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0.1 Introduction

In this work we want to focus on perfect state transfer (PST) on trapped ions.
The state transfer is an issue addressed by previous work in the �eld [1�5], here
we want to present the former results and suggest a path the generalization might
take in order to cover the most simple ion trap computers as well as it has served
many di�erent quantum systems used for computation.

We are focusing our attention on trapped ions because it is one of the most
promising quantum systems that could be used for computation, recent results
have gone as far as to trapping 14 ions that can be used for quantum computation
[6]. A stunning result because only few tens of qubits could become useful for com-
putation beyond the reach of today's classical computers. Multiple methods for
solving the issues of ion trap computers have been presented and experimentally
veri�ed [7�11], most important of which is the possibility of using radio frequency
(rf) or microwave (mw) radiation for driving the ions in the traps instead of using
lasers working on frequencies of visible light that have to be focused on individual
ions in the trap. The technology for working with rf or mw radiation has been
eminently developed in the past decades and is very sophisticated and accessible.
Throughout this work we shall, however, limit ourselves to traps that have to
be driven with optical radiation and present how to perform the PST without
the need of additional magnetic �elds that allow the computation with mw or rf
radiation.

The text is divided into sections devoted solely to presenting the general ap-
proach of previous articles [3�5] with additional notes about classes of Hamilto-
nians derived and into sections covering the most simple possibilities of how to
transfer a state over trapped ions. Positive results concerning illumination of sin-
gle ions in the chain are shown as well as some positive results with illuminating
multiple ions in the trap, in both cases we will show how it is possible to attain
the state transfer.

0.2 Notation

Throughout this work we shall use notation standard for quantum physics, the
Dirac notation where H signi�es the Hilbert space of physical systems, |x〉 ∈H
is then a vector from the mentioned Hilbert space and 〈x| is a dual vector to |x〉.
We will not use the hat Â sign over a letter to denote operators. This symbol will
be reserved for notation of the following set: n̂ ≡ {1, 2, . . . , n} , n ∈ N. Operators
will be denoted by capital Latin letters only: A. The only exception will be
the creation and annihilation operators for which a† and a symbols are reserved
respectively. We will denote vectors of real or complex numbers exclusively by
an arrow above the letter ~v. As we will be concerned with permutations, it is
good to state that we will be using the cycle notation of permutations. For
example permutation P that acts on the set {1, 2, 3} and turns it into {2, 1, 3}
would be written in the cycle notation as (1 2) (3). Other than that we will
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be using standard notation from commonly known quantum systems as harmonic
oscillators, spin states or Coulomb interaction, which the reader should be familiar
with.

Throughout this work we set ~ = 1. We use scaled time, instead of using τ in
time units we will use dimensionless quantity t ≡ τ/J, where J is our time units.
That will allow us to simplify formulas and work in a very general framework for
deriving the Hamiltonians that lead to perfect state transfer.

1 State transfer

Every quantum computer, similarly to classical computer, needs means of com-
munication to be able to transport information between di�erent components of
the computer as well as between di�erent quantum computers. Nowadays no one
can image computers without hard drives or the Internet. And the state transfer
could provide an analogue of these that would be respecting the limitations of
the quantum computer. We can imagine the quantum systems that allow us to
transfer a state as wires connecting quantum systems used for computation.

The approach that is being explored greatly [1�5] are the so called passive
quantum wires. The idea behind them is simple. We take a quantum system
which consists of several nodes, quantum objects, which interact with each other
and we try to �nd parameters of the interactions (couplings) that lead after a
well de�ned time t through unitary time evolution to a transfer of states of one
or more source nodes onto destination nodes. This is a simpli�ed statement and
the exact de�nition will follow in the text.

The great advantage of this approach compared to for example encoding the
state of an input node onto a photon and then transmitting the photon over optical
�ber and encoding the information onto the destination node is very high com-
patibility with the quantum computer itself. The system we are most concerned
about in this work are the trapped ions and we will show how to perform a state
transfer on trapped ions that can be used as a quantum computer themselves.
The previous statement is, of course, valid for many di�erent designs of quantum
computers as usually the state transfer is a permutation on certain states cho-
sen to be the computational basis; permutations are unitary transformations and
usually the very �rst fact to be theoretically shown with any quantum computer
is that there can be performed any unitary operation (computation)[12].

Usually we tend to image the quantum computers as a linear chain or a dif-
ferent well organized planar structure, that helps us to comprehend the system
as if it were a network of connected nodes.

1.1 Transfer of a single excitation

In complete analogy to previous work in the �eld [3�5] we will be at �rst working
in a very general framework describing a wide variety of quantum computers and
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later we will focus on trapped ions and investigate the state transfer on them and
comment on the compatibility of trapped ions with presented framework of the
state transfer. Let us �rst focus on single excitation present in the network.

We will consider a network of n sites labeled by Sn ≡ n̂ = {1, 2, 3, . . . , n},
where the node 1 is our input node prepared at time t = 0 in the input state |1〉
(in the excited state) and all the remaining nodes are at their ground states |0〉
and we want to achieve transfer of the excitation to the last site. Therefore the
overall state at time t = 0 of the network is |1〉1 |0〉2 . . . |0〉n. If we now denote by

|α〉 ≡ |0〉1 . . . |1〉α . . . |0〉n , (1.1)

the state where excitation is present at site α, the set

{|α〉 α ∈ n̂} (1.2)

will form our computational basis. And we can de�ne exactly what perfect state
transfer means to us. It is a unitary transformation, permutation in the compu-
tational basis:

P =


0
... P̃
0
1 0 . . . 0

 , (1.3)

where P̃ is also a permutation in the computational basis. And we will be looking
for Hamiltonians that will lead after exactly time t to this matrix through time
evolution, which expressed by an equation looks like:

U(t) ≡ e−iHt = P, (1.4)

where we need to keep in mind that the equation is expressed for operators acting
only in the single excitation subspace. Note now that if we are not interested
in systems where multiple excitations interact or where multiple excitations can
be present at one site, solving this problem will solve transfer of multiple excita-
tions as well as we can use the transfer of one excitation multiple times. In the
following we will divide the theory to one-cycle permutations P and many-cycle
permutations P as that has been proven useful for many reasons.

1.2 One-cycle permutations

Imagine a one cycle permutation of the form (1.3). It is easy to see that we only
need to consider the following permutation:

P =


0 1 0
...

. . .

0 0 1
1 0 . . . 0

 , (1.5)
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as the remaining (n− 2)!− 1 can be achieved from this one just by relabeling the
sites {2, . . . , n− 1}. We will now derive the whole class CH of Hamiltonians that
lead to this permutation using the theory of representations. It is straightforward
to show that the eigenvalues of the permutation (1.5) are:

σ =

{
λj λj = exp

(
i2π

j

n

)
, j ∈ ̂(n− 1) ∪ {0}

}
. (1.6)

The corresponding eigenvectors expressed in the computational basis are:∣∣yλj〉 =
1√
n

∑
α∈Sn

λα−1j |α〉 =
1√
n

(
1, λ1j , λ

2
j , . . . , λ

n−1
j

)
. (1.7)

We can write the spectral decomposition of the permutation (1.5) as:

P =
∑
λj∈σ

λj
∣∣yλj〉 〈yλj ∣∣ . (1.8)

From these equations and using the fact that for �nite-dimensional matrices it is
true that if matrix A is in its diagonal basis of the form:

A =

 λ1
. . .

λn

 , (1.9)

then its exponential is in the same basis of the form:

expA =

 eλ1

. . .

eλn

 , (1.10)

the obvious construction of the �rst Hamiltonian (one particular choice from
many) to ful�ll the equation (1.4) is:

H =
1

t

∑
λj∈σ

arg (λj)
∣∣yλj〉 〈yλj ∣∣ , (1.11)

where arg (λj) is the complex phase of λj . We can shift each eigenenergy by
an arbitrary multiple of 2π (resulting from periodicity of exp (iϕ)) and we will
achieve in�nitely many more Hamiltonians that as well lead to aforementioned
permutation after exactly time t:

H~l =
1

t
H +

1

t

∑
λj∈σ

2πlλj
t

∣∣yλj〉 〈yλj ∣∣ =
1

t

∑
λj∈σ

[
arg (λj) + 2πlλj

] ∣∣yλj〉 〈yλj ∣∣ ,
(1.12)
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where ~l ∈ Zn. Let us denote the whole class by

CH =
{
H~l l ∈ Zn

}
, (1.13)

with H~l taken from eq. (1.12). It is good to look further into the form of the
Hamiltonian we just derived and rewrite it as:

H~E =
∑
λj∈σ

ελj
∣∣yλj〉 〈yλj ∣∣ =

∑
λj∈σ

ελjΠλj , (1.14)

where the Πλj is a projector onto the eigen-subspace associated with eigenvalue
λj and

ελj =
arg (λj) + 2πlλj

t
∈ R (1.15)

is the component of energy vector ~E ∈ Rn, which is just a di�erent parametriza-
tion of the class CH . It is now easy to express the Hamiltonian parametrized by
the energy vector in the computational basis as:

H~E =
∑

α,β∈Sn

∑
λj∈σ

ελjλ
α−β
j |α〉 〈β| . (1.16)

Usually this is written in the form

H~E = H0
~E

+ ν~E , (1.17)

where H0
~E
is the diagonal part

H0
~E

=
∑
α∈Sn

Eα |α〉 〈α| , (1.18)

and the interaction components of the Hamiltonian

ν~E =
∑

α6=β∈Sn

G (α, β) |α〉 〈β| . (1.19)

Where we have de�ned the energies and couplings

Eα =
∑
λj∈σ

ελj , (1.20)

G (α, β) =
∑
λj∈σ

ελjλ
α−β
j . (1.21)

From these equations it is easy to see a very important fact, which we later apply
to every cycle of a multi-cycle permutation, that Hamiltonians associated with
aforementioned permutation must involve the same energy levels for all the sites!

Next let us mention that the following theorem has been proven where by
dimension the authors mean the number of qubits n (we will be using it later in
the section about PST on trapped ions)[3]:
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Theorem 1. For networks of arbitrary dimension (n > 2), there exists no
nearest-neighbor-interaction Hamiltonian satisfying condition (1.4) in the frame-
work of permutation (1.5).

We will later be discussing consequences of the following theorem for trapped
ions as well:

Theorem 2. The interaction part of (1.17) with couplings (1.21) is symmetric
along the anti-diagonal. That is G (α, β) = G(n− β + 1, n− α+ 1).

Proof. It is easy to see that (1.21) depends only on α − β and from that the
equality of elements is easy to see, because

N − β + 1− (N − α+ 1) = α− β, (1.22)

1.3 Many-cycle permutations

Now we will describe the many-cycle permutations using the tools listed in the
previous section. The �rst idea that comes to mind is to decompose the permu-
tation to individual (disjoint!) cycles involving a subset of nodes and treat each
cycle as a one-cycle permutation along the lines of the previous section. Let us
consider a cycle of length d < n. This cycle acts as a permutation on a subset of
nodes, we denote by

Sd ⊂ Sn. (1.23)

The eigenvalues of such permutation will be (as before)

λj = exp

(
i2π

j

d

)
for j ∈ ̂(d− 1) ∪ {0} , (1.24)

and the projections on the computational basis of corresponding eigenvectors are

〈
α
∣∣∣ v(k)λj

〉
=

{
λα−1
j√
d

for α ∈ Sd
0 otherwise

. (1.25)

We can see from (1.24) that the spectrum of a many cycle permutation is always
degenerate as the eigenvalue λ0 appears as many times as the total number of
cycles. We denote the number of distinct vectors corresponding to eigenvalue λj
by δλj , i.e. the δλj is degeneracy of the value λj . And we denote the subspace
spanned by the eigenvectors belonging to λj by Eλj .

Now using the Gram-Schmidt orthonormalization process we choose in every
subspace Eλj orthonormal basis

Eλj = span
(
|y(k)λj
〉
)
, (1.26)
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where |y(k)λj
〉 are linear combinations of the original eigenvectors belonging to λj

and therefore also eigenvectors with eigenvalue λj .
As a direct generalization of the derivation (1.13), here we also can shift the

phase of each eigenvalue of the Hamiltonian by 2π, however, here we can do it for
every vector from every (1.26) and we write:

H~l =
1

τ

∑
λj

δλj∑
k=1

[
arg(λj) + 2πl

(k)
λj

] ∣∣∣y(k)λj

〉〈
y
(k)
λj

∣∣∣ (1.27)

=
1

τ

∑
λj

δλj∑
k=1

ε
(k)
λj

∣∣∣y(k)λj

〉〈
y
(k)
λj

∣∣∣ ,
where ~l ∈ Zn ≡

{
(l

(1)
λ0
, . . . , l

(δλ0 )

λ0
; l

(1)
λ1
, . . . , l

(δλ1 )

λ1
; . . .) | l

(δλj )

λj
∈ Z

}
.

As we mentioned before, the transfer of single a excitation will serve the pur-
pose of transmitting multiple excitations if there cannot be present multiple exci-
tations at one site and if the interactions cannot interact. Except for deriving the
class of suitable Hamiltonians, two important facts have been mentioned: in this
framework for each cycle the Hamiltonian must involve the same energy levels on
all nodes that the cycle involves and that in order to achieve PST for more then
two nodes more then nearest neighbor interactions have to be considered.

We will only mention here that the previous formalism was developed further
[5] and the Hamiltonians have been classi�ed deeper as for example one can ask
if the Hamiltonian that leads to the desired permutation after time t, will lead to
the same permutation after some additional time (for example the case of integer
multiples of t) or if it leads to transfer perhaps even in some earlier time, answers
to these can be found in [5]. Also it is possible to �nd Hamiltonians that lead
to sending the information to a subset of nodes at exactly de�ned times, we can
design Hamiltonians that lead to transfer of the excitation to for example nodes
5, 13, 9, n in this order using previous formalism and theorems from [5].

1.4 Transfer of multiple excitations

A generalization of the previous framework has been presented in [4], the general-
ization lies in the fact that one can design Hamiltonians that transfer excitations
in systems where multiple excitations can be present at one site and the excita-
tions can even interact with each other even beyond nearest-neighbor or on-site
interactions in this model. That suits multiple quantum systems that can be used
for quantum computation, for example quantum dots where multiple electrons
(excitations in this case) can be present at one site [4]. Also introducing more ex-
citations into the system lets us consider di�erences between bosons and fermions,
which gives us more constraints on the forms of suitable Hamiltonians.
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Real systems are usually composed of objects with several properties (spin,
energy, angular momentum), only some of them are used for encoding information
but we can consider more of them. Typically as in previous section, the nodes
that do not contain information are prepared in their ground states |0〉 and a
subset of nodes used for encoding of the information contain some excitations.
Also typically the Hamiltonians used for computation preserve the total number
of excitations [4].

We will need to alter our notation to better suit this generalized model. Be-
cause we are concerned only with systems that preserve the total number of
excitations, we are now working in N -excitation Hilbert space HN on M nodes
with basis:

HN = span

|n1,σ, n2,σ, . . . , nM,σ〉
∑
j,σ

nj,σ = N

 , (1.28)

where nj,σ denotes the number of excitations in the degree of freedom σ at the jth
site and σ goes through all the degrees of freedom that can be used for information
encoding. We will denote the set of orthonormal basis states by S. Note now, that
for N = 1 the frameworks for single excitation and multiple excitations coincide.

The generalization lies in using second quantization to talk about the states
(both initial and the desired ones), in general we can write the initial state as

|ψ (0)〉 = f
(
a†j,σ

)
|0〉 , (1.29)

where f
(
a†j,σ

)
is a function of creation operators a†j,σ that create excitations in

the degree of freedom σ at site j. The same generality will be preserved for the
desired state if we require

|ψ (t)〉 = f
(
a†P (j),σ

)
|0〉 , (1.30)

where P is a permutation. We can see now that we will be requiring the permuta-
tion to act on the basis states instead on the nodes. The di�erence is that the rank
of permutation that acts on the nodes is M while the rank of the permutation
that acts on the basis states is inevitablyMN , which is easily seen is the same for
N = 1. What one can do now is to consider the permutation as a permutation
in one excitation space but in MN dimensional space (we only have permutation
of basis states) and use directly the tools provided by previous sections. For the
purposes of simplicity we will now present the results for N = 2 from [4]. The
main results from the case of N = 2 will of course be valid for N > 2 as well.

The space of two excitations H2 is spanned by the states {|i, µ; j, ν〉}, where
µ, ν ∈ S, with

|i, µ; j, ν〉 ≡ |1i,µ〉 |1j,ν〉 . (1.31)
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We will denote the initial state by |s1, µ; s2, ν〉, where the respective position of
each excitation is important. We can see that we can �nd three subspaces in H2,
which will be important for the nature of PST

H
(<)
2 , spanned by {|i, µ; j, ν〉 i < j} , (1.32)

H
(=)
2 , spanned by {|i, µ; j, ν〉 i = j} , (1.33)

H
(>)
2 , spanned by {|i, µ; j, ν〉 i > j} . (1.34)

Very special case when these subspaces are decoupled � there is no interaction
between them � can be considered. In this case we would solve the PST in each
subspace separately as the excitations can not jump from one subspace to another.
We can imagine the permutation in the block-diagonal form as

P =

 P (<)

P (>)

P (=)

 . (1.35)

For networks that are insensitive to di�erent degrees of freedom the subspaces
H (<) and H (>) are basically equivalent. After �nding the eigenvalues of permu-
tations P (.) one can work along the lines of previous sections and solve the PST
problem in each subspace separately. In general case, however, the spaces are not
always decoupled. Using the above methodology one can solve the PST in very
general scenarios such as decoupled spaces, interacting and non-interacting exci-
tations (bosons or fermions). Next we will show how to formalize the di�erence
between interacting and non-interacting excitations.

In the case of non-interacting excitations the total energy is simply

E
(µ,ν)
i,j = εi,µ + εj,ν , (1.36)

whereas in the case of interacting excitations, the total energy reads

Ẽ
(µ,ν)
i,j = E

(µ,ν)
i,j + U

(µ,ν)
i,j . (1.37)

The additional energy can take into account di�erent degrees of freedom as well
as di�erent positions of excitations in the network, it can describe the on-site
interactions as well as inter-site interactions.

Several results have been presented for Hamiltonians of the form

H =
∑
i,σ

εi,σni,σ +
1

2

∑
i,k

∑
σ,σ′

U
(σ,σ′)
i,k ni,σ (nk,σ′ − δi,kδσ,σ′) (1.38)

+
∑
i<k

∑
σ

Ji,k

(
a†i,σak,σ +H.c.

)
,
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where ni,σ = a†i,σai,σ. The last term in (1.38) describes the coupling between
di�erent nodes and is responsible for the very possibility of state transfer. This
Hamiltonian is met in various designs of quantum computers. Results for decou-
pled subspaces and nearest neighbor interactions and beyond nearest neighbor
interactions with coupled subspaces have been presented in [4]. The solutions
always followed the methodology from above, however sometimes exact analytical
solution could not be found and numerical methods had to be used to gain insight.

2 Trapped ions

Let us now move to a concrete physical implementation of quantum computer
and attempt to solve the problem of PST for it. As the name of the section
suggests, we are interested in trapped ions. We will be talking about ions trapped
in classical Paul traps, description of which can be found in for example [11�13].
When one ion is introduced into the trapping potential, it can be shown [12] that
the resulting trapping can be separated into slow (on the time scales of interest)
motion and fast oscillations, the quickly oscillating part can be neglected as its
time average is zero and we are interested in the slow motion. It can be shown
[12] that the equation of motion for the slow part is of the form of the harmonic
oscillator. If we cool the ion enough, its quantum features become signi�cant and
we need quantum mechanics to describe its motion and other properties (spin...).

That alone would not be much interesting, but we can introduce multiple ions
into the trap and observe what happens. If the trapping is very strong in the
longitudinal direction, the ions will form a linear chain [7�10]. If we now include
the Coulomb force into the equations of motion, using approximation of small
oscillations and transforming into normal coordinates we can show that individual
motion of each ion in the trap is a subject to collective modes of oscillation and
the entire system behaves approximately as one harmonic oscillator. Which is
very important as that will be the way the ions can �communicate� with each
other. We can store one qubit into the �rst two (ground and excited) states of
the oscillator. This is the so called �information bus�. As we will show, every ion
in the trap can be coupled to this qubit and that is how the ions communicate
(they will not be coupled to each other directly).

Another essential part of computing with trapped ions is their internal spin
state, every ion in the trap can either have projection of spin in z direction + 1

2
or − 1

2 , we will denote the + 1
2 state by |e〉 as the excited state and the other one

by |g〉 as a ground state. These internal states are used for information encoding.
It is very illustrational example of a quantum computer as we can imagine very
well how to encode number 01001 onto internal spin states of a chain of 5 ions...

The ions in the trap and their internal state can be coupled with the overall
harmonic oscillator state via interaction with laser focused on each ion. The
coupling is described by Jaynes-Cummings interaction resulting from common
dipole interacting with electromagnetic �eld [11�13]. The interaction will be our
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next stop.

2.1 Dipole interaction

We now want to focus on standard dipole interaction for single ion in the trap

HI = −~µ · ~B, (2.1)

where the dipole moment ~µ is proportional to spin operator

~µ = µm~S, (2.2)

with µmbeing the respective magneton and ~S is proportional to the Pauli vector

~S =
~σ

2
. (2.3)

And we are interested in magnetic �eld of the form

~B = B1~x cos (kz − ωt+ ϕ) , (2.4)

with B1 characterizing the �eld strength, k is its momentum in the z-direction,
ω its frequency, ϕ its phase and ~xis a unit vector in the x-direction.

Except for interaction with spin there is even interaction with the modes of
harmonic oscillations as the form of the �eld the ion sees depends on his position
too. That is the intuitive way to image it. We know [13] as we have previously
mentioned that the spin is con�ned within a harmonic trapping, let us denote its
energy scale by ωz as ~ = 1. The ion has been cooled enough that its position
becomes quantized and we need to describe it using a Hermitian operator

z = z0
(
a† + a

)
, (2.5)

where a† and a are the creation and annihilation operators of phonons [13] asso-
ciated with harmonic oscillations. Let us now assume that the the ion is near its
ground state and the width of its oscillation is small compared to the wavelength
of the incident light. Expressing this more correctly means that the Lamb-Dicke
parameter η ≡ kz0 is small. If we now de�ne a real coupling constant g as

g ≡ µm
B1

2
, (2.6)

and using that [13]

Sx =
S+ + S−

2
, (2.7)

where S+, S− are atomic raising and lowering operators, we rewrite the interaction
Hamiltonian for small η to be

HI = −~µ · ~B (2.8)

≈
[g

2

(
S+e

i(ϕ−ωt) + S−e
−i(ϕ−ωt)

)]
+

[
iηg

2

(
S+a+ S−a

† + S+a
† + S−a

) (
ei(ϕ−ωt) − e−i(ϕ−ωt)

)]
.
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The �rst bracket describes the Jaynes-Cummings interaction model that would
be su�cient if the ion wasn't oscillating, but its position is not constant and so
the second term describing the coupling between the harmonic state of the ion
and the internal spin state [13] arises.

Now we can transform into the interaction picture with the free particle Hamil-
tonian being

H0 = ω0Sz + ωza
†a, (2.9)

which is a result of previous description of the ion (with spin) being trapped by
electromagnetic �eld in a harmonic potential. This transformation generates the
following time evolutions for the operators used in the previous formula

S+ (t) = S+e
iω0t S− (t) = S−e

−iω0t

a† (t) = a†eiωzt a (t) = ae−iωzt
(2.10)

Using these we can rewrite the Hamiltonian (2.8) in speci�c cases of the frequency
of the incident light as

H
′

I =

{
iηg2

(
S+a

†eiϕ − S−ae−iϕ
)

forω = ω0 + ωz

iηg2
(
S+ae

iϕ − S−ae†−iϕ
)

forω = ω0 − ωz
, (2.11)

where only the dominant terms in the Hamiltonian have been written (so called
rotating wave approximation). From now on we will only be using the second
possibility in (2.11) and we will transform it back into the Schrödinger picture,
where if we rewrite the raising and lowering operators into the computational
basis, we get

HI =
g

2

(
a |e〉 〈g|+ a† |g〉 〈e|

)
, (2.12)

for a particular choice of the phase ϕ. If we now rewrite the free Hamiltonian
using the same notation, we can write the complete Hamiltonian for frequency
ω = ω0 − ωz of the incident light as:

H = ωe |e〉 〈e|+ ωg |g〉 〈g|+ ωza
†a+

g

2

(
a |e〉 〈g|+ a† |g〉 〈e|

)
, (2.13)

where ωe and ωg respond to energies of eigenstates of ω0Sz with projection of spin
+ 1

2 and − 1
2 respectively (ω0 = ωe − ωg). This Hamiltonian can be generalized

directly to the case of N particles in the trap by reassigning g −→ g√
N
, that is due

to the fact that as we mentioned, when multiple ions are introduced into the trap,
they tend to oscillate as one harmonic oscillator, which acts as an informational
bus. Lastly we need to mention that we did not take into account the a�ect the
interaction has on the electromagnetic �eld that interacts with ion in the trap.
That is a valid approximation to a very good degree as the light does not tend to
become entangled with the system it interacted with to a very deep level [13].
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3 State transfer on trapped ions

In this section we �nd various solutions of the problem of the perfect state transfer
on trapped ions using the tools previously derived and showing in which cases they
cannot be used in the form they are presented and why.

3.1 Illuminating single ion

Here we will want to show how to perform a perfect state transfer by illuminating
always one ion in the trap and we will �nd a concrete sequence of pulses that lead
to state transfer from the �rst ion in the trap to the last one. That this can be
done is no surprise as we know that using this method we can achieve any unitary
transformation on the ions [11�13].

As we derived earlier, the complete Hamiltonian for one ion in a trap reads:

H =
(
ωe |e〉 〈e|+ ωg |g〉 〈g|+ ωza

†a
)

+
g

2

(
a |e〉 〈g|+ a† |g〉 〈e|

)
, (3.1)

We will now be working in a single excitation space where the excitation can be
present either in the internal spin state of an ion in the trap or in the oscillation
mode of the ions. We will denote the vectors (as previously) by

|i〉 ≡ |g〉1 . . . |e〉i . . . |g〉N+1 ,

where the right hand side means that excitation is present on the j-th qubit, where
the last (N + 1)th qubit is the oscillation of the entire ion string and the �rst N
qubits stand for internal states of the qubits. The one thing that we need to be
careful with is that the last qubits excitation has di�erent energy level, we will
see that come into play later.

When illuminating one ion in the trap, we can focus on the subspace of the
internal state of the ion and the overall oscillation state as the remaining internal
state spaces are decoupled with these two (there is no laser acting on them). We
will now show how to perform certain unitary transformations on this subspace
and for now we will only consider one ion in the trap. We can see that if we
denote the most important part of the interaction (3.1), we will call it coupling,
by

Σ = a |e〉 〈g|+ a† |g〉 〈e| , (3.2)

we can by simple relabeling the constants write that this coupling (when laser is
pointed to our ion) generates the transformation

Uθ = exp (−iθΣ) , (3.3)

where θ ∈ R stands for the coupling strength (the coupling constant g) and the
time � the length of the interaction, where we have chosen one particular phase
ϕ. From the way exponential (time evolution) is de�ned, it is easy to see that

Uθ |g〉 |g〉 = |g〉 |g〉 , (3.4)
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where the notation is the same as for N ions and the second term stands for the
ground state of the oscillations, sometimes this is denoted by |g, 0〉 [12]. If we now
calculate

Σ2 = aa† |e〉 〈e|+ aa† |g〉 〈g| , (3.5)

we can write how coupling operator and its square act on the basis states

Σ2 |e〉 |g〉 = |e〉 |g〉 Σ |e〉 |g〉 = |g〉 |e〉
Σ2 |g〉 |e〉 = |g〉 |e〉 Σ |g〉 |e〉 = |e〉 |g〉 . (3.6)

That comes to be particularly useful when we expand the time evolution as

exp (−iθΣ) =

∞∑
k=0

(−iθ)k

k!
Σk (3.7)

=

∞∑
k=0

(−iθ)2k

(2k)!
Σ2k +

∞∑
k=0

(−iθ)2k+1

(2k + 1)!
Σ2k+1,

as we can see now that

Uθ |g〉 |e〉 = cos θ |g〉 |e〉 − i sin θ |e〉 |g〉 , (3.8)

and
Uθ |e〉 |g〉 = cos θ |e〉 |g〉 − i sin θ |g〉 |e〉 . (3.9)

Thus a π pulse (2θ = π) will cause the transformation

|g〉 |e〉 −→ −i |e〉 |g〉 , (3.10)

|e〉 |g〉 −→ −i |g〉 |e〉 , (3.11)

and respectively the transformation for a 2π pulse (2θ = 2π) is

|g〉 |e〉 −→ − |g〉 |e〉 , (3.12)

|e〉 |g〉 −→ − |e〉 |g〉 , (3.13)

It is worth noting that the resonant frequency and all other parameters depend
on the overall oscillation state and have to be chosen appropriately to achieve a
pulse actually corresponding to some θ.

Let us now come back to N ions in the trap, everything we presented for
illumination of a single ion in the trap is valid for N ions as well, we only need
to change the coupling constant g to g√

N
[13], which means that θ stands for a

di�erent constant, but a constant nevertheless. We will now denote a θ pulse
applied to ion k by Ukθ , so for example a π pulse applied to ion 13 would be U13

π .
Let us now perform a following sequence of pulses, we want to attempt to move
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the excitation from qubit 1 to qubit N (the (N + 1)th one is the oscillation qubit)
and perform the permutation (1.5):

|e〉1 . . . |g〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |g〉N |e〉N+1

U1
π ↓ ↓ ↓
−i |g〉1 . . . |g〉N |e〉N+1 |g〉1 . . . |e〉N |g〉N+1 −i |e〉1 . . . |g〉N |g〉N+1

UNπ ↓ ↓ ↓
|g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 −i |e〉1 . . . |g〉N |g〉N+1

U1
π ↓ ↓ ↓

|g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |e〉N |g〉N+1 |g〉1 . . . |g〉N |e〉N+1

(3.14)
This expressed in the basis of the single excitation space presented at the begin-
ning (1.2) reads as transformation U ,

U =



0 1 0 · · · 0

0
. . .

...
...

...
. . . 0

...
0 0 · · · 0 1
1 0 · · · 0 0

· · · 0 1


. (3.15)

This is exactly the sought permutation on theN sites. However this procedure has
not been covered by the presented framework of �nding Hamiltonians that lead to
PST for one reason. Because this is not one Hamiltonian that would belong to any
of the classes derived, but rather a sequence of Hamiltonians, which we can order
as we wish in time, that generate di�erent unitary transformations. Also we need
to be a little careful with the requirements we laid on the Hamiltonians in the
general sections, the Hamiltonian of trapped ions does not necessarily conserve
the total number of excitations when interacting with light, the reasons why the
transformation we found conserved the number of excitations were choosing the
appropriate pulses (and frequency of the incident light before that). One more
problem may arise in generalizing the theory to be applied to trapped ions, the
Hamiltonian of the string does not involve the same energy levels for ions and the
qubit of oscillation.

3.2 Illuminating two ions

In this part we will �rst focus on a theoretical case of illuminating all of the N
ions in the trap by light on resonant frequency as that is the case that comes to
mind as �rst when thinking about illumination of ions - lets illuminate multiple
ions. Word �theoretical� has been used intentionally as that is not how the current
experiments are usually done. The more standard approach is illuminating only
one ion or all the ions but on resonant frequency of only one ion in a little di�erent
model, which we do not consider in this work.
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We will now express the Hamiltonian of the system in the computational basis
formed by eigenstates of the free particle Hamiltonian in the single excitation
subspace and we will denote by

|e〉n ≡ |g〉1 . . . |e〉n . . . |g〉N |g〉N+1 , (3.16)

and by
|g〉n ≡ |g〉1 . . . |g〉n . . . |g〉N |e〉N+1 , (3.17)

we will denote state where the excitation is present in the oscillation qubit and
the index is used to underline the fact that n-th ion is in a ground state.

For the case of illuminating all the ions on their resonant frequencies, following
coupling arises in the Hamiltonian

Σ = a

N∑
n=1

|e〉n 〈g|n + a†
N∑
n=1

|g〉n 〈e|n , (3.18)

where a†, a act on the vibrational level and then the complete Hamiltonian reads

H = ωe

N∑
n=1

|e〉n 〈e|n + ωg

N∑
n=1

|g〉n 〈g|n + ωza
†a+

g

2
Σ. (3.19)

In order to be able to talk about this Hamiltonian in the previously presented
general framework, we need to express it in the basis of single excitation subspace
(1.2) and it helps to write the vectors of the basis explicitly

|e〉1 |g〉2 . . . |g〉N |g〉N+1 ,
|g〉1 |e〉2 . . . |g〉N |g〉N+1 ,

...
|g〉1 |g〉2 . . . |e〉N |g〉N+1 ,
|g〉1 |g〉2 . . . |g〉N |e〉N+1 .

(3.20)

And now it is easy to see that the Hamiltonian will be of the form

H =


ωe 0 · · · 0 g

2
0 ωe
...

. . .
...

0 ωe
g
2

g
2 · · · g

2 ωz

 , (3.21)

which is a case where all of the �rst N nodes are coupled to the last �bus� node
and this Hamiltonian might be a member of one of the classes we derived. It
certainly ful�lls the criteria for one-cycle permutations - it is not nearest neighbor
only.
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Nevertheless it cannot be associated with one cycle permutations after all,
because every cycle must involve sites with the same energy level and condition
ωe = ωz would experimentally be very hard to achieve and hold. Therefore
we need to consider only permutations that contain a cycle involving the last
oscillation qubit only. Note now that the condition of anti-diagonal symmetry is
met by the Hamiltonian now as the symmetry is valid only for each cycle and
because we consider only permutations with cycle (N + 1), we can see that the
rest is perfectly symmetric along the anti-diagonal. Note also that the fact that
we will not be able to transfer the excitation to the last qubit is not a severe
restriction as we are using only the internal states for information encoding. Now
we will focus only on the case of two qubits in the trap, both illuminated.

Considering this case is su�cient because if we achieve PST on these two
ions, in the case of N ions we can illuminate only pairs of them consequently and
achieve PST of multiple excitations one-by-one, because if we illuminate only two
ions, the rest will not be coupled to them by any means and the same solution
we might achieve for two ions in the trap can directly be used for pairs of N ions.
In this case the Hamiltonian is of the form

H =

 ωe 0 g
2

0 ωe
g
2

g
2

g
2 ωz

 , (3.22)

and the only two-cycle permutation we can consider is

P = (1, 2) (3) ≡

 0 1 0
1 0 0
0 0 1

 , (3.23)

because it is the only many-cycle permutation except for identity that involves
cycle (N + 1) = (3). It is exactly what we are looking for in the space of internal

states of the ions (

(
0 1
1 0

)
). Now we will work along the lines of the section

(1.3) to see the constraints on the form of the Hamiltonian (3.22).
First we have to �nd the eigenvalues and eigenvectors of the cycles of (3.23)

with dimension d1 = 2 and d2 = 1, the eigenvalues follow from (1.24) to be

λ0 = ei0 = 1, (3.24)

and
λ1 = e

2πi
2 = eπi = −1, (3.25)

where λ0 is doubly degenerate and λ1 is non-degenerate and the corresponding
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eigenvectors from (1.25) are ∣∣∣v(1)1

〉
=
|1〉+ |2〉√

2
, (3.26)∣∣∣v(2)1

〉
=
|3〉
1
, (3.27)∣∣∣v(1)−1〉 =

|1〉 − |2〉√
2

. (3.28)

Therefore the corresponding subspaces are

E1 =
(∣∣∣v(1)1

〉
,
∣∣∣v(2)1

〉)
λ
, (3.29)

E−1 =
(∣∣∣v(1)−1〉)

λ
, (3.30)

where ()λ stands for linear span of respective vectors.
The only freedom we have now in choosing the basis of these subspaces is the

choice of the basis for E1, we can choose it as∣∣∣y(1)1

〉
= µ

∣∣∣v(1)1

〉
+ ν

∣∣∣v(2)1

〉
, (3.31)∣∣∣y(2)1

〉
= ν∗

∣∣∣v(1)1

〉
− µ∗

∣∣∣v(2)1

〉
, (3.32)

where
|µ|2 + |ν|2 = 1. (3.33)

And therefore the eigen-energies can be chosen as (1.27):

E1 :

{
ε
(1)
1 = 0 + 2πl

(1)
1 , l

(1)
1 ∈ Z

ε
(2)
1 = 0 + 2πl

(2)
1 , l

(2)
1 ∈ Z

, (3.34)

and
E−1 : ε

(1)
−1 = π + 2πl

(1)
−1 , l

(1)
−1 ∈ Z. (3.35)

And we can write the whole class of Hamiltonians that lead to this permutation
as

H~l =
1

t

(
ε
(1)
1

∣∣∣y(1)1

〉〈
y
(1)
1

∣∣∣+ ε
(2)
1

∣∣∣y(2)1

〉〈
y
(2)
1

∣∣∣+ ε
(1)
−1

∣∣∣v(1)−1〉〈v(1)−1∣∣∣) . (3.36)

Now we will ask this Hamiltonian to be of the form (3.22), which expressed in the

computational basis gives several equations for the free parameters µ, ε
(1)
1 , ε

(2)
1 , ε

(1)
−1.

Firstly we will write the homogeneous one

〈1|H~l |2〉 = 0, (3.37)

21



which when expressed in the free parameters can be written as

〈1|
(
H~l
)
|2〉 =

1

t
〈1|
[
ε
(1)
1

(
µ
∣∣∣v(1)1

〉
+ ν

∣∣∣v(2)1

〉)(
µ∗
〈
v
(1)
1

∣∣∣+ ν∗
〈
v
(2)
1

∣∣∣) (3.38)

+ ε
(2)
1

(
v∗
∣∣∣v(1)1

〉
− µ∗

∣∣∣v(2)1

〉)(
ν
〈
v
(1)
1

∣∣∣− µ〈v(2)1

∣∣∣)
+ε

(1)
−1

(∣∣∣v(1)−1〉)(〈v(1)− ∣∣∣)] |2〉
=

1

2t

(
ε
(1)
1 |µ|

2
+ ε

(2)
1 |ν|

2 − ε(1)−1
)

= 0. (3.39)

this equation obviously yields

ε
(1)
1 |µ|

2
+ ε

(2)
1 |ν|

2 − ε(1)−1 = 0. (3.40)

This can be rewritten with the normalizing condition (3.33) as(
ε
(2)
1 − ε

(1)
1

)
|ν|2 + ε

(1)
1 − ε

(1)
−1 = 0, (3.41)

and similarly to example in [3] we see that if we have a solution for
(
ε
(1)
1 , ε

(2)
1 , ε

(1)
−1

)
,

then there is a solution for
(
ε
(1)
1 + 2πj, ε

(2)
1 + 2πj, ε

(1)
−1 + 2πj

)
, j ∈ Z, because the

equation depends only on di�erences between eigen-energies. And we see that the
homogeneous equation restricted the choice of the basis as the absolute value of
the parameter must be

|ν| =

√√√√ε
(1)
−1 − ε

(1)
1

ε
(2)
1 − ε

(1)
1

. (3.42)

For this to be a solution, one of the following conditions has to be met

ε
(1)
1 < ε

(1)
−1 ∧ ε

(1)
1 < ε

(2)
1 , (3.43)

ε
(1)
1 > ε

(1)
−1 ∧ ε

(1)
1 > ε

(2)
1 . (3.44)

It means that we have found a solution for the case when the Hamiltonian has
non-degenerate spectrum and these conditions restrict possible choices of energies.
The opposite case when the spectrum is degenerate will be discussed later.

Now it is time to use the remaining equations

〈1|H~l |1〉 = ωe, 〈1|H~l |3〉 = g
2 ,

〈2|H~l |2〉 = ωz,
(3.45)

these equations would give us estimation of the parameters ωe, ωz,
g
2 for any choice

of energies satisfying one of the conditions (3.43) or (3.44).
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The choice of non-degenerate spectrum was well justi�ed as when we choose

for example ε
(1)
1 = ε

(2)
1 , the equation for g

2 reads

1

t

(
ε
(1)
1

µν∗√
2
− ε(2)1

µν∗√
2

)
=
g

2
, (3.46)

which for this case gives g = 0, in other words no coupling would be present.

Also from (3.41) we would see that this condition would yield ε
(1)
1 = ε

(1)
−1 and the

spectrum would be completely degenerate.

The degenerate case of ε
(1)
1 = ε

(1)
−1 would from (3.41) mean that ε

(1)
1 = ε

(2)
1 ,

which we have discussed or that |ν|2 = 0, which would mean |µ|2 = 1 and that
would give ωe = ωz, which is the case we do not consider for previously mentioned
reasons (mainly this Hamiltonian would be experimentally complicated).

4 Conclusions

The main conclusion from section 3.2 is that illuminating multiple ions leads to
PST in the presented framework. The illumination of two ions can be directly
used for transfer of multiple excitations. For example we can have a chain of N
ions in the state

|e〉1 |g〉2 |e〉3 |g〉4 . . . |g〉N−2 |g〉N−1 |g〉N |g〉N+1 , (4.1)

in this case we would �rst illuminate the �rst ion and the ion on position N − 2
simultaneously. We would choose the constants of the trapping and of the driving
�eld so that the resulting Hamiltonian would lead to permutation as in section 3.2.
Then consequently we would do the same procedure with ions 2 and N − 1 and
then 3 and N . And we see that we would transfer the information encoded on the
�rst three ions to the last three positions. Condition for this to work is obviously
that the positions of the source ions and the target ions cannot overlap. One
could ask if it is possible to transfer the excitation by illuminating all ions in the
trap, not just two of them. The answer could be positive, but experimentally the
system would absorb much more heat in this case then in the case of illumination
of only two ions. One interesting question that would deserve further exploration
is whether the possibility of presence of multiple excitations in the oscillation
qubit could give together with illuminating all ions positive results concerning
PST.

From section 3.1 we know that PST can be achieved by sequences of pulses
onto certain subsets of ions in the trap. Very important property of the transfer
of single excitation from section 3.1 is that it can be directly used for transfer of
multiple excitations, let us illustrate this on transfer of two excitations

|e〉1 |g〉2 |e〉3 |g〉4 . . . |g〉N−2 |g〉N−1 |g〉N |g〉N+1 , (4.2)

23



applying the sequence (3.14) �rst to ions 1 and N−2 and then the same sequences
to ions 2 and N − 1 and 3 and N will cause the system to evolve into the state

|g〉1 |g〉2 |g〉3 |g〉4 . . . |e〉N−2 |g〉N−1 |e〉N |g〉N+1 , (4.3)

which we can see is a transport of information from nodes {1, 2, 3} to
{N − 2, N − 1, N}, exactly the same as previously. The same thing could be done
for any subsets of nodes that do not overlap. For overlapping subsets we would
need an extra node, which would serve as a temporary swap container of a state.

One also has to think about transporting multiple excitations to the last qubit,
the oscillation state, at once... in the example above if we changed the ordering
of the pulses to make the excitations �rst jump from ions to the oscillation mode
and only then attempted to write them back onto the internal states, we would
get the �nal result

|g〉1 |g〉2 |g〉3 |g〉4 . . . |e〉N−2 |e〉N−1 |g〉N |g〉N+1 , (4.4)

where an obvious loss of information occurred. So this approach does not allow
for multiple excitations to be present at the last qubit (where it is only possible).

The general framework presented in this work is a framework used in presence
by authors working on generalizing their approach to perfect state transfer. The
method of achieving the perfect state transfer on trapped ions from section 3.1
by a sequence of Hamiltonians might be an idea how to generalize it even further.

The next step of this research should be an attempt to �nd Hamiltonians from
classes presented in this work in models of trapped ions that allow for usage of
mw and rf radiation instead of lasers that have Hamiltonians of the form (1.38),
where spin-to-spin couplings are present [7�10] and the formalism from section
1.4 could therefore be used e�ectively.

Comparing the two approaches to PST from sections 3.2 and 3.1 gives some
advantages and disadvantages for both. The main advantage of the illumination of
two ions is that is covered by current formalism of PST and therefore can be easily
compared to other systems and the same numerical methods that can be used for
�nding the right parameters of other systems can be used for trapped ions as
well. The positive property of illuminating a single ion, however, is that similar
operations have been previously implemented and therefore implementation of
such transformation should not be more complicated then previous experiments,
because the language of π-pulses etc. is common both for PST and any other
calculation of trapped ions.
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