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kvantově-mechanických hamiltonián̊u s kontaktńımi interakcemi
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Abstract
In this work we discuss the ground state of Hamiltonians with contact inter-
actions in dimension 1, 2 and 3. We study the relation between the ground
state energy and the geometry of the support of the point interactions. We
derive conditions under which the ground state energy increases with re-
spect to the change of the geometry of the point interaction support. We
show that for the systems with a simple topology such as a line, plane and
three-dimensional Euclidian space, the increase in distance between point
interaction sites results in an increase of the ground state energy. On the
other hand, we show that this may not hold for systems with a more com-
plex topology such as quantum graphs. We also present several examples of
optimization of the ground state energy with respect to the position of the
point interaction of systems with one point interaction and regular potential.

Key words
Point interaction operator, point interactions, ground state of the point inter-
action Hamiltonian, Krein’s formula, generalized Birman-Schwinger formula,
contact potential, quantum graphs

Abstrakt
V této práci se zabýváme Hamiltoniány s kontaktńımi potenciály v dimenzi 1,
2 a 3. Budeme zkoumat závislost mezi energíı zakladńıho stavu a rozložeńım
bodových interakćı v prostoru. Odvod́ıme podmı́nky, za kterých dojde ke
zvýšeńı energie zakladńıho stavu v závislosti na změně vzájemné polohy
bodových interakćı. Ukážeme, že pro systémy s jednoduchou topologíı jako
jsou př́ımka, rovina a tř́ırozměrný Euklidovský prostor, zvýšeńı vzdálenosti
mezi bodovými interakcemi vede ke zvýšeńı energie základńıho stavu. Doká-
žeme, že pro systémy se složitěǰśı topologíı jako jsou kvantové grafy může být
chováńı odlǐsné. Dále se budeme zabývat minimalizaćı energie základńıho
stavu pro systémy jedné bodové interakce a regulárńıho potenciálu.

Kĺıčová slova
Operátor bodových interakćı, bodové interakce, základńı stav operátoru bodo-
vých interakćı, Kreinova formule, zobecněná Birman-Schwingerova formule,
kontaktńı potenciál, kvantové grafy
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Chapter 1

Introduction

In this work we will discuss the properties of the ground state of several
quantum systems. We will be interested in the ground state because it has
natural importance as the most stable state with the lowest energy.

We will work with operators describing point interactions. These opera-
tors can be formally written as follows

Ĥ = −∆ +
∑
y∈Y

αyδ(x− y), (1.1)

where −∆ denotes self-adjoint Laplacian with the domain H2,2(Rd) for the
dimension d = 1, 2, 3. Such an operator describes a quantum particle mov-
ing in the field of contact potentials placed at set of points Y in space with
point interactions strengths αy. These operators have the advantage that
their spectral properties and scattering problem can be solved exactly. We
can use them as approximations of more realistic physical systems, e.g. as
description of short range interactions in atomic and nuclear physics, mo-
tion of nonrelativistic electron in crystal lattice of fixed atoms (so called
Kronig-Penney model in solid state physics), propagation in dielectric media
in electromagnetism, etc. A survey of such models is given in the monograph
[1].

The next class of systems we will work with are quantum graphs. Un-
der the term quantum graph we consider a graph, i.e. a finite number of
edges connected into a network-like structure, equipped with a particular
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differential operator. Quantum graphs can be used to describe one dimen-
sional systems with more complex topological properties, where the particle
is trapped on graph like structures. We will work with differential operator
of the form

Ĥ = −∆. (1.2)

We need our operator to be self-adjoint. This is accomplished by introduc-
ing certain boundary conditions at the vertices. These conditions link the
function values and values of first derivatives of the functions on the edges
connected to each vertex. We will work with the conditions called attractive
δ-coupling. Those conditions are generalization of point interactions on the
line. These systems naturally occur as a simplification (due to reduction of
dimension) of many models in mathematics and physics (for more details see
[15]). They can be especially seen in situations where the wave moves though
quasi one-dimensional systems, e.g. motion of a “free” electron in many sys-
tems in chemistry especially organic compounds, quantum chaos, quantum
wires, theoretical model for nanotechnology, photonic crystals, etc. Quantum
graph models have many advantages. Those include major simplification due
to a reduction of the dimensionality, solvability of those systems by means of
solving the spectral problem and scattering problem. Such simplification as
are done with quantum graphs has also its drawbacks. The first one is the
presence of parameters which describe how the functions are connected at
the vertices. Another problem is the absence of tunneling outside the graph
structure. Quantum graphs are discussed in great detail in the paper [7] or
in the survey [9].

Next we will discuss systems where a singular potential is supported by a
manifold of codimension one. The motivation for analyzing of such systems is
twofold. The first one is that such an approach is a reasonable approximation
for systems where the characteristic length of the particle, e.g. scattering
length of the particle, is much larger then the range of the real interaction
in the system. The second reason is the possibility of solving such models
exactly. This is the result of the fact that the interaction support is “small”
and outside of this support the free particle solution can be chosen leading
so to an explicit solution. We will work with Hamiltonians which can be
formally written as

Ĥ = −∆− µ(x)δ(x− Γ), (1.3)

where µ(x) > 0 is a bounded positive function on the compact support Γ of
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codimension one. We will work with such Hamiltonians in the dimension two
and three. It is worth mentioning that for the dimension one the result we
would obtain coincides with the point interaction on the line. These models
can be used to describe so called “leaky” wires, where the particle is localized
in the vicinity of Γ, however, with probability one in the classically forbidden
region Rd\Γ, d = 2, 3. For more information we refer the reader to the paper
[11] or to the review [12].

We will address one more topic concerning the ground state of Hamilto-
nians with a combination of a regular potential and a delta interaction in
dimension one. The hamiltonian of such a system can be written as follows

Ĥ = −∆ + V (x) + αδ(x− y). (1.4)

We will work with potential well, linear potential, monotonous potential and
symmetric potential around point zero. Those models can be used to describe
the system with the Hamiltonian in the form of −∆ + V (x) with either sin-
gular barrier added at the point y for the case of repulsive point interaction
or a singular “well” for the case of attractive point interaction.

In our work we will be interested in the relation between geometry of the
support of the singular interactions and the ground state energy. That is
specifically, for point interactions we will look at the distances, for the quan-
tum graphs the lengths of the edges. For the case of connected manifolds
of the codimension one these are deformations maintaining the length of the
curve or the area of the surface supporting the interaction. We consider Eu-
clidian transformations of manifolds with respect to themselves for the case
of separated manifolds. Finally for the point interaction and the potential
we look at the position of point interaction with respect to the potential.

The reason we are interested in the ground state is the following. The
ground state has a natural physical importance. While the isolated quan-
tum system remains in a given state, in the real world we are not able to
create a completely isolated system. Every system interacts with the sur-
rounding which can act like a heat bath. For the case of quantum systems
the interaction is usually by means of electromagnetic fields. Such an inter-
action usually results in an energy dissipation which leads the system to the
most stable configuration which is the ground state-the minimal energy state.
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Now let us briefly describe the content of this work. Chapter 2 serves
mostly as reference, but some results, in particular, in Section 2.2.3 are orig-
inal. In Chapter 2 we give a review of mathematical rigorous definitions of
the operators we mentioned earlier as a self-adjoint extensions of symmetric
operators on appropriate Sobolev spaces. We write down their basic spectral
properties. We introduce the Krein’s formula which relates the resolvents of
two self-adjoint extensions of a certain symmetric operator usually by a finite
rank operator. With help of Krein’s formula we describe the point interac-
tions for systems where different self-adjoint extensions of this kind exists,
i.e. in the dimension one, two a three and also for quantum graphs. Next we
introduce generalized Birman-Schwinger formula, which relates resolvents of
two operators by their difference expressed as an integral operator. These
operators differ by the multiplication operator defined by a bounded Borel
measurable function and a positive Radon measure. By means of generalized
Birman-Schwinger formula we are able to introduce contact potentials sup-
ported by manifolds of the codimension one, i.e. curves in R2 and surfaces
in R3. We could by the same approach introduce point interactions for R.
It is a result of the fact that points have codimension one with respect to
the line. However by this approach one would obtain same results as for the
Krein’s formula.

These two methods are both based on the same principle. They describe
the difference between the resolvents of two self-adjoint operators which have
a common contraction. The difference between these two methods is as fol-
lows. For the case of Krein’s formula we describe self-adjoint operator via
separated boundary conditions. By this approach we can introduce point
interactions in the dimensions one, two and three. For the case of Birman-
Schwinger formula we describe singular interactions supported by the codi-
mension one.

In Chapter 3 we present the properties of the ground state energy with
respect to the geometry of the point interactions sites for the dimension one.
We will show that a decrease in distance between the attractive point inter-
actions results in a decrease of the ground state energy for the case of the line
and quantum graph without branching. We also show that the situation is
more complex for the branched graphs. At the end of this chapter we present
several examples.
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Chapter 4 treats the case of point interactions on a plane and in a three-
dimensional Euclidian space. We will show that the situation is similar to the
case of attractive point interactions on the line, i.e. an increase in distance
between point interactions results in an increase of the ground state energy.

In Chapter 5 we will present the situation of the ground state of the sys-
tem with contact potential supported by the manifold of the codimension one
on a plane and in a three-dimensional Euclidian space. The ground state en-
ergy behaves similarly for this case as for point interactions. The decrease of
distance between the points of the manifold results in decrease of the ground
state energy.

Chapter 6 is focused on examples of minimization of the ground state
energy with respect to the position of point interaction along to several po-
tential types. We will work with a rectangular potential well, a piecewise
linear potential, a monotonous potential and a mirror-symmetric confining
potential. We will show that for the case of symmetric potential the optimal
position of the attractive point interaction is at the minimum of the poten-
tial. The situation is different for the asymmetric case where the optimal
position is shifted from the minimum of the potential.
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Chapter 2

Setting of the problem

In this chapter we introduce mathematically rigorous definition of the point
interactions in one, two and three dimensions. We summarize basic proper-
ties of point interactions. We describe basic characteristics of such operators
and properties necessary for proving relations between the ground state en-
ergy and distance between point interactions.

There are many ways how to introduce point interactions. We will be
working with two mathematical constructs.

One of them is based on interpreting our operators as self-adjoint exten-
sion of appropriate densely defined symmetric operator. By this approach
we can obtain operators which can be formally written as

Hα,Y = −∆ +
N∑
i=1

αjδ(x− yj), (2.1)

where N < ∞. These operators describe a finite number of point interac-
tions. Our review of the properties of these operators will be brief; for a more
complete description we refer to the monograph [1].

We also introduce a different approach using the Birman-Schwinger argu-
ment. We describe interactions with the help of the measure. This approach
allows us to introduce singular interactions supported on the manifold of
codimension one. We will work with operators which can be formally writ-
ten as

H = H0 + γm, (2.2)
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where γm represents a multiplication operator described by a bounded Borel
measurable function γ and a positive Radon measure m. This approach is
based on describing the resolvent of the desired operator H as a addition of
the resolvent of H0 and the integral operator depending on γ. For a complete
description of this approach see [11].

2.1 Self-adjoint extensions of symmetric op-

erators

One of possible ways how to introduce point interactions is as a self-adjoint
extension of the symmetric operator obtained by restricting the free Hamil-
tonian to functions which vanish in the vicinity of the interaction support.
In this subsection we present a brief review of some basic properties in the
general setting including a very useful formula due to Krein.[1]

We start by self-adjoint extension of operator Ȧ which is densely defined,
closed and symmetric in a Hilbert space H with deficiency indices (1, 1),
this means that there exists functions φ+ and φ− which fulfill

Ȧ∗φ+ = iφ+,

Ȧ∗φ− = −iφ−,
(2.3)

where i is the complex unit.

Theorem 2.1. Let the operator Ȧ defined above fulfills

Ȧ∗φ(z) = zφ(z), φ(z) ∈ D(Ȧ∗), z ∈ C \ R, (2.4)

then all self-adjoint extensions Aθ of Ȧ may be parameterized by a real pa-
rameter θ ∈ [0, 2π) in the following way

D(Aθ) = {g + cφ+ + ceiθφ− | g ∈ D(Ȧ), c ∈ C},
Aθ(g + cφ+ + ceiθφ−) = Ȧg + icφ+ − iceiθφ−, 0 ≤ θ < 2π,

(2.5)

where
φ± = φ(±i), ‖φ+‖ = ‖φ−‖. (2.6)

Next we state Krein’s formula which relates two self-adjoint extensions
of the symmetric operator by a finite rank operator. Krein’s formula for this
case can be written according to [1, Appendix A] as follows.
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Theorem 2.2 (Krein’s formula). Let Ȧ be a symmetric operator and B and
C denote two self-adjoint extensions of Ȧ. Then for the resolvent we can
write

(B − z)−1 − (C − z)−1 = λ(z)(φ(z), ·)φ(z), z ∈ ρ(B) ∩ ρ(C), (2.7)

where λ and φ may be chosen to be analytical functions for all z ∈ ρ(B)∩ρ(C)
and λ(z) 6= 0 ∀z ∈ ρ(B) ∩ ρ(C). The vector function φ(z) satisfies

φ(z) = φ(z0) + (z − z0)(C − z)−1φ(z0), z ∈ ρ(C), (2.8)

where φ(z0) fulfills

Ȧ∗φ(z0) = z0φ(z0), z0 ∈ C \ R. (2.9)

If we choose φ(z) according to (2.8), λ(z) satisfies

λ(z)−1 = λ(z′)−1 − (z − z′)(φ(z), φ(z′)), z, z′ ∈ ρ(B) ∩ ρ(C). (2.10)

Next we describe a more general case for which the operator Ȧ is densely
defined, a closed symmetric operator in some Hilbert space H with deficiency
indices (N,N), where N ∈ N. Let the operators B and C be self-adjoint
extensions of the operator Ȧ. We denote by Å the maximal common part of
B and C, in other words Å obeys Å ⊆ B, Å ⊆ C and also Å extends any
operator A′ fulfilling A′ ⊆ B, A′ ⊆ C. We denote by M the deficiency index
of Å. We know that M fulfills 0 ≤M ≤ N . The span of linearly independent
vectors {φ1(z), . . . φM(z)} equals the deficiency subspace of Å, i.e.:

Å
∗
φm(z) = zφm(z), φm(z) ∈ D(Å

∗
), m ∈ M̂, z ∈ C \ R. (2.11)

Theorem 2.3 (Krein’s formula for deficiency indices N ≥ 1). Let the oper-
ators Ȧ, Å, B and C be as above. Then

(B − z)−1 − (C − z)−1 =
M∑

m,n=1

λmn(z)(φn(z), ·)φm(z), z ∈ ρ(B) ∩ ρ(C),

(2.12)
where the matrix λmn(z) is nonsingular for all z ∈ ρ(B) ∩ ρ(C) and λmn(z)
along with φm may be chosen analytically for all m,n ∈ M and z ∈ ρ(B) ∩
ρ(C). We may define φm(z) as

φm(z) = φm(z0) + (z − z0)(C − z)−1φm(z0), m = 1, . . . ,M, z ∈ ρ(C),
(2.13)
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where φm(z0) are linearly independent solutions of (2.11), where z = z0.
Then the matrix λmn(z) can be written as

[(λmn(z))]−1
m,n = [(λmn(z′))]−1

m,n − (z − z′)(φn(z), φm(z′)),

m, n ∈ M̂, z, z′ ∈ ρ(B) ∩ ρ(C).
(2.14)

We can also write Krein’s formula in another basis as

(B − z)−1 − (C − z)−1 =
N∑

m,n=1

λ̃mn(z)(φ̃n(z), ·)φ̃m(z), z ∈ ρ(B) ∩ ρ(C),

(2.15)

where φ̃m(z) m ∈ N are linearly independent functions fulfilling the relation

Ȧ∗φ̃m(z) = zφ̃m(z), φ̃m(z) ∈ D(Ȧ∗), m ∈ M̂, z ∈ C \ R. (2.16)

For such a case there is the possibility that ∀z det λ̃(z) = 0. For further
reference we refer the reader to [1, Appendix A].

2.2 Point interactions as self-adjoint exten-

sions

In this section we introduce point interactions as self-adjoint extension of
symmetric operators. We start with symmetric operator to which we con-
struct self-adjoint extensions differing by boundary conditions at the point
interaction sites. Later on, with the help of Krein’s formula, we construct
the resolvents of such operators. From the resolvent of the operator we will
be able to derive certain properties of the ground state. We will discuss
point interactions in the dimension one, two and three. These models are
discussed in great detail in [1]. We would like to mention that there is an
alternative approach to the one of the self-adjoint extensions based on the
Fourier transformation described in the monograph [1, Chapter II.1].

2.2.1 One point interaction on a line

We start by one point interaction on a line. As we mention earlier we employ
self-adjoint extension of a suitable densely defined symmetric operator. We
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start with a closed and nonnegative operator

Ḣy = − d2

dx2
(2.17)

with the domain D(Ḣy) = {g ∈ H2,2(R)|g(y) = 0}. Its adjoint can be written
as

Ḣ∗y = − d2

dx2
. (2.18)

Its domain is D(Ḣ∗y ) = H2,2(R \ {y}) ∩ H2,1(R), where Hm,n(R) are the
corresponding Sobolev spaces. Solutions of the equation

Ḣ∗yψ(k) = k2ψ(k) (2.19)

are given by
ψ(k, x) = eik|x−y|, (2.20)

where ψ(k) ∈ D(Ḣ∗y ), k2 ∈ C \ R and =k > 0. From this we can infer

that Ḣy has deficiency indices (1,1) which means that our operator has a
one-parameter family of self-adjoint extensions.

Now according to [4, Section X.1] and by direct application of Theorem 2.2
to our operator Ḣy we are able to describe all self-adjoint extension of our
operator Ḣy by the parameter θ ∈ [0, 2π) in the following manner. All self-
adjoint extensions Hθ can be written as

D(Hθ) = {g + cψ+ + ceiθψ−|g(z) ∈ D(Ḣy), c ∈ C} (2.21)

and the operator acts as

Hθ(g + cψ+ + ceiθψ−) = Ḣyg + icψ+ − iceiθψ−, (2.22)

where ψ±(x) are given by the relation (2.20) as

ψ±(x) = ψ(±i, x),

‖ψ−‖ = ‖ψ+‖ .
(2.23)

We come to self-adjoint extensions Hθ,y, whose functions of theirs domain
are continuous at the point y and satisfy the condition

lim
ε↓0

[(g + cψ+ + ceiθψ−)′(y + ε)− (g + cψ+ + ceiθψ−)′(y − ε)] =

−c(1 + eiθ) = α[g(y) + cψ+(y) + ceiθψ−(y)],
(2.24)
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where α =
−2 cos( θ2)
cos( θ2−

π
4 )

. It can be seen that α covers the real axis as a function

of θ ∈ [0, 2π). We can thus parameterize the self-adjoint extensions using
boundary conditions written as (2.24) in the following manner.

Theorem 2.4. Let the operator −∆α,y be defined as

−∆α,y = − d2

dx2
(2.25)

with the domain

D(−∆α,y) = {g ∈ H2,1(R)∩H2,2(R\{y})| g′(y+)−g′(y−) = αg(y)}, (2.26)

where α satisfies −∞ < α ≤ ∞. Then all self-adjoint extensions of Ḣy

coincide with {−∆α,y| − ∞ < α ≤ ∞}. The special case α = 0 leads to the
kinetic energy operator in L2(R),

−∆0,y = −∆ = − d2

dx2
, D(−∆) = H2,2(R). (2.27)

Another particular case is α =∞, which corresponds to the situation of two
separated halflines with Dirichlet boundary condition at y,

−∆∞,y = (−∆D−)⊕ (−∆D+),

D(−∆∞,y) = {g ∈ H2,1(R) ∩H2,2(R \ {y})|g(y) = 0}
= H2,2

0 ((−∞, y)) ∪H2,2
0 ((y,∞)),

(2.28)

where −∆D± is the Dirichlet Laplacian (for the definition of these operators
see [3, Section XIII.15]) on (−∞, y) and (y,∞), respectively.

Proof : Can be found in [1, Chapter I.3.1]

Now we write the resolvent of our operator −∆α,y according to Krein’s
formula, i.e. we specify Theorem 2.2 to this particular case.

Theorem 2.5. The resolvent of −∆α,y is given by

(−∆α,y − k2)−1 = Gk − 2αk(iα + 2k)−1(Gk(· − y), ·)Gk(· − y),

k2 ∈ ρ(−∆α,y), =k > 0, −∞ < α ≤ ∞, y ∈ R,
(2.29)
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where
Gk(x− x′) = (i/2k)eik|x−x

′|, =k > 0 (2.30)

is the integral kernel of (−∆ − k2)−1 in L2(R). The integral kernel of the
resolvent (−∆α,y − k2)−1 can be written explicitly as

(−∆α,y − k2)−1(x, x′) = (i/2k)eik|x−x
′| + α(2k)−1(iα + 2k)−1eik[|x−y|+|y−x′|],

k2 ∈ ρ(−∆α,y), =k > 0, x, x′ ∈ R.
(2.31)

Proof : Can be found in [1, Section I.3.1]

The next theorem specifies some spectral properties of our operator−∆α,y.

Theorem 2.6. Let −∞ < α ≤ ∞, y ∈ R then the essential, absolutely
continuous and singularly continuous spectrum of the operator −∆α,y can be
written as

σess(−∆α,y) = σac(−∆α,y) = [0,∞), σsc(−∆α,y) = ∅. (2.32)

If −∞ < α < 0, then −∆α,y has one simple, negative eigenvalue, namely

σp(−∆α,y) =

{
−α2

4

}
. (2.33)

Eigenfunction corresponding to this eigenvalue can be chosen strictly positive:

ψ(x) = (−α/2)1/2eα|x−y|/2. (2.34)

If 0 ≤ α ≤ ∞, then the operator −∆α,y has no eigenvalues, i.e.

σp(−∆α,y). (2.35)

Proof : Can be found in [1, Section I.3.1]

2.2.2 Finite number of point interactions on a line

Now we generalize the previous case of one point interaction of the last
subsection to finitely many point interactions on the line. Our procedure
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will be strictly analogous to that used for one point interaction. We start by
defining the minimal operator ḢY as

ḢY = − d2

dx2
,

D(ḢY ) = {g ∈ H2,2(R)| g(yj) = 0, yj ∈ Y, j = 1, . . . N},
Y = {y1, . . . , yN}, N ∈ N.

(2.36)

As before the operator ḢY is closed and nonnegative. Its adjoint operator
Ḣ∗Y can be written as

Ḣ∗Y = − d2

dx2
,

D(Ḣ∗Y ) = H2,2(R \ {Y }) ∩H2,1(R).

(2.37)

We find the solution of the eigenvector equation

Ḣ∗Y ψ(k) = k2ψ(k) (2.38)

for ψ(k) ∈ D(Ḣ∗Y ), k2 ∈ C \ R, =k > 0, in the form

ψj(k, x) = eik|x−yj |, yj ∈ Y, j = 1, . . . , N. (2.39)

From this result we can conclude that ḢY has deficiency indices at least
(N,N). The result that deficiency indices are exactly (N,N) comes from
the fact that there are no other linearly independent solution of (2.38) than
those written as (2.39). Consequently, all the self-adjoint extensions of our
operator ḢY form a N2-parameter family of self-adjoint operators. We re-
strict ourselves to the case of local boundary conditions, i.e. coupling of the
boundary values at each point yj, j = 1, . . . , N separately. Similarly as for
one point interaction we characterize the self-adjoint extension of ḢY as

−∆α,Y = − d2

dx2
,

D(−∆α,Y ) = {g ∈ H2,1(R) ∩H2,2(R \ Y )|
g′(yj+)− g′(yj−) = αjg(yj), j = 1, . . . , N},

(2.40)

where α = (α1, . . . , αn), −∞ < αj ≤ ∞, j = 1, . . . , N . The operator −∆α,Y

is self-adjoint ([1, Section II.2.1]). The special case αi = 0 for all i ∈ N̂ leads
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to the kinetic energy operator −∆ on H2,2(R). The case that αi = 0 for
certain point interactions sites i ∈ {i1, . . . , im} leads to the case of N − m
point interactions on the line. The case αj0 = ∞ leads to the Dirichlet
boundary condition at yj0 , which means, g(yj0+) = g(yj0−) = 0. According
to [1, Section II.2.2] we can approximate the operator −∆α,Y by the one
parametric set of operators

Hε,Y = − d2

dx2
+ ε−1

N∑
j=1

Vj(
· − yj
ε

). (2.41)

It can be proven that the operator Hε,Y converge to the operator −∆α,Y in
the norm resolvent sense and αj =

∫
R dx Vj(x−yj) for all j = 1, . . . , N . From

this we infer that −∆α,Y describes N δ-point interactions located at points
yj ∈ Y with strength equal to αj, where j = 1, . . . , N .

Let us formulate several basic properties of −∆α,Y . We start by restating
Krein’s formula introduced in Theorem 2.3 for our operator −∆α,Y .

Theorem 2.7. Let αj 6= 0, j = 1, . . . , N . Then the resolvent of the operator
−∆α,Y is given by

(−∆α,Y − k2)−1 = Gk +
N∑

j,j′=1

[Γα,Y (k)]−1
jj′(Gk(· − yj′), ·)Gk(· − yj),

k2 ∈ ρ(−∆α,Y ), =k > 0, −∞ < αj ≤ ∞, yj ∈ Y, j = 1, . . . , N.

(2.42)

Inverse of the matrix [Γα,Y (k)]−1 is given by

[Γα,Y (k)]jj′ = −[α−1
j δjj′ +Gk(yj − yj′)]Nj,j′=1, (2.43)

where Gk is the free resolvent kernel given by (2.30), which can be explicitly
written as

Gk(yj − yj′) =
i

2k
eik|yj−yj′ |. (2.44)

Proof : Can be found in [1, Section II.2.1]

The following important theorem gives all the eigenvalues of our operator
in implicit form.

19



Theorem 2.8. Let αj 6= 0, yj ∈ Y, j ∈ {1, 2, ..., N}. Assume that there is
at most one index j = j0 for which αj0 = ∞. Then −∆α,Y has at most N
eigenvalues which are all negative and simple. If αj = ∞ for at least two
different values j ∈ {1, 2, ..., N}, then −∆α,Y has at most N − 2 negative
eigenvalues (counting multiplicity) and infinitely many eigenvalues embedded
in [0,∞) accumulating at ∞. In particular, k2 ∈ σp(−∆α,Y ) ∩ (−∞, 0) if
det[Γα,Y (k)] = 0, =k > 0, and the multiplicity of eigenvalue k2 < 0 equals
the multiplicity of the eigenvalue zero of the matrix Γα,Y (k). Moreover, if
E0 = k2

0 < 0 is an eigenvalue of −∆α,Y , the corresponding eigenfunctions are
of the form

ψ0 =
N∑
j=1

cjGk0(x− yj), =k0 > 0, (2.45)

where (c1, c2, ..., cN) are eigenvectors of the matrix Γα,Y (k0) corresponding
to the eigenvalue zero. If −∆α,Y has a ground state (the lowest isolated
eigenvalue) it is nondegenerate and the corresponding eigenfunction can be
chosen to be strictly positive, i.e. the associated eigenvector (c1, c2, ..., cN)
fulfills cj > 0, j ∈ {1, 2, ..., N}.

Proof : Can be found in [1, Section II.2.1]

2.2.3 Point interactions on quantum graphs

In this subsection we describe a quantum particle living on a graph G. Quan-
tum graphs are to some extend a generalization of one-dimensional quantum
mechanics. The particle on the quantum graph is still trapped on a one-
dimensional structure. However graphs offer more complex topological prop-
erties than the line. For the operators to be self-adjoint on quantum graphs
we have to impose boundary conditions at the vertices. We will use condi-
tions which are called attractive δ coupling. These conditions are analogous
to those we impose on the line for the case of point interactions.

We will not consider general graphs. We restrict ourselves to finite ones,
i.e. constructed from p vertices and q edges, where p, q ∈ N. We represent the
lengths of the edges by the vector L = {li | i ∈ q̂}T , where li ∈ R+ ∪ {+∞},
which means that we allow both finite and infinite edges. We construct our
space L2(G) on the graph G, where we defined the Lebesgue measure dx in
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the natural way, from classes of equivalence of measurable functions on each
edge. Thus our space is an orthogonal sum of L2(0, li), that is

L2(G) =

q⊕
i=1

L2(0, li). (2.46)

In other words functions from our Hilbert space L2(G) can be written as
Ψ = {ψi | ψi ∈ L2(0, li), i ∈ q̂}T . We can write the condition on integrability
of functions as

‖Ψ‖2
L2(G) =

q∑
i=1

‖ψi‖2
L2(0,li)

<∞. (2.47)

We will be working with the operator which acts on the edges of our graph
as negative second derivative, i.e.

Hψi = −ψ′′i . (2.48)

It can be seen that such operator will be symmetric for the domain D(H) =
{{ψi | ψi ∈ L2(0, li), i ∈ q̂}T | limx→0 ψi(x) = limx→li ψi(x) = 0}. How-
ever our operator has to be self-adjoint. We accomplish this by choosing its
self-adjoint extension characterized by certain boundary conditions at each
vertex. General conditions for the vertex of the degree k can be written in
the matrix form according to [8] as

AjΨj +BjΨ
′
j = 0, (2.49)

where Ψj and Ψ′j are vectors of functional values and values of outwards
derivatives at the particular vertex of the degree k and the matrices Aj, Bj ∈
Ck×k fulfill

rank(Aj | Bj) = k,

AjB
∗
j is self adjoint.

(2.50)

It is not hard to see that the matrices Aj and Bj are not unique. Boundary
conditions generated by the two sets of matrices (Aj, Bj) and (CAj, CBj),
where C is a nonsingular matrix, are the same. We would like to have a set
of matrices Aj and Bj which would generate unique boundary conditions.
One suitable choice of the matrices is the following

Aj = Uj − I, Bj = i(Uj + I), (2.51)
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where I is identity matrix and Uj is a unitary one.

Because we are interested in an analogy to δ-point interactions on graphs
we will work with the conditions similar to those we had on the line. To write
them down we can, without loss of generality, assume that the edges have
fixed parametrization. This will help us to write down all the conditions at
once more easily. Such conditions can be written as

ψjg(0) = ψjh(0) = ψkm(lkm) = ψkn(lkn) ∀g, h ∈ m̂y ∀m,n ∈ n̂y,
my∑
i=1

ψ′ji(0+)−
ny∑
i=1

ψ′ki(lki−) = αyψj1(0)
(2.52)

for all y where my and ny are numbers of edges that in our given parametriza-
tion have at the vertex point either x = 0 or x = li respectively. Our con-
ditions (2.52) are the only ones from the general case (2.49), which have the
wave functions continuous at the vertices. Now we can define a Hamiltonian
on the domain H2,2(G) where all functions have to fulfill the condition (2.52).
We should note that for the vertex with only one edge this condition is the
same as the Robin condition when α 6= 0 and Neumann condition for α = 0.
We rewrite the conditions (2.52) into matrix form for each vertex as

AiΨi +BiΨ
′
i = 0,

Ai =



1 −1 0
. . . 0

0 1 −1
. . .

...
...

. . . . . . . . . 0

0
. . . 0 1 −1

αi 0 · · · 0 0


,

Bi =


0 0 · · · 0

0
. . . . . . 0

0 · · · 0 0
1 · · · 1 1

 ,

(2.53)

where i ∈ p̂ numbers the vertices, Ai ∈ Rk×k, Bi ∈ Rk×k and mi + ni = k.
Another choice of matrices Ai and Bi with the help of the unitary matrix Ui
is

Ai = Ui − I,
Bi = i(Ui + I),

(2.54)
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where I is the identity matrix and Ui = 2
d+iαi

J − I where d is the degree of
the vertex and J is a matrix having all entries equal to 1.

Working with a set of conditions for each vertex separately is impractical.
That is the reason why we restate our problem in terms of a different graph
G0 obtained from G by identifying all its vertices. This graph has only one
vertex. We encode the boundary conditions together with the topology of the
original graph to the boundary condition of the new vertex as it is described
in [9]. The space of the new graph G0 and original one are isomorphic. This
is the result of the fact that the new graph G0 and the original one have the
same lengths of corresponding edges. The operator on the new graph act
the same as the operator on the original graph. We transfer the conditions
(2.52) on a new graph in the following way

AΨ +BΨ′ = 0, (2.55)

where A and B are block diagonal matrices fulfilling

rank(A | B) =

p∑
i=1

di,

AB∗ is self-adjoint,

(2.56)

where the number di in the degree of the i-th vertex. We construct those
matrices A and B as direct sums of Ai and Bi, i ∈ p̂ respectively. This can
be written as

A =

q⊕
i=1

Ai =

 A1 0 0

0
. . . 0

0 0 Ap

 , (2.57)

and

B =

q⊕
i=1

Bi =

 B1 0 0

0
. . . 0

0 0 Bp

 . (2.58)

At this point we are ready to write down the operator which describes the
so called δ-coupling on graphs. Our operator acts as second derivative, i.e.

(−∆G,α,LΨ)i = −(Ψ′′)i. (2.59)
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Our operator has the domain of the form D(−∆G,α,L) = {Ψ ∈
⊕q

j=1H
2,2(li) |

AΨ+BΨ′ = 0} where α = (α1, . . . , αp) describes “point interaction strengths”
and matrices A and B enter the conditions (2.52) and they can be written as
(2.57) and (2.58). For proofs of certain statements it is practical to associate
the quadratic form with our operator −∆G,α,L. This quadratic form can be
expressed as

d[Ψ] = (Ψ,−∆G,α,LΨ) =

q∑
i=1

∫ li

0

|ψ′i(x)|2dx+

p∑
i=1

αi|ψi(0)|2, (2.60)

where ψi(0) are the values of the function at the i-th vertex and ψ′i(x) are the
values of the first derivative at the i-th edge. The domain of our quadratic
form consists of functions Ψ ∈ L2(G) which fulfills Ψ ∈ H1,2(G) on the edges
and are continuous at each vertex of the graph. Now we give some properties
of the ground state of our operator −∆G,α,L defined above. First we state
under what circumstances our operator has the ground state [6].

Theorem 2.9. inf(σ(−∆G,α,L)) < 0 if αi ≤ 0 holds for all i ∈ q̂ and∑q
i=1 αi < 0.

Proof. We will separate the proof of this statement into two parts. We start
with a proof for graphs with no semi-infinite edges and then we generalize
this procedure for a graph with semi-infinite edges. We want to find test
function Ψ which fulfills

d[Ψ] < 0, Ψ ∈ D(d). (2.61)

For the graph with finite edges we can choose constant function ψi = C on
all the edges which belongs to the form domain because∫

Γ

|C|2dx = |C|2
∫

Γ

dx <∞. (2.62)

For such function Ψ we get

d[Ψ] = |C|2
q∑
i=1

αi ≤ min
j
αj|C|2 < 0. (2.63)

For the graph with one or more semi-infinite edges we choose the test function
equal to constant for the finite edges ψi = C and ψj = C exp(−κx) for the
semi-infinite ones. For such function we obtain

d[Ψ] ≤
(

min
j
αj +

κ

2
K

)
|C|2, (2.64)
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where K is the number of semi-infinite edges. This expression is negative for
κ chosen sufficiently small which completes the proof.

The next theorem deals with basic properties of the ground state of our
operator [6].

Theorem 2.10. Let the graph G be connected, then the bottom of the spec-
trum λ0 = inf σ(−∆G,α,L) is a simple isolated eigenvalue. The corresponding
eigenfunction Ψ0 can be chosen strictly positive on G being convex on each
edge.

Proof. To prove the first part of the theorem let us consider the graph G′.
This graph differs from the original one G by boundary conditions at each
vertex. We changed those conditions to the Dirichlet boundary condition
which results in a fully disjoined graph. The spectral problem for the graph
G′ can be solved exactly. We know that the graph G′ has either positive
discrete spectrum, for the case when the graph G′ has only finite edges, or
the spectrum is equal to R+ for the graph with some semi-infinite edges.
Now we use Krein’s formula ([7, Proposition 1.3]) on the operators acting on
the graph G and the graph G′. Krein’s formula connects these operators by
finite rank operator in the resolvent. This formula has similar properties as
we mentioned earlier for the operators of on the line. According to Weyl’s
theorem the essential spectra of the operators are the same and the nega-
tive discrete spectrum of the operator on the graph G is created by a finite
number of eigenvalues with finite multiplicity. According to Theorem 2.9
negative discrete spectrum is non-empty and the ground state exists which
completes the first part of the proof.

Ground state positivity follows from the modified Courant theorem [14].
Convexity of the ground state comes from

(ψj)
′′ = −λ0ψj > 0, (2.65)

where ψj is the ground state eigenfunction and λ0 < 0 is the ground state
eigenvalue. Positivity of the previous expression is a direct result of the
positivity of the ground state and the fact that each eigenfunction is twice
differentiable at the edges except the vertices.
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2.2.4 One point interaction on a plane

In this subsection we will discuss one point interaction in two dimensions.
We define the operator describing point interaction centered at point y. We
start with nonnegative operator in L2(R2) which can be written as

Hy = −∆ |C∞0 (R2\{y}), (2.66)

where y ∈ R2. The closure of this operator is denoted by Ḣy in L2(R2). The
domain of its closure equals to

D(Ḣy) = H2,2
0 (R2 \ {y}). (2.67)

The adjoint operator Ḣ∗y of the operator Ḣy can be written as

Ḣ∗y = −∆, D(Ḣ∗y ) = {g ∈ H2,2
loc (R2 \{y})∩L2(R2) | ∆g ∈ L2(R2)}. (2.68)

By a simple calculation we are able to find solution of the equation

Ḣ∗yψ(k) = k2ψ(k), ψ(k) ∈ D(Ḣ∗y ), k2 ∈ C \ R, =k > 0, (2.69)

in the form

ψ(k, x) =
i

4
H

(1)
0 (k|x− y|), x ∈ R2 \ {y}, =k > 0, (2.70)

where H
(1)
0 (·) denotes Hankel function of the first kind and zeroth order,

for more information about such functions see [10]. This implies that our
operator Ḣ∗y has deficiency indices (1, 1). Now, to obtain all self-adjoint

extensions of our operator Ḣ∗y , we decompose L2(R2) with respect to angular
momenta as

L2(R2) = L2((0,∞); r · dr)
⊗

L2(S1), (2.71)

where S1 represents a unit circle on a plane. The basis for L2(S1) can be

chosen as {Ym(ω) | m ∈ Z, 0 ≤ θ < 2π} with Ym(ω) = exp(imθ)√
2π

and ω =

(cos(θ), sin(θ)). We use the unitary transformation

Ũ : L2((0,∞); r · dr) −→ L2([0,∞); dr), (Ũ)(r) = r
1
2f(r) (2.72)

and we rewrite (2.71) as

L2(R2) =
∞⊕

m=−∞

Ũ−1L2((0,∞); dr)
⊗

[Ym]. (2.73)
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We use this decomposition and rewrite Ḣy as

Ḣy = T−1
y

{
∞⊕

m=−∞

Ũ−1ḣmŨ
⊗

1

}
Ty, y ∈ R2, (2.74)

where the operator Ty acts as

(Tyg)(x) = g(x+ y), g ∈ L2(R2) (2.75)

and ḣm acts as

ḣm = − d2

dr2
+
m2 − 1

4

r2
, r > 0, m ∈ Z. (2.76)

The domain of the operator ḣ0 can be written as follows

D(ḣ0) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+);

φ(0+)φ′±(0+)− φ′(0+)φ±(0+) = 0, ḣ0φ ∈ L2(R+)}
(2.77)

and the domains for the operators ḣm as

D(ḣm) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+); ḣmφ ∈ L2(R+)}, m ∈ Z \ {0},
(2.78)

where ACloc(R+) denotes locally absolutely continuous function on R+ and
φ±(x) denotes

φ±(x) = r
1
2H

(1)
0 ((±i)

1
2 r). (2.79)

According to [1, Chapter 1.5] ḣm are all self-adjoint for m 6= 0 and ḣ0 is
symmetric with deficiency indices (1, 1). Also according to [1, Chapter 1.5]
we are able to parameterize all self-adjoint extensions of ḣ0 as follows

ḣ0,α = − d2

dr2
− 1

4r2
, r > 0,

D(h0,α) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+);

2παφ0 + φ1 = 0, ḣ0,αφ ∈ L2(R+)},

(2.80)

where −∞ < α ≤ ∞ and the generalized boundary values φ0 and φ1 are
defined as

φ0 = lim
r→0

[r
1
2 ln r]−1φ(r), φ1 = lim

r→0
r−

1
2 [φ(r)− φ0r

1
2 ln r], (2.81)

where φ′, φ ∈ D(ḣ∗0). From this we are able to conclude this theorem.
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Theorem 2.11. All self-adjoint extensions of Ḣy can be written as

−∆α,y = T−1
y

{[
Ũ−1h0,αŨ ⊕

∞⊕
m=−∞,m 6=0

Ũ−1ḣmŨ

]
⊗ 1

}
Ty,

−∞ < α ≤ ∞, y ∈ R2.

(2.82)

The special case α =∞ leads to the Hamiltonian of free particle, i.e.

−∆∞,y = −∆, D(−∆) = H2,2(R2). (2.83)

Proof : Can be found in [1, Chapter I.5]

The operator−∆α,y provides us with the description of a point interaction
located at y for |α| <∞. It is worth mentioning that according to [1, Chapter
I.5] the expression − 1

2πα
represents the scattering length of the operator

−∆α,y. The following theorem is an application of Krein’s formula (Theorem
2.2) to our operator −∆α,y.

Theorem 2.12. The resolvent of our operator −∆α,y can be written as

(−∆α,y − k2)−1 = Gk + 2π

[
2πα−Ψ(1) + ln

k

2i

]−1

(Gk(· − y), ·)Gk(· − y),

(2.84)
where k2 ∈ ρ(−∆α,y), =k > 0, −∞ < α ≤ ∞, y ∈ R2 and Ψ(·) is the
digamma function. The integral kernel of the resolvent of −∆α,y can be thus
written as

(−∆α,y − k2)−1(x, x′) =
i

4
H

(1)
0 (k|x− x′|)− π

8

[
2πα−Ψ(1) + ln

k

2i

]−1

·

·H(1)
0 (k|x− y|)H(1)

0 (k|y − x′|),
k2 ∈ ρ(−∆α,y), =k > 0, x, x′ ∈ R2, x′ 6= x 6= y 6= x′,

(2.85)

where i
4
H

(1)
0 (k|x − x′|) is the integral kernel of (−∆ − k2)−1 for =k > 0,

x, x′ ∈ R2 and x 6= x′.

Proof : Can be found in [1, Chapter I.5]
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Remark 1. For more information about the digamma function see [10]. In

our case Ψ(1) can be written as Ψ(1) = Γ′(1) = −
∫∞

1

(
1
bxc −

1
x

)
dx, where

bxc represents the lower integer part of x, i.e. bxc ∈ Z and x− 1 < bxc ≤ x.

The next theorem specifies spectral properties of our operator.

Theorem 2.13. Let −∆α,y be the operator defined above with α ∈ (−∞,∞]
and y ∈ R2. Then the spectrum of our operator satisfies

σess(−∆α,y) = σac(−∆α,y) = [0,∞), σsc(−∆α,y) = ∅. (2.86)

The point spectrum of our operator can be written as

σp(−∆α,y) = {−4e2[−2πα+Ψ(1)]}, for α ∈ R. (2.87)

The eigenvector to this eigenvalue can be chosen strictly positive in the form

G2i exp[−2πα+Ψ(1)](x− y) =
1

4
iH

(1)
0 (2ie−2πα+Ψ(1)|x− y|), x 6= y. (2.88)

Proof : Can be found in [1, Chapter I.5]

2.2.5 Finite number of point interactions on a plane

In this section we discuss finite number of point interactions in two dimen-
sions. Let us briefly describe the process of self-adjoint extension in dimen-
sion two. For more details we refer to [1, Chapter II.4].

We start from the nonnegative operator acting on L2(R2) as

−∆ |C∞0 (R2\Y ), (2.89)

where Y = {y1, . . . , yn} ⊂ R2. Its closure ḢY acts on L2(R2) with the domain
D(ḢY ) = H2,2

0 (R2 \ Y ). The adjoint operator of ḢY can be written as

Ḣ∗Y = −∆, D(Ḣ∗Y ) = {g ∈ H2,2
loc (R2 \ Y ) ∩ L2(R2) | ∆g ∈ L2(R2)}. (2.90)

We are interested in solution of the equation

Ḣ∗Y ψ(k) = k2ψ(k), ψ(k) ∈ D(Ḣ∗Y ), k2 ∈ C \ R, =k > 0. (2.91)
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The solution can be written as

ψj(k, x) =
i

4
H

(1)
0 (k | x− yj |). (2.92)

for x ∈ R2 \ {yj}, =k > 0, yj ∈ Y and j = 1, . . . , N . The operator Ḣ∗Y
has deficiency indices (N,N). Thus we have N2-parameter family of self-
adjoint operators of the symmetric operator ḢY . In general we can obtain
all self-adjoint extensions HU,Y of ḢY as

HU,Y

(
g +

N∑
j=1

cj

(
ψj+ +

N∑
j′=1

Ujj′ψj′−

))
=

ḢY g + i
N∑
j=1

cj

(
ψj+ −

N∑
j′=1

Ujj′ψj′−

) (2.93)

with the domain

D(HU,Y ) =

{
g +

N∑
j=1

cj

[
ψj+ +

N∑
j′=1

Ujj′ψj′−

]
| g ∈ D(ḢY ), j = 1, . . . , N

}
,

(2.94)
where Ujj′ , j, j

′ = 1, . . . , N are elements of unitary matrix in CN , cj ∈ C and
the functions ψj± can be written as

ψj± = ψj(
√
±i, x) =

1

4
iH

(1)
0 (
√
±i|x− yj|),

x ∈ R2 − {yj}, =
√
±i > 0.

(2.95)

The functions ψj± provide a basis set of the deficiency subspaces ker[Ḣ∗Y ∓ i].
It can be seen that the case U = −1 leads to the operator of kinetic energy
in L2(R2). Now if we follow the procedure mentioned in [1, Chapter II.4] and
use of Theorem 2.3 we come to the following theorem.

Theorem 2.14. Let −∆α,Y be the self-adjoint operator describing point in-
teractions in two dimensions. Then its resolvent can be written as

(−∆α,Y − k2)−1 = Gk +
N∑

j,j′=1

[Γα,Y (k)]−1
jj′(Gk(· − yj), ·)Gk(· − yj). (2.96)
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Matrix [Γα,Y (k)] can be written as

[Γα,Y (k)]jj′ =

{
1

2π

[
2παj −Ψ(1) + ln

(
k

2i

)]
δjj′ − G̃k(yj − yj′)

}N
j,j′=1

,

(2.97)

where Ψ(1) = Γ′(1) = −
∫∞

1

(
1
bxc −

1
x

)
dx. The function G̃k(x) can be written

as

G̃k(x) =

{
0

Gk(x)

x = 0

x 6= 0,
(2.98)

where Gk(x) = i
4
H

(1)
0 (k|x|). We can rewrite the expression also using the

so-called MacDonald function as Gk(x) = 2
π
K

(1)
0 (κ|x|).

Proof : Can be found in [1, Chapter II.4]

At this point it is worth mentioning what happens in the case when some
of the point interactions have its coefficient equal to αj = ∞. If αj0 = ∞
then one simply deletes the j0-th row and line in the matrix [Γα,Y (k)]. Now
we turn our attention to the domain of the operator −∆α,Y .

Theorem 2.15. Let αj ∈ R, yj ∈ Y for j ∈ N̂ . Then the domain of the
operator −∆α,Y can be written as

D(−∆α,Y ) = {ψ(x) = φk(x) +
N∑
j=1

[Γα,Y (k)]−1
jj′φk(y

′
j)Gk(x− yj)}, (2.99)

where φk(x) ∈ D(−∆) = H2,2(R2), yj ∈ Y , αj ∈ R, k2 ∈ ρ(−∆α,Y ), =k > 0.
Such a decomposition is unique and every ψ ∈ D(−∆α,Y ) fulfills

(−∆α,Y − k2)−1ψ(x) = (−∆− k2)−1φk(x). (2.100)

Furthermore ψ ∈ D(−∆α,Y ) fulfilling ψ = 0 in an open set U ⊆ R2 satisfies
−∆α,Y ψ = 0 in U .

Proof : Can be found in [1, Chapter II.4].

Next we mention some basic properties of the eigenvalues of the operator
−∆α,Y in two dimensions.
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Theorem 2.16. Let −∆α,Y be the operator defined above, where yj ∈ Y ⊂ R2

and αj ∈ R for j ∈ N̂ . Then the spectrum of −∆α,Y fulfills

σess(−∆α,Y ) = σac(−∆α,Y ) = [0,+∞),

σsc(−∆α,Y ) = ∅, σp(−∆α,Y ) ⊂ (−∞, 0).
(2.101)

Furthermore 1 ≤ cardσp(−∆α,Y ) ≤ N counting multiplicity. Let =k > 0,
then

k2 ∈ σp(−∆α,Y ) <=> det[Γα,Y (k)] = 0. (2.102)

Multiplicity of the eigenvalue 0 of the matrix Γα,Y (k) equals the multiplicity
of the eigenvalue k2 of the operator −∆α,Y . Moreover, let E0 = k2

0 < 0
be an eigenvalue of our operator −∆α,Y . For this eigenvalue we have the
corresponding eigenvector in the form

ψ0(x) =
N∑
j=1

cjGk0(x− yj), =k0 > 0, (2.103)

where C = (c1, ..., cN) are eigenvectors belonging to the eigenvalue 0 of the
matrix Γα,Y (k0). The operator −∆α,Y has the ground state which is non-
degenerate and the corresponding eigenvector can be chosen strictly positive,
which can be restated as that the eigenvector C can be chosen strictly positive,
i.e. cj > 0 for all j ∈ N̂ .

Proof : Can be found in [1, Chapter II.4]

2.2.6 One point interaction in three dimensions

In this subsection we describe one point interaction in dimension three. In the
following subsection we describe generalization for a finite number of point
interactions. Our approach will be analogous to that used in two dimensions.
We start from the nonnegative operator

−∆ |C∞0 (R3\{y}), (2.104)

where −∆ denotes the Laplacian operator on L2(R3) and y ∈ R3. The closure
of such an operator can be written as

Ḣy = −∆, D(Ḣy) = H2,2
0 (R3 \ {y}), (2.105)
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where H2,2
0 denotes the corresponding Sobolev space. Its adjoint can be

expressed as

Ḣ∗y = −∆,

D(Ḣ∗y ) = {g ∈ H2,2
loc (R3 \ {y}) ∩ L2(R3) | −∆g ∈ L2(R3)}, (2.106)

where H2,2
loc denotes the local Sobolev space (for the definition see [3, Section

XIII.14]). A simple calculation shows that the solution of the equation

Ḣ∗yψ(k) = k2ψ(k), ψ(k) ∈ D(Ḣ∗y ), k2 ∈ C \ R, =k > 0 (2.107)

is given in the form

ψ(k, x) =
exp(ik|x− y|)
|x− y|

, x ∈ R3 \ {y}, =k > 0. (2.108)

A consequence of this result is that the operator Ḣ∗y has deficiency indices
(1, 1). Now we decompose L2(R3) with respect to angular momenta. In other
words we introduce spherical coordinates centered around the point y. This
can be written as

L2(R3) = L2((0,∞); r2 · dr)
⊗

L2(S2), (2.109)

where S2 represents unit sphere in R3. Basis of the L2(S2) is provided by
the set of spherical harmonics {Yl,m | l ∈ N0,m ∈ {−l, . . . , l}}. Using the
unitary transformation

U : L2((0,∞); r2 · dr) −→ L2([0,∞); dr), (U)(r) = rf(r) (2.110)

we rewrite (2.109) as

L2(R3) =
∞⊕
l=0

U−1L2((0,∞); dr)
⊗

[Yl,−l, . . . , Yl,l]λ, (2.111)

where the notation [Yl,−l, . . . , Yl,l]λ denotes a linear span of the set of vectors
Yl,−l, . . . , Yl,l. We introduce the operator Ty which acts as a translation by
the vector y, i.e.

(Tyg)(x) = g(x+ y), g ∈ L2(R3). (2.112)
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Now we are ready to rewrite Ḣy as

Ḣy = T−1
y

{
∞⊕
l=

U−1ḣlU
⊗

1

}
Ty, y ∈ R3. (2.113)

The operator ḣl acts as

ḣl = − d2

dr2
+
l(l + 1)

r2
, r > 0, l ∈ N0 (2.114)

with the domain

D(ḣ0) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+);

φ(0+) = φ′(0+) = 0;φ′′ ∈ L2(R+)} = H2,2
0 (R+),

D(ḣl) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+); ḣlφ ∈ L2(R+)}
(2.115)

for l ∈ N where ACloc(R+) denotes locally absolutely continuous function on
R+. According to [4, Section X.1] the operators ḣl are all self-adjoint for
l > 0 and the operator ḣ0 is symmetric with deficiency indices (1, 1). The
operator ḣ0 can be extended to a self-adjoint operator ḣ0,α according to [1,
Section 1.1] as

ḣ0,α = − d2

dr2
,

D(h0,α) = {φ ∈ L2(R+) | φ′, φ ∈ ACloc(R+);

−4παφ(0+) + φ′(0+) = 0;φ′′ ∈ L2(R+)}

(2.116)

for −∞ < α ≤ ∞. Now we are ready to formulate the theorem concerning
all self adjoint extensions of Ḣy.

Theorem 2.17. All self-adjoint extensions of Ḣy are given in the form

−∆α,y = T−1
y

{[
U−1h0,αU ⊕

∞⊕
l=1

U−1ḣlU

]
⊗ 1

}
Ty, (2.117)

where −∞ < α ≤ ∞ and y ∈ R3. The special case α = ∞ leads to the
operator of kinetic energy, i.e.

−∆∞,y = −∆, D(−∆) = H2,2(R3). (2.118)
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Proof : Can be found in [1, Chapter I.1]

The operator −∆α,y gives us the description of the point interaction lo-
cated at y for |α| < ∞. According to [1, Chapter I.1] the expression − 1

4πα

represents the scattering length of the operator −∆α,y. Next we turn our
attention to the resolvent of −∆α,y.

Theorem 2.18. The resolvent of our operator −∆α,y is given in the form

(−∆α,y − k2)−1 = Gk + (α− ik(4π)−1)−1(Gk(· − y), ·)Gk(· − y), (2.119)

where k2 ∈ ρ(−∆α,y), =k > 0, −∞ < α ≤ ∞, y ∈ R3. The integral kernel
of the resolvent −∆α,y can be written explicitly as

(−∆α,y − k2)−1(x, x′) =
exp(ik|x− x′|)

4π|x− x′|
+ (α− ik(4π)−1)−1·

·exp(ik|x− y|)
4π|x− y|

exp(ik|x′ − y|)
4π|x′ − y|

(2.120)

for k2 ∈ ρ(−∆α,y), =k > 0, x, x′ ∈ R3, x′ 6= x 6= y 6= x′ where exp(ik|x−x′|)
4π|x−x′| is

the resolvent kernel of the free particle Hamiltonian (−∆−k2)−1 for =k > 0,
x, x′ ∈ R3 and x 6= x′.

Proof : Can be found in [1, Chapter I.5]

Now we collect additional information concerning spectral properties of
our operator.

Theorem 2.19. Let −∆α,y be the operator defined above for α ∈ (−∞,∞]
and y ∈ R3. The essential, absolutely continuous and singularly continuous
spectrum of our operator is given by

σess(−∆α,y) = σac(−∆α,y) = [0,∞), σsc(−∆α,y) = ∅. (2.121)

The point spectrum of the operator −∆α,y can be written for α ∈ (−∞, 0) as

σp(−∆α,y) = {−(4πα)2} (2.122)

with the normalized strictly positive eigenvector in the form

4π
√
−αG−(4πα)2(x− y) =

exp(4πα | x− y |)√
−α | x− y |

, (2.123)

where x 6= y.
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Proof : Can be found in [1, Chapter I.1]

2.2.7 Finite number of point interactions in three di-
mensions

In this section we give rigorous meaning to the expression

H = −∆−
N∑
k=1

βjδ(· − yj) (2.124)

which formally describes N point interactions located at distinct points
y1, . . . , lN in R3. In this section we will briefly summarize basic properties
of such operators. We start from the closed symmetric operator as in the
previous cases.

Theorem 2.20. Let ḢY be a closed symmetric operator

ḢY = −∆ |DY ,
DY = {θ ∈ H2,2(R3) | θ(yj) = 0, yj ∈ Y, j ∈ N̂},

(2.125)

where Y = {y1, . . . , yN}. The operator ḢY has deficiency indices (N,N) and
the deficiency subspaces can be written as

K± = Ran(ḢY ± i)⊥ = [G√±i(· − y1), . . . , G√±i(· − yN)], =
√
±i > 0,

(2.126)
where Gk(x) denotes the integral kernel of the free particle Hamiltonian.

Proof : Can be found in [1, Chapter II.1]

From the theory we obtain N2-parameter family of self-adjoint extensions
belonging to the operator −∆ |DY . However we are not interested in all
of those extensions. We restrict ourselves to so-called separated boundary
conditions at the points yi, i = N̂ . These local conditions can be described
by N -parameter family defined by the resolvent in the form

(−∆α,Y − k2)−1 = Gk +
N∑

j,j′=1

[Γα,Y (k)]−1
jj′(Gk(· − yj), ·)Gk(· − yj), (2.127)
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where Gk(x) = exp(ik|x|)
4π|x| and

[Γα,Y (k)]jj′ =

[(
αj −

ik

4π

)
δjj′ − G̃k(yj − yj′)

]N
j,j′=1

. (2.128)

G̃k(x) represents the function

G̃k(x) =

{
0

Gk(x)

x = 0

x 6= 0.
(2.129)

In the next theorem we give the explicit characterization of the domain and
locality of the operator −∆α,Y .

Theorem 2.21. The domain D(−∆α,Y ) of the operator can be written as
−∆α,Y

D(−∆α,Y ) = {ψ(x) = φk(x) +
N∑
j=1

ajGk(x− yj)}, x ∈ R3 \ Y, (2.130)

where φk(x) ∈ D(−∆) = H2,2(R3), yj ∈ Y , −∞ < αj ≤ ∞ and k2 ∈
ρ(−∆α,Y ), =k > 0. The coefficients aj are given by

aj =
N∑
j′=1

[Γα,Y (k)]−1
jj′φ(y′j), (2.131)

where j ∈ N̂ . Also this decomposition is unique and the function ψ fulfills

(−∆α,Y − k2)−1ψ(x) = (−∆− k2)−1φk(x). (2.132)

Furthermore if ψ ∈ D(−∆α,Y ) fulfils ψ = 0 in an open set U ⊆ R3 then
−∆α,Y ψ = 0 in U .

Proof : Can be found in [1, Chapter II.1]

Generally we expect the Hamiltonian H = −∆ + V where V is multipli-
cation operator to be local in the sense

ψ(x) = 0 ∀x ∈M ⊂ R3 ⇒ Hψ(x) = 0 ∀x ∈M,
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where M is an open subset in R3. We expect that such operators as H to have
no singular continuous spectrum and no positive embedded eigenvalues. This
is also true for point interactions Hamiltonians. Properties of the spectrum
of our operator ∆α,Y as well as the way how to calculate the eigenvalues and
eigenvectors from the zero eigenvalues of the N ×N matrix are the content
of following theorem.

Theorem 2.22. Let −∆α,Y be the operator defined above, where yj ∈ Y and

−∞ < αj ≤ ∞ for j ∈ N̂ . Then the essential spectrum of the operator
−∆α,Y is purely absolutely continuous and fulfills

σess(−∆α,Y ) = σac(−∆α,Y ) = [0,+∞), σsc(−∆α,Y ) = ∅. (2.133)

Furthermore
σp(−∆α,Y ) ⊂ (−∞, 0) (2.134)

and negative point spectrum of the operator −∆α,Y has at most N eigenvalues
counting multiplicity. Let =k > 0, then

k2 ∈ σp(−∆α,Y ) <=>

<=> det[Γα,Y (k)] = det

[(
αj −

ik

4π

)
δjj′ − G̃k(yj − yj′)

]
= 0.

(2.135)

Multiplicity of the eigenvalue 0 of the matrix Γα,Y (k) is equal to the multiplic-
ity of the eigenvalue k2 of the operator −∆α,Y . Moreover, let E0 = k2 < 0
be an eigenvalue of our operator −∆α,Y . For this eigenvalue we have the
corresponding eigenvector in the form

ψ0(x) =
N∑
j=1

cjGk0(x− yj), =k0 > 0, (2.136)

where C = (c1, ..., cN) are eigenvectors belonging to the eigenvalue 0 of the
matrix Γα,Y (k0). If the operator −∆α,Y has a ground state then it is non-
degenerate and the corresponding eigenvector can be chosen strictly positive,
which can be restated as the eigenvector C can be chosen strictly positive i.e.
cj > 0 for all j ∈ N̂ .

Proof : Can be found in [1, Chapter II.1]
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2.3 Birman-Schwinger formula

In this subsection we introduce a different way how to address Hamiltonians
with singular interactions. The approach sketched in this section is based
on the Birman-Schwinger formula. This approach is similar to the Krein’s
formula in the way that the resolvent of the desired operator is expressed as
a sum of the resolvent of the free particle Hamiltonian and another operator.
The main differences between the Krein’s formula and the Birman-Schwinger
formula are the following. By means of the Krein’s formula we describe point
interaction supported by points. Such interactions can be well defined up to
the dimension three. The Birman-Schwinger formula can be used for the
operators, where singular interactions are supported by a manifold of codi-
mension one and it can be used even to dimensions higher than three. We
note that for the dimension one both approaches give the same result, be-
cause the points are the ”manifolds” of codimension one on the line. The
operator describing the difference between the operators for the case of the
Birman-Schwinger formula is the integral operator, for the case of Krein’s
formula it is usually finite rank operator described by a matrix.

We will present facts which were derived in [11]. First we show that such
operators can be defined with the help of associated quadratic forms. We
define operators which can be written in the following form

H = −∆ + γm, (2.137)

where m is a positive Radon measure on Rd, d = 1, 2, 3. The Radon measure
r is a measure defined on a Hausdorff space which is finite on compact sets
and inner regular, i.e. r(A) = sup{r(V ) | V compact subset of A}, where
A is a Borel set. The function γ : Rd → R is a bounded Borel measurable
function chosen in such a way that the following relation holds∫

Rd
|f(x)|2(1 + |γ(x)|2)m(dx) ≤ a

∫
Rd
|∇f(x)|2dx+ b

∫
Rd
|f(x)|2dx, (2.138)

where f ∈ S (Rd) and a < 1 and b are constants. We introduce a linear
bounded transformation

Im := H1,2(Rd)→ L2(Rd,m) =: L2(m),

Imf = f ∀f ∈ (Rd).
(2.139)
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The existence of such a transformation follows from the fact that the Schwartz
space S (Rd) is dense in the Sobolev space H1,2(Rd). We note that we will
use the notation where f denotes continuous function from dx-equivalence
class, i.e. f ∈ L2(Rd, dx), and also function from m-equivalence class, i.e.
f ∈ L2(m). It can be seen that the inequality (2.138) holds for all functions
from f ∈ H1,2(Rd) as long as we replace f on the left-hand side by Imf . We
define the quadratic form Eγm as

Eγm(f, g) =

∫
Rd
∇f(x)∇gdx+

∫
Rd
Imf(x)Img(x)γ(m)m(dx) (2.140)

for all f, g ∈ D(Eγm) = H1,2(Rd). According to [13, Theorem 5.37] we can
associate with the quadratic form Eγm the self-adjoint operator Hγm. The
special case H0, i.e. γm = 0 corresponds to the Hamiltonian of the free
particle on Rd. Furthermore the inequality (2.138) is fulfilled if the measure
m belongs to the generalized Kato class and γ is a bounded Borel measurable
function.

Remark 2. The measure m belongs to the generalized Kato class if

sup
x∈R

m([x, x+ 1]) <∞ for d = 1,

lim
ε→0+

sup
x∈R2

∫
B(x,ε)

| ln(|x− y|)|m(dy) = 0 for d = 2,

lim
ε→0+

sup
x∈R3

∫
B(x,ε)

1

|x− y|
m(dy) = 0 for d = 3,

(2.141)

where d denotes dimension and B(x, ε) is the sphere with the radius ε and
center x.

At this point it is worth mentioning that a lower semi-bounded operator
H0 + V consisted of the Laplacian and the multiplication operator V can be
written as Hγm, if the measure m = |V |dx is from the Kato class and the
function γ is equal to γ = sgnV .

We denote Gk(x), which for the k ∈ {x ∈ C | =k > 0} =: C+ coincides
with the integral kernel of the Hamiltonian of free particle H0 on L2(Rd).
We have already met these functions in the previous part of this chapter
when introducing the Krein’s formula. They can be written depending on
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the dimension d as:

Gk(x) :=
i

2k
exp(ik|x|) d = 1, x ∈ R,

Gk(x) :=
2

π
K

(1)
0 (−ik|x|) d = 2, x ∈ R2 \ {0},

Gk(x) :=
exp(ik|x|)

4π|x|
d = 3, x ∈ R3 \ {0},

(2.142)

where k ∈ C \ {0} and K
(1)
0 denotes the modified Bessel function of the

second kind and zeroth order usually called MacDonald function. Let µ, ν
be arbitrary Radon measures on Rd, which satisfies µ({a}) = ν({a}) = 0
∀a ∈ Rd for d ≥ 2. For the Borel measurable functions f, h : Rd → C we
define the expression f ∗ gµ(x) as

f ∗ gµ(x) :=

∫
Rd
f(x− y)g(y)µ(dy), (2.143)

always when the right-hand side of the equation is defined. Furthermore
we denote the integral operator Rµ,ν(k) : L2(µ) → L2(ν) with its kernel
Gk(x− y).

Rµ,ν(k)h = Gk ∗ hµ ν − a.e. (2.144)

for all h ∈ (Rµ,ν(k)) ⊂ L2(µ). According to [11] we can write the resolvent
of our operator Hγm as R(k) = (Hγm − k2)−1 for k2 ∈ ρ(Hγm) as follows

R(k) := R0(k)−Rm,dx(k)[I + γImRm,dx(k)]−1γImR0(k), (2.145)

where R0(k) is the resolvent of Dirichlet Laplacian on L2(Rd). The expression
is valid when the right hand side of the equation is well defined, i.e. the
operator I+γImRm,dx(k) on L2(Rd) is invertible. In the next lemma we give
a different form of the previous expression and certain spectral properties of
our operator Hγm. The form we will present is more suitable for the analysis
of singular interactions as well as for the use of Birgman-Schwinger principle
for the analysis of point spectra.

Lemma 2.1. a) For µ ∈ {m, dx} and k ∈ C+ we can write the equality
ImRµ,dx(k) = Rµ,m(k).
b) There is a positive real number κ0 so that the operator I + γRm,m(iκ) on
L2(m) has everywhere defined a bounded inverse for all κ0 ≤ κ ≤ ∞.
c) Let k ∈ C+. Suppose that I + γRm,m(k) is invertible and the operator

R(k) := R0(k)−Rm,dx(k)[I + γRm,m(k)]−1γRdx,m(k) (2.146)
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is everywhere defined on L2(Rd). Then the resolvent of Hγm for k2 ∈ ρ(Hγm)
can be written as (Hγm − k2)−1 = R(k).
d) Let k ∈ C+ then dim ker(Hγm − k2) = dim ker(I + γRm,m(k)).

Proof : Can be found in [11]

2.3.1 Singular interactions using Birman Schwinger ar-
gument

We start this subsection by mentioning certain useful properties which are
generally valid for the operators in the form (2.137). For a more complete
reference we refer the reader to [11] or [12]. Later on we will apply these
lemmas to our problem which can be formally described by the operator

Hµ,Γ = −∆− µ(x)δ(x− Γ), (2.147)

where µ(x) ≥ 0 is bounded Borel measurable function on Γ and Γ is the
manifold of the codimension one. But first we will state one lemma and two
more theorems for the general case Hamiltonian Hγm.

Lemma 2.2. Let k ∈ C+ and suppose that the measure m is finite. Then
the operator Rm,dx(k) is compact.

Proof : Can be found in [11]

The next theorem deals with the essential spectrum of our operator.

Theorem 2.23. Let the measure |γ|m be finite, then the essential spectrum
of the operator Hγm is σess(Hγm) = [0,∞).

Proof : Can be found in [11]

The next theorem gives us a description of the continuous part of the
spectrum for the case the measure m belongs to the generalized Kato class
and m is finite.

Theorem 2.24. Let the measure |γ|m have compact support and let it belong
to generalized Kato class. Then the following claims are valid:
a) the singular continuous spectrum of the operator Hγm is σsc(Hγm) = ∅,
b) the set of all positive eigenvalues of the operator Hγm is discrete,
c) absolutely continuous spectrum of the operator Hγm is σac(Hγm) = [0,∞).
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Proof : Can be found in [11]

Now we sum up the important properties about our operator Hµ,Γ which
we can formally write as (2.147).

Theorem 2.25. Let µ : Γ → R be any bounded Borel measurable function.
We define the quadratic form as

Eµ,Γ(f, g) :=

∫
Rd
∇f(x)∇g(x)dx+

∫
Γ

f(x)g(x)µ(x)vold−1(dx) (2.148)

for all the f, g ∈ D(Eµ,Γ) := C∞0 (Rd). The quadratic form is lower semi-
bounded and closable on L2(Rd). Lower semi-bounded self-adjoint operator
Hµ,Γ associated with the closure Eµ,Γ(f, g) of Eµ,Γ(f, g) has the following
properties:
a) σess(Hµ,Γ) = [0,∞) if

∫
Γ
f(x)g(x)|µ(x)|vold−1(dx) <∞ and

b) σac(Hµ,Γ) = [0,∞), σsc(Hµ,Γ) = ∅ if µ(x) = 0 outside of a compact set.

Proof : Can be found in [11]

If we want to apply this theorem to the operator in the form (2.137)
where m is a Dirac measure supported by a graph Γ in R2 we need several
additional conditions on the graph. According to [12] we have to employ
conditions in the following way:
a) edge smoothness: each edge of our graph Γ is C1 a function γj : Ij → R2,
where Ij is finite, semi-finite or infinite interval. Additionally we want to be
able to parametrize the edges by arc length,
b) cusp absence: edges meet at vertices at nonzero angles,
c) local finiteness: each compact subset of R2 contains at most a finite num-
ber of edges and vertices of Γ.
These conditions can be generalized for higher dimensions. We just need to
employ analogous versions of them for (d−1)-dimensional manifolds embed-
ded in Rd.

Remark 3. There exists alternative way of introducing the operators Hµ,Γ

with singular interactions. This approach was described in [11]. We define
the operator Hν,Γ with the help of boundary condition. This operator will act
on the space D(Hν,Γ) = {f ∈ H1,2(Rd) ∩ C0(Rd), |f | ∈ H2,2(Rd) ∩ C∞(Rd) |
∀x ∈ Γ : ∂n+f(x)−∂n−f(x) = ν(x)f(x)} where ∂n±f(x) denotes a derivative
of the function f in the direction of the normal vector of the manifold Γ.
This approach describes δ point interactions at the points of the manifold.
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Chapter 3

Properties of the ground state
for the one dimensional case

In this chapter we give a review of the properties of the ground state for
point interactions on a line and for a more general case of quantum graphs
presented in [5] and [6].

3.1 Ground state on the line

The property we will show for the ground state on the line for the operator
(1.1) is the following: an increase in distance between attractive point inter-
actions results in an increase of the ground state energy. There is more than
one way how to prove this property. One of them is to employ the proof
based on singularity of the resolvent. Another approach is based on so called
Neumann bracketing.

The method of the Neumann bracketing([3, Section XIII.15, Proposition
3]) is based on the comparison of the spectrum of the operator and the op-
erator with added Neumann boundary condition. This proof is based on
adding Neumann boundary condition at the point x, where the ground state
eigenfunction of the system satisfies ψ′(x) = 0. To employ this approach
we need additional conditions on the signs of the derivatives of the ground
state function from left and right at point interactions sites, i.e. ψ′0(y+) < 0
and ψ′0(y−) > 0. This is needed to ensure that there is a point between the
two point interaction where ψ′ vanished; it follows from the assumptions on
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the signs of derivatives and the convexity of the ground state. Convexity
of the ground state follows from the positivity of the ground state and the
eigenvector equation −∆ψ = −Eψ, E > 0. It can be seen that the original
operator −∆α,Y and the operator −∆N

α,Y with the added Neumann condition
have the same ground state. The Neumann condition splits the operator
to two operators on halflines, i.e. −∆N

α,Y = −∆
N,(−∞,x)
α,Y ⊕ −∆

N,(x,∞)
α,Y . Next

we define the operator −∆N,2
α,Y = −∆

N,(−∞,x)
α,Y ⊕ −∆N

(0,a) ⊕ −∆
N,(x,∞)
α,Y , where

−∆N
(0,a) denotes Neumann Laplacian on the interval (0, a) (for the definition

see [3, Section XIII.15]). Adding Neumann Laplacian does not change neg-
ative point spectrum. Then we remove Neumann boundary conditions what
completes the proof. This approach is discussed in [5].

There is another way how to prove our theorem. It is based on viewing
the line as an unbranched graph with vertices at the point interactions sites
and employ the scaling of the ground state eigenfunction at the inner part
of the edges of the graph. This proof will be discussed later on in this chapter.

In this section we present the proof of our theorem based on the singu-
larity of the resolvent of our operator −∆α,Y given by Theorem 2.25.

Theorem 3.1. Let −∆α,Y1, −∆α,Y2 be the point interaction Hamiltonians
defined above. Suppose that cardY1 = cardY2, αk < 0 for all k and that
|y1,i − y1,j| ≤ |y2,i − y2,j| holds for all i, j and |y1,i − y1,j| < |y2,i − y2,j| for at
least one pair of i, j. Then the ground states of the operators −∆α,Y1, −∆α,Y2

satisfy
minσp(−∆α,Y1) < minσp(−∆α,Y2). (3.1)

Proof. The behavior of the ground state energy with respect to the distance
between point interactions sites is encoded in the matrix Γα,Y (κ), where
−κ2 = E is the ground state energy. The lowest eigenvalue of the operator
−∆α,Y is related to the lowest eigenvalue of the matrix Γα,Y (κ). This is the
simple result of the monotonicity of the elements of the matrix Γα,Y (κ) with
the respect to κ. In view of the secular equation det Γα,Y (κ) = 0, the lowest
eigenvalue λ0 is given by

λ0(α, Y ;κ) = min
|C|=1

(C,Γα,Y (κ)C), (3.2)
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where C ∈ Cn with |C| = 1. According to Theorem 2.8 we know that

Γα,Y (κ)ij = −δij
αi
− 1

2κ
e−κLij , (3.3)

where Lij = |yi − yj|. Now we write down λ0 explicitly as

λ0(κ) = min
|C|=1

(C,Γα,Y (κ)C)

=
N∑
i=1

|ci|2
(
− 1

αi
− 1

2κ

)
− 2

N∑
i=1

i−1∑
j=1

Re

(
cicj

e−κLij

2κ

)
.

(3.4)

The semigroup
{
e−tΓα,Y (κ)

}
is positivity improving and as a result of this fact

according to [3, Section XIII.12] and [3, Problem XIII.97] we can choose C
for which the minimum is achieved as strictly positive, i.e. ci > 0 for all
i = 1, . . . , n. Now we can rewrite the previous expression as

λ0(α, Y ;κ) = min
|C|=1,C>0

(C,Γα,Y (κ)C). (3.5)

We introduce two configurations of point interactions (α, Y ) and (α, Ỹ ),
which satisfy Lij ≤ L̃ij for all (i, j) and Lij < L̃ij for at least one pair
of (i, j). Now we know that for any fixed C > 0 we have

(C,Γα,Y (κ)C) < (C,Γα,Ỹ (κ)C) (3.6)

which comes from monotonicity of (C,Γα,Y (κ)C) with respect to |yi − yj|.
The inequality holds for every C from which we have

λ0(α, Y ;κ) < λ0(α, Ỹ ;κ). (3.7)

Sharpness of the inequality is a result of the existence of C for which the
minimum is achieved. This inequality completes the proof.

3.2 Ground state on the graph

The situation on the quantum graph is more complex than the situation of
point interactions in R. The situation simplifies to the property of the case
on the line as long as there is no branching on the graph or alternatively
the strengths of interactions on the vertices are chosen correctly, e.g. for the

46



case of the star graph when the interaction strength at the central vertex is
α < 0 and conditions at the endpoints of the edges are equal to Neumann
conditions, i.e. αi = 0. Later in this chapter we show on an example how
changing the point interaction strength can change the behavior of the ground
state for the case of a branched graph. If there is branching on the graph there
is the possibility that an increase in the distance between point interactions
sites, in the case of the graph these are vertices, results in an decrease of
the ground state energy. If we want to decide whether the increase in the
distance of a certain edge results in an increase or a decrease of the ground
state energy we have to look on the form of the ground state function on
that edge. We are able to solve the eigenvector equation

−∆ψj = −Eψj, (3.8)

where E > 0 and ψj is the eigenfunction on the j-th edge. The solution is
given in the following way:

ψj = A exp(−κx) +B exp(κx), (3.9)

where A,B ∈ C and κ2 = E. Such a solution can be rewritten as

ψ0
j = a cosh(κ(x+ d)),

ψ0
j = b exp(±κx),

ψ0
j = c sinh(κ(±x+ e)),

(3.10)

where a, b, c, d, e are constants. We know that the ground state eigenfunc-
tion is according to Theorem 2.10 strictly positive. This means that we have
restrictions on the constants a, b, c and e.

For the purpose of the proof we introduce the edge index. We denote the
edge index σj according to the type of the ground state function on the j-th
edge in the following way:

σj = 1 for ψ0
j = a cosh(κ(x+ d)),

σj = 0 for ψ0
j = b exp(±κx),

σj = −1 for ψ0
j = c sinh(κ(±x+ e)).

(3.11)

This labeling is unambiguous. This is the result of the general form of the
solution of the spectral equation −∆ψ = −Eψ, where E > 0 and the strict
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positivity of the ground state. For a more complete discussion of this problem
see [6].
Before stating the main theorem of this section we introduce the ground state
class for the graphs. We assume that Γ and Γ̃ have the same topology differing
possibly by inner edge lengths. We consider the family of interpolating graphs
having the j-th edge length in the interval [lj, l̃j] assuming that lj < l̃j. The
graphs belong to the same ground state class if the edge indices do not change
for the ground state function for the whole interpolating family. Now we are
ready to summarize the relation between the length of the edges and the
ground state energy in the following theorem.

Theorem 3.2. Consider two graphs G and G̃ which belong to the same
ground state class. Let −∆G,α,L and −∆G̃,α,L̃ be corresponding Hamiltonians
with the same non-positive boundary conditions at respective vertices. λ0 and
λ̃0 are the corresponding ground state eigenvalues. Suppose that

∀j ∈ q ((|σj| = 1⇒ σj l̃j ≤ σjlj) ∧ (σj = 0⇒ l̃j = lj))⇒ λ̃0 ≤ λ0. (3.12)

The inequality is sharp if σj l̃j < σjlj holds for at least one j ∈ q.
Proof. It can be seen that the theorem can be proven if we prove it for two
graphs which differ by the length of one inner i-th edge for which |σi| = 1.
We introduce quadratic forms d and d̃ for respective graphs G and G̃. We
choose the inner part of the i-th edge J = (a, b). We will choose it in such a
way that we can write G = GJ ∪ J and G̃ = GJ ∪ J̃ , where GJ = G \ J and
J̃ can be obtained from J by rescaling. We note that this can be achieved
if we choose J fulfilling the following inequality b − a > li − l̃i for σi = 1

and b − a > l̃i − li for σi = −1. We denote the scaling factor ξ = |J̃ |
|J | . The

factor ξ is larger than the one in the case we are stretching J and smaller
than one in case of shrinking J . We will prove our theorem by showing that
the Rayleigh quotient for the second graph satisfies:

d̃(ψ̃)

‖ψ̃‖
< λ0, (3.13)

where ψ̃ is appropriately chosen function and λ0 is the ground state eigenvalue
of our operator on original graph. We choose function ψ̃ equal to the ground
state eigenfunction ψ on the original graph G and as “rescaled” ψi on the
rescaled interval J̃ i.e.:

ψ̃k(x) =

{
ψk(x)

ψk(a+ ξ(x− a))

∀x ∈ GJ

∀x ∈ J.
(3.14)
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Now if we want to prove the statement for σi = 1 we choose ξ < 1. We
rewrite the Rayleigh quotient in following way

r(ξ) =
d̃(ψ̃)

‖ψ̃‖
=
α + βξ−1

γ + δξ
, (3.15)

where α := dGJ (ψ), β :=
∫
J
|ψ′(x)|2dx, γ := ‖ψ‖2

G\J and δ := ‖ψ‖2
J . To prove

our statement it is enough to check the derivative of r at ξ = 1, i.e.

σir(1) =
−σi(βγ + 2βδ + γδ)

(γ + δ)
. (3.16)

We know that α+ β = λ0 and we can choose the ground state eigenfunction
to be normalized from which we have γ + δ = 1. From this we have

σir(1) = −σi(λ0δ + β). (3.17)

To prove the theorem we need to show that σir(1) > 0. We show this for the
case σi = 1 and λ0 = −κ2. The property to check is written explicitly

σir(1) = −σi(−κ2‖ψi‖2
J + ‖ψ′i‖2

J). (3.18)

We can rewrite ‖ψ′i‖2
J as∫

J

|ψ′i(x)|2dx = |ci|2
∫
J

| cosh′(κx)|2dx = |ci|2κ2

∫
J

| sinh(κx)|2dx

< |ci|2κ2

∫
J

| cosh(κx)|2dx = −λ0

∫
J

|ψi(x)|2dx.
(3.19)

The case σi = −1 is analogous to the σi = 1 with roles of hyperbolic sine
and cosine interchanged.

Remark 4. We would like to note that the situation for the index σj = 0 is
more complex. In the following section we show that there is the possibility
that the increase in lengths of some edges does not result in a change of the
ground state energy.

3.3 Construction of the ground state on the

graph

In this section we would like to present several examples of quantum graphs
with attractive δ coupling. We will mention these configurations: a line, a
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n-edged star graph and a circle. At the end of this chapter we present a
lemma for the number of functions of a certain edge type, which are allowed
on the edges around one vertex. For those examples we will show that their
ground states are unique. Also as a result we will show that the graph with-
out any branching has the property that a decrease in the distance between
two point interactions results in a decrease of the energy of the ground state.
This is a consequence of the absence of a different solutions than cosh(κx).

First, for purpose of this section, we introduce the notation of the ground
state eigenfunctions as follows:

c(κ, x, d1) =
cosh(κ(x+ d1))

cosh(κd1)
,

e+(κ, x) = exp(κx),

e−(κ, x) = exp(−κx),

s+(κ, x, d4) =
sinh(κ(x+ d4))

sinh(κd4)
,

s−(κ, x, d5) =
sinh(κ(−x+ d5))

sinh(κd5)
.

(3.20)

These functions are normalized in such a way that for x = 0 they equal
1. We know that only the function e− can be on infinite edges. This is a
consequence of the ground state eigenfunction square integrability. From the
condition on the positivity of the ground state eigenfunctions we have the
following d4 > 0 and d5 > l, where l is length of the edge.

We are interested in attractive δ couplings at the vertices which means
imposing the conditions on the functions on the graph in the form (2.52) and
αj ≤ 0. We note that for the vertices connecting exactly two edges we can
restrict ourselves to the point interaction strengths αj < 0 instead of αj ≤ 0.
This is a result of the fact that vertex conditions αj = 0 for the two edged
vertex leads to the smooth function, i.e. we can connect these two edges to
one and omit the vertex. Now we are ready to show the examples of the
construction of the ground state.

3.3.1 Line with n point interactions

In this subsection we introduce an alternative approach how to prove the
properties of the point interactions on the line we presented at the beginning
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of this chapter. We construct the line with n point interactions. We can look
upon a line with n point interactions as at n−1 line segments of finite length
and 2 half-lines.

Lemma 3.1. The ground state eigenfunction on the quantum graph repre-
senting the line with the n attractive point interactions has the following edge
indices σ = (0, 1, . . . , 1, 0).

Proof. We are interested in the ground state eigenfunction Ψ = {ψi(x) |
i ∈ n̂+ 1}. We know that at the semi-infinite edges there are function of
the form e−, i.e.: c1ψ1 = cn+1ψn+1 = e−(κ, x), where c1, cn+1 ∈ (0,∞) are
positive constants. We will show that only possible solution at the finite
edges is in the form of c. We will solve conditions for each vertex separately.
We rescale the functions and parameterize the vertices in such a way that at
i-th vertex the variables are xi = 0 and xi+1 = 0 and the function on the i-th
and (i+ 1)-th edges are in the form of 3.20. The condition at i-th vertex can
be then written as

ψi(0) = ψi+1(0),

αiψi(0) = ψ′i(0+) + ψ′i+1(0+),
(3.21)

where α < 0. We will rewrite these conditions for the first vertex. In our
parametrization condition of continuity at the vertex is automatically satis-
fied. We obtain the second condition in the form

α1 =
ψ′1(0+) + ψ′2(0+)

ψ1(0)
= −κ+ ψ′2(0+). (3.22)

We need the expression at the right hand side to be negative. We write down
the contributions ψ′2(0+) for different functions in the form (3.20).

ψ′c(0+) = κ tanh(κd1),

ψ′e+(0+)(κ, x) = κ,

ψ′e−(0+)(κ, x) = −κ,
ψ′s+(0+)(κ, x, d4) = κ coth(κd4),

ψ′s−(0+)(κ, x, d5) = −κ coth(κd5)).

(3.23)
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We immediately obtain the following inequalities

−1 <
ψ′c(0+)

κ
< 1,

ψ′e+(0+)

κ
= 1,

ψ′e−(0+)

κ
= −1,

ψ′s+(0+)

κ
> 1,

ψ′s−(0+)

κ
< −1.

(3.24)

From those conditions we obtain that ψ2 can not be in the form of e+ and s+.
This follows from the fact −κ + e′+(0+) = −κ + κ = 0 and −κ + s′+(0+) =
−κ(1 + coth(κd)) > 0. Similarly we find all possible pairs of the function
types connected by an inner vertex. These pairs have to fulfill the relation

ψ′i(0+) + ψ′i+1(0+) < 0. (3.25)

This relation cannot be satisfied by these combinations:
(s+, s+), (s+, e+), (s+, e−), (s+, c), (e+, c), (e+, e+), (e+, e−).
We know that on the edge connected to the infinite one we can have the-
oretically these functions c, e− and s−. We note that when we inverse the
parametrization, i.e. x 7−→ l − x on an finite edge of length l we have to
transform types of the functions in the following way: e− 7−→ e+, s+ 7−→ s−
and vice versa. We will show that the only functions allowed at the inner
edges are of the type c in three steps:
1) s−: At this point we will show that we cannot connect an s− edge to
the infinite one. This can be shown by contradiction. We assume for the
moment that we can connect a s− edge. Then at the next vertex according
to our reparametrization s− 7−→ s+ we get s+ on the second vertex and we
can connect to s+ only s− edge. We repeat this procedure n − 2 times and
we come to the vertex with the second semi-infinite edge. At this vertex edge
the functions s+ and e− meet which is not an allowed pair of functions.
2) e−: Similarly we can show that we cannot use the function e−. At the
third vertex we obtain e+ according to reparametrization e− 7−→ e+. The
only functions which we can connect there would be s− and e−. Now when
we repeat the procedure and come to the (n + 1)-th vertex we would have
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either the combination e+, e− or s+, e− and they do not satisfy the condition
(3.25).
3) c: We are now left with only one option and that is c. At the third vertex
we can connect the edge with function of the type c, s−, e−. If we would
connect s−, e− we would end up with either option 1) or 2) and they are
not allowed. From this we have that only the c function is allowed on the
inner edges of the graph representing the line, because when we come to the
(n + 1)-th vertex we obtain pair of functions in the form (c, e−) which is
allowed pair.

Now a combination of Theorem 3.2 and Lemma 3.1 completes the alter-
native proof of Theorem 3.1.

3.3.2 n-edged star graph

In this subsection we construct the ground state function on the n-edged star
graph with j edges of finite length. We show that the ground state function
has edge indices given uniquely by boundary conditions.

We introduce a parametrization of the edges as in the figure 3.1. We need
to satisfy the conditions in the following way

αiψi(li) = −ψ′i(li−) ∀i ∈ ĵ,

αψi(0) =
∑
k∈n̂

ψ′k(0+) ∀i ∈ n̂. (3.26)

We start by restricting the functions at the vertices with respect to the
endpoints. We rewrite the conditions at the endpoint of vertices as

−ψ
′
i(li−)

ψi(li)
≤ 0 ∀i ∈ ĵ. (3.27)

These conditions restrict possible functions at the edges to those c, s+ and
e+. It is result of the fact that

−
s′−(li−)

s−(li)
= κ coth(κ(−li + di)) > 0,

−
e′−(li−)

e−(li)
= κ > 0,

(3.28)
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Figure 3.1: Finite n edged star graph

where −li + di > 0 from the condition on the positivity of the eigenfunction.
Furthermore we have to restrict the parameter di for the function c in the
following way.

−c
′(li−)

c(li)
= −κ(tanh(κ(li + di))). (3.29)

This expression is negative for li + di > 0. Now we solve the central vertex.
We prove the theorem concerning the number of allowed edge types.

Theorem 3.3. Let the function Ψ be the ground state eigenfunction of the op-
erator −∆G,α,L on the star graph with the negative point interaction strengths.
Then for the number of edge types we can write

nc + ne− ≥ ne+ + ns+ + 1, (3.30)

where nc is the number of edges with c function, ne− is number of infinite
edges, ne+ is the number of edges with e+ function and ns+ is the number of
edges with s+ function.
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Proof. We write down the central point interaction α by means of contribu-
tions from the functions on the edges for a general graph with nc edges of
the c type, ne+ edges of the e+ type etc. We obtain the following

α = κ

(
nc∑
i=1

tanh(κdi) +

ns+∑
j=1

coth(κdj) +

ne+∑
j=1

1 +

ne−∑
j=1

−1

)
. (3.31)

We approximate the expressions tanh(κdi) and coth(κdj) by −1 + εi =
tanh(κdi) and 1 + εi = coth(κdj), where εi > 0. We obtain

α = κ

(
nc∑
i=1

(−1 + εi) +

ns+∑
j=1

(1 + εi) +

ne+∑
j=1

1 +

ne−∑
j=1

(−1)

)

= κ

(
−nc + ns+ + ne+ − ne− +

nc∑
i=1

εi +

ns+∑
j=1

εi

)
.

(3.32)

For certain set of parameters di and sufficiently large li we obtain
∑nc

i=1 ε +∑ns+
j=1 ε = Υ < 1. Now we substitute this expression along with the inequality

α < 0 to the equation 3.32 and we get

−nc + ns+ + ne+ − ne− + Υ < 0. (3.33)

We rewrite this into
nc + ne+ > ns+ + ne+ + Υ. (3.34)

Because the numbers nc, ne+ , ns+ , ne+ ∈ N are integers we can enlarge Υ to 1
and change the sharp inequality to inequality which completes the proof.

Now we present an alternative way of proving one part of Theorem 2.10
concerning the ground state. We show that our operator −∆G,α,L has exactly
one strictly positive eigenfunction belonging to the negative eigenvalues. This
will be content the of the following theorem.

Theorem 3.4. Let −∆G,α,L be the operator on the star graph with the neg-
ative point interaction strengths. Then there is only one strictly positive
eigenfunction with the negative eigenvalue.

Proof. According to Theorem 2.10 the operator −∆G,α,L with negative in-
teraction strengths have strictly positive eigenfunction for the ground state.
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Now we show that the ground state is only one strictly positive eigenfunc-
tion. It can be seen that the two function of the same type generate the
same point interactions only when they are the same. Next we have to show
that the two functions of different types cannot generate the same boundary
conditions.
We have two function Ψ1, Ψ2 with their types in the form T1 and T2. We
prove the statement for the function types c and s+. Function Ψ1, Ψ2 cannot
generate the same point interactions. We show it for the functions of the
following types.

T1 =



c
...
c
c
s+

s+
...
s+


, T2 =



c
...
c
s+

c
s+
...
s+


. (3.35)

If those types would generate the same boundary conditions the following
relations have to be fulfilled:

κ1 tanh(κ1(li + di)) = αi = κ2 coth(κ2(li + d′i)),

κ1 coth(κ1(li+1 + di+1)) = αi+1 = κ2 tanh(κ2(li+1 + d′i+1)).
(3.36)

Hyperbolic tangent and cotangent have the following property: cothx >
tanh y. From this and the first condition we can conclude κ1 > κ2 and from
the second condition κ1 < κ2. These conditions cannot be fulfilled at the
same time. Combinations of the types c and s+ remaining to be checked are
the following:

T1 =



c
... j times type c

...
c
s+

...n-j times type s+
...

s+


, T2 =



c
... k times type c

...
c
s+

...n-k times type s+
...

s+


, (3.37)

where j > k. For at least one index i we have the condition for the point
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interactions strength as

κ1 tanh(κ1(li + di)) = αi = κ2 coth(κ2(li + d′i)). (3.38)

From this condition we obtain κ1 > κ2. The conditions on the vertices with
the same type are as follows

κ1 tanh(κ1(li + di)) = αi = κ2 tanh(κ2(li + d′i)),

κ1 coth(κ1(li + di)) = αi = κ2 coth(κ2(li + d′i)).
(3.39)

From those conditions, κ1 > κ2 and from the monotonicity of tanh and coth
we have

tanh(κ1(di)) < tanh(κ2(d′i)) i ∈ k̂,
tanh(κ1(dj)) < coth(κ2(d′j)) j ∈ ĵ \ k̂,
coth(κ1(dk)) < coth(κ2(d′k)) k ∈ n̂ \ ĵ.

(3.40)

From those we obtain the condition α(1) < α(2), where α(1) is the point
interaction strength on the central vertex for the function of the type T1

and α(2) for the second type T2 which completes the proof. For the other
combinations of the types the proof is analogous to this so we omit the
details.

3.3.3 Circle with n point interactions

As we pointed out earlier point interactions with the negative point interac-
tion strengths have on the circle the property that a decrease of the diameter
of the circle results in a decrease of the ground state energy. This is the
straightforward result of the fact that only the functions cosh± are allowed
on the circle. This follows from the argument we will point out.

Lemma 3.2. Let graph G be the circle with the boundary conditions imposed
at each vertex in form of attractive δ coupling. Then only the functions in
the form C cosh(κ(x + D)) are allowed on the edges for the ground state
eigenfunction, where C ∈ (0,∞) and D ∈ R.

Proof. We start with the circle with one point interaction. It can be seen
that only the function c from 3.20 can be present on such graph. This is
the result of the fact that only the function in the form of c can fulfill the
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Figure 3.2: Circle with n point interactions

condition on the continuity in the form ψ(0) = ψ(l).
Now we prove the statement for the circle with at least two edges. We can
start at any vertex. There can be these combinations:
(c, c), (c, e−), (c, s−), (e−, e−), (s−, s−), (s−, s+), (s−, e−), (s−, e+).
We show that there can not be the function s−. If these is the function on the
edge s−, after reparametrization mentioned earlier we obtain s+ for solving
boundary conditions on the next vertex. At another edge we can put only
the function s−. In this fashion we go around the circle and we come to the
vertex which we started from. On this vertex we obtain the functions of the
form s− and s+. This is possible from the point of view of the condition on
the negativity of the point interaction strength. However the function which
we have constructed can not satisfy the boundary condition on the continuity
of the function. It is the result of the fact that the function of the type s− is
decreasing from which we have in parametrization showed on the figure 3.2
the following: ψ1(0) > ψ1(l1) = ψ2(0) > ψ2(l2) = . . . > ψn(ln). In the same
fashion we are able to show that there can not be the functions s+, e− and
e+ which completes the proof.
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3.3.4 Unbranched graph

In this subsection we prove an important property of quantum graphs with
negative δ coupling. The property we will show is that for the graph with
no branching there can not be the edge with the function of the type s± and
edges of finite length with the function types e±.

Theorem 3.5. Let the graph G be without any branching, i.e. no degree of
any vertex exceeds two, with the boundary conditions imposed at each vertex
in the form of attractive δ coupling. Then the ground state eigenfunction can
contain only the functions in the form C cosh(κ(±x + D)) for finite edges
and C exp(−κx) for the semi-infinite ones, where C ∈ (0,∞) and D ∈ R.

Proof. The graph with no branching is a chain of edges either open or closed.
The closed case is the circle with n attractive point interactions. We have
already proved this statement for this case in the previous subsection. The
case we have to deal with is the open chain. We have already proved the
statement for the case of a chain ended with semi-infinite edges. The re-
maining cases are the chains with edges of finite length and at most one
semi-infinite edge. We start with the case of one semi-infinite edge. At the
semi-infinite edge there has to be function in the form e−. It can be seen
that we can connect these function c, s− or e− to the semi-infinite edge. If
we choose s− at the following vertex after reparametrization we would get
s+. The only function we could connect to s+ is s−. When we would repeat
this procedure we would come to the vertex at the end of the chain and
there would be connected only the edge with s+ which results in repulsive
δ coupling. Analogously we can show the case with e− with the difference
that we can connect to e+ only the s− which leads to the previous case. The
remaining case of c can be dealt in the same way. We can connect to the
edge with function of c type functions of those types s−, e− or c. Types s−
and e− leads to previous cases. When we come to the last vertex function
of the type c is allowed. Now we have to deal with the finite graph. We can
employ same procedure as before with the difference that on the first edge we
can place function of the types: c, e− and s− which completes the proof.

3.4 Examples

In this section we show the properties of the ground state of two examples.
The first example will show the properties on two edges connected by one
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vertex. The second one will show how the behavior of the ground state
changes on the three edged star graph when we change the point interaction
strength on the central vertex.

Figure 3.3: The ground state energy of two edges connected by one vertex
with respect to the lengths of the edges

We start by the open chain constructed from two edges. This situation
is shown on the figure 3.4. On this figure we have the ground state energy
of the system with respect to the lengths of the edges. We can see that for
the unbranched graph the increase of the length of the edges results in an
increase of the ground state energy.

Another example will show that a change of the point interaction strength
can result in a change of the edge index resulting in a change of the behavior
of the ground state energy. This can be seen on a simple star graph sketched
on figure 3.3. This star graph has minor symmetry. On the graph we see
the ground state energy with respect to the point interaction strength at the

60



Figure 3.4: The ground state energy of 3-edged star graph with respect to
the length of one edge and point interaction strength on the central vertex

central vertex and the length of one edge. On the z axis of the graph we
used logarithmic scale to make the effect more visible. We are able to see
two regimes which are separated by a critical value of the point interaction
strength on the central vertex αcrit ≈ −1.09088. There is one regime for
the weak attractive coupling α > αcrit at the central vertex, for which an
increase in length of the edge L2 results in a decrease in the ground state
energy. Another regime is for the point interaction strength large enough
α < αcrit with the property that a decrease in the length of the edge results
in a decrease in the ground state energy. We note that for the α = αcrit the
ground state energy is independent of the length of the edge L2 which is the
consequence of the fact that the function on this edge is purely exponential.
The symmetry allows us to write the spectral condition at the central ver-
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tex in the following way: 2ψ′1(0+) + ψ′2(0+) = αψ1(0). We note that it is
not difficult to find examples of graphs with similar behavior without any
symmetry.
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Chapter 4

Properties of the ground state
for the two and three
dimensional case

We are interested in the relation between the ground state energy and the
distance of the point interactions. We will work with point interactions in
Rd, d = 2, 3. Similarly as in the case of point interactions on the line, we
will prove that an increase in the distance between the point interactions
results in an increase in the ground state energy. We will show this using
a variational argument in combination with properties of the resolvent. For
the special case when the system has a form of reflection symmetry we are
able to show a similar property with the help of the Neumann bracketing
method mentioned earlier.

4.1 A variational approach

We start by addressing our problem using a variational method employing
properties of the resolvent. This approach is based on the fact that the
eigenvalue k2 = −κ2 < 0 fulfills the condition det Γα,Y (k) = 0 and the
property that lowest eigenvalue of our operator −∆α,Y corresponds to the
lowest eigenvalue of Γα,Y .

Theorem 4.1. Let −∆α,Y and −∆α,Ỹ be the point interaction Hamiltonians

defined above for the dimension d = 2, 3. Suppose that cardY = card Ỹ
and in addition, for d = 3 assume that the both operators have an isolated
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eigenvalue at the bottom of the spectrum. Then the ground states of the
operators −∆α,Y and −∆α,Ỹ satisfy

|yj − yj′| ≤ |ỹj − ỹj′| ∀j, j′ ∈ N̂ ⇒
minσ(−∆α,Y ) ≤ minσ(−∆α,Ỹ ).

(4.1)

If at least one inequality for the distances of the point interactions is sharp
then the second inequality is also sharp.

Proof. We start with the proof of two dimensional case. Proof for the di-
mension three is analogical with a few differences we will point out.

Two dimensional case
The behavior of the ground state of the operator −∆α,Y is governed by the
secular equation det Γα,Y (iκ) = 0. According to (2.16) we can write Γα,Y as

[Γα,Y ]Nj,j′=1 =

{
1

2π

[
2παj −Ψ(1) + ln

(
k

2i

)]
δjj′ − G̃k(yj − yj′)

}N
j,j′=1

,

(4.2)
where G̃k(yj − yj′) can be written as

G̃k(x) =

{
0

2
π
K

(1)
0 (κ|x|)

x = 0

x 6= 0.
(4.3)

We have to investigate the lowest eigenvalue λ0 of Γα,Y (iκ). This follows
from the proof of the existence of the ground state for the point interaction
in the dimension two. According to [1, Chapter II.4] we have N eigenvalues
γj(κ) of Γα,Y (iκ) all strictly increasing with respect to κ. The expression λ0

is given by
λ0(α, Y ;κ) = min

|C|=1
(C,Γα,Y (iκ)C), (4.4)

where C = (c1, . . . , cn) ∈ Cn. The energy of the ground state −κ2 corre-
sponds to the value of κ which fulfills λ0(α, Y ;κ) = 0. Next we notice that
the semigroup

{
e−tΓα,Y (κ)

}
is positivity improving according to [3, Section

XIII.12], [3, Problem XIII.97] and therefore C for which the minimum is
achieved can be chosen strictly positive, i.e. ci > 0 for all i = 1, . . . , n. Put
together with (4.4) we obtain

λ0(α, Y ;κ) = min
|C|=1,C>0

(C,Γα,Y (iκ)C). (4.5)
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The explicit form of the expression on the right-hand side of the last relation
is

(C,Γα,Y (iκ)C) =
N∑
j=1

1

2π

[
2παj −Ψ(1) + ln

(κ
2

)]
|cj|2−

∑
j<j′

2

π
K

(1)
0 (κ|yj − yj′|)(c̄jcj′ + c̄j′cj).

(4.6)

We are interested in the relation between κ and |yj − yj′ |. We observe that
the expression (C,Γα,Y (iκ)C) is monotonous with respect to |yj − yj′| for
fixed κ, hence an increase in |yj − yj′ | results in an increase of the value
of (C,Γα,Y (iκ)C). Because this is valid for all strictly positive C it is also
valid for C for which the minimum of (C,Γα,Y (iκ)C). This means that λ0

is monotonously increasing with respect to |yj − yj′ | which along with the
monotonicity of λ0 with respect to κ completes the proof.

Three dimensional case
In this case the existence of the ground state eigenvalue is not guaranteed
and must be assumed - cf. Theorem 2.22. Otherwise the proof is analogous
to the two-dimensional case with the above Γα,Y (iκ) replaced by the three-
dimensional case given in Section 2.2.7 as

[Γα,Y ]Nj,j′=1 =
(
αj +

κ

4π

)
δjj′ − G̃k(yj − yj′), (4.7)

where G̃k(yj − yj′) can be written as

G̃k(x) =

{
0

exp(ik|x|)
4π|x|

x = 0

x 6= 0.
(4.8)

Since for k = iκ, κ > 0, this function is again strictly monotonous with
respect to |x| the proof proceeds as in the two-dimensional case.

4.2 Neumann bracketing

An alternative way how to address our problem is to use the so-called Neu-
mann bracketing. This approach can be used only in particular situations
but on the other hand, it gives results also in situations which are not cov-
ered by the results of the previous section. Specifically, we will be able to
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demonstrate monotonicity with respect to the distance between two clusters
of point interactions provided the system has a mirror symmetry. In the
same way we will demonstrate monotonicity also in some cases when some
distances increase and some decrease. First we will state an important lemma
for the proof of the following theorem.

Lemma 4.1 (Neumann bracketing). Let Ω1,Ω2 be disjoint subsets such that

Ω1 ∪ Ω2
int

= Ω, and Ω\Ω1 ∪ Ω2 has Lebesgue measure zero. Then

0 ≤ −∆Ω1∪Ω2
N ≤ −∆Ω

N . (4.9)

Proof : Can be found in [3, Section XIII.15]

For the proof of the following theorem a manifold of codimension one
is needed on which the ground state eigenfunction Ψ has vanishing normal
derivative

∂~nxΨ(x) = 0, (4.10)

where ∂~nx is the normal derivative to the manifold at the point x; it is clear
that the orientation we choose for it is not important. This condition can be
equivalently rewritten as

~nx · ∇Ψ(x) = 0, (4.11)

where · represents the scalar product. In general it may not be easy to es-
tablish the existence of such manifolds. It is straightforward, however, when
the system has a mirror symmetry and the said manifolds have a simple form
being lines in R2 and planes in R3 dividing the space into regions containing
at least one point interaction.

Lemma 4.2. Let Ψ be the ground state eigenfunction of the operator −∆α,Y

with even number of point interactions defined above for the dimension two.
Suppose that the operator −∆α,Y has reflection symmetry with respect to the
line l and Y ∩ l = ∅, i.e. −−−−−→yi yn/2+i⊥l, dist(yi, l) = dist(yn/2+i, l) 6= 0 and
αi = αn/2+i for i ∈ {1, . . . n/2}, n/2 ∈ N. Then for the points x ∈ l the
ground state function satisfies

∂−→nΨ(x) = 0, (4.12)

where −→n is normal vector of the line l.
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Proof. It can be seen that the ground state of the operator with certain sym-
metry will possess the same symmetry. This follows from the fact that the
eigenfunction for the operator with the reflection symmetry can be either
symmetric or antisymmetric with respect to this reflection symmetry. The
ground state function of the operator −∆α,Y is according to Theorem 2.16
strictly positive from which the ground state eigenfunction has to be sym-
metric. Without loss of generality we can translate and rotate our system in
such a way that the line l can be written as l = {(z, 0) | z ∈ R}. Now we
can write symmetry of the ground state function as

Ψ((x, y)) = Ψ((x,−y)). (4.13)

This implies that ∇Ψ((x, 0)) = (c, 0), c ∈ R which completes the proof.

Now we are ready to prove the theorem concerning our problem in two
dimensions.

Theorem 4.2. Let −∆α,Y1, −∆α,Y2 be the point interaction Hamiltonians
defined above for the dimension d = 2, where Yi = {y1,i, . . . , yN,i}. Suppose
that cardY1 = cardY2. Suppose further that the operator −∆α,Y1 satisfies
conditions of Lemma 4.2. Furthermore let Y2 be obtainable from Y1 by shifting

the points {yn/2+1,1, . . . , yn,1} in the direction of the vector
−→
X , i.e.:

yi,1 = yi,2

yi,1 = yi,2 +
−→
X

for

for

i ∈ {1, . . . , n
2
},

i ∈ {n
2

+ 1, . . . , n}.
(4.14)

The vector
−→
X fulfills −−−−−−−→yi,1 yn/2+i,1 ·

−→
X ≥ 0. Then the ground states of the

operators −∆α,Y1, −∆α,Y2 satisfies

minσp(−∆α,Y1) ≤ minσp(−∆α,Y2). (4.15)

Proof. We prove this theorem in two steps. First we will show its validity

for the case −−−−−−−→yi,1 yn/2+i,1 ·
−→
X > 0. In the second part of the proof we will work

with the case −−−−−−−→yi,1 yn/2+i,1 ·
−→
X = 0, i.e. shifting mirror image of the point

interactions along the direction of the line l.

We consider the operator −∆α,Y1 discussed above. We add the Neumann
condition at x ∈ l. According to Lemma 4.3 this line satisfies ~nx ·∇Ψ(x) = 0,
where Ψ(x) is the ground state function of the operator −∆α,Y1 . We denote
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the operator with the Neumann condition as −∆
(1)
α,Y1

on the line l. The

domain of −∆
(1)
α,Y1

is

D(−∆
(1)
α,Y1

) = {g ∈ D(−∆α,Y1) | −→nl · ∇g(x) = 0 ∀x ∈ l}. (4.16)

The ground state eigenfunctions for−∆α,Y1 and−∆
(1)
α,Y1

are the same, because
we chose l in such a way that the function of the ground state Ψ fulfills
Neumann condition at points of l. We note that the line l decomposes R2

into two separate regions. Next we write −∆
(1)
α,Y1

as a direct sum of 2 self-
adjoint operators

−∆
(1)
α,Y1

= −∆α̃1,Ỹ1,l
⊕−∆α̃2,Ỹ2,l

, (4.17)

where α̃1 = {α1, . . . , αn/2}, α̃2 = {αn/2+1, . . . , αn}, Ỹ1 = {y1,1, . . . yn/2,1} and

Ỹ2 = {yn/2+1,1, . . . yn,1}. The operators −∆α̃i,Ỹi,l
are defined on a half-plane

with Neumann boundary condition. Now we define the operator −∆
(2)
α,Y1

as

−∆
(2)
α,Y1

= −∆α̃1,Ỹ1,l
⊕−∆l̂

N ⊕−∆α̃2,Ỹ2,l
, (4.18)

where −∆l̂
N is Neumann Laplacian at the region of space l̂ which is obtained

as l̂ = {l + cX | c ∈ [0, 1]} (for the definition of the Neumann Laplacian
see [3, Section XIII.15]). The region l̂ is nonempty because we assume that
−−−−−−−→yi,1 yn/2+i,1 ·

−→
X > 0. Neumann Laplacian is a positive operator, in particular,

all its eigenvalues are positive. We are interested in the ground state of
−∆

(2)
α,Y1

. The discrete spectrum of −∆
(2)
α,Y1

is the union of discrete spectra of
the orthogonal sum components, i.e.

σp(−∆
(2)
α,Y1

) =
⋃
i∈2̂

σp(−∆α̃i,Ỹi,l
) ∪ σp(−∆l̂

N). (4.19)

The ground state of−∆
(2)
α,Y1

is negative (Theorem 2.16) which implies that the

ground state is not affected by −∆l̂
N because −∆l̂

N ≥ 0. Next we define the

operator −∆
(3)
α,Y1

which is obtained from the operator −∆
(2)
α,Y1

by removing the

Neumann conditions at the boundary of l̂. It can be easily seen that −∆
(3)
α,Y1

is equal to −∆α,Y2 . According to Lemma 4.1 we have −∆
(2)
α,Y1
≤ −∆

(3)
α,Y1

.

Also as we pointed out earlier −∆α,Y1 is unitarily equivalent to −∆
(1)
α,Y1

and

−∆
(3)
α,Y1

to ∆α,Y2 . In combination with minmax principle [3, Section XIII.1]
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we arrive at the inequality:

inf σ(−∆α,Y1) = inf σ(−∆
(1)
α,Y1

) ≤ inf σ(−∆
(2)
α,Y1

) ≤ inf σ(−∆
(3)
α,Y1
≡ −∆α,Y2).

(4.20)
From this we have inf σ(−∆α,Y1) ≤ inf σ(−∆α,Y2) which completes the proof

for the case −−−−−−−→yi,1 yn/2+i,1 ·
−→
X > 0.

The case −−−−−−−→yi,1 yn/2+i,1 ·
−→
X = 0 can be proven similarly as the previous case

−−−−−−−→yi,1 yn/2+i,1 ·
−→
X > 0 with the difference that we do not insert −∆l̂

N into the
operator

−∆
(1)
α,Y1

= −∆α̃1,Ỹ1,l
⊕−∆α̃2,Ỹ2,l

, (4.21)

but we shift points Ỹ2 in the direction of the
−→
X , apply Lemma 4.1 and

minmax principle [3, Section XIII.1] which completes the proof.

A claim analogous to Theorem 4.2 can be given for the operators in the
dimension three. We mention a counterpart of Lemma 4.2 in dimension three.

Lemma 4.3. Let Ψ be the ground state eigenfunction of the operator −∆α,Y

with even number of point interactions defined above for the dimension 3.
Suppose that the operator −∆α,Y has reflection symmetry with respect to the
plane p and Y1 ∩ l = ∅, i.e. −−−−−→yi yn/2+i⊥p, dist(yi,1, p) = dist(yn/2+i, p) 6= 0 and
αi = αn/2+i for i ∈ {1, . . . n/2}, n/2 ∈ N. Then for the points x ∈ p the
ground state function satisfies

∂−→nΨ(x) = 0, (4.22)

where −→n is normal vector of the plane p.

Proof. Proof of the lemma is analogous to the proof of Lemma 4.2 for the
dimension 2 so we omit the details.

Now we are ready to write down the statement for dimension three.

Theorem 4.3. Let −∆α,Y1, −∆α,Y2 be the point interaction Hamiltonians de-
fined above for the dimension d = 3, where Yi = {yi,1, . . . , yi,N} and cardY1 =
cardY2. Furthermore assume that the ground state for the both operators
−∆α,Y1 and −∆α,Y2 exists. Suppose that the operator −∆α,Y1 has reflection
symmetry with respect to the plane p and Y1 ∩ l = ∅, i.e. −−−−−−−→yi,1 yn/2+i,1⊥p,
dist(yi,1, p) = dist(yn/2+i,1, p) 6= 0 and αi = αn/2+i for i ∈ {1, . . . n/2},
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n/2 ∈ N. Furthermore let Y2 be obtainable from Y1 by shifting the points

{yn/2+1,1, . . . , yn,1} in the direction of the vector
−→
X , i.e.:

yi,1 = yi,2

yi,1 = yi,2 +
−→
X

for

for

i ∈ {1, . . . , n
2
},

i ∈ {n
2

+ 1, . . . , n},
(4.23)

where vector
−→
X fulfills −−−−−−−→yi,1 yn/2+i,1 ·

−→
X ≥ 0. Then the ground states of the

operators −∆α,Y1, −∆α,Y2 satisfies

minσp(−∆α,Y1) ≤ minσp(−∆α,Y2). (4.24)

Proof. Proof of the theorem can be made step by step as the proof of Theorem
4.2 so we omit the details.

It is worth noting that for the system with more than just one line or
plane of reflection symmetry we could generalize Theorems 4.2 or 4.3, e.g.
for the case of two lines or planes of symmetry we could shift four parts of the
space instead of two. Using such an approach we are able to treat situations
not covered by Theorems 4.2 or 4.3. We skip details because the formulation
and the proofs will be similar to the case of single reflection symmetry.

Remark 5. By means of Neumann bracketing, we can prove statement sim-
ilar to the Theorem 4.1 also for other operators −∆α,Y . For the systems with
rotational symmetry, i.e. all point interactions strengths are the same and
point interactions are placed on circle in such a way that the distance between
neighboring point interactions are the same. This system has a discrete ro-
tational symmetry around the center of the circle. For such systems we can
find the Neumann condition for the ground state eigenfunction to be satisfied
on the n-edged star. Such n-edged star separates the plane to n sectors each
one containing one point interactions. Moving these sectors apart from each
other cause increase of the ground state energy. We can use the similar proof
as the proof presented earlier for Theorem 4.2.

Remark 6. Another possible application of the Neumann bracketing would be
to compare operators described in the previous remark not with respect to the
distance between the point interactions but with respect to the number of the
point interactions. We consider operator −∆α,n,Y with n point interactions
and −∆α,m,Y with m point interactions. We can show that the ground state
of these operators satisfy

minσp(−∆α,n,Y ) ≤ minσp(−∆α,m,Y ) (4.25)
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for n ≤ m. This can be proven by means of Neumann bracketing as sketched
on the figure 4.1.

Figure 4.1: Alternative use of Neumann bracketing
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Chapter 5

Singular interactions with
compact support of
codimension one

In this chapter we focus our attention to properties of Hamiltonians which
can be written formally in the following form

Hµ,Γ = −∆− µ(x)δ(x− Γ), (5.1)

where −∆ is the kinetic energy operator on the appropriate Hilbert space
L2(Rd) where d = 2, 3, −µ(x) is the bounded negative function with the
compact support Γ and Γ is a manifold in Rd with the codimension 1.

At this point it is worth mentioning that for the case d = 1 the resolvent
written as in Lemma 2.1 gives the same result as the one which we obtained
by Krein’s formula for the point interactions on the line. This is the reason
why we will be interested only in the dimension 2 and 3. The proof which
we will give later in this chapter can be easily generalized to any dimen-
sion, which is the result of the fact that only properties which we need are
strict positivity of the ground state and monotonicity of the integral kernel
Giκ(x, y) of the free particle Hamiltonian H0 with respect to κ and to |x−y|.

We will be interested in the relation between the geometry of the singu-
lar interaction support Γ and the ground state energy. We will show that
an increase in distance between points of the Γ results in an increase of the
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ground state energy. We will show this using a variational argument analo-
gous to the one we used for point interactions in the previous chapter. For
the case that the system possesses reflection symmetry with respect to the
line or plane for the dimension 2 or 3, respectively, we are able to show the
property with help of Neumann bracketing.

In dimension 2 we will work with manifolds of the codimension one which
can be represented by graphs embedded in R2. These graphs have to satisfy
the conditions at the end of Section 2.3. For the purposes of this chapter
we introduce classes of equivalence on graphs Γ. We say that Γ1 and Γ2 are
from the same class of equivalence if they are related by shifting and rotat-
ing in R2. By this approach we also make the same curves with different
parametrization equivalent.

We introduce the natural parametrization by length of the curve and we
denote the curve in this parametrization as (γi)j ∈ C1 for j-th part of the
graph Γi. We say that the classes Γ1 and Γ2 equipped by the bounded Borel
measurable functions µ1 : Γ1 → R and µ2 : Γ2 → R are related if:
a) Γ1 is constructed from the same number of curves as Γ2,
b)
∫
R2(γ1)ivol1(dx) =

∫
R2(γ2)ivol1(dx) for all i,

c) µ1((γ1)j(x)) = µ2((γ2)j(x)),
d) card{(γ1)i(x) ∩ (γ1)j(y) | ∀x 6= y, i 6= j} = card{(γ2)i(x) ∩ (γ2)j(y) | ∀x 6=
y, i 6= j}.

For surfaces Γ in the R3 we introduce analogous classes of equivalence
and relations as for the curves in R2.

5.1 A variational approach

In this section we derive one theorem and two corollaries concerning the
ground state energy. The first option is as follows: the compact set Γ of
codimension 1 is a union of disjoint subsets, i.e. Γi ∩ Γj = ∅ for all i 6= j.
Shifting and rotating the parts of Γ in such a way that distances between
respective points of each pair of Γi and Γj increases results in increase of
the ground state energy. Second theorem will state that if we “squeeze” Γ
reducing distances between its points, it will result in decrease of the ground
state energy.
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Theorem 5.1. Let Hµ1,Γ1 and Hµ2,Γ2 be operators defined above for the di-
mension 2 or 3. Let µ1,Γ1 and µ2,Γ2 be related and for all i, j, x, y the
following relation is satisfied

|(γ1)i(x)− (γ1)j(y)| ≤ |(γ2)i(x)− (γ2)j(y)|. (5.2)

Then the ground states of Hµ1,Γ1 and Hµ2,Γ2 satisfy

minσp(Hµ1,Γ1) ≤ minσp(Hµ2,Γ2). (5.3)

Proof. Proof of this theorem will be analogous to one with Krein’s formula
with some small yet significant differences. The secular equation of the op-
erator Hµ,Γ is given in Lemma 2.1. To show properties of the ground state
we will use Birman Schwinger principle which states that −κ2 ∈ σ(Hµ,Γ) is
equal to the fact that the operator [I − µRΓ,Γ(iκ)] is not invertible which
means that 1 ∈ σ(µRΓ,Γ(iκ)), where

RΓ,Γ(iκ)h = Giκ ∗ hδ(x− Γ) δ(x− Γ)dx− a.e., (5.4)

where Giκ represents the resolvent kernel of the free particle. The integral
kernel of Giκ(x, x

′) can be written, depending on the dimension of the space,
as

Giκ(x, x
′) =

2

π
K0(κ|x− x′|), d = 2,

Giκ(x, x
′) =

exp(−κ|x− x′|)
4π | x− x′ |

, d = 3.
(5.5)

We are interested in the highest eigenvalue of µRΓ,Γ(iκ). This is a simple
result of the fact that the function µRΓ,Γ(iκ) is decreasing with respect to
κ which implies that the eigenvalues are also decreasing with respect to κ.
Because we are interested in the largest value of κ we need to look also at the
highest eigenvalue of µRΓ,Γ(iκ). The highest eigenvalue λ0(κ) of µRΓ,Γ(iκ)
can be written as follows

λ0(κ) = max
‖ψ‖=1

(ψ, µRΓ,Γ(iκ)ψ). (5.6)

The energy of the ground state −κ2 fulfills λ0(κ) = 1. Now we will show
that µRΓ,Γ(iκ) has strictly positive eigenfunction belonging to the eigenvalue
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1. Our operator µRΓ,Γ(iκ) is strictly positive and according to [3, Section
XIII.12] a bounded positivity preserving operator A ∈ L2(M,dσ) with the
eigenvalue ‖A‖ which is ergodic has ‖A‖ as a simple eigenvalue with strictly
positive eigenvector. The integral operator with strictly positive integral
kernel is ergodic. Now we can rewrite λ0 as

λ0(κ) = max
‖ψ‖=1,ψ>0

(ψ, µRΓ,Γ(iκ)ψ). (5.7)

We can easily establish, using the Green function monotonicity, that an in-
crease in κ results in an increase of the value (ψ, µRΓ,Γ(iκ)ψ) as long as ψ
is positive. Furthermore the expression (ψ, µRΓ,Γ(iκ)ψ) is monotonously in-
creasing with respect to |xi − xj|, where xi, xj ∈ Γ, xi 6= xj and ψ positive.
In other words the function λ0(κ) is monotonous with respect to both κ and
distances between points belonging to the manifold Γ of singular interactions
for the ground state eigenfunction which completes the proof.

As a consequence of the previous theorem we can derive the following
two corollaries. The first one describes the ground state energy for the case
that parts of Γ are moved with respect to each other. This case is similar to
the point interactions in the way that increase in distance between parts of
Γ results in increase of the ground state energy.

Corollary 5.1. Let Hµ1,Γ1 and Hµ2,Γ2 be operators defined above. µ1,Γ1 and
µ2,Γ2 are related in the following way:

|(γ1)i(x)− (γ1)j(y)| ≤ |(γ2)i(x)− (γ2)j(y)| where i 6= j,
|(γ1)i(x)− (γ1)i(y)| = |(γ2)i(x)− (γ2)i(y)| for all i.

(5.8)

Then the ground state of Hµ1,Γ1 and Hµ2,Γ2 satisfies

minσp(Hµ1,Γ1) ≤ minσp(Hµ2,Γ2). (5.9)

Proof. This is the direct consequence of the theorem 5.1.

For the second special case of Theorem 5.1 we will assume that Γ is
composed of one curve. We show that the crumpling up Γ results in the
decrease of the ground state energy, e.g. bending of the line segment results
in the decrease of the ground state energy. Analogous mechanism gives rise
to existence of the ground state for the case of bending a line as demonstrated
in [16].
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Corollary 5.2. Let Hµ1,Γ1 and Hµ2,Γ2 be operators defined above. Let µ1,Γ1

and µ2,Γ2 be related as

|γ1(x)− γ1(y)| ≤ |γ2(x)− γ2(y)| (5.10)

for all x, y. Then the ground states of Hµ1,Γ1 and Hµ2,Γ2 satisfy

minσp(Hµ1,Γ1) ≤ minσp(Hµ2,Γ2). (5.11)

Proof. This is the direct consequence of the theorem 5.1.

As an example of application of the previous corollary we can take in the
two dimensional space the following configurations: circle and a closed curve
obtained from the circle by reflecting smaller sector of the circle with respect
to the secant.

5.2 Neumann bracketing

In this section we will prove statements based on Neumann bracketing. This
approach will be quite similar to the one for the point interactions in the di-
mension 2 and 3. Similarly as for point interactions we will require additional
conditions on the system. We require the reflection symmetry with respect
to line or plane in the dimension 2 or 3 respectively. The main difference
between the results using singularity of the resolvent and Neumann brack-
eting are the assumptions of the theorems. When we want to employ the
singularity of the resolvent we have to increase or at least maintain distances
between all the points of the support of the singular interactions. For the
case of the Neumann bracketing we need symmetry of the system but as a
trade off we do not have to increase distance between all the points of the
support of the singular interactions but for certain cases some distances can
be even decreased.

First we write down two lemmas we will need later for the proofs of the
following theorems. These lemmas will be analogous to Lemmas 4.2 and 4.3
for the Neumann bracketing for the point interactions in dimension two and
three.
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Lemma 5.1. Let Ψ be the ground state eigenfunction of the operator Hµ,Γ

defined above for the dimension two. Suppose that the manifold Γ and func-
tion µ has reflection symmetry with respect to the line l and Γ∩ l = ∅. Then
the ground state function of the operator Hµ,Γ satisfies for x ∈ l

−→n · ∇Ψ(x) = 0, (5.12)

where −→n is normal vector of the line l and · represents the scalar product.

Proof. Proof of this lemma is based on the fact that the ground state pos-
sesses same kind of symmetry as the Hamiltonian. This follows from the
strict positivity of the ground state and the fact that the eigenfunction of
the operator with the reflection symmetry can be either symmetric or an-
tisymmetric with respect to the line of this symmetry. We transform the
Hamiltonian in such a way that the line l will coincide with the x axis of the
plane. From the symmetry of the ground state we obtain the following

Ψ((x, y)) = Ψ((x,−y)), (5.13)

where Ψ is the ground state eigenfunction. This implies that ∇Ψ((x, 0)) is
in the form (c, 0), c ∈ R which completes the proof.

The following lemma will be the analogy of the previous one for three
dimensions.

Lemma 5.2. Let Ψ be the ground state eigenfunction of the operator Hµ,Γ

defined above for the dimension three. Suppose that the operator Hµ,Γ has
reflection symmetry with respect to the plane p and Γ ∩ p = ∅. Then the
ground state function satisfies for x ∈ p

−→n · ∇Ψ(x) = 0, (5.14)

where −→n is normal vector of the plane p and · represents the scalar product.

Proof. Proof of this lemma is analogous to the proof of Lemma 5.1 so we
omit details.

Now we are ready to state the main result of this section. We will write it
down as two theorems, each corresponding to different dimension. We start
with the case for the dimension two.
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Theorem 5.2. Let Hµ1,Γ1 be the Hamiltonian defined above for the dimension
2 satisfying the assumptions of Lemma 5.1. Suppose that Γ1 = Γ1

1∪Γ2
1, where

Γ2
1 is the reflection image of the Γ1

1 with respect to the line l from Lemma
5.1. Let Γ2 be the manifold of the codimension one satisfying the following

Γ2 = Γ1
1 ∪ {x +

−→
T | x ∈ Γ2

1} where
−→
T ∈ R2 is the vector fulfilling for all

x ∈ Γ1
1, y ∈ Γ2

1: −→xy ·
−→
T ≥ 0 where y is reflection image of x with respect to l.

Furthermore assume that Γ1 equipped with µ1(x) and Γ2 equipped with µ2(x)
are related as mentioned at the beginning of this chapter. Then the ground
state energy of the operators Hµ1,Γ1 and Hµ2,Γ2 satisfy

minσp(Hµ1,Γ1) ≤ minσp(Hµ2,Γ2). (5.15)

Proof. Proof of this theorem is analogous to the proof of Theorem 4.2 so we
omit details.

Now we write down, in analogy of the previous, the theorem for the
dimension three.

Theorem 5.3. Let Γ1 be the manifold of codimension one in dimension
three satisfying reflection symmetry with respect to the plane p. Suppose
that µ1(x) satisfy same reflection symmetry as Γ1. Furthermore Γ1 can be
written as Γ1 = Γ1

1 ∪ Γ2
1, where Γ2

1 is reflection image of the Γ1
1 with respect

to the plane p. Suppose that µ1,Γ1 and µ2,Γ2 be related in the following way:

Γ2 = Γ1
1 ∪ {x +

−→
T | x ∈ Γ2

1} where
−→
T ∈ R3 is the vector fulfilling for all

x ∈ Γ1
1, y ∈ Γ2

1: −→xy ·
−→
T ≥ 0 where y is reflection image of x with respect to

the plane p. Then the ground state energy of the operators Hµ1,Γ1 and Hµ2,Γ2

satisfy
minσp(Hµ1,Γ1) ≤ minσp(Hµ2,Γ2). (5.16)

Proof. Proof of this theorem is analogous to the proof of Theorem 4.2 so we
omit the details.
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Chapter 6

One point interaction and the
regular potential

In this chapter we will work with Hamiltonians which can be formally written
in the following form:

H = −∆ + V (x) + αδ(y), (6.1)

where −∆ act as second derivative on L2(R), V (x) is a regular potential,
y ∈ R and α is the point interaction strength. For several cases of differ-
ent potentials V we will optimize the position of the point interaction with
respect to the potential. We will minimize the energy of the ground state
with respect to the position of the point interaction site. We will work with
the following types of potential: a rectangular potential well, a piecewise
linear potential, a monotonous potential and a mirror-symmetric confining
potential. One might expect that the minimum of energy will be obtained by
placing point interaction into the minimum of the potential. We will show
that this is true for a class of symmetric potentials and attractive point inter-
action. On the other hand for asymmetric potentials this statement may not
hold as we shall demonstrate on the example of a piecewise linear potential.

6.1 Rectangular potential well

In this section we will work with the Hamiltonian which can be written as

Hα,y = −∆− V χ(−a,a)(x), (6.2)

79



where V ∈ R+ and χ(−a,a) is characteristic function of the interval (−a, a).
The domain of our operator is D(Hα,y) = {ψ ∈ H2,2(R \ {y}) ∩ H2,1(R) |
αψ(y) = ψ′(y+)− ψ′(y−)}.

We want to obtain the spectral condition. First we construct the ground
state eigenfunction. We will find solutions in four separate regions, namely
(−∞,−a), (−a, y), (y, a) and (a,∞). We employ the following notation:

ψ(x) = ψ1(x) for x ∈ (−∞,−a),

ψ(x) = ψ2(x) for x ∈ (−a, y),

ψ(x) = ψ3(x) for x ∈ (y, a),

ψ(x) = ψ4(x) for x ∈ (a,∞).

(6.3)

We want our function to be from the domain of our operator. This means
that we have to employ boundary conditions at the points −a, a and y. The
conditions at the points −a, a require continuity of the function and its first
derivative. Condition at the point y will correspond to the point interaction
on the line, i.e. continuity of the function and finite jump in the derivative
of the function. These conditions can be written as follows:

ψ1(−a) = ψ2(−a), ψ′1(−a) = ψ′2(−a),

αψ2(y) = ψ′3(y+)− ψ′2(y−) = αψ3(y),

ψ3(a) = ψ4(a), ψ′3(a) = ψ′4(a).

(6.4)

Eigenvector equation Hα,yψi = Eψi on the indicated intervals can be solved
exactly. We obtain:

ψ1(x) = a exp(κx),
ψ2(x) = b exp(−kx) + c exp(kx),
ψ3(x) = d exp(−kx) + e exp(kx),

ψ4(x) = f exp(−κx),

(6.5)

where κ2 = −E and k2 = −E − V . Without loss of generality we can fix
the length of the rectangular potential well, because the result for another a
can be obtained by a rescaling with a simultaneous change of the values of
V and α. We choose a to be equal to 1, because it simplifies explicit form of
the conditions. Now using the conditions (6.4) we obtain spectral conditions
for the rectangular potential well, where a = 1 in the following form

α = k
B exp(ky)− A exp(−ky)− F (A exp(ky) +B exp(−ky))

A exp(−ky)−B exp(ky)
, (6.6)
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where A = k+κ
2k

exp(−κ+k), B = k−κ
2k

exp(−κ−k) and F = A exp(−ky)+B exp(ky)
A exp(ky)+B exp(−ky)

.
We can simplify the previous expression to the following form

α = k
B2 − A2

A2 +B2 + 2AB cosh(2ky)
. (6.7)

Now we plot the ground state energy with respect to the point inter-
action strength α and position of the point interaction obtained by solu-
tion of the spectral condition written above. The graph for the potential
V (x) = −5χ(−1,1)(x) can be seen on the figure 6.1. On this graph we can
notice several things. We see that the behavior of the ground state with
respect to the position of the point interaction changes for the value of the
point interaction strength α = 0, which corresponds to absence of the point
interaction. For attractive point interaction, α < 0, the optimal position is
at the center of the rectangular potential well and moving point interaction
towards the center results in a decrease of the ground state energy. For re-
pulsive point interaction, α > 0, the behavior is different. The ground state
energy decreases when the repulsive point interaction is shifted towards the
boundary of the rectangular potential well and then away from the rectan-
gular potential well. From this we can conclude that minimal energy for the
repulsive point interaction is obtained when the point interaction site goes to
±∞. On the graph we can also notice that for the higher states the previous
statements are no longer valid, e.g. the roles of attractive and repulsive point
interactions are interchanged for the behavior of the first excited state en-
ergy. The energy of the system without the point interaction, α = 0, equals
E ≈ −3.8525.

In figure 6.2 we can see the behavior of the ground state energy when we
move point interaction outside of the rectangular potential well. For the point
interaction strength α < −3.9256 the ground state energy goes to the value
E = −α2/4, when point interaction moves far away from potential well. This
value corresponds to the ground state energy of the point interaction without
rectangular potential well. For the point interaction strength α ≥ −3.9256
the energy goes in the limit to the ground state energy of the potential
rectangular well without point interaction. Similar behavior can be seen for
the first excited state with lower limit value of the ground state energy of
the rectangular potential well and higher limit value of first excited state of
the rectangular potential well.
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Figure 6.1: The ground state energy with respect to the point interaction
strength and point interaction position in the rectangular potential well
V (x) = −5χ(−1,1)(x)
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Figure 6.2: The ground state energy with respect to the point interaction
strength and point interaction position in the rectangular potential well
V (x) = −5χ(−1,1)(x)

83



6.2 Piecewise linear potential well

In this section we work with piecewise linear potential which can be written
in the following way

V (x) =

{
kx

lx

x ≥ 0

x < 0,
(6.8)

where k is a positive number and l a negative one. We are interested in the
ground state of the operator

Hα,y = −∆ + V (x),
D(Hα,y) = {ψ ∈ H2,2(R \ {y}) ∩H2,1(R) | αψ(y) = ψ′(y+)− ψ′(y−)}.

(6.9)
We will show that for the symmetric potential, i.e. |k| = |l| the optimal
position of the attractive point interaction is at the point y = 0. For the
asymmetric case this is no longer true. The optimal position for this case is
shifted in the direction away from the potential with steeper slope. Similarly
as for the rectangular potential well we will solve the eigenfunction prob-
lem separately at three intervals (−∞, y), (y, 0) and (0,∞) and then we will
connect these solutions by suitable boundary conditions at the points y and 0.

We will use the notation

ψ(x) = ψ1(x) for x ∈ (−∞, y),

ψ(x) = ψ2(x) for x ∈ (y, 0),

ψ(x) = ψ3(x) for x ∈ (0,∞).

(6.10)

The conditions which have to be satisfied at the points y, 0 are the following

αψ1(y) = ψ′2(y+)− ψ′1(y−) = αψ2(y),

ψ2(0) = ψ3(0), ψ′2(0) = ψ′3(0).
(6.11)

We are able to solve the eigenvector equation Hα,yψ = Eψ on the intervals
(−∞, y), (y, 0) and (0,∞) exactly:

ψ1(x) = aAi
(
−E+lx
|l|2/3

)
,

ψ2(x) = bAi
(
−E+lx
|l|2/3 ) + cBi(−E+lx

|l|2/3

)
,

ψ3(x) = Ai
(
−E+kx
|k|2/3

)
,

(6.12)
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where the symbols Ai and Bi denotes Airy functions which are two linearly
independent solutions of the equation y′′ − xy = 0, for more information
about them see [10]. With the help of the conditions (6.11) we can obtain
explicit forms of the constants a, b and c and the spectral condition. We will
work with the spectral condition given in (6.11) as the condition at the point
interaction site, i.e.

α =
ψ′2(y+)− ψ′1(y−)

ψ1(y)
. (6.13)

Similarly as for the case of the rectangular potential well we plot the ground
state energy with respect to α and position of the point interaction. On fig-
ure 6.3 we see the case k = −l = 10. This situation is symmetric and as we
mentioned before, the optimal position for the attractive point interaction is
at the center at the minimum of potential energy. When we move the attrac-
tive point interaction towards the center the ground state energy decreases.
On figure 6.4 we have an asymmetric case k = 10, l = −1 for which is no
longer true that minimal energy is obtained by placing the attractive point
interaction at the minimum of the potential.
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Figure 6.3: Ground state energy with respect to the point interaction
strength and point interaction position for the piecewise linear potential
k = −l = 10

86



Figure 6.4: Ground state energy with respect to the point interaction
strength and point interaction position for the piecewise linear potential
k = 10 and l = −1
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6.3 Monotonous Potential

As a warm-up for the next section with symmetric potential we start with a
monotonous potential and we show that the ground state energy goes down
when we move the attractive point interaction in the direction of the potential
decrease. We will work with the operator which can be written as follows

Hα,y = −∆ + V (x),
D(Hα,y) = {ψ ∈ H2,2(R \ {y}) ∩H2,1(R) | αψ(y) = ψ′(y+)− ψ′(y−)},

(6.14)
where the potential V is differentiable and satisfies dV

dx
(x) ≤ 0 for all x ∈ R.

The potential V (x) is quantum-mechanically complete which means that
the operator−∆+V (x) is essentially self-adjoint on C∞0 (0,∞). The condition
when the real valued continuous function V (x) is complete according to [4,
Theorem X.8] is the following:

V (x) ≥ −M(x), (6.15)

where M(x) is positive differentiable function satisfying∫ ∞
1

1√
M(x)

dx =∞,

M ′(x)

M(x)3/2
is bounded near ∞.

(6.16)

These conditions are for example satisfied for the potential which behaves as
c(−x)−β for x→ −∞, where c is constant and β ≤ 2.

For the proof of the following theorem we will need the Hellman-Feynman
theorem. This theorem states how the eigenvalues changes with respect to
the changes of the Hamiltonian depending on a parameter. For the non-
degenerate ground state energy it can be written as follows

dE(λ)

dλ
=

(
ψ(λ),

dH(λ)

dλ
ψ(λ)

)
, (6.17)

where ψ(λ) is the ground state eigenfunction of the operator H(λ). Now
we will state theorem which relates position of the point interaction and the
ground state energy.
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Theorem 6.1. Let Hα,y1 and Hα,y2 be the operators defined above with α < 0.
Then the ground state energy of the operators Hα,y1 and Hα,y2 satisfy

minσp(Hα,y1) ≤ minσp(Hα,y2), (6.18)

where y1 > y2. The inequality is sharp for the case that the expression dV
dx

(x)
is not equal to zero for all x.

Proof. We prove this theorem by means of the Hellman-Feynman theorem.
It is sufficient to prove this for the operator Hα,y+λ with general point y ∈ R
and infinitesimally small λ, i.e. we need to show that(

ψ,
dHα,y+λ

dλ
ψ

)
=

(
ψ,
dV (λ)

dλ
ψ

)
< 0, (6.19)

where ψ is the ground state of the operator Hα,y. If we write explicitly the
right hand side of previous relations we obtain(

ψ,
dV (λ)

dλ
ψ

)
=

∫
R

dV (x)

dx
|ψ(x)|2dx, (6.20)

where we put λ = 0. The expression on the right hand side is obviously
negative because it is integral from the product of positive function |ψ(x)|2
and negative one dV (x)

dx
which completes the proof.

We note that we can show analogous theorem for the dimension 2 and
3, where moving the point interaction in the direction of the decrease of the
potential would result in decrease of the ground state energy.

6.4 Mirror-symmetric confining potential

In this section we work with Hamiltonians which can be written as follows

Hα,y = −∆ + V (x),
D(Hα,y) = {ψ ∈ H2,2(R \ {y}) ∩H2,1(R) | αψ(y) = ψ′(y+)− ψ′(y−)},

(6.21)
where V (x) is a positive differentiable function with mirror symmetry with
respect to zero, i.e. V (x) = V (−x), fulfilling that V (x) is increasing for the
x ∈ [0,∞). Without loss of generality we will assume that V (0) = 0. We
will show that for this situation the optimal position of the attractive point
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interaction is at the minimum of the potential. We will need additional
condition concerning the value of the ground state energy E. It can be
written as E < 0. This condition can be satisfied if we choose the point
interaction strength |α| large enough.

The property mentioned above concerning the ground state energy can
be shown in a similar way as for the monotonous potential. First we will
state certain properties of the ground state we will need later.

Lemma 6.1. Let Hα,y be the operator defined above with α < 0. Furthermore
assume that E < 0, where E is the ground state energy. Then the ground
state function of the operator is strictly positive, convex with exactly one
maximum at the point interaction site y.

Proof. We will split the proof of this lemma into three parts. We will start
by proving the strict positivity of the ground state eigenfunction. Then we
show the convexity and then existence of one maximum.

Positivity of the ground state
We will show that the ground state function ψ does not possess any nodal
points, i.e. there is no point in x ∈ R for which is the eigenfunction equal
to zero, i.e. ψ(x) = 0. We construct the ground state by connecting so-
lutions ψ1 on the interval (−∞, y) and ψ2 on the interval (y,∞) by point
interaction boundary condition at y. These functions satisfy the equation
(−∆ + V (x))ψi(x) = Hiψi(x) = Eψi(x). We will show that these solutions
do not fulfill ψi(z) = 0 for any z ∈ R with the help of Neumann bracket-
ing. For the moment we assume that there exist such a point where ψ1(z)
is equal to zero. We introduce the operator HD,z

α,y which acts on functions on
the interval (−∞, y) as operator −∆ +V (x) and has at the point z Dirichlet
boundary condition. Because we chose the point z in such a way that the
eigenfunction ψ1 fulfills the Dirichlet condition at z. The operators H1 and
HD,z
α,y have the same eigenvalue belonging to function ψ1. Now according to

[3, Section XIII.15] taking the Dirichlet boundary condition away from the
operator HD,z

α,y results in decrease of the energy. From this we have that the
operator without Dirichlet condition which act as H1 has a lower or at least
the same eigenvalue with eigenvector without nodal point at point z. By
this approach we can show that the functions ψ1 and ψ2 has no nodal points
ψi(x) = 0. From the continuity condition at the point interaction site we
have that both ground state function ψ1 and ψ2 have the same sign. Fur-
thermore both these function do not change sign because they are not equal
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to zero anywhere on R from which we have that the function ψ can be either
strictly positive or negative which completes the proof.

Convexity of the ground state
The convexity of the ground state follows from the eigenvalue equation given
as (−∆ + V (x))ψ(x) = Eψ(x). This equation can be rewritten as

ψ′′(x) = (V (x)− E)ψ(x) > 0. (6.22)

The inequality follows from the strict positivity of the ground state and as-
sumption E < 0.

One maximum property
The property of the ground state having one maximum follows from the
convexity and square integrability of the ground state. The convex smooth
functions have a maximum at the endpoint of its domain. Our ground state
eigenfunction is smooth and convex on two intervals (−∞, y) and (y,∞).
At the point y these functions are connected by the conditions describing
point interaction, i.e. continuity of the function and finite jump in the first
derivative depending on the value of the function at this point. The ground
state eigenfunction is square integrable which implies that limx→±∞ ψ(x) = 0.
This and the positivity of the ground state eigenfunction implies that the
functions on the intervals (−∞, y) and (y,∞) has at the point y maximum
which completes the proof.

We will show that the ground state function ψ of the operator Hα,y sat-
isfying E < 0 and y < 0 fulfills: ψ(−x) > ψ(x) where x > 0.

Lemma 6.2. Let Hα,y be the operator defined above with α < 0 and y < 0.
Furthermore assume that the ground state energy is E < 0. Then the ground
state of the operator satisfies ψ(−x) > ψ(x) for all x ∈ (0,∞).

Proof. We will prove this statement in two steps for the intervals −x ∈ (y, 0)
and −x ∈ (−∞, y), where x ∈ R+.

We start with the interval −x ∈ (y, 0). In the previous lemma we have
established that the ground state eigenfunction ψ(x) has only one maximum.
From the square integrability we have limx→±∞ ψ(x) = 0. This along with
convexity implies that ψ(y) > ψ(y + c) where c ∈ R+ and completes the
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proof for the interval x ∈ (0,−y).

The property for the interval −x ∈ (−∞, y) can be proven in the following
way. The ground state eigenfunction ψ1(−x) at the interval −x ∈ (−∞, y)
satisfies (−∆ + V (−x) − E)ψ1(−x) = 0 and ground state function ψ2(x)
on the interval x ∈ (−y,∞) fulfills (−∆ + V (x) − E)ψ2(x) = 0. From the
mirror symmetry of the potential V (x) = V (−x) and strict positivity of the
ground state we have that ψ1(x) = cψ2(−x), where c ∈ R+. We have already
established that ψ(y) > ψ(−y) which implies that c > 1.

Now we are ready to prove the main theorem of this section concern-
ing optimization of the position of the point interaction with respect to the
ground state energy.

Theorem 6.2. Let Hα,y1 and Hα,y2 be the operators defined above with α < 0.
Assume that the ground state energy of both operators fulfill E < 0. Then
the ground state energy of the operators Hα,y1 and Hα,y2 satisfy

minσp(Hα,y1) < minσp(Hα,y2), (6.23)

where |y1| < |y2|.

Proof. We will employ Hellman-Feynman theorem presented in the previous
section. We will show that moving the point interaction towards the cen-
ter of the potential results in decrease of the energy. It can be seen that
it is sufficient to prove the theorem for y < 0. It is a result of the fact
that the symmetry of the problem implies σp(Hα,y) = σp(Hα,−y). We will
work with the class of the operators Hα,y+λ depending on the real parame-
ter λ ∈ (−∞,−y). We write down explicit form of the ground state energy
dependence on λ as

dE(λ)

dλ
=

(
ψ,
dV (λ)

dλ
ψ

)
, (6.24)

where ψ is the ground state eigenfunction of the operator Hα,y+λ. It is

sufficient to show the inequality dE(λ)
dλ

< 0 for λ = 0 and general point

y ∈ (−∞, 0). We rewrite relation dE(λ)
dλ

as(
ψ,
dV (λ)

dλ
ψ

)
=

∫
R

dV (x)

dx
|ψ(x)|2dx =

∫
R+

dV (x)

dx
(|ψ(x)|2 − |ψ(−x)|2)dx.

(6.25)
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We know that dV (x)
dx

> 0 and according to Lemma 6.2 we have ψ(x) < ψ(−x)
for x ∈ R+ which implies |ψ(x)|2 − |ψ(−x)|2 < 0 and this completes the
proof.
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Chapter 7

Conclusion

We have studied the relation between the ground state energy and geometry
of the point interactions sites for several systems. We have analyzed a gener-
alization of this problem to singular interactions supported by the manifold
of codimension one. We have studied one, two and three dimensional sys-
tems. We have shown that an increase in distance between the attractive
point interaction sites results in an increase in the ground state energy in
Rd, d = 1, 2, 3. For systems with more complex topology such as graphs the
situation can be more complicated. On graphs the property of the ground
state with respect to length of the edge depends on the type of the ground
state function on the edge. There is the possibility that an increase in length
of an edge can result in an decrease of the ground state energy or even to re-
main unchanged. The situation on graphs degenerate to the previous case in
cases of graphs without any branching. For several cases of one dimensional
systems with the potential and one point interaction we have minimized the
ground state energy with respect to the position of the point interaction.
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