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Part I

Basics of quantum computation and

information

1 Introduction

Quantum computation is a term for many growing branches of science, born in 1982 in publications of
Richard Feynman [1�3]. The main motivation why quantum computers are so thoroughly investigated,
both theoretically and experimentally, is the impact building a quantum computer is expected to have.
Impact on perhaps every �eld of science. In 1994 Peter Shor discovered the famous Shor's algorithm for
factorization of integers in polynomial time on quantum computers. It is exponentially more e�cient
algorithm then the best known classical algorithm - the general number �eld sieve. Shor's protocol is
a beautiful example of e�cient quantum computation that would forever change cryptography. The
possible bene�ts do not stop here. Let us mention the quantum encryption algorithms, originating
1984 in articles by Charles H. Bennett and Gilles Brassard [4]. More to the point we should call
these the quantum key distribution algorithms for secure production and sharing of a secret key that
can be used for encryption. From the nature of quantum mechanics it is impossible to eavesdrop
such a communication, the communicating parties should be able to detect it. These algorithms are
being brought to real life experiments in the present. Quantum key distribution has been presented
to work at 1Mbit/s over the distance of 20km of optical �ber. And even much longer distances up to
approximately 150km have been achieved by some research organizations. The progress in this �eld
went as far as to commercial companies getting involved in the development.

In 1996 Seth Lloyd has shown that any quantum computer could be used for e�cient simulation
of any quantum system, even for example DNA. The methods used nowadays for decrypting DNA
sequences and their e�ects require large computational power and many times rely on databases of
known sequences for comparison of the chemical constitution [5]. The quantum simulations would
uncover the e�ects much faster. The simulations might help with further miniaturization of micropro-
cessors. Today's companies are capable of producing microprocessors fabricated with characteristic
dimensions as low as 45nm. On this level of manipulation with matter quantum behavior is usually
considered disturbing, because it allows electrons to jump unpredictably.

The idea of quantum computation however beautiful would not su�ce without experimental im-
plementation. This thesis gives several examples of quantum computer candidates, which are being
investigated by di�erent teams. Let us mention the recent development in the trapped ions �eld, which
seems to have the biggest potential. Last year a 14 qubit system was presented [6] together with open-
system quantum simulator [7] and universal digital quantum simulation [8] all working with trapped
ions. An article about simulation of Ising model on hundreds of qubits under the label of trapped ions
has recently been published [9].

By one of the DiVincenzo criteria [10] an e�cient way of performing transfer of a quantum infor-
mation is needed for building a functioning quantum computer. It is a natural consequence of the
need to read, write and manipulate the information before, during and after the computation as well
as the need of di�erent parts of the quantum computer to communicate. For example we could design
a quantum processor that would be driven by states of registers similarly to how some operations are
performed on classical computers. Then the perfect state transfer (PST ) would be needed to bring
the information from the register to the computational unit. Quantum networks can be considered a
means of communication even between di�erent quantum computers. The problem of PST has been
�rst addressed in 2003 by Sougato Bose [11] and in 2004 by Georgios M. Nikolopoulos, David Petrosyan
and Peter Lambropoulos [12]. These two papers stimulated quite much activity in the �eld of perfect
state transfer [13�17].

We aim to present here the basics of quantum computation and in some detail describe the necessary
conditions on quantum systems to be considered suitable for quantum computation, then portray some
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of the quantum computer candidates to really give understanding of why PST is needed and how it
is incorporated into the process of quantum computation. Then we would like to present recent ideas
about engineering systems capable of PST and give a description of our original results concerning
PST on trapped ions and two dimensional arrangements of quantum networks, which have not been
investigated in the literature before.

1.1 Notation

We will use the standard Dirac notation and formulations of quantum mechanics introduced by Paul
Dirac and John von Neumann [18]. When we will be working with a quantum system, the Hilbert
space of all possible states will be denoted by H with vectors denoted by kets |ψ〉 ∈ H and corre-
sponding dual vectors denoted by bras 〈ψ| ∈ H ∗. A concrete Hilbert space will be always speci�ed
in corresponding section, it can be for example the space C2 for spin states or the L2 for the space of
wave functions.

One important fact to mention is the correspondence of a vector from H to an actual physical
state of the system in this notation. The vectors |ψ〉 and

α · |ψ〉 , α ∈ C, α 6= 0, (1.1)

are considered to describe the same physical state. Hence it is su�cient to consider only vectors
normalized to 1. We will always be using normalized vectors to represent a state, which simpli�es
notations for values of observables, mean values, di�erent probabilities etc.

If not mentioned otherwise, observables will always be associated with Hermitian operators on H
and denoted by capital Latin letters only. The only exception being the creation and annihilation
operators a†, a.

Throughout this work units with ~ = 1 are used for the sake of simplicity. That also means that
instead of using τ in time units we will rather be using a dimensionless quantity t ≡ τ/J, where J is
our time units.

1.2 Qubit

Quantum computation and information work with qubits, physical systems that serve as information
carriers in an analogue to classical bits in classical computation. In this subsection we will discuss
some similarities and di�erences between the two. In this work we refer to qubits as to abstract
mathematical concepts even though some physical realizations will be presented and discussed.

A qubit is a system that can likewise the classical bit be in two possible states (the Hilbert
(sub)space H = C2). The usual notation of the two states of bit is 0 and 1, we will denote the
corresponding qubit states by |0〉 and |1〉. The main and the most important di�erence between the
two is that qubits can be found not only in the two states, but in any linear combination or, in other
words, the superposition of the two

|ψ〉 = α |0〉+ β |1〉 , (1.2)

where α, β ∈ C. The set of the states |0〉 and |1〉 is called a computational basis and it has been chosen
so the vectors always form an orthonormal basis in a two-dimensional subspace of H . Because we
require the representatives of a state to be normalized, the following condition must be kept in mind

|α|2 + |β|2 = 1, (1.3)

which allows for some very nice visualizations of the qubit state and its global phase such as the Bloch
or Poincaré spheres [19].

Although there are phenomena from the world around us directly connected to it like the Brewster's
angle is connected to polarization of light, the superposition property is rather di�cult to grasp with
common human intuition only as it has some interesting consequences. For example if we repeatedly
measure a qubit in the state

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉 , (1.4)
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which is a coherent superposition, in half of the measurements it will be found in state |0〉 and the
the other half in state |1〉. This is sometimes described as qubit being simultaneously in both states.
In general the coe�cients do not have to be the same or real, then the absolute values squared give
probabilities of �nding the qubit in the respective state, which is part of the de�nitions of quantum
physics that we are using. Linear combinations of basis states of qubits and their properties could
be described in entire sections devoted to it, interested reader might want to consult for example
[19, 20] for detailed description of these properties and their impacts on quantum computation. It is
the linearity of quantum physics that allows quantum physicists to construct algorithms for quantum
computers that could be so e�cient.

Despite this strange behavior there is a wide variety of physical systems that can be considered
as qubit representatives, because they follow the two dimensional state space requirement and can be
manipulated in ways that allow for quantum computation. In the following sections we shall present
some examples of these i.e. photon states, nuclear spin states of trapped atoms, electronic spin states,
electronic states in quantum dots [6, 12, 19, 21�29].

Sometimes quantum computation can be performed on more dimensional objects than qubits, three
level systems are then called qutrits and general d dimensional objects qudits. We will, however, not
be using them either for computation or further discuss their properties.

2 Quantum computation

A quantum computer is a device that uses the coherence phenomena in quantum physics world to
perform calculations. The quantum computer designs harvest powers of qubits, entanglement and other
aspects of quantum world. It has been shown by Scott Aaronson [30] that the class of problems solvable
in polynomial time on quantum Turing machine, that is a quantum computer that can implement any
unitary transformation on its qubits, is larger to the class of problems solvable in exponential time on
classical computers. Larger in the sense that the class is equivalent to probabilistically polynomial time
class (PP) of problems, which contains the non-deterministic polynomial time (NP) class of problems.

The heart of quantum computation are quantum algorithms like the famous Shor's algorithm, which
are de�ned as sequences of unitary operations on qubits. This is why we will aim at presenting results
from the areas of unitary transformations and their actual realization on various physical systems when
giving an overview of quantum computer candidates.

David DiVincenzo from IBM has de�ned requirements on a physical system to be considered quan-
tum computer candidate [10]. According to his criteria the system must have these properties:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple �ducial state, such as |000 . . .〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit-speci�c measurement capability

6. The ability to interconvert stationary and �ying qubits

7. The ability faithfully to transmit �ying qubits between speci�ed locations

We shall discuss these in more detail in sections about the quantum computer candidates, both gen-
erally and then for each system individually. The universal set of quantum gates will have an entire
section devoted to it to really see which set of gates can be considered universal and why. In some more
recent publications these requirements are relaxed in some aspects, but the core remains the same.

The research presented in this thesis is focused on the sixth and seventh points of the DiVincenzo
requirements, namely the perfect state transfer. Nevertheless, we will present past results related
to almost all the DiVincenzo criteria as well to show how the state transfer �ts into the quantum
computation frame.
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2.1 Quantum gates

Let us compare the building block of classical logic operations with quantum ones. In this work we will
be using the quantum circuit model of a quantum computer [19]. The two main elements of the model
are quantum wires and quantum gates. The quantum wires and quantum gates are counterparts of
wires and logical circuits in classical computers. The main results in this thesis are related to quantum
wires and state transfer, but a quantum computer is more complex device and to understand its
operation we give a short overview of the computation methods as well.

The simplest logic we can talk about in a classical computer would be the logic involving only one
bit. The only non-trivial logical operation acting only on one bit is the NOT operation. It is given by
its truth table that does the 0 −→ 1, 1 −→ 0 transformation on bits. To perform a similar quantum
operation acting on states of qubit we need to de�ne how this operation acts on a superposition of
states as well (we only know how it should act on the basis states). Because we allow only unitary
operations, it must act linearly

NOT (α |0〉+ β |1〉) ≡ αNOT |0〉+ βNOT |1〉 , (2.1)

It is common to denote the quantum analogue of the NOT gate with the X letter for historical
reasons and it is common to write it in a form of the following matrix in the chosen basis

X =

(
0 1
1 0

)
, (2.2)

which is acting on the state
|ψ〉 = α |0〉+ β |1〉 , (2.3)

in vector notation written as

|ψ〉 =

(
α
β

)
. (2.4)

If you act with this matrix on this vector, it is easy to see that you get exactly the desired result,
namely

X

(
α
β

)
=

(
β
α

)
. (2.5)

This is an example of a quantum gate operation and we see that such quantum gates can be represented
by 2 × 2 matrices. We immediately see that compared to the classical case, where the only non
trivial logical operation that we need to consider is the NOT operation, here we can consider all the
2× 2 unitary matrices. The constraint of unitarity can be seen to be equivalent to the normalization
condition, because even the resulting state of a transformation has to follow the condition (1.3) on the
unit norm of the vector. Giving us general condition∣∣∣∣∣∣∣∣A( α

β

)∣∣∣∣∣∣∣∣2 = 1, where (2.6)

A =

(
a b
c d

)
; a, b, c, d ∈ C, (2.7)

A is the most general matrix 2× 2. This condition can be shown to be equivalent [19] to

A†A = I, (2.8)

where I is the identity matrix and A† is the adjoint matrix of A,

I ≡
(

1 0
0 1

)
. (2.9)
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The unitarity is the only constraint on the quantum gate operations we will ever require, when
talking about quantum gate, we will always refer to some unitary operation. The most often used one
qubit gates except the X gate are the Z gate

Z ≡
(

1 0
0 −1

)
, (2.10)

the Hadamard gate H

H ≡ 1√
2

(
1 1
1 −1

)
, (2.11)

the phase gate

S ≡
(

1 0
0 i

)
, (2.12)

and the π
8 gate

T ≡
(

1 0
0 ei

π
4

)
. (2.13)

One of the most important facts to mention about the unitary 2×2 matrices for computation purposes
is the following theorem [19]

Theorem 2.1. Arbitrary 2× 2 unitary matrix may be decomposed as

U = eiα

(
e−

iβ
2 0

0 e
iβ
2

)(
cos γ2 − sin γ

2
sin γ

2 cos γ2

)(
e−

iδ
2 0

0 e
iδ
2

)
, (2.14)

where α, β, γ, δ ∈ R.

Proof. Lets denote the Pauli matrices as

X ≡
(

0 1
1 0

)
, (2.15)

Y ≡
(

0 −i
i 0

)
, (2.16)

Z ≡
(

1 0
0 −1

)
, (2.17)

these matrices generate the SO(3) Lie group of rotations in a 3 dimensional real Euclidean space. Let
us denote the rotations generated through the exponentials of the Pauli matrices

Rx(θ) ≡ e−iθX2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, (2.18)

Ry(θ) ≡ e−iθ Y2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
,

Rz(θ) ≡ e−iθ
Z
2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

(
e−i

θ
2 0

0 ei
θ
2

)
.

these are easily calculated using the relation

exp (iAx) = cos (x) I + i sin (x)A, (2.19)

which is valid for x being an arbitrary real number and A a matrix such that

A2 = I, (2.20)
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Figure 2.1: C−NOT gate

which is satis�ed by all the Pauli matrices [19].
Since U is a unitary matrix, both the rows and columns have to be mutually orthonormal, from

this it follows that there exist
α, β, γ, δ ∈ R, (2.21)

such that

U =

(
ei(α−

β
2−

δ
2 ) cos

(
γ
2

)
−ei(α−

β
2 + δ

2 ) sin
(
γ
2

)
ei(α+ β

2−
δ
2 ) sin

(
γ
2

)
ei(α+ β

2 + δ
2 ) cos

(
γ
2

) )
. (2.22)

Using elementary matrix multiplication it is easy to see that this can be written as

U = eiαRz(β)Ry(γ)Rz(δ), (2.23)

which is the needed form.

The importance of this theorem is in showing how to perform only certain operations to be able to
perform any single qubit unitary operation on physical systems that we would like to use as a quantum
computer. It can also be shown that we do not need to perform these operations for arbitrary α, β, γ, δ,
but only a �nite set of operations that can be repeated is needed to have these with arbitrary precision
in all the parameters. We will comment this in the following section. The universality lets anyone
building a quantum computer know exactly which operations he needs to perform any transformation.

We would like to continue in this spirit even for more general cases, for example for two qubit gates
and see what is needed to perform any unitary operation on them (�nd a universal set of gates). For
example on classical bits one can perform AND, OR, XOR, NAND or NOR operations on two or more
bits and it is well known result [19] that you only need the NAND operation to construct arbitrary
function on bits. It is the so called universal gate, it is not a trivial property, for example XOR alone
or even XOR with NOT are not su�cient.

A very similar result for qubits in the sense of universality underlies the C−NOT operation -
the controlled NOT operation. Usually it is considered for a two qubit gate, but it could be easily
generalized to more than one qubit. For the sake of simplicity we will now focus on two qubits only (we
shall later see that there is no loss of generality here). One of these qubits is called the control/source
qubit while the other one the target qubit. The C−NOT operation quantum circuit is represented in
the �gure 2.1 (for an introduction to reading and writing quantum circuits consult the section 2.3).
The C−NOT is de�ned as follows: if the control qubit is in the state |0〉, the target qubit is left
untouched and if the control qubit is in the state |1〉, the X operation is applied on the second qubit.
In the basis of vectors |00〉 , |01〉 , |10〉 , |11〉 the C−NOT matrix reads

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.24)

which is easily seen to be unitary. The decomposition of any unitary matrix into UCN and the one
qubit unitaries will be discussed in the following section.
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2.2 Universality of Hadamard, C− NOT and π
8
gates

Let us focus on the possibility to decompose any unitary operation into the gates from the title, namely
the one qubit gates: Hadamard and π

8 gates and one two qubit gate, the C−NOT. We want to work
with any unitary matrix, not just 2 × 2 or 4 × 4 matrices. We will proceed in three steps. First we
discuss the relation of arbitrary unitary operators with domain D to operators acting non trivially
only on two dimensional subspaces of the domain D, then we will show that any unitary operator may
be expressed using only single qubit and the C−NOT gates. Finally we show how to approximate
with an arbitrary given precision any single qubit gate using the mentioned single qubit operators.

Let U be a unitary matrix acting on some d-dimensional Hilbert space. We will show that it is
possible to decompose the matrix into a product of unitary matrices that act non trivially only on a
two dimensional subspaces of the Hilbert space. We will call these matrices two-level system matrices
[29]. First let us consider a 3× 3 matrix (d = 3) of the form

U =

 a d g
b e h
c f j

 , (2.25)

where all the parameters are complex numbers. We will �nd U1, U2, U3 unitary two-level system
matrices such that they form together the decomposition:

U3U2U1U = I, (2.26)

⇒ U = U†1U
†
2U
†
3 . (2.27)

If b 6= 0, we choose

U1 =

 1 0 0
0 1 0
0 0 1

 = I, (2.28)

and if b = 0, we choose

U1 =
1√

|a|2 + |b|2

 a? b? 0
b −a 0
0 0 1

 , (2.29)

which in any case is a two level matrix (the .? is a complex conjugation). Next multiply the matrices
and rename the parameters to get

U1U =

 a′ d′ g′

0 e′ h′

c′ f ′ j′

 , (2.30)

now let us choose similarly U2 to get a zero in the bottom left. If c′ = 0, we choose

U2 =

 a′? 0 0
0 1 0
0 0 1

 , (2.31)

and for c′ 6= 0

U2 =
1√

|a′|2 + |c′|2

 a′? 0 c′?

0 1 0
c′ 0 −a′

 , (2.32)

after multiplication and re-scaling again we get

U2U1U =

 1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′

 , (2.33)
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however U,U1, U2 are all unitary so U2U1U is unitary as well and so

d′′ = g′′ = 0, (2.34)

if we now choose U3 to be

U3 =

 1 0 0
0 e′′? f ′′?

0 h′′? j′′?

 , (2.35)

we obtain the desired decomposition.
We can now use the process of induction to prove the same for any d; for arbitrary d we can

�nd U1, . . . Ud−1 such that Ud−1 . . . U1U has 1 in the top left and zeros in the �rst row and column
everywhere else by the process from above and consequently do the same for the d − 1 dimensional
bottom right block of this matrix and so on until we get the decomposition

U = V1 . . . Vk,

for some k, where Vi is a two level matrix for all i.
The procedure just presented gives the recipe for the decomposition of an arbitrary unitary oper-

ation on many qubits using only two-level system matrices. This decomposition may not be optimal
as the worst case scenario is that we will need 2n−1 (2n − 1) two-level system matrices. On the other
hand it might happen that we will only need d− 1 matrices.

Let us proceed to the second step. We want to show single qubit gates and C−NOT gate are
universal as mentioned earlier. Using the previous paragraphs to show that any unitary operation can
be decomposed into single qubit gates and C−NOT gates (universality) we now only need to show
how to decompose any two level unitary matrix into these.

In order to do this we �rst need to introduce the Gray code. Let s and t be binary numbers of the
same length n. A Gray code connecting s and t is a sequence g1, . . . , gk of binary numbers from s to t
where the two consequent binary numbers di�er only in one digit. For example for

s = 101001, (2.36)

t = 110011,

the Gray sequence would be

g1 = 101001, (2.37)

g2 = 101011,

g3 = 100011,

g4 = 110011.

Notice that k ≤ n+ 1 as that is the case when the two numbers are di�erent in all the digits.
Before we proceed show how to decompose, we need to stop at the Hilbert space we are now working

with. As we are working with n qubits, where each computational basis state is either |0〉 or |1〉. From
now on we will be using two possible notations of the overall state of the qubits. The �rst one is a
mere abbreviation of a long tensor product

|ψ1ψ2...ψn〉 ≡ |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉 , (2.38)

for example
|101〉 = |1〉 |0〉 |1〉 . (2.39)

The second notation uses only one qubit present in the state |1〉, lets say j-th qubit is in this state,
then the overall state will be denoted as

|ψ〉 = |j〉 , (2.40)
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and when all the qubits are in the |0〉 state, we will write

|ψ0〉 = |0〉 , (2.41)

as an overall state. Notice that this formalism can also be used outside of the n qubit case for our
general case with no confusion because our d-dimensional Hilbert space has an orthonormal basis of
d vectors and |i〉 can then be used to denote that the system is in a state of the i-th vector from the
aforementioned basis.

Let U be the two level matrix we want to decompose. Let the two vectors it involves non trivially
be the |s〉 and |t〉 from the computational basis. And let the g1, . . . gm be the Gray sequence of s and t
in binary. Also let Ũ be a contraction of U on the subspace spanned by |s〉 and |t〉. We can think of it
as of a one qubit operator. We will be using it in the form of the controlled Ũ operator. It works just
as the C−NOT operator but instead of applying NOT operator on the target qubit when the control
qubit is in |1〉 state, we apply the Ũ operator on the target.

Implementing the U operator now proceeds in the following steps. The �rst step is to swap the
state |g1〉 and |g2〉, remember - g's are binary numbers. Let g1 and g2 di�er at the i-th digit. The
swap can then be easily accomplished by a controlled bit �ip (C−NOT) using the qubits that are
in the same state in the sequences of g1 and g2 (they only di�er in one digit), this means that the
condition for applying the NOT operator is all the remaining qubits being in states corresponding to
the common sub sequence of g1 and g2. Next we swap |g2〉 and |g3〉. We continue until we perform
m− 2 operations and get

|g1〉 → |gm−1〉 , (2.42)

|g2〉 → |g1〉 ,
|g3〉 → |g2〉 ,

. . .

|gm−1〉 → |gm−2〉 ,

all the other states from computational basis are untouched by this transformation. The next step
involves the bit that is di�erent between gm−1 and gm (t). Let us say that they di�er at j-th position.
We perform a controlled Ũ operation with j-th qubit as the target and the condition being: all the
remaining qubits are in the state described by the common sub sequence of gm and gm−1. The
procedure is �nished by undoing the swap operations by performing them in reversed order, that is
swapping �rst |gm−1〉 with |gm−2〉 and so on.

The �nal step remaining is to show how to perform arbitrary one qubit operation using only
Hadamard and π

8 gates with arbitrary precision. It is obvious that using only these one cannot
perform any unitary operation exactly. However, how do we measure the precision of an operator
approximation? A good measure for many reasons [19] is the error function

E (U, V ) ≡ max
|ψ〉

(||(U − V ) |ψ〉||) , (2.43)

where U is the approximated operator, V is the operator we want to use to approximate U and the
maximum is over all the states from computational basis. It can be shown [19] that if this error is
small, errors in measurements will also be very small. This measure also has the nice chaining property,
it can be shown [19] that if we try to approximate a sequence of unitaries U1, . . . , Um by a sequence
V1, . . . , Vm then the error can be estimated by errors done by individual approximations

E (UmUm−1 . . . U1, VmVm−1 . . . V1) ≤
m∑
j=1

E (Uj , Vj) . (2.44)

We will show how to approximate any unitary U by sequences of the H Hadamard gates and the
T π

8 gate. Consider T and HTH operators, the T is up to a global phase rotation by π
4 around the
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ẑ axis and the HTH is a rotation by π
4 around the x̂ axis (this can be visualized easily on the Bloch

sphere). The composition of these operations gives

exp
(
−iπ

8
Z
)

exp
(
−iπ

8
X
)

= (2.45)

=
(

cos
π

8
I − i sin

π

8
Z
)(

cos
π

8
I − i sin

π

8
X
)

(2.46)

= cos2 π

8
I − i

[
cos

π

8
(X + Z) + sin

π

8
Y
]

sin
π

8
. (2.47)

This is a rotation around the axis along ~n =
(
cos π8 , sin

π
8 , cos π8

)
by an angle θ, where θ is de�ned by

the relation
cos

θ

2
= cos2 π

8
. (2.48)

It can be shown that θ is thus an irrational multiple of 2π [19]. We will denote this rotation by R~n(θ).
Note, we only needed the T and H gates to obtain it. This rotation can be used to approximate R~n(α)
to an arbitrary precision, lets say δ > 0 being the desired precision, with multiple iterations. Let N be
an integer greater than 2π

δ and θk ≡ (kθ) mod 2π (θk ∈ [0, 2π)). The pigeonhole principle now tells
us that there are distinct i and j integers smaller then N such that

|θi − θj | ≤
2π

N
< δ, (2.49)

where we can assume j > i. Since i 6= j and θ is an irrational multiple of 2π, the

θj−i ≡ |θi − θj | 6= 0. (2.50)

Therefore the sequence θl(j−i) �lls up the interval [0, 2π) and as we change l, the adjacent members of
this sequence are no more than δ apart. This almost proves the following theorem [19]

Theorem 2.2. For arbitrary ε > 0 there exists n such that E (R~n(α), R~n(θ)n) < ε
3 , where all the

symbols have been previously de�ned.

Proof. The proof follows easily from previous text and the fact that for arbitrary α and β it is true
that

E (R~n(α), R~n(α+ β)) =

∣∣∣∣1− exp

(
i
β

2

)∣∣∣∣ . (2.51)

How to approximate any unitary matrix? It is easily seen that

HR~n(α)H = R~m(α), (2.52)

where
~m =

(
cos

π

8
,− sin

π

8
, cos

π

8

)
. (2.53)

hence
E (R~m(α), R~m(θ)n) <

ε

3
, (2.54)

as well. From the theorem 2.1 it follows that arbitrary unitary may be written as

U = R~n(β)R~m(γ)R~n(δ), (2.55)

when neglecting irrelevant global phase. We arrive at the �nal theorem [19]

Theorem 2.3. For arbitrary ε > 0 there exist n1, n2, n3 ∈ N such that

E (U,R~n(θ)n1HR~n(θ)n2HR~n(θ)n3) < ε. (2.56)
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Figure 2.2: C−NOT gate

Figure 2.3: Controlled three qubit U gate

Proof. Follows easily from the chaining rule (2.44) if we put into it notes (2.54) and (2.55).

We see that we can approximate any unitary transformation on any number of qubits using only
the C−NOT gate, Hadamard gate and the π

8 gate. It is a very important result in relation to the point
(4) of the DiVincenzo requirements. Sometimes to this selection of operators the phase gate is added
for the purposes of error reduction as this sequence is as one can imagine not the best to implement
and this gate helps to improve it [19]. We do not want to present error reduction procedures here, so
we can neglect it. In any case we now know which operations we need to be able to perform on any
system we would like to consider a quantum computer candidate.

2.3 Quantum circuits

There are various ways how to represent a quantum circuit, we saw an example of this in �gure 2.1
where the C−NOT gate was depicted in form of a quantum circuit. The diagrams are supposed to be
read from left to right and each line from left to right represents a time evolution of a certain quantum
bit. If at the beginning of the line there is no state speci�ed, the qubit is assumed to be in the state
|0〉, which is usually chosen to be the ground state.

The vertical lines depict in�uences the qubits have on each other. These e�ects can have various
reasons behind them - a multi qubit unitary transformation of some sort. If the vertical lines connect
to the horizontal ones with a full black circle, it means �reading� or �usage� of the qubit without
in�uencing its state. The most general notation of a unitary transformation applied to some qubit is a
connection of lines into a square box with the transformation written inside. If there is a vertical line
connected to this box, it usually means it takes the connected qubit as an input, but does not in�uence
it compared to a situation when horizontal line enters the box. When the box takes the qubit from
the left, it is an input qubit but the transformation in�uences it. The most simple example of this
might be the C−NOT gate depicted with X gate, the NOT counterpart operator, as shown in the
�gure 2.2. This can easily be generalized to performing any controlled U gate even on many qubits as
in the �gure 2.3.

Some of the common gates are so frequent that symbols for the simplicity of the diagrams have
been introduced. The table of the most common symbols is the table 2.1.

The addition modulo 2 takes a state from the top qubit and if it is |0〉, it does nothing and if it is
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addition modulo 2 (C−NOT)

swap gate

classical bit

measurement

Table 2.1: Quantum circuit symbols

Figure 2.4: swap explicitly

in the state |1〉, it �ips the target qubit (horizontal line), it is the simplest notation for the C−NOT
gate.

The swap gate is a quantum circuit abbreviation for the circuit from the �gure 2.4. Indeed just by
writing down the circuit from this �gure one can see that it performs a swap operation

|a, b〉 → |a, a⊕ b〉
→ |a⊕ (a⊕ b) , a⊕ b〉 = |b, a⊕ b〉 (2.57)

→ |b, (a⊕ b)⊕ b〉 = |b, a〉 .

The classical bit means that at this time we can measure the qubit only either in the state |0〉 or in
the state |1〉 but not in their linear combination. As is common this is a result of a measurement
performed on the qubit, which is depicted on the symbol used for measurement.

Let us point out some important properties of these circuits resulting from quantum laws of physics.
For example two horizontal lines can never be joined together, in electronic circuits joining two hori-
zontal lines means performing OR operation on them (the so called FANIN gate), but this operation is
not unitary and so for us it is forbidden and we must never join two horizontal lines together. Another
property is that quantum circuits are not allowed to be cyclic, nowhere in any quantum circuit may be
feedback, reason for this is that the unitary operations in some physical systems correspond to a rather
instantaneous processes and we want to be general enough to have these systems in our thoughts. The
last remark we are going to make is that it is forbidden to split a line, in electronic circuits this is
called the FANOUT gate and what it does is making an exact copy of input bits to multiple output
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bits, but quantum mechanics forbids cloning (theorem 2.4) and so this operation is also forbidden (it
is not unitary as we will see in a moment).

Our favorite C−NOT circuit (�g. 2.1) can serve as a nice illustration of the no cloning theorem.
Firstly, what would we call �cloning�, intuitively for two qubits it would be a process where at the start
we would have one qubit in an arbitrary state |ψ〉 which we want to copy, we do not care about the
initial state of the second qubit, and at the end of cloning we want to have both qubits in the state |ψ〉.
Could the C−NOT circuit serve this purpose? Let us assume the target qubit is in its ground state
|0〉, which is not much of a restriction as we want to be able to prepare all the qubits in an arbitrary
state.

If we apply the C−NOT operation on two qubits, where the control qubit is in the general state
|ψ〉 = a |0〉+ b |1〉, we get

a |00〉+ b |10〉 →
C−NOT

a |00〉+ b |11〉 , (2.58)

which exactly acts as cloning when a = 0 or b = 0. But we see that it fails for any other linear
combination as

|ψ〉 |ψ〉 = a2 |00〉+ ab |01〉+ ab |10〉+ b2 |11〉 , (2.59)

also note that it in fact is true that the C−NOT would give the correct result for ab = 0. Let us now
formulate this more precise [29].

Theorem 2.4. There is no cloning of quantum states in the sense of a unitary transformation UC
acting in the following way

UC |ψ〉 |0〉 = |ψ〉 |ψ〉 , (2.60)

on two quantum systems with arbitrary initial state |ψ〉.

Proof. There are many ways of proving this theorem [19, 29]. We will show that the existence of such
a unitary transformation is in contradiction with the linearity of quantum physics from the reference
[19]. Let |ψ1〉 and |ψ2〉 be arbitrary possible states of the �rst system. When the UC acts on a linear
combination of these states, we get

UC(c |ψ1〉+ d |ψ2〉) |0〉 = c |ψ1〉 |ψ1〉+ d |ψ2〉 |ψ2〉 , (2.61)

where c,d ∈ C and |c|2 + |d|2 = 1,

while directly from the de�nition of UC

UC(c |ψ1〉+ d |ψ2〉) |0〉 = (c |ψ1〉+ d |ψ2〉)(c |ψ1〉+ d |ψ2〉) (2.62)

= c2 |ψ1ψ1〉+ cd |ψ1ψ2〉+ cd |ψ2ψ1〉+ d2 |ψ2ψ2〉 .

These two expressions are equal if and only if cd = 0, which does not hold for arbitrary c, d ∈ C and
therefore there is no such unitary transformation.

Let us now present another rather popular example of a quantum circuit. The quantum teleporta-
tion circuit is shown in the �gure 2.5. The idea behind teleportation of a state between say Alice and
Bob is to use the the Bell state of two systems (qubits) to communicate over an arbitrary distance.
We want Alice to send an arbitrary state |ψ〉 = a |0〉+ b |1〉 exactly to Bob, classically she might need
an in�nite amount of information because of the continuity of linear transformation. The coe�cients
in the linear combination might be irrational. We will need a classical communication to communicate
results of measurements.

Alice has two qubits, one in the state we want to communicate and the other one is in the Bell
state with the one qubit that Bob possesses, this is the particular order that we choose to use from
now on in the tensor products: Alice's secret qubit - 1 in the �gure, Alice's part of the Bell pair - 2 in
the �gure, Bob's part - 3 in the �gure. We can write the overall initial state of the circuit

|ψ0〉 =
1√
2

[a |0〉 (|00〉+ |11〉) + b |1〉 (|00〉+ |11〉)] . (2.63)
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Figure 2.5: Quantum teleportation circuit

00 I
01 X
10 Z
11 ZX

Table 2.2: Bob's transformations

As shown in the �gure 2.5, Alice �rst performs a C−NOT gate, where the qubit to be teleported
(teleportee) is the control qubit and the Alice's Bell qubit is the target. It results in

|ψ1〉 =
1√
2

[a |0〉 (|00〉+ |11〉) + b |1〉 (|10〉+ |01〉)] . (2.64)

Then the Hadamard gate is applied on the teleportee and one gets

|ψ2〉 =
1

2
[a (|0〉+ |1〉) (|00〉+ |11〉) + b (|0〉 − |1〉) (|10〉+ |01〉)] . (2.65)

This is the desired result. We can rewrite the expression to get

|ψ2〉 =
1

2
[|00〉 (a |0〉+ b |1〉) + |01〉 (a |1〉+ b |0〉)

+ |10〉 (a |0〉 − b |1〉) + |11〉 (a |1〉 − b |0〉)] . (2.66)

This state is almost what we wanted (we want the Bob's qubit to be in the teleportee's initial state
a |0〉 + b |1〉), now Alice only needs to perform measurement on her two qubits and communicate the
results to Bob, he will then apply transformations conditioned on the results of Alice. To see what gate
Bob needs to apply lets look at possible results of measurements and corresponding resulting states of
the Bob's qubit

00→|ψ3(00)〉 = a |0〉+ b |1〉 (2.67)

01→|ψ3(01)〉 = a |1〉+ b |0〉 (2.68)

10→|ψ3(10)〉 = a |0〉 − b |1〉 (2.69)

11→|ψ3(11)〉 = a |1〉 − b |0〉 . (2.70)

The transformations Bob needs to apply after receiving the results of Alice's measurements are shown
in the table 2.2. Notice how the order of ZX is reversed to the position in the diagram 2.5.

Teleportation does not contradict the �niteness of the speed by which information can propagate.
Classical communication is still needed for faithful reconstruction on Bob's side. Note also that it is
not in con�ict with the no cloning theorem as the teleportee is at the end in one of the basis states.
Quantum teleportation has many theoretical applications which are beyond the scope of this work,
but interested reader might �nd these in the references [19, 29].
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Part II

Quantum computer candidates

In Part I of this thesis we have introduced the basic ideas about quantum computers, and recollected
which are the required basic quantum operations. The present part of the thesis will be dedicated to
the discussion of physical systems which have the potential for realization of a quantum computer.
Some of these systems have already been experimentally demonstrated to posses much of the required
capabilities. We feel that it is important to present the latter results here also because the state
transfer is a problem of quantum computation and the formalism that we will present encapsulates
many of present ideas of quantum computer implementations.

Although we have presented above an idea of what is necessary for quantum computer to be able to
perform any unitary operation, we will pay detailed attention to the DiVincenzo criteria, a collection of
formal requirements that a quantum computer must ful�ll to be practical for any use. The importance
of these criteria is that real world generally places obstacles in the way of easily ful�lling all these
criteria at once. The very �rst criteria we will discuss is the addressability of every qubit (point 5
of DiVincenzo). It must be possible (the design has to give a way to do this) to write on qubits any
binary number and we need to be able to read (measure) the state of any one qubit at any time. The
reason behind this are algorithms that consider partial reading of the information at some point and
we are not allowed to disturb the rest of the system doing so as that would endanger any previous and
future computations.

The system under consideration should be well isolated from environmental e�ects and decoherence
for a time necessary to perform a calculation with reading the outputs (DiVincenzo point (3)). There
are many kinds of perturbations that in�uence the system. Usually the condition is given for the
number of cycles one can perform

NC =
Trelax

TC
, (2.71)

where Trelax is the characteristic time of decoherence (time after which the errors caused by the
environment outweigh the unitary time evolution of system), TC is the time of a typical calculation
we would like to perform. It is usual to consider systems for which NC ≥ 1 [29] quantum computer
candidates, although DiVincenzo proposes much more strict criteria.

To be able to perform any operation on qubits the qubits must be allowed to interact (we shall see
that once we try to present a way of implementing the elementary transformations). And we must be
able to control the interaction well. This condition is very restrictive of systems based on photons as
even though photons are excellent information carriers even over long times and distances, they tend to
interact mutually very weekly. Recently new results concerning quantum walks using optical circuits
have gone with NC as far as to 30 [31]. On the other side of the spectra sit electrons or electronic
states of ions, because electrons interact very strongly via the Coulombic interaction, but on the other
hand they su�er from the same e�ect from environmental �elds and are perturbed easily.

The last constraint on a real world quantum computer is scalability with respect to the number
of qubits (point 1). It might be possible to create a quantum computer consisting of two qubits,
but this system would hardly be of any computational use. So the researches are faced with the
obstacle of performing the manipulations with larger and larger numbers of qubits, one of the successful
experimental presentations of trapped ions went recently as far as to 14 qubits [6].

3 Quantum harmonic oscillator

3.1 Description of the system

Harmonic oscillators are the most common of the tools of a physicist. Many systems can, under
certain conditions, be approximated by classical or quantum harmonic oscillators. Multiple Harmonic
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oscillators are even used to model more complex systems. Classically we say that a harmonic oscillator
is any system under the in�uence of the potential well

V (x) =
1

2
mω2x2. (3.1)

This can be for example a mass on a spring, some oscillations of an electric circuit or just a particle
in external driving �eld. The total energy of this system is a sum of the potential energy and of the
kinetic term. The energy is passing from one component to other as the system moves.

When the oscillator is either cooled enough to exhibit quantum behavior or the harmonic oscillations
are used as a mere approximation, the most important characteristic of the quantum oscillator is that
the energy becomes quantized and can only take certain discrete values and in the case of the harmonic
oscillator, these values are equidistant, usually the di�erence between two consequent values is labeled
as

∆E = ω. (3.2)

An example of such a system are electromagnetic cavity �eld modes where each quantum of energy
represents one photon present in the system.

3.2 The Hamiltonian

The Hamiltonian of the classical harmonic oscillator reads (3.1)

H =
p2

2m
+

1

2
mω2x2, (3.3)

which is then used to write the quantum version just by replacing the position and momentum of the
particle by corresponding operators of the momentum and the position:

x = x· , (3.4)

p = −i ∂
∂x
. (3.5)

The time-less Schrödinger equation reads

1

2m

d2ψn (x)

dx2
+

1

2
mω2x2ψn (x) = Enψn (x) , (3.6)

with the conditions on the eigenfunctions

ψn (x) →
x→±∞

0, (3.7)
ˆ
|ψn|2 = 1. (3.8)

The explicit formulas for the eigenfunctions are not important now, we are more interested in the
algebraic structures of the solutions. The most important is the eigenenergies are equidistant. We can
de�ne the creation and annihilation operators as

a† ≡ 1√
2mω

(mωx− ip) , (3.9)

a ≡ 1√
2mω

(mωx+ ip) , (3.10)

using the position and momentum operators. The Hamiltonian can be expressed using these as

H = ω

(
a†a+

1

2

)
, (3.11)
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the factor ω
2 is often neglected as it only gives a change of global phase for the eigenfunctions which is

irrelevant. By direct computation we can show[
H, a†

]
= ωa†. (3.12)

Suppose now that there exists solution of (3.6) (from the theory of di�erential equations it follows that
there has to be one), let us refer to it as |ψ〉 for some energy E, using the commutation relation one
can show how the creation operator acts on the eigenfunction

Ha† |ψ〉 =
([
H, a†

]
+ a†H

)
|ψ〉 = (ω + E) a† |ψ〉 . (3.13)

This shows that if |ψ〉 is an eigenstate, then a† |ψ〉 is also an eigenstate with energy E+ω. By exactly
the same procedure it is possible to show that a |ψ〉 is an eigenstate with energy E − ω. It is this
property that gave the operators alternative names raising and lowering operators.

By a simple thought process one sees that

|ϕn〉 =
(
a†
)n |ψ〉 , (3.14)

are eigenstates with energies
En = E + nω, (3.15)

and there is in�nitely many of them for n ∈ N. Also since H is positively de�nite, there has to exist a
state |ψ0〉 for which

a |ψ0〉 = 0, (3.16)

this is the ground state of the harmonic oscillator. An abbreviation for writing the n-th state obtained
from the ground state is often used

|n〉 ≡
(
a†
)n |ψ0〉 . (3.17)

Using the property of the ground state it is bene�cial to realize following relations

H |n〉 =

(
n+

1

2

)
|n〉 , (3.18)

N |n〉 ≡ a†a |n〉 = n |n〉 , (3.19)

where we have de�ned the number of excitations operator N ,

a† |n〉 =
√
n+ 1 |n+ 1〉 , (3.20)

a |n〉 =
√
n |n− 1〉 . (3.21)

3.3 Application to quantum computation

We would now like to perform similar operations to those presented on qubits but only using a single
harmonic oscillator. A natural way of doing so is to create a 1− 1 mapping between at �rst two qubit
states and states |n〉 of the harmonic oscillator. We know the most important two qubit operation in
sense of universality is the C−NOT gate which on two qubits performs the transformation

|00〉 → |00〉 , (3.22)

|01〉 → |01〉 , (3.23)

|10〉 → |11〉 , (3.24)

|11〉 → |10〉 . (3.25)
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Lets choose the proposed mapping as

|00〉 → |0〉 , (3.26)

|01〉 → |2〉 , (3.27)

|10〉 → |4〉+ |1〉√
2

, (3.28)

|11〉 → |4〉 − |1〉√
2

. (3.29)

Now let us have the system at time t = 0 in a state spanned by these four vectors. And we let the
system evolve to a time t = π

ω . What happens to basis states |n〉? The Schrödinger equation

exp
(
−iπa†a

)
|n〉 = (−1)

n |n〉 , (3.30)

immediately gives us for the states involved in the computational basis that |0〉,|2〉 and |4〉 remain
unchanged (this should shed some light on the choice of the mapping) and the state |1〉 goes to − |1〉.
Directly we see that this in the computational basis is exactly the C−NOT gate. And we achieved it
only by the time evolution of the system!

In a general case we would need to have a mapping of n qubits to the states of harmonic oscillator.
The basis of such a state space would have 2n vectors. And the mapping could then be achieved using
the |0〉 , |1〉 , . . . , |2n〉 states in a very similar way to the one before. And performing arbitrary unitary
transformation would be done by matching the eigenvalues of the desired unitary transformation to
the eigenvalues of a†a operator exactly as before (if possible - the spectrum of arbitrary U does not
have to be known). Or one could compose it from the elementary transformations.

The obvious drawbacks of this construction are very high energy levels of the oscillator for even a
low number of qubits (two level systems), and we have not even considered any way of writing and
reading information from/onto qubits as the Hamiltonian of the Harmonic oscillator is very general.

4 Electromagnetic cavities

4.1 Description of the system

As mentioned before, excellent carriers of quantum information are photons and their internal polariza-
tion states. However, it is very di�cult to make photons interact directly, which is needed for quantum
computation. The qubits need to in�uence each other. For this purpose matter always has to come
in play as a mediator, in case of Cavity quantum electrodynamics (cavity QED) the inter-mediator of
the in�uence are atoms.

One of the obstacles when working with light is creating, maintaining and controlling single photon
states. The controlled interaction with matter can also be very di�cult to achieve. The situation
changes if we introduce the Fabry-Perot cavities, which enhance the interaction between the electro-
magnetic �eld and the atom.

Usually the Fabry-Perot cavity is created as two parallel metallic plates with a certain re�ection
coe�cient R and the light is introduced in as in the �gure 4.1. The result of such a setting is a
stationary electromagnetic �eld inside the cavity [19]. For the sake of simplicity we will consider only
one dimensional simpli�cation of the cavity that is an abscissa of the length L and think of the inside
of the cavity as of an empty space.

The �eld inside the cavity has to obey the Maxwell equations

∇× ~H = ε0
∂ ~E

∂t
, (4.1)

∇× ~E = − µ0
∂ ~H

∂t
, (4.2)
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Figure 4.1: Fabry-Perot cavity, the re�ections leading to the stationary electromagnetic �eld

with boundary conditions at the cavity surface

∇ · ~E = 0, (4.3)

∇ · ~H = 0. (4.4)

The set of equations leads directly to the wave equation(
∇2 − ε0µ0

∂2

∂t2

)
~E = 0, (4.5)

which is an equation of a wave propagating with the velocity

c =
1

√
ε0µ0

. (4.6)

With the aid of the boundary conditions we get only certain possible modes inside the cavity, each
mode can be occupied by photons.

The modes in the cavity have to obey the condition

2L = nλ, (4.7)

where λ is the wavelength and n ∈ N.
Consequently the wave numbers and frequencies of these modes are respectively

kn =
2π

λ
=
π

L
n, (4.8)

ωn = ckn =
πc

L
n. (4.9)

Now we can �ll the expressions with real-world numbers to see if we really separated the modes of the
light su�ciently. The distance between two consequent modes is

∆f =
∆ωn
2π

=
c

2L
, (4.10)
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which for L = 1cm gives frequency separation of 15GHz.
Partial solution of the wave equation corresponding to the mode n is

un (z) =

√
2

L
sin knz, (4.11)

which is already chosen to be normalized, because

L̂

0

un (z)um (z) dz = δnm. (4.12)

Because the modes can be separated so well, we are allowed to look always at one mode and drop
the indexes. To get a solution for electromagnetic �eld inside the cavity, we can write for the electric
�eld

Ex = E0q (t)u (z) , Ey (z) = 0, (4.13)

and to have a solution of (4.1) we choose

Hy (z) =

√
ε0

µ0
E0

·
q (t)

ω

√
2

L
cos kz. (4.14)

To get the energy, we integrate the expression

E =
1

2

L̂

0

(
ε0E

2
x (z) + µ0H

2
y (z)

)
dz = (4.15)

=
ε0E

2
0

ω2

(
1

2

·
q

2
(t) +

1

2
ω2q2 (t)

)
,

because these are the only non-zero contributions. The energy (4.15) is clearly the energy of a harmonic
oscillator from (3) except for the constant prefactor. We can now easily move to operators Q and P
and get exactly the harmonic oscillator Hamiltonian and we introduce the creation and annihilation
operators in the same way as in (3.9) and (3.10).

If we drop the constant terms in the Hamiltonian of the oscillator, we may write the Hamiltonian
for multiple modes as

H =
∑
k

ωka
†
kak, (4.16)

where the index k runs through all the modes and we need to add commutation relations for operators
of di�erent modes, [

ak, a
†
n

]
= δkn. (4.17)

And the overall quantum state is now

|ψ〉 = |n1, n1, . . .〉 , (4.18)

where ni is the number of photons in the i-th mode.

4.2 The Hamiltonian

As mentioned before, we would like the light in the cavity to interact with the matter or atoms in the
cavity to have an interaction between the photons. There are many models for this interaction and
choosing the right one is usually related to the frequency of the incident light as well as characteristics
of the matter (heavy or light particles etc.). One of the most common, and for the experiments we have
in mind suitable, is the Jaynes-Cummings model [19, 20]. For now we will assume in correspondence to
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common methods that the matter can be in certain discrete energy states, denoted as |i〉. For certain
frequencies (we show why in section 5.2) it is su�cient to consider only two processes, the photon
absorption

|j〉 → a |i〉 , (4.19)

where a is the annihilation operator of the electromagnetic �eld in the cavity and Ei > Ej , the
corresponding term in the Hamiltonian would be

Ha = a |i〉 〈j| . (4.20)

The second process is the release of a photon to the cavity, which is basically the reverse of the
absorption and the related term in the Hamiltonian is therefore

He = a† |j〉 〈i| = (a |i〉 〈j|)† . (4.21)

The Hamiltonian of the �eld, atom and the interaction can now be written as

H =
∑
k

ωka
†
kak +

∑
i

Ei |i〉 〈i|+
∑
k,i>j

gij

(
ak |i〉 〈j|+ a†k |j〉 〈i|

)
, (4.22)

where gij are usually referred to as coupling constants. In general these can be complex numbers, but
usually are considered real (just as we have them real, which can be seen from that the Hamiltonian
has to be Hermitian). In any case they describe the strengths of the absorption and emission processes
between di�erent energy levels of the atom.

In the proof of the theorem 2.1 we have de�ned the Pauli matrices. If we consider only two level
atom and a single mode of the �eld, which is a good approximation in many cases [29], we get the
famous Jaynes-Cummings Hamiltonian

H = ωa†a+
Ω

2
(1 + σ3) + g

(
aσ+ + a†σ−

)
, (4.23)

where

σ3 ≡ Z, (4.24)

σ± ≡ 1

2
(X ± iY ) , (4.25)

and Ω is just the energy of the excited state of the atom and the Pauli operators are acting on {|0〉 , |1〉},
two states of the atom.

In general we will write the overall state of �the �eld and the atom� in this particular order, for
example we could have a state |15, 1〉 that would refer to a state with 15 photons and an excited atom.
Using this notation we can now guess the solution of the system to be of the form

|ψn〉 = exp (−iωnt) (c0 |n, 0〉+ c1 |n− 1, 1〉) . (4.26)

c0 and c1 are to be determined from the Schrödinger equation

i
d

dt

(
c0
c1

)
=

(
0 g

√
n

g
√
n ∆

)(
c0
c1

)
, (4.27)

where
∆ = Ω− ω, (4.28)

is called detuning. Because the eigenvalues of this matrix are

λ± =
1

2
(∆± Ωn) , (4.29)
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with
Ω2
n = ∆2 + 4g2n, (4.30)

if we consider initial conditions equivalent to the atom being initially in its ground state

c0 (0) = 1, c1 (0) = 0, (4.31)

we can �nd the solutions of the Schrödinger equation to be

c0 (t) = exp

(
−i∆t

2

)(
cos

Ωnt

2
+ i

∆

Ωn
sin

Ωnt

2

)
, (4.32)

c1 (t) = −2ig
√
n

Ωn
exp

(
−i∆t

2

)
sin

Ωnt

2
. (4.33)

This enlightens the choice of Ωn, called the Rabi frequency (which is a little di�erent from the Rabi
frequency in semi-classical approach as we will see later, which is proportional to the �eld intensity),
which is as an e�ective frequency of the oscillations between the grounded and the excited state of the
atom. It is important that the total state space splits into blocks of di�erent n that are uncoupled.

Lets take a look on some special choices of time evolutions. If we choose time to be

Ωntπ = π, (4.34)

which is called the π-pulse, by substituting it into the equations for oscillations we get

c0 (tπ) −→
∆→0

0, (4.35)

c1 (tπ) −→
∆→0

−i. (4.36)

The limit ∆→ 0 means Ω ∼ ω, which signi�es the relation between the frequency of the electromagnetic
�eld and the energy di�erence between the excited and the ground state of the atom.

Another pulse that deserves our attention is the 2π-pulse, which refers to the choice of time

Ωnt2π = 2π. (4.37)

If we do the same limit, we get

c0 (t2π) →
∆→0

−1, (4.38)

c1 (t2π) = 0. (4.39)

This pulse has some di�erent properties from the π pulse. The �rst is that it up to phase restores the
initial state, if we want the initial state to be restored completely, we need a 4π-pulse. And the second
note comes from c1 (t2π) = 0, independently of ∆, which can be used for manipulation with the phase
in c0.

Note also that the time of the interaction is mode-dependent (it depends on the Rabi frequency),
therefore it was bene�cial for us to consider single mode only. If more modes are present and they
interact with the atoms, very fast dephasing becomes imminent [29].

4.3 Application to quantum computation

So far we have not discussed which states we will choose as the carriers of quantum information nor
have we talked about couplings between these states. For example we could couple the photonic states
by sending atoms through the cavities and use their electronic transitions. Overall there are two main
ideas as how to encode information and perform unitary transformations on them.
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Scheme I

The �rst scheme we will discuss involves a four level system (atom), where a ground state |0〉 is coupled
to a doublet state |1±〉 (state of a two level system), which is successively coupled to another singlet
state |2〉 through two modes of the electromagnetic �eld. The doublet state can be two Zeeman states
of an atom for l = 1 when neglecting the state with ml = 0. This can be done if we choose well
polarization of photons and the Zeeman states can be achieved with a weak magnetic �eld that leaves
the energy states more or less degenerate.

We make the choices of couplings for two modes in the cavity. We will denote the annihilation
operators of the two �elds by a± and b±, where the indexes apply to two polarizations of each mode.
And polarization state of the photons in the �elds will be our two qubits. The Hamiltonian that
describes this is

H = g (a+ |1+〉 〈0|+ a− |1−〉 〈0|+ b+ |2〉 〈1−|+ b− |2〉 〈1+|+ h.c.) . (4.40)

We want to be using polarization state of the two photons in the modes as our two qubits, let the
overall state of them be

|ψin〉 =
(
α+a

†
+ + α−a

†
−

)(
β+b

†
+ + β−b

†
−

)
|0〉 . (4.41)

And let us choose the encoding to be

a†+ |0〉 = |0〉a , (4.42)

a†− |0〉 = |1〉a , (4.43)

b†+ |0〉 = |0〉b , (4.44)

b†− |0〉 = |1〉b , (4.45)

where a and b are now used to mark the qubits.
We have to show how to perform a controlled operation on these. We are almost done as we only

need to apply a π-pulse (calculated for the lower transition i.e. Ω10t = π) to this system while choosing
the detunings so that for the lower transition

∆10 ∼ 0, (4.46)

and for the higher transition the detuning is

∆21 � g. (4.47)

This in the lower transition causes movement of the population from the a �eld to states |1±〉 pro-
portionally to the coe�cients α+ and α− as we discussed earlier. The choice of the detuning for the
higher transition causes the coe�cients c0 and c1 for this transition to be

c1 (t) ≈ O

(
g

∆21

)
∼ 0, (4.48)

c0 (t) ≈ exp

(
−i∆21t

2

)(
cos

Ω21t

2
+ i sin

Ω21t

2

)
(4.49)

= exp

(
i
Ω21 −∆21

2
t

)
.

intuitively we can image this as any population in the states |1±〉 in�uences immediately the b �eld in
the sense of changing the phases of states b†± |0〉. The phase of the lower state of the higher transition
is varying with the speed

Ω21 −∆21

2
∼ g2

∆21
, (4.50)
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which allows us to denote

Φ ≡ g2

∆21
t, (4.51)

the phase. Note that as we mentioned before, by choosing ∆21 properly, we can in�uence the change
in the phase. And so what happens after the π-pulse (time de�ned by the lower transition) with the
higher transition? We can illustrate that on the two qubit state.(

α+β+a
†
+b
†
+ + α+β−a

†
+b
†
− + α−β+a

†
−b
†
+ + α−β−a

†
−b
†
−

)
|0〉 (4.52)

→
π−pulse

α+β+b
†
+ |1+〉+ α+β−e

iΦb†− |1+〉+ α−β+e
iΦb†+ |1−〉+ α−β−b

†
− |1−〉

= α+

(
β+b

†
+ + eiΦβ−b

†
−

)
|1+〉+ α−

(
eiΦβ+b

†
+ + β−b

†
−

)
|1−〉 .

This shows us that the polarization of the photon in the b �eld is shifted by ±Φ depending directly on
the state of he photon in the �eld a. The process can be reversed with another π-pulse as we mentioned
before. Practical implementation has to overcome problems with choosing di�erent detunings for the
two �elds as well as problems with decoherence times, because we need a single photon to trigger
the π-pulse as well as reading polarization state of the photon has to be read afterwords. Still this
approach is better than encoding information into the presence of the photon in the �eld, because
detecting a single photon's existence is a di�cult task.

Scheme II

The second scheme we want to present here is very similar to the �rst one in that it involves two
photons, a and b - in the same mode (with the same detuning). This time we will be using a three
level system instead of the four level to couple them. Let us say that photon a couples the transition
|0〉 → |1〉 and photon b the higher transition |0〉 → |2〉. And we will encode the information into the
presence of the photons, which means, that |1〉a is photon is present and |0〉a stands for there is no
photon (ground state of the mode). We already mentioned that encoding information this way brings
its risks as the detection of a single photon is not a reliable task.

In analogy to the previous scheme the initial state of the two qubits is

|ψ〉in =
(
α0 + α1a

†) (β0 + β1b
†) |0〉 , (4.53)

and the described interaction can be written

HI = g (a |1〉 〈0|+ b |2〉 〈0|+ h.c.) . (4.54)

Now apply a 2π pulse. If there is no photon a present, we know what will happen with the state,
we will get (

β0 + β1b
†) |0〉 → (

β0 − β1b
†) |0〉 , (4.55)

similarly if the photon b is not present(
α0 + α1a

†) |0〉 → (
α0 − α1a

†) |0〉 . (4.56)

The situation is more complicated if both photons are present, but similarly to the �rst scheme, a
phase shift arises and in the basis {|00〉 , |01〉 , |10〉 , |11〉} the transformation is

U2π =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 eiΦ

 , (4.57)

which is an elementary logic operation similar to the C−NOT gate [19, 29]. Another issue of this
setup is that a single photon can cause only certain phase changes and not arbitrary ones.
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5 Trapped ions

Partly summarized in [32], we have spent time working in this area, which is therefore more familiar
to us than the other physical implementations of quantum computers. The theory below is a summary
of previous results, some original results concerning state transfer on trapped ions will be presented in
the sections about state transfer 8.

5.1 Description of the system

Almost every student when he �rst hears of the electromagnetic force and its properties thinks to
himself that somehow this could be used for levitation and controlling objects invisibly even over some
non-zero distances, it reminds him or her of magic. And as it turns out, it is possible to trap charged
particles using electromagnetic �elds in the Paul traps which is a name given to the experiments after
their designer, a German physicist Wolfgang Paul.

The �rst thought that comes to mind is using a static electric �eld of some sort to create a trap,
but we need to keep in mind the Earnshaw theorem (static con�gurations of charged particles cannot
be achieved by electrostatic interactions only), namely for the potential the theorem can be written

∇2V (r) = 0, (5.1)

which has to be valid in an empty space. Mathematically this condition forbids any extremes occurring
inside the area we are interested in, the only place an extreme might occur is at the edges, which would
not help us trap a charged particle in the area. Thus we have to consider time dependent �elds.

Let us write down the equation of motion for a charged particle in an oscillating electric �eld in
one dimension

mẍ = λx cos (ωt) , (5.2)

where m is the mass of the particle, x the position, λ is the amplitude of the oscillations and ω is the
frequency of the oscillations. Usually this does not make any trapping possible, but if we take ω � 1,
we can observe a separation of movement into two components, one being a slow motion and the other
one quickly varying term (the Kapitza method [33]). To see this, we need to put it as an ansatz into
the equation and verify it being a solution. Lets call the quickly varying term micromotion and denote
it by ξ (t), similarly the slow term will be called smooth and denoted X (t). We want to test the ansatz
of the combination of these two

x (t) = X (t) + ξ (t) , (5.3)

which put into the equation of motion gives

mẌ +mξ̈ = λX cosωt+ λξ cosωt. (5.4)

Expressing the descriptions of the components mathematically would be

ξ � X, (5.5)

ξ̈ � Ẍ. (5.6)

Now we perform a Taylor expansion of the (5.3) and compare the lowest order terms

mξ̈ = λX cosωt. (5.7)

The solution

ξ (t) = −λ
2X (t)

mω2
cosωt, (5.8)

can be inserted into the (5.4) to get the X (t) explicitly. The equation for the smooth part

mẌ = λξ cosωt = −λ
2X

mω2
cos2 ωt, (5.9)
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Figure 5.1: Electrode setup for Paul trapping potential

can be further worked with, because we expect the ω � 1. We replace the cos2 ωt with its time average
( 1

2 ) to get the equation of the harmonic oscillator after some relabeling

Ẍ = −Ω2X, (5.10)

Ω ≡ λ√
2mω

. (5.11)

Thus we now know how to achieve trapping that results in harmonic oscillations of the particle.
Now that we have shown a simple procedure on how to derive trapping, we can show the most

common potential used for trapping in the laboratories, which is

V (x, y, z) = V0

(
x2 + y2 − 2z2

)
cosωt. (5.12)

This potential conveys the trapping in all three directions. The electrode setup capable of creating
such a potential is in �gure 5.1. The potential barrier created by this setup is in order of couple of
electron volts and thus for many purposes quite stable (for cold ions this is a large barrier). The
frequencies of the oscillations of the ions in this trap vary from 100kHz to 10MHz and the driving �eld
is usually chosen to be in the order of 100MHz (which illustrates the di�erence of time scales of the
micromotion and the smooth motion).

It should be mentioned that the trapping can only be achieved for cooled ions and the process of
their cooling is not trivial, usually a sequence of cooling methods ought to be used. The �nal steps
are usually achieved by sideband cooling or some other very clever process.

When we introduce multiple ions into the trap, the fact that they are not neutral triggers Coulombic
interactions between them and strong repulsive forces. The potentials for trapping multiple ions are
usually fabricated so that the ions in the trap form a linear chain, that is, the �elds are chosen stronger
in the ~x and ~y directions while in the ~z direction the ions are allowed to oscillate. These trapping
potentials together with the mutual Coulombic repulsion ensure results like in the �gure 5.2, where
experimental results of ion trapping are presented.

It is not di�cult to show that the Coulombic forces result in collective modes of oscillation of the
ions [19], it is a similar process to the one used in the so called small oscillations, it is a result of Taylor
approximation of the overall potential and transformation into normal coordinates. The images of the
modes are very intuitive and are similar to those of particles joined by springs (joined oscillators). The
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Figure 5.2: Multiple ions in the trap, picture taken from [20, 29]
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Figure 5.3: Breathing mode

�rst excited mode that one can think of is the center of mass oscillation mode, where all the particles
oscillate with the same frequency Ω from left to right with the center of mass. Another mode of the
oscillations is the breathing mode, which is very similar to the one of the system of pendulums joined
by springs, see �gure 5.3. The frequency of this mode is Ω′ > Ω. These two modes are depicted in the
�gure 5.4. The pictures of the ions are taken from [20, 29], originally from the work of Rainer Blatt's
group in Innsbruck.

The collective motion is the basis of any quantum computation performed on trapped ions as it
can be coupled to the internal state of each ion and addressed individually using lasers. It is the
Coulombic repulsion that separates ions enough so that we are able to focus lasers on a single ion in
the chain. This approach is not the most e�cient one and there has been a slightly di�erent approach
developed [22�24, 27], which uses additional magnetic �eld applied to the trap which causes the ions
to be addressable each on a di�erent frequency of the radiation, which allows us to illuminate all the
ions in the trap and in�uence only one of them. Also the frequency of the lasers gets shifted towards
the microwave or the radio-frequency range, instead of optical lasers that need to be used in the setup
described above and are the most expensive and experimentally demanding part of the apparatus.

The collective oscillation is called the information bus, because if we approximate it by the ground
and �rst excited state of a harmonic oscillator, this can be used to encode one qubit, which can be
coupled to the internal states of the ions. The information that is to be used for calculation purposes
will be encoded on the internal states of the ions. We will be using ions with 1

2 spin. Consequently
each ion can either have a projection of the spin in the ẑ direction + 1

2 or − 1
2 . Let us call the + 1

2 state
|e〉 and the other one |g〉, which will together serve as our computational basis. In the next section we
will present past results [19, 20, 29] of how to use lasers and dipole interaction to couple the internal
state of the ions to the information bus and then how to use this for computational purposes.

5.2 The Hamiltonian

The description of the illumination of the ions (the ion-�eld interaction) starts with dipole interaction.
For a single ion in the trap the dipole interaction reads

HI = −~µ · ~B, (5.13)

where ~µ is the dipole moment proportional to the spin operator

~µ = µm~S, (5.14)

µm is the respective magneton and

~S =
1

2
~σ ≡

 X
Y
Z

 , (5.15)
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Figure 5.4: Modes of the ion chain, picture taken from [20, 29]
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the spin operator is a scaled Pauli vector.
The incident magnetic wave can be described by

~B = B1~x cos (kz − ωt+ ϕ) , (5.16)

B1 is the �eld strength, k being the momentum in the ~z direction and ω, ϕ are the frequency and the
phase of the �eld.

The dipole interaction does not su�ce as a description of the wheels behind the experiment, the
intuition for this is that the ion in the trap is trapped harmonically and the �eld that he sees is
dependent on its position. Let us denote the energy scale of the harmonic trapping of the ion by ωz.
The ion has been cooled enough so that its position becomes quantized, which allows us to write down
its position with the raising and lowering operators of a harmonic oscillator

z = z0

(
a† + a

)
. (5.17)

We expect the ion to be near its ground state so that the width of its oscillation is small compared to
the wavelength of the laser, correctly expressing this is saying that the Lamb-Dicke parameter

η ≡ kz0, (5.18)

is small. In this scenario on the contrast to (4.30) we de�ne the Rabi frequency

Ω ≡ µm
B1

2
. (5.19)

Because [19]

Sx =
S+ + S−

2
, (5.20)

where S± are atomic raising and lowering operators, we can rewrite the interaction Hamiltonian in the
following way

HI = −~µ ~B ≈
[

Ω

2

(
S+e

i(ϕ−ωt) + S−e
−i(ϕ−ωt)

)]
(5.21)

+

[
iηΩ

2

(
S+a+ S−a

† + S+a
† + S−a

) (
ei(ϕ−ωt) − e−i(ϕ−ωt)

)]
.

Where we see the di�erence in that the ion is oscillating, the �rst square bracket is the Jaynes-
Cummings interaction model that would su�ce if there were no oscillation, and the second bracket is
the coupling of the internal state of the ions and the harmonic oscillation state.

We can now use the free particle Hamiltonian

H0 = ω0Sz + ωza
†a, (5.22)

to transform into the interaction picture. In the interaction picture we use the operators

S+ (t) = S+e
iω0t S− (t) = S−e

−iω0t

a† (t) = a†eiωzt a (t) = ae−iωzt.
(5.23)

Based on the frequency of the incident light we can rewrite the Hamiltonian (5.21) as

H ′I =

{
iηΩ

2

(
S+a

†eiϕ − S−ae−iϕ
)

for ω = ω0 + ωz

iηΩ
2

(
S+ae

iϕ − S−a†e−iϕ
)

for ω = ω0 − ωz,
(5.24)

where we have dropped the non-dominant terms (the rotating wave approximation). It is bene�cial
for us to focus on the

ω = ω0 − ωz, (5.25)
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case from now on, which has �xed the laser frequency we want to be using. Now we will transform back
into the Schrödinger picture and express the atomic raising and lowering operators in the computational
basis

HI =
Ω

2

(
a |e〉 〈g|+ a† |g〉 〈e|

)
. (5.26)

Notice that the approximations yielded a self-adjoint operator, thus we have obtained an e�ective
unitary evolution , this is a non-trivial property as the lasers can easily bring energy into the system.

The complete Hamiltonian for the case ω = ω0 − ωz can therefore be written down

H = ωe |e〉 〈e|+ ωg |g〉 〈g|+ ωza
†a+

Ω

2

(
a |e〉 〈g|+ a† |g〉 〈e|

)
, (5.27)

where ωe and ωg respond to eigenenergies of ω0Sz and spin projections + 1
2 and −1

2 respectively.
The very last step of this section is to generalize the Hamiltonian to multiple ions in the trap. That

is easily achieved by replacing Ω → Ω√
N

and replacing the a† and a operators with operators that
act not on the oscillation level of the single ion, but on the information bus (the collective oscillation
mode). Note also that this approach does not consider any e�ect on the incident light and it turns out
that this is a very good approximation [19], because the light does not tend to become entangled with
the system it interacted with up to a very good degree.

5.3 Application to quantum computation

It can be shown [19] that by choosing appropriately the phase of the incident light and the duration of
the interaction it is possible to construct the elementary rotations from the theorem 2.1 for arbitrary
angles and in this way apply arbitrary single qubit unitary transformation.

In this section we will be illuminating only a single ion and therefore couple only its internal state
to the information bus, not the internal state of any other ion. This is why we need to focus only on
the single particle Hamiltonian. Lets call coupling the following part of the Hamiltonian

Σ ≡ a |e〉 〈g|+ a† |g〉 〈e| , (5.28)

when laser is pointed to our ion, this coupling generates the transformation

Uθ = exp (−iθΣ) , (5.29)

where θ stands for the phase of the electromagnetic �eld, the coupling strength (the Rabi frequency)
and the time - the length of the interaction.

We will be using a particular ordering of notations, where the last position in the tensor product
will always belong to the oscillation level, while the previous ones will be internal spin states of the
ions. It is important, the the energy level of the N + 1-th qubit will therefore be di�erent from the
remaining ones, that will come into play later.

From how the time evolution is de�ned in quantum mechanics, it is not di�cult to see

Uθ |g〉 |g〉 = |g〉 |g〉 , (5.30)

in literature you might see this state referred to as to |g, 0〉 [29] - we do not need this now, in any case
it is the ground state both in the internal spin state and the oscillation. We now need to prepare a
few tools, one of them being

Σ2 = aa† |e〉 〈e|+ aa† |g〉 〈g| , (5.31)

which we will let together with the coupling act on some of the the basis states

Σ2 |e〉 |g〉 = |e〉 |g〉 Σ |e〉 |g〉 = |g〉 |e〉
Σ2 |g〉 |e〉 = |g〉 |e〉 Σ |g〉 |e〉 = |e〉 |g〉 , (5.32)
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table that proves to be particularly useful when we expand the time evolution and group certain terms
in a following way

exp (−iθΣ) =

∞∑
k=0

(−iθ)k

k!
Σk (5.33)

=

∞∑
k=0

(−iθ)2k

(2k)!
Σ2k +

∞∑
k=0

(−iθ)2k+1

(2k + 1)!
Σ2k+1,

because we now can simplify all the expressions and just write

Uθ |g〉 |e〉 = cos θ |g〉 |e〉 − i sin θ |e〉 |g〉 , (5.34)

Uθ |e〉 |g〉 = cos θ |e〉 |g〉 − i sin θ |g〉 |e〉 . (5.35)

Special cases of this transformation are a π-pulse (2θ = π), which does

|g〉 |e〉 → −i |e〉 |g〉 , (5.36)

|e〉 |g〉 → −i |g〉 |e〉 , (5.37)

and a 2π-pulse, that acts

|g〉 |e〉 → − |g〉 |e〉 , (5.38)

|e〉 |g〉 → − |e〉 |g〉 . (5.39)

The generalization to N ions is very straightforward and similar to before, we only change Ω→ Ω√
N

and change the meaning of the harmonic raising and lowering operators (or equivalently the last part of
the tensor products is now the information bus). It is now possible to show how to perform a C−NOT
gate on two qubits [19, 20, 29] only with these operations and a single qubit phase shift operation, the
procedure is exactly the same as in the case of electromagnetic cavities, �nding a sequence of pulses
that performs it using the action on basis states. We shall be using these elementary operations later
in the sections about perfect state transfer 8.

6 Quantum dots

6.1 Description of the system

In this section we would like to present results in the �eld of quantum dots [19, 20, 29, 34]. Quantum
dots belong amongst solid state systems that have the potential to become a quantum computer one
day. The solid state systems have the advantage over the others in that in the end if there will exist a
commercially available quantum computer, it will have to be driven by today's computers and many
of the solid state designs rely on semiconductor physics and are already compatible with them.

It is the revolutionary ideas in the engineering precise up to nanometers that allowed for creation
of the quantum dots. It is sometimes possible to manipulate even molecules to the desired shape of the
product. The research of quantum dots has attracted attention from various �elds of science including
biology, chemistry, material science and physics [34]. The quantum dots are solid state systems that
restrict movement of charge carriers in all three directions and are of nanometer scale. Simultaneously
each dot can be driven by external control, for example by changing the voltage.

Sometimes are the quantum dots called arti�cial atoms, because the electrons trapped in them
exhibit very similar properties to those of atoms in nature. Example of these is discrete energy levels.
Further more, properties of quantum dots can be in�uenced in a wide range by external electromagnetic
�elds.

We will be focusing on semiconductor dots. These are usually de�ned to be a structure smaller than
1µm in every dimension. Typically these are fabricated in the size of 10−8 ∼ 10−7m. The trapping
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potential that limits motion of charge carriers is usually of the order of 0.1eV ∼ 1eV, which leads to
discrete energy level separations of electrons by meV. And the devices need to be cooled often below
1K temperature to operate.

From semiconductor dots the most promising seem to be the electrostatic quantum dots, which
are formed by multiple layers and source and drain electrodes placed as the bottom and top layer
respectively. This ensures the control, sometimes more electrodes are placed in the experiment to
ensure more precise control. Usually these setups have a cylindrical symmetry and two of the designs
are the most explored. The shape of an etched pillar and a layer sequence with a metal cap. The
number of dots corresponds to a number of layers present. The trapping potential is created both by
conduction band o�sets and the electrodes.

The potential is, although it cannot be measured, in some cases (for example the two shapes
mentioned) known from theoretical calculations by solving the Poisson equation for the entire dot
[34, 35]. And the results are that the potential can be parametrized either by a Gaussian function or
generally by an exponential function of the form

V = −V0 exp

[
−
( r
R

)p
− (
|z|
Z

)p
]
, (6.1)

where V0 > 0 is the depth of the well, r =
√
x2 + y2, p > 1 and R and Z are constants characterizing

the trapping in the lateral directions ~x, ~y and the vertical direction ~z respectively. For p = 2 it describes
the Gaussian potential and for p > 10 the shape of the well reminds a rectangle.

For quantum computation purposes can serve either spin states of the electrons or excitons inside
the quantum dots or charge properties of the dots. Exciton is a bound electron-hole system, which
gets created after the absorption of a photon with energy of the magnitude of the forbidden energy of
a semiconductor and it has a lifetime in microseconds, after which it recombines and emits a photon.

It seems that the most promising are the calculations based on the spin states of the electrons.
Because the spin states have su�ciently long decoherence times (Tdecoh ' 1µs) as well as relaxation
times. Also the spin states are easily manipulated with external magnetic �elds.

6.2 The Hamiltonian

Because we would like to present the C−NOT gate, let us now work with only two-electron system in
two coupled quantum dots, indexed by j = 1, 2. Let us assume that each dot involves di�erent energy
levels, that can be ensured for example by adding a magnetic �eld with non-zero gradient between the
two dots, which in�uences the Zeeman energy states. Let us also assume that the thickness and the
material of the layer separating the two dots allows them to be coupled.

We assume the Hamiltonian to be of the form

H = H1 +H2 +Hint, (6.2)

where Hj is the one particle Hamiltonian of an electron in magnetic �eld

Hj = ωjSz,j , (6.3)

Sz,j is the spin operator of the j-th particle we used before and ωj is related to the energy of the
Zeeman states.

The interaction part is
Hint = 4ΩSz,1Sz,2, (6.4)

the Ω is the coupling strength between the spins. And we choose our computational basis to be

Sz,1 |0, l〉 =
1

2
|0, l〉 , Sz,1 |1, l〉 = −1

2
|1, l〉 , (6.5)

where |k, l〉 are the two-spin states and k, l ∈ {0, 1} . And the same choice we make for the Sz,2 operator.
The setups are fabricated so that we can control the Ω, even switch it o�.
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We mentioned before, ω1 6= ω2. This allows us to drive the states of the electrons, because each
electron responds to interaction with a photon on di�erent frequency, therefore we do not have to focus
an electromagnetic �eld somehow on one electron, but we can enlighten them both and a�ect only
one of them. A photon on the frequency ω1 causes transitions |0, l〉 ↔ |1, l〉 either by the process of
absorption or by stimulated emission. The same is valid for the photon on the frequency ω2.

6.3 Application to quantum computation

Notice that we can only drive the ions with photons on the energy mentioned for Ω = 0, because after
switching the coupling on, the energies shift. To see this, let us �rst write the eigenstates and the
corresponding eigenenergies of the Hamiltonian (6.2) with Ω = 0:

ε1 = −1

2
(ω1 + ω2) : |1, 1〉 (6.6)

ε2 = −1

2
(ω1 − ω2) : |1, 0〉

ε3 = +
1

2
(ω1 − ω2) : |0, 1〉

ε4 = +
1

2
(ω1 + ω2) : |0, 0〉 ,

and second the eigenenergies for Ω 6= 0, notice that it so happens that the Hamiltonian has the same
eigenvectors:

ε1 + Ω : |1, 1〉 (6.7)

ε2 − Ω : |1, 0〉
ε3 − Ω : |0, 1〉
ε4 + Ω : |0, 0〉 ,

and it is this shift by ±Ω in the eigenenergies that allows quantum computation to take place.
Because we can apply pulse on frequency that selectively induces change in the state of one electron

depending on the state of the other. For example a pulse on the frequency

ω = ω2 − 2Ω, (6.8)

switches states |1, 0〉 ↔ |1, 1〉 and any other state is left untouched. If we write this in the computational
basis, we see it is exactly the C−NOT gate.

Note also that this is only one of the explored ways of implementing the quantum computation
on quantum dots. There are other methods based on measuring spin through charge, spontaneous
magnetization of dots, electron spin resonance and measurements of singlet-triplet splitting with the
help of a Faraday rotation [34].

This model of quantum dots and spin-spin interaction is rather simpli�ed, but from previous sections
we should have an intuition as to why it can be used. The description should enlighten basics of
quantum dot systems.
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Part III

State transfer

State transfer is a means for accomplishing points 6 and 7 of the DiVincenzo criteria for a functioning
quantum computer. Since there will always be need to store and share information, there will also be
the need to move it, whether it is from a large storage media or just as a means of communication.
As we know from the theorem 2.4 the cloning of quantum states is not allowed by the laws of nature,
thus we need to be looking for methods of transferring the state in accordance with this principle.

There are several ways of performing the transfer of a quantum state. In the literature, generally
two main groups of techniques are identi�ed. One group is based on the use of active, the other is
based on passive quantum wires. The lengthy de�nition can be found in the reference [15], in the
following we will limit ourselves to a detailed illustration of the two approaches. The di�erence is in
the amount of control one has to put into the information transfer. Active quantum wires require lots
of external control. Example of an active quantum wire can be a photon, on whose polarization state
we imprint one qubit, then let the photon travel to where it is needed through optical media and then
write the information onto the target qubit. The qubit that travels is usually called the �ying qubit.
In active quantum wires a �ying qubit implementation is usually chosen to be very stable and reliable
even long distances and long period of time. The weak point of it is the large amount of external
control, there is no reason why any physical system that can serve as a qubit would have to be able to
interact with the photon for example and transferring the information from the source qubit onto the
�ying one and back can be extremely di�cult to perform without errors. Sometimes active quantum
wires are de�ned as wires that for some time become decoupled from the systems they transfer the
information between.

Passive quantum wires are setups that require minimal or none external control, because for the
transfer the designs intend to use the quantum computer itself or at least fabricate the wire between
computer components from the same physical systems as the computer. This ensures very high com-
patibility with any quantum computer design. The other side of passive wires is that it is hard to
imagine building such a passive wire over very long distances. This approach is more suitable for
communication within the computer itself, over short distances, between registers. Passive quantum
wires have attracted large amount of attention over the past years [11�17, 21, 25, 26, 36�39]. Articles
have been written both about system-speci�c designs for state transfer as well as many general ideas
regarding for example spin networks have been published.

Recently the attention is shifting from theoretical perfect state transfer to problems of a real
world. As some protocols for state transfer are known, physicists are working on practical designs that
consider errors both from fabrication and running an imperfect quantum computer, that consider needs
to route the information to various places, transfer of multiple excitations or even create entangled
pairs of qubits using the passive wires.

State transfer is in its essence a unitary operation, because we only want to transfer information,
not destroy or create it. To show how to perform arbitrary unitary transformation is the �rst task
designers of quantum computer candidates face. Therefore it should be possible to perform the state
transfer on anything that can be considered a quantum computer candidate. Performing the unitary
transformation however does not always have to be passive, because typically this is done by series of
pulses, voltage modi�cations etc.

We are looking for ways to achieve the state transfer with the time evolution only, usually this is a
task of choosing proper couplings between the qubits. In the following sections we present an overview
of past work in the �eld, which is derivation of a rather general set of tools for state transfer, then we
show how to apply these tools on trapped ions quantum computer in section 8, this section contains
some original results, and �nally we present our recent results on quantum networks with bendings in
section IV.
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7 Perfect state transfer

7.1 Transfer of single excitation

Let us �rst present results [11�17, 21, 25, 26, 36�40]. First we need to de�ne what we mean under the
term PST. Let us consider a �nite network of n sites labeled

Sn = {1, 2, 3, . . . n} , (7.1)

where at each site sits a qubit and the qubits are mutually coupled, we do not specify how yet. Usually
the information to be transferred is encoded on the �rst k qubits,

|ψgen〉 = |ψ1, . . . , ψk, arbitrary state〉 , (7.2)

state transfer could be the unitary operation that performs

|ψgen〉 →
UPST

|arbitrary state, ψ1, . . . , ψk〉 . (7.3)

Would we know this transformation, performing transfer even to some subsets of nodes should be
possible, because we expect to have a complete control over the interactions of qubits and we could
redesign the network based on what we want to achieve. Of course in reality it does not have to be
possible to create the same couplings between nodes 1 and n as it would be between 1 and 2.

Following previous work we shall �rst focus on a transfer of single excitation and later use the
knowledge for multiple excitations. Transfer of a single excitation is in many cases enough for a
transfer of multiple excitations, because we can just perform the procedure multiple times (but we are
neglecting the possibility of the excitations themselves to interact). We want to focus on a general
network without mentioning if we have any physical implementation in mind and see what are the
restrictions for the couplings between the qubits.

We shall restrict the condition (7.3) and the state of the network somewhat now. We will restrict
our studies to energy (or number of excitations) conserving Hamiltonians. We assume |0〉 state is
chosen the ground state of every qubit. Thus we need to focus only on transfer of the state |1〉,
because if we can faithfully transfer it, we can transfer any linear combination of the two. Moreover
at the time t = 0 we assume our network to be in the state

|ψ0〉 = |1〉 |0〉 . . . |0〉 = |1〉 , (7.4)

where on the right hand side of the expression we used the notation, where |j〉 stands for the state with
excitation present at the j-th site introduced earlier. Because, as mentioned above, we are interested
in energy conserving Hamiltonians only, we will from now on work in a single excitation subspace of
the general state space, the set

S = {|j〉 | j = 1, . . . n} , (7.5)

can be used to form the computational basis. The di�erence between the equation (7.3) and this is
that we want the remaining sites to be in ground states. This should not be a problem, because we are
expecting to have a control over the individual states of qubits. We de�ne state transfer as a unitary
transformation expressed in the computational basis as a permutation

P =


0
... P̃
0
1 0 . . . 0

 , (7.6)

where P̃ is a permutation matrix. This is more restrictive than (7.3), because we are explicitly de�ning
how the transformation should act on the qubits that do not contain any information.
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The idea of passive wires is to look for Hamiltonians that after a well de�ned time t lead to the
permutation through the time evolution of quantum mechanics. That is with no external control in the
process. We want to prepare the network and let it transfer the excitation by itself, the fundamental
equation we will attempt to solve is

U (t) = eiHt = P, (7.7)

where the unknowns are the Hamiltonian and the time t. It has proven useful to divide the process of
solving for one-cycle permutations and many-cycle permutations.

One-cycle permutations

From all the one-cycle permutations of the form (7.6) we only need to consider one, namely

P =


0 1 0
...

. . .
0 0 1
1 0 . . . 0

 , (7.8)

because we can get all the other (n− 2)! − 1 permutations from this one just by relabeling the sites
{2, . . . n− 1}. Let us now present the whole class CH of Hamiltonians that give the result (7.7) [15].
It is straightforward to �nd the eigenvalues of the permutation (7.8)

σ =

{
λj | λj = exp

(
i2π

j

n

)
, j = 0, 1, . . . , n− 1

}
, (7.9)

with the corresponding eigenvectors, expressed in the computational basis,∣∣yλj〉 =
1√
n

∑
α∈Sn

λα−1
j |α〉 =

1√
n

(
1, λ1

j , λ
2
j , . . . , λ

n−1
j

)
, (7.10)

and use these to write the spectral decomposition of the permutation (7.8)

P =
∑
λj∈σ

λj |λj〉 〈λj | . (7.11)

Because it is true for �nite dimensional matrices - from de�nition of matrix exponential - that if
matrix A is in its diagonal basis of the form

A =

 λ1

. . .
λn

 , (7.12)

then the exponential expressed in the same basis is

expA =

 eλ1

. . .
eλn

 , (7.13)

we can directly construct the �rst Hamiltonian, solution of (7.7)

H =
1

t

∑
λj∈σ

arg (λj) |λj〉 〈λj | , (7.14)
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where arg (λj) is the complex phase of λj . To get the whole class of Hamiltonians from this one, we
can use the periodicity of exp (iϕ) and shift each eigenenergy by an arbitrary multiple of 2π. Members
of the class then can be expressed to be

H~l =
1

t
H +

1

t

∑
λj∈σ

2πlλj
t

∣∣yλj〉 〈yλj ∣∣ =
1

t

∑
λj∈σ

[
arg (λj) + 2πlλj

] ∣∣yλj〉 〈yλj ∣∣ , (7.15)

where ~l ∈ Zn. And the class is
CH =

{
H~l | ~l ∈ Zn

}
. (7.16)

To get a grip on which Hamiltonians we have found, let us rewrite the Hamiltonian and denote

H~E =
∑
λj∈σ

ελj
∣∣yλj〉 〈λj | = ∑

λj∈σ

ελjΠλj , (7.17)

where Πλj is a projector onto the subspace spanned by the eigenvectors of λj and

ελj =
arg (λj) + 2πlλj

t
∈ R, (7.18)

is a di�erent parametrization of the class by the real energy vector. Now it is easy to express the
Hamiltonian in the computational basis

H~E =
∑

α,β∈Sn

∑
λj∈σ

ελjλ
α−β
j |α〉 〈β| , (7.19)

and divide it into two parts
H~E = H0

~E
+ ν~E . (7.20)

H0
~E
is the diagonal part

H~E =
∑
α∈Sn

Eα |α〉 〈α| , (7.21)

and
ν~E =

∑
α 6=β∈Sn

G (α, β) |α〉 〈β| , (7.22)

is the interaction part. The coe�cients are de�ned as Eα =
∑
λj∈σ ελj and G (α, β) =

∑
λj∈σ ελjλ

α−β
j .

From how the coe�cients are de�ned it is possible to see a very important fact, the sites involved in
the same cycle (or one-cycle permutation) must have the same energy levels!

Let us also mention the theorem from reference [15]

Theorem 7.1. For networks of arbitrary dimension (n > 2), there exists no nearest-neighbor-interaction
Hamiltonian satisfying condition (7.7) in the framework of permutation (7.8).

Proof. The proof has been published in [15], where interested reader can �nd it.

Many-cycle permutations

We want to use the tools of previous section for dealing with many-cycle permutations. Each such a
permutation can be decomposed into disjoint sub-cycles that involve a subset of nodes instead of all
of them. We can treat each sub-cycle as if it were a one-cycle permutation from the previous section
7.1 and then compose the results. Let us consider a cycle of length d < n. The subset of nodes it acts
on we will denote Sd ⊂ Sn.

This cycle will have exactly the same eigenvalues as before, explicitly

σd =

{
λj | λj = exp

(
2πi

j

d

)
, j = 0, 1, . . . d− 1

}
, (7.23)
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and the the corresponding eigenvectors projected onto the computational basis vectors are

〈
α
∣∣∣ v(k)
λj

〉
=

{
λα−1
j√
d

for α ∈ Sd
0 otherwise

. (7.24)

From the expression of the spectrum we can clearly see that the spectrum of a many-cycle permuta-
tion is always degenerate as at least the λ0 is present as many times as we have cycles. The degeneracy
of the eigenvalue λj we will denote δλj and the subspace spanned by eigenvectors belonging to λj -
Eλj . It follows from the Gram-Schmidt orthonormalization process that we can choose an orthonormal

basis in every subspace Eλj , lets call the vectors
{∣∣∣y(k)

λj

〉}
. Since these vectors are linear combinations

of eigenvectors belonging to λj , they are also eigenvectors belonging to λj . And again, we can shift
each eigenenergy of the Hamiltonian by 2π, but this time we can do it for every vector from the bases
for every eigenvalue, resulting in a wider class of Hamiltonians

H~l =
1

τ

∑
λj

δλj∑
k=1

[
arg(λj) + 2πl

(k)
λj

] ∣∣∣y(k)
λj

〉〈
y

(k)
λj

∣∣∣ (7.25)

=
1

τ

∑
λj

δλj∑
k=1

ε
(k)
λj

∣∣∣y(k)
λj

〉〈
y

(k)
λj

∣∣∣ ,
for ~l ∈ Zn ≡

{
(l

(1)
λ0
, . . . , l

(δλ0 )

λ0
; l

(1)
λ1
, . . . , l

(δλ1 )

λ1
; . . .) | l

(δλj )

λj
∈ Z

}
.

7.2 Transfer of multiple excitations

Extension to the previous research has been published [17] in that it allows for transfer of multiple
excitations. The core di�erence between the two is that if we consider multiple indistinguishable
excitations, we can introduce interactions between the excitations themselves, which can be on-site or
even inter-site. We can consider various e�ects from the nature of excitations like bosonic or fermionic
characteristics. All of this directly applies to for example quantum dots, which we have presented
in the section 6, because there the excitations can be electrons and these both tend to interact via
Coulombic interaction and are fermions that can be present on the same site (same dot).

The systems considered for quantum computation - as we have seen - usually have more degrees of
freedom, but only some of those are used for information encoding. Typically, the nodes of network that
are not used for information encoding are prepared in the ground states and the subset of nodes used
for information encoding contains some excitations. Again, we are interested in number-of-excitations-
preserving Hamiltonians.

We need to alter our notation a little to contain this generalized model. Firstly, the Hilbert space
we are working on is now N -excitation Hilbert space (which su�ces because we only work with energy
conserving Hamiltonians) of M nodes spanned by vectors

S =

|n1,σ, n2,σ, . . . , nM,σ〉 |
∑
j,σ

= N

 , (7.26)

where nj,σ stands for number of excitations in the state σ at the j-th site. And σ indexes all degrees of
freedom that can be used for information encoding. For N = 1 we should be getting the same results
as previously.

The idea of solving the problem relies on second quantization. We want to bene�t from how we
were always writing the Hamiltonians with creation and annihilation operators. Generally the initial
state of the network can be written

|ψ (0)〉 = f(a†j,σ) |0〉 , (7.27)
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where a†j,σ are creation operators that create excitation in the state σ at site j and f is some function
of these. With the same notation we can write the desired result

|ψ (t)〉 = f
(
a†P (j),σ

)
|0〉 , (7.28)

where P is the permutation similarly to previous sections, only this time the permutation is a permu-
tation acting on basis states and not the nodes (it does not only switch i and j in the states). The
rank of this matrix is inevitably MN , which is giving correct results for N = 1. To be able to use the
tools from previous text, we can think of the MN dimensional state space as of a state space of single
excitation (that is just relabeling the states). We will now present the results for N = 2 from [17],
which are easily valid for N > 2 as well.

The state space H2 for two excitations is spanned by vectors, where two positions of the excitations
need to be speci�ed and the state they are in, therefore

H2 = span {|i, µ; j, ν〉} , (7.29)

where |i, µ; j, ν〉 ≡ |1i,µ〉 |1j,ν〉. Now we will �x the initial state of the network to be

|ψ (0)〉 = |s1, µ; s2, ν〉 . (7.30)

It is important to notice the ordering of the excitations. We can even divide the Hilbert space to three
subspaces, which will be important later

H
(<)

2 , spanned by {|i, µ; j, ν〉 i < j} , (7.31)

H
(=)

2 , spanned by {|i, µ; j, ν〉 i = j} , (7.32)

H
(>)

2 , spanned by {|i, µ; j, ν〉 i > j} . (7.33)

One of the cases we can consider is when all these subspaces are decoupled and the excitation cannot
jump between them. Possible permutations consequently have a block-diagonal form of

P =

 P (<)

P (>)

P (=)

 , (7.34)

in which case we can solve the problem for each block separately from knowledge of the eigenvalues
for each P (.).

In general case, however, the spaces are not decoupled and one has to work as mentioned as if with
single excitation, but in a state space of dimension MN at worse. It has been presented how to work
with di�erently decoupled spaces and interacting and non-interacting excitations (bosons or fermions)
in [17].

We will present how to formalize di�erences between interacting and non-interacting excitations
from [17]. In case of two non-interacting excitations, the total energy is simply

E
(µ,ν)
i,j = εi,µ + εj,ν , (7.35)

while for interacting excitations it can be written

Ẽ
(µ,ν)
i,j = E

(µ,ν)
i,j + U

(µ,ν)
i,j . (7.36)

The additional term can represent all kinds of interactions, starting with on-site and inter-site inter-
actions over to various interactions between di�erent degrees of freedom.

Several results have even been published for the Hamiltonians of a very general form, which have
been investigated thoroughly in past articles [38, 39]

H =
∑
i,σ

εi,σni,σ +
1

2

∑
i,k

∑
σ,σ,

U
(σ,σ,)
i,k ni,σ (nk,σ, − δi,kδσ,σ,) +

∑
i<k

∑
σ

Ji,k

(
a†i,σak,σ + h.c.

)
, (7.37)
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where
ni,σ ≡ a†i,σai,σ. (7.38)

The last part of (7.37) is the interaction between di�erent nodes and is the reason that PST is possible
at all. This Hamiltonian is met under various conditions, even in the ideas of quantum computers we
presented. Results with this Hamiltonian and the tools presented were published in [17] that concerned
decoupled spaces, coupled spaces with both nearest-neighbor and beyond-nearest-neighbor interactions.
The solutions always followed the methodology described, but sometimes analytical solutions were not
obtained and instead numeric methods had to be used.

8 State transfer on trapped ions

In this section we apply the previous method to the system of trapped ions. These are our results,
previously described in the reference [41].

8.1 Illuminating single ion

Using the theory that we presented in the section 5 about trapped ions, one could immediately show
that any permutation on the internal states of ions can be achieved because we have shown any unitary
operation can be performed and permutations are unitary. The universal procedure would however
rely on decomposing the transformation into C−NOT gate and single qubit rotations, performing
these is certainly possible and we can perform any unitary transformation exactly, but it does not have
to be the most e�cient way of doing so.

Instead we found a sequence of pulses that can be one-by-one applied in the designed order to
achieve the transformation. Let us remind here how the pulses work on trapped ions. The π-pulse
moves the excitation between the collective oscillation and internal level of the ion while adding −i
overall factor to the state and the 2π-pulse does not move the excitation, but adds a prefactor of −1
to the state.

If we use the introduced notation for the overall state, where �rst N qubits are the internal spin
states of ions and the (N + 1)-th qubit is the collective oscillation and denote Uk2θ a respective pulse
applied to ion k, we can write down following sequence of pulses and its result

|e〉1 . . . |g〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |g〉N |e〉N+1

U1
π ↓ ↓ ↓
−i |g〉1 . . . |g〉N |e〉N+1 |g〉1 . . . |e〉N |g〉N+1 −i |e〉1 . . . |g〉N |g〉N+1

UNπ ↓ ↓ ↓
|g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 −i |e〉1 . . . |g〉N |g〉N+1

U1
π ↓ ↓ ↓

|g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |g〉N |e〉N+1

(8.1)

If we express the transformation in the basis of single excitation subspace (7.5), we get

U =



0 · · · 0
0 1 0 · · · 0

0
. . .

...
...

...
...

. . . 0
...

0 0 · · · 0 1
1 0 · · · 0 0

0 · · · 0 1


. (8.2)

which if we focus on the top-right N ×N block, is exactly the permutation (7.8).
This procedure is not covered by the tools from section 7, because this Hamiltonian does not

belong to any of the classes derived. Reason behind this is that this procedure does not involve a
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single Hamiltonian for the whole time but rather a sequence of Hamiltonians as the laser is turned on
and o�, this is a possible path for generalization of the theory - to sequences of Hamiltonians that one
can move in time. It however might not be bene�cial, because this procedure somewhat violates the
condition on minimal external control. Another problem with the generalization might be that the
interaction with light does not always conserve the number of excitations and energy of the system,
we only achieved that by choosing appropriate frequencies of light and durations of the pulses.

Also because we know that nodes involved by any sub-cycle of the permutation must have the same
energy levels, there can be no permutation in the presented framework that would move the excitation
to the (N + 1)-th qubit, because it has di�erent energy level from the rest and we need to keep that
in mind.

8.2 Illuminating multiple ions

We were, however, investigating Hamiltonians that could belong to one of the classes presented amongst
the trapped ions, because they have constant couplings between all the nodes. Theoretically we can
illuminate all the ions in the trap by light on the resonant frequency (5.25). We intentionally wrote
theoretically, because that is not the current way of working with trapped ions and it could bring heat
into the system and cause instabilities.

For illumination of all the ions we need to write down the Hamiltonian of such a thought experiment.
Let us write the basis states of a single excitation subspace in a following way

|e〉n ≡ |g〉1 . . . |e〉n . . . |g〉N |g〉N+1 , (8.3)

and by
|g〉n ≡ |g〉1 . . . |g〉n . . . |g〉N |e〉N+1 (8.4)

we denote the (last basis) state with the excitation in the oscillation qubit, this notation is chosen to
underline the fact that all the ions are in the ground state. The interaction can now be written in the
nice form of

Σ = a

N∑
n=1

|e〉n 〈g|n + a†
N∑
n=1

|g〉n 〈e|n , (8.5)

where a† and a are harmonic raising and lowering operators for the collective oscillation. The complete
Hamiltonian from the dipole interaction of every ion reads

H = ωe

N∑
n=1

|e〉n 〈e|n + ωg

N∑
n=1

|g〉n 〈g|n + ωza
†a+

Ω

2
Σ. (8.6)

To understand better how this Hamiltonian works, we would like to rewrite it into the computational
basis vectors, listed with the particular ordering below

|ψ1〉 = |e〉1 |g〉2 . . . |g〉N |g〉N+1 ,
|ψ2〉 = |g〉1 |e〉2 . . . |g〉N |g〉N+1 ,

...
|ψN 〉 = |g〉1 |g〉2 . . . |e〉N |g〉N+1 ,
|ψN+1〉 = |g〉1 |g〉2 . . . |g〉N |e〉N+1 .

(8.7)

In this basis the Hamiltonian is of the form

H =


ωe 0 · · · 0 Ω

2
0 ωe
...

. . .
...

0 ωe
Ω
2

Ω
2 · · · Ω

2 ωz

 , (8.8)
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which is a Hamiltonian where all the qubits are coupled to the last one - the bus, which is a general class
of Hamiltonians that might not be applicable just for the trapped ions. And we know that the theorem
7.1 does not limit us to many-cycle permutations, because the Hamiltonian is not nearest-neighbor.

We also know that nodes involved in any sub-cycle of any permutation must have the same energy
levels and any permutation that would transport the excitation to the N -th qubit must have one
sub-cycle of length > 1 that involves the (N + 1)-th bus qubit, because there are no other couplings.
Therefore we can only consider Hamiltonians further restricted to

H =


ωe 0 · · · 0 Ω

2
0 ωe
...

. . .
...

0 ωe
Ω
2

Ω
2 · · · Ω

2 ωe

 , (8.9)

which limits our choices regarding trapping to ωe = ωz. We will discuss this condition later.
From the peculiar choice of trapping we now know that we only need to consider one-cycle permu-

tations, because any many-cycle permutation, if we had the solution for one-cycle permutations, could
be achieved by sequential illumination of the subsets of nodes that each sub-cycle involves. Particu-
larly we will only consider the permutation (7.8) for the same reasons as before. We have previously
denoted the interaction part of the Hamiltonians related to this permutation by

G (α, β) =
∑
λj∈σ

ελjλ
α−β
j , (8.10)

where λj 6= 0 . For further argumentation we need to proof the following easy theorem

Theorem 8.1. The Hamiltonians with couplings given by (8.10) have the interaction part �anti-
diagonally symmetric�.

Proof. �Anti-diagonal symmetry� is de�ned: if we have an arbitrary N × N matrix A, then A is
�anti-diagonally symmetric� if for all α, β ∈ {1, . . . , N} is valid

Aα,β = AN−β+1,N−α+1, (8.11)

where Aα,β is the element of A in row α and column β.
From the form of (8.10) we know that each element depends only on the di�erence α − β. If we

now calculate this di�erence for the element on the anti-diagonally symmetric position to (α, β), we
get

N − β + 1− (N − α+ 1) = α− β, (8.12)

and we see that the di�erence is the same for both elements and therefore the interaction (o�-diagonal)
part of any such Hamiltonian is symmetric as de�ned.

The Hamiltonian (8.9) clearly would be a violation to this theorem. And therefore we know that
there is no PST in the sense of the framework presented possible for the case of illuminating all the
ions.

The condition ωe = ωz just might be met by careful engineering of the network, because the energy
spectrum of harmonic states of trapped cold ions is comparable to the energy spectrum of the internal
spin states. However it might be di�cult to hold this condition for a long enough time.

Finally let us mention that the proposed scenario of the sequential illuminating single ions can
easily be used for transfer of multiple excitations as well, note however that one has to be careful of
the ordering of procedures, because the experimentalist would need to transfer excitations through the
bus qubit and do it by pairs of source-target qubits, because if he tried transferring excitations from
multiple qubits onto the oscillation state and only then onto the target qubits, he would not achieve
the desired state transfer at all.
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Part IV

Quantum networks with bending

This part of the thesis is dedicated to our recent research of the linear networks with bending. It is
related to the thought that any large scale computers will need more complex techniques of manip-
ulation with the information like routing, splitting or switching [16, 25]. It is very natural to move
into two dimensions for doing so. We will �rst present two nearest neighbor protocols that are known
to be able to transfer information faithfully and then introduce a defect or a perturbation into the
network resulting from bending of the linear chain, not from any disturbance or random noise. This
perturbation will from the nature of things be beyond nearest neighbor. The e�ect of this new coupling
has not been investigated before, despite that nearest neighbor approximation is in many experiments
related to spatial separation, trapped ions or quantum dots are excellent examples. We expect that if
we introduce the bending into equidistant chain at site j, new coupling can appear between j − 1 and
j + 1 sites which will depend on the angle of bending.

We wanted to implement approach with minimal external control. One way of dealing with the new
coupling would be to redesign the couplings in the network taking into account the new interaction,
by the procedures described above. This problem does not have to be solvable, not many beyond
nearest neighbor models are known to transfer information faithfully. Instead we applied numerical
optimization algorithms for �nding optimal shifts in energy of one site to optimize the probability of
the transfer. Changing energy of a single site within reasonable margins should not be a problem. In
quantum dots, for example, it would require only change of voltage on the dot. The results of this
analysis have been submitted for publication [42].

9 Investigated protocols

Both investigated protocols work on networks depicted in the �gure 9.1 and are centrosymmetric. That

Figure 9.1: Bent network

is on an equidistant chain of N permanently coupled qubits with nearest neighbor interactions, which
we bent at site α; we already know how to obtain solutions for θ = 0, when the network is straight.
Let us write the Hamiltonian of the system divided into two parts

H = H0 + V, (9.1)

where H0 corresponds to the Hamiltonian of the chain with θ = 0 and V is the additional coupling
introduced by the bend. We only considered

θ ∈ 〈0, 2π

3
〉, (9.2)
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because we do not want the new coupling to be dominant, only a perturbation. And we only wanted
to consider the coupling g, not the other dotted interactions in the �gure 9.1. Justi�cation of this
assumption can be seen in one particular system. When we consider the interaction between the
neighboring sites to be of the form

V (r) = A exp (−rλ) , (9.3)

where A and λ are constants describing the interaction and r is the distance between qubits, the
interaction to be considered nearest neighbor has to ful�ll the condition

A exp (−2rλ)� A exp (−rλ) , (9.4)

for some typical distance r. This type of interaction is met for example in quantum dots if we consider
electronic excitations and the interaction is tunneling. And if we put A, λ and r typical for quantum
dot experiments, the upper bound for θ was very close to 2π

3 (if we did not want to consider additional
couplings between α− 2 and α+ 1 sites and the symmetric ones). Certainly for smaller θ, g is the �rst
additional coupling that will come into the picture.

We expect H0 of the following form, which as we have seen is met in various physical systems

H0 =

N∑
j=1

εja
†
jaj +

N−1∑
j=1

Ωj,j+1

(
a†jaj+1 + a†j+1aj

)
, (9.5)

where a†j is the creation operator of an excitation at site j with energy εj and Ωj,j+1 is a coupling
between two adjacent sites j and j+ 1. This Hamiltonian is very general, it does not assume the same
energy levels for all the sites and allows for di�erent nearest neighbor couplings in the network. Let
us now focus on the unperturbed case and present previous results concerning the two protocols.

9.1 Protocol 1: Uniform couplings

This protocol was �rst proposed in [43]. It relies on choosing

εj = ε, ∀j, (9.6)

i.e. same energy levels for all the sites and the couplings are engineered so that

Ωj,j+1 =

{
Ω0 for j = 2, . . . N − 2

Ω for j = 1, N − 1
. (9.7)

This protocol unlike the others is suitable for designing long chains, because in the other protocols
(one of them we shall present in the next section) the couplings typically depend on the position in
the chain and could be either too small or too large to fabricate for a long chain. The Ω coupling
of the two outermost sites is supposed to be controllable and the �rst and last qubit are naturally
expected to be the write-in and read-out qubits. The idea is to choose optimal ratio Ω

Ω0
for the faithful

transfer to occur. That this is possible is not a trivial fact and the procedure described in [43] relies on
working with dispersion relation for general wave-packets traveling through the chain that optimizes
the occurrence of peaks.

The reference [43] presented how to implement the procedure for N + 1 spins in a chain (their
indexing was slightly di�erent from ours). And the network was prepared in the initial state where in
both ends was sitting an excitation and the rest was in the ground state. An excellent illustration of
how successful the procedure is, is the �gure 9.2. Where the optimization has been done for a network
of N = 50 spin states. The result is after choosing the right ratio that the excitations have swapped
positions after a well de�ned time.

We have veri�ed the results from [43] by a slightly di�erent procedure. We assumed our network
to be in the initial state as before, where single excitation is present at the 1 site and the rest is in the
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Figure 9.2: Time evolution of the projection of the spin into the ~z direction for N = 50, ratios of the
couplings Ω

Ω0
= 1 (left) and Ω

Ω0
=0.58 (right), the images were taken from [43]

ground state. In the basis of the single excitation subspace the general state of the network can be
expressed as

|ψ〉 =
∑
j

Aj (t) |j〉 , (9.8)

where Aj (t) are the complex probability amplitudes and |Aj (t)|2 gives the probability of �nding the
excitation at site j at any time. The Hamiltonian (9.5) results in the set of di�erential equations for
the amplitudes

i
dAj (t)

dt
= εjAj (t) + Ωj−1,jAj−1 (t) + Ωj,j+1Aj+1 (t) , j = 1, . . . , N., (9.9)

where we have speci�ed the energies and the couplings by the equations (9.6) and (9.7).
We then used the Fehlberg fourth-�fth order Runge-Kutta method or rfk45 [44] to obtain the

numerical solution for this system. We ran optimization algorithm that maximized the height of the
�rst peak in |AN |2 arriving at the last site on a reasonable time scale by varying the ratio Ω

Ω0
. We

were able to �nd a �reasonable� optimal ratio so that the height of the �rst peak was closer to 1
than 0.03 and by increasing the precision we would be able to �nd even better ratios. The ratios for
N = 3, . . . , 12 are shown in the �gure 9.3. The typical property of the ratio is Ω

Ω0
< 1.

9.2 Protocol 2: Optimal couplings

The second protocol we discussed was �rst proposed in [13], it is covered by the tools of section 7 [15].
It relies on choosing

εj = ε, (9.10)

and
Ωj,j+1 = Ω0

√
(N − 1) j. (9.11)

In contrast to the previous protocol it is optimal in the sense that after t = π
2Ω0

the |AN |2 amplitude
equals one. However the couplings are chosen based on the position in the chain and therefore this
protocol is more suitable for short wires.

To see why the procedure works, one needs to put the choices (9.10) and (9.11) into the di�erential
equations (9.9) and perform a simple Laplace transformation. The linear set of equations can be solved,
transformed back to get the solutions

Aj (t) =

(
N − 1
j − 1

) 1
2

[−i sin (Ω0t)]
j−1

[cos (Ω0t)]
N−j

, (9.12)

which gives that all the amplitudes |Aj (t)|2 oscillate on commensurate frequencies

λj = Ω0 (2j −N − 1) . (9.13)

53



Figure 9.3: Optimal ratios of the couplings in the uniform case

This causes the excitation to travel through the chain back and forth, because the probabilities of
occupation for the �rst and the last site are respectively

|A1|2 (t) = [cos (Ω0t)]
2(N−1)

, (9.14)

|AN |2 (t) = [sin (Ω0t)]
2(N−1)

. (9.15)

The solutions are plotted in the �gure 9.4 forN = 10 and time goes from 0 to π
Ω0

. It is clear that we have
achieved state transfer after π

2Ω0
. The plot has been given for the choice Ω0 = 1. These two protocols

are the two main investigated and most promising ideas in the state transfer [11�17, 21, 25, 26, 36�
40, 43]. Let us note that simulations of the transfer of entangled states, mixed states and simulations
of various noises and their in�uences were performed.

10 Analysis of bending loses

Let us present our recent results with introducing the bending into the two protocols. Let bending
be present at the site α ∈ {2, . . . , N − 1}, which does not change the couplings before bending, only
introduces a new one. As we commented before, we are only considering additional coupling g from
the �gure 9.1, because we expect the interactions to depend on spatial separations of qubits and drop
with distance, therefore there will always be region of θ where this assumption will be valid.

We can now write the non-nearest neighbor interaction part from (9.1) explicitly

V (θ) = g (θ)
(
a†α−1aα+1 + a†α+1aα−1

)
, (10.1)

where the dependence of g on θ will be di�erent from realization to realization and it might even be
related to residual stress in optical waveguides. We expect the performance of the network to depend
on the ratio of the disturbance g to the local couplings Ωα,α±1 and for g � Ωα,α±1 we expect the
network to work almost the same as before the introduction of perturbation.

We parametrized the strength of perturbation by the parameter

κ =
g

Ωmax
, (10.2)
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Figure 9.4: Network with optimal couplings, probability of �nding the excitation moves from the �rst
site to the last one and back

where
Ωmax ≡ max

i,j
{Ωi,j} . (10.3)

As before we have the network prepared so that the excitation is present at the �rst site and the
rest is initially in the ground state (the Hamiltonian (9.1) with (10.1) preserve the total number of
excitations, so achieving this is again enough for the transfer of arbitrary state).

Because of the new term (10.1) we need to change the di�erential equation (9.9) for the α± 1 sites
to become

i
dAα−1 (t)

dt
= εα−1Aα−1 (t) + Ωα−2,jAα−2 (t) + ΩαAα + gAα+1 (t) , (10.4)

and perform the respective change for the Aα+1 amplitude.

10.1 Robustness of protocols vs. bending

These equations are no longer solvable by simple Laplace transform and the existence of exact solu-
tions is not known in the literature. Therefore we used the rfk45 method to integrate the equations
numerically for both protocols for various κ ∈ 〈0, 1〉, various numbers of sites and various positions α
to simulate the behavior. We investigated the �rst peak in the probability of the excitation being at
the last site |AN |2 (t) by noting its position in time Ti and magnitude Pi, where indexes correspond
to protocols. The corresponding data are known from previous work for unperturbed networks with
θ = 0. Let us denote these by T (0)

i and P (0)
i . The illustration of how the perturbation a�ects the state

transfer can be done by plotting the ratios

Qi ≡
Pi

P
(0)
i

, (10.5)

Si ≡
Ti

T
(0)
i

. (10.6)

They are presented in the �gures 10.1 and 10.2. From these one can see that both protocols are
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Figure 10.1: Robustness of protocol 1 vs. bending, (a-d) belong to di�erent numbers of qubits in the
chain, the bars in (a-d) denote the ratios Qi and the ×'s stand for probabilities of the transfer after
the optimization, positions of the bendings were (a-b) α = 6, (c) α = 11, (d) α = 13

Figure 10.2: Robustness of protocol 2 vs. bending, (a-d) belong to di�erent numbers of qubits in the
chain, the bars in (a-d) denote the ratios Qi and the ×'s stand for probabilities of the transfer after
the optimization, positions of the bendings were (a-b) α = 6, (c) α = 11, (d) α = 13
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Figure 10.3: Ratios of times of the transfer for perturbed network vs. the unperturbed one, protocol
1, (e) open symbols stand for the perturbed, unoptimized networks; closed symbols correspond to
optimized networks, (f) detuning of the corner site over the energy of remaining sites

relatively stable vs. the perturbation up to the ratio κ ≈ 0.2 and then the probability starts dropping
for both protocols. The values suggest that protocol 2 performs slightly better vs. the perturbation.
For both protocols it is valid that networks with larger N are more resistant to small perturbations.
This is due to localization of the perturbation to small areas around the corner.

The in�uence of the perturbation on the time of the transfer can be illustrated similarly with ratios
Si as in the �gures 10.3 and 10.4 (only the open symbols). In both cases the transfer is somewhat
accelerated and the values suggest that for protocol 1 the acceleration is more pronounced. Similarly
to robustness in probabilities, larger numbers of qubits tend to be less in�uenced in the time of the
transfer due to localization.

All the �gures have been presented for the cases with the bending α present at the middle of the
chain, our simulations suggest no di�erences for other positions. The only exception from this is the
behavior for the protocol 2, if we move the bending towards the edges. The mentioned e�ects become
more pronounced, because the relative strength of the new coupling is larger as the couplings are the
lowest at the edges.

10.2 Optimization of the transfer

The idea we implemented theoretically for minimization of the losses is detuning the energy of the
corner site εα by a margin ∆α while leaving all the other parameters untouched. This certainly is
underlined by the thought of minimal external control and for example in the case of quantum dots
can easily be achieved by changes in the voltage of the corner dot.

The procedure went as before with optimizing the couplings for the protocol 1. We used the
rfk45 method to numerically integrate the equations (10.4) and the unchanged ones (9.9), and then
optimized (maximized) the �rst peak arriving to the N -th site by varying ∆α (or εαequivalently) for
various con�gurations.

Results of these optimizations were excellent as all the values were very close to 1 after the opti-
mization, these are the × symbols at the top of the �gures 10.1 and 10.2, all very close to one. The
e�ect on time of the transfer has been explored as well, it is depicted by the closed symbols in the
�gures 10.3 and 10.4.

The magnitude of necessary detuning is illustrated by the plots in �gures 10.3 and 10.4 (f). It
is apparent that for reasonable perturbations the detunings are within the order of the energies of
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Figure 10.4: Ratios of times of the transfer for perturbed network vs. the unperturbed one, protocol
2, (e) open symbols stand for the perturbed, unoptimized networks; closed symbols correspond to
optimized networks, (f) detuning of the corner site over the energy of remaining sites

Figure 10.5: In�uence of position α on the optimal detuning for �xed κ = 0.4, Index is the position α
from 2 to N

2 , (a) protocol 1, (b) protocol 2

remaining sites and therefore achievable, but for κ close to one, the values of detuning jump to ten
folds of the other energies and would probably be not attainable.

We investigated the in�uence of the position α on the detuning as well, results are depicted in the
�gure 10.5.

For larger networks the optimized detuning is very similar for all the positions. Problems are caused
by the bending present at the edges of the chain, where again the detuning in energy jumps far away
from the other energies in the network and these setups are not obtainable.
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Part V

Conclusions

The �rst sections are devoted to an overview of quantum computation. This is followed by a summary
of quantum computer candidates. Then we focused on the problem of PST in a very general framework
that describes various physical systems. The two most important parts of the thesis are contained in
the sections 8-10. They contain my investigations of PST on trapped ions and the analysis of quantum
networks with bending. Let us summarize in some detail.

In section 8 we investigated two ideas how to perform state transfer on trapped ions, which is a very
promising quantum computer candidate. We have used previously known tools of sequential pulses to
achieve it in a relatively e�cient way. We attempted to �nd Hamiltonians provided by the framework
of known procedures of constructing PST Hamiltonians on the trapped ions. We were able to prove
that in the setup described there is not a PST Hamiltonian that would be a member of any of the
classes presented. We suggested possible ways of generalizing the framework further to encapsulate it
with possible limitations it might bring.

A possible next step of research would be to attempt to �nd PST Hamiltonians from one of the
presented classes in trapped ions systems that have an additional magnetic �eld with non-zero gradients
[22�24, 27]. It seems this might be possible. These systems have the advantage of using microwave
and radio-frequency pulses for driving the ions. It is a technology which has been developed even for
commercial use in nuclear magnetic resonance methods in medicine and other areas. Thus it is cheaper
than manufacturing laboratory lasers that are capable of focusing on a single atom in the trap with
coherent light.

In sections 9-10 we have summarized recent research on which we cooperated with Georgios M.
Nikolopoulos. We investigated thoroughly linear networks with bendings, which are expected to be
at the core of any more advanced technique of manipulation quantum information in more than one
dimension. We compared them with known solutions of unbent networks both in time and e�ciency of
the transfer. We have presented results of numerical analysis of two most important protocols known
for PST, when the de�ned perturbation is introduced into the system. Generally the perturbation
tends to accelerate the transfer in time and the quality of the transfer was proportional to the relative
size of the new coupling.

We proposed a method of compensating for imperfections by a relatively simple procedure. Numer-
ical simulations suggest considerable improvement for both protocols. We have also discovered some
limitations of the procedure in dependence on the position of the bending and the magnitude of the
additional interaction. The procedure followed the requirement of minimal external control compared
to other possible methods and from what we require from a quantum computer it should be easily
implementable.

The framework in which we have worked is very general and it could work for many concrete
physical realizations of a quantum computer. This might be the reason why exact solutions for the
problem are di�cult to �nd. Nevertheless the numerics suggested that there might exist a rule for
choosing the right detuning, it was not completely random. Especially for smaller perturbations the
dependence appeared to be linear.

The next possible course of research in this area might be discussing more complex geometrical
arrangements in two dimensions that would allow for information routing between multiple quantum
wires. Attempts to �nd the minimal requirements for doing PST by means of adding qubits and
interactions to the system could be carried out. It might be bene�cial to investigate systems similar
to the ones already explored, but considering further interactions from the corner of bending and see
if the method proposed would prove useful even for these systems.
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