM∗.

σ(ν) := {x ∈ R : (∀U = U◦ ∈ B : x ∈ U, ν(U) 6= 0)}.

Lemma 4. Let µ be PVM.

•∀M,N,L ∈ B, µpp(M), µac(N), µsc(L) are mutually orthogonal projectors,

•µpp, µac, µsc act like PVM onHµpp,Hµac,Hµsc
•Hµpp ⊕⊥ Hµac ⊕⊥ Hµsc = H.
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Proof. Since µpp(M) ≤ µpp(R) one has Ranµpp(M) ⊂ Ranµpp(R) = Hµpp thus one has the first part of
the lemma and in analogous way also the second part.

Considering that µpp(R) + µsc(R) + µac(R) = 1 and together with mutual orthogonality of summed
projectors and well-known theorem (c.f. theorem 5.4.4 in [21]) one has

Ranµpp(R)⊕⊥ Ranµsc(R)⊕⊥ Ranµac(R) = Ran1 = H.

Having measure one can also define integral. Simple functions and the integral will be defined in the usual
sense:

Definition 12. The set

S(B) = {
∑
j∈I

fjχMj
: I ⊂ Z, |I| <∞, mut. disjoint {Mj}j∈I ⊂ B, {fj}j∈I ∈ C}

will be called set of simple functions. The operator∫
sn(λ)dµλ :=

∑
j∈I

fjµ(Mj) ∈ B(H1)

will be called integral of a simple function .

For every f Borel function, such that µ − a.a.x ∈ R, |f(x)| < ∞ there exists a sequence sn ∈ S(B),
µ−a.a.x ∈ R, |sn(x)| ≤ |f(x)|, sn(x)→ f(x) and thus one can introduce generally unbounded operator
defined by the following limit on dense domain∫

f(λ)dµλψ := lim
n→∞

∫
sn(λ)dµλψ

Dom

(∫
f(λ)dµλ

)
:= {ψ ∈ H1 :

∫
|f(λ)|2〈ψ|dµλψ〉 <∞},

This operator is called integral of Borel function f. Correctness of definition of operator in previous will
be proven in following.

If ∀M ∈ B, µ(M) is projector then then we call mapping µ projection valued measure or PVM. This is
also equivalent to condition ∀M,N ∈ B, µ(M ∩ N) = µ(M)µ(N) = µ(N)µ(M). In following will be
show that the general case can be in a sense reduced to this special one.

The following important theorem is due to Naimark (1940) [16] an alternative proof can be found in [17].

Theorem 6 (Naimark’s dilation theorem). Let µ be POVM in a complex separable Hilbert spaceH1.

Then there is Hilbert spaceH2, bounded linear map V ∈ B(H1,H2) and PVM P so that

µ = V ∗PV.

Remark 2. The linear map V in the previous theorem is injective and it’s left inverse is V ∗ due to second
axiom of POVM. However even though V ∗V = 1 holds true, V V ∗ = 1 holds true only when µ is PVM.
Note that ‖V ∗‖ = ‖V ‖ = 1, ‖V ψ‖ = ‖ψ‖, V ∗V is orthogonal projector on H2. Thus one can interpret
H1 as closed subspace of H2, V as “identity” embedding H1 ↪→ H2 V

∗ as orthogonal projector on the
subspaceH1.

Following theorem is Theorem 9.6.4. in [21], where detailed information can be found regarding this
problematics. There is also a short note regarding this problem preceding theorem VIII.6 in [1].
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Theorem 7 (Correctness of definition for PVM). Let P be PVM, f be Borel and P − a.a.x, |f(x)| <∞.

Then operator
∫
f(λ)dµλ exists, is unique, densely defined on the domain stated in the definition. Note that

following equation holds true

∀ψ ∈ Dom

∫
fdPλ,

∥∥∥∥∫ f(λ)dPλψ

∥∥∥∥2

=

∫
|f(λ)|2d〈ψ|Pλψ〉

The limit by which the integral is defined does not depend on the choice of the sequence of convergent simple
function.

Here the author suggest an analogous theorem for POVM.

Theorem 8 (Correctness of definition for POVM). Let µ be POVM, f is Borel measurable and µ −
a.a.x, |f(x)| < ∞. Then operator

∫
f(λ)dµλ exists, is unique, densely defined operator on the domain

stated in the definition. The limit by which integral is defined does not depend on the choice of the sequence
of convergent simple functions. ∥∥∥∥∫ f(λ)dPλ

∥∥∥∥2

≤
∫
|f(λ)|2d〈ψ|µλψ〉

Proof. Using previous Naimark’s dilation theorem 6 one sees that there isH2, V, P so that ∀s ∈ S(B),
∫
s(λ)dµλ =

V ∗
∫
s(λ)dPλV . Since one has only ∀M ∈ R, P (M) = 0 ⇒ µ(M) = 0 then needs to redefine f to by

zero on sets of measure zero. This does not change the original integral, but is important in the following
construction. Since now conditions of the previous theorem are fulfiled for the measure P and since the f
has been suitably redefined one gets

sn ∈ S(B), µ− a.a.x ∈ R, |sn(x)| ≤ |f(x)|, sn(x)→ f(x)⇒
P − a.a.x ∈ R, |sn(x)| ≤ |f(x)|, sn(x)→ f(x).

Considering ∥∥∥∥∫ fλdµλψ

∥∥∥∥2

≤
∥∥∥∥∫ fλdPλV ψ

∥∥∥∥2

=

∫
|f(λ)|2d〈ψ|µλψ〉

one has Dom

(∫
f(λ)dµλ

)
= V ∗Dom

(∫
f(λ)dPλ

)
. From previous estimate and previous theorem 7

one has also that integral does not depend on the choice of sequence pf simple functions. One is now left
with proving that domain of the operator is dense. Since one obviously has

∀ψ ∈ H1,∀ε > 0,∃φε ∈ H2, φε ∈ Dom

(∫
f(λ)dPλ

)
et ‖V ψ − φε‖H2

< ε.

Using ‖V ψ − φε‖H2
< ε⇒ ‖ψ − V ∗φε‖H1

< ε ‖V ∗‖ one gets denseness of the set

Dom

(∫
f(λ)dµλ

)
= V ∗Dom

(∫
f(λ)dPλ

)
.

Thus the operator is densely defined.

Remark 3. The domain of integral with respect to POVM µ is chosen so that there are no problems with
the definition, because problem then can be reduced to the problem of PVM. The author cannot exclude
cases where the integral can be defined more naturally on some larger set.

Lemma 5. Let µ be POVM, f be Borel function and µ − a.a.x ∈ R, |f(x)| < ∞. Then subspaces
Hµpp,Hµac,Hµsc are invariant under integral of f with respect to µ. The restriction of the integral to subspace
Hµpp ⊕⊥ Hµac ⊕⊥ Hµsc can be written as a direct sum of integrals of f on subspaces Hµpp,Hµac,Hµsc with
respect to µpp,µac,µsc.
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Following theorem is due to von Neumann (1929), Stone (1932) and Riesz (1930).

Theorem 9 (Spectral decomposition theorem). There is one-to-one map between the set of all PVM and
self-adjoint operators B on Hilbert spaceH given by

B =

∫
λdP

(B)
λ

The PVM P (B) will in following denote PVM corresponding to the self-adjoint operator B.

The author expects that first part of the theorem can be made even stronger in following sense. For a fixed
real Borel strictly monotone function f and fixed real Borel g, there is one-to-one map between set of all
PVM and the operators of form

∫
f(λ) + ig(λ)dPλ, where P is some PVM.

Definition 13 (Decomposition of spectrum). LetB be self-adjoint operator. Then following of notation will
be used

•σ(B) := σ(P (B)),

•σpp(B) := σ(P (B)
pp ), σsc(B) := σ(P (B)

sc ), σac(B) := σ(P (B)
ac ),

•HBpp := HP
(B)

pp ,HBac := HP
(B)

ac ,HBsc := HP
(B)

sc .

•HBcont := HP
(B)

cont = span{HBsc,HBac}.

If σsc(B) = 0, σac(B) = 0, then it will be said that B has pure-point spectrum.

There is way of defining similar terms also for unitary operators and as author expects even for a larger
subset of normal operators: for the integral of f + ig with respect to some PVM, where f ,g are Borel
functions with continuous derivative on R and non-zero derivative up to measure zero. However only the
case of unitary operators, where one has f = cos and g = sin, will be studied in this paper. Variant of
following theorem is theorem 10.2.6 [21].

Theorem 10 (Spectral decomposition theorem). There is one-to-one map between the set of all PVM con-
centrated on [0, 2π) and unitary operators U on Hilbert spaceH given by

U =

∫
eiλ dP

(U)
λ

The PVM P (U) will in following denote PVM corresponding to the unitary operator U . Following notation
will be used

•σ(U) := σ(P (U)),

•σpp(U) := σ(P (U)
pp ), σsc(U) := σ(P (U)

sc ), σac(U) := σ(P (U)
ac ),

•HUpp := HP
(U)

pp ,HUac := HP
(U)

ac ,HUsc := HP
(U)

sc .

•HUcont := HP
(U)

cont = span{HUsc,HUac}
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Chapter 5

The RAGE theorem and the time-mean
of Hamiltonian

5.1 The RAGE theorem

This section is devoted to the theoretical results of Ruelle, Amrein, Georgescu and Enss (1973-1982) in
[18].

Theorem 11 (RAGE). Let H be self-adjoint operator in H, C ∈ B(H) relatively compact with respect to
H i.e. C(H + i)−1 is compact.

Then ∀φ ∈ H(H)
cont

• lim
τ→±∞

1

τ

∫ τ

0

dt
∥∥C e−itH φ

∥∥ = 0, (5.1)

• lim
τ→±∞

1

τ

∫ τ

0

dt
∥∥C e−itH φ

∥∥2
= lim
τ→±∞

1

τ

∫ τ

0

dt〈φ|eitH C ∗C e−itH φ〉 = 0, (5.2)

where (5.2) implies (5.1) due to Schwarz inequality.

One can geometrically interpret previous theorem in spaces L2(Rn,dnx) taking typical Hamiltonian H =
−4 + V and CR = χ{x∈Rn:‖x‖≤R} i.e. bounded multiplication operator by characteristic function of set
{x ∈ Rn : ‖x‖ ≤ R}. Thus CR is orthogonal projector and is relatively compact with respect to H for
large family of potentials V . The RAGE theorem then for CR, which is relatively compact with respect to
H , gives geometrical unboundedness of evolution of arbitrary state φ ∈ H.

Some previous results can be generalized to periodically time-dependent Hamiltonians H(t + T ) = H(t)
for which corresponding jointly continuous T-periodic unitary propagator U(t, s) exists.

Definition 14 (Bounded and free states). Let U(t, s) be jointly continuous unitary propagator,

Hbound.± := {ψ ∈ H : {U(t, 0)ψ : ±t > 0} is precompact.

Hfree± := {ψ ∈ H : ∀K is compact op. , lim
τ→±∞

1

τ

∫ τ

0

dt ‖KU(t, 0)ψ‖2 = 0},

Theorem 12 (equivalence of definitions). Let U(t, s) be jointly continuous unitary T-periodic propagator.
Then

Hfree± = Hcont(U(T, 0)) andHbound.± = Hpp(U(T, 0))
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Definition 15 (geometrically bounded and free states). Let U(t, s) be jointly continuous unitary propaga-
tor; P := {PR}R>0 family of Hermitean operators; ‖PR‖ ≤ 1 and st− limR→∞ PR = 1. Then

Mfree
± (P ) := {ψ ∈ H : ∀R > 0, lim

τ→±∞

1

τ

∫ τ

0

dt ‖PRU(t, 0)ψ‖ = 0},

Mbound.
± (P ) := {ψ ∈ H : lim

R→∞
sup
±t>0

‖(1− PR)U(t, 0)ψ‖ = 0}.

Theorem 13 (T-periodic version of RAGE). Let P := {PR}R>0 be family of bounded operators; ‖PR‖ ≤
1; st− limR→∞ PR = 1 ;∀R > 0,∀ψ ∈ H, PR{U(t, 0)ψ : ±t > 0} is precompact. Then

Hfree± = Mfree
± (P ) = Hcont(U(T, 0)) andHbound.± =Mbound.

± (P ) = Hpp(U(T, 0))

Previous theorem can be seen as generalization of the RAGE theorem since in time-independent case rel-
ative compactness of PR with respect to H for all R > 0 implies precompactness of ∀R > 0,∀ψ ∈
H, PR{U(t, 0)ψ : ±t > 0}. This can be seen rewriting PRU(t, 0)ψ = PR(H(t) + i)−1(H(t) +
i)U(t, 0)(H(0) + i)−1(H(0) + i)ψ. Note that under some regularity conditions (e.g. theorem 2 ) one
can get local boundedness of operator (H(t) + i)U(t, 0)(H(0) + i)−1, however one does not have uniform
boundedness in general (e.g. theorem 14).

5.2 The time-mean of Hamiltonian

Inspired by the RAGE theorem the author proposes following theorems.

Lemma 6. Let

• B be self-adjoint operator in complex separable Hilbert spaceH1,

• A(t) unitary-operator valued function,

• A(t)DomB = DomB

•
∥∥BA(t)(B + i)−1

∥∥ is locally bounded,

• B =
∫
λdP

(B)
λ

• τ > 0; µλ := 1
τ

∫ τ
0
A(t)∗P

(B)
λ A(t)dt is operator valued function,

• Bτψ :=
∫
λdµλ.

Then

•µ is POVM,

•∀ψ ∈ DomB,Bτψ =
1

τ

∫ τ

0

A(t)∗BA(t)ψdt,

•DomBτ = DomB.

Proof. RHS is well defined using theory of Bochner integral as given in [21] since

‖A(t)∗BA(t)ψ‖ ≤
∥∥BA(t)(B + i)−1

∥∥ ‖(B + i)ψ‖ .

Proving axioms 1,2 of POVM for µ is straight forward. Third axiom also holds true due to ∀M ∈ B,∀ψ ∈
H1, 〈ψ|A∗(t)µ(M )A(t)ψ〉 ≤ 1 and Lebesgue theorem.

One can define family of mutually absolutely continuous POVM measures ∀t ∈ R, µ̃λ[t] := A(t)∗PλA(t).
The equality of the operators is not hard to prove using mutually absolute continuity of POVM measures
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i.e. ∀t ∈ R,∀M ∈ B, µ̃[t](M) = 0 ⇔ µ̃[0](M) = 0, definition of the integral using a a.e.µ̃[0]-pointwise
convergence of simple functions for which |sn(λ)| ≤ |λ| and Lebesgue theorem, which uses estimate

∀ψ ∈ DomB,

∥∥∥∥∫ sn(λ)dµ̃[t]λψ

∥∥∥∥2

=

∥∥∥∥∫ sn(λ)dPλA(t)ψ

∥∥∥∥2

=

=

∫
|sn(λ)|2d〈A(t)ψ|PλA(t)ψ〉 ≤

∫
|λ|2d〈A(t)ψ|PλA(t)ψ〉 =

= ‖BA(t)ψ‖2 ,

where last term is locally bounded. From the previous one easily gets also equality of domains:∫
λ2d〈ψ|µλψ〉 =

1

τ

∫ τ

0

〈A(t)ψ|BA(t)ψ〉dt <∞⇔ ψ ∈ DomB.

Following lemma is generalization of lemma 2.4 in paper [18] due to Enss and Veselic. It is even more
important that following lemma can be, in fact, interpreted as quantum ergodic theorem. This can be seen
comparing it to the Birkhoff ergodic theorem.

Lemma 7. Let

• C be compact operator,

• A(t) unitary operator valued function,

• A := A(1),

• ∀t ∈ R, j ∈ Z, A(t+ j) = A(t)Aj ,

• A �Hpp(A)=
∑

eiλj∈σp(A) eiλj P
(A)
j , where P (A)

j are orthogonal projectors on eigensubspaces cor-
responding to distinct eigenvalues eiλj .

Then

u− lim
τ→∞

1

τ

∫ τ

0

A∗(t)CA(t)dt =
∑

eiλj∈σp(A)

P
(A)
j

∫ 1

0

A∗(t)CA(t)dtP
(A)
j

Proof. Lemma 2.4 from paper [18] states that

u− lim
τ→∞

1

τ

∫ τ

0

A∗(t)CA(t)P
(A)
cont(R) = 0.

Using fact that C∗ is also compact and ∀B ∈ B(H), ‖B‖ = ‖B∗‖ one can see that

u− lim
τ→∞

P
(A)
cont(R)

1

τ

∫ τ

0

A∗(t)CA(t) = 0.

Thus one can reduce problem to the case where A = Ap := AP
(A)
pp (R) =

∑
eiλj∈σp(A) eiλj P

(A)
j .

Integral can be reduced into sum as can be seen in the following

[τ ]

τ

[τ ]−1∑
n=0

1

[τ ]
A−n

∫ 1

0

A(t)∗CA(t)dtAn − 1

τ

∫ 1

τ−[τ ]

A−[τ ]A(t)∗CA(t)dtA[τ ]

Since
∥∥∥∫ 1

τ−[τ ]
A−[τ ]A(t)∗CA(t)dtA[τ ]

∥∥∥ ≤ ‖C‖ last term can be omitted thus

lim
τ→∞

1

τ

∫ τ

0

A∗(t)CA(t) = lim
N→∞

N−1∑
n=0

1

N
A−n

∫ 1

0

A(t)∗CA(t)dtAn.
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One can see that C ′ :=
∫ 1

0
A(t)∗CA(t)dt is compact operator since it is integral of uniformly continuous

compact operator valued function. Since compact operator is operator limit of finite dimensional operator
one can reduce problem to case where C ′ = |ψ〉〈φ|. Since P (A)

j are mutually orthogonal projectors from
spectral decomposition of A one has for ∀x ∈ H

∥∥∥∥∥∥
(N−1∑
n=0

1

N
A−n|ψ〉〈φ|An −

∑
eiλj∈σp(A)

P
(A)
j |ψ〉〈φ|P (A)

j

)
|x 〉

∥∥∥∥∥∥
2

≤ (5.3)

≤
∑

eiλj∈σp(A)

∥∥∥P (A)
j |ψ〉

∥∥∥2

|〈φ|
(N−1∑
n=0

1

N
An e−inλj −P (A)

j

)
|x 〉|2 = (5.4)

=
∑

eiλj∈σp(A)

∥∥∥P (A)
j |ψ〉

∥∥∥2 ∑
eiλk∈σp(A):λk 6=λj

∥∥∥∥∥
N−1∑
n=0

1

N
ein(λk−λj) P

(A)
k |φ〉

∥∥∥∥∥
2

‖x‖2 (5.5)

Because sum in (5.5) can be estimated by ‖ψ‖2 ‖φ‖2 ‖x‖2 one can exchange limit limN→∞ and summa-
tions in (5.5) and using the following limit

lim
N→∞

N−1∑
n=0

1

N
eix =

{
1 x = 2πk : k ∈ Z
0 elsewhere.

One can complete the proof. Note that the author expects that the proof of lemma 2.4 [18] can be done in
analogous way.

Theorem 14 (T-mean theorem). Let

• B be self-adjoint semi-bounded operator with compact resolvent on complex separable Hilbert space
H,

• B =
∫
λdP

(B)
λ ,

• A(t) unitary-operator valued function,

• A(t)DomB = DomB,

•
∥∥BA(t)(B + i)−1

∥∥ is locally bounded,

• ∀τ ∈ R, µ[τ ]λ := 1
τ

∫ τ
0
A(t)∗P

(B)
λ A(t)dt is POVM,

• ∀M ∈ B, µ[∞](M) := limτ→∞ µ[τ ](M),

• A := A(1),

• ∀t ∈ R,∀j ∈ Z, A(t+ j) = A(t)Aj ,

• A �Hpp(A)=
∑

eiλj∈σp(A) eiλj P
(A)
j , where P (A)

j are orthogonal projectors on eigensubspaces cor-
responding to distinct eigenvalues eiλj .

Then

1. ∀λ ∈ R, µ[∞]λ = limτ→∞ µ[τ ]λ =
∑

eiλj∈σp(A) P
(A)
j µ[1](M)P

(A)
j ,

2. µ[∞](R) = 1,

3. µ[∞] is POVM ⇔ Hcont(A) = {0},

4. µ[∞] �Hpp(A) is POVM on Hilbert spaceHpp(A),
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5. B∞ :=
∫
λdµ[∞] �Hpp(A) is symmetric operator onHpp(A),

6. DomB∞ = {ψ ∈ Hpp(A) :
∑

eiλj∈σp(A)

∫ 1

0

∥∥∥BA(t)P
(A)
j ψ

∥∥∥2

dt <∞},

7. ψ /∈ Hpp(A), ψ ∈ DomB, limτ→∞〈ψ|Bτψ〉 =∞,

8. ∀ψ ∈ DomB∞ ∩DomB, 〈ψ|B∞ψ〉 ≤ lim infτ→∞〈ψ|Bτψ〉,

9. ∀ψ ∈ DomB∞ ∩DomB, ‖B∞ψ‖ ≤ lim infτ→∞ ‖Bτψ‖ .

Proof. The first two implications (1.,2.) of the theorem can be proven using previous lemma and fact that
∀τ ∈ R, µ[τ ](R) = 1. Since

(∀ψ, φ ∈ H : ψ /∈ Hpp(A)), lim
λ→∞

〈φ|µ[∞]λψ〉 = 0 6= 〈φ|ψ〉

one can see that while axioms of POVM holds true for µ[∞], axiom (3) does not. However axiom (3) of
POVM holds true for µ[∞] �Hpp(A) on Hilbert spaceHpp(A) thus it is POVM.

Domain defined for integral with respect to POVM µ[∞] is

DomB∞ = {ψ ∈ Hpp(A) :

∫
λ2d〈ψ|µ[∞]ψ〉 <∞}.

Using ∀M ∈ B, µ[1] = 0⇒ µ[∞] = 0 one can choose proper set of simple functions to prove that the sum∑
eiλj∈σp(A) and the POVM integral can be exchanged.∫

λ2d〈ψ|
∑

eiλj ∈σp(A)

P
(A)
j µ[1 ]λP

(A)
j ψ〉 =

∑
eiλj∈σp(A)

∫
λ2d〈ψ|P (A)

j µ[1 ]λP
(A)
j ψ〉

Now using lemma 6 one prove next part of the theorem∑
eiλj∈σp(A)

∫
λ2d〈ψ|P (A)

j µ[1 ]λP
(A)
j ψ〉 =

=
∑

eiλj∈σp(A)

∫ 1

0

∫
λ2d〈ψ|P (A)

j A(t)∗P
(B)
λ A(t)P

(A)
j ψ〉dt =

=
∑

eiλj∈σp(A)

∫ 1

0

∥∥∥BA(t)P
(A)
j ψ

∥∥∥2

dt.

To prove
ψ /∈ Hpp(A), lim

τ→∞
〈ψ|Bτψ〉 =∞,

one can use following estimate and without loss of generality consider that B ≥ 0 i.e. is positive.

∀ψ ∈ DomB, ∀n ∈ N,

〈ψ|Bτψ〉 =

∫
λd〈ψ|µ[τ ]λψ〉 ≥ n〈ψ|µ[τ ]((n,∞))ψ〉 ≥

≥ n〈ψcont |µ[τ ]((n,∞))ψcont〉+ 2nRe(〈ψpp |µ[τ ]((n,∞))ψcont〉),

where ψcont = P
(A)
cont(R)ψ and ψpp = P

(A)
pp (R)ψ. Since one has

lim
τ→∞

〈ψpp |µ[τ ]((n,∞))ψcont〉 = 0,
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and
lim
τ→∞

〈ψcont |µ[τ ]((n,∞))ψcont〉 = ‖ψcont‖2 ,

it is straightforward that addressed part of the theorem holds.

Proving the remaining part of the theorem is now straightforward using analogous approach as used in
the well-known proof of Fatou’s lemma. Note that it is important to take into consideration that ∀M ∈
B, µ[τ ](M) = 0⇔ µ[1](M) = 0⇒ µ[∞](M) = 0.
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Chapter 6

Methods of studying stability

This section is devoted to the existing methods of studying time evolution generated by time-dependent
Hamiltonians. Three well known methods that are mentioned below are all based on iterative conjugation
of Floquet HamiltonianK by unitary operators so that partial resp. complete diagonalization is after finitely
resp. infinitely many steps achieved.

First two methods which are summarized in following two theorems 16,17 were initiated by Howland. They
are both based on the result from scattering theory, which states that the absolutely continuous spectrum
is invariant under trace class perturbation. This result is summarized in the following theorem, which is in
fact consequence of Theorem 5 in [7].

Theorem 15. Let H0 be self-adjoint operator inH, H(t) = H(t+ T ) = H0 + V (t) for which associated
propagator U(t, s) exists,

•V (t) is measurable,

•V (t) is self-adjoint,

•V (t) is trace class ⇔ Tr
√
V (t)∗V (t) <∞,

•
∫ T

0

Tr
√
V (t)∗V (t)dt <∞.

Then
σac(H0) = ∅ ⇒ σac(U(T, 0)) = ∅

Since there are no restrictions on singular spectrum previous theorem does not resolve problem of stability
completely, because there still may be propagating states P (U(T,0))

cont ψ 6= 0.

The previous theorem was used by Howland in papers [5, 6] and further developed in [10, 11] to develop
method called the adiabatic method. Basic result from [5] is given in the following theorem.

Theorem 16 (The adiabatic method). Let H0 is self-adjoint operator inH with non-degenerate pure point
spectrum σ(H0) = {Em}∞m=1, such that growing gap condition holds true:

∃c > 0, α > 0, ∀n ∈ N En+1 − En ≥ cnα,

and V (t) ∈ C2(R,B(H)s)) , ∀t ∈ R, V (t + T ) = V (t). Then Floquet Hamiltonian spectrum σac(K) =
σac(U(1⊗ U(T, 0))U∗) = ∅.

Proof. Only short summary of the main idea of the proof is given in this work.

Unitary operators eW (t) used to achieve partial diagonalization are chosen to be generated by symmetric
operator map iW (t), which fulfills [W (t), H0] = −V (t). Previous equation is non-uniquely solved by
operator with following matrix entries in the eigenvector basis of H0:
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Wm,n(t) =

{
−Vm,n(t)
Em−En for m 6= n

0 else.
.

In expansion of conjugated Floquet Hamiltonian eW (t)K e−W (t) former potential V (t) is effectively re-
placed by i∂tW (t), which due to adiabatic gap condition has better decay properties than former potential
V (t).

By iterating previous procedure one, after finite steps, arrives to equivalent Floquet Hamiltonian with
uniformly-trace-class potential. Thus one can then use 15 to prove the theorem.

The main difficulty of proving this theorem is showing that other members of expansion of unitary conju-
gations are ”less important”.

Another application of 15 given in the following theorem was introduced by Howland in [9].

Theorem 17 (The anti-adiabatic method). Let H0 be self-adjoint operator in H with non-degenerate pure
point spectrum σ(H0) = {Em}∞m=1. Assume that anti-adiabatic gap condition holds true:

∀m,n ∈ N,∃γ ∈ (0, 1/2),∃a1 > 0, |Em − En| <
a1|m− n|

(mn)γ

and that H(t) := H(t + T ) = H0 + V (t) for which associated propagator U(t, s) exists. Further more
assume that

∀m,n ∈ N,∃r > 1 +
2

γ
,∃a2 > 0, |V (t)m,n| ≤

a2

(mn)γ(max{1, |m− n|})r
,

where V (t)m,n denotes matrix entries in eigenvector basis of H0.

Then Floquet Hamiltonian spectrum σac(K) = σac(U(1⊗ U(T, 0))U∗) = ∅

Proof. Only the main idea of the proof will be given in this paper. The proof is based on the same iteration
only W (t) is chosen in a different way. Here the generator iW (t) of the unitary operator eW (t) used for
conjugation is

W (t) = i

∫ t

0

du

(
V (u)− 1

T

∫ T

0

dsV (s)

)
.

So that V (t) is effectively replaced by [W (t), i∂t]. Using anti-adiabatic condition one can prove that

|[W (t), H0]m,n| ≤
|W (t)m,n||m− n|

(mn)γ
.

Thus decay of on-diagonal elements is improved. After finite iterative steps one arrives to unitary equivalent
Floquet Hamiltonian with V (t) effectively replaced by uniformly-trace-class operator and thus one can use
theorem 15.

The main difficulty of proving this theorem is showing that other members of expansion of unitary conju-
gations are ”less important”.

Quantum KAM method, which is inspired by result of Kolmogorov, Arnold and Moser in the classical
mechanics, was proposed by Bellissard [12] and further developed in [13, 14, 15]. Following theorem is
taken from [22].

Theorem 18. Let H0 be self-adjoint operator in H with non-degenerate pure point spectrum σ(H0) =
{Em}∞m=1, such that growing gap condition holds true:

∃c > 0, α > 0, ∀n ∈ N En+1 − En ≥ cnα.
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Assume thatH(t) := H(t+2π) = H0 +V (t) for which associated propagator U(t, s) exists. Furthermore
assume that

•V (t) ∈ C(R,Bs(H)),

•∀t ∈ [0, 2π], V (t) = V (t)∗ i.e. is Hermitean

•ω1, ω2 ∈ R : ω2 − ω1 > 0,

Then ∃p(α) > 0,∀r > p(α),∃q(α, r) > 0,∃u(α, r) > 0 such that the following implication holds true:

sup
m∈N

∑
n∈N

∑
k∈Z

∣∣∣∣∫ 2π

0

e−i2πkt V (t)m,ndt

∣∣∣∣(max{1, |k|})r < q(α, r)

implies

∃Ωres ⊂ [ω1, ω2] ⊂ R so that

•
∫

Ωres

1dt ≤ u(α, r)(ω2 − ω1) sup
m∈N

∑
n∈N

∑
k∈Z

∣∣∣∣∫ 2π

0

e−i2πkt V (t)m,ndt

∣∣∣∣(max{1, |k|})r,

•∀ω ∈ [ω1, ω2] \ Ωres, Kω = −i∂t +H0 + V (ωt) has pure point spectrum.

Where V (t)m,n are matrix entries in eigenvector basis of H0.

Proof. Only the main idea of the proof will be given in this paper. The proof is based on iterative con-
jugation of Floquet Hamiltonian by unitary operators such that in the limit complete diagonalization is
achieved. This then implies that perturbed operator has also pure point spectrum under assumptions of the
theorem.
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Chapter 7

Example

7.1 Notation

Vectors of standard orthonormal basis in the finite dimensional Hilbert space Cn will be denoted E1 :=
{ej}nj=1 ⊂ Cn or {|ej 〉}nj=1 ⊂ Cn.

Definition 16. LetH be separable Hilbert space, E = {fk}k∈I is its orthonormal basis, where I = Z resp.
I = N ∪ {0}. Assume that a, b ∈ C and ∀k ∈ I, ak ∈ C. Then following notation will be used:

jacE(a, b) :=
∑

j,j+1∈I
a|fj 〉〈fj+1 |+ b|fj+1 〉〈fj |,

diagE({ak}k∈I) :=
∑
j∈I

aj |fj 〉〈fj |.

Note that jacE(a, b) ∈ B(H).

7.2 The problem

Let us define for some ω,Ω > 0 periodically time-dependent Hamiltonian H(t) with period T = 2π/Ω
that acts inH,

H(t) =



0 0 0 0 . . . 0
0 ω 0 0 . . . 0
0 0 2ω 0 . . . 0
0 0 0 3ω . . . 0
...

. . .
...

0 0 0 0 . . . (n− 1)ω


+ ε sin(Ωt)



0 1 0 0 . . . 0 0
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
...

. . .
...

...
. . . 1

0 0 0 0 . . . 1 0


That is

H(t) = H0 + εH1(t),
where H0 = ωdiag(0, 1, . . . , n− 1), H1(t) = sin(Ωt)jacE1(1, 1).

Main goal is to study the unitary evolution propagator fulfilling the Schrödinger equation. It can be easily
seen that this problem is equivalent to the problem of finding Floquet operator generated by the following
Hamiltonian.
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H̃(t) := e−itH0 H1(t) eitH0 = ε sin(Ωt)jacE1(e−iωt, eiωt). (7.1)

Note that H̃(t) need not to be periodical for general choice of ω,Ω. The first order time-averaging approx-
imation of this Hamiltonian, taking into account

lim
τ→∞

1

τ

∫ τ

0

eixt dt =

{
1 for ∀k ∈ Z x = 2πk

0 elsewhere.
,

can be easily calculated:

H̃(1) := lim
τ→∞

1

τ

∫ τ

0

H̃(t)dt =

{
iε
2 jacE1(−1, 1) for ω = Ω

0 elsewhere.
. (7.2)

Alternative proof will be given in following section using well known fact that time-averaging in case
of periodic Hamiltonians is in some sense equivalent to the classical first-order perturbation of Floquet
Hamiltonian. One can define approximated Hamiltonian of studied problem:

H(1)(t) = H0 + eitH0 H̃(1) e−itH0 =

{
H0 + iε

2 jacE1(− eiωt, e−iωt) ω = Ω,

H0 ω 6= Ω,
(7.3)

whose unitary propagator is simple to derive as can be seen from the section 7.5.

7.3 Floquet Hamiltonian and its first order approximation

Since corollary after (5) obviously holds true for the problem defined above one can directly consider
Floquet Hamiltonian in the following form.

K :=− i∂t + 1⊗H0 + εH1(t) = K0 + εK1 = (7.4)

= −i∂t + 1⊗ ωdiagE1({0, 1, . . . , n− 1) +
iε

2
jacE2(−1, 1)⊗ jacE1(1, 1) (7.5)

where sin(Ωt) fromH1(t) acts as multiplication by function onK = L2([0, T ],Cn) = L2([0, T ],dt)⊗Cn,
K0 = ∂t + 1⊗H0 and K1 = εH1(t). Let us define orthonormal basis on L2([0, T ],dt) as E2 := {fk}k∈Z,
where fk(t) := eitkΩ

√
T

and unitary operator on K:

Qfk ⊗ ej := e−itjω fk ⊗ ej =

{
fk−m′ ⊗ ej for jω = m′Ω,∑
m∈Z

e−ijTω −1
iT ((k−m)Ω−jωfm ⊗ ej elsewhere: ∀m′ ∈ Z, jω 6= m′Ω.

.

Using previous definitions one can rewrite Floquet Hamiltonian into the following form.

If ∃k ∈ N, ω = kΩ then

K = Q∗ − i∂tQ+
iε

2
jacE2(−1, 1)⊗ jacE1(1, 1) = (7.6)

= Q∗
(
−i∂t +

iε

2
e−iωt jacE2(−1, 1)⊗ jacE1(1, 0) +

iε

2
eiωt jacE2(−1, 1)⊗ jacE1(0, 1)

)
Q (7.7)

Since K0 has only isolated eigenvalues in the spectrum, the first order perturbation K(1) can be derived
using well-known equation from [19].

K(1) = K0 + ε
∑

λ∈σ(K0)

PλK1Pλ,
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where Pλ is orthogonal projector on eigensubspace corresponding to λ ∈ σ(K0). Since K1 acts on H as
jacE2 ⊗ jacE1 the perturbation is non-trivial only if ∃k, j ∈ Z,∃λ ∈ σ(K0) so that fk ⊗ ej , fk+1 ⊗ ej+1 ∈
RanPλ or fk+1 ⊗ ej , fk ⊗ ej+1 ∈ RanPλ. Using definition of K0 one can see that fk ⊗ ej ∈ RanPλ ⇒
λ = kΩ + jω. Since ω,Ω > 0 previous gives that perturbation is non-trivial only if (k + 1)Ω + jω =
kΩ + (j + 1)ω, which is equivalent to condition ω = Ω. For ω = Ω the projectors on eigensubspaces get
simple form:

ω = Ω ⇒ K0 =
∑
k∈Z

kωPk, Pk =

n∑
j=1

|fk−j+1 〉〈fk−j+1 | ⊗ |ej 〉〈ej |.

ω = Ω ⇒ PkK1Pk = Q

(
|fk 〉〈fk | ⊗

i

2
jacE1(−1, 1)

)
Q∗,

Thus first order perturbation K(1) can be written in following form:

K(1) =

 Q

(
− i∂t + 1⊗ iε

2 jacE1(−1, 1)

)
Q∗ for ω = Ω,

K0 elsewhere.
(7.8)

Thus for approximation ofH(t) one has indeed the same result as when using time-averaging method (7.3).
It is also interesting that

e−iTK(1) =

 Q

(
1⊗ e

Tε
2 jacE1 (−1,1)

)
Q∗ for ω = Ω,

1⊗ 1 elsewhere.
(7.9)

7.4 Discrete symmetry of the problem

Definition 17.

R :=

n∑
j=1

|en+1−j 〉〈ej |

Note that R = R−1 = R∗.

Known symmetries of the studied Hamiltonians 7.2 follows:

H(t) =RH(t)R = (n− 1)ω −RH(−t))R (7.10)

H̃(t) =RH̃(t)R = −RH̃(−t))R (7.11)

H̃(1) =RH̃(1)R = −RH̃(1)R, (7.12)

H̃(1) = e−i
T
2 H0 RH̃(1)R ei

T
2 H0 . (7.13)

The first symmetry from (7.10) can be applied directly to Schrödinger equation for the propagator U(t, 0)
generated by H(t) with initial conditions ∀s ∈ R, U(s, s) = 1.

i
d

dt
U(t, 0) = H(t)U(t, 0)

i
d

dt
(eit(n−1)ω U(t, 0)) = −RH(−t))R(eit(n−1)ω U(t, 0)),

i
d

dt
(eit(n−1)ω RU(t, 0)R) = −H(−t) eit(n−1)ω RU(t, 0)R,

i
d

dt
(e−it(n−1)ω RU(−t, 0)R) = H(t) e−it(n−1)ω RU(−t, 0)R.
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Using well-known property of monodromy operator ∀n ∈ Z, U(t + nT, s + nT ) = U(t, s) one can
derive also symmetries of Floquet operator.

∀t ∈ R, U(t, 0) = e−it(n−1)ω RU(−t, 0)R , (7.14)

U(T, 0) = eiT (n−1)ω RU(T, 0)−1R . (7.15)

(7.16)

This can be applied to obtain following

∀t ∈ R, U(0, t)H0U(t, 0) = (n− 1)ω −RU(−t, 0)H0U(−t, 0)R

One can derive perturbed unitary propagator generated by H(1)(t) defined in (7.3).

U(1)(t, s) = e−itH0 e−i(t−s)H̃(1) eisH0 , (7.17)

One can observe that for ω 6= Ω is propagator trivial U(1)(t, s) = e−i(t−s)H0 , U(1)(T, 0) = 1.

Using symmetries listed in (7.10) for non-trivial case Ω = ω one can see that

RU(1)(t, 0)R = R e−itH0 RR e−itH̃(1) R = e−it(n−1)ω e+itH0 eitH̃(1) = e−it(n−1)ω U(1)(−t, 0) =,

= e−it(n−1)ω ei2tH0 ei
T
2 H0 U(1)(t, 0) e−i

T
2 H0

Thus if n = 2m− 1 and Ω = ω then

∀t ∈ R, 〈U(1)(t , 0 )em |H0U(1)(t , 0 )em〉 =
n− 1

2
ω .

Thus in analogy with (7.14) for non-trivial case Ω = ω one gets

∀t ∈ R, U(1)(t, 0) = e−it(n−1)ω e−i2tH0 e−i
T
2 H0 RU(1)(t, 0)R ei

T
2 H0 , (7.18)

∀t ∈ R, U(1)(t, 0) = e−it(n−1)ω RU(−t, 0)R , (7.19)

U(1)(T, 0) = e−i
T
2 H0 RU(1)(T, 0)R ei

T
2 H0 , (7.20)

U(1)(T, 0) = RU−1
(1) (T, 0)R (7.21)

These symmetries has interesting implications on the spectrum and eigenvectors of U(1)(T, 0) particularly
since it has for non-trivial case Ω = ω non-degenerate spectrum.

Lemma 8 (symmetry). Let A =
∑

eiλ∈σ(A) eiλ P (λ) be a unitary operator, {P(λ)}eiλ∈σ(A) a system of
orthogonal projectors that defines operator. Assume that R is matrix defined in definition 17.

Then

A = RA−1R ⇔
(
∀ eiλ ∈ σ(A), (e−iλ ∈ σ(A) ∧ P (−λ) = RP (λ)R

)
Proof.

A−1 =
∑

eiλ∈σ(A)

e−iλ P (λ) =
∑

eiλ∈σ(A)

eiλRP (−λ)R = RAR

Since {RP (λ)R}λ∈σ(A) is also a system of orthogonal projectors that defines operator.
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Lemma 9.

∀ε : 0 < ε < π, u− lim
τ→∞

1

τ

∫ τ

0

U(1)(0, t)H0U(1)(t, 0)dt =

{
(n−1)ω

2 ω = Ω

H0 ω 6= Ω

Proof. The proof is based on the first symmetry in 7.18 and the fact that for ∀0 < ε < π operator U(1)(T, 0)
has non-degenerate spectrum. That is a result of the section 7.5 also equation 7.23 and 7.24 will be used in
following. One can define

Bτ :=
1

τ

∫ τ

0

U(1)(0, t)H0U(1)(t, 0)dt,

B∞ :=

n∑
l=1

|v (l)〉〈v (l)|BT |v (l)〉〈v (l)| =
n∑
l=1

|v (l)〉〈v (l)| 〈v (l)|BT v (l)〉.

The T-mean theorem 14 states that
lim
τ→∞

‖Bτ −B∞‖ = 0

since the dimension is finite.

Now due to the first symmetry in 7.18 and lemma 8 one has following symmetries

|v (l)〉〈v (l)| = e−i
T
2 H0 R|v (l)〉〈v (l)|R ei

T
2 H0

e−i
T
2 H0 RBTR ei

T
2 H0 = (n− 1)ω −BT .

Thus

〈v (l)|BT v (l)〉 = 〈v (l)|R ei
T
2 H0 e−i

T
2 H0 RBTR e−i

T
2 H0 ei

T
2 H0 Rv (l)〉 = (n− 1)ω − 〈v (l)|BT v (l)〉.

Lemma 10. Let

µ(1)[∞](ωj) : = u− lim
τ→∞

1

τ

∫ τ

0

U(1)(0, t)P
H0(ωj)U(1)(t, 0)dt =

=

{∑n
l=1 |v (l)〉〈v (l)|PH0(ωj)|v (l)〉〈v (l)| ω = Ω,

PH0(ωj) ω 6= Ω

Then ∥∥µ(1)[∞](ωj)
∥∥

2
=

{√
3

2(n+1) ω = Ω,

1 ω 6= Ω,

where ‖.‖2 is Hilbert-Schmidt operator norm.

Proof.

(
∥∥µ(1)[∞](ωj)

∥∥
2
)2 = Tr

(
µ(1)[∞](ωj)

)∗
µ(1)[∞](ωj) =

=

{∑n
l=1 Tr |〈v (l)|PH0 (ωj )v (l)〉|2 ω = Ω,

TrPH0(ωj) ω 6= Ω

Rest of the proof is straightforward using definition of v(l) from (7.23) and well-known trigonometric
equations.
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7.5 Approximated propagator

In this section following notation will be used:

an(λ) := det(
2

ε
H̃(1) + λ) in Hilbert space dimH = dimCn = n.

It is easily shown using Laplace formula for determinants twice and one can see that

an(λ) = λan−1(λ)− an−2(λ). (7.22)

Note that a0 = 1 is consistent with the recurrence relation. The first few determinants can be computed
directly from definition:

a1 = λ a2 = λ2−1, a3 = λ(λ2−2), a4 = (λ2− 3 +
√

5

2
)(λ2− 3−

√
5

2
), a5 = λ(λ2−1)(λ2−3).

With proper initial conditions difference equation (7.22) has following solution for λ 6= ±2.

an =
(λ+

√
λ2 − 4)n+1 − (λ−

√
λ2 − 4)n+1

2n+1
√
λ2 − 4

=

=
1

2n+1
√
λ2 − 4

n+1∑
k=0

(
n+ 1

k

)
λn+1−k

√
λ2 − 4

k
(1− (−1)k)

=
1

2n

[n2 ]∑
k=0

(
n+ 1

2k + 1

)
λn−2k(λ2 − 4)k =

(
λ

2

)n [n2 ]∑
k=0

(
n+ 1

2k + 1

)
λ−2k(λ2 − 4)k

It is now easy to see that roots of polynomial an are located in open interval (−2, 2). Thus for finding all
roots we can use substitution λ = 2 cosϕ.

an(2 cosϕ) =
(2 cosϕ+

√
4 cos2 ϕ− 4)n+1 − (2 cosϕ−

√
4 cos2 ϕ− 4)n+1

2n+1
√
λ2 − 4

=

=
sin((n+ 1)ϕ)

sinϕ

Thus eigenvalue system is σ(H̃(1)) = {−ε cos πl
n+1}

n
l=1 ⊂ (−ε, ε). Thus spectrum of H̃(1) is non-

degenerate. Corresponding eigenvector problem can be solved easily solving recurrence relation:

v
(l)
0 = 0, v

(l)
1 = 1, ∀j ∈ {1, 2, . . . n− 2}, −iv(l)

j − 2 cos
πl

n+ 1
v

(l)
j+1 + iv

(l)
j+2 = 0.

Solution after normalization to 1 i.e.
∑n
j=1 |v

(k)
j |2 = 1 is

〈ej |v (l)〉 = v
(l)
j = (−i)j sin(

πlj

n+ 1
)

√
2

n+ 1
. (7.23)

Thus one gets:

H̃(1) =

n∑
l=1

−ε cos
πl

n+ 1
|v (l)〉〈v (l)| (7.24)
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Explicit formula for propagator U(1)(t) = e−itH0 e−itH̃(1) can now be written down

〈ej |U(1)(t)ek 〉 = e−itH0 e−itH̃(1) =

n∑
l=1

e−it[(j−1)ω−ε cos πl
n+1 ](−i)j−k sin(

πlj

n+ 1
) sin(

πlk

n+ 1
)

2

n+ 1

(7.25)

One can use mentioned symmetries in case of the first-order approximated time evolution to obtain inter-
esting results as given in corollary (9).

7.6 The simplest case

Let dimH = dimC2 = 2 and

U(T, 0) =

(
a b
c d

)
.

It is easy to show using (7.25) that for ω = Ω one has

U(1)(t, 0) =

(
cos( εt2 ) − sin( εt2 )

e−iωt sin( εt2 ) e−iωt cos( εt2 )

)
.

From unitarity and symmetry (7.15) one can prove strong restriction in such low dimension on U(T, 0).
From U−1(T, 0) = U∗(T, 0) = ei(2−1)ωT RU(T, 0)R one obtains

1

detU(T, 0)

(
d −b
−c a

)
=

(
a c

b d

)
= eiωT

(
d c
b a

)
.

Using well known lemma [3] from theory of linear differential equations that implies that i ddtdetU(t, 0) =
Tr(H)detU(t, 0) one gets detU(t, 0) = e−iωt . Thus detU(T, 0) = e−iωT , c = e−iωT c = −b and
e−iωT a = d. It is straightforward that one can find φ, η ∈ [0, 2π) so that

U(T, 0) = e−i
ωT
2

(
cos(φ) eiη − sin(φ)

sin(φ) cos(φ) e−iη

)
.

Due to the reasons given in 7.7 the author expects that for U(T, 0) = U(1)(T, 0) +O(ε) and also

φ(ε) =

{
ε
2 +O(ε2) for ω = Ω,

0 elsewhere.
,

η(ε) = 0.

7.7 Remarks and suggestions

This section is devoted to the possibilities for further research and proposals of theorems. Main idea is a
proposal to study asymptotic behavior of (H0)∞ as n→∞ expecting that at least for the finite dimensional
cases it can be proven that (H0)∞ is somehow close to it’s first order approximation. It appears from 14
that the best would probably be to study at first asymptotic behavior of µ[∞] and then try to prove some
theorems regarding (H0)∞.

Following definitions are in fact recapitulation of the definition of the problem done in 7.2 in the finite
dimension and inductive generalization of the problem to the infinite case. Also notation defined in this
section is used in numerical analysis in the section 7.8.
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Definition 18.

LetH := span{ej : j ∈ N} be a complex separable Hilbert space,

E := {ej}j∈N be orthonormal basis ofH,
H(n) := span{ej : (j ∈ N : j ≤ n)} be a complex finite dimensional Hilbert space,

E(n) := {ej}j∈N:j≤n be orthonormal basis ofH(n),

EH(n) :=
∑

j∈N:j≤n

|ej 〉〈ej |.

H := diagE(0, ω, 2ω, . . . ) + ε sin(Ωt)jacE(1, 1)

H(n) := EH(n)HEH(n) = diagE(n)(0, ω, 2ω, . . . , (n− 1)ω) + ε sin(Ωt)jacE(n)(1, 1)

H̃(1) :=

{
iε
2 jacE(−1, 1) for ω = Ω

0 elsewhere.

H(1)(t) := H0 + eitH0 H̃(1) e−itH0 =

{
H0 + iε

2 jacE(− eiωt, e−iωt) ω = Ω,

H0 ω 6= Ω,

H̃
(n)
(1) := EH(n)H̃(1)EH(n) =

{
iε
2 jacE(n)(−1, 1) for ω = Ω,

0 elsewhere,

H
(n)
(1) (t) := EH(n)H(1)(t)EH(n) =

= H
(n)
0 + eitH

(n)
0 H̃

(n)
(1) e−itH

(n)
0 =

{
H

(n)
0 + iε

2 jacE(n)(− eiωt, e−iωt) ω = Ω,

H
(n)
0 ω 6= Ω.

U(t, s) be jointly continuous unitary propagator generated by H,

U(1)(t, s) = e−itH0 e−iε(t−s)H̃(1) eisH0 be jointly continuous unitary propagator generated by H(1),

U (n)(t, s) be jointly continuous unitary propagator generated by H(n),

U
(n)
(1) (t, s) = e−itH

(n)
0 e

−iε(t−s)H̃(n)

(1) eisH
(n)
0 be jointly continuous unitary propagator generated by H(n)

(1) .

µ[∞]λ := P
U(T,0)
j

1

T

∫ T

0

U(0, t)PH0

λ U(t, 0)dtP
U(T,0)
j

µ(1)[∞]λ := P
U(1)(T,0)

j

1

T

∫ T

0

U(1)(0, t)P
H0

λ U(1)(t, 0)dtP
U(1)(T,0)

j ,

µ(n)[∞]λ := P
U(n)(T,0)
j

1

T

∫ T

0

U (n)(0, t)P
H

(n)
0

λ U(t, 0)dtP
U(n)(T,0)
j ,

µ
(n)
(1) [∞]λ := P

U
(n)

(1)
(T,0)

j

1

T

∫ T

0

U
(n)
(1) (0, t)P

H
(n)
0

λ U
(n)
(1) (t, 0)dtP

U
(n)

(1)
(T,0)

j .

The operator H(n)
(1) (t) comes from the first order perturbation of the operator −i∂t + H(n)(t) as shown in

the section 7.3. Particularly since U(0, 0) = 1 one has from theorem 4 rather formally

〈t = 0 | e−iT (−i∂t+H(n)(t)) |t = 0 〉 = U(T, 0) and 〈t = 0 | e−iT (−i∂t+H(n)

(1)
(t)) |t = 0 〉 = U(1)(T, 0).
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Thus it is expectable that, using some existing perturbation theory, one can prove convergence of the
eigenprojectors of the operator e−iT (−i∂t+H(n)(t)) to the corresponding eigenprojectors of the operator

e
−iT (−i∂t+H(n)

(1)
(t)) and that it also holds true for “diagonal element” for “generalized” vector |t = 0 〉.

Observing the results of numerical analysis from section 7.8 especially the contour plots in the figures
7.7,7.8,7.9, taking into account fact that H1 gets “effectively smaller” with respect to the H0 as n → ∞

i.e.

∥∥∥H(n)
1

∥∥∥∥∥∥H(n)
0

∥∥∥ n→∞−−−−→ 0 thus ε gets effectively “smaller”, the author came to the the proposal of the following

theorem.

Proposal of theorem 1. There is non-increasing real function f(x) such that∥∥∥µ(n)[∞]λ − µ(n)
(1) [∞]λ

∥∥∥ ≤ εf(n).

Perturbation theory from paper [19] might not be impossible to apply the infinite dimensional version of the
problem since all eigenvalues of K0 has infinite degeneration and K1 has continuous spectrum as can seen
from the eigenvalues of H(n)

1 . However one can study the strong-resolvent operator limit of the sequence
H

(n)
(1) , which isH(1). It can be also seen that assumptions of the lemma 1 holds true, thus one has also strong

convergence of the st− limn→∞ U
(n)
(1) (T, 0) = U(1)(T, 0). Observing asymptotic properties of eigenvectors

of the sequence U (n)
(1) (T, 0) given in (7.23) one sees that U(1)(T, 0) has absolutely continuous spectrum i.e.

σsc(U(1)(T, 0)) = ∅, σsc(U(1)(T, 0)) = ∅. Another hint comes from the lemma 10, which implies

lim
n→∞

∥∥∥µ(n)
(1) [∞]λ

∥∥∥
2

= 0.

Thus if some analogue of previous proposal of theorem holds true, one might be able to prove also the
following one.

Proposal of theorem 2.

∃ε0 > 0,∀ε > 0 : ε < ε0,∀λ ∈ R, µ[∞]λ =

{
0 ω = Ω

PH0

λ ω 6= Ω.

7.8 Numerical analysis

This section is devoted to numerical analysis of the studied problem, which was done in program Wolfram
Mathematica 8. For convenience Ω = 1 will be assumed. Notation used in the previous section and in the
theorem 14 will be used in this section. Note that following notation will be used:

h(t) := 〈U (t)e1 |H0U (t)e1 〉,
h(1)(t) := 〈U(1)(t)e1 |H0U(1)(t)e1 〉.

From figures 7.1,7.2, 7.3, 7.4, 7.5, 7.4 one observes that numerical evaluation of the function h(t) obtained
by solving Schrödiger equation of the problem is well approximated by function h(1)(t) i.e. even in large
time scale h(t) appears to only oscillate around h(1)(t) with amplitude dependent on the parameter ε. In
fact in the figures two functions are so similar that one can effectively see only one of them. From further
calculations one can see that amplitude of oscillation grows with ε.

It is reasonable also to compare mean energy over infinite time period with it’s first order approximation.
This can be due to 14 done evaluating mean value ofH(n)

∞ and (H
(n)
∞ )(1) for some vector v. For convenience

only v = e1 is studied in this paper. Due to lemma 9 one sees that

〈e1 |(H (n)
∞ )(1)e1 〉 =

{
(n−1)ω

2 ω = Ω,

0 ω 6= Ω.

Thus it will be enough to visualize only the three parameter function 〈e1 |H (n)
∞ e1 〉 of parameters ω, ε, n.

For this purpose contour plot has been depicted in the figures 7.7,7.8,7.9 for dimensions n = 1, 5, 10. One
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Figure 7.1: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = Ω = 1, n = 2 .
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Figure 7.2: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = Ω = 1, n = 10 .

sees that for ε → 0 first order approximation well approximates function 〈e1 |H (n)
∞ e1 〉 and unexpectedly

this appears to hold also for limit n → ∞. This may be because H1 gets effectively smaller with respect

to the H0 as n → ∞ i.e.

∥∥∥H(n)
1

∥∥∥∥∥∥H(n)
0

∥∥∥ n→∞−−−−→ 0 thus ε gets effectively “smaller”. Note that the numerical
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Figure 7.3: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = Ω = 1, n = 50 .
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Figure 7.4: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = 1.44 6= Ω = 1, n = 2 .

computation is done by solving Schrödiger equation of the problem obtaining {U(t) : t ∈ [0, T ]}. Then
U(T ) is used to compute PU(T )

j and then integral in (H0)
(n)
1 is approximated by a sum in order to speed

up the computation in the following way:
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Figure 7.5: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = 1.44 6= Ω = 1, n = 10 .
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Figure 7.6: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e1 and parameters equal to ε = 0.1, ω = 1.44 6= Ω = 1, n = 50 .
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Figure 7.7: Numerical computation of mean energy over infinite time period with initial state e1 in the
dimension n = 2 with Ω = 1. The numbers in the bordered areas represent the infimum of the function in
that area.
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Figure 7.8: Numerical computation of mean energy over infinite time period with initial state e1 in the
dimension n = 5 with Ω = 1. The numbers in the bordered areas represent the the infimum of the function
in that area.
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Figure 7.9: Numerical computation of mean energy over infinite time period with initial state e1 in the
dimension n = 10 with Ω = 1. The numbers in the bordered areas represent the infimum of the function in
that area.
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Conclusion

The author studied existing theory of time-dependent Hamiltonians, particullary theoretical problems ap-
pearing in the cases, where gaps between points in spectra of the Hamiltonian are constant. The author
studied analytically and numerically a simple case of the system and using gathered knowledge attempted
to enrich existing theory proposing a new approach based on time-mean of Hamilton operator using theory
of positive operator measures and integration with respect to positive operator measure. The author then
proposed a possible way for continuation of the research regarding the studied simple case.
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