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Abstrakt:  Predmétem studia této prace jsou kvantové systémy ucené ¢asové zavislymi Hamiltonovy op-
eratory. Duraz je kladen na navrh nové metody pro studium dfive nefeSenych otazek stability kvantovych
systémi uréenych Hamiltonovymi operétory tvaru H(t) = Hy + V(t), kde V() je porucha a Hy je samos-
druZeny operator s Cist€ bodovym spektrem a konstantnimi mezerami mezi vlastnimi hodnotami ve spektru
o(Hy). Existujici teorie tykajii se stability kvatovych systémti s Hamiltonovymi operatory uvedeného tvaru,
kde Hj je samosdruzeny operator s Cisté bodovym spektrem a rostoucimi nebo zmensujicimi se mezerami
mezi vlastnimi hodnotami ve spektru o(Hy) je uvedena v pfislu$né kapitole. Kvuli neaplikovatelnosti
predchozich vysledkd se autor se pokousi nalézt novy pfistup ke studiu vyse zminéného problému pomoci
pojmu “stiedni hodnota Hamiltova operatoru pies nekonecny casovy interval®“. Lemma 7 lze interpretovat
jako kvantova varianta ergodického theorému ve velmi vhodném tvaru se kterym se autor nikde nesetkal.
V posledni kapitole autor studuje jednoduchy piiklad a aplikuje navrzené postupy.

Kli¢ovd slova:  Casové zavislé Hamiltonidny, stabilita kvatového systému

Title:
Hamiltonians with constant spectral intervals and time-dependent perturbation

Author: Bc. Vaclav Kosar

Abstract: This work deals with quantum systems determined by time-dependent Hamilton operators.
Family of quantum systems, whose Hamilton operators take form H(t) = Hy + V(¢), where V (¢) is
perturbation and Hj is self-adjoint with pure-point spectrum and constant gaps between eigenvalues in
spectrum o (Hy). Existing theory dealing with stability of quantum systems with Hamilton operators of
above form, where Hj is self-adjoint with pure-point spectrum and growing or shrinking gaps between
eigenvalues in spectrum o (Hy) is given in corresponding chapter. Because of non-applicability of existing
theory to the studied cases the author attempts to device a new approach based on term “mean of Hamilton
operator over infinite time interval®“. Lemma 7 can be interpreted as quantum variant of ergodic theorem in
a very nice form that the author have not encountered before. In the last chapter is devoted to the study of
simple example and to the application of devised theory.

Key words:  time-dependent Hamiltonians, stability of a quantum system
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Preface

The subject of this thesis is the study of time-dependent quantum systems, i.e. systems whose Hamiltonian
H(t) depends on time. The special interest is paid to the cases where Hamiltonian of the quantum system
takes form H (t) = Hy + ¢V (), where H is semi-bounded operator with pure point spectra with constant
gaps between distinct eigenvalues and £V (¢) is periodically time-dependent perturbation.

The subject is indeed very complicated and even the existence of time evolution is nontrivial as seen in
the chapter [2] That is why the most attempts for analytical study of this subject address only the most ele-
mentary problems like stability of the evolution, i.e. boundedness of energy in time for some sets of initial
states. To author’s knowledge all existing results regarding stability problems are based on the assumptions
on gaps between distinct eigenvalues in the pure point spectra. So far there are only results in cases where
the gaps between distinct eigenvalues are either shrinking or growing fast enough. The main results of the
previous research are included in this work in the chapter |6

Since essence of the existing theory is assumption that the gaps between distinct eigenvalues are either
shrinking or growing fast enough, the author did not expect to obtain any results for the case were the gaps
between distinct eigenvalues are constant by any simple modification of the previous results and thus tried
to take a new approach to the problem.

The chapter [/|is devoted to the study of the simple case of the studied problem, which is well defined
for arbitrary dimension of the separable Hilbert space (even for the infinite one). There author presents
his results: the first order perturbation of the time evolution for arbitrary dimension, applicable discrete
symmetries and numerical analysis.

When studying the finite dimensional problem mentioned in the previous paragraph the operator “mean
of Hamiltonian over infinite time interval” is naturally introduced. However introducing similar result for
unbounded operator was complicated and nonintuitive. This led author to the definition of positive operator
valued measure in chapter 4 and to the study of existing results in this area as [6] Attempt to correctly
define all terms regarding integral with respect to positive operator valued measure took the author great
effort since he was unaware of any complete and suitable source on positive operator measures and source
on this subject, although it probably exists. Note that the paper [16]] is unavailable to the author and the
paper [17] covers only integration over bounded function in section 7.1. That is why some terms and
relations regarding positive operator measures and integration with respect to positive operator measure
may be largely reinvention of existing terms. The author’s main theoretical results of this paper are in
chapter[5] Lemma 7 can be interpreted as quantum variant of ergodic theorem in a form the author have not
encountered before. The theorem [I4] has special importance.

However due to the lack of time, it is unknown whether the theorem [I4] leads to some results regarding
stability of some family of quantum systems. There are proposals for possible theorems regarding stability
of the infinite dimensional case of the simple problem studied in the last section of chapter[7]



List of symbols

<

B, (H)

cr(R™)

cr (R™,B,(H))
a-periodical function
= (R)

st— lim

u— lim

o(A)

®

&b resp. D
Dom

Ran

XM

A*

Tr

complex numbers.

real numbers.

Cartesian product of real numbers.

Cartesian product of complex numbers.

natural numbers.

integral numbers.

union, intersection, inclusion .

imaginary unit (should be evident from context).

identity operator (should be evident from context).

inner product in corresponding .

operator in corresponding Hilbert space H acting as Vn € H, |1} {¢|n = (¢|n)1).
closed interval.

open interval.

“such that” (e.g. Ve > 0 : € < 1is equivalent to Ve € (0, 1))

restriction.

complex conjugation of a or closure of a set (should be evident from context).
partial derivative with respect to x.

set of X -valued functions so that f(f IIf ||§( dt < oo, where X is Banach space.
set of X -valued functions so that supess, ¢, 5 |/ (t)[| + < 00,
where X is Banach space.

should be read as “for y almost all”, where y is measure.

Lebesgue measure on R.

complex separable Hilbert space.

set of all bounded operators on the Hilbert space .

strong-topology space of bounded operators on the Hilbert space .
set of functions R™ — C with continuous n-th derivative.

set of functions R™ — B(H) with strongly continuous n-th derivative.
function with period a > 0.

set of infinitely continuously differentiable functions R™ — C..
limit in strong resolvent sense.

limit in norm resolvent sense.

see the chapter

tensor product of Hilbert spaces resp. vectors resp. operators.

direct sum of Hilbert spaces resp mutually orthogonal Hilbert spaces.
domain of mapping.

range of mapping.

characteristic function of the set M.

adjoint operator of linear operator A on some H.

trace of of linear operator A on some H.



Chapter 1

Time-dependent Hamiltonians in
classical mechanics

Theorem 1 (Hamilton’s equations for flat phase-space). Let

(])H ecl(R2n+l)
(Z)VQ07p0 S Rnavz S {1727 .. .TL}, 6q1:H(QOap07t)78piH(QO7p07t) S CI(R)

Then¥i € {1,...,n},Yqo,po € R",31¢;,p; € C*(R) :

¢;(0) = qo and p;(0) = po,
.Vt S R7 825Q7, = apiH(qap7 t)a
Oipi = —0q, H(q,p,1).

Proof. Basic result of theory of ordinary differential equations. (cf. [3]). O

Some theorems for Hamiltonians, which do not dependent on time, can be generalized to the time dependent
case. This is done by defining special function called Floquet Hamiltonian and interpreting it as Hamiltonian
on extended phase-space, where two new coordinates ¢, F/ are introduced.

Definition 1 (Floquet Hamiltonian for flat phase-space).

Let H(p, q,t) € C*(R*" ™1 be Hamiltonian on phase-space R*".
Then the function K (t,q, E,p) :== E + H(q, p,t) is called Floquet Hamiltonian.

Hamilton’s equations for Floquet Hamiltonian with new time variable o taking ¢ resp. E as spacial resp.
momentum coordinate are equivalent to the former equations. Nevertheless K is time-independent Hamil-
tonian and methods developed for time-independent Hamiltonians can be now applied to study properties
of the former problem.



Chapter 2

Existence of evolution

In the following text 7» = 1 and H (¢) is mapping from R to self-adjoint operators on 7.
Question of existence of evolution operator as a solution of Schrodinger equation is treated first.

Definition 2 (strongly continuous unitary propagator). Two parametric jointly strongly continuous unitary
operator valued function U (t, s) which fulfills:

Vi, r,s e R(DU(t,m)U(r,s) =U(t, s)
2)Utt) =1

is called strongly continuous unitary propagator.

Following theorem is mainly due to Krein [20].

Theorem 2 (Existence of evolution operator). Assume that

(I)Vt e R,DomH(t) =D CH
H(t) — H(s)

(2) B(t,s) := P—

(H(s)+1)7" € C(R*,B,(H)))

i.e. can be extended by limit as a strongly continuous function fort = s.

Then

oi,s €R,IK >0, sup ||[(H(r)+i)U(r,s)(H(s)+1) || < K

relt,s]

e strongly continuous unitary propagator U (t, s) so that

Vt,s e R U(t,s)D =D and Vi € D,i%U(t,s)i/J =H()U(t, s)y.

Proof. Proof of more general theorem regarding one-parametric semi-groups can be found in [2] (theorem
X.70) and is also based on solving easier problem with H (s) by function constant on small intervals. For

H,(t) = H (M) above Schrodinger equation on D is due to the Stone’s theorem uniquely solved by

n
strongly continuous unitary propagator U,,:

[nt]—1 » _
Un(t, 3) — e—i(t_ [771:])}'—]([7::]) ( H e?H(i)) e—i(@—s)f‘](@) .
j=lnsl+1

10



Stone’s theorem also implies that U,, (¢, s) D

It follows that Vj, k € Z, U, (t,s) € C*((£, 232) x (£, 2EL) 98(H)) as H,,(s) is constant on (£, 211) for
all j € Z.

Thus to prove convergence of U,, as n — oo Bochner integral can be used in following way.

||(Un+p(t7s) = Un(t,s)Y| = ||[Un+p(t>T)Un(7‘7S)]EWH < (2.1)
t d t

S/s (h’Un-&-p(tﬂ")Un(TaS)w‘ dar :/S 1Untp(t, 1) (Hntp(r) — Hu (1)) Un (1, s)ibdr|| (2.2)

< m sup ||(Hyn(r) +i)Un(r, $)¥||, (2.3)
n relt,s]

where supy i, ) | B(t', 8)|| < a, which holds true due to uniform continuity of B(¢, s) on every compact
subinterval of R?. It is now enough to estimate supremum on RHS of (2:3) independently of n.

One can reduce previous problem using following
|(Ha(r) + ) Un(r, )0 || < [[(Hn(r) + 0)Un(r, 8)(Hn(s) + )7 || |1 Ha(s) + D)0,

since ¢ € DomH,,(s) and by the closed-graph theorem operator (H,,(r) + i)U,(r, s)(H,(s) + i)~*
bounded.

(H([nr] —1>+Z_>Un([nr] -1 [n8]+1)(H([ns]+1)+i)_1 _

n n

j i j—1 -1
= J] <H(n)+i>enH(‘n)<H(n)+i>
j=[ns]+1

Now RHS of the above equation can be easily iteratively estimated.

H +z)U([m“]n—17[m]nJrl)(H([ns]nﬂ)H)1 .
<(E+) (H([”’“L_z)ﬂ)rjn([m‘]n—?,[ns]n+1)<H([ns]n+1)+i>1

Where commutation properties of propagators and their generators on D from Stone theorem were used.
This can be used to estimate above supremum in following way. Let ¢ := (H,,(s) + ).

s [(Ho(r) + ) Un(r, 8) (Ha(s) +0) 71| < (1 + @) el

Thus U, (t, s) strongly converges as n — oo to a unitary operator U (¢, s) as |[Up(t,s)|| = 1, Bs(H) is
complete, scalar product is continuous and all U, (¢, s) are unitary.

In an analogous way it can proven, considering uniform boundedness of operator (H,, (r)+:)U,, (7, s)(H,(s)+
i)~! and closedness of space B,(H ), that

st— nh_)ngo(Hn(T) + U (r,8)(Hy(s) +4)"F = (H(r) +4)U(r,s)(H(s) +14)"*.

Now using fact that both U (¢, s) and (H(r) + 4)U(r, s)(H(s) + i)~! are on every compact subset of R?
uniform limits of jointly continuous functions one can also get joint continuity of U(t,s) and (H(r) +
D)U(r,s)(H(s) +1)"

11



To prove that U(t, s) is differentiable in both arguments one can consider:
Vi € D,U(t,s)¢ = / H(r)U(r,s)pdr = / H(r)U(r,s)(H(s)+ )" (H(s) +4)dr
t t
Thus using continuity of bounded operator function » — H (r)U (r, s)(H (s) + i)~ one obtains differen-
tiability of U (¢, s).
To prove uniqueness of solution of Schrédinger equations one has to consider following. Let there be

vector-valued function 1 (¢) such that

d

i) = H(t)y(t) and y(s) = o € H

Then one easily see that

U 8)0(0) = Ut ) (H(E) ~ H@)(0) = 0

Thus using initial conditions U (s, $)t(s) = 1o one has
¢(t) = U(ta 3)1/)0~
O

Remark 1. Ir can be seen from|14| that even if ¥Vt € R, H(t + T) = H(t) there still may be states so
that limy_, o || (Hn (t) 4 i)Uy (t,0)(Hy (0) + i) ~'4p|| = +o0. It is also true that the limit above is in quite
general case infinite if vector 1 has nonzero orthogonal projection to the complement of all eigensubspaces
of so called Floquet operator U (T, 0).

From proof of theorem [2]one can easily get following corollary.
Corollary 1. Let

(I)Vt e R,DomH(t) =D CH

E%E?E%H@+Q*GC®W&GW)

(3)Vt e R, H(t+T) = H(t).

(2) B(t,s) :=

Then 3K > 0,sup; s || B(t, s)|| < K and of course the main implication in the previous theorem holds
true.

Lemma 1 (Strong-continuity of evolution operator with respect to some parameter). Let Ve € [0, 1], H () (t)
is self-adjoint-operator-valued function.

Let Ve € [0,1], DomH®(t) = D C H, and that there exist corresponding unique solutions of Schrodinger
equation i.e

Ve € [0,1], 3y strongly continuous unitary propagator U'®) (t, s) so that
Vt,seR oU(t,s)®)D =D

oV € D,z’%U(E) (t,s) = HOR)UE (¢, s)1).
Let following additional assumptions holds true
(1) H (H® () — HO ) (HO(0) +4)! H is locally bounded function,
(2)vt € R, lim H(H(E) (t) — HO @) (H®(0) + )~ H —0,

(3)¥4 € D, HH(O)(O)U(O) (t, s)wH is locally bounded.

Then
Vt,s € R,st— lim U (t,5) = UO (¢, 5).
e—0

12



Proof. The proof is based on one the ideas of the previous proof. Let ¢ € D and t, s € R: t — s > 0 then
one has following estimate.

t
d
|[v@ @, 550 - v 518 = [ 6T O, )01 | < / ‘dU(E)(t7 PUO (r, s)plt || dr
s T
t
< sup [(HO©0) +)UO 5y / (O (1) = HO@)HO(0) + )7 | dr.
w€lt,s] s
Thus using Lebesgue theorem one has
vy € D, lim HU<°> (t, s) — UG (¢, 8)1/)H —0.
e—
Since H U (t,s) H = 1 and D is dense this completes the proof of the lemma. O

13



Chapter 3

The Floquet operator

In quantum mechanics there is, in analogy to classical mechanics ], also a way to generalize theorems for
time-independent Hamilton operator to time-dependent case. It is done by considering larger Hilbert space,
defining on it special operator and solving generalized Schrodinger equation. Exact definition however
depends on application. This paper focuses on Hamilton operators that are periodic in time. Note that for
simplicity period will be considered to be 1 and functions from K := L?([0, 1],) will be sometimes
treated as 1-periodic functions on R. Last note should become clear after reading the following definition.

Definition 3.
Vfe L*([0,1],H),vt € [0,1], (T, f)(t) =
Vi€ LXRH)VEER (T,f)(1) =

Note that T, € B(L2([0,1], 1)), T, € B(L2(R, H)).
Definition 4 (Bounded multiplication operator). Let

(1) a,b € [—00,+x], a<b.
(2) ® € L*([a,b], B(H)).
(3)Vf € L*([a,b],H), (Af)(t) = ®(t)f(t).

Then the operator A € B(L?([a,b],H)) will be called bounded multiplication operator in L?([a,b],H)
generated by 0.

Bounded multiplication operator generated by scalar function ® will be called bounded scalar multiplica-

tion operator in L*([a, b, H) generated by ®.

Following theorem is proposition 1 in [9].
Theorem 3 (Bounded multiplication operator). Let A € B(L?([a,b], H). Then

A is bounded multiplication operator < A commutes with all scalar multiplication operators < A com-
mutes with all scaler multiplication operators generated by characteristic functions of finite open subinter-
vals of [a, b].

Definition 5 (Unitary evolution group). Let

(1.) A(o) € C(R,B4(K)) be strongly continuous unitary group in K
(2.) A(o)T; be bounded multiplication operator in K.

Then A(o) will be called unitary evolution group and its self-adjoint generator K (Stone’s theorem) will
be called Floquet Hamiltonian.

14



Definition 6. Let

(1) U(t, s) be strongly continuous unitary propagator
(2) is I-periodic propagator i.eNt,s € R U(t+1,s+ 1) =U(t,s)

Then following notation will be used:

V(o) € C(R,B;(K)) is called U (t, s)-associated evolution group iff
Ve, e —aatel0,1], (V(o)f)t)=U(t,t—o0)f(t—o0),

Note that L*([0,1], H) = L?([0, 1], dt) ® H.

Lemma 2 (Correctness of the previous definition). Ler V(o) be U (t, s)-associated evolution group. Then
V(o) is strongly continuous unitary group on K and thus corresponding Floquet Hamiltonian exists and is
self-adjoint operator.

Proof. One needs only to take into consideration that continuous function on compact interval is uniformly
continuous and that span of the set {n ® ¢ € K : n € L?([0,1],dt),» € H} is dense in L2([0, 1], H) i.e.
L2([0,1],H) = L*([0,1],dt) @ H. O

Theorem 4 (Propagator and evolution group). Let A(o) be strongly continuous unitary group in KC. Then
A(o) is unitary evolution group if and only if 3U € L>® (R, H) so that

o U(0)=1,

e VtcR, U(t)=U)U(t-}j),

o A(o) =UT, U™
whereVf € K,a.a.t € [0,T], (Uf)(t) :=U(t)f(t). Further more U(t) is uniquely determined by stated
properties and A(1)= U(1 @ U(1))U~1.

Proof. Original proof is due to Howland [7]. Only sketch of the proof will be given here. (Some technical
details will be omitted). Proof of ”=-" is based on Stone-von Neumann theorem e.g. theorem VIII.14 in
[1]]. One can define mappings

Vk€Z, gy € (LQ(R,H) — L*([0, 1],7{)) (vt e [0,1],  gr(f)(t) = f{t+F)),
which can be used to define following embedding
e (BA0.1.1) = BE2R 1))

such that

VB € B(L*([0,1], 1)), Vf € L*(R,H),¥s € R, (h[B]f)(s) :== Y _ Xik 41 (8)(Baw(f))(s — k).

keZ

One can now see that h(A(c)T) is a multiplication by periodic unitary-operator valued function on
L?(R,H). Let us now define

A(0) = h(A(0)T)T,.

From h(A(a1) T2 ) h(A(02)TE) = h(A(o1+02)T%, ) and h(A(01) T )Ty = Toyh(A(o1+02) T2 )

and strong continuity of A(o) one gets that A (o) is strongly continuous unitary group.

One can see that spectral form of Weyl’s form of commutation relations holds true:

A(0)E(S)A™' = E(S + o),

15



where F(.5) is bounded multiplication operator generated by x g, S is finite open interval in R.

Thus one can use Stone-von Neumann theorem to prove that there is unitary operator 4 on L?(IR, ) such
that

U A(o)U =T, 3.1
E(S)U = E(S). (3.2)

Due to (3:2) and[3|one can see that £ is bounded multiplication operator on L?(R, ) generated by unitary
operator valued function. Equation (3.1)) can be rewritten as:

—

A(0)Tz = UT, AT,

This implies that operator on the RHS is bounded multiplication generated by unitary-operator valued func-
tion with period 1 on L?(R,H). Due to f is bounded multiplication operator on L?*(R, ) generated by
unitary operator valued function one has

VfeK,Yo € Rya.ateR (A(0)f)(t) =UR)U(t —o)f(t— o),

aat,s R, UBU N (s)=Ut+ 1)U (s+1).
In addition one have uniqueness of U (¢) up to multiplication by constant unitary operator, thus one can get
uniqueness requiring U(0) = 1. Due to Ty = 1 and U(t)U~1(s) = U(t + 1)U~ (s + 1) one gets
A1) = UU (1)Ut

Proof of ”<" is easy. O

Note that U () is not necessarily a group thus not all unitary evolution groups are U (¢, s)-associated evolu-
tion groups. However we may now define following term.

Definition 7. Let A(o) be unitary evolution group and U (t) be unitary operator valued function. Then
unitary operator U (1) will be called Floquet operator.

Following theorem is due to P. Duclos E. Soccorsi P. Stovicek [4]] and it specifies the form of Floquet
Hamiltonian for physically-common cases.

Theorem 5 (Form of Floquet Hamiltonian). Let
(1)Vt € R,DomH (t) =D C H.
(2)VteR H(t+1)= H().
(3) 3 strongly continuous unitary propagator U (t, s) so that
Y € D, 0 U(t,s)v = H)U(t,s).
(4)R>t— ||[H(t)(H(0)+ i)~ is locally bounded.
(5)¥i € D, R>t— ||H)U(, 0| islocally square integrable.

Then

eDomK ={feK: WYyeD, (|f(t))n isabsolutely continuous and

dgp € K,V € D, —i0 (0| f(8))3 + (H(O)UIf (£)) 2 = (Llgr(t))n}
oVf € DomK, Kf=gy.

oK = KO, where DomK® := {f c C*°(R)®@ D :Vt € R, f(t) = f(t + 1)}
and¥n ® ¢ € DomK°, (K°(n®¥))(t) :== —in'(t) @ ¢ + n(t) @ H(t)).

Corollary 2. Above theorem holds true under assumptions of corollary

16



Chapter 4

Positive operator valued measure

Some additional information on the subject of positive operator valued measures can be found in [[17] or in
the original paper on Naimarks’s dilation theorem [[16]. Note that the author was unaware on any suitable
source on positive operator measures and integration with respect to positive operator measure, although it
probably exists. That is why this section may be largely reinvention of the existing terms. Note that [[16]
was unavailable to the author and paper [[L7] covers only integration over bounded function in the section
7.1.

Definition 8 (POVM := Positive operator valued measure ). Let B C 2% be o-algebra of Borel sets, yu(.) :
B — B(H1), where Hy is complex separable Hilbert space

(1)YM € B, u(M) is bounded positive operator on H,

(2) n(®) = 1,

(3) If {M}.}72y C B are mutually disjoint sets then

00 N
v eHy,  (Wlu((J Mav) = Jim @] p(M)y)-
k=0 k=0

Then in this paper mapping 1 will be called Positive operator valued measure or POVM. Mapping
w(.) : B = B(H1) for which axioms (1),(3) holds true together with relaxed version of the second axiom
“u(R) is bounded operator” will be called POVM* .

Any set M C R such that (M) = 0 will called set of p-measure zero i.e. Vi) € Hy, (Y|u(M)y) = 0.
Using previous notions p — a.a. and . — a.e. are defined in a usual way using previous as well as sets of
concentration of measure and absolute continuity of two POVM measures.

Following notation will be used: py := pu((—o0, A]). In fact in the paper [[I7]] POVM is defined in terms of
Hx-

Lemma 3. The third axiom of previous definition together with other axioms imply

If {M,}32, C B are disjoint sets then

0o N
.U(U M) = st— NhinOOZPJ(M@)
s=0 s=0

Proof. Due to the fact that bounded positive operators are uniquely defined by their quadratic forms, 0 <
(U M) < w(UY, M,) < 1 and well-known theorem (c.f. theorem 5.3.4 in [21]). O

There is a unique way of decomposing of Borel probability measure p : B — [0, 1] into sum of three
Borel positive bounded measures 1 = fip), + [lac + 1sc called “extended”-Lebesgue-decomposition. These
three measures are all absolutely continuous with respect to p i.e. VM € B, u(M) = 0 = ppp(M),
thae(M),pse(M) = 0 and are mutually singular i.e. they are concentrated on some mutually disjoint sets,
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which have particular relation to the original measure. In detail p,, is concentrated on the set M, =
{m € R : p(m) # 0} and fi, [t are obtained from Lebesgue’s decomposition theorem of p — (1, SO
that . is concentrated on the set M sc and 4. 1S concentrated on Mac, where Mac N Mac = (). Because
tac(Mpp) = pse(Mpp) = 0 one can define three mutually disjoint sets on which corresponding measures
of decomposition are concentrated: My, M. := M, \ Mpp, Mye = My \ Mpp.

Previous decomposition regarding Borel probability measures can be generalized to the case of POVM
resulting into not only decomposition of the set R but in case of PVM also in direct decomposition of
carrier Hilbert space defined using the support of certain quadratic forms.

Let 1 be POVM. Since bounded operator is uniquely defined by it’s quadratic form, one can apply previous
decomposition of probability measures to the POVM and define POVM* 1iy,, fiqc, fise Using decomposition
of (| ) for some 1) € H as their evaluation on vector ¢ i.e. Vi, (1| ptpp?) 1= ({¥|u1)))pp and so on. It
is easy to see that obtained operator valued functions fulfill axioms of POVM*. This is summarized in the
following definition.

Definition 9 (extended Lebesgue decomposition of POVM). Let yn be POVM. Three members of unique
decomposition of u into POVM™ studied in above comment will be denoted in the same way [ipp, llac: fsc
ie.

W= tpp + fhsc + Hac
and regarded as extended Lebesgue decomposition of POVM .

Since POVM has greater theoretical importance in physics, because it has probability interpretation, it is
natural to ask on whether there are some subspaces of H for POVM* 1., [4ac,1tsc from extended Lebesgue
decomposition of some POVM i on which iy, 164,445 behave like POVM. In case of 11, one can look for
asuch set HY that ¢ € HE < (Y|, (R)Y) = () & pyp(R)[0) = [1h), where last equivalence can
be obtained form estimate

(= ppp RN = (1 = ppp RDPI( = p1yp R))Y) < (L = pp (R) (1(1 = p1yp (R)))),

which holds true since 1 — p,,(R) is positive operator. Previous statement holds true also for subspaces

HE., HE. defined in analogous way. Previous two statements can now be harvested showing that subspaces
HE,s Hhe, HE,. are mutually orthogonal. This can be done by following estimate

Vi € HE, Vo € HE, [(W]9)]? = |[(0lise (R)D)? = [(pse (R)YI)[? < (Blpsc(R)D) [|6]* = 0
Indeed [ = (¥|u(R)Y) = []|* + (lpsc (R)Y) + (¥]tac (R)).

Previous justifies following definition.

Definition 10. Let yn be POVM. Closure of largest subspaces on which three members of unique decompo-

sition of p into POVM™ Ly, flac, isc act like POVM will be denoted H,,, HE ., HE...

HE & HE @) HE, CH.
7_[cont = Span{ch, ch}

“

The simplest case when “ C” in previous is not equality is any one dimensional POVM with at least two
non-zero members of decomposition jt = fipp + fhse + fac-

Term of following definition has particular importance in theory of self-adjoint operators.
Definition 11 (spectrum (support) of POVM*). Let v be POVM*.
o) ={zeR: YU=U°€B:x2ecUv{U)#0)}
Lemma 4. Let ;i be PVM.
oM, N,L € B, tipp(M), trac(N), pisc(L) are mutually orthogonal projectors,

®Lipp; tacs sc act like PVM on HE,  HE ., HE,

PP
oHy, D1 Hiy. 1L HE, =H.
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Proof. Since fi,,(M) < pi,,(R) one has Ranyuy, (M) C Rany,(R) = HE, thus one has the first part of
the lemma and in analogous way also the second part.

Considering that ft,,(R) + pse(R) + pac(R) = 1 and together with mutual orthogonality of summed
projectors and well-known theorem (c.f. theorem 5.4.4 in [21]) one has

Ranpy, (R) @1 Ranps.(R) &1 Ranp,.(R) = Ranl = H.
O
Having measure one can also define integral. Simple functions and the integral will be defined in the usual

sense:

Definition 12. The set

S(B) = {ijXM,- I CZ, || < oo, mut. disjoint {M;}jer C B, {f;};jer € C}
jer

will be called set of simple functions. The operator
/ 50 i = 3 (M) € B(Hy)
JEI
will be called integral of a simple function .

For every f Borel function, such that u — a.a.x € R, |f(z)| < oo there exists a sequence s, € S(B),
p—a.a.x € R, |s,(x)] <|f(2)|,sn(x) = f(x) and thus one can introduce generally unbounded operator
defined by the following limit on dense domain

[ r0aue = i[5,
Dou( [ 100 ) i= v e mas [ 1OIP(InG) < o)
This operator is called integral of Borel function f. Correctness of definition of operator in previous will

be proven in following.

IfVM € B, u(M) is projector then then we call mapping p projection valued measure or PVM. This is
also equivalent to condition VM, N € B, uy(M N N) = p(M)u(N) = p(N)u(M). In following will be
show that the general case can be in a sense reduced to this special one.

The following important theorem is due to Naimark (1940) [16] an alternative proof can be found in [17].

Theorem 6 (Naimark’s dilation theorem). Let it be POVM in a complex separable Hilbert space H.
Then there is Hilbert space Ha, bounded linear map V € B(H1, Ha) and PVM P so that

uw=V*PV.

Remark 2. The linear map V in the previous theorem is injective and it’s left inverse is V* due to second
axiom of POVM. However even though V*V = 1 holds true, VV* = 1 holds true only when p is PVM.
Note that ||V*|| = ||V|| = 1, |[V¥| = |||, V*V is orthogonal projector on Ha. Thus one can interpret
H1 as closed subspace of Ho, V as “identity” embedding H1 — Ho V™ as orthogonal projector on the
subspace H;.

Following theorem is Theorem 9.6.4. in [21], where detailed information can be found regarding this
problematics. There is also a short note regarding this problem preceding theorem VIIL.6 in [1].
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Theorem 7 (Correctness of definition for PVM). Let P be PVM, f be Borel and P — a.a.x, | f(x)| < oc.

Then operator f FN)dpy exists, is unique, densely defined on the domain stated in the definition. Note that
following equation holds true

2
vwemm/ﬂwm =/UQWMM&@

[ svarw

The limit by which the integral is defined does not depend on the choice of the sequence of convergent simple
function.

Here the author suggest an analogous theorem for POVM.

Theorem 8 (Correctness of definition for POVM). Let i be POVM, f is Borel measurable and 1 —
a.a.z,|f(z)] < oo. Then operator [ f(N)dux exists, is unique, densely defined operator on the domain
stated in the definition. The limit by which integral is defined does not depend on the choice of the sequence
of convergent simple functions.

H/ﬂ”“ﬁQS/U@V«wmw

Proof. Using previous Naimark’s dilation theorem|6|one sees that there is H2, V, P so that Vs € S(B), [ s(A)duy =
V* [ 's(A\)dP,\V. Since one has only VM € R, P(M) = 0 = pu(M) = 0 then needs to redefine f to by

zero on sets of measure zero. This does not change the original integral, but is important in the following
construction. Since now conditions of the previous theorem are fulfiled for the measure P and since the f

has been suitably redefined one gets

Sn € S(B), 1 — a.a.x € R,|sp(z)| < |f(z)], sn(z) — f(z) =
P —a.ax € R, |s,(x)] <|f(2)], sn(x) = f(x).

H/ Ixdpay

one has Dom < Ir ()\)du,\> = V*Dom ( Ir ()\)dP,\>. From previous estimate and previous theorem
t

Considering

"< H [ narve g J1s0Fawl)

one has also that integral does not depend on the choice of sequence pf simple functions. One is now le
with proving that domain of the operator is dense. Since one obviously has

Vi € Hi,Ve > 0,30, € Ha, P, € Dom</f()\)dPA> et [V —¢clly, <e.

Using [V — ¢cll5y, <= |9 = V*ellyy, <e|[V*] one gets denseness of the set

Dom(/ f(A)d,u,\> = V*Dom(/ f()\)dPA>.

Thus the operator is densely defined.
O

Remark 3. The domain of integral with respect to POVM p is chosen so that there are no problems with
the definition, because problem then can be reduced to the problem of PVM. The author cannot exclude
cases where the integral can be defined more naturally on some larger set.

Lemma 5. Let yn be POVM, f be Borel function and 1 — a.a.x € R,|f(z)| < oo. Then subspaces
HE,s Hhe, HE, are invariant under integral of f with respect to p. The restriction of the integral to subspace
HE, &1 HE. ©1 HY, can be written as a direct sum of integrals of [ on subspaces Hy , HE., HE, with

PP’
respect 10 [pp, hacs Msc-
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Following theorem is due to von Neumann (1929), Stone (1932) and Riesz (1930).

Theorem 9 (Spectral decomposition theorem). There is one-to-one map between the set of all PVM and
self-adjoint operators B on Hilbert space H given by

B= / AdPP)

The PVM PB) will in following denote PVM corresponding to the self-adjoint operator B.

The author expects that first part of the theorem can be made even stronger in following sense. For a fixed
real Borel strictly monotone function f and fixed real Borel g, there is one-to-one map between set of all
PVM and the operators of form [ f(\) + ig(A)dPy, where P is some PVM.

Definition 13 (Decomposition of spectrum). Let B be self-adjoint operator. Then following of notation will
be used

er(B) i= o(PP),
'Jpp<B) = U(ngf))7USC(B) = U(Ps(f))a Oac(B) = J(Péf)%
A= HE = L HE =D

B ._ qPPB _
.Hcont T Hcont - span{?-lﬁ, Hch .
If 0s¢(B) = 0,04.(B) = 0, then it will be said that B has pure-point spectrum.
There is way of defining similar terms also for unitary operators and as author expects even for a larger
subset of normal operators: for the integral of f + ig with respect to some PVM, where f,g are Borel
functions with continuous derivative on R and non-zero derivative up to measure zero. However only the

case of unitary operators, where one has f = cos and g = sin, will be studied in this paper. Variant of
following theorem is theorem 10.2.6 [21]].

Theorem 10 (Spectral decomposition theorem). There is one-to-one map between the set of all PVM con-
centrated on [0, 270) and unitary operators U on Hilbert space H given by

U= /ei’\ dP/SU)

The PVM PY) will in following denote PVM corresponding to the unitary operator U. Following notation
will be used

oo (U) :=a(PY)),
00,p(U) = U(P;S;lz]))7 0sc(U) == U(Ps(cU))7UaC(U) = 0<PL§£]))’
oHY = HE HU = HE WY =D

U ._ P9 _ U 4yU
.Hcont T Hcont - Span{Hsca H(LC
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Chapter 5

The RAGE theorem and the time-mean
of Hamiltonian

5.1 The RAGE theorem
This section is devoted to the theoretical results of Ruelle, Amrein, Georgescu and Enss (1973-1982) in
[18]].

Theorem 11 (RAGE). Let H be self-adjoint operator in H, C € B(H) relatively compact with respect to
Hie C(H +1i)~!is compact.

H
Then Vo € H'),
1 (7 :
e lim 7/ dt[|Ce " ¢|| =0, (5.1)
T—Eo0 T J
1 (7 : 1 (7 : :
e lim f/ dt||ce ™ ¢|* = lim f/ dt(gle™ C*Ce " ¢) =0, (5.2)
T—doo T Jo T—Eo0 T J

where (5.2)) implies (5.1) due to Schwarz inequality.

One can geometrically interpret previous theorem in spaces L?(R™,d"xz) taking typical Hamiltonian H =
—A +V and Cr = X{zcrn:||z|| <R} 1-€. bounded multiplication operator by characteristic function of set
{z € R" : ||z|| < R}. Thus Cg is orthogonal projector and is relatively compact with respect to H for
large family of potentials V. The RAGE theorem then for C'r, which is relatively compact with respect to
H, gives geometrical unboundedness of evolution of arbitrary state ¢ € H.

Some previous results can be generalized to periodically time-dependent Hamiltonians H (t + T') = H(t)
for which corresponding jointly continuous T-periodic unitary propagator U (¢, s) exists.

Definition 14 (Bounded and free states). Let U(t, s) be jointly continuous unitary propagator,

HEoumd = {op € H : {U(t,0)1 : £t > 0} is precompact.

1 T
HI .= {4 € H : VK is compact op. Em 7/ dt || KU (t,0)9|* = 0},
T 0

+oo T

Theorem 12 (equivalence of definitions). Let U(t, s) be jointly continuous unitary T-periodic propagator.
Then

Hiﬂie = H(:()’!Lt(U(T7 0)) and Hbiound = HPP(U(T7 0))

22



Definition 15 (geometrically bounded and free states). Ler U (t, s) be jointly continuous unitary propaga-
tor; P := {Pr}rso family of Hermitean operators; | Pr|| < 1 and st—limg_,oo Pr = 1. Then

1 T
MIT(P) = {Y e H:VR >0, lim f/ dt ||PrU(t,0)] = 0},
T—Eo0 T J

Mbound (P = (4 € H - (1= Pr)U(t,0)9| = 0}.

lim sup
R—o0 £¢>0 |

Theorem 13 (T-periodic version of RAGE). Let P := { Pr}r~q be family of bounded operators; || Pg| <
1; st—limp oo PR = 1;VR > 0,YVtp € H, Pr{U(t,0)% : =t > 0} is precompact. Then

iree = Miree(P) = Heont(U(T,0)) and lejtound' = Mlz)lg)und'(P) = Hpp(U(T,0))

Previous theorem can be seen as generalization of the RAGE theorem since in time-independent case rel-
ative compactness of Pr with respect to H for all R > 0 implies precompactness of VR > 0,Vy €
H,Pr{U(t,0)¢ : £t > 0}. This can be seen rewriting PrU(t,0)y = Pr(H(t) + i) ' (H(t) +
$)U(t,0)(H(0) + i) "1 (H(0) + i)3. Note that under some regularity conditions (e.g. theorem [2]) one
can get local boundedness of operator (H (t) +4)U(t,0)(H(0) + i)~!, however one does not have uniform
boundedness in general (e.g. theorem [T4).

5.2 The time-mean of Hamiltonian

Inspired by the RAGE theorem the author proposes following theorems.

Lemma 6. Let

* B be self-adjoint operator in complex separable Hilbert space H,
o A(t) unitary-operator valued function,

* A(t)DomB = DomB

|BA(t)(B + i)~ | is locally bounded,

B = [AdPP
T3>0 pa =1 f) A(t)*P;\B)A(t)dt is operator valued function,
e By = f)\dux.

Then
o/, is POVM,
oV € DomB, B,y = l/ A(t)*BA(t)ydt,
T Jo

eDomB, = DomB.

Proof. RHS is well defined using theory of Bochner integral as given in [21] since
IA®)* BA®)Y| < [[BA®)(B + )~ | I(B + )9l -

Proving axioms 1,2 of POVM for p is straight forward. Third axiom also holds true due to VM € B,V €
Ha, (] A* (£) (M) A(¢)y) < 1 and Lebesgue theorem.

One can define family of mutually absolutely continuous POVM measures Vt € R, fiy[t] := A(t)* PAA(%).
The equality of the operators is not hard to prove using mutually absolute continuity of POVM measures
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ie. Vt € R\VM € B, [t](M) = 0 < u[0](M) = 0, definition of the integral using a a.e.fi[0]-pointwise
convergence of simple functions for which |s,, ()| < |\| and Lebesgue theorem, which uses estimate

H/sn()\)dP,\A(t)w :

- / 5w (VPA(A())| P A( / IARA(A() )| PAA()) =
— |BA®)Y?,

where last term is locally bounded. From the previous one easily gets also equality of domains:

2
¥ € DomB, || [ su(\daltlhe|| =

/A2d<¢|m¢> - i/{:(A(tWBA(tW)dt < 50 1 € DomB.

O

Following lemma is generalization of lemma 2.4 in paper [18] due to Enss and Veselic. It is even more
important that following lemma can be, in fact, interpreted as quantum ergodic theorem. This can be seen
comparing it to the Birkhoff ergodic theorem.

Lemma 7. Let

* C be compact operator,

o A(t) unitary operator valued function,
o A= A1),

s VtER,j€Z,A(t+7) = A(t) A7,

* Aln,, 0= D oein icap(A) © et P(A) where P;A) are orthogonal projectors on eigensubspaces cor-

responding to distinct elgenvalues e,

Then

1 T 1
w— lim — / ACAndt = > P / A*(H)CAt)atPY
0 0

T—00 T
e €oy(A)
Proof. Lemma 2.4 from paper [18]] states that
. (4)
u— lim f/ A () CA(t Pwnt( )=0.
T—00 T

Using fact that C* is also compact and VB € B(H), || B|| = || B*|| one can see that

U — hm PCO”t / A*(t)CA(t

Thus one can reduce problem to the case where A = A4, := AP;;;‘ )(R) = N cop(A) i Pj(A).
Integral can be reduced into sum as can be seen in the following
1 1
L 714 / pdeAm — / A=A CAE)d Al
T [7]

Since H L AT A C A()ar AL

last term can be omitted thus

1 T
lim f/ A*(t)CA(t) = lim E A / A(t)*CA(t)dtA™.
T T Jq Naoo —
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One can see that C’ := fol A(t)*C A(t)dt is compact operator since it is integral of uniformly continuous
compact operator valued function. Since compact operator is operator limit of finite dimensional operator
one can reduce problem to case where C' = [1){(¢|. Since Pj(A) are mutually orthogonal projectors from
spectral decomposition of A one has for Vo € H

2
N-1
1 . n
(X gamelar - ¥ pOwer® )ia)| < 653
n=0 K2y} €op(A)
N 9 N-1 4 .,
< ¥ 50w |<¢|<Z FA T = ))|x>|2= (5.4)
e Eop(A) n=0
S N L N
= X 2w X > " g (5.5)
eMJ'EUP(A) e“keop(A);)\k#Aj n=0

Because sum in (5.3) can be estimated by ||¢/]|” ||#]|> ||||* one can exchange limit limy ., and summa-
tions in (3.3) and using the following limit

li i &
1im Ne

P I 1 2=21k:kez
0 elsewhere.

n=0

One can complete the proof. Note that the author expects that the proof of lemma 2.4 [18] can be done in
analogous way. 0

Theorem 14 (T-mean theorem). Let

B be self-adjoint semi-bounded operator with compact resolvent on complex separable Hilbert space
H,

« B=[AdP?),

o A(t) unitary-operator valued function,
* A(t)DomB = DomB,

o ||BA(t)(B + i)~ | is locally bounded,

e Vr e Rulrly = L [T A PP At)dt is POVM,
* VM € B, p[oc](M) := limr o0 p[7](M),

o A= A1),

s VteR,Vj € Z, At +j) = A(t)AI,

* Aln,, (0= D ity Cop(A) et Pj(A), where Pj(A) are orthogonal projectors on eigensubspaces cor-

responding to distinct eigenvalues €3 .

Then

1. VA € R, ploo]y = limy o0 pu[T]x = D i, cou(A) P;A)ﬂ[l](M)Pj(A),
2. ploo](R) =1,
3. pfoo] is POVM < Heont(A) = {0},

4. p[oo] Ta,,(a) is POVM on Hilbert space H,,(A),

25



5. Boo := [ Adp[o0] I3, (a) is symmetric operator on Hy,(A),

=

2
- DomBag = {§ € Hypp(A) 1 Soins e () Jo HBA(t)Pj(A)wH dt < oo},

N

. & Hpp(A), v € DomB, lim; o (¢|B-1)) = 00,
. Vi € DomBo, N DomB, (¢| Boot) < liminf, o (10| Br1)),

o

. Vi) € DomBs, NDomB, || Boo®|| < liminf, o || B+ -

Proof. The first two implications (1.,2.) of the theorem can be proven using previous lemma and fact that
V7 € R, p[7](R) = 1. Since

Vi, € H b & Hpp(A)) (@lu[oc]ryp) = 0 7 (d[¢)

, lim
A—00

one can see that while axioms of POVM holds true for pf[oc], axiom (3) does not. However axiom (3) of
POVM holds true for z1[o0] [, (4) on Hilbert space H,,(A) thus it is POVM.

Domain defined for integral with respect to POVM p[o0] is

DomBao = {4 € Hyp(A) : / N2d(|uloo]d) < oo}

Using VM € B, u[1] = 0 = pfoo] = 0 one can choose proper set of simple functions to prove that the sum

D i Cop(A) and the POVM integral can be exchanged.

[Rawl S PPu e = S [ XawlpPulp )

eNigo, (A) e eop(A)

Now using lemma|6one prove next part of the theorem
A A
>[Il p ) -

eieo,(A)

1 . 5 )
- = /0 /vdwwf( LAty PP At PIY )t =

e co,(A)

- ¥ /01 HBA(t)Pj(A)@z;Hth.

e cop(A)

To prove

(0 ¢ HPP(A)v _I_IEEO@MBTQZJ) = o0,
one can use following estimate and without loss of generality consider that B > 0 i.e. is positive.

VY € DomB,Vn € N,

1B = [ M(wlulr]a) = nwlelr)(n,00)0) >

> n<wcont‘u[7]((na oo))wcont> + 2nR6(<¢pp|M[T]((n, Oo))’(/}cont>)7
where Yeon: = pW (R)¢ and ¢, = P,E,‘;‘ ) (R)%. Since one has

lm (4 |p[7]((7, 00))thcont) = 0,

T—00
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and
Tlggo<wcont |‘LL[’7']((’I’L, OO))d)cont> = chont ||2 )

it is straightforward that addressed part of the theorem holds.

Proving the remaining part of the theorem is now straightforward using analogous approach as used in
the well-known proof of Fatou’s lemma. Note that it is important to take into consideration that VM &
B, u[r)(M) = 0 p[1](M) = 0 = ploc] (M) = 0. =
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Chapter 6

Methods of studying stability

This section is devoted to the existing methods of studying time evolution generated by time-dependent
Hamiltonians. Three well known methods that are mentioned below are all based on iterative conjugation
of Floquet Hamiltonian K by unitary operators so that partial resp. complete diagonalization is after finitely
resp. infinitely many steps achieved.

First two methods which are summarized in following two theorems[I6][17| were initiated by Howland. They
are both based on the result from scattering theory, which states that the absolutely continuous spectrum
is invariant under trace class perturbation. This result is summarized in the following theorem, which is in
fact consequence of Theorem 5 in [7].

Theorem 15. Let Hy be self-adjoint operator in H, H(t) = H(t +T) = Ho + V(t) for which associated
propagator U (t, s) exists,

oV (t) is measurable,
oV (t) is self-adjoint,
oV ()

./Tﬂ VOV < .

is trace class < Tr+/V (t)*V () < oo,

Then
Oac(Ho) =0 = 04.(U(T,0)) =0

Since there are no restrictions on singular spectrum previous theorem does not resolve problem of stability
completely, because there still may be propagating states P§j{ff ’0))1/J # 0.

The previous theorem was used by Howland in papers [5, 6] and further developed in [10} [11] to develop
method called the adiabatic method. Basic result from [5] is given in the following theorem.

Theorem 16 (The adiabatic method). Letr Hy is self-adjoint operator in H with non-degenerate pure point
spectrum o(Hy) = {E, }55_4, such that growing gap condition holds true:

Je>0,a>0, YVneN FE,;; —FE,>cn",
and V (t) € C*(R,B(H),)), Vt € R,V (t +T) = V(t). Then Floguet Hamiltonian spectrum o,.(K) =
Tac(M(1 @ U(T,0))4%) = 0.

Proof. Only short summary of the main idea of the proof is given in this work.

Unitary operators " (*) used to achieve partial diagonalization are chosen to be generated by symmetric
operator map ¢W (t), which fulfills [W(¢), Hy] = —V (¢). Previous equation is non-uniquely solved by
operator with following matrix entries in the eigenvector basis of Hy:
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Wi (t) =

0 else.

—Vinn(t)
{E‘m.En form # n

In expansion of conjugated Floquet Hamiltonian e"V'(®) I e="W(®) former potential V' (t) is effectively re-
placed by 0, W (¢), which due to adiabatic gap condition has better decay properties than former potential
V(t).

By iterating previous procedure one, after finite steps, arrives to equivalent Floquet Hamiltonian with
uniformly-trace-class potential. Thus one can then use[I5|to prove the theorem.

The main difficulty of proving this theorem is showing that other members of expansion of unitary conju-
gations are “less important”. O
Another application of [I3] given in the following theorem was introduced by Howland in [9].

Theorem 17 (The anti-adiabatic method). Let Hy be self-adjoint operator in H with non-degenerate pure
point spectrum o(Hy) = {E, }55_,. Assume that anti-adiabatic gap condition holds true:

ay|m — n|
(mn)7

and that H(t) := H(t +T) = Hy + V(t) for which associated propagator U (t, s) exists. Further more
assume that

Ym,n € N,3y € (0,1/2),3a; >0, |E,, — E,| <

as
(mn)Y (max{1, |[m —n|})"’

2
VYm,n €N, 3r > 1+ " Jag >0, |V(t)mnl <

where V(t)m,n denotes matrix entries in eigenvector basis of H.

Then Floquet Hamiltonian spectrum o,.(K) = 0,.(4(1 @ U(T,0))4*) = (

Proof. Only the main idea of the proof will be given in this paper. The proof is based on the same iteration
only W (t) is chosen in a different way. Here the generator i/ (¢) of the unitary operator " (*) used for

conjugation is
W(t) = z/ du<V(u) — —/ dsV(s)).
0 T Jo

So that V(t) is effectively replaced by [W(t), 0;]. Using anti-adiabatic condition one can prove that

|W(t)m’n”m —n .

|[W(t)7H0]m,n‘ < (mn),y

Thus decay of on-diagonal elements is improved. After finite iterative steps one arrives to unitary equivalent
Floquet Hamiltonian with V' (t) effectively replaced by uniformly-trace-class operator and thus one can use
theorem

The main difficulty of proving this theorem is showing that other members of expansion of unitary conju-

gations are “’less important”. O

Quantum KAM method, which is inspired by result of Kolmogorov, Arnold and Moser in the classical
mechanics, was proposed by Bellissard [[12] and further developed in [13| [14} [15]. Following theorem is
taken from [22].

Theorem 18. Let Hy be self-adjoint operator in H with non-degenerate pure point spectrum o(Hy) =
{En}2°_,, such that growing gap condition holds true:

Je>0,a>0, VneN FE,;; —FE,>cn".
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Assume that H(t) := H(t+2n) = Hy+ V (t) for which associated propagator U (t, s) exists. Furthermore
assume that

oV(t) € C(R, Bs(H)),

oVt € [0,27], V(t) =V(t)* ie. is Hermitean

owi,we € R:wg —wy >0,
Then Ip(a) > 0,Yr > p(a), Ig(a, ) > 0, Ju(er, ) > 0 such that the following implication holds true:

w5

27
/ o—i2mkt V(t)nl,ndt‘(max{l’ [k H)" < q(a, )
meN cNkez!/0

implies
AQes C [wi,ws] C R so that

o/ 1dt < u(a, r)(w2 — wy) sup Z Z

Qres mEN eNkez
oVw € [wy,wa] \ Qres, Ko = —i0; + Ho + V(wt) has pure point spectrum.

2m
/ e—i27rkt V(t)'m,ndt (max{l, |k‘|})T7
0

Where V (t), n, are matrix entries in eigenvector basis of Hy.

Proof. Only the main idea of the proof will be given in this paper. The proof is based on iterative con-
jugation of Floquet Hamiltonian by unitary operators such that in the limit complete diagonalization is
achieved. This then implies that perturbed operator has also pure point spectrum under assumptions of the
theorem. O
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Chapter 7

Example

7.1 Notation

Vectors of standard orthonormal basis in the finite dimensional Hilbert space C™ will be denoted &; :=
{ej}j—1 CCMor{|e;)}j_, CC™

Definition 16. Let H be separable Hilbert space, € = { fi }rer is its orthonormal basis, where I = 7 resp.
I = NU{0}. Assume that a,b € C andVk € I, ay, € C. Then following notation will be used:

jacg(a,b) = > alf) el +blf o) (.

jatlel
diage ({ak trer) == Z a;ilfi) (il
Jjel

Note that jacg (a,b) € B(H).

7.2 The problem

Let us define for some w, ) > 0 periodically time-dependent Hamiltonian H (¢) with period T' = 27/
that acts in H,

00 0 0 0 01 0 O 0 0
0 0 20 0 0 01 0 1 0 0
Ht) =10 0 0 3w 0 + esin(Q2t)
1
0 0 0 0 (n—l)w 0 O 0 0 1 O

That is

H(t) = Ho + €H1(t),
where Hy = wdiag(0,1,...,n — 1), Hi(t) = sin(Qt)jacg, (1,1).

Main goal is to study the unitary evolution propagator fulfilling the Schrodinger equation. It can be easily
seen that this problem is equivalent to the problem of finding Floquet operator generated by the following
Hamiltonian.
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H(t) := e tHo [ (¢) etHo = esin(Qt)jacg, (e, e"). (7.1

Note that H (t) need not to be periodical for general choice of w, §2. The first order time-averaging approx-
imation of this Hamiltonian, taking into account

T—00 T 0 elsewhere.

17, 1 f 7 z=2
. 7/ emdt:{ ok € 2w =2k
0

can be easily calculated:

— 1 [7 =~ i —1,1) forw =29
Hg) = lim f/ H(t)dt = zlace, (=1,1) forw =0 (1.2)
T—00 T [o 0 elsewhere.

Alternative proof will be given in following section using well known fact that time-averaging in case
of periodic Hamiltonians is in some sense equivalent to the classical first-order perturbation of Floquet
Hamiltonian. One can define approximated Hamiltonian of studied problem:

wt —iwt)

Hy + Sjacg, (—e™', e w =,

H, w# Q, (73)

H(l)(t) = Hy+ e'tHo Iflzl/) e itHo {

whose unitary propagator is simple to derive as can be seen from the section

7.3 Floquet Hamiltonian and its first order approximation

Since corollary after () obviously holds true for the problem defined above one can directly consider
Floquet Hamiltonian in the following form.

K:=—i0 +1® Hy +cH(t) = Ko + eK; = (7.4)

€
= —i0 +1®wdiage ({0,1,...,n — 1)+ %ja052(—1, 1) ® jacg, (1,1) (7.5)

where sin(Q¢) from H; (t) acts as multiplication by function on K = L?([0,T],C") = L?([0,T],dt)®C",
Ko =0+ 1® Hp and K1 = eH (). Let us define orthonormal basis on L2([0,T),dt) as & = {fx}rez

Q

where fi(t) := e:;; and unitary operator on K:

Jro—m ®¢€;j for jw = m’(Q,

>z ”&ﬁ%ﬁn ®e; elsewhere: VYm' € Z, jw #m/'Q.

Qfr®ej=e"" fr®e; = {

Using previous definitions one can rewrite Floquet Hamiltonian into the following form.

If 3k € N,w = k€ then
. i€, .
K= Q"—i0oQ+ §JaC82(—1,1) ® jacg, (1,1) = (7.6)

. 1€ it - . i€ st - .
= Q*(—zat—i-Qe ZthaCSQ(—l,l)®J&C51(1,0)+2GZWtJanz(—l,l)®JaC51(0,1))Q (1.7

Since Ky has only isolated eigenvalues in the spectrum, the first order perturbation Ky can be derived
using well-known equation from [[19]].

K(1)1K0+€ Z P)\K1PA7
A€o (Kop)
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where Py, is orthogonal projector on eigensubspace corresponding to A € o(Kj). Since K acts on H as
jacg, ® jacg, the perturbation is non-trivial only if 3k, j € Z, 3\ € o(Ko) so that fr @ e;, fry1 @ eji1 €
RanP; or fi41 ® ej, fr ® ej4+1 € RanPy. Using definition of Ky one can see that f, ® e; € RanP\ =
A = kQ + jw. Since w, > 0 previous gives that perturbation is non-trivial only if (k + 1) + jw =
kQ + (j + 1)w, which is equivalent to condition w = 2. For w = € the projectors on eigensubspaces get
simple form:

n

w=0 = Ko=) koPi, Po=) lfimjr1){fomjr1l @ les){e]-
kEZ j=1

i, .
w=Q = PKP= Q<|fk><fk| ® ijacsl(*lv 1))@ ;
Thus first order perturbation K 1y can be written in following form:

Q( -0 +1® %jacgl(—l, 1))@* for w = Q,
Kay =

Ky elsewhere.

(7.8)

Thus for approximation of H (¢) one has indeed the same result as when using time-averaging method (7.3)).
It is also interesting that

< jac * —
TRy Q<1 ® o Face, ( )Q forw = Q, (7.9)
1®1 elsewhere.
7.4 Discrete symmetry of the problem
Definition 17. N
Z |ent-1-5)(e5]
Note that R = R~! = R*.
Known symmetries of the studied Hamiltonians[7.2] follows:
H(t) =RH{)R = (n — 1)w — RH(—t))R (7.10)
H(t) =RH(t)R = —RH(—t))R (7.11)
Hyy _RH(l)R — —RH)R, (7.12)
Hpy =e "5 RH ) Re'THo . (7.13)

The first symmetry from can be applied directly to Schrédinger equation for the propagator U (¢, 0)
generated by H (t) with initial conditions Vs € R, U(s, s) = 1.

iLu,0) = HEOUE0)

“at
i%(e“(”_l)“’ U(t,0)) = —RH(—t))R(e" "~V U(t,0)),
i&(e”("_l)“’ RU(t,0)R) = —H(—t) "=V RU(t,0)R,
i%(e_”("_l)“’ RU(—t,0)R) = H(t) e "=V« RU(—t,0)R.
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Using well-known property of monodromy operator Vn € Z, U(t + nT,s +nT) = U(t, s) one can

derive also symmetries of Floquet operator.

VteR, U(t,0) =e =D RU(—t,

0OR|,

U(T,0) = T=D% RU(T,0) 'R |.

This can be applied to obtain following

vte R, U(0,1)HoU(t,0) = (n — D)w— RU(~t,0)HoU(~t,0)R|

One can derive perturbed unitary propagator generated by H q)(t) defined in (7.3).

Uny(t,s) = o—itHo —i(t—s)H() cisHo,

One can observe that for w # (2 is propagator trivial U)(t, s) = e it=s)Ho Uny(T,0) = 1.

Using symmetries listed in (7.10) for non-trivial case 2 = w one can see that

(7.14)

(7.15)
(7.16)

(7.17)

RU(l)(t, 0)R = Re—itHo RR e—z’tﬁ(vl) R — e it(n—1)w (+itHo eitlflz;) — o it(n—1w U(l)(—t,()) -

— o~ it(n—1)w i2tHo ez%H(, U(l)(t, 0) e_igHo

Thus if n = 2m — 1 and 2 = w then

Vt e R, <U(1)(t, 0)em|Hp U(l)(t, 0)em) =

n—1
2

w |

Thus in analogy with for non-trivial case {2 = w one gets

Vit € R, U(l)(t, O) — e—it(n—l)w e—iQtHU e—i%Ho RU‘(l)(t7 O)Rei%Ho i

VteR, Ugyy(t,0)=e "D RU(-t,0)R|,

Uqy(T,0) = e~ 210 RU (T, 0)Re 510 |

U (T,0) = RUL (T, 0)R

(7.18)
(7.19)
(7.20)

(7.21)

These symmetries has interesting implications on the spectrum and eigenvectors of U(y(7’, 0) particularly

since it has for non-trivial case {2 = w non-degenerate spectrum.

Lemma 8 (symmetry). Let A = 3 i, (a) e PN be a unitary operator, {Po Yeireo(ay a system of
orthogonal projectors that defines operator. Assume that R is matrix defined in definition

Then

A=RAT'R & (w* co(Ad), (e ea(A)APTN = RPWR)

Proof.

A=Y e PV = Y ¢ RPUMR=RAR

etreo(A) etreo(A)

Since { RPN R} Aco(A) 18 also a system of orthogonal projectors that defines operator.
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Lemma 9.

1 T (n—1)w w=0
Ve:0<e<mu— lim 7/ U(l)(o,t)HoU(l)(t,O)dt = 2
0

T—00 T Hy w;ﬁQ

Proof. The proof is based on the first symmetry in and the fact that for Y0 < & < 7 operator U(y)(T’,0)
has non-degenerate spectrum. That is a result of the section[7.5]also equation and[7.24) will be used in
following. One can define

1 T
B -1 / Uy (0,6)HoUwy (1, 0)dt,
0

T

Bue = Y o) Brlo®) 0] = 3 o) (0] (00]B200),
=1 1=1
The T-mean theorem [4] states that
lim || B, — Boo| =0
T—00
since the dimension is finite.
Now due to the first symmetry in[7.18|and lemma 8] one has following symmetries
lo®) (v ] = o~ i3 Ho R|v(l)><v(l)|Rei%Ho
e~izHo RBrRe'THo = (n—1)w — Br.
Thus

(v |Bro®y = (vD|Re T =50 RBLRe™ 5 o o150 Ry(D) = (n — 1)w — (0P| Bpo®).
Lemma 10. Let

. 1T )
u(l)[oo](wj) c=u— lim — / U(l)(O,t)PHO (CU])U(U(t, 0)dt =
0

T—00 T
_ L ) O PT (wh) v @) (0] w =0,
PHo(wj) w#

Then

1 w # Q,

_3 —Q
ey loelwill, = {m w ;

where |||, is Hilbert-Schmidt operator norm.

Proof.

([l [oe)(@i)]],)? = Tr (uny[oe](wi) ™ paayoel(wi) =
_ 1oy Tr [ PH (wi) v D)2 w=Q,
| T Po(wy)) w# 9

Rest of the proof is straightforward using definition of v from (7:23) and well-known trigonometric
equations. O
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7.5 Approximated propagator
In this section following notation will be used:

an(\) == det(gﬁ(vl) + A) in Hilbert space dim# = dimC” =n
It is easily shown using Laplace formula for determinants twice and one can see that

an(A) = Aan—1(A\) — an—2(N). (7.22)

Note that ap = 1 is consistent with the recurrence relation. The first few determinants can be computed
directly from definition:

G =N ar= -1, as=A(\2-2), ag—(A2_> +2\/5)()\2—3 _/5), a5 = A(A2—1)(A\2—3).

With proper initial conditions difference equation (7.22)) has following solution for A # +2.

A+ VAZ =4+ — (A = /A2 —4)nH!
Ay =
2n+1, //\2 4

n+1

Sy— Z(”“)Wl (1 (1)

2n+1\//\27

(5] n

]. n + ]. _92k 2 k )\

— AN =4 = 2

2 £ <2k + 1) ( ) 2 2k +1

It is now easy to see that roots of polynomial a,, are located in open interval (—2,2). Thus for finding all
roots we can use substitution A = 2 cos .

3

(3]

k=0

(2cosp + y/4cos? o — 4)" T — (2cos p — y/4cos? p — 4)" T

an(2cosp) = FEsvI
_sin((n+ 1))
B sin ¢
Thus eigenvalue system is a(I/{_\(T)) = {—ecos n“—Jrll}?:l C (—€,€). Thus spectrum of I?(T) is non-

degenerate. Corresponding eigenvector problem can be solved easily solving recurrence relation:

l
v(()l) = O,vil) =1, Vje{l,2,...n—2}, —iv§l) - 2c05 il ) j(l+)1 —|—w(l)2 =0.

Solution after normalization to 1 i.e. 2?21 |vj(.k) |2 =1is

7rlj) 2
n+1"Vn+1]f

(ejlv®) = v\ = (—i)7 sin( (7.23)

Thus one gets:

lo®) (v D] (7.24)

— " ml
Hyy = Z—scos ]
1=1
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Explicit formula for propagator U(y)(t) = e~Ho o=itH(1) can now be written down

7lj wlk 2

J .
) sin( )
n+1 n+1'n+1

(7.25)

<6j| U(])(t)6k> — efitHo efitﬁg) — Ze—it[(j—l)w—scos nﬂi—pll](fi)j*k Sil’l(
=1

One can use mentioned symmetries in case of the first-order approximated time evolution to obtain inter-
esting results as given in corollary (9).

7.6 The simplest case

Let dimH = dim C? = 2 and

U(T,0) = (‘; Z) .

It is easy to show using (7.25)) that for w = €2 one has
cos( %) —sin(%)
Un(t,0) = <e—iwt 51121(%) it o 2 ) |-

From unitarity and symmetry (7.15)) one can prove strong restriction in such low dimension on U (T, 0).
From U~(T,0) = U*(T,0) = ¢!?~Y«T RU(T,0) R one obtains

1 d b\ _ (T €\ _ ur(d c
detU(T,0) \—¢ a ) \b d) b a)’

Using well known lemma [3] from theory of linear differential equations that implies that i-LdetU(t,0) =
Tr(H)detU(t,0) one gets detU(t,0) = e~ ! . Thus det U(T,0) = e 7T, ¢ = e=“T¢ = —b and

e~ T @ = d. It s straightforward that one can find ¢, € [0, 27) so that

00 = (GO o)

Due to the reasons given in[7.7|the author expects that for U(7T,0) = Uy (T,0) + O(e) and also
g p 1)

0 elsewhere. ’

< 2 orw =
¢(€){2+0(5) for w = €,

n(e) = 0.

7.7 Remarks and suggestions

This section is devoted to the possibilities for further research and proposals of theorems. Main idea is a
proposal to study asymptotic behavior of (Hy)~o as n — oo expecting that at least for the finite dimensional
cases it can be proven that (Hy).o is somehow close to it’s first order approximation. It appears from
that the best would probably be to study at first asymptotic behavior of p[oco] and then try to prove some
theorems regarding (Hyp) -

Following definitions are in fact recapitulation of the definition of the problem done in in the finite
dimension and inductive generalization of the problem to the infinite case. Also notation defined in this
section is used in numerical analysis in the section
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Definition 18.
Let H := span{e; : j € N} be a complex separable Hilbert space,
& :={e;}jen be orthonormal basis of M,
H™ .= span{e; : (j € N : j < n)} be a complex finite dimensional Hilbert space,
gM .= {€j}jen:j<n be orthonormal basis 0]07’-1(")7
By = > le)el.
JeEN:j<n
H = diagg(0,w, 2w, ...) + esin(t)jacg (1, 1)
H™ = By ) HEy oy = diagen (0,w, 2w, ..., (n — 1) w) + esin(Qt)jacem (1,1)

— i€ — =
Hoy = sjace(—1,1)  forw=Q
0 elsewhere.

Hy + Ejace(—e™! e w =1,
H() w 75 Q,

T — {’;jacg(n)(l, 1) forw=29Q,

Hy(t) := Ho + ¢ Hyy om0 = {

) H(n) 11 (1) Lrgy(n) 0 elsewhere,

HG (1) = Eyyor Hay (1) By =

" ) Tt (e H(”) (— piwt g—iwt —Q
— H(g )_’_ethé )H((l)) e—thé ) — (n) + QJaCS( ( € ,€ ) w 5
H, w # Q.

U(t, s) be jointly continuous unitary propagator generated by H,
Uny(t,s) = e itHo o=ie(t=s)Ha) oisHo b joingly continuous unitary propagator generated by Hpy,
U (t, 8) be jointly continuous unitary propagator generated by H ("),

(n)

; (n) _ : )
g™ (t,s) = e itH, ie(t— S)HU) e'’ be jointly continuous unitary propagator generated by H(l) .

1 T
ploc)y = Py (T*”T /0 U0, t)Pou(t, 0)dtpy Y

T
/ Uy (0, t)PHOU(l)(t 0)dtp; @Y,
0

n vl [T U™ (1,0
pMoc]y = PO /OU( )(0,£) Py U(t,O)dtPj (T.0),

n varol (T, " U (1,0
(M o]y = PO T2 U0, 6)P U((l))(t,O)dtP. ™0,
T /o J

The operator H, ((;l)) (t) comes from the first order perturbation of the operator —id, + H (™ (t) as shown in
the section [7.3] Particularly since U(0,0) = 1 one has from theorem ] rather formally

— n T (it (n)
(t = 0] TERAHMWD) |p — 0y = U(T,0) and (t = 0]~ T TOHHGO) 14 — 9y — U, (T, 0).
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Thus it is expectable that, using some existing perturbation theory, one can prove convergence of the

. . i ;i n) . . .
elgenprOJectors of the operator e~*T(—#0:+H 1) to the corresponding eigenprojectors of the operator

—i ™) . . .
e = i0+H) (1) and that it also holds true for “diagonal element” for “generalized” vector |t = 0).

Observing the results of numerical analysis from section especially the contour plots in the figures
[7.7[7.8]7.9] taking into account fact that H; gets “effectively smaller” with respect to the Hy as n — oo

H(")
ie. th) "m0 0 thus e gets effectively “smaller”, the author came to the the proposal of the following
0
theorem.

Proposal of theorem 1. There is non-increasing real function f(x) such that
(n) _ < f
pt"™ [oo]x M(l) €

Perturbation theory from paper [19] might not be impossible to apply the infinite dimensional version of the
problem since all eigenvalues of K has infinite degeneration and K; has continuous spectrum as can seen

from the eigenvalues of I 1("). However one can study the strong-resolvent operator limit of the sequence
H ((?)) , whichis H, (1)- Itcan be also seen that assumptions of the lemmaholds true, thus one has also strong

convergence of the st— lim,, , o, U ((1)) (T',0) = Uy (T, 0). Observing asymptotic properties of eigenvectors

of the sequence U ((1”)) (T,0) given in ( one sees that Uy (7', 0) has absolutely continuous spectrum i.e.
0se(Uy(T,0)) =0, 05 (U (T, O)) = V). Another hint comes from the lemma which implies

n—00 &)

lim Hu(") H =0.

Thus if some analogue of previous proposal of theorem holds true, one might be able to prove also the
following one.

Proposal of theorem 2.

0 w=1

deg > 0,Ve > 0:e < egg, VA €R, =
€0 5 e < &g [oo] A {Pfo w9,

7.8 Numerical analysis

This section is devoted to numerical analysis of the studied problem, which was done in program Wolfram
Mathematica 8. For convenience {2 = 1 will be assumed. Notation used in the previous section and in the
theorem[T4] will be used in this section. Note that following notation will be used:

h(t) = <U(t)61 |HU U(t)€1>,
hey(t) = (Uiy (8)es | Ho Upry(t)eq).

From figures one observes that numerical evaluation of the function h(t) obtained
by solving Schrodiger equation of the problem is well approximated by function h(y)() i.e. even in large
time scale h(t) appears to only oscillate around h;)(t) with amplitude dependent on the parameter ¢. In
fact in the figures two functions are so similar that one can effectively see only one of them. From further
calculations one can see that amplitude of oscillation grows with ¢.

It is reasonable also to compare mean energy over infinite time period with it’s first order approximation.

This can be due todone evaluating mean value of I, C(x? ) and (H. é;‘ ) )(1) for some vector v. For convenience

only v = e is studied in this paper. Due to lemma 9 one sees that

(n—21)w W= Q,

<€1|(Ho(<?))<1)61>{0 w# Q.

Thus it will be enough to visualize only the three parameter function (e; |Ho(ff Ve 1) of parameters w, &, n.
For this purpose contour plot has been depicted in the figures|7.7]7.8l7.9|for dimensions n = 1,5, 10. One
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Figure 7.1: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parameters equaltoe = 0.1, w =0 =1,n=2.
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Figure 7.2: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parameters equaltoe = 0.1, w =0 =1,n=10.

sees that for ¢ — 0 first order approximation well approximates function (e; |HD(£L Ve ;) and unexpectedly
this appears to hold also for limit n — oco. This may be because H; gets effectively smaller with respect

)
‘Hin n—o00

to the Hy as n — oo i.e. 0 thus € gets effectively “smaller”. Note that the numerical
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Figure 7.3: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parameters equaltoe = 0.1, w =Q =1,n =50.
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Figure 7.4: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parametersequaltoe = 0.1,w =144#4Q =1,n=2.

computation is done by solving Schrodiger equation of the problem obtaining {U(¢) : ¢ € [0,7T]}. Then

U(T) is used to compute P]-U(T) and then integral in (HO)Y‘) is approximated by a sum in order to speed
up the computation in the following way:
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Figure 7.5: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parameters equaltoe = 0.1,w =144 #Q =1,n=10.
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Figure 7.6: Numerical comparison of time evolution and first order approximation of time evolution of
energy with initial state e; and parameters equaltoe = 0.1, w =144 # Q =1,n=50.
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Figure 7.7: Numerical computation of mean energy over infinite time period with initial state e; in the
dimension n = 2 with 2 = 1. The numbers in the bordered areas represent the infimum of the function in
that area.
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Figure 7.8: Numerical computation of mean energy over infinite time period with initial state e; in the
dimension n = 5 with 2 = 1. The numbers in the bordered areas represent the the infimum of the function
in that area.
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Figure 7.9: Numerical computation of mean energy over infinite time period with initial state e; in the
dimension n = 10 with 2 = 1. The numbers in the bordered areas represent the infimum of the function in
that area.
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Conclusion

The author studied existing theory of time-dependent Hamiltonians, particullary theoretical problems ap-
pearing in the cases, where gaps between points in spectra of the Hamiltonian are constant. The author
studied analytically and numerically a simple case of the system and using gathered knowledge attempted
to enrich existing theory proposing a new approach based on time-mean of Hamilton operator using theory
of positive operator measures and integration with respect to positive operator measure. The author then
proposed a possible way for continuation of the research regarding the studied simple case.
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