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Declaration

I declare, I wrote my diploma thesis independently and exclusively with the use
of cited bibliography.

I agree with the usage of this thesis in the purport of the §60 Act 121/2000
(Copyright Act).

V Praze dne ........................... ......................................

ii
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Abstrakt

Nový vědecký obor, který spojuje fyzikálńı metody a finančńı trhy, se jmenuje
ekonofyzika. Tato práce ukazuje možné aplikace matematických a fyzikálńıch
metod ve finančńıch trźıch a diskutuje hlavńı omezeńı nejznáměǰśıch model̊u
použ́ıvaných pro analýzu a předpovědi na finančńıch trźıch. Předevš́ım se
zabývá př́ıtomnost́ı paměti a velkých změn v časových řadách, posléze je zave-
den koncept multifraktálńıch deformaćı, který je přirozenou a elegantńı ces-
tou k popsáńı komplexńıho chováńı cen. Nakonec jsou prezentovány praktické
výsledky z reálných trh̊u, které podporuj́ı naše teoretické argumenty.

Kĺıčová slova: multifraktály, finančńı trhy, multifraktálńı časové deformace,
stochastické processy, autokorelace, škálováńı
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Abstract

A new scientific branch that connects physical methods and financial markets is
called econophysics. This work shows some possible applications of mathemat-
ical and physical concepts in financial markets and discusses main limitations
of the most popular model used for analysis and forecasts on financial markets.
Foremost are discussed phenomena of memory and large jumps in time series
and it is introduced a concept of multifractal deformations that is a natural
and elegant way, how to describe complex behavior of asset prices. At the end,
we show some practical results from real markets that support our theoretical
arguments.
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Chapter 1

Introduction

Financial markets is a field that is for many decades studied by economists,
analysts, speculators and many other people, but quite recently also natural
scientists and especially physicists have begun to be interested in the markets
and created a new scientific field - econophysics, which is an application of phys-
ical methods to financial markets. The reason was that models that had been
developed before, were often too simple, or worked with idealized assumptions
that were not completely fulfilled in real situations, so it was very difficult to
analyze the market and to make more precise predictions. Many models used by
practitioners from finance are based on simple ideas of coin tossing and random
walks. That does not mean, that these models are bad, but they have their own
limitations that can be in some situations crucial to right prediction and fore-
cast of future evolution. They are usually based on the assumption of random
walk and its continuous limit called the Brownian motion. The problem of this
model is that because of Central limit theorem (theorem A.1 in appendix) is
the distribution of returns similar to Gaussian distribution. The disadvantage
of Gaussian distribution lies in the behavior for large values. We know that
Gaussian distribution has the form

1√
2πσ2

exp

(
− x2

2σ2

)
(1.1)

which means that for large values the probability decays extremely rapidly. The
probability, that we observe a value larger than two σ, is smaller than 5%; for
6σ we get a probability similar to 10−6%. Nevertheless, these large fluctuations
can be observed much more often than is predicted. On figure 1.1 is possible
to see the evolution of S&P 500, the most important stock index of New York
stock exchange, in 2008. In the second half of the year the financial crisis broke
out and the index lost about 40% of its value. That would be almost impossible
within the exponential decay. Another assumption of Central limit theorem that
can be misleading is assumption of full independence between different times.
That means that there cannot be any memory in the market, which is also not
true in real markets. The target of this work is to analyze the presence of these
phenomena, to understand, why they arise and to present models that take these
situations into account. We will introduce an approach discovered by B. Man-
delbrot [23, 25, 27] based on the existence of two kinds of time - the real, clock
time and the other time that runs virtually in the market. The transformation
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Figure 1.1: Evolution of index Standard and Poor’s 500 in the year 2008. We can observe that
with the begin of financial crisis the value of index fell down, the volatility was a few times higher
than before, and the traded volume was also very high. In order to simulate and forecast this
kind of behavior we need models that enables volatility fluctuations, rapid changes and existence of
economic cycles. The graphics was generated by R package quantmod [35].

between them is given by multifractal deformations, which are used to generate
processes that produce periods of large fluctuations, memory effects and other
kinds of behavior observed on the real markets. The multifractal background
provides a rich basis for these transformations with many applications. We
also introduce a final result of theory of multifractal deformations, a Markov
Switching Multifractal that was designed by B. Mandelbrot, L. Calvet and A.
Fisher and that provides a complex simulation of real financial series through
the model with variable volatility. The work is divided into following chapters:
chapter two provides a physical motivation for studying random systems by gen-
eralizing the second Newton’s law to its stochastic version - Langevin equation
and shows alternative ways to describe these systems. In the third chapter we
introduce a cornerstone of the whole work, stochastic processes, define special
classes of stochastic processes, show the connection to Langevin equation and
introduce differential and integral calculus for these processes based on ideas
of K. Itō and R. Stratonovich. Chapter four is devoted to the memory and
correlations of random processes, in chapter five we look at scaling properties
and self-similarity. Chapter six is the most important chapter of the thesis,
we discuss multifractal formalism and generation of multifractal deformations.
In the penultimate chapter we discuss models used for simulation and forecast-
ing of price returns including multifractal models. Finally, in the last chapter
are shown some concepts discussed in previous chapters on the example of one
concrete time series of index S&P 500.
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Chapter 2

Physical Motivation:
Langevin Equation

In the first chapter we look at the description of random processes from the
physical point of view. The description of physical phenomena in the statistical
way arose from the observation of systems with many degrees of freedom, like
gases or liquids, so that it is impossible to describe them deterministically. One
example that will accompany us through the whole work is a phenomenon called
the Brownian motion. We will find the way to describe these processes and show
the generalization of Newton’s second law for random (or so called stochastic)
processes.

2.1 Langevin Equation: Introduction

We consider a system in contact with a heat bath. It can be a particle (a
molecule, or in larger scale a pollen grain, for example) flowing in a liquid or
any other thinkable system. There exist fluctuations that cause a movement.
They are caused by collisions of our system with other particles. We cannot
describe in the deterministic way describe every single collision. How can we
therefore describe our system without exact knowledge of all information about
it? We cannot use the statistical description of equilibrium physical systems,
because the particle interacts with the environment and it is not generally true,
that the whole system stays in equilibrium. We have to build up a microscopic
description, and we have to use some description, that includes statistical meth-
ods, anyway.

Let us begin in one dimension. This assumption is according to later ap-
plication not restrictive. We start from the very beginning, that means from
classical mechanics. The equation of motion for the single particle is classical
Newton equation, e.g.

mẍ(t) = −U ′(x) + Fext (2.1)

where U is the potential and Fext is an external force. The external force
conveys the binding with the outer system. We can divide the external forces
into two groups: deterministic friction force and random force. Friction force

3



acts against the movement of the particle and grows with the velocity and is
deterministic, whereas random force causes random shifts of the particle.

We can rewrite the previous equation into the form

mẍ(t) + U ′(x) + γẋ(t) = Fran (2.2)

where γ is a friction coefficient and Fran ≡ η is a random force. With the
description of the force we have to partially help ourselves with the experiments
and everyday experience. Our acquaintance of the behavior of the grain in the
water tells us that the random force is not preferred in any particular direction
and it does not depend on the position of the particle. We also can observe that
the force depends on the past behavior of the particle, neither.

Because the force is random, we can only express this reality by statistical
quantities. These a few basic observations can be formed into these relations:

E(η(t)) = 0 (2.3)

Cov(η(t), η(t′)) = E(η(t)η(t′)) = 2Dδ(t− t′). (2.4)

With the substitution v(t) = ẋ(t) and together with conditions on the random
force η, we can now rewrite the equation (2.2) into the famous form, named
after Paul Langevin, the discoverer of the equation. It is:

mv̇(t) + γv(t) + U ′(x) = η(t). (2.5)

Both parts of the external force, i.e. random noise and friction have their
importance, as we can demonstrate on pathological cases with no noise, respec-
tively with no friction. Further, we assume in this section the Langevin equation
for free particle (i.e. U ′(x) = 0).

No friction: In case when no friction is present, the equation becomes an
easy form

mv̇ = η(t) (2.6)

and the general solution is

v(t) = v0 +
1

m

t∫
0

dt′η(t′). (2.7)

It is easy to see that the mean value is E(v(t)) = v0, since E(η(t)) = 0. More
interesting is to calculate the mean square velocity. With aid of (2.3) and (2.4)
we get

E(v2(t)) = v2
0 +

2v0

m

t∫
0

dt′E(η(t′))︸ ︷︷ ︸
=0

+
1

m2

t∫
0

dt′
t∫

0

dt′′ E(η(t′)η(t′′))︸ ︷︷ ︸
=2Dδ(t′−t′′)

=

= v2
0 +

2Dt

m2
. (2.8)

This means that variance of the velocity grows with time to infinity.
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No fluctuations: We assume that η(t) = 0. The equation is reduced then to
form

mv̇ + γv = 0 (2.9)

with the solution in the form

v(t) = v0 exp

(
−γt
m

)
. (2.10)

We now send time to infinity, we get that v(t)→ 0. On the other hand, because
of the absence of fluctuations the system is in equilibrium and we can derive the
average value of v2 from equipartition theorem, namely E(v2) = kBT

m , where kB
is the Boltzmann constant. As we have seen, both cases bring some unwanted
properties, therefore it is important to take both the noise and friction into
account. The general solution of Langevin equation describing free particle is

v(t) = v0 exp

(
−γt
m

)
+

1

m

t∫
0

dt′η(t′) exp

(
−γ(t− t′)

m

)
(2.11)

Because the force η(t) is random, we can be interested in some statistical quan-
tities to get some idea about the solution. The mean and average of the square
velocity can be with (2.3) and (2.4) expressed as

E(v(t)) = v0e
− γtm (2.12)

E(v2(t)) = v2
0e
− 2γt

m +
1

m2

t∫
0

dt′
t∫

0

dt′′e−
γ(t−t′)
m e−

γ(t−t′′)
m E(η(t′)η(t′′)) =

= v2
0e
− 2γt

m +
D

γm

(
1− e−

2γt
m

)
(2.13)

and for variance of the velocity holds

Var(v(t)) =
D

γ
m
(

1− e−
−2γt
m

)
. (2.14)

We can see that for long times, i.e. relaxation to equilibrium state, the average
value of square of velocity tends to the equilibrium value D

γm = kBT
m . For small

times we get up to O(t2) the expression Var(v(t)) = 2Dt
m2 . This means that

for small times the velocity varies very little and its practically constant. This
means that the displacement for small time is E(x(t) − x(0)) ' v0t. This is
the behavior of the free particle. Nevertheless, the initial velocity is hampered
by the friction and the behavior of the particle considerably changes after some
time.

Variance of displacement for long times: Let us assume that x(0) = 0.
By integration of the velocity we can get a solution for the position. The mean
square displacement is (the result is taken from [8]):

Var(x(t)) = E(x2(t)) =

t∫
0

dt′
t∫

0

dt′′E(v(t′)v(t′′))
large t−→ 2Dt. (2.15)

5



We observe that for long times the behavior of the particle is different, it is now
driven by diffusion and the effect of initial velocity is unrecognizable. This is
the famous result of Albert Einstein [12] of effect of fluctuations and explains
the principle of Brownian motion.

2.2 Overdamped Langevin Equation

In this section we consider a Langevin equation with the potential, but assume
that the mass of the particle is small and therefore for large times t � m

γ we

can neglect the first term mẍ(t) and we get so called Overdamped Langevin
equation:

γẋ(t) + U ′(x) = η(t) (2.16)

with usual conditions (2.3) and (2.4). The equation describes the situation,
when friction dominates and movement is caused especially by fluctuations.
Unfortunately, there exists the analytic solution only for very few potentials.

Besides free particle exists a solution also for harmonic potential U(x) = kx2

2 .
This process is called Ornstein-Uhlenbeck process [29]. The equation becomes
as follows:

γẋ+ kx = η(t). (2.17)

This is linear differential equation of the first order, so we can write down the
solution

x(t) = x0e
− ktγ +

t∫
0

dt′η(t′)e−
k(t−t′)

γ . (2.18)

The mean and the variance of x(t) have the same form as (2.12) and (2.14), so
it is possible to write them down immediately

E(x(t)) = x0e
− 2kt

γ (2.19)

Var(x(t)) =
D

γk

(
1− e−

2kt
γ

)
. (2.20)

As we could expect, the particle becomes very quickly to the area of a minimum
of the potential and moves around the minimum driven by thermal fluctuations
in the equilibrium regime after sufficiently long time.

2.3 Smoluchovski Equation and Diffusion Equa-
tion

So far, we were interested only in trajectories of the particle and their statistics.
We would also like to find another description, which is maybe for some people
more familiar. We would like to find the probability distribution p(x, t) of the
trajectory x(t). This duality has some parallels in classical mechanics (Lagrange
description versus Liouville description). In order to calculate the probability
distribution, we first look at the definition of mean value.

The mean value of some function f of a random process x(t) is defined as:

E(f(x(t)) =

∫
Ω

dzf(z)p(z, t), (2.21)

6



where Ω is the set on which a random process x(t) is defined. If we formally
plug in for the probability distribution the expression p(x, t) = E(δ(x − x(t)),
we get again the expectation value of f :

∫
Ω

dzf(z)p(z, t) =

∫
Ω

dzf(z)E(δ(z − x(t))

= E

(∫
Ω

dzf(z)δ(z − x(t))

)
= E(f(x(t)). (2.22)

This relation has also an intuitive explanation: p(x, t)dx is the probability that
the particle is found in interval [x, x+dx] in time t, i.e. number of all trajectories,
that go through the interval at time t. At first, we formally integrate the
equation (2.16)

x(t) = x0 +
1

γ

t∫
0

U ′(x(t′))dt′ +
1

γ

t∫
0

η(t′)dt′ (2.23)

and rewrite the delta function through the Fourier transform as

E(δ(x− x(t)) =
1

2π

∞∫
−∞

dk E
(
e−ik(x−x(t))

)
=

=
1

2π

∞∫
−∞

dk e
−ik

(
x−x0− 1

γ

t∫
0

U ′(x(t′))dt′

)
E

e−ikγ t∫
0

η(t′)dt′
 . (2.24)

Now we look closer at the last exponential term

E

exp

−ik 1

γ

t∫
0

η(t′)dt′

 .

Up till now was the definition of η(t) not complete. We did not define higher
point correlations, because for studied behavior it was not necessary. Now we
have two good reasons to refine the definition of random force a bit. Firstly, it
helps us to continue with the calculation, secondly, the random force η will be
closely related to other processes that will be introduced in following chapters.

Definition 2.1 The random process X(t) is called Gaussian noise, if
X(t) ∼ N (0, σ) and E(X(t1) . . . X(tn)) = 0 for different t1, . . . , tn.

We assume that η(t) is a Gaussian noise. We have a look to the moments of η.
Because it is a Gaussian variable, then

E(η2n(t)) = (2D)n(2n− 1)!!, (2.25)

E(η2n+1(t)) = 0. (2.26)

We now expand the exponential function into the Taylor series and from linearity
we apply the mean operation on every term:

E

e−ikγ t∫
0

η(t′)dt′
 = 1− ik

γ

t∫
0

E(η(t′))dt′ − k2

2γ2

t∫
0

t∫
0

E(η(t′)η(t′′))dt′dt′′ + . . .

(2.27)
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Figure 2.1: 1000 steps of Gaussian (or white) noise.

With the definition of the moments the odd terms vanish and the series becomes
an elegant form:

E

e−ikγ t∫
0

η(t′)dt′
 =

∞∑
n=0

1

n!

(
−k2Dt

γ2

)n
= e
− k2Dt

γ2 . (2.28)

The whole expression for the p(x, t) can be expressed as

1

2π

∞∫
−∞

dk e
−ik

(
x−x0− 1

γ

t∫
0

U ′(x(t′))dt′

)
e
− k2Dt

γ2 . (2.29)

We become the final result, when we calculate ∂p(x,t)
∂t :

∂p(x, t)

∂t
=

1

2π

∞∫
−∞

dk
[
−ik
γ U ′(x)− k2D

γ2

]
e
−ik

(
x−x0−

1
γ

t∫
0
U′(x(t′))dt′

)
e
− k

2Dt
γ2 . (2.30)

In the terms we can recognize Fourier images of first, resp. second derivative,
so finally:

∂p(x, t)

∂t
=

∂

∂x

[
1

γ
U ′(x)p(x, t)

]
+
D

γ2

∂2p(x, t)

∂x2
. (2.31)

This equation is called Smoluchowski equation and describes the probability
distribution p(x, t) of particles at time t in the overdamped limit. There are few
interesting remarks:

• free particle: For U ′(x) = 0 the equation (2.31) becomes Diffusion equa-
tion

∂p(x, t)

∂t
= D∂

2p(x, t)

∂x2
, (2.32)

where D = D
γ2 = kBT

γ . The solution is known,

p(x, t) =
1√

4πDt
exp

(
− (x− x0)2

4Dt

)
. (2.33)

The variance is Var(x(t)) = 2Dt. This is a classical result observed by
Einstein in 1905 [12].
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• stationary solution: if we assume that the probability is time-independent,
then the equation (2.31) simplifies to form

dp(x)

dx
=

1

γD
U ′(x)p(x). (2.34)

This is the equation for Maxwell-Boltzmann distribution

p(x) = N exp

(
−U(x)

kBT

)
, (2.35)

which is in perfect agreement with equilibrium theory.

2.4 General Langevin Equation and Klein-Kramers
Equation

In this section we look at general non-overdamped Langevin equation. We
introduce a transformation ẋ(t) = v(t) and rewrite the equation as a system of
differential equations of the first order, concretely:

ẋ(t) = v(t) (2.36)

v̇(t) = −U
′(x)

m
− γv(t) +

F (t)

m
(2.37)

E(F (t)F (t′)) = 2Dδ(t− t′). (2.38)

One example of system described by these equations is the RLC electric circuit
with random electric force. This system was described by Johnson and Nyquist
in 1928 [28]. The electric charge plays role of the position in this equation.

We look also at the analogical probability distribution belonging to the full
Langevin equation. The derivation of corresponding probability distribution
is similar, but we have to make the transformation in two variables, x and v:
p(x, v, t) = E[δ(x − x(t))]E[δ(v − v(t))]. The corresponding solution has this
form [34]:

∂tp(x, v, t)+v∂xp(x, v, t)−
U ′(x)

m
∂vp(x, v, t) =

γ

m
∂v [vp(x, v, t)]+

D2

m2
∂vvp(x, v, t).

(2.39)
This equation is called Klein-Kramers equation and it contains the full infor-
mation about evolution of the system in the phase space. On the left side of
the equation we can identify the total derivative with respect to t, i.e.:

dp(x(t), ẋ(t), t)

dt
=
∂p(x(t), ẋ(t), t)

∂x
ẋ+

∂p(x(t), ẋ(t), t)

∂ẋ
ẍ+

∂p(x(t), ẋ(t), t)

∂t
(2.40)

which represents the classical-mechanical density in the phase space and in the
deterministic regime is equal to zero. On the right side we can recognize terms
that correspond to friction and noise. It is similar to the recognition of particular
terms in Langevin equation.

In this chapter we introduced the concept of the non-equilibrium processes.
In following chapters we will see that there is a connection between physical
processes, mathematical description and processes in financial markets. All of
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them will produce similar behavior and it is therefore very suitable to find the
common language between all of these branches. The next chapter will provide
a sufficient theoretical background to describe it.
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Chapter 3

Mathematical Background:
Stochastic Processes

In the first chapter we described the behavior of the system with random fluc-
tuation in the phenomenological way, by using physical laws. In this part of
the work a theoretical concept of description of randomness, so called stochas-
tic processes, will be introduced. Although the formalism looks at first sight
quite different from the one commonly used in physics (and in chapter 2.1), at
the end of the chapter one emerges strong relationship between physical and
mathematical point of view.

3.1 Basic notes

We begin with the concept of stochastic process. This is the keyword of the
description of time evolution in the probability theory.

Definition 3.1 A stochastic process is an ordered set of random variables X(t),
where t ∈ I ⊂ R.

The parameter t has usually meaning of time and can be either discrete or
continuous. Then we talk about discrete or continuous stochastic processes.
We can look at the stochastic process in two different ways. For a given time
is X(t) a random variable with a probability distribution p(x, t). We can then
understand p(x, t) as evolution of the probability in time. On the other hand,
one realization of the process Xω(t) represents one concrete possible evolution
of the system. The mapping t 7→ Xω(t) is called sample path and we can think
about X(t) as about a probability density of sample paths.

We saw this dual description also in the first chapter, where the Langevin
equation was an equation for sample paths, whereas Smoluchovski equation resp.
Klein-Kramers equation were equations for the probability distribution. This
duality is favorable and in the next we will combine both possible descriptions.

3.2 Gaussian Processes

One important class of stochastic processes are stable processes. The reason
of its importance comes from the property of stability of the process. The
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term stable distribution is discussed in appendix A. The main importance of
stable distributions is the property, that they are limiting distributions of sum
of random variables. That means that every process compound of many random
variables can be for sufficiently long times well approximated by the process
with the limiting distribution. This favorable property can be transferred to
the stochastic processes.

Definition 3.2 Stochastic process is stable if all its finite dimensional joint
distributions are stable.

The most popular and used distribution of stable distributions is normal dis-
tribution. We define important class of stochastic processes are Gaussian pro-
cesses. The class of Lévy processes will be discussed in chapter 5.

Definition 3.3 Gaussian process is a stochastic process for that for every ar-
bitrary finite subset of times ti ∈ I has the vector (X(t1), X(t2), . . . , X(tn))
multinomial Gaussian distribution, so

p(x1, t1; . . . ;xn, tn) =

√
|detA|
(2π)n

exp

−1

2

n∑
i,j=1

(xi − E(X(ti))Aij(xj − E(X(tj))


where A−1 is the covariance matrix: A−1

ij = Cov(X(ti), X(tj))

Because of the stability of the normal distribution we can immediately formulate
a corollary about Gaussian processes.

Corollary 3.4 The process X(t) is Gaussian, if every finite linear combination∑
i aiX(ti) is identically zero or has a Gaussian distribution.

Every Gaussian process is fully defined with two quantities: E(X(t)) and Cov(X(t), X(s)).
We have already met one example of the Gaussian process. It is the Gaussian
noise with E(η(t)) = 0 and Cov(η(t), η(s)) = 2Dδ(t − s). We aim in the next
section on one very important example of Gaussian processes.

3.2.1 Wiener Process

Wiener process is formal mathematical concept of Brownian motion. The
Wiener process describes therefore the random movement of the particle. The
movement has no preferred direction and no memory. Before we define Wiener
process, we discuss one important property of stochastic processes.

Definition 3.5 A stochastic process is X(t) called (strictly) stationary, if for
an arbitrary vector (X(t1), . . . , X(tn)) holds:

(X(t1 + τ), . . . , X(tn + τ))
d
= (X(t1), . . . , X(tn)).

Definition 3.6 A stochastic process W (t) (for t ∈ [0,∞]) is called Wiener
process, if

• W (0)
a.s.
= 0

• for every t, s are increments W (t) −W (s) stationary process with distri-
bution

W (t)−W (s) ∼ N (0, |t− s|).
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Figure 3.1: Three sample paths of Wiener process for 1000 steps.

• for different values are increments not correlated.

The Wiener process is therefore a Gaussian process with the probability distri-
bution

pW (x, t) =
1√
2πt

exp

(
−x

2

2t

)
. (3.1)

Because every Gaussian process is described by mean and covariance, we calcu-
late at first the mean:

E(W (t)) = E(W (t)−W (0)) = 0 (3.2)

For covariance we assume that s > t:

Cov(W (s)W (t)) = E(W (s)W (t)) = E([(W (s)−W (t)) +W (t)]W (t)) =

= E((W (s)−W (t)(W (t)−W (0))) + E(W (t)W (t)) =

= Cov(W (s)−W (t), (W (t)−W (0))) + t = t = min(s, t). (3.3)

Therefore is Wiener process the Gaussian process with zero mean vector and
covariance matrix min(s, t). The conditional probability of Wiener process can
be therefore written in form

pW (x2, t2|x1, t1) =
1√

2π(t2 − t1)
exp

(
− (x2 − x1)2

2(t2 − t1)

)
. (3.4)

The important property of every stochastic process is its continuity and
differentiability. With the conditional probability distribution we check firstly
the continuity of the process. For an arbitrary C > 0:

lim
h→0

P [|W (t+ h)−W (t)| > C] = lim
h→0

P [|(W (h)−W (0))| > C] =

= lim
h→0

P [|(W (h)|W (0))| > C] = 2 lim
h→0

∫ ∞
C

dx
1√
2πh

exp

(
−x

2

2h

)
=

= 2

∫ ∞
C

dx lim
h→0

1√
2πh

exp

(
−x

2

2h

)
= 2

∫ ∞
C

δ(x)dx = 0. (3.5)
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So Wiener process is almost everywhere continuous. This property was already
given to the definition of the process. With similar calculations we get that
sample paths of Wiener process are almost nowhere differentiable:

lim
h→0

P

[∣∣∣∣W (t+ h)−W (t)

h

∣∣∣∣ > C

]
= 2 lim

h→0

∫ ∞
Ch

dx
1√
2πh

exp

(
−x

2

2h

)
=∫ ∞

−∞
dx lim

h→0

1√
2πh

exp

(
−x

2

2h

)
︸ ︷︷ ︸

=δ(x)

− 2 lim
h→0

∫ Ch

0

1√
2πh

exp

(
−x

2

2h

)
dx︸ ︷︷ ︸

→0

= 1. (3.6)

The process is neither differentiable in the mean-square meaning:

l.i.m.
h→0+

W (t+ h)−W (t)

h
= lim
h→0+

h

h2
=∞. (3.7)

The fact of non-differentiability of Wiener process will be discussed in next
sections and will lead us to the definition of stochastic differentiation and inte-
gration, which is slightly different from the deterministic integration as we know
from Riemann integration.

The next parts will be devoted to other classes of processes that are somehow
related to important properties of some Gaussian processes, especially Wiener
process.

3.2.2 Ornstein-Uhlenbeck Process

Another example of Gaussian process is Ornstein-Uhlenbeck process. We have
met it already as an example of process driven by overdamped Langevin equa-
tion. Now we define it as a stochastic process. We define this process in other
way than Wiener process, to be more specific, we define mean and covariance
function and from that we derive other properties.

Definition 3.7 A stationary Gaussian process Y (t) is called Ornstein-Uhlenbeck
process if

• E(Y (t)) = 0

• Cov(Y (t)Y (t′)) = exp(−υ|t− t′|)

We can immediately write unconditional and conditional probability distribu-
tions given by definition 3.3

pY (x, t) =

√
1

2π
exp

(
−x

2

2

)
(3.8)

pY (x2, t2|x1, t1) =

√
1

2π(1− Γ2)
exp

(
− (x2 − x1Γ))

2

2(1− Γ2)

)
(3.9)

where Γ = exp(−υ(t2 − t1)). Contrary to the Wiener process is Ornstein-
Uhlenbeck process stationary (Wiener process has only stationary increments).
On the other hand, the mean value in time t for given initial value Y (0) = x0 is

E(Y (t)|Y (0)) = x0Γ = x0(exp(−t)). (3.10)
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For long times it tends to zero. This property is called mean-reverting, because
the process converges to its unconditional mean value. Ornstein-Uhlenbeck pro-
cess has also interesting physical meaning that we will see later after derivation
of some properties of special classes of random processes.

3.3 Martingales

The concept of martingales represent processes that can be called “fair game”
and comes from environment of hazard. Roughly said, in every step of the game
one has the same chance to loose as to win. On average the player will have
the same amount of money after every round as before the round. In this game
can players show their playing qualities, the casino will not bankrupt because of
large amounts that would have to be payed to players and players will probably
not lose all their money. In the language of stochastic processes, the martingale
process is such a process, whose average value is estimated from the last realized
value. At first, we introduce the term filtration which relates to already realized
values of stochastic process.

Definition 3.8 Let the triplet (Ω,F , p) be a probability space. Every sequence
of σ-algebras {Ft}t∈I ⊆ F , such that for t ≤ s holds the inclusion Ft ⊆ Fs is
called the filtration.

Definition 3.9 The stochastic process X(t) is adapted to filtration Ft, if for
every time t0 ∈ I: X(t = t0) is a Ft0-measurable random variable.

Roughly speaking, the first definition defines a set of events that already hap-
pened and the second definition tells us that adapted process is such process
that in every time contains only the information that is known up to that time.
We can also say that “process does not see to the future”. Now the martingale
processes can be defined in the following way.

Definition 3.10 Martingale process with respect to filtration Ft is a stochastic
process, for that:

1. E(|X(t)|) < +∞ for every t ∈ I,

2. X(t) is adapted to Ft,

3. for every s, t such that s < t: E(X(t)|Fs) = X(s).

We can check, if a Wiener process is a martingale:

E(W (t)|Fs) = E(W (t)−W (s)|Fs) + E(W (s)|Fs). (3.11)

Because the first term is stationary, we can shift the whole process by −s. We
get the term E(W (t − s) − W (0)|F0) = 0. Because the second term is Fs-
measurable (we already know the value), so it is equal to Ws. From that we get
that W (t) is martingale. Another example of martingale process is a process
W 2(t)− t [5].

We define also two generalizations of martingale.

Definition 3.11 A stochastic process X(t) is called supermartingale, resp. sub-
martingale if obeys conditions 1,2 from definition 3.10 and for every s, t; s < t
holds

15



• E(X(t)|Fs) ≤ X(s), for supermartingale, resp.

• E(X(t)|Fs) ≥ X(s), for submartingale.

If the process is both supermartingale and submartingale, then it is martingale.
The next proposition is a simple corollary of Jensen’s inequality and shows, how
can be supermartingales and submartingales created from martingale processes.

Proposition 3.12 Let X(t) be a martingale process w.r.t. filtration Ft and let
f(x) be a convex (resp. concave) function, such that E(|f(X(t))|) < +∞. Then
the process f(X(t)) is submartingale (resp. supermartingale).

We show the first case, while the second case is analogical. The Jensen’s in-
equality implies:

f(X(s)) = f(E(X(t)|Fs) ≤ E(f(X(t))|Fs). (3.12)

Martingales are important in many applications, wherever the request on “fair
games” arises. We use it later for definition of stochastic integration which will
be introduced later in one of the following sections.

3.4 Markov Processes

Another important class in the theory of stochastic processes are processes that
have no memory, i.e. the future evolution is influenced only by the present
configuration of the system and not by the past values. We can imagine it as
a process that “does not remember the past”. For probability distribution it
means:

p(xn+1, tn+1|xn, tn; . . . ;x1, t1) = p(xn+1, tn+1|xn, tn). (3.13)

These processes, that are called Markov processes, are fully described only by 1-
point probability p(x, t) and 1-point conditional probability p(x, t|x′, t′). Every
joint probability distribution can be expressed according to the relation between
conditional and unconditional probability

p(x, y) = p(x|y)p(y)

as a product of conditional probabilities:

p(xn, tn; . . . ;x0, t0) =

(
n∏
i=1

p(xi, ti|xi−1, ti−1)

)
p(x0, t0). (3.14)

If we assume stationary Gaussian process, we can formulate a criterion, whether
the process is Markovian or not.

Proposition 3.13 Let X(t) be a a Gaussian stationary process. The process
is Markov process, if

E(X(t)X(s)) = C exp(−γ|t− s|).

The proof of the proposition can be found in [1].
Accordingly, the exponential decay of covariance function is typical for pro-

cesses, that are not directly influenced by previous configurations. These pro-
cesses are called processes with short-range memory. One example is the Ornstein-
Uhlenbeck process. We will discuss the topic of the memory in the fifth chapter.
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3.4.1 Chapman-Kolmogorov Equation

Let us focus again into the relation (3.14), now we consider this relation for
three points

p(x3, t3;x2, t2;x1, t1) = p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1). (3.15)

We integrate the whole equation over x2 and get on the left hand side a 2-point
probability distribution

p(x3, t3;x1, t1) =

∫
dx2p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1). (3.16)

On the other hand we can write the joint probability with help of conditional
probability and 1-point probability, so

p(x3, t3;x1, t1) = p(x3, t3|x1, t1)p(x1, t1) (3.17)

and therefore we plug it into the equation (3.16) and drop out terms p(x1, t1).
After that we get Chapman-Kolmogorov equation, which is equivalent formu-
lation of condition on conditional probability distribution of Markov process,
so

p(x3, t3|x1, t1) =

∫
dx2p(x3, t3|x2, t2)p(x2, t2|x1, t1), (3.18)

for t3 ≥ t2 ≥ t1.

3.4.2 Markov Chains

Now we look at the situation, when the probability space is finite, i.e. there are
only finite number of possible states that can happen. We number the states,
so we can describe the state space as {xi}ni=1. The process of evolution is given,
as we know from previous section, by two probabilities, concretely by p(x, t)
and p(x, t|x′, t′). We also consider discrete time steps, so t = n ∈ {1, 2, . . . }.
We can then write down a probability of transition from state ξn(x) = xi to
ξn+1(x) = xj in one step as

P [X = xj , t = n+ 1|X = xi, t = n] = p1(j|i)(n) (3.19)

which can be represented as matrix P1(n) with elements p1(j|i). We introduce
a vector of probabilities of particular states as v(ξn)k = p(ξn = k) for k ∈
{1, . . . , n}. We can then calculate the probability distribution v(ξn+1) from the
previous step as

v(ξn+1) = P1(n)v(ξn). (3.20)

We confine ourselves on stationary processes. It means, that P1 does not
depend on n, because the difference between given times is constantly one.
How can be now calculated the change of the probability vector after two steps
directly from v(ξn)? We can apply (3.20) on v(ξn+2) twice and we get:

v(ξn+2) = P1v(ξn+1) = P2
1v(ξn) = P2v(ξn). (3.21)
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Therefore, the transition matrix for m steps is equal to the m-th power of
the transition matrix for one step:

Pn = Pn1 . (3.22)

Markov chains ( = stationary discrete processes on finite state space) play an
important role in many applications, for us will be important, when we define
Markov switching multifractals.

3.4.3 Master Equation

Similarly to Markov chains we look at stationary processes with continuous time
steps. We will be able to concretize the Chapman-Kolmogorov equation in order
to get simpler equations. From definition of stationary process we can deduce
that unconditional 1-point probability is time independent and the conditional
probability depends only on the difference of time. In this section we will be
using the following notation

p(x, t) =: p(x) (3.23)

p(x, t|x′, t′) =: p(x|x′; τ) (3.24)

where τ = t−t′. We rewrite the equation (3.18) with the notation for stationary
processes

p(x3|x1; t′ + t) =

∫
dx2p(x3|x2; t′)p(x2|x1; t) (3.25)

and treat this equation for small time t′ → 0. For transitional probability holds:

p(x3|x2; t′)
t′→0−→ δ(x3 − x2), (3.26)

because the only possible value is the current one. We define a transition rate,

which is the transition probability per unit time as w(x3, x2; t) = p(x3|x2;t)
t , and

for small time difference t → 0 we assume, that this transition rate does not
depend on time in the first approximation on time, so

p(x3|x2; t′) = t′w(x3, x2) + o(t′) (3.27)

and we formally add the term the zero term
(
1− t′

∫
dx′w(x′|x2)

)
δ(x3 − x2),

where the first bracket represents the term of probability, that the state stays
up to time t′ in the same state and the delta function ensures that is should be
the state x3. Together we get

p(x3|x2; t′) ' t′w(x3, x2) +

(
1− t′

∫
dx′w(x′|x2)

)
δ(x3 − x2). (3.28)

We can check that for t′ → 0 we get directly delta function. Now we apply this
expression to the term p(x3|x2; t′) in the Chapman-Kolmogorov equation

p(x3|x1; t+ t′) =

∫
dx2t

′w(x3, x2)p(x2|x1; t)

+

∫
dx2δ(x3 − x2)p(x2, x1)

[
1− t′

∫
dx′w(x′|x2)

]
=

∫
dx2t

′w(x3|x2)p(x2|x1; t)

+t′p(x3|x1; t)− t′
∫

dx′w(x′|x3)p(x3|x1; t). (3.29)
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If we now want to calculate the derivative of p(x3|x1; t) with respect to t, we
get

∂p(x3|x1; t)

∂t
= lim
t′→0

p(x3|x1; t+ t′)− p(x3|x1; t)

t′

=

∫
dx2t

′w(x3|x2)p(x2|x1; t)−
∫

dx2w(x2|x3)p(x3|x1; t). (3.30)

In the second integral we renamed the dummy variable x′ for x2. This equation
is called Master equation and it is a general equation for stationary Markov
process. The benefit of the equation is that Chapman-Kolmogorov equation is
non-linear equation for conditional probability, whereas at Master equation we
have terms with time-independent transition rates w(x|y), which are character-
istic constants for given system and we suppose that are known, or measured
from an experiment. Conditional probabilities itself are in both terms linear, so
with given function w it holds the superposition principle.

3.4.4 Fokker-Planck Equation

Although is Master equation a linear equation, it is still integro-differential
equation and therefore very difficult to solve. We approximate Master equation
in order to get simpler equation that would still describe sufficiently most of
random processes. For an initial probability p(x1, 0) is initial value x1 known
and we introduce a new variables r := x3 − x2 and x = x3, so that

∂p(x; t)

∂t
=

∫
dr [w(x− r|r)p(x− r; t)− w(x| − r)p(x; t)] . (3.31)

For the next approximations we make a few assumptions on w and p, namely:

• w(x − r|r) is function with sharp maximum at r = 0, so for large r is
w(x− r|r) ' 0,

• w(x−r|r) is slowly varying function, so for small r is w(x−r|r) ' w(x|r),

• p(x− r; t) is also slowly varying function,

• p and w are smooth functions.

We expand now the first term in terms of (r − x) around the value x = 0 and
see that first term cancels with the remaining term from the Master equation,
so

∂p(x, t)

∂t
=

∫
drw(x|r)p(x, t)−

∫
drw(x| − r)p(x, t)

−
∫

drr
∂

∂x
[w(x, r)p(x, t)] +

1

2

∫
drr2 ∂

2

∂x2
[w(x, r)p(x, t)] + . . .

=

∞∑
n=1

(−1)n

n!

∂n

∂xn
[an(x)p(x, t)] , (3.32)

where coefficients an(x) are n-th moments of function w

an(x) =

∞∫
−∞

drrnw(x|r). (3.33)
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From the assumption of sharpness of the maximum we can deduce that coef-
ficients an(x) are negligible from some n, because for values around zero the
term rn rapidly decreases and for large r is zero the term w(x − r|r). The
most common choice of number of non-vanishing terms is 2, so only first and
second moment of w(x|r) are non-zero. With this assumption we get famous
Fokker-Planck equation

∂p(x, t)

∂t
= − ∂

∂x
[a1(x)p(x, t)] +

1

2

∂2

∂x2
[a2(x)p(x, t)] . (3.34)

The coefficient a1 is called drift coefficient and a2 is called diffusion coefficient.
The meaning of these coefficients is clear, because this equation is - unsur-
prisingly - formally equal to Smoluchowski equation (2.31). Coefficient a1 is
proportional to external force and therefore to the deterministic drift and a2 is
proportional to diffusion. The fact is that both descriptions lead to the same
differential equation and the same description of the system. The corresponding
Langevin equation for the Fokker-Planck equation with coefficients a1(x) and
a2(x) is

dx(t)

dt
= a1(x) +

√
a2(x)η(t) (3.35)

with E(η(t)η(t′)) = δ(t− t′).
On the other hand for Langevin equation with coefficients

ẋ(t) = a(x) + b(x)η(t) (3.36)

with delta correlated noise η(t) holds Fokker-Planck equation

∂p(x, t)

∂t
= − ∂

∂x
[a(x)p(x, t)] +

1

2

∂2

∂x2

[
b(x)2p(x, t)

]
(3.37)

We can connect for example the Wiener process with corresponding solution
of Langevin equation. In the section 3.2.1 we showed that probability distribu-
tion of Wiener process is given by relation (3.1), and therefore fulfills diffusion
equation

∂pW (x, t)

∂t
=

1

2

∂2pW (x, t)

∂x2
(3.38)

which corresponds to Smoluchowski equation with U ′(x) = 0 and D = 1
2γ2 .

By scaling of the whole equation we can set γ to one so we get the Langevin
equation in the following way

dx(t)

dt
= η(t) (3.39)

with E(η(t)η(t′)) = δ(t− t′). This equation is easy to solve and we get

x(t) =

∫ t

0

dt′η(t′). (3.40)

It would seem that the process x(t) has the same Fokker-Planck equation, so
that x(t) and W (t) should be the same processes, respectively process η(t)
should be a derivative of W (t). But we showed that W (t) is not differentiable.
This holds, because η(t) is a delta function and that is why neither x(t) is
differentiable. The way how to improve current state and connect the solution
of Langevin equation with the stochastic process, whose probability distribution
fulfills Fokker-Planck equation will be discussed in the next section.
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3.5 Stochastic Calculus

We stand in front of the problem, how to interpret the equation dW (t)
dt = η(t) and

how to assign to the solution of Langevin equation the appropriate stochastic
process. In the first chapter we were using Langevin equation more or less
formally and it was useful for us to derive some moments of the process. On
the other hand, the interpretation of this equation is problematic itself, as we
saw in the first chapter, where we assumed no friction in the system. This is
the physical reason. From mathematical point of view η(t) is a rapidly varying
function, in other words even for small intervals the variance does not tend to
zero. Both of these arguments confirm that direct interpretation of this equation
is impossible. Another way is to consider a Ornstein-Uhlenbeck process Y (t)
for which the Fokker-Planck equation has for initial condition Y (0) = 0 the
following form

∂pY (x, t)

∂t
=

∂

∂x
[xpY (x, t)] +

∂2pY (x, t)

∂x2
, (3.41)

which gives us corresponding Langevin equation

dY (t)

dt
= −Y (t) + η(t). (3.42)

This process has covariance function exp(−|t − t′|). The idea is to replace the
rapidly oscillating gaussian noise η(t) by some process with continuous covari-
ance function, which in limit tends to delta function. As an example we can
take for example Ornstein-Uhlenbeck process with covariance function

Cov(Y (t)Y (t′)) =
1

τc
exp

(
−|t− t

′|
τc

)
(3.43)

For τc → 0 we get delta function. The parameter τc is considered as a correlation
time. Thus, the Langevin equation has now perfect meaning and the limit must
be performed after calculating some measurable quantities. The problem arises
when we consider a process driven by an equation with nonconstant noise term,
namely nonconstant term at η(t)

dx(t)

dt
= a(x(t)) + b(x(t))η(t), (3.44)

which can be formulated as a stochastic differential

dx(t) = a(x(t))dt+ b(x(t))η(t)dt = a(x(t))dt+ b(x(t))dW (t) (3.45)

or equivalently in integral representation

x(t) = x0 +

∫ t

0

a(x(t′))dt′ +

∫ t

0

b(x(t′))η(t′)dt′ (3.46)

= x0 +

∫ t

0

a(x(t′))dt′ +

∫ t

0

b(x(t′))dW (t′) (3.47)

The first term is the normal Riemann integral. The interpretation of the second
term remains unclear, because dW (t) is a function for that cannot be regular
definition of a classical calculus used. The problems and the solution will be
discussed in the next section.
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3.5.1 Stochastic Integration

We can grasp the term
∫
b(x(t))dW (t) as a stochastic version of Stieltjes integral.

We see, where this definition is ambiguous and show two possible interpretations.

Definition 3.14 Let us assume a division of the interval [t0, t] by points t1, t2, . . . , tn,
where t0 ≤ t1 ≤ · · · ≤ tn ≤ t. We also choose some inner point τi of every in-
terval, so ti−1 ≤ τi ≤ ti. Then the stochastic integral of function G(t) is defined
as ∫ t

t0

G(t′)dW (t′) = l.i.m.
n→∞

n∑
i=1

G(τi)[W (ti)−W (ti−1)]. (3.48)

Contrary to the Riemann integral, the definition of the integral depends on
the choice of points τi. This can be demonstrated on the example of integral∫ t
t0
W (t′)dW (t′). The partial sum of the integral has form

n∑
i=1

W (τi)[W (ti)−W (ti−1)] (3.49)

We calculate the mean value of this integral, so the partial sum looks like

n∑
i=1

[E(W (τi)W (ti))− E(W (τi)W (ti−1))] =

n∑
i=1

(τi − ti−1) (3.50)

because covariance of Wiener process is E(W (s)W (t)) = min(s, t). For τi =
αti + (1− α)ti−1 we get

n∑
i=1

α(ti − ti−1) = α(t− t0). (3.51)

Here we see that the choice of inner points influences the result of integration.
We follow the definition of Itō integration, for which α = 0. This integral is
called Itō stochastic integral and is defined as∫ t

t0

G(t′)dW (t′) = l.i.m.
n→∞

n∑
i=1

G(ti−1)[W (ti)−W (ti−1)]. (3.52)

This definition is the most usual definition of stochastic integration. The main
advantage of this definition is that Itō integrals are martingales. This can be
shown straightforwardly. Let us assume a process given by a stochastic integral

X(t) =

∫ t

t0

g(t′)dW (t′). (3.53)

Than the expression

E(X(t)|X(s)) = l.i.m.
n→∞

∑
E (g(ti−1)[W (ti)−W (ti−1)]) (3.54)

can be divided into two terms and without loss of generality we can consider a
division point tk = s. For points ti < tk is

E(g(ti−1)[W (ti)−W (ti−1)]|X(s)) = g(ti−1)[W (ti)−W (ti−1)] (3.55)
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Because W (ti) are directly determined by X(s). For ti > tk is W (ti)−W (ti−1)
independent of W (tj), where tj < tk, so:

E(g(ti−1)[W (ti)−W (ti−1)]|X(s)) = g(ti−1)E[W (ti)−W (ti−1)] = 0. (3.56)

That results into the fact that the integral is martingale, i.e.

E

(∫ t

t0

g(t′)dW (t′) | X(s)

)
=

∫ s

t0

g(t′)dW (t′). (3.57)

We can demonstrate this property on an already mentioned example with an
integral ∫ t

0

W (t′)dW (t′) = l.i.m.
n→∞

n∑
i=1

W (ti−1)[W (ti)−W (ti−1)]

= l.i.m.
n→∞

n∑
i=1

(
W (ti−1)W (ti)−W (ti−1)2

)
= l.i.m.

n→∞

n∑
i=1

(
1

2

[
W (ti)

2 +W (ti−1)2 − (W (ti)−W (ti−1))2
]
−W (ti−1)2

)

= l.i.m.
n→∞

n∑
i=1

1

2

[
W (ti)

2 −W (ti−1)2 − (W (ti)−W (ti−1))2
]

=
1

2
W (t)2 − l.i.m.

n→∞

1

2

n∑
i=1

(W (ti)−W (ti−1))2.(3.58)

We look closer at the second term. Every term in the sum is equal to

E
(
[W (ti)−W (ti−1)]2

)
= ti − ti−1, (3.59)

so together we get ∫ t

0

W (t′)dW (t′) =
1

2
(W (t)2 − t). (3.60)

We can see that the result is a martingale, as we showed earlier. On the other
hand we see, that Itō stochastic integration gives us different results than Rie-
mann integrals. We explain these strange properties more in the next section
and show a stochastic version of change of variables.

3.5.2 Itō lemma

In order to derive a substitution rule for Itō integrals, we need one useful defi-
nition.

Definition 3.15 A function g(t) is called non-anticipating function of t, when
g(t) is statistically independent of W (s)−W (t) for all (s, t) such that s > t.

This assumption seems to be reasonable. It ensures that the function g is
not influenced by future values of W (t). Because we mostly study models,
that come from real systems, the assumption of causality should be fulfilled.
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Examples of non-anticipating functions are W (t),
∫
W (t)dW (t) or

∫
g(t)dW (t)

for non-anticipating g(t).
We now show an important property of stochastic integrals, which is the

cornerstone of the whole stochastic calculus. For non-anticipating function g(t)
are ∫ t

t0

g(t′)d[W (t′)2] =

∫ t

t0

g(t′)dt′ (3.61)∫ t

t0

g(t′)d[W (t′)n] = 0 for n ≥ 3. (3.62)

We can understand this integral as a stochastic version of Stieltjes integral.
We show the first equation, the second can be calculated analogically. With
notation ∆ix := x(ti) − x(ti−1) and gi := g(ti) the expression can be showed
directly from definition

lim
n→∞

E

[
n∑
i=1

gi−1((∆iW )2 −∆it)

]2

=

= lim
n→∞

E

[
n∑
i=1

g2
i−1((∆iW )2 −∆it)

2+

+2

n∑
i=1

n∑
j=i+1

gi−1gj−1((∆iW )2 −∆it)((∆jW )2 −∆jt)

 .
Because g is non-anticipating function, ∆iW and gi−1 are independent and the
mean value is applied to every term, we get

= lim
n→∞

[
n∑
i=1

E[g2
i−1]E[((∆iW )2 −∆it)

2]+

+2

n∑
i=1

n∑
j=i+1

E[gi−1gj−1((∆iW )2 −∆it)]E[((∆jW )2 −∆jt)]

 .
In both terms of the expression we find that E[((∆iW

2)−∆it)
2] and this term

can be modified into the form

E[((∆iW )2 −∆it)
2] = 2∆it. (3.63)

Under some sufficient conditions (e.g. g is bounded function) the whole limit
vanishes. The formula for n ≥ 3 is proved analogically, using higher moments
of W (t). If we rewrite the result into the corresponding differential form, we get

d[W (t)2] = dt (3.64)

d[W (t)n] = 0 for n ≥ 3. (3.65)

With this machinery we can formulate important Itō lemma, a stochastic version
of the chain rule.
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Proposition 3.16 (Itō lemma) Let x(t) be a stochastic process fulfilling re-
lation

dx(t) = a(x(t), t)dt+ b(x(t), t)dW (t)

and let f be a twice differentiable function. Then

d[f(x(t))] =

[
a(x(t), t)f ′(x(t)) +

1

2
b2(x(t), t)f ′′(x(t))

]
dt+b(x(t), t)f ′(x(t))dW (t).

In order to show the validity of the lemma we expand the differential of f(x(t))
up to second order, so

d[f(x(t))] = f ′(x)dx(t) +
1

2
f ′′(x)d[(x(t))2] +O(d[x(t)3])

= f ′(x)a(x, t)dt+ f ′(x)b(x, t)dW (t) +
1

2
f ′′(x)b2(x, t) d[W (t)2]︸ ︷︷ ︸

=dt

+O(dt2)

= [f ′(x)a(x, t) +
1

2
f ′′(x)b(x, t)]dt+ f ′(x)b(x, t)dW (t).

In calculations were used formulas (3.64) and (3.65). Note that the additional
term 1

2f
′′(x)b(x, t) by the factor dt is caused by the stochastic nature of differ-

entials.

3.5.3 Itō Integration versus Stratonovich Integration

Another possibility of defining the stochastic integral is to replace in the defini-
tion of stochastic integral the value g(τ) by an average value of g in boundary
points. That is the definition of Stratonovich integral

Definition 3.17 Let us consider an interval [t0, t] with a division {ti}ni=1. Then
Stranonovich stochastic integral is defined by following expression:∫ t

t0

G(x(t′), t′)◦dW (t′) = l.i.m.
n→∞

n∑
i=1

G

[
x(ti) + x(ti−1)

2
, ti−1

]
(W (ti)−W (ti−1)).

We can see a little difference in the definition of Stratonovich integral. It is
defined only for function of two variables G(x, t). It is necessary to say that if
G is differentiable in t, then the integral does not depend on the choice of t in
the second argument. The reason for definition in this way is more precisely
described in [15].

The advantage of Statonovich integral is that it behaves as regular deter-
ministic integral. For example∫ t

0

W (t′) ◦ dW (t′) = l.i.m.
n→∞

1

2

n∑
i=1

(W (ti) +W (ti−1))(W (ti)−W (ti−1)) =

= l.i.m.
n→∞

1

2

n∑
i=1

(W (ti)
2 −W (ti−1)2) =

1

2
W (t)2.

The disadvantage of Stratonovich integral is its physical interpretation. As we
saw, it is not a martingale. This can be a problem for systems that have some
kind of causality.
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For a stochastic process obeying stochastic differential equation

dx(t) = a(x(t), t)dt+ b(x(t), t)dW (t) (3.66)

or equivalently satisfying Itō integral relation

x(t) = x(t0) +

∫ t

t0

a(x(t′), t′)dt′ + b(x(t′), t′)dW (t′) (3.67)

we find an appropriate relation in Stratonovich representation, i.e.

x(t) = x(t0) +

∫ t

t0

α(x(t′), t′)dt′ +

∫ t

t0

β(x(t′), t′) ◦ dW (t′) (3.68)

and deduce the dependence on coefficients. Firstly, we look at the Stratonovich
term in the second representation. The partial sum is equal to

n∑
i=1

β

[
x(ti) + x(ti−1)

2
, ti−1

]
(W (ti)−W (ti−1)) (3.69)

we expand x(ti) around x(ti−1) up to the first term, so

x(ti) = x(ti−1) + dx(ti−1) +O(dx(ti−1)2), (3.70)

where dx(ti−1) fulfills the original stochastic differential equation

dx(ti−1) = a(x(ti−1), ti−1)∆it+ b(x(ti−1), ti−1)∆iW. (3.71)

When plugged into the expression for beta, we get for ∆it→ 0

β

[
x(ti) + x(ti−1)

2
, ti−1

]
' β

[
x(ti−1) +

1

2
dx(ti−1), ti−1

]
=

= β(x(ti−1), ti−1) +
1

2
[α(x(ti−1), ti−1)∂xβ(x(ti−1), ti−1) +

1

4
b2(x(ti−1), ti−1)]∆it

+
1

2
b(x(ti−1), ti−1)∂xβ(x(ti−1), ti−1)∆iW. (3.72)

In the integral is every term multiplied by ∆iW , so the first term gives us
Itō integral, the second term vanishes, because dtdW is dropped out, and the
third term gives a contribution to deterministic integral, because dW 2(t) = dt.
Together we can write∫ t

t0

β(x(t′), t′)◦dW (t′) =

∫ t

t0

β(x(t′), t′)dW (t′)+
1

2

∫ t

t=0

b(x(t′), t′)∂xβ(x(t′), t′)dt′.

(3.73)
This relation holds only for functions of argument x(t) which is the solution
of stochastic differential equation. We have to mention that it does not give
any general relation between Itō and Stratonovich integral with arbitrary inte-
grands. Finally we get the relation between both stochastic differential equa-
tions, namely if the stochastic process fulfills Itō differential equation

dx(t) = a(x(t), t)dt+ b(x(t), t)dW (t), (3.74)

then is x(t) a solution of Stratonovich differential equation

dx(t) = [a(x(t), t)− 1

2
b(x(t), t)∂xb(x(t), t)]dt+ b(x(t), t) ◦ dW (t). (3.75)
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Figure 3.2: Sample path of Geommetric Brownian Motion for µ = 0.0015 and σ = 0.015 for 1000
steps.

3.5.4 Geometric Brownian Motion

Let us return back to Itō calculus. One practical application of Itō calculus is the
derivation of Geometric Brownian motion. We know that in the financial market
financial have not series Gaussian distribution. On the other hand, the most
common model assumes that logarithmical returns are normally distributed, but
the mean and variance are usually not known. In many books we can find, that
the price of financial series is driven by stochastic differential equation

dP (t) = µP (t)dt+ σP (t)dW (t). (3.76)

This equation comes from the fact that the strength of both terms is linearly
depending on price itself, the higher the price is, the larger the growth and

deviations are, so in ratio lnP (ti) − lnP (ti−1) = ln P (ti)
P (ti−1) remain both quan-

tities the same. More discussion is e.g. in [30]. We use Itō lemma and find a
differential of lnP (t)

d[lnP (t)] =

(
µ− 1

2
σ2

)
dt+ σdW (t). (3.77)

The additional term − 1
2σ

2 is a consequence of Itō calculus. We solve this equa-
tion and get

lnP (t) = lnP (0) +

[
µ− 1

2
σ2

]
t+ σW (t) (3.78)

and finally

P (t) = P (0) exp

([
µ− 1

2
σ2

]
t

)
exp(σW (t)). (3.79)

The probability distribution of P (t) is log-normal with mean
[
µ− 1

2σ
2
]
t and

variance σ2t:

p(P, t) =
1√

2πσ2P 2t
exp

(
−

(ln(P/P0)−
[
µ− 1

2σ
2
]
t)2

2σ2t

)
. (3.80)

This example shows, what we saw earlier, so that manipulation with stochas-
tic differential is not in every case intuitive and additional terms can arise.
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Chapter 4

Memory in Physical and
Economical Processes

So far, we have discussed most of the models, whose behavior depends only
on the actual configuration. This represents Langevin equation with delta-
correlated force, respectively Markov processes in the theory of stochastic pro-
cesses. However, in the real systems (for instance physical, biological or eco-
nomical ones) the very often observed behavior does not correspond to simpli-
fied behavior of these models. The behavior of large systems is often complex,
exhibiting diverse properties, including memory, large fluctuations and other
behavior. In this section processes with memory effects will be studied. As
we will see in the next chapter, there is a close relation to scaling and large
deviations.

4.1 Correlations and Stationarity

In practical experiments or simulations we cannot get the whole probability
distribution, we can only measure statistical quantities of the ensemble. For the
description of behavior of the process at one time point we have many statistical
observable quantities, like mean E(x(t)) , moments E(x(t)n), central moments
E(x(t)n − E(x(t))n), like variance and many others. When we want to describe
the dependence of two arbitrary points of a stochastic process, we introduce a
well-known quantity called auto-correlation function

R(t1, t2) = E(x(t1)x(t2)) =

∫
dx1dx2x1x2p(x1, t1;x2, t2). (4.1)

Because there is often a non-zero mean, we define also an autocovariance func-
tion

C(t1, t2) = R(t1, t2)− E(x(t1))E(x(t2)). (4.2)

We would like to focus especially on stationary processes, because it is easy
to deal with those processes and we have seen that many of important stochastic
processes can be modeled by stationary stochastic processes. In the previous
chapter we introduced a concept of strict stationarity. The process is strictly
stationary, if the probability distribution is invariant under the time shift. This
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definition is unfortunately too strict, because we usually do not know the whole
distribution. We introduce weaker condition for stationarity instead, but all
favorable properties remain.

Definition 4.1 A stochastic process x(t) is stationary in the wide sense, if:

1. E(x(t)) = µ = const.,

2. E(x(t1)x(t2)) = R(|t1 − t2|).

The consequence is that variance is also time-independent, because R(0) =
E(x(t)2) for arbitrary t and therefore C(0) = σ2. Now we can ask the question,
for which time difference are correlations too weak, so we can consider that there
exists some τc that for sufficiently large difference τc < |t− t′| are variables x(t)
and x(t′) practically independent. Or if τc exists at all. Let us look at a discrete
case. We consider a discrete stationary process xi of identically distributed
variables and we also consider the sum Sn =

∑n
i=1 xi. Let us assume E(xi) = 0.

Then the variance of the sum is

E(S2
n) =

2∑
i=1

E(x2
i ) + 2

n∑
i=1

n∑
j=i+1

E(xixj) = nE(x2
i ) + 2

n∑
i=1

(n− i)C(i)

= nE(x2
i ) + 2n

n∑
l=1

(
1− l

n

)
C(l) (4.3)

According to the Central limit theorem (theorem (A.1) in appendix) should the
sum for independent variables grow as N · const. This means that from some
n should the second term be practically constant, so C(l) should scale as l−ν ,
where ν > 1. For large n can be the sum approximated as

2

n∑
l=1

(
1− l

n

)
C(l) ≈ 2

∫ ∞
0

C(τ)dτ, (4.4)

so if there exist any time scale τc, then must be this integral finite, and if
correlations cannot be neglected for any scale, then the integral is infinite. This
leads us to division of random processes. Processes with short-range correlations
are processes for which

∫∞
0
C(τ)dτ is finite and long-range correlated processes

are such processes for which
∫∞

0
C(τ)dτ = +∞ or is indeterminable. The

example of the first class is a process with auto-covariance function

C(τ) = exp

(
− τ
τc

)
, (4.5)

because ∫ ∞
0

C(τ)dτ =

∫ ∞
0

dτ exp

(
− τ
τc

)
= τc. (4.6)

The example of this process is the Ornstein-Uhlenbeck process. If the covariance
function scales like τν−1 for ν > 0 the integral diverges and the process is long-
range correlated.
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4.2 Power Spectrum

Another useful characteristics of stochastic processes that helps to recognize
memory effects is a Fourier image of the stochastic process. We define a spectral
density of a stochastic process x(t) as

S(ω) = lim
T→∞

1

2πT
E

∣∣∣∣∣
∫ T

0

x(t) exp(−iωt)dt

∣∣∣∣∣
2
 . (4.7)

The dependence on ω helps us to recognize the strength of the memory. The
meaning of power spectrum arise clearly for stationary processes.

4.2.1 Wiener-Kchinchin Relation

The choice of power spectrum was not accidental. The relation to correlations
and memory effects is remarkable for stationary processes, for which a relation
between power spectrum and correlation function can be formulated.

Proposition 4.2 (Wiener-Kchinchin) For a wide sense stationary process
is

S(ω) = F [R(τ)](ω) =
1

2π

∫ ∞
−∞

R(τ) exp(−iωτ)dτ. (4.8)

We can show the proposition straightforwardly from definition, because

lim
T→∞

1

2πT
E

(∫ T

0

dt

∫ T

0

dt′x(t)x(t′) exp(−iω(t′ − t))

)
=

= lim
T→∞

1

2πT

∫ T

0

dt

∫ T

0

dt′E(x(t)x(t′)) exp(−iω(t′ − t))

= lim
T→∞

1

2πT

∫ T

0

dt

∫ T

0

dt′R(t′ − t) exp(−iω(t′ − t)).

We integrate over a square (0, T ) × (0, T ) where we can integrate firstly over
constant t′ − t = τ and then over τ . We therefore change the variables for
τ = t′ − t and z = 1

2 (t+ t′), so we get

lim
T→∞

1

2πT
T

∫ T

−T
dτR(τ) exp(−iωτ) =

1

2π

∫ ∞
−∞

dτR(τ) exp(−iωτ).

The original formula is very difficult to calculate, whereas the latter one can be
performed easily. This allows us to calculate some important power spectrums.

• Gaussian (white) noise: we know that Gaussian noise is the stationary
process with correlation function D0δ(τ). The power spectrum is therefore

Sη(ω) =
1

2π

∫ ∞
−∞

D0δ(τ) exp(−iωτ) =
D0

2π
. (4.9)
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Figure 4.1: Log-Log plot of power spectrum of Gaussian noise (left) and Wiener process (right). The
power spectrum of Gaussian noise behaves as constant, power spectrum of Wiener process decays
as ω−2.

• Short-range correlated process: If we have a process with a exponential

decay in correlations exp
(
− |τ |τc

)
we get a power spectrum

S(ω) =
1

2π

∫ ∞
−∞

dτ exp

(
−|τ |
τc
− iωτ

)
=

1

2π

(
τc

1 + iτcω
+

τc
τc − iτcω

)
=

τ2
c

2π(1 + τ2
c ω

2)
. (4.10)

The spectrum behaves for ωτc � 1 as a constant and for ωτc � 1 decays
as ω−2.

• Wiener process: although is Wiener process not a stationary process we
can estimate the spectrum from knowledge of white noise. We know that

in some sense holds dW (t)
dt = η(t), so in Fourier image we have

−iωF [W ](ω) = F [η](ω),

so the power spectrum behaves as

SW (ω) ∝ ω−2. (4.11)

4.2.2 1/f Noise

Up to now we have seen only processes with constant power spectrum, or power
spectrum decaying as ω−2. We now assume a process with power spectrum

S(ω) =
c

ωη
, (4.12)

where 0 < η < 2. These processes are often called 1/f noises, or generally 1/fη

noises. Here f denotes a frequency variable and the name wants us to say, how
fast decays the power spectrum. It can be showed that these processes cannot
be stationary. We use a result from [20], for short observation time we get that
corresponding correlation function scales as

• R(τ) ∝ |τ |η−1 for 0 < η < 1, τ > 0
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• R(t2, τ) ∝ ln 4t2 − ln |τ | for 0 < τ � t2, η = 1

• R(t2, τ) ∝ tη−1
2 − C|τ |η−1 for 1 < η < 2.

In all three cases we see, that there does not exist any typical time scale, as
for exponentially decaying correlation functions. That means that all of these
processes have long memory and that gives us useful tool to recognize, whether
the process has long memory or not.

4.3 Fractional Stochastic Processes

In this section we would like to show another approach leading to memory
effects. This will be the fractional calculus. We firstly introduce the necessary
mathematical formalism and then we show, how this calculus can be applied in
order to create these kinds of processes. We note here that fractional calculus
will be important also in the next section in connection to the scaling properties
and super-diffusion behavior.

4.3.1 Fractional Integration and Differentiation

In this section we would like to extend the classical differentiation and integra-
tion operators from classical calculus to operators with non-natural numbers.
We demand that for natural numbers we get classical derivatives and integrals.
We begin from the classical formula for repeated integral∫ x

x0

∫ x1

x0

. . .

∫ xn−1

x0

f(xn)dxn . . . dx1 (4.13)

and rewrite the expression with help of Cauchy integral formula

1

(n− 1)!

∫ x

x0

(x− y)n−1f(y)dy. (4.14)

This formula can be easily generalized for non-integer values, so for α > 0 we
define a fractional integral as

x0
Iα[f ](x) :=

1

Γ(α)

∫ x

x0

(x− y)α−1f(y)dy. (4.15)

We show that on space L1(a, b) is the operator bounded. For arbitrary a < x0 < b
we get

‖Iαx0
f‖1 =

1

|Γ(α)|

∫ b

a

∣∣∣∣∫ x

x0

(x− y)α−1f(y)dydx

∣∣∣∣ ≤ |b− a|αα|Γ(α)|
‖f‖1. (4.16)

We also show that a set of operators {Iαx0
}α>0 is a semigroup. For some α, β

Iαx0
◦ Iβx0

[f ](x) =
1

Γ(α)

∫ x

x0

dy(x− y)α−1 1

Γ(β)

∫ y

x0

dz(y − z)β−1f(z). (4.17)

In the next we use a special version of Dirichlet formula∫ b

a

dy

∫ y

a

G(y, z)dz =

∫ b

a

dz

∫ b

z

G(y, z)dy (4.18)
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where G(y, z) = (x− y)α−1(y − z)β−1f(z). So we get

1

Γ(α)Γ(β)

∫ x

x0

f(z)d(z)

∫ x

z

(x− y)α(y − z)β−1dy. (4.19)

We introduce a substitution t = y−z
x−z and after this substitution we get

1

Γ(α)Γ(β)

∫ x

x0

f(z)dz(x− z)α+β−1

∫ 1

0

(1− t)α−1tβ−1dt =

=
1

Γ(α)Γ(β)

∫ x

x0

f(z)d(z)(x− z)α+β−1B(α, β), (4.20)

so together we actually get Iα+β
x0

[f ](x). We can now define also a fractional
derivative operator as

Dβx0
[f ](x) :=

dbβc+1

dbβc+1x

(
Ibβc−β+1
x0

[f ]
)

(x) (4.21)

which is well defined for sufficiently smooth function.
We look at another interesting representation of fractional integrals and

derivatives and concretely at the representation through Fourier transform. Un-
fortunately the class of functions, for which can be fractional integrals repre-
sented through Fourier transform, covers only a fraction of functions, for which
a fractional integral or derivative can be made. But on the other hand, Fourier
representation is very easy and elegant. We can formulate it as a lemma.

Lemma 4.3 We consider 0 < α < 1 and f ∈ L1(a, b). Then

F
[
Iα−∞[f ]

]
(k) = (ik)−αF [f ] (k). (4.22)

In order to show the validity of the lemma we look at integral∫ t

−t
dxe−ikx Iα−∞[f ](x) =

∫ t

−t
dxe−ikx

1

Γ(α)

∫ x

−∞
(x− y)α−1f(y)dy =

=

∣∣∣∣ x− y = l
−dy = dl

∣∣∣∣ =

∫ t

−t
dx

∫ ∞
0

dle−ikxlα−1f(x− l) =

=

∣∣∣∣ x− l = z
dz = dl

∣∣∣∣ =

∫ ∞
0

dl lα−1e−ikl
∫ t−l

−t−l
dzf(z)e−ikz

Now we make a limit transition in the principal value. We assume the first
integral as a limit of a finite integral

∫ a
0

and change the limit order. With that
we get that in the principal value meaning is the last expression equal to

p.v.
= F [f ](k)

∫ ∞
0

dl lα−1e−ikl = (ik)−αF [f ](k). (4.23)

We can easily extend the representation for some class of functions for which it
does make sense, extend also to exponents α > 1 and for fractional derivatives,
as well. More details about this are in [6], but generally is possible to write for
suitable functions

F
[
Iα−∞[f ]

]
(k) = (ik)−αF [f ] (k) (4.24)

F
[
Dβ−∞[f ]

]
(k) = (ik)βF [f ] (k). (4.25)
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4.3.2 Mittag-Leffler Functions

Let us look at special class of functions that are closely related to fractional
derivatives. For exponential function we can find a series expansion in the
following form:

exp(x) =

∞∑
n=0

xn

n!
=

∞∑
n=0

xn

Γ(n+ 1)
. (4.26)

We introduce a simple generalization of this series expansion. The function is
called Mittag-Leffler function and is given by this expansion

Eµ(x) =

∞∑
n=0

xn

Γ(µn+ 1)
, (4.27)

for µ > 0. The function is not accidentally called generalized exponential func-
tion, the name comes from property that it is an eigenfunction of fractional
differential equation

Dµ0 [Eµ(x)] = Eµ(x). (4.28)

In order to show this relation, we calculate the fractional derivative of function
xn. For simplicity we show it for µ ∈ (0, 1), for other values is the calculation
analogous.

Dµ0 [xn] =
d

dx

(
I1−µ

0 [xn]
)

=
d

dx

(
1

Γ(1− µ)

∫ x

0

(x− y)1−µyndy

)
.

Here we use the same substitution as in (4.20) and get

d

dx

(
1

Γ(1− µ)
xn+1−µB(1− µ, n+ 1)

)
=

d

dx

(
Γ(n+ 1)

Γ(n+ 2− µ)
xn+1−µ

)
=

Γ(n+ 1)

Γ(n+ 1− µ)
xn−µ.

With that can be easily checked that Mittag-Leffler function really fulfills the
equation (4.28). There are a few examples of Mittag-Leffler function expressible
as elementary function:

• E1(x) = exp(x),

• E2(x2) = cosh(x),

• E2(−x2) = cos(x).

There are some more cases for those we get elementary functions, more examples
and properties are in [32]. From now on, we are interested in the behavior of
Eµ(−αµtµ), where αµ is some constant. This expression will be helpful in the
next section. Firstly, we look at the behavior for small t:

Eµ(−αµtµ) ' 1

Γ(1)
− αµt

µ

Γ(µ+ 1)
' 1

Γ(1)
− cαµt

µ

Γ(2)
' exp(−cαµtµ). (4.29)

Thus, for very small t decays the function Eµ exponentially. On the other hand
for large values of t the function behaves as

Eµ(−αµtµ) ' t−µ

αµΓ(1− µ)
. (4.30)
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We used the result from [32], so for large values it decays with power law. For
us one more property will be important, namely Laplace transform (again from
[32])

L[Eµ(−αµtµ)](s) =
sµ−1

sµ + αµ
=

1

s+ αµs1−µ . (4.31)

In the next section we see the application of fractional calculus and Mittag-
Leffler function on the example of Langevin equation with memory.

4.3.3 Langevin Equation with Memory

Up to now we were interested only in processes with random noises that de-
pended only on the present configuration. Now we take into account also the
situation, when the fluctuating force and friction have non-zero correlations. We
assume general Langevin equation with fluctuation force F (t) in the form

mẍ(t) +m

t∫
0

dt′γ(t− t′)ẋ(t′) + U ′(x) = F (t) (4.32)

with conditions on the force F (t)

E(F (t)) = 0, (4.33)

E(F (t)F (t′)) = kBTγ(t− t′). (4.34)

The last equation is the generalization of fluctuation-dissipation theorem for
systems with the memory. We can observe that the whole system, i.e. both
fluctuations a and friction have characteristic memory γ(t), also called memory
kernel.

Now let us consider a Langevin equation for a free particle (U ′(x) = 0) with
the memory kernel

E(F (t)F (t′)) =
mkBT

Γ(1− β)
· (t− t′)β = γβ · (t− t′)β . (4.35)

In order to find a solution we transform the equation (4.32) into its Laplace
image and we exploit the well known rules for the Laplace transform of the
convolution and derivative (we follow the natural assumption γ(t′) = 0 for
t′ < 0):

L[γ ∗ v](s)] = L

 ∞∫
−∞

dt′γ(t− t′)v(t′)

 (s) = L[γ](s)L[v](s), (4.36)

L[ẋ](s) = sL[x](s)− x0. (4.37)

The Laplace image of the Langevin equation has following form:

m
(
s2L[x](s)− sx0 − v0

)
+msL[γ](s) (sL[x](s)− x0) = L[F ](s). (4.38)

After some manipulations we get the solution in the Fourier image:

L[x](s) =
x0

s
+

v0

s(s+ L[γ](s))
+

L[F ](s)

ms(s+ L[γ](s))
(4.39)
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We define a function B(t), such as

L[B](s) :=
1

s(s+ L[γ](s))
. (4.40)

We can convert the solution back to variable t and write

x(t) = x0 + v0B(t) +
1

m

t∫
0

dt′B(t− t′)F (t′). (4.41)

We find a solution for v(t) by differentiating of the solution for x(t)

v(t) = v0C(t) +
1

m

t∫
0

dt′C(t− t′)F (t′), (4.42)

where C(t) = Ḃ(t). The function C(t) is the normalized correlation function,
because

E(v(t)v(0)) = v2
0C(t) (4.43)

and its Laplace transform is

L[C](s) =
1

s+ L[γ](s)
. (4.44)

Now, we consider two extreme cases of memory:

• no memory: C0(t) = γδ(t)⇒ L[C0](s) = γ

• constant memory: C1(t) = γ = const.⇒ L[C1](s) = γs−1

The first memory kernel belongs to a system with no memory and the second
to a system, where every past configuration influences the future behavior with
the same magnitude. In between are processes that depend also on the past
values, but with descending strength. This property can be well characterized
again in the Laplace image, so we define

L[Cα(t)](s) :=
γ

sα
⇒ Cα(t) =

γαtα−1

Γ(α)
(4.45)

for α ∈ [0, 1]. In our case we can recognize that the correlation function is a the
Mittag-Leffler function because

L[C](s) =
1

s+ γβsβ−1
(4.46)

hence

C(t) = E2−β(−γβt2−β) ' tβ−2

γβΓ(β − 1)
for large t. (4.47)

The mean square displacement is from x(t)− x(0) =
∫

dt′v(t′) equal to

Var(x(t)) =

∫ t

0

dt1

∫ t

0

dt2E(v(t1)v(t2)) = 2

∫ t

0

dt1

∫ t1

0

dt2E(v(t2)v(0))

= 2v2
0

∫ t

0

dt1

∫ t1

0

dt2C(t2) ' 2v2
0t
β

γβΓ(β + 1)
. (4.48)

We can distinguish three cases of diffusion:
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Figure 4.2: Sample functions of fBM for H=0.3, 0.5, 0.6 and 0.7. For 0.5 we get Brownian motion.
Compared to that we see that for H > 0.5 are the sample functions smoother and the behavior is
persistent. For H < 0.5 we get rough sample functions and anti-persistent behavior.

• β = 1: the mean square displacement is Var(x(t)) ∼ t, which is the same
as for Langevin equation without memory, so C(t) ∼ exp(−ct). Velocities
are therefore for large times uncorrelated.

• β > 1: C(t) > 0, we get superdiffusive behavior, velocities are positively
correlated.

• β < 1: C(t) < 0, we get subdiffusive behavior, velocities are negatively
correlated.

We have seen that the presence of memory can cause different behavior. The
behavior of the process can be either persistent, which means that movement
in some direction supports future movement in the same direction, or anti-
persistent, which means that the movement in one direction causes the opposite
movement. In the first case the trajectory is more straightforward, which means
that in the same time the particle gets further than in case of an uncorrelated
process. In the second case contributions cancel out and the particle remains
probably nearer to the original position. In the next section we discuss similar
processes that exhibit superdiffusive and subdiffusive behavior and in the next
chapter we show that there exists a connection between memory effects and
scaling and how can be this behavior revealed.

4.4 Fractional Brownian Motion

Another approach to processes with memory, that brings similar results as
Langevin equation with memory, is generalization of Wiener process. With this
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generalization came B.B.Mandelbrot [26]. It comes from an idea of fractional
stochastic integration of Wiener process.

Definition 4.4 A Fractional Brownian motion (fBM) is a stochastic process
defined as a stochastic integral

WH(t) :=
1

Γ(H + 1
2 )

∫ t

0

(t− s)H− 1
2 dW (t) (4.49)

where H ∈ [0, 1].

We calculate the variance of Fractional Brownian motion

E(WH(t)WH(t)) = E

(
1

Γ(H + 1
2 )2

∫ t

0

∫ t

0

(t− s)H− 1
2 (t− s′)H− 1

2 dW (s)dW (s′)

)

=
1

Γ(H + 1
2 )2

∫ t

0

∫ t

0

(t− s)H− 1
2 (t− s′)H− 1

2 E(dW (s)dW (s′))

=
1

Γ(H + 1
2 )2

∫ t

0

∫ t

0

(t− s)H− 1
2 (t− s′)H− 1

2 δ(s− s′)dsds′

=
1

Γ(H + 1
2 )2

∫ t

0

(t− s)2H−1ds =
t2H

2HΓ(H + 1
2 )2

.

Sometimes is the fBM defined in a slightly different way, directly through defi-
nition of variance. One can say that fBM is a stochastic process with following
properties:

• WH(0)
a.s.
= 0,

• WH(t) has stationary independent increments,

• Var(WH(t)) = t2H

HΓ(H+ 1
2 )2 .

Similarly to variance can be autocorrelation function calculated as [26]

E(WH(t)WH(s)) =
1

2HΓ(H + 1
2 )2

(s2H + t2H − |s− t|2H). (4.50)

We see that it corresponds to the correlation functions calculated in the previ-
ous chapter, so the coefficient 2H corresponds to the exponent by t. Because
correlations are non-zero and have power-law character, we get a class of non-
Markovian processes with long memory. Similarly to the last section, for H > 1

2
we get positive correlations and for H < 1

2 we get negative correlations, which
represent the superdiffusive behavior, resp. subdiffusive behavior.

Processes that we have introduced in this chapter are only an elementary
approach to more realistic processes observed in many experiments from physics,
biology or economics. In the next chapter we show another concept that will
help us to construct better models and we will see that it is also partially related
to the processes with memory.
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Chapter 5

Scaling Properties of
Random Processes

In this chapter we want to show, how the scaling is important in stochastic
processes and what properties can be determined by scaling. We will see that
scaling is a powerful tool, that causes nontrivial behavior of systems, because
it discovers their inner structure. We will see, that processes with scaling prop-
erties exhibit both the memory effects and extreme behavior in comparison to
other processes. The concept of scaling will lead us to self-similarity of processes
and this can be well described by fractal geometry, which will be a springboard
to further chapters.

5.1 Scaling and Memory

In the previous chapter we were talking about difference between different types
of memories and corresponding correlation functions. Let us look at the prob-
lematic once more from a different point of view that will stand as a motivation
for the next chapter. We have seen two types of correlation function. Firstly cor-
relation functions that decay exponentially. These systems exhibit short-range
memory effects, there is a typical scale, for which the values are independent
from each other. This can be nicely understood if we rescale the variable t to
t 7→ κt, then the function γ, that determines the behavior of the system is

γc(t) = e−
t
τc ⇒ γc(κt) = e−

κt
τc ' 0 (5.1)

for κ � τc, so we see, that there exist a scale and values further than this
scale are practically independent. But when we assume a polynomial behavior,
then

γp(t) =
µtµ−1

Γ(µ)
⇒ γp(κt) =

µ(κt)µ−1

Γ(µ)
= κµ−1γp(t). (5.2)

We see that for large times remains the correlation function the same, just
rescaled. That is the main difference between exponential decay and polynomial
behavior. Generally we can distinguish between exponential and polynomial
behavior in certain systems. We can observe by systems with power-law a typical
long-range behavior and scale-invariance, which is also called self-similar. The
proper definition of self-similarity comes in one of the next sections.
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5.2 A Way beyond Central Limit Theorem

Central limit theorem (theorem A.1 in appendix) states that for sum of in-
dependent variables with finite variance is Gaussian distribution the limiting
distribution. That means that for long times we can assume that for every sys-
tem composed of many little random steps added together the sum of all that
steps behaves as it was Gaussian. Nevertheless, the assumption of no correla-
tions and finite variance can be limiting for many applications, where studied
systems perform complex behavior with a row of nontrivial phenomena. In the
last section we overcame the absence of memory, in this section we will be in-
terested in processes, for which the variance is not finite. We will see that some
properties of both processes are common.

In the latter case there is shown in appendix that there is a special class
of limiting distributions called Lévy distributions that can be expressed in the
form (A.5) with asymptotic behavior

Lα(x) ' lα
|x|1+α

(5.3)

where

lα =
γΓ(α+ 1)

π
sin
(πα

2

)
(5.4)

and γ is one of parameters of Lévy distribution. The expression comes from
an asymptotic expansion of Lévy distribution (A.8). These distributions have
interesting properties

• sharper central peak: Compared to Gaussian distribution have Lévy
distributions sharper maximum in the central part.

• fat tails: Because Lévy distributions decay polynomially for large values,
they decay therefore much slower than Gaussian distribution.

The second property is connected to the infiniteness of the second moment of the
distribution, that means that large deviations from the center are much more
probable than in case of normal distribution. Both properties are pictured in
figure 5.1. In the next section we focus on processes that are generated by Lévy
distributions and show some interesting properties of those processes.

5.2.1 Lévy Flights

In the third chapter we defined stable processes, but we were dealing only with
processes with Gaussian distribution. The reason is that many models from
other branches deal with Gaussian distribution, because dealing with other types
of distributions is usually very difficult and as we saw, Gaussian distribution
describes many systems without extreme behavior quite well because of central
limit theorem. Our approach is to aim to processes that are driven by Lévy
distributions. We adapt the definition of stable processes to case, when the
stable distribution is Lévy distribution. Let us start with an auxiliary definition

Definition 5.1 Let X1,X2 be i.i.d. copies of random variable X with the prob-
ability distribution p(x). Then is this variable called strictly α-stable if for any
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Figure 5.1: Probability distribution of Lévy stable distribution (concretely Cauchy distribution) and
Gaussian distribution. On the left figure we can see the central part of distribution with sharper
peak of Lévy distribution and on the right figure we see fat tails of Lévy distribution driven by
power law and comparison with Gaussian distributions that decay faster to zero even for large σ’s.

a, b

a
1
αX1 + b

1
αX2

d
= (a+ b)

1
αX. (5.5)

This property is direct generalization of the property of Wiener process, because
from basic property of Gaussian distribution

λN (0, σ2) = N (0, λ2σ2) (5.6)

N (0, µσ2) +N (0, νσ2) = N (0, (µ+ ν)σ2) (5.7)

is easy to show that for normally distributed variable w is

a1/2w + b1/2w
d
= (a+ b)1/2w. (5.8)

That perfectly corresponds to Gaussian limit, because for α = 2 becomes the
Lévy distribution into Gaussian distribution. It is also obvious from the form
of characteristic function of Lévy distributions that strictly α-stable variables
are variables with symmetric Lévy distributions Lα with mean value 0 (i.e.
c = 0), because when we add two random variables, we must do a convolution
of probability distributions and for Fourier images it means to multiply them,
so for functions

F [Lα(x)](k) = exp(−γ|k|α) (5.9)

this causes the right multiplication. The reason of redefining Wiener process is
that we cannot define a Lévy process with variance, because it is infinite, so we
help us with scaling properties. We can therefore define a process, that will be
a generalization of Wiener process, but with Lévy increments.

Definition 5.2 A stochastic process Lα(t) is called Lévy motion, or alterna-
tively Lévy flight if:

• Lα(0)
a.s.
= 0,

• Increments of Lα(t) are not correlated for different values,

• Lα(t) is strictly α-stable.
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Figure 5.2: Simulation of sample path of Wiener process (left) and Lévy process (right) in 2D
space. It was used 5000 steps to show the diffusion of Wiener process and so called supperdiffusion
of Lévy processes which produces large jumps in comparison to Wiener process. For the simulation
of Lévy distribution was used Student distribution with ν = 1.8, which has Lévy distribution as its
attractive distribution.

Alternatively, it is possible to define this property with help of fractional moment
of the distribution, from asymptotic behavior of Lévy distribution is easy to see
that for random variable X with α-stable Lévy distribution is for l ≤ α

E(|X|l) =

∫
dxp(x)|x|l <∞. (5.10)

So the third property can be captured in the following meaning: Lα is strictly
α-stable if

E(|Lα(t1)− Lα(t2)|α) ∼ |t1 − t2|. (5.11)

Similarly to Wiener process, for α > 1 can be shown that sample paths are
continuous, but not differentiable [11]. We can see a difference between both
distributions on figure 5.2, where is a simulation is shown in two dimensions. In
every direction an independent random process was used. Here we can clearly
see that processes driven by Lévy distributions produce extreme behavior, where
periods of small moves are alternated by sudden large jumps.

5.2.2 Fractional Diffusion Equation

From the property of strictly α-stability of Lévy flight we get the distribution
function of Lévy motion as

pα(x, t)dx = t
1
α pα(x, 0)dx = t

1
α pα(x)dx (5.12)

where pα is an α-stable Lévy distribution. That means that the Fourier trans-
form of p(x, t) for β, c = 0 is

F [p](k, t) = exp(−γt|k|α) (5.13)

and therefore
∂F [p](k, t)

∂t
= −γ|k|αF [p](k, t). (5.14)
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The expression on the right side is very similar to the expression that we derived
for fractional derivative, with only difference at absolute value of k. Actually
it is a Riesz fractional derivative (defined in [6]). We can therefore rewrite this
expression similarly to [11] to the form of Fractional diffusion equation

∂p(x, t)

∂t
= γ

∂p(x, t)

∂|x|α
(5.15)

for α ∈ (0, 2]. This gives us another way how to describe processes with super-
diffusive behavior and presence of large jumps.

5.2.3 Truncated Lévy Distributions

Lévy flights are undoubtedly a nice concept to describe large jumps and abnor-
mal diffusion phenomena. Nevertheless, in real systems seems the assumption
of infinite variance unnatural. Usually we are able to measure variance and
we do not observe infinitely large jumps. It can be true that there are present
larger jumps than can be predicted from Gaussian distribution, on the other
hand very extreme jumps are usually not observed. For those systems can be
a better description found, although the process will not be stable. We assume
some characteristic scale κ and for that we consider that for smaller jumps than
κ will be the system driven by Lévy distribution, for larger jumps will be driven
by some other distribution, so together we get finite variance of the distribution.
The easiest way is to define the distribution

pcut(l) =

{
NLα(l) for |l| ≤ κ,
0 for |l| > κ.

(5.16)

The main disadvantage of this distribution is the fast convergence to Gaussian
distribution. Another possibility that was introduced by R. Mantegna and E.
Stanley [27] is to add exponentially decaying tails for large l’s

ptrunc(l) ∼
{
c+e
−λ|l||l|−(1+α) for l < 0,

c−e
−λll−(1+α) for l > 0.

(5.17)

For this distribution can be found a characteristic function in the form taken
from [5]:

lnLtαβ(k,N) = c0 −Nλαc
(1 + (k/λ)2)α/2

cos(πα/2)
cos

(
α arctan

|k|
λ

)
×
(

1 + iβ
|k|
k

tan

(
α arctan

|k|
λ

))
(5.18)

where exponent N denotes that this distribution holds for convolution of N
random variables with distribution with N = 1. It can be shown that for
Nλα � 1 behaves this distribution as Gaussian and for Nλα � 1 as Lévy
distribution. This distribution connects important properties of both Lévy and
Gaussian distributions. These processes can be a successful model for simulating
processes with large jumps, but finite variance.
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5.3 Fractals and Self-similarity

In previous chapters we have seen an interesting property of many processes:
they are not-differentiable and therefore extremely irregular. These proper-
ties cannot be described within classical calculus, because it deals with objects
that are usually differentiable. We have seen this fact, when we defined an Itō
integral. There arose terms that cannot be observed in classical Riemann inte-
gration. But these properties are for stochastic processes important and some
of them depend on irregularity of sample paths. There exists a discipline that
describes these irregular objects - fractal geometry. It deals with extremely ir-
regular objects called fractals. The proper definition will be given later, but
loose definition can be formulated in this manner:

Fractal is an object defined by simple rules and exhibiting nontrivial
self-similar structure.

This definition is not the most general, but nicely reflects main features of
fractals. In order to study these objects more precisely, we introduce the main
concept of fractal geometry, i.e. fractal dimension. It is a generalization of
topological dimension to objects that are not smooth manifolds. However, these
dimensions should have some properties that are naturally expected. Among
these properties belong

• monotonicity, i.e. for A ⊆ B: dim(A) ≤ dim(B),

• stability, i.e. dim(A ∪B) = max{dim(A),dim(B)},

• invariance under regular transformations as rotation, affinity,...

• for countable set E is dim(E) = 0,

• for n-dimensional manifold Mn is dim(Mn) = n.

All definitions will obey these properties, indeed. There exist more possible
definitions of fractal dimensions, but we mention two most important ones. We
begin with easier one, namely with box counting dimension. If we want to
describe the dimension of the object, we cover it by balls with some diameter δ.
Then we cover it with balls with diameter for example δ

2 and look, how changes
the number of these balls, which are necessary to cover the object. It is clear
that for a one-dimensional objects, as for example a line segment, we need 2
times more balls, for two-dimensional object we need 4 times more balls etc.
The number of these balls behaves for sufficiently small δ as

Nδ(M
n) ' cδ−n. (5.19)

We can generalize this scaling property also for other objects and the exponent
can measure the dimensionality of the object.

Definition 5.3 For a nonempty bounded set F is Nδ(F ) the smallest number
of balls with diameter δ that cover F . Then the box-counting dimension of F is

dimB(F ) = lim
δ→0

lnNδ(F )

− ln δ
(5.20)

if the limit exists.
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The definition comes from the relation (5.19) when we make a logarithm of the
relation and send delta to zero. The name comes from the fact that alternatively
this definition can be given with number of n-dimensional cubes, or boxes that
cover the set. The equivalence of both definition can be easily shown, because
every ball of diameter δ can be covered by 2n cubes with diagonal δ. Since it
is suitable for numerical calculations, we can also define the dimension trough
δ-mesh, which is a collection of cubes with side δ that create a lattice. That
means that we divide the space into small cubic regions and look in how many
of them the object is contained.

Another definition can be given via a special kind of measure. This measure
will also deal with the property of scaling, but in more precise way.

Definition 5.4 For a bounded set F let {Ui} be a countable cover and if for
every Ui

|Ui| := sup{|x− y|;x, y ∈ Ui} ≤ δ, (5.21)

then Ui is a δ-cover of F. We define a number

Hsδ(F ) := inf

{∑
i

|Ui|s | Ui is δ−cover

}
. (5.22)

Then is the Hausdorff measure defined as

Hs(F ) := lim
δ→0
Hsδ(F ). (5.23)

It can be shown that Hs(F ) is a measure, that it is nonincreasing function of s
and that for some s0 is for s > s0 equal to zero, for s < s0 infinity. The point
s0 is very important point and defines the Hausdorff dimension. All of these
properties are discussed in [13].

Definition 5.5 For a nonempty set F is Hausdorff dimension

dimH(F ) := inf{s|Hs(F ) = 0} (5.24)

Equivalently can be used sup{s|Hs(F ) = ∞}. With that definition we can
define, what is fractal.

Definition 5.6 A fractal is an object, whose fractal dimension is greater than
topological.

As a fractal dimension any of the above defined dimensions can be taken, because
usually they are both the same if they exist. Topological dimension is usually
meant the dimension of objects, from which is the object compound as points,
line segments, etc. If the fractal dimension is nonnatural, then the object is a
fractal, as well.

An important class among fractals are (previously mentioned) self-similar
fractals. We should specify this term and we show that for these objects the
fractal dimension can be easily calculated. We begin with the definition of
similarity as a transformation

Definition 5.7 Let M be a set a let S be a transformation on this set. S is
called a similarity if exist a constant c, such that for every x, y ∈M

|S(x)− S(y)| = c|x− y|. (5.25)
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We can say that an object is self-similar, if it is composed of several parts, that
are similar to the original, as it is said in the next definition.

Definition 5.8 A set F is self-similar, if exist a finite set of similarities Si
with constants ci such that

F =
⋃
i

Si(F ). (5.26)

It is clear that ci < 1. But another question is, if these constant somehow
determine the fractal dimension of the fractal. The answer is yes. It is given by
the next theorem, it comes from [13, theorem 9.3], where we can find also its
proof.

Proposition 5.9 Let F be a fractal with similarities Si that satisfy open set
condition, i.e. for every open set O is

⋃
i Si(O) ⊂ O, then is box-counting

dimension equal to Hausdorff dimension dimF = s and it is solution of equation∑
i

csi = 1. (5.27)

With this we can calculate the dimension of some fractals, for example Koch
curve (figure 5.3). It can be divided into four same parts that are similar to the
whole and have size of 1

3 in comparison to original, and therefore from

4

(
1

3

)s
= 1 (5.28)

we get that dimF = s = ln 4
ln 3

.
= 1.26. We also note that these self-similar

fractals are in practical computations created by iterative process, described by
similarities.

We mention also one proposition that helps us in the next.

Proposition 5.10 Let f be a function F → Rn, such that for all x, y ∈ F

|f(x)− f(y)| ≤ c|x− y|α, (5.29)

then
Hs/α(F ) ≤ cs/αHs(f(F )). (5.30)

We get this relation from definition, because if {Ui} is δ-cover of F, then
{f(Ui ∩ F )} is cδα-cover of F . From the relation we have that |f(Ui ∩ F )| ≤
|Ui|α, so after limiting δ → 0 we get the relation above.

As a corollary of the last proposition we get similar relation for dimensions:

Corollary 5.11 For a function satisfying equation (5.29) holds

dimH f(F ) ≤ 1

α
dimH(F ). (5.31)

Because we would also like to describe some fractal random processes of
random objects and therefore we also define a statistical self-similarity.

Definition 5.12 A object F is statistically self-similar, if it is self-similar in
distribution.

We can see that if we slightly change the Koch curve, so the middle part is
broken either up or down, then it significantly changes its shape, but a fractal
dimension remains, as observed in figure 5.3.
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Figure 5.3: The fourth iteration of Koch curve and its random version. Both fractals have fractal
dimension s = ln 4

ln 3 , the first one is left-similar while the latter one is statistically self-similar.

5.4 Fractal Properties of Stochastic Processes

Now we would like to apply the knowledge from the last chapter to random
processes. Here we have to make a little distinction between two possible rep-
resentations of random processes.

Definition 5.13 A sample path of the n-dimensional process process X(t) is a
set of points x ∈ Rn that arose from one realization of random process.

Definition 5.14 A sample function of the random process is mapping to one
realization of random process t 7→ X(t).

The distinction is natural, because a sample function cannot “go back in time”.
This has an influence on roughness of the sample path, and consequently on
its fractal dimension. Another problem can be in measuring the dimension for
the graph of sample function, because it is not defined in two-dimensional space
with norm, but there are independent values of t and values of the process, so
we cannot construct open sets. This problem can be solved by introducing a
relation between these two coordinates, called affinity. Roughly speaking we
choose the ratio between these two variables when we want to draw a graph of
the function (which we do always implicitly when drawing a graph) and then
we can look at the graph as a set of points in R2.

The important property that determines fractal dimension is of course scal-
ing of the system. We know that for Wiener process holds that the increments
are given by normal distribution

P [W (t+ T )−W (t) ∈ [x, x+ dx]] =
1√
2πT

exp

(
− x

2

2T

)
dx, (5.32)

so if we rescale variables to T 7→ αT and x 7→
√
αx then we get the same

distribution. We can illustrate this property very easily, if we notice that the
space increment is similar to the square root of time, i.e.

|∆x| '
√

∆t. (5.33)
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This argument can be used to estimate the upper bound of the dimension of frac-
tal dimension of Wiener process, because when we apply 5.11 to |W (1)−W (0)|
we get that the dimension is at least two. This argument can be formulated
correctly, which is partially shown in [22] and then in [13]. Similarly, we can
calculate a fractal dimension for Lévy flights and fractal Brownian motion. So
together we have:

• a sample path of Wiener process in Rn (n ≥ 2) is the dimension 2,

• a graph of Wiener sample function t 7→W (t) has dimension 3
2 ,

• a sample path of Lévy process Lα(t) has dimension max{1, α},

• a graph of Lévy sample function has dimension max{1, 2− 1
α},

• a graph of fractional Brownian motion t 7→WH(t) has dimension 2−H.

We see that processes that are at first sight different, have some similar prop-
erties in the meaning of roughness, which coheres with the presence of anti-
persistent behavior and large jumps. We can use this knowledge to estimate,
how the process scales with time and from that we can reveal if the series con-
tains memory effects and/or large jumps.

5.5 Hurst Exponent

In the last section we saw that an important quantity of the series is an exponent
H, which is given as

|∆x| ∝ |∆t|H . (5.34)

We saw this exponent a few times, firstly by fractional Brownian motion, where
for H = 1

2 we got Wiener process, secondly by Lévy flight, where we could not
use variance, so we expressed it through other moments. Therefore the exponent
H ∈ (0, 1), given by the relation

H ' ln |∆x|
ln |∆t|

, (5.35)

is an important quantity that helps us recognize these nontrivial effects.

5.5.1 Rescaled Range Analysis

In order to estimate the exponent for the real time series, we introduce a statis-
tical method called Rescaled range analysis (R/S analysis) that is based on ideas
from the last section. The estimation of the series is following: suppose that we
have a wide-sense stationary series x = {xk} for k = {1, . . . , n, . . . }. At first we
look at a part of series of length n. We define such an integrated-increments
series w, that

wk =

k∑
i=1

(xi − x̄n) (5.36)

where x̄n is a mean of the partial series

x̄n =
1

n

n∑
j=1

xj . (5.37)
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Then we introduce a rescaled range function R/S(n), so

R/S(n) :=
R(n)

S(n)
=

max(w1, . . . , wn)−min(w1, . . . , wn)(
1
n

∑n
j=1(xj − x̄n)2

) 1
2

(5.38)

so the series R(n) is a range and S(n) is a standard deviation. The Hurst
exponent can be estimated from a limit expression

lim
τ→∞

R/S(τ) = CτH . (5.39)

For finite series we divide the length of the series by factor of two and try to get
the exponent from maximal likelihood estimation. The mechanism is described
in [33]. Important thing is that we have one mechanism, how to reveal memory
effects and non-gaussian behavior of time series.

5.6 Detrended Fluctuation Analysis

An alternative to R/S analysis is a detrended fluctuation analysis (DFA). As
the name prompts, we get rid of trends and investigate only fluctuations. It
was firstly described in [31]. The method helps to find the scaling properties of
the process. We assume, that the process is self-similar and try to find relations
between scaling of axes, which corresponds to Hurst exponent. The procedure is
following: We divide the series of length N into l non-overlapping intervals. In
every interval we find the linear trend by least-square method and then average
all fluctuations from trend. When we formulate it mathematically, similarly to
R/S analysis we have to do these steps: Suppose an increment process. Similarly
to the last section, we introduce a integral process with

yk =

k∑
i=1

(xi − x̄n). (5.40)

We define for lj ∈
(
N(j−1)

l + 1, Njl

)
a series y

lj
k which arose as series given by

linear fit of series yk on this interval. We define a fluctuation from the trend in
one interval as

f2
lj =

l

N

∑
lj

|yk − y
lj
k |

2 (5.41)

and the fluctuation function for the whole series as a mean of these fluctuations,
therefore

F (l) =

1

l

l∑
j=1

f2
lj

 1
2

. (5.42)

The properties of fluctuation function have been widely studied, the important
thing for us is the fact, that for non-correlated random walks the function should
scale as l

1
2 and for larger exponents, we get power-law properties with scaling

invariance, as discussed before.
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Chapter 6

Multifractal Stochastic
Processes

This chapter is the crucial part of the thesis. We would like to answer a question,
how a various behavior of assets traded on different markets can arise and
what kind of behavior, that seems to be extreme, can be included into some
suitable model. There have been studied many different approaches, as double-
stochastic models [18], superstatistics [2], theory of entropy [19, 36] and many
others. For this thesis a multifractal approach has been chosen for several
reasons. Firstly, multifractal formalism is a natural generalization of fractals,
which gives a multi-scaling, that means, we get processes with scaling properties
changing in time. Secondly, as we will see in the section about trading time and
clock time, the multifractal model uses time deformation, which arises from the
difference between some “inner” time on the market and the outer clock time.
At the first sight this seems quite unnatural, but it can elegantly explain many
phenomena on financial markets. We begin with the formalism and then we
move to applications to time series.

6.1 Multifractal Formalism

In this section we would like to generalize fractal formalism to objects that
have locally different scaling properties. The reason is that the demand of
self-similarity seems to be too strict for objects observed in real experiments,
but on the other hand it is locally possible to observe these scaling properties.
Multifractals have a wide range of applications, for example in measuring length
of coasts, chaotic dynamics, and others [17]. The definition given in this section
is not only possible definition of a multifractal, but seems to be the most suitable
for our needs.

We begin with the measure µ with support F , where F is a bounded subset
of Rn. The subset can be fractal, or does not have to be. Let {Ui} be the
smallest δ-cover of F (similarly to box-counting dimension) and we define a
number Nδ(α) which equals to

Nδ(α) = #{Ui|µ(Ui) ≥ δα} (6.1)
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for α ∈ R, so that are balls with measure larger than δα. We also introduce a
sum over all balls

Sδ(q) =
∑

µ(Ui)
q. (6.2)

Because Sδ(0) = Nδ(supp(µ)) = Nδ(F ), then the expression − lnSδ(q)
ln δ is a gen-

eralization of the fractal dimension, but we have to be care about existence of
this limit for every q. We show the existence of the limit and also the relation
between Nδ(α) and Sδ(q). We now consider only balls for those is

δα+ε ≤ µ(Ui) < δα (6.3)

for δ < 1 and small ε. Let us assume that for those balls exist a function f(α)
such that

δ−f(α) ∼ #{Ui|δα+ε ≤ µ(Ui) < δα}. (6.4)

The connection between the sum Sδ and Nδ can be approximately formulated
as

Sδ(q) ∼
∫ ∞

0

dαδ−f(α)(δα)q =

∫ ∞
0

dαδαq−f(α). (6.5)

In the integral we added measures of all ball that scale as δα and multiplied
it with the number of these balls. On the other hand the integrand can be
estimated in other way, concretely as Nδ(α+ ε)−Nδ(α− ε) so we get

δf(α)−η . Nδ(α+ ε)−Nδ(α− ε) . δf(α)+η (6.6)

which gives us the relation for f(α). We formulate it as a theorem and omit the
proof, it can be found in [13].

Proposition 6.1 For every α > 0 the limit

lim
δ→0

lim
ε→0

log(Nδ(α+ ε)−Nδ(α− ε))
− log δ

=: f(α) (6.7)

always exists and is called multifractal spectrum.

Now we look closer to the relation to Sδ(q). The main contribution to the
integral (6.5) for small δ gives δqα−f(α) when the exponent is minimal. We
define a scaling function τ(q) as

τ(q) = inf
α

(qα− f(α)) (6.8)

and we consider that the integral has a sharp maximum around τ(q), so Sδ(q) ∼
δτ(q). Again, we cite a result from [13] and give a precise expression.

Proposition 6.2 For a τ(q) defined in (6.8) holds the following expression:

τ(q) = lim
δ→0

lnSδ(q)

ln δ
(6.9)

and the limit on the right side always exist.
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Even more interesting situation is, when we assume differentiability and con-
vexity of f(α). We denote α(q) as a value, for which is the expression qα−f(α)
for given q minimal. Therefore, we get

d

dα
(qα− f(α))|α(q) = 0, (6.10)

so
f ′(α(q)) = q. (6.11)

If we put α(q) back into the definition of τ(q) and calculate a derivative of τ(q)
we get an interesting relation between α and τ :

d

dq
τ(q) = α(q) + qα′(q)− f ′(α(q))α′(q) = α(q). (6.12)

This is nothing else than a Legendre transformation from variables (f(α), α) to
(τ(q), q). The transformation is given by equations

τ(q) = q(α(q))− f(α(q)), (6.13)

dτ(q)

dq
= α(q), (6.14)

q =
df(α(q))

dq
. (6.15)

The inverse Legendre transformation has the same form, but we formulate these
terms as functions of α. It seems to be advantageous to use both the descriptions
and we will be doing it from time to time in further calculations. We also
note that we get special values for some appropriate choices of q. For example
τ(0) = − dimB(F ). This can be seen directly from definition. For other choices
we can get other fractal dimensions, that were not defined in this work, but
they are used as well (for example in [17]).

6.2 Trading Time and Clock Time

For modeling financial market simply models based on Brownian motion are
mostly used. We already saw and will also see on real data that these models
work in some times quite well, but in some situations they fail, or do not give
the right answer. The reason is that these models work with very idealized
conditions and oversimplified presumptions. One important restriction is the
assumption of constant volatility. In classical models based on Brownian motion
we assume a geometric Brownian motion, so for logarithm of the price we assume

lnS(t)− lnS(0) = W (t). (6.16)

The problem is that the volatility is not constant over time, but varies quite
noticeably. One way to grasp it is to look at the markets and see, if there is
the same volume of traded assets, if the information stream is constant in time
etc. We see that during time these quantities are not constant and for example
it happens that the most rush times during the day are the first minutes after
opening the market. That means that in some time interval more things happen
and we can compare this interval to some other less rush interval during the day,
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that brings the same amount of information, but it is longer. We can model
this unbalanced behavior with the deformation of the time. We assume that
there exists one more “virtual” time on the stock market called trading time,
for which the price can be modeled with Brownian motion, but it differs from
our real time and this deformation causes, that if the time interval at trading
time is longer than in clock time, we get probably larger jump than we expected
and vice versa. The price can be therefore modeled as a compound process

lnS(t)− lnS(0) = B[θ(t)] (6.17)

where B is usually Brownian motion (but can be easily generalized to fBM,
Lévy flight, etc.) and θ(t) is the time deformation - a increasing function of the
clock time. We consider that B and θ are independent.

6.3 Modeling of Time Deformations

We will model these time deformations from knowledge of scaling properties
through fractal patterns. This approach affects all scales and we will therefore
observe time deformations in all orders of magnitude, which is a natural expec-
tation. This approach will be formalized into the multifractal formalism in the
next part, but it is really helpful to see the motivation, why we will use these
measures. The approach of creating time deformations from fractal patterns is
widely discussed for example in [23].

As an example we create one deformation given by difference between so
called Wiener pattern and Multifractal pattern. Wiener pattern is a fractal
that represents a time flow in the trading time, where the time flows equally
and we model processes by Brownian motion. This pattern is the one that scales
as Brownian motion, i.e. ∆x ' ∆t

1
2 . We create it, as many self-similar objects,

by iteration. We begin with a straight line from [0, 0] to [1, 1] and we break
it into a few parts, all scaling as Brownian motion. We use the simplest way,
i.e. we divide it into three parts in the symmetric way, so the first line leads
from [0, 0] to [4/9, 2/3] then to [5/9, 1/3] and then to [1, 1], so every line scales
as Brownian motion. We repeat this iteration (theoretically up to infinity) and
the resulting object is Wiener pattern that represents classical random walk
behavior. The iterating process is drawn in figure 6.1.

In order to create a time deformation, we introduce the second pattern that
will represent the non-gaussian behavior. As shown in figure 6.2, we introduce a
few generators, by shifting original points, and therefore disrupt Wiener scaling.
It is possible to move the first, the second point or both, or when we use more
complicated pattern, we can produce a complex multiscaling behavior. We can
observe the time deformation, which is generated as a difference between appro-
priate points of patterns and is therefore a multifractal itself (figure 6.3. Then
we generate a multifractal process as a compound process and we get regions,
where large deviations can be observed (figure 6.5). Generally, a multifractal
process is a process with fluctuating volatility, and the great benefit is that we
can observe these fluctuations in all scales.
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Figure 6.1: First few iterations of Wiener pattern. We begin with an initiator, a straight line and

brake into three parts for that ∆x = (∆t)
1
2 .

6.4 Multifractal Measures

In this section we do a mathematical formalization of multifractal measures used
in the next chapter to simulate price evolution on financial markets (but can be
also applied to many other problems.) We showed in the last section the idea
of time deformations and the concept of multifractal measures will serve us as
a tool to generate these transformations. Further, we will generate the time
deformation function θ(t) as a c.d.f. of some given multifractal measure µ(t), so

θ(t) = µ[0, t]. (6.18)

We begin with some simple examples of multifractal measures and generalize
them into measures that are used in economical models.

6.4.1 Binomial Measure

Apart from Koch curve (or Koch snowflake), other types of fractal are known,
we mention a Cantor dust, which will be an important example for this section.
The dust is generated from the line, by dividing the line into three thirds and
leaving out the middle third of the line. In the next iteration we do the same
with remaining parts of the line. It is easy to see that the fractal has the
dimension ln 2

ln 3 . We will use the same iterative approach for generating binomial
measure, but we will not leave out some interval, we will redistribute “weights”
of intervals. Without loss of generality we show the iteration for a measure
on the interval [0, 1]. We simply begin with an uniform measure, for which
µ0[0, 1] = 1. Then we bisect the interval into two subintervals and define the
measure, which is uniform on every subinterval and

µ1[0, 1/2] = m0, µ1[1/2, 1] = m1. (6.19)
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Figure 6.2: Four possible generators of a multifractal pattern. The original point { 4
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3} from
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2
3} or { 11

27 ,
2
3}, by every iteration is

the point chosen randomly. The pattern represents the nonlinear time transformation.

where holds m0 + m1 = 1, so the measure of the whole interval [0, 1] remains
unchanged. In the second step we use the procedure to every part, so we get

µ2[0, 1/4] = m0µ1[0, 1/2] = m2
0,

µ2[1/4, 1/2] = m1µ1[0, 1/2] = m1m0,

µ2[1/2, 3/4] = m0µ1[1/2, 1] = m0m1,

µ2[1/2, 1] = m1µ1[1/2, 1] = m2
1.

This iterative process continues up to infinity, so we get the binomial multifractal
measure µ as the limit µk → µ for k →∞.

We should note that there is one nice definition of this measure. Let us
assume an arbitrary interval of k-th iteration ∆t = [t, t+ 2−k] where t = n2−k.
In this interval are numbers that in binary system begin with the same k first
digits, so for every a ∈ ∆t we have a = 0.β1β2 . . . βk . . . where βi = {0, 1}
are digits characterizing the interval ∆t. We define φ0, φ1 as frequencies of
zeros and ones in the first k digits of the interval. We can then write the k-th
approximation of the measure as

µk(∆t) = mkφ0

0 mkφ1

1 . (6.20)

One possible generalization of this binomial measure is easy: by every iter-
ation we toss a coin and decide if measure m0 should go to the left or to the
right. m1 then goes to the other one.

6.4.2 Multiplicative Measure

Both two previous examples can be generalized into a bigger class of multifractal
measures - multiplicative measures. We assume the same iterative process as
in the last section, but the weight division will be driven by identical copies of
a random variable M . We divide the original interval into n subintervals, and
to every interval we assign the measure Mγ , where Mγ is one realization of M .
For the last two examples we had that m0 + m1 = 1. Generally, we can write
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Figure 6.3: On top figures we can see the comparison of Wiener and multifractal pattern. On
bottom figures we can see difference of both times and dependence of trading time on clock time.

that
∑
Mβ
γ=1 = 1 These measures are called conservative, or microcanonical

(similarly to the microcanonical ensemble statistical physics). The disadvantage
is that these random variables cannot be independent. But on the other hand
we can weaken the condition of conservation and only request the conservation
on average, so

∑β
γ=1 E(Mγ) = 1 which means E(M) = 1

β . The advantage is
that we can use independent variables Mγ .

We can calculate the scaling function τ(q). The expression S2−k(q) is equal
to

Sβ−k(q) = E

 βk∑
i=1

µk(ti)
q

 = βkE([M ]q)k, (6.21)

therefore is

τ(q) = lim
k→∞

logβ(βkE([M ]q)k)

logβ β
−k = − logβ E([M ]q)− 1. (6.22)

Finally, we get a scaling relation between the measure and ∆t. Firstly for
conservative measure:

E(µ(∆t)q) = (∆t)τ(q)+1. (6.23)

We get the similar expression for canonical measures. Now is µ[0, 1] a random
variable, we denote it Ω. With this notation we get

E(µ(∆t)q) = E(Ωq)(∆t)τ(q)+1. (6.24)

For a finite interval ∆t we can show these relations only on intervals ∆t =
[t, t + 2−k] where t = n2k. Alternatively, we can define the measure with this

56



0.2 0.4 0.6 0.8 1.0

1.01

1.02

1.03

1.04

1.05

0.2 0.4 0.6 0.8 1.0

1.000

1.005

1.010

1.015

1.020

1.025

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

Figure 6.4: Processes that produce periods with large jumps can be created with multifractal
patterns. On the left side there is an example of Geometric Brownian motion and its logarithmic
returns, on the right side there is a multifractal process with its returns.

condition for infinitesimally small interval. The measure is then given by an
equation

E(µ(dt)q) = c(q)(dt)τ(q)+1 (6.25)

when dt→ 0.
In both cases is possible to show that τ(q) is concave function. We assume

that q = α1q1 + α2q2. From Hölder inequality we get

E(µ(∆t)q) ≤ [E(µ(∆t)q1)]
α1 [E(µ(∆t)q2)]

α2 (6.26)

and because the mean scales as (∆t)τ(q)+1 and ∆t is small, we get that

τ(q) ≥ α1τ(q1) + α2τ(q2). (6.27)

We can therefore calculate a multifractal spectrum of the measure as a Legendre
transform. The spectrum can be calculated from

f(α) = inf
q

[qα− logβ E([M ]q)− 1]. (6.28)

As an example we show the form of multifractal spectrum for binomial measure
and dividing into two intervals, as defined before. The scaling function has an
easy form

τb(q) = − ln(mq
0 +mq

1)

ln 2
. (6.29)

From that is α(q) equal to

α(q) =
dτ(q)

dq
= −m

q
0 lnm0 +mq

1 lnm1

(mq
0 +mq

1) ln 2
(6.30)
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Figure 6.5: Left: Local Hurst exponent of the multifractal pattern. The Hurst exponent is calculated
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for every part of the fractal. We can see that it rapidly fluctuates around

0.5. Right: Multifractal spectrum f(α) for the mulfractal pattern.

So the multifractal spectrum is implicitely given as

fb(α(q)) = qα(q)− τ(q) =
ln(mq

0 +mq
1)

ln 2
− q(mq

0 lnm0 +mq
1 lnm1)

(mq
0 +mq

1) ln 2
. (6.31)

It is not difficult to express q as a function of alpha

α =
dτ(q)

dq
= −m

q
0 lnm0 +mq

1 lnm1

(mq
0 +mq

1) ln 2

−α ln 2 =
lnm0 +

(
m1

m0

)q
lnm1

1 +
(
m1

m0

)q
(−α ln 2− lnm1)

(
m1

m0

)q
= (α ln 2 + lnm0)

so finally we get

q(α) =
ln
(
− lnm0+α ln 2

lnm1+α ln 2

)
lnm1 − lnm0

. (6.32)

It is also possible to calculate the spectrum in other cases, but long and heavy
calculations are needed. Nevertheless, the knowledge of multifractal spectrum
helps to characterize properties of multifractal processes.

We should also mention that it has been shown [7, 25] that if we consider a
random measure, for that E(Mq) <∞ for every q > 0 and if random multipliers
are greater than one with positive probability, then a critical exponent qcrit
exists and the random variable Ω has polynomial right tail, which means

P [Ω > ω] ∼ Cω−qcrit (6.33)

where 1 < qcrit <∞, i.e. we can observe a heavy-tail behavior of Ω.
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Chapter 7

Models of Price Evolution

The last theoretical chapter is aimed at financial models of asset prices. We
begin with classical models, frequently used by both the theoretics and prac-
titioners, as ARMA or GARCH, and then introduce models that are based on
multifractal approaches. The main advantage of these approaches compared to
other models, is a natural way how to create series with multi-frequency volatil-
ity, where cycles of many frequencies can be observed. We will see that these
models create series with complex behavior naturally, which is favorable for us,
with regard to the practical applications.

7.1 Classical Models

We firstly provide a brief overview of the most used models for modeling time
series. These models will be a good basis for us, because we will generalize these
processes in the second part of this chapter, or at least we will highlight some
concrete properties of these processes.

7.1.1 ARMA

Autoregressive moving average model is an illustrative and popular model ap-
plied to autocorrelated data. The model consists of two parts. Let rt be a time
series in time t and ηt a series of independent random variables with normal
distribution N (0, σ2) (white noise) that will represent new information supplied
into the market. There exist also processes with ηt that has other distribu-
tions, as student distribution or others. We will stay only by processes that are
normally distributed.

The first part of the model is an autoregressive process

rt = c+

p∑
i=1

φirt−i + ηt. (7.1)

Constants φi are parameters of the model. This model considers that the price
return is correlated with previous values. It is necessary to say that if the series
has to be stationary, then all roots of the polynomial

xn −
n∑
i=1

φix
n−i (7.2)
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Figure 7.1: Simulation of ARMA(2,1) returns and corresponding prices.

have to lie in the unit circle [4]. For example, for AR(1) is the condition |φ1| < 1.
If we look closer to the process AR(1), and we neglect the constant c, we get
that

rt = φ1rt−1 = φ2
1rt−2 + φ1ηt−1 + ηt = · · · =

n∑
i=1

φi1ηi−1. (7.3)

The autocorrelation function is therefore

E(rtrt−i) = φi1, (7.4)

so the autoregressive model assumes decaying correlations.
The second part of the model is moving average process

rt = c+ ηt +

q∑
j=1

θiηt−i. (7.5)

Together, the model ARMA(p,q) can be formulated as

rt = c+ ηt +

p∑
i=1

φirt−i +

q∑
j=1

θiηt−i (7.6)

The interpretation of the model is the following: the actual price is influenced by
actual information represented by ηt, by past prices rt−i and past information
ηt−i. The model has p+ q + 2 unknown parameters, c, σ2, φi and θi. Often is
enough to use models with small p and q.
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7.1.2 ARCH, GARCH

Other models that are often used are models based on volatility autoregressive
models. That means that returns are specified as

rt = σtηt, (7.7)

where ηt is again the white noise unit variance and volatility σ2
t obeys an autore-

gressive process defined in the last section. If the process fulfills ARMA(p,q)
process,

σ2
t = α0 +

p∑
i=1

αiη
2
t−i +

q∑
j=1

βjσ
2
t−j (7.8)

we talk about GARCH(p,q) (generalized autoregressive conditional heteroscedas-
ticity) process. In case, when p = 0, we talk about ARCH(q) process. There
also exist large number of different extensions of GARCH models. We shall look
a bit closer to some important properties of the most popular models ARCH(1),
respectively GARCH(1,1).

The ARCH(1) is specified by equation

σ2
t = α0 + α1r

2
t−1 (7.9)

or equivalently
σ2
t = α0 + α1σ

2
t−1η

2
t−1. (7.10)

If we are interested in the average value of volatility and assume that E(σ2
t ) ≈

E(σ2
t−1) = σ2 we get that the average volatility is

σ2 =
α0

1− α1
. (7.11)

If we look at GARCH(1,1)

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1 (7.12)

the similar formula for volatility could be derived, we get that

σ2 =
α0

1− α1 − β1
. (7.13)

By iterating of the process back we get

σ2
t = α0 + α1r

2
t−1 + β1(α0 + α1r

2
t−2 + σ2

t−2) = . . .

=
α0

1− β1
+ α1

∞∑
i=1

βi−1
1 σ2

t−i. (7.14)

That shows us an exponential decay in the volatility which means short-range
correlations. This argument can be shown directly, it can be shown that auto-
covariance function Cov(x2

t , x
2
t+n) fulfills relation [27]

Cov(x2
t , x

2
t+n+1) = (α1 + β1)Cov(x2

t , x
2
t+n). (7.15)

This enables us to consider the covariance function in the form Ae−
t
τc and it

confirms our hypothesis and for modeling long-range correlated processes we
have to use other processes.
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Figure 7.2: Simulation of GARCH(1,1) returns and corresponding prices.

7.1.3 Regime Switching Models

Regime-switching models are a completely different approach. These models are
based on some unobservable latent variables that can suddenly change and in-
fluence observable quantities. The important model is Markov-Switching model
for which we have an equation

rt = µ(Mt) + σ(Mt)η(t) (7.16)

where Mt is Markov chain, so it is fully characterized by transition matrix
Pij = (Mt+1 = mi|Mt = mj). This model brings us the possibility to simulate
sudden changes and economical cycles.

A good combination of both methods seems to be the MS-GARCH process.
We consider a state Markovian variable st which can have two values s1, s2. The
returns are described by relation rt = σtηt and conditional volatility σ2

t (i) =
Var(rt|st = i) is given by an GARCH(1,1) equation

σ2
t (i) = α0(i) + α1(i)r2

t−1 + β1(i)E
[
σ2
t−1(st−1)|st = i

]
. (7.17)

This model contains both the autoregressive model and regime switching model,
so it is good for simulation of complex behavior of the time series and allows
also analytical forecasting [21].
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7.2 Multifractal Models

We now apply our knowledge of multifractal measures in order to generate
processes based on them. These models seem to be a good alternative to classical
models and have wide field of applications in many branches of economics. The
first model is exactly based on assumptions that we specified in the previous
chapter, the next models are also based on multifractal formalism, but they
combine multifractal scaling and Markov regime-switching.

7.2.1 Multifractal Model of Asset Returns

As we said in the previous chapter, we want to model the complex behavior
of financial time series by time deformations, so we assume that the process is
given by

lnP (t)− lnP (0) = W [θ(t)] (7.18)

where θ(t) is a time deformation that arise as c.d.f. of some multifractal measure,
so θ(t) = µ[0, t]. We assume that B(t) and θ(t) are independent processes. It
is easy to generalize the process, when we assume the time deformation of
fractional Brownian motion. From the last chapter we know that there exists a
critical exponent of the measure µ, q(θ)crit > 1, such that

P [θ(t) > γ] ∼ Cγq(θ)crit . (7.19)

Thus, for the process r(t) = lnP (t)−lnP (0) the q-th moment is from conditions
above and from scaling of Wiener process given as

E(|r(t)|q) = E(θ(t)q/2)E(|W (1)|q), (7.20)

so therefore q(r)crit = 2q(θ)crit > 2 and τr(q) = τθ(q/2), which follows from
(6.24) or (6.25). The process r(t) is a multifractal, because it depends on mul-
tifractal measure and moreover we know its scaling function τr. It can be also
shown that the process P (t) is semimartingale and process r(t) is martingale
[24], so we can use a stochastic integration of the process.

Now, we define the multifractal model of asset returns according to [24], by
specifying the measure µ.

Definition 7.1 Multifractal model of asset returns (MMAR) is a time defor-
mation process with random multiplicative measure.

Now we focus on the distribution of returns and especially to its tail behavior.
We know that there exists every moment for conservative measures, so qcrit =
+∞. That can be shown from the fact that that the measure µ[0, t] is constant
from the deterministic construction of the measure, so it is bounded. On the
other hand, for random multiplicative measure we have shown that there is
a finite critical exponent qcrit > 2. This implies that the process has finite
variance and therefore has Gaussian distribution as its limiting distribution,
but on the other hand it exhibits quite wild behavior, which we can compare
with truncated Lévy flight, that was created in quite artificial fashion.
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7.2.2 Markov Switching Multifractal

Inspired from previous models, we introduce the final model that combines
properties of all models that we have already mentioned. We begin with con-
struction of the model in discrete time. Firstly, we consider a state vector
M(t) = (M1(t),M2(t), . . . ,Mk(t)). Every component of M(t) can be in every
step updated or can remain unchanged with given probability. When it has
to be updated, we take one realization of random variable M with some given
distribution so together

in every time t

{
Mj(t) is updated from M with probability γj
Mj(t) = Mj(t− 1) with probability 1− γj .

The distribution pM can be arbitrary, we only demand that it has positive
support and E(M) = 1. From that it implies that Mj(t) are independent and
the mean of every component is one.

The volatility is then given as a product of all components, so

σ2(M(t)) = σ2
k∏
j=1

Mj(t) (7.21)

and returns are given by
r(t) = σ(M(t))η(t) (7.22)

as usual. This approach has a great advantage, because every component of the
state vector represents actual volatility of some economical cycle. We specify
the switching of regimes of these cycles by defining transition probabilities γj .

γj = 1− (1− γ1)b
(k−1)

(7.23)

where constant γ1 ∈ (0, 1) and b ∈ (1,∞). If we consider a small parameter
γ1, then transition rates for small j are approximately γ1b

j−1, so they grow
geometrically, but for larger j it stops to increase geometrically and the cycles
are smaller, and it is so defined, that every γj < 1. The model seems to be very
plausible, because it connects the properties of unpredicted regime switches with
presence of longer periods of similar behavior and is quite easily defined.

We can assign the random variable M in order to get more precise results. In
the simplest case, when M is binomial with values m0 and m1 = 2−m0 (from
the mean condition) is therefore for given k described by only four variables
σ2, m0, γ1 and b. Compared to GARCH(p,q) is the number of need variables
smaller, because by GARCH(p,q) we needed p+ q + 2 parameters. In the case
of Markov-switching models we need the second power of Markov states, which
even for small number of states is quite large number. We will compare these
models a bit more at the end of this chapter.

7.2.3 Continuous Time MSM

As the final result of this chapter we generalize MSM into continuous time. Sim-
ilarly to discrete version we introduce a state vector M(t) = (M1(t), . . . ,Mk(t))
for t > 0. The update of M(t) can be formulated also similarly:
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Mj(t+ dt) is updated from M with probability γjdt
Mj(t+ dt) = Mj(t) with probability (1− γj)dt

where γj = γ1b
j−1. Here are transition probabilities exactly geometrical,

the reason is that it can be shown that the discrete MSM weakly converges to
continuous time MSM if we choose transition probabilities in this way [7]. The
volatility is again

σ2(M(t)) = σ2
k∏
j=1

Mj(t) (7.24)

and the log-price r(t) = lnP (t)− lnP (0) is defined through a stochastic differ-
ential equation

dr(t) = µdt+ σ(M(t))dW (t) (7.25)

where µdt is (constant) drift term.
We want to show the connection between MMAR and MSM, as well. We

therefore assume the continuous-time MSM and consider that number of fre-
quencies k rises to infinity. The problem in the differential representation is
that the volatility is given by an infinite product. Another possibility is to use
an integral approach, so we introduce a time deformation

θk(t) =

∫ t

0

dt′σ2(Mk(t′)) (7.26)

It can be shown that θk weakly converges to a deformation θ∞ with finite expec-
tation [7]. That means that differential representation (7.25) can be formulated
in alternative integral equation

lnP (t)− lnP (0) = µt+W [θ∞(t)]. (7.27)

Thus, we see that a continuous MSM with countably many frequencies is the
multifractal processes with time deformation θ∞. The advantage of this model
in comparison with MMAR is that it can be easily generalized for the infinite
interval and it is generated independently of the interval division.

Comparison of models: At the end of the chapter, we would like to compare
models of asset returns and show advantages of multifractal models, especially
MSM. We divide our arguments into two groups and begin with theoretical ar-
guments. Main advantages of MSM are persistent behavior in all scales followed
by change of behavior and existence of large deviations and low number of free
parameters at the same time. These properties are very important for practical
calculations. In comparison to other models, MSM has very complex behavior
that can be fitted to many series very well. That lead us to the second part of
arguments, empirical observations, in-sample and out-sample simulations and
comparison of likelihood functions. We will not do this kind of analysis, but a
very deep analysis is in [7] and often shows that MSM performs good results for
many applications.
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Chapter 8

Real Financial Markets:
Memory, Jumps

In the last chapter we would like to show some practical results from real finan-
cial markets and compare them with theory. In the first chapter we introduced a
stochastic calculus based on Wiener process. For asset returns is often in many
applications assumed that it follows a geometric Brownian motion, as in case of
Black-Scholes equation for option pricing, portfolio theory and many others. We
want to show that Brownian motion seems to be an elegant model for financial
market simulations, nevertheless, in some cases it oversimplifies the complexity
of studied system and neglects some effects that are caused by various situations
on the market. We try to apply the theory from the first part of the work to
some concrete financial data in order to show the presence of such effects like
memory, or large jumps in financial time series.

stock index α β γ c
S&P 500 1.623 -0.081 0.00493 0.00052
3. 1. 1950
DJIA 1.451 -0.044 0.00520 0.00049
10. 1. 1928
NASDAQ 1.366 -0.178 0.00539 0.00127
5.2.1971
DAX 1.647 -0.137 0.00786 0.00090
26. 1. 1990
FTSE 100 1.711 -0.156 0.00619 0.00067
2. 4. 1984
EUR/USD 1.804 -0.084 0.00416 0.00010
12. 10. 2003
Gold ($/oz.) 1.449 0.046 0.00599 0.00010
3.1.1973

Table 8.1: In the table are calculated coefficients of stable distribution that was fitted to the density
of returns of given indices by MLE estimation, and for comparison is also added one exchange rate
and one commodity. The begin of period used for the fit is listed under the index and the end of
the period is for all the end of 2010. We can see that α parameter is often smaller than two which
indicated heavy-tail behavior. The estimation was done by R package fBasics [37].

66



Figure 8.1: Standard and Poor’s 500 index between years 1985 - 2010. In this period were financial
markets affected by many unexpected movements, crises and crashes.

Figure 8.2: Daily returns of S&P 500. We can distinctly recognize large shocks and periods with
large volatility that are often connected to some period of crisis.

For analysis an index Standard and Poor’s 500 was chosen, which is com-
posed of 500 largest shares traded on New York Stock Exchange. The studied
period is 1985 - 2010. We chose this period, because it contains many interesting
situations, financial crashes and unexpected evolution. The first big crash was
in 1987 and it began on Black Monday, October 19. Then around year 2000
a speculative bubble called “dot-com bubble” arose, but affected more techno-
logical indexes, like NASDAQ. In the year 2001 the index dropped because of
the terrorist attack. In 2007 began an American mortgage crisis, followed by a
American and Global financial crisis.

Table 8.1 show us a comparison of parameters of stable distribution that fits
best to the return distribution for S&P 500 and a few other indices, exchange
rate and commodity price. We see that all of them have the value of the α
parameter much smaller than two, which signalizes heavy tails. We can see that
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year α β γ c R/S DFA
1985 1.876 1.000 0.00427 0.00029 0.666 0.596
1986 1.851 -1.000 0.00577 0.00182 0.660 0.534
1987 1.543 -0.223 0.00773 0.00201 0.541 0.458
1988 1.662 0.158 0.00579 0.00032 0.457 0.438
1989 1.776 -0.185 0.00462 0.00141 0.754 0.455
1990 1.905 -0.375 0.00678 0.00007 0.783 0.554
1991 1.804 0.464 0.00559 0.00034 0.745 0.548
1992 2.000 0.157 0.00430 0.00019 0.374 0.381
1993 1.758 0.211 0.00326 0.00013 0.465 0.408
1994 1.757 -0.344 0.00382 0.00037 0.528 0.460
1995 1.835 -0.043 0.00317 0.00123 0.429 0.611
1996 1.883 -1.000 0.00481 0.00155 0.609 0.504
1997 1.864 0.035 0.00695 0.00117 0.828 0.487
1998 1.647 -0.260 0.00695 0.00184 0.478 0.528
1999 2.000 0.263 0.00803 0.00077 0.305 0.380
2000 1.842 0.425 0.00900 -0.00101 0.461 0.382
2001 1.822 0.038 0.00856 -0.00062 0.717 0.564
2002 1.876 1.000 0.01080 -0.00267 0.421 0.496
2003 1.887 0.244 0.00714 0.00007 0.670 0.511
2004 2.000 -0.207 0.00493 0.00037 0.574 0.429
2005 2.000 -0.007 0.00457 0.00014 0.559 0.377
2006 1.748 0.067 0.00389 0.00042 0.563 0.460
2007 1.524 -0.374 0.00537 0.00150 0.537 0.404
2008 1.418 -0.089 0.01178 0.00097 0.559 0.304
2009 1.620 -0.202 0.00969 0.00181 0.608 0.495
2010 1.499 -0.132 0.00590 0.00184 0.736 0.511

Table 8.2: The table shows us fitted parameters of daily return distribution of
Standard and Poor’s 500 index between years 1985 - 2010. Parameters differ between years. In
the time of no financial shocks or disasters moves α around 2 and in the time of crisis it falls down
to values around 1.5. Values are often far from average value in table 8.1. Two last columns show
us the estimation of Hurst exponent with R/S method and DFA. Hurst exponent also varies widely
around 0.5. Different values are caused by the sensitivity of both methods to the depth of the
sample, but we can see some trends that are for parameters estimated by both methods common.
For estimation of Hurst parameter was used R package fractal [9].

it is similar for all assets, regardless of the kind. In the table 8.2 we can see the
estimation of stable parameters for S&P 500 for every year. We see that values
are different year to year - α is usually smaller in the period of crisis, but also β
fluctuates from year to year. We have also estimated the Hurst exponent with
two methods described earlier for every year. Here we also see a rapid variation
around the value 0.5, which is the value for Brownian motion. This table shows
us that we have to take into account both the heavy tail property and memory
effects.

The presence of memory is also illustrated on collection of figures 8.3, where
we see the graph of autocorrelation function of returns and the graph of auto-
correlation function of absolute value of daily returns. We see the difference in
typical correlation time. In the first case the correlation time is much shorter
than one day (many authors are talking about the order of minutes as in [27])
and in the second case the typical correlation time is in the order of days, or
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even months. That supports the idea that there are economic cycles, i.e. peri-
ods with large fluctuations and higher volatility, that means with more difficult
prediction of future evolution, and periods of relative calm, where are observed
large changes only rarely.

On the third figure is the distribution of daily returns and for comparison
Gaussian distribution with fitted mean and variance from the data. We can
observe the presence of heavy tails, which means higher probability of large
returns than in case of Gaussian distribution. We have seen that correlation
and large jumps in time series have very often common reasons and usually if
we observe one of them, the other is present as well.

Altogether, we have shown on the example of one concrete index that it is
necessary to take into account some nontrivial phenomena in order to simulate
and predict future evolution on financial markets. We have not talked about
other things, like correlation between shares, markets, about other models that
also imply some external information to the model and many other things.
There are many possibilities, when constructing a model. But in every case it is
necessary to consider if the model is sufficient. Unfortunately in some theoretical
applications, like option pricing theory, or portfolio theory every generalization
leads to difficult relations and equations that are tough to solve.

69



0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(a) autocorrelation of returns

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) autocorrelation of absolute returns

(c) return distribution (d) power spectrum of absolute returns

Figure 8.3: In the figures are analyzed daily returns of S&P500 index in the period 1985-2010.
On figure (a) is the autocorrelation function of daily returns. We see that there are practically
no correlations, i.e. correlation time is shorter than one day. On figure (b) is the autocorrelation
function of absolute value of returns, here we can observe exponential decay, which means that the
size of returns is correlated, which points to presence of periods with large fluctuations and with
small fluctuations. Figure (c) shows probability distribution of returns in logarithmic plot and
shows estimated Gaussian distribution (dashed line). We can see that the tails of the distribution
are much broader than in the case of Gaussian distribution. Finally, on figure (d) is drawn a log-log
plot of power spectrum of absolute returns. We can see that for small lag it exhibits a decay, but
for larger lag we see that records are practically uncorrelated. For comparison there are two lines to
recognize the trend of power spectrum. The first dashed line shows the decay ∼ ω−1.8, the second
line is constant.
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Chapter 9

Conclusion

The main task of this work was to extend models that are commonly used in
financial markets and to show theoretical background leading to these models.
The thesis goes beyond Central limit theorem and discusses important prop-
erties that are typically observed on financial markets. We have shown the
connection between physical systems and financial markets and introduced the
calculus for stochastic processes. The stochastic calculus provides us a good
way to deal with systems, such as non-equilibrium physical systems or financial
time series.

Important property of real processes, no matter if economical, physical or
any other, is presence of correlations and inner structure. Correlations in time
are typical for systems that exhibit some memory behavior. Although correla-
tions in returns are negligible for periods longer than a few minutes, for absolute
values and volatility the correlations are observed for time lag in the order of
days or weeks. On the other hand there are also observed unexpected jumps.
The theoretical background of that behavior can be found in scaling and self-
similarity, which shows some inner structure and enables to classify processes
and reveal superdiffusive or subdiffusive behavior and presence of huge fluctua-
tions by geometrical instruments. The concept of scaling is not important only
for stochastic processes, but also in critical phenomena in statistical physics and
other problems.

There are many ways how to introduce models with these properties: Lévy
flights [11], Lévy stochastic processes [10], superstatistics [2], Tsallis entropy
[36] and many others. We have chosen processes with multi-scaling properties
generated by multifractal time deformations. The concept of multifractals has
wide range of applications [17], and also in this case provides an elegant way
to define the transformation between clock time and trading time. We saw
that these processes provide a very good diversity and are able to produce
many realistic forecasts. The concept of multifractal deformations seems to be
applicable to other branches, for example to biology or physics, because it is built
on very general ideas of multi-scaling. The class of processes with multifractal
behavior is wide enough to produce interesting behavior, but the properties of
these processes are given by an idea of fluctuating Hurst exponent and presence
of some typical cycles.

For the future work I see the possibility to focuse more on a few different
topics. Firstly, to make a detailed analysis of the MSM model with all of its
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generalizations, to do precise simulations and comparison with other models,
secondly to study applications of these models to portfolio theory, option pricing
theory, risk-management and other fields of economics and/or econophysics.
There is also possible to apply the concept of multi-scaling processes to some
other areas, where can play also a handy role and can classify some important
properties of these phenomena. It is also important to connect this approach to
other concepts like theory of entropy, Bayesian statistics and other fast growing
scientific areas. I guess that there is still enough place to study these systems
as financial markets, because they still offer the possibility to explore a lot of
interesting features and to broaden the knowledge about this interesting branch.
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Appendix A

Stable distributions

We ask about the limiting distribution of the infinite sum of independent random
variables Xn

S =

∞∑
n=1

anXn − bn. (A.1)

If Xn have finite variance, then the limiting distribution is known by Central
limit theorem (here is for simplicity presented the version with identically dis-
tributed random variables).

Theorem A.1 (Central limit theorem) Let Xi be i.i.d. variables with finite
mean µ and finite variance σ2. We define Yn =

∑n
i=1Xi. Then

Yn − µn
σ
√
n

d−→ N(0, 1). (A.2)

The proof can be found in many books, for example in [14].
The question is,if there are any limiting distributions for distributions with

infinite, or not defined variance. In order to show answer the question we need
to define some new terms.

Definition A.2 Probability distribution p(x) is stable, if it is invariant under
convolution:

p(a1l+b1)∗p(a2l+b2) =

∫ ∞
−∞

p (a1[z − l] + b1) p(a1l+b1)dl = p(az+b). (A.3)

Equivalently, we can reformulate the criterion with Fourier transform

F [f ∗ g](k) = F [f ](k) · F [g](k), (A.4)

so if two Fourier images of stable distribution are multiplied, then the functional
form remains unchanged.

The full answer to our question give us next two theorems:

Theorem A.3 A probability density L(x) can be limiting distribution of sum
(A.1) of independent, randomly distributed variables, only if L(x) is stable dis-
tribution.
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Theorem A.4 A probability density Lαβ(x) is stable, if and only if logarithm
of its characteristic function has this form:

lnLαβ(k) = ick − γ|k|α (1 + iβsgn(k)ω(k, α)) (A.5)

where: 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0, c ∈ R,

ω(k, α) =

{
tan(πα/2) if α 6= 1
2
π ln |k| if α = 1.

(A.6)

Proofs are to find in [16].
Parameters, that influence the behavior of the distribution are α and β, γ

and c are scaling, resp. shifting parameters. Let us consider β = 0, so we have
a symmetric distribution.

For large values the distribution decays polynomially:

Lα(x) ' lα
|x|1+α

for |x| → ∞. (A.7)

This property is a direct corollary of the asymptotic expansion

Lα(x) = − 1

π

∞∑
n=1

(−γ)n

n!

Γ(αn+ 1)

|x|αn+1
sin
(παn

2

)
. (A.8)

We show it for c = 0. The probability distribution is a inverse Fourier transform
of its characteristic function:

Lα(x) =
1

2π

∞∫
−∞

dke−γ|k|
α

eikx =
1

2π

∞∫
0

dk e−γk
α (
eikx + e−ikx

)

=
1

2π

∞∫
0

dk e−γk
α

2<
(
eikx

)
=

1

π
<

 ∞∫
0

dk e−γk
α

eikx


we expand the exponential in the integral to a power series, integrate and with
an expression for Γ function we get

1

π
<

[ ∞∑
n=0

(−γ)n

n!

∫ ∞
0

dk kαneikx

]
=

1

π
<

[ ∞∑
n=0

(−γ)n

n!

Γ(αn+ 1)

(−ix)αn+1

]
.

We calculate the real part and with identity

<
(
(±i)αn+1

)
= − sin

(παn
2

)
(A.9)

we get the expression (A.8).
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geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen.
Annalen der Physik, 1905.

[13] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Ap-
plications. Wiley, Inc., 1990.

75



[14] Willian Feller. An Introduction to Probability theory and its Applications,
volume 1. Wiley, third edition, 1967.

[15] C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry
and Natural Sciences. Springer, second edition, 1985.

[16] B. V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of
Intependent Random Variables. Adison-Wesley, 1968.

[17] David Harte. Multifractals: Theory and Application. Chapmann &
Hall/CRC, 2001.

[18] Steven L. Heston. A closed-form solution for options with stochastic volatil-
ity with applications to bond and currency options. The Review of Finan-
cial Studies, 6(2), 1993.

[19] Petr Jizba and Toshihico Arimitsu. The world according to rényi: ther-
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