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Abstract: We study the spreading of quantum walks as a wave phenomenon. We

focus on the Grover walk where the particle has a non-zero probability of staying

at the origin. This is called the localization effect. We present a generalization of

the three-state Grover walk on a line and two generalizations of the Grover walk
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chováńım. Přitom se zaměřujeme na Groverovu procházku, kde částice z̊ustává v
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Introduction

This work is an introduction to quantum walks on a line and on the square lattice.

The work is focused on walks with Grover matrix as a coin operator. The Grover

coin walk exhibits a localization efffet which makes them particularly interesting.

We are interested in the spreading of the quantum walk as well as its long time

behavior. Another objective of the work is to find the place where the particle has

the highest probability to appear and calculate the velocity of the corresponding

peak.

The first chapter concentrates on one dimensional quantum walks. First,

we deal with two possible movements of the particle. Second, it describes the

extension of the walk. Except the motion to the left or to the right, the possibility

to stay on its current location is added. As a coin operator we use the Grover

matrix. It ensures the localization effect. Further the velocities of the highest

probability peaks are calculated.

The second chapter is focused on the generalization of the Grover walk on

the line which preserves the localization effect. The generalization is done by

adding a phase factor into the spectral decomposition of the Grover matrix. We

find a one-parameter family of one-dimensional walks with three possible moves.

We show, that the localization effect is preserved. At the end of the chapter we

calculate the velocities of the highest probability peaks depending on the added

phase factor.

Chapter three contains an introduction to the two-dimensional quantum walk.

As in the one-dimensional case, we describe how to find the highest peaks and

how to calculate their velocities. We find the velocities of the highest probability

peaks and analyze their long time behavior. The value of the probability for the

highest peaks decreases with an increasing number of steps. Using the method

of stationary phase we give a possible explanation of this decrease. At the end

of the chapter, we change the basis variables. It shows some other interesting
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properties of the walk.

Penultimate fourth chapter is focused on one generalization of the Grover

walk in two dimensions. The generalization is based on the work of Inui et.al [6]

and exhibits the localization effect. As in the previous chapters, we calculate the

velocities of the highest probability peaks. Further we are interested in its be-

havior in dependence on the number of ssteps. We make a numerical simulations

depicting the situation. The end of the chapter is dedicated to the change of the

basis variables in which we can find another interesting properties of the walk.

The last chapter aims on the generalization of the two-dimensional Grover

walk according to the model given in the second chapter. We find the one-

parameter family of Grover walk, where the parameter is the added phase. Fur-

ther we find the velocities of the highest probability peaks and how the walk

spreads with increasing time. We report on a numerical simulation of the de-

creasing value of the highest probability peaks with increasing number of steps.

To uncover other interesting features, we introduce new variables and present the

propagation of the quantum walk wave-packet in terms of the group velocities.

A summary of our results and an outlook is given in the conclusion.
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Chapter 1

Quantum walk on a line

Quantum walk can thought as a generalization of a classical random walk. The

simplest classical random walk is the walk, where a particle can move in each step

to the left or to the right with a given probability. Generalization of the walk

leads to the two-state quantum walk. The coin tossing is replaced by a coin. The

coin operator for a two state walk is represented by a U(2) matrix. In classical

walk the coin is firstly tossed and afterwards the walker moves according to the

tossing result. In analogy with that in quantum walk, first the coin operator

is applied, which superposes possible movements of the walker. Then a shift

operator, which moves the walker according to the resulting mixture of possible

movements, is applied.

The Hilbert space of the quantum walk is given by the tensor product of two

spaces

H = Hp ⊗HC .

Here Hp is the position space

Hp = Span{|m〉,m ∈ Z}.

Since the allowed movements of the quantum particle are to the left or to the

right, the coin space HC is two-dimensional and we can write

HC = C2 = Span{|L〉, |R〉}.

Vectors |L〉, |R〉 forming the the standard basis of the coin space HC correspond

to the steps to the left and to the right.

Each single step of the walk is then realized by the propagator U which is

given by

U = S(Ip ⊗ C). (1.1)
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The coin operator C acts only on the coin space HC . The displacement operator

S acts on the tensor product H of both position and coin spaces and has the form

S =
m=∞∑
m=−∞

(|m− 1〉〈m| ⊗ |L〉〈L|+ |m+ 1〉〈m| ⊗ |R〉〈R|) . (1.2)

The operator Ip is the identity on the position space Hp.

Now we can show on an example how the walker propagates. The most studied

walk is the one with the coin operator given by the Hadamard matrix

C = H =
1√
2

(
1 1

1 −1

)
, (1.3)

so that we select H as our coin operator. Let us start our walk at the origin with

the coin state going to the right or to the left. The initial state has the form

|ψ(0)〉 = |0〉 ⊗ |R〉 (1.4)

or

|ψ(0)〉 = |0〉 ⊗ |L〉. (1.5)

The first step of the walk reads

|0〉 ⊗ |R〉 H−→ 1√
2
|0〉 ⊗ (|L〉 − |R〉) S−→ 1√

2
(|1〉 ⊗ |L〉 − | − 1〉|R〉) , (1.6)

alternatively for the second initial state

|0〉 ⊗ |L〉 H−→ 1√
2
|0〉 ⊗ (|L〉+ |R〉) S−→ 1√

2
(|1〉 ⊗ |L〉+ | − 1〉|R〉) . (1.7)

At time t, it means after t steps, the state vector reads

|ψ(t)〉 =
∑
m

|m〉 (ψL(m, t)|L〉+ ψR(m, t)|R〉) = U(t)|ψ(0)〉, (1.8)

where U(t) is a unitary propagator. The probability of finding the particle after t

steps at the position m is then given by the square of the norm of the probability

amplitudes vector

p(m, t) =‖ ψ(m, t) ‖2= |ψL(m, t)|2 + |ψR(m, t)|2. (1.9)

We introduced the vector of probability amplitudes as

ψ(m, t) = (ψL(m, t), ψR(m, t))T .
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Moreover, the vector evolves in time as

ψ(m, t+ 1) =
1√
2

(
1 1

0 0

)
ψ(m+ 1, t) +

1√
2

(
0 0

1 −1

)
ψ(m− 1, t)

= HLψ(m+ 1, t) +HRψ(m− 1, t). (1.10)

Considerable simplification of the time evolution equation (1.8) can be achiev-

ed using the Fourier transformation. We switch from discrete position variable

to the more convenient continuous momentum variable.

ψ̃(k, t) =
∑
m∈Z

eikmψ(m, t), k ∈ (0, 2π). (1.11)

This step leads to the equation

ψ̃(k, t) = Ũ(k)ψ̃(k, t− 1) = Ũ t(k)ψ̃(k, 0), (1.12)

where ψ̃(k, 0) stands for the Fourier transformation of the initial state. If the

particle begins the walk at the origin, the initial state in the momentum rep-

resentation remains unchanged and ψ̃(k, 0) = ψ(0, 0) = ψ0. The time evolution

operator is formed by

Ũ(k) =

(
e−ik 0

0 eik

)
·H, (1.13)

and since it is unitary, it can be rewritten as spectral decomposition with the

power of t only for the eigenvalues. The resulting solution of the time evolution

equation (1.12) can be written as

ψ̃(k, t) =
2∑
j=1

λtj(vj(k), ψ0)vj(k). (1.14)

Here λj are eigenvalues and vj(k) are eigenvectors of Ũ(k). It is suitable to con-

sider the eigenvalues as an exponential with the phase dependent on the momen-

tum variable k,

λj(k) = eiωj(k). (1.15)

Performing the inverse Fourier transformation we obtain the solution in the po-

sition representation

ψ(m, t) =
1

2π

∫ 2π

0

ψ̃(k, t)e−imkdk

ψ(m, t) =
1

2π

2∑
j=1

∫ 2π

0

dkei(ωj(k)t−mk)(vj(k), ψ0)vj(k). (1.16)
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1.1 Grover walk on a line and localization

In the previous text we have described the simplest walk in one dimension, the

two-state walk. Now, except of the two allowed shifts, we add another one. This

leads to the extension of the coin operator to a U(3) matrix and the coin space to

a HC = C3. Let us add be the possibility for the particle to stay at its location.

The coin Hilbert space is given by

HC = C3 = Span{|L〉, |S〉, |R〉}.

The displacement operator also changes, the final form reads

S =
∞∑

m=−∞

(|m− 1〉〈m| ⊗ |L〉〈L|+ |m〉〈m| ⊗ |S〉〈S|+ |m+ 1〉〈m| ⊗ |R〉〈R|) .

(1.17)

The vector of probability amplitudes gains the form

ψ(m, t) = (ψL(m, t), ψS(m, t), ψR(m, t))T . (1.18)

An interesting choice for the coin operator is the Grover matrix

C = G =
1

3

 −1 2 2

2 −1 2

2 2 −1

 . (1.19)

This is so because this matrix allows for the localization effect of the walk [1],

which cannot occur in the two-state walk. The particle has, except of two dom-

inant probability peaks traveling one to the left and one to the right with the

increasing number of steps, another probability peak localized at the origin. The

reason why the localization occurs is that the time evolution operator of the

walk Ũ(k) has one eigenvalue independent of the momentum variable k. That

eigenvalue is equal to one. The localizing peak is illustrated on Fig. (1.1).

1.1.1 Velocities of the probability peaks

After the Fourier transformation in the momentum representation we obtain 3×3

time evolution operator

Ũ(k) =

 e−ik 0 0

0 1 0

0 0 eik

 ·G. (1.20)
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Figure 1.1: Probability distribution for the three-state quantum walk on a line

with the Grover coin G after t = 100 and the initial state of the walk is ψ0 =

(0, 1, 0). The vertical lines indicate the calculated location of the dominant peaks

m = vS,R,L · t where vS = 0 and vR,L = ± 1√
3
.

The inverse Fourier transformation of the time evolution equation (1.14) leads us

for the three-state walk to the equation

ψ(m, t) =
1

2π

3∑
j=1

∫ 2π

0

dkei(ωj(k)−
m
t
k)t (vj(k), ψ0) vj(k). (1.21)

Square of norm of this integral gives us the probability of finding the particle at

the position m at time t. The integral can be seen as an equation for the wave

packet. Let us denote the phase as

ω̃j(k) = ωj(k)− m

t
k. (1.22)

Following the stationary phase theory (see [3], [4] or appendices) we know that the

only significant contribution comes from the stationary points of ω̃j(k). The main

idea of the method relies on the cancellation of the increments to the integral,

since the exponential is for large t a rapidly oscillating function. In the neigh-

borhood of the stationary point of the phase factor, the exponential oscillates

less rapidly and the cancellation less significant. Thus the flatness of the phase

factor is crucial for the long time behavior. If ω̃j(k) has no stationary point, the
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integration by parts gives that the integral (1.21) decays faster than any inverse

power of t. If ω̃′j(k1) = 0 than the integral decays proportional to 1√
t
. It gives us

the inner part of the probability distribution. If ω̃′j(k2) = ω̃′′j (k2) = 0, the integral

decreases as t−
1
3 . Such a point k2 defines the highest probability peak.

First we have to find the phases of the eigenvalues, these are

ω1,2(k) = ∓ arccos

(
−2 + cos k

3

)
,

ω3(k) = 0. (1.23)

Vanishing derivatives lead us to the set of equations for the first two eigenvalues

dω̃1,2(k)

dk
=

dω1,2(k)

dk
− m

t
= ± sin k√

3− (2 + cos k)2
− v = 0,

d2ω̃1,2(k)

dk2
=

d2ω1,2(k)

dk2
= ∓

8(sin k
2
)4

((1− cos k)(5 + cos k))
3
2

= ±2

√
1− cos k

(5 + cos k)3
= 0. (1.24)

Equations for the third eigenvalue are simple

dω̃3(k)

dk
= −m

t
= 0

d2ω̃3(k)

dk2
= 0. (1.25)

Let us first discuss the result for the nonzero phases ω1,2(k). The second equation

of (1.24) is satisfies for k = 2πn, n ∈ Z. Provided that k ranges from 0 to 2π it

means that the second derivative vanishes for

k0 = 0. (1.26)

The first equation from (1.24) gives the relation [2]

m =
dω1,2

dk
(k0) · t = v · t. (1.27)

Thus we can assign the velocities to the peaks and using (1.26) they are equal to

vL = lim
k→k0+

dω1

dk
(k) = − 1√

3
,

vR = lim
k→k0+

dω2

dk
(k) =

1√
3
. (1.28)
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The limit is needed because the first derivative of the phase ωj in k0 does not exist.

Now we can easily see that the equations (1.25) corresponds to the non-traveling

peak whose velocity

vS =
dω3

dk
(k) · t = 0 (1.29)

for an arbitrary k ∈ (0, 2π).

In addition, we should point out the connection to the wave behavior. The

relation (1.21) is similar to an equation for the spreading of the wave packet. The

relation between the frequency of the motion and its wavenumber is called the

dispersion relation. Consider our momentum k as this awe number and ω(k) as

the frequency. Then the first derivative of the frequency ω(k) with respect to k

determines the group velocity of spreading of the wave packet, v = vg = dω(k)/dk

[9]. Thus here the group velocity for the three-state Grover walk is

dω1,2(k)

dk
= ± sin k√

3− (2 + cos k)2
= v.
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Chapter 2

Generalized Grover walk on a

line

Let us consider the Grover matrix. We know that the Grover walk exhibits the

localization effect. The question is, if there exist any other coins or even any

family of coins preserving the localization effect as well. In [7] it was shown that

such a family of coins exists.

The symmetry of the Grover matrix is such that any permutation of the basis

states does not change it. Thus we can find the shared eigenvalues of the Grover

matrix G and some permutation matrix PG. One eigenvalue of PG and G corre-

sponding to the shared eigenvector differ by sign. The remaining two eigenvalues

are the same for both matrices. Adding a phase factor into the spectral decom-

position of G switches between these two sign, i.e. it switches between the Grover

and the permutation matrix. The only adequate 3× 3 permutation matrix is

Pg =

 0 0 1

0 1 0

1 0 0

 . (2.1)

Consider the orthonormal basis formed by the shared eigenvectors of G and

PG

v1 =
1√
2

(−1, 0,−1)T ,

v2 =
1√
6

(−1, 2,−1)T ,

v3 =
1√
3

(1, 1, 1)T . (2.2)
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The relevant eigenvalues are

λG1,2,3 = −1,−1, 1

λPG1,2,3 = −1, 1, 1. (2.3)

As we see, λG2 = −λPG2 . For the original Grover matrix hold

G = −vT1 · v1 − vT2 · v2 + vT3 · v3. (2.4)

To switch between the eigenvalues λG2 ↔ λPG2 we have to add a phase factor eic

in front of the second member of the spectral decomposition

G(c) = −vT1 · v1 − eicvT2 · v2 + vT3 · v3

=
1

6

 −1− eic 2(1 + eic) 5− eic

2(1 + eic) 2(1− 2eic) 2(1 + eic)

5− eic 2(1 + eic) −1− eic

 . (2.5)

The choice of the phase c = 0 leads to the original Grover coin. On the other

hand, the choice of the phase c = π gives the permutation matrix

G(π) =

 0 0 1

0 1 0

1 0 0

 . (2.6)

As will be shown later, this one-parameter family of coins preserves the constant

eigenvalue of the time evolution operator Ũ(k, c).

2.1 Velocities of the probability peaks

In this section we will determine the velocities of the highest probability peaks

of finding the particle. The time evolution operator for the one parameter family

of walks has the form

Ũ(k, c) =

 e−ik 0 0

0 1 0

0 0 eik

 ·G(c). (2.7)

For its eigenvalues eiωj(k,c)

ω1,2(k, c) =
c

2
± arccos

(
1

3
cos
( c

2

)
(2 + cos k)

)
,

ω3(k, c) = 0. (2.8)
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Figure 2.1: The probability distribution for the three-state quantum walk on

a line with Grover coin G(c), G(π
3
). The number of steps is t = 100 and the

initial state of the walk is ψ0 = (0, 1, 0). The vertical lines correspond to the

calculated locations of the highest peaks m(c) = v(c) · t where vS(c) = 0 and

vR,L(c) ≈ ± 1√
3
(1− c

π
).
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As we can see, one eigenvalue is as in the Grover walk independent of the mo-

mentum k. Thus there exists a probability peak with zero velocity.

For the two remaining eigenvalues we have to evaluate the appropriate veloci-

ties of the peaks. The first and the second derivatives of ω̃1,2(k, c) = ω1,2(k, c)−m
t
k

are

dω̃1,2(k, c)

dk
=

dω1,2(k, c)

dk
− m

t
= ±

cos c
2

sin k√
9− (cos c

2
(2 + cos k))2

− v,

d2ω̃1,2(k, c)

dk2
=

d2ω1,2(k, c)

dk2
= ±

cos c
2
(9 cos k − cos2 c

2
(3 + 5 cos k + cos 2k))

(9− cos2 c
2
(2 + cos k)2)3/2

.

(2.9)

Both second derivatives vanish for

k0 = 2 arccos

(
9− 5 cos2 c

2
− 3 sin c

2

√
9− cos2 c

2

4 cos2 c
2

)
. (2.10)

The group velocity of the walk is

dω1

dk
(k, c) = −

cos c
2

sin c
2√

9− cos2 c
2
(2 + cos k)2

= v(k, c)

(2.11)

and for the highest right and the left traveling peaks

vL(c) =
dω1

dk
(k0, c) = −

√
3− cos2 c

2
− sin c

2

√
9− cos c

2

6
,

vR(c) =
dω2

dk
(k0, c) = −vL(c). (2.12)

Acquired velocities dependent on a phase c are displayed on figure (2.1). As

we can see, the dependence is almost linear

vR(c) = −vL(c) ≈ 1√
3

(
1− c

π

)
. (2.13)

Further we find that from the one-parameter family of coins G(c) the original

Grover walk with G = G(0) is the fastest one. With increasing phase c the walk

slows down until its velocity becomes zero for the phase c = π, i.e vR(π) = 0.

14



Figure 2.2: Dependence of the highest probability peaks velocities (2.12) for the

Grover walk with phase G(c) on its phase c. Moreover, we show the difference

between the velocities and their linear approximations vR,L ≈ ± 1√
3
(1 − c

π
). Ve-

locity of the right (left) traveling peak is plotted by black (red) full line and its

approximation by black (red) dashed line.
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Chapter 3

Grover walk on a square lattice

Let us extend the quantum walk on the line into the second dimension. Instead

of the line, the walk is now realized on the square lattice. In the classical case

one can imagine the walk on the square network as two connected walks on the

line. First, we decide which line to choose, horizontal or vertical. Second, we

move on the selected one according to the coin tossing. In the quantum case, the

coin operator mixes the states of both lattices into a superposition of the basis

states of the coin space.

As in the one-dimensional case, the walk takes place in the Hilbert space given

by the tensor product of position and coin space H = HP ⊗HC . The particle has

four possible movements, they are to the left, right, down or up. Thus for the

coin space holds

HC = C4 = span{|L〉, |R〉, |D〉, |U〉}.

The position space HP is now given by the tensor product of two one-dimensional

position spaces

HP = span{|m1,m2〉 ;m1,2 ∈ Z},

where ′m′1 belongs to the position on the horizontal lattice, i.e. to the move to

the left or to the right and ′m′2 belongs to the position on the vertical lattice, i.e.

to the move up or down.

Each single step is given by (1.1), nevertheless the shift operator S changes
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to

S =
∞∑

m,n=−∞

(|m− 1, n〉〈m,n| ⊗ |L〉〈L|+ |m+ 1, n〉〈m,n| ⊗ |R〉〈R|

+ |m,n− 1〉〈m,n| ⊗ |D〉〈D|+ |m,n+ 1〉〈m,n| ⊗ |U〉〈U |).
(3.1)

The coin operator C is a U(4) matrix. Subsequent description of the walk is

analogical to the one-dimensional case, thus we mention it only briefly. The wave

function or the vector of probability amplitudes on the coordinate ~m = (m1,m2)

at time t is composed of four components

ψ(~m, t) = (ψL(~m, t), ψR(~m, t), ψD(~m, t), ψU(~m, t))T . (3.2)

In this case there exists a coin leading to the localization effect. It is a four-

dimensional Grover coin. The localizing Grover coin can be constructed for each

higher dimension as follows. Let the state |x〉 denote the uniform superposition

over all states of the standard basis of some Hilbert space

|x〉 =
1√
N

N∑
i=1

|i〉, (3.3)

where N is the dimension of the space. Then the operator

GN = 2|x〉〈x| − I =
2

N



1 1 1 . .

1 1 1 . .

1 1 1 . .

. . . .

. . . .


− I,

is the n-dimensional Grover matrix.

Consider as a coin operator the four-dimensional Grover matrix

G4 =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 . (3.4)
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The time evolution of the walk is

ψ(~m, t) = ψ(m1,m2, t+ 1) = G4Lψ(m1 + 1,m2, t) +G4Rψ(m1 − 1,m2, t)

+ G4Dψ(m1,m2 + 1, t) +G4Uψ(m1,m2 − 1, t),

(3.5)

where

G4L =
1

2


−1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G4R =
1

2


0 0 0 0

1 −1 1 1

0 0 0 0

0 0 0 0

 ,

G4D =
1

2


0 0 0 0

0 0 0 0

1 1 −1 1

0 0 0 0

 , G4U =
1

2


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 −1

 . (3.6)

The Fourier transformation

ψ̃(~k, t) = ψ̃(k1, k2, t) =
∑
~m∈Z2

ψ(~m, t)eik1teik2t, (3.7)

transforms the time evolution equation from the position representation into the

momentum representation. The vector is ~k = (k1, k2) and both k1,2 ranges from

−π to π. The time evolution equation acquires the simplified form

ψ̃(~k, t) = Ũ(~k)ψ̃(~k, t− 1) = Ũ t(~k)ψ̃(~k, 0), (3.8)

and the time evolution operator in the momentum representation is given by

Ũ(~k) =
1

2


−e−ik1 e−ik1 e−ik1 e−ik1

eik1 −eik1 eik1 eik1

e−ik2 e−ik2 −e−ik2 e−ik2

eik2 eik2 eik2 −eik2



=


e−ik1 0 0 0

0 eik1 0 0

0 0 e−ik2 0

0 0 0 eik2

 ·G4. (3.9)
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The initial state in the Fourier picture is equal to the initial state in position

domain provided that the walk starts from the origin, ψ̃(~k, 0) = ψ(0, 0, 0) = ψ0.

The spectral decomposition of the time evolution operator Ũ(~k) and subsequent

inverse Fourier transformation allows us to write the resulting form of the wave

function in position representation in the form

ψ(~m, t) =
1

(2π)2

4∑
j=1

∫ π

−π
dk1

∫ π

−π
dk2e

i(ωj(~k)− ~m·~k
t

)t(vj(~k), ψ0)vj(~k), (3.10)

where j ∈ {1, 2, 3, 4}.

3.1 Velocities of the probability peaks

Analogously to the one-dimensional walk, we would like to determine the ve-

locities of the probability peaks. Using the same procedure as in the previous

sections we obtain the velocities of the highest peaks. The equation (3.10) is

now the generalized equation of the wave packet in two dimensions describing its

propagation. We can generalize the relation for the group velocity (1.27) in a

straightforward way as the gradient of the frequency

~v = ∇~kω(~k). (3.11)

We are looking for the velocities of the dominant peaks. These peaks occur

at the coordinates (m1,m2) where the integral (3.10) contributes the most. Fol-

lowing the method of stationary phase the group velocity of the highest peaks

will be found in such a point ~k = ~k0, where ω̃j(~k) = ωj(~k)− ~m·~k
t

in the (3.10) has

vanishing the first derivative with respect to ~k. As for the second derivatives the

Hessian matrix should be singular.

The eigenvalues of the propagator (3.9) are eiωj(
~k) and the frequencies read

ω1,2(~k) = ∓ arccos

(
−1

2
(cos k1 + cos k2)

)
,

ω3,4(~k) = 0. (3.12)

Zero-valued frequencies lead to the stationary probability peak, thus for one ve-

locity

~vs = ~0. (3.13)
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To find ~k0 we have to determine when the Hessian matrix

H(ωj(~k)) =

 d2ωj(~k)

d2k1

d2ωj(~k)

dk1dk2

d2ωj(~k)

dk2dk1

d2ωj(~k)

d2k2

 (3.14)

is singular. The second derivatives of the frequencies (3.12) are

∂2ω1(~k)

∂2k1
=

∂2ω2(~k)

∂2k1
= − (1 + cos2 k1) cos k2 + (−3 + cos2 k2) cos k1

[(2− (cos k1 + cos k2))(2 + cos k1 + cos k2)]3/2
,

∂2ω1(~k)

∂2k2
=

∂2ω2(~k)

∂2k2
= − (1 + cos2 k2) cos k1 + (−3 + cos2 k1) cos k2

[(2− (cos k1 + cos k2))(2 + cos k1 + cos k2)]3/2
,

∂2ω1,2(~k)

∂k1∂k2
=

∂2ω1,2(~k)

∂k2∂k1
= − (cos k1 + cos k2) sin k1 sin k2

[(2− (cos k1 + cos k2))(2 + cos k1 + cos k2)]3/2
.

(3.15)

We solve the equation

detH(ωj(~k)) = 0, (3.16)

where

detH(ωj) =
(cos k1 − cos k2)

2

(−2 + cos k1 + cos k2)2(2 + cos k1 + cos k2)2
. (3.17)

It is satisfied for

k1 = ±k2. (3.18)

Thus
~k0 = (k1,±k1), (3.19)

and k1,2 ranges between (−π, π).

Due to the equation (3.11) the velocity of the particle with momentum ~k is

given by

~v(~k) = (v
(±)
1 (~k), v

(±)
2 (~k)) =

(
∂ωj
∂k1

(~k),
∂ωj
∂k2

(~k)

)
, j ∈ 1, 2 (3.20)

where

∂ω1,2(~k)

∂k1
= ± sin k1√

(2− (cos k1 + cos k2))(2 + cos k1 + cos k2)
= v

(±)
1 (~k),

∂ω1,2(~k)

∂k2
= ± sin k2√

(2− (cos k1 + cos k2))(2 + cos k1 + cos k2)
= v

(±)
2 (~k).

(3.21)
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and for the highest peaks

~vHP = (vHP1 , vHP2 ) =

(
dωj
dk1

(~k0),
dωj
dk2

(~k0)

)
, (3.22)

The velocities of the highest moving peaks

~vHP1 =

(
1

2
,

1

2

)
,

~vHP2 =

(
−1

2
,

1

2

)
,

~vHP3 =

(
−1

2
,−1

2

)
,

~vHP4 =

(
1

2
,−1

2

)
. (3.23)

This result for the highest peaks belongs to such a ~k0, where the Hessian

matrix is singular, but non-zero. Its rank is equal to one. From the numerical

simulation in the Fig. (3.1) we see that except the four highest peaks there is

also high probability of finding the particle on the border of the non-zero part of

the probability distribution. It should be noted that the range of the velocities

(3.21) form a circle

v21 + v22 ≤
1

2
. (3.24)

One might think that the velocities on the boarder, where v21 + v22 = 1/2, corre-

spond also to the singular Hessian matrix. Nevertheless solving the zero-valued

determinant of H(ωj) does not give such velocities. Moreover, as we will show

later, the second derivatives on the circle v21 +v22 = 1/2 are not defined. The rank

of the Hessian matrix is equal to one on condition k1 = ±k2, but it leads only to

the velocities (3.23).

3.2 Decrease of the highest probability peaks

According to the method of the stationary phase [3], [4], we can predict decreasing

behavior of the highest probability peaks depending on the type of the stationary

point of the phase ω̃j.

As we can see from the numerical simulation in the Fig. (3.2), maximal peaks

of the probability distribution (3.1) decrease as an inverse value of the total
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Figure 3.1: Probability distribution for the quantum walk on a square lattice

with Grover coin G4. The number of steps is t = 100 and the initial state of the

walk is ψ0 = 1
2
(1, 1,−1,−1). Using this initial state, the localization disappears.

The highest peaks travel with constant velocities ~v = (±1
2
,±1

2
).
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Figure 3.2: Logarithmic plot illustrating the decrease off the value of the highest

probability peaks in (3.1) dependence on the number of steps t by black, in

comparison with its inverse value t−1 by red. The initial state of the walk is

ψ0 = 1
2
(1, 1,−1,−1). The total number of steps t on the x axis goes from 0 to

150. On the y axis is plotted maximal probability of finding the particle i.e. the

value of the highest peak in the probability distribution after t steps. For the large

number of steps the value of the highest probability peaks decrease as an inverse

value of m. This property follows from the stationary phase approximation, since

the stationary points of the phase ω̃j = ωj − ~v · ~k form a curve.
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number of steps t i.e. t−1. Such a decrease occurs if the stationary points of the

phase ω̃j form a curve (see Chap.9 in [3] or Appendices). The curve is formed by

points k1 = ±k2. The situation is illustrated on Fig. (3.3).

3.3 Change of the basis variables

Some properties of the walks can be found by changing the momentum variables
~k = (k1, k2) to the velocities ~v = (v1, v2). This mapping is one-to-two (see for

example figure (3.3)).

Let us consider the Grover walk. Using v
(±)
1,2 (~k, p) from equation (3.21) we find

momentum variables as a function of the velocities. It is sufficient to consider

only one of the velocities, for instance v
(+)
1,2 (~k, p). Let us denote v

(+)
1,2 (~k, p) = v1.

The resulting relation are

sin k1 =
2v1
√

1− 2(v21 + v22)√
(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

,

cos k1 =
3v21 + v22 − 1√

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)
,

sin k2 =
2v2
√

1− 2(v21 + v22)√
(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

,

cos k2 = − v21 + 3v22 − 1√
(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

.

(3.25)

The determinant of the Hessian matrix equals in the original momentum variables

equal to

detH(ωj) =
(cos k1 − cos k2)

2

(−2 + cos k1 + cos k2)2(2 + cos k1 + cos k2)2

and the derivatives of the frequencies ωj, j ∈ {1, 2} are from equation (3.15). We

were interested in such k1,2, where the Hessian matrix is singular. The transfor-

mation to the velocity variables gives

detH(ωj) = −1

4
(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1). (3.26)
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Figure 3.3: Contours lines giving the velocities v
(±)
1,2 (~k) in both directions (3.21)

equal to 1
2
. The curve of stationary points is formed by k1 = ±k2 and illustrated

by mixing solid lines with dashed lines. Blue and green line correspond to the

v
(±)
1 (~k) = 1

2
, red and black dashed line corresponds to the v

(±)
2 (~k) = 1

2
. Top figure

shows the velocities v
(±)
1,2 (~k) from (3.21) and is well seen that contour plot cuts

this figure at the velocity 1
2
.
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Thus the matrix is singular only if

|v1 + v2| = 1

|v1− v2| = 1. (3.27)

Considering the region covered by the walk, the only reasonable result is that the

matrix is singular for

v1,2 = ±1

2
. (3.28)

It is equivalent to the velocities of the highest peak and corresponds to the results

obtained in the momentum variable (3.23). The situation is illustrated in the Fig.

(3.3). The walk covers the points of the circle. We can try to explain, why there

does not exist any velocities that gives the singular Hessian matrix and correspond

to the smaller peaks of the walk. The smaller peaks are located on the boarder

of the walk region where v21 + v22 = 1
2
. The second derivatives of the frequencies

from equation (3.15) can be using (3.25) transfered into the new variables as

∂2ω1,2

∂2k1
=
−1 + v22 + v21(3 + 2v22 − 2v21)

√
2
√

1
2
− v21 − v22

,

∂2ω1,2

∂k1∂k2
=

v1v2(v
2
2 − v21)

√
2
√

1
2
− v21 − v22

,

∂2ω1,2

∂2k2
= −−1 + v21 + v22(3 + 2v21 − 2v22)

√
2
√

1
2
− v21 − v22

. (3.29)

Also for the smaller peaks (where 1
2
− v21 − v22 = 0) the second derivatives do not

exist.
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Figure 3.4: Parametric figure of the velocities v
(±)
1,2 (~k) from equation (3.21) on

the right. The thick black lines correspond to the singular Hessian matrix in the

velocity variable (equation (3.26)). The grid lines in the position v1,2 = ±1
2

depict

the velocities of the highest peaks and ± 1√
2

depict the maximal velocities in each

direction. The thick black lines touch the velocity region in the points belonging

to the velocities of the highest probability peaks. The left figure illustrates the

boundary of the velocity region with the grid lines in the same positions.
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Chapter 4

Generalized Grover walk on a

square lattice with parameter p

In [6] Inui et al. introduced a one-parameter family of quantum coins as a gener-

alization of the Grover coin. It is

G(p) =


−p q

√
pq
√
pq

q −p √pq √pq
√
pq
√
pq −q p

√
pq
√
pq p −q

 , p+ q = 1 (4.1)

and

p, q ∈ (0, 1).

The special case p = 1
2

results in the Grover walk.

The time evolution operator in the momentum variables ~k = (k1, k2) is given

by

Ũ(~k, p) =


e−ik1 0 0 0

0 eik1 0 0

0 0 e−ik2 0

0 0 0 eik2

 ·G(p). (4.2)

As the evolution operator for the original Grover walk, it also has eigenvalues

independent of the wavenumbers k1, k2. The eigenvalues are

λ1,2 = eiω1,2(k1,k2,p), λ3,4 = ±1.

The behavior of this generalized Grover walk was studied in [5].The authors

have determined pseudovelocity of the particle and studied its long-time behavior
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depending on the parameter p of the quantum coin and the initial state of the

walk. In the following sections we will focus on the properties of the highest peaks

in the probability distribution. We show that their velocities and decay rates can

be obtained in a similar way as for the Grover walk.

4.1 Velocities of the highest probability peaks

To find the velocities of the highest probability peaks for the generalized type of

Grover walk in two dimensions we need to find the frequencies ωj(~k, p) belonging

to the eigenvalues λj = eiωj(
~k,p) of the time evolution operator (4.2). Note that

λ3,4 = ±1, i.e. ω3,4 = 0, indicate the existence of the central peak with zero

velocity, ~vS = ~0. The remaining frequencies are

ω1,2(~k, p) = ∓ arccos (−(p cos k1 + q cos k2)), q = 1− p. (4.3)

The group velocity of the walk is given by the gradient of frequency with respect

to the wave vector ~k

~v = (v
(±)p
1 , v

(±)p
2 ) =

(
∂ωj
∂k1

(~k, p),
∂ωj
∂k2

(~k, p)

)
and

v
(±)p
1 = ± p sin k1√

(1− (p cos k1 + q cos k2))(1 + p cos k1 + q cos k2)
,

v
(±)p
2 = ± q sin k2√

(1− (p cos k1 + q cos k2))(1 + p cos k1 + q cos k2)
, q = 1− p.

(4.4)

The search for the velocities of the highest peaks requires solving the equation

for the singular non-zero Hessian matrix

H(ωj(~k, p)) =

 d2ωj(~k,p)

d2k1

d2ωj(~k,p)

dk1dk2

d2ωj(~k,p)

dk2dk1

d2ωj(~k,p)

d2k2

 , j = 1, 2 (4.5)
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where

∂2ω1,2(~k, p)

∂2k1
= ±pcos k1(1− (p cos k1 + q cos k2)

2)− p sin2 k1(p cos k1 + q cos k2)

[(1− (p cos k1 + q cos k2))(1 + p cos k1 + q cos k2)]3/2

∂2ω1,2(~k, p)

∂2k2
= ±q cos k2(1− (p cos k1 + q cos k2)

2)− q sin2 k2(p cos k1 + q cos k2)

[(1− (p cos k1 + q cos k2))(1 + p cos k1 + q cos k2)]3/2

∂2ω1,2(~k, p)

∂k1∂k2
= ∓pq (p cos k1 + q cos k2) sin k1 sin k2

[(1− (p cos k1 + q cos k2))(1 + p cos k1 + q cos k2)]3/2
.

(4.6)

Thus we solve

detH(ωj(~k, p)) = 0, (4.7)

where

detH(ω1,2(~k, p)) = −p2(1−p)2 (cos k1 + cos k2)
2

(−1 + p cos k1 + q cos k2)2(1 + p cos k1 + q cos k2)2
.

(4.8)

It is not surprising that the equation (4.7) has the same solutions as the equation

(3.16) for the original Grover walk. It is satisfied for ~k0, where

cos k1 = cos k2, i.e. ~k0 = (k1,±k1) (4.9)

for which the Hessian matrix is of rank one. The solution (4.9) for the singular

but non-zero Hessian matrix leads to the velocities of the highest probability

peaks that are

~vHPp = (v
HPp
1 , v

HPp
1 ) =

(
dωj
dk1

(~k0, p),
dωj
dk2

(~k0, p)

)
, j = 1, 2 (4.10)

where ~k0 is given by (4.9). It leads, except for the central peak, to additional four

peaks with velocities equal to the parameters of the generalized Grover walk

~v
HPp
1 = ( p, q),

~v
HPp
2 = (−p, q),

~v
HPp
3 = (−p,−q),

~v
HPp
4 = ( p,−q). (4.11)
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The generalized Grover walk behave according to its parameter, the velocities

of the probability peaks are determined by p. The probability distribution of the

walk spreads as an ellipse with the equation

v21
p

+
v22
q
≤ 1, q = 1− p. (4.12)

Parameters
√
p and

√
q respond to the major and the minor semiaxes. The

probability distribution is illustrated in Fig. (4.1) for the number of steps t = 50

and three different choices of the parameter p. It exhibits the localization effect

of the walk. Parameters p and q are chosen from the interval (0, 1). Nevertheless,

Fig. (4.2) shows, what happens with the walk if p = 1 (q = 0). As we can see,

the walk lost its interesting interference properties. After t steps its location is

either at the origin or t steps on the left or t steps on the right from the origin.

This three possibilities occur with the same probability 1
3
.

4.2 Decrease of the highest probability peaks

As for the the original Grover walk we are interested in the decrease of the highest

probability peaks depending on the number of steps t. Our expectation is that

this generalized type of walk has the same decline as the original Grover walk.

Indeed, we found the continuous curve of stationary points of the phase appearing

in the inverse Fourier transformation ω̃j(k1, k2, p) = ωj(k1, k2, p) − ~m·~k
t

which is

given by k1 = ±k2. This is the same result as for the original Grover walk. Also

the highest probability peaks drop with the total number of steps t as its inverse

value t−1.

Fig. (4.3) we can see the numerical simulation of the dropping peaks for the

generalized type of walk in comparison with the inverse value of the total number

of steps t−1. Moreover, in Fig. (4.4) the existence of the continuous curve of

the stationary points is illustrated. Comparing Fig. (3.2) and (4.3) we see that

the same initial state for the Grover and the generalized Grover walk gives only

small differences. For certain number of steps (every third), the generalized type

of walk has its very highest peak the central one, instead of the peaks at the

border. With the increase of the total number of steps, starting at some critical

number of steps t0, the central peak becomes the most significant. If we omit the

localizing peak, the same figure as for the Grover walk (3.2) is obtained. Note

that the initial state is for the Grover walk was non-localizing.
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Figure 4.1: The probability distribution for the generalized Grover walk with

coin (4.1) after number of steps t = 50. All plots are for the same initial state

ψ0 ∼ (
√

2,
√

2, 2, 2) and the parameter is for the first figure p = 2
3
, for the second

p = 4
5

and for the third p = 9
10
.
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Figure 4.2: The probability distribution for the generalized Grover walk with coin

(4.1) after t = 50 steps, the optional parameter is chosen p = 1.

4.3 Change of the basis variables

Consider the one-parameter family of coins with parameter p. As for the Grover

walk we have two velocities for each direction v
(±)p
1,2 that differ only in sign. Thus

we can take for instance only v
(+)p
1,2 and denote it as v1,2. From the equations (4.4)

we obtain for the moments k1,2

sin k1 =
2v1
√
pq − qv21 − pv22)

p
√

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)
,

cos k1 =
(1 + q)v21 + pv22 − p

p
√

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)
,

sin k2 =
2v2
√
pq − qv21 − pv22)

q
√

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)
,

cos k2 = − (1 + p)v22 + qv22 − q
q
√

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)
,

(4.13)

where parameter p ∈ (0, 1) and q = 1 − p. Determinant of the Hessian matrix

(4.5) is for frequencies ω1,2(~k, p) from equation (4.3) given as

detH(ω1,2(~k, p)) = −p2(1−p)2 (cos k1 + cos k2)
2

(−1 + p cos k1 + q cos k2)2(1 + p cos k1 + q cos k2)2
.
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Figure 4.3: The decrease of the probability of the highest probability peaks with

increasing total number of steps t. The probability value of the highest peaks

(black points) is approximated by the red line ∼ t−1. Number of steps t ranges

from 0 to 150 and both axes have logarithmic scale. The simulation is made for

initial state ψ0 = 1
2
(1, 1,−1,−1) and the parameter of the walk is p = 1

3
(i.e.

p = 2
3
). In the top figure are distant points which illustrate the places where the

central peak has overgrown the highest moving probability peaks. In the second

graph is the central peak omitted.
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Figure 4.4: This figure represents contours of the velocities of the highest proba-

bility peaks for the generalized Grover walk with coin (4.1). The parameter p of

the walk is p = 1
5
, it means q = 1 − p = 4

5
. The velocities for this type of walk

are equal to v
HPp
1 = ±p, vHPp2 = ±q. Top figure illustrates the velocities v

(±)p
1,2

from the equation (4.4). Blue and green lines in the bottom figure correspond

to the contours where v
(±)p
1 = ±p, red and black dashed line corresponds to the

v
(±)p
2 = ±q. The curve of stationary points is formed by k1 = ±k2 and illustrated

by mixing solid lines with dashed lines.
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The results here are similar as for the Grover walk. In the velocity variables the

determinant has the same form as for the Grover walk, also the Hessian matrix

is singular for the same case. It is

detH(ω1,2) = −1

4
(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1) (4.14)

is equal to zero if

|v1 + v2| = 1,

|v1− v2| = 1. (4.15)

As we can see in the Fig. (4.3), considering that the velocities form the ellipse
v21
p

+
v22
q
≤ 1 with the interior points, the equations (4.15) are satisfied only for

the highest peaks where

v1 = ±p, v2 = ±q. (4.16)

For the smaller peaks, located on the boundary of the ellipse, is the situation the

same as for the Grover walk. The elements of the Hessian matrix, the second

partial derivatives of the frequencies with respect to the wavenumbers k1,2 are

still on the boundary of the ellipse not defined. For instance

∂2ω1,2

∂k21
=
p(1 + v22) + v21(2− q − v21 + v22)

2
√
pq
√

1− v21
p
− v22

q

. (4.17)

Also from the Hessian matrix we cannot find the velocities of the smaller peaks

located on the boundary of the ellipse, since the second derivatives are there not

defined.
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Figure 4.5: Parametric figure of the velocities v
(±)p
1,2 from equation (4.4) on the

right by red. The thick black lines correspond to the velocities corresponding to

the singular Hessian matrix (equation (4.15)). The choice of the parameter p is

p = 2
3

i.e. q = 1
3
. The grid lines are in the horizontal direction on the positions ±p

and ±√p, in the vertical direction on the positions ±q and ±√q. Lines ±√p,±√q
correspond to the maximal velocity in appropriate direction, lines ±p,±q to the

velocities of the highest peaks. The thick black lines touch the red region in the

points belonging to the velocities of the highest probability peaks. The left figure

illustrates the boundary of the red region on the right. The grid lines have the

same positions.
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Chapter 5

Generalized Grover walk on a

square lattice with phase c

The second generalization of the two-dimensional Grover walk can by done using

the same procedure as in the chapter 2. We would like to make continuous shift

from the Grover coin G4 to some permutation matrix. In the 4× 4 case we have

more possibilities what permutation matrix to choose. However, not every option

is suitable.

Permutation matrix as the coin operator changes in each step the basis state

of the coin space HC . The walk takes place on the square network and we can

present it as the composition of two one-dimensional walks on the line. Horizontal

walk has as the basis of the coin space vectors |L〉, |R〉, the basis of the coin space

for the walk on the vertical line is then given by vectors |D〉, |U〉. Thus there is

no point in using such a permutation matrix which changes the basic states of

the coin space between these two walks on the line. Using this argument these

types of permutation matrices

P1 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 ,
| L〉 ←→| U〉
| R〉 ←→| D〉

P2 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,
|L〉 ←→ |D〉
|R〉 ←→ |U〉
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can be excluded. The only important permutation matrix is such which changes

the basic states only on the corresponding lines and does not switch between the

horizontal and the vertical line. It is

|L〉 ←→ |R〉
|U〉 ←→ |D〉

(5.1)

and the permutation matrix has form

P =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (5.2)

As might be seen, there exist other permutation matrices that do not mix the

basis state of the walk on the horizontal or the vertical lines. Those are such that

switch in each step the basis vector only on one line and on the other line acts as

identity

P3 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 , | L〉 ←→| R〉

P4 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , |D〉 ←→ |U〉.

Nevertheless, as we will show at the end of the section, permutation matrices P3,4

are also not appropriate choices.

We would like to find a matrix dependent on some continuous parameter that

passes between the Grover and the permutation matrix

G4 =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 ←→ P =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Because any permutation of the basis states does not change the Grover matrix,

we can find the shared eigenvalues of the Grover and the permutation matrix.
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Nevertheless, the eigenvalues of our matrices are not the same, they differ in

one eigenvalue. Knowledge of this and the spectral decomposition give us the

one-parameter family of coins dependent on the continuous parameter.

To find a one-parameter family of coins dependent on some continuous param-

eter c ∈ (0, π), which converts the Grover matrix G4 to the permutation matrix

P, we have to determine the shared eigenvectors from G4 and P . Those are

vG4,P
1 =

1

2
(1, 1,−1,−1)T ,

vG4,P
2 =

1√
2

(0, 0, 1,−1)T ,

vG4,P
3 =

1√
2

(1,−1, 0, 0)T ,

vG4,P
4 =

1

2
(1, 1, 1, 1)T . (5.3)

The corresponding eigenvalues for the permutation matrix P and the Grover

matrix G4 are
P : λP1 = 1

λP2 = −1

λP3 = −1

λP4 = 1

G4 : λG4
1 = −1

λG4
2 = −1

λG4
3 = −1

λG4
4 = 1.

(5.4)

Thus the Grover coin can be decomposed in the form

G4 =
∑4

j=1 λ
G4
j (vTj · vj)

= −vT1 · v1 − vT2 · v2 − vT3 · v3 + vT4 · v4
(5.5)

where we have marked vj = vG4,P
j , j ∈ {1, 2, 3, 4}.

The same eigenvectors v2,3,4 correspond to the same eigenvalues λG4,P
2,3,4 . How-

ever the eigenvector v1 belongs to different eigenvalues λP1 = 1 and λG4
1 = −1. It

leads to the implementation of the phase factor eic in front of the first member

of the sum (5.5). The resulting one-parameter family of coin has the form

G4(c) = −eicvT1 · v1 − vT2 · v2 − vT3 · v3 + vT4 · v4

=
1

4


−(1 + eic) 3− eic 1 + eic 1 + eic

3− eic −(1 + eic) 1 + eic 1 + eic

1 + eic 1 + eic −(1 + eic) 3− eic

1 + eic 1 + eic 3− eic −(1 + eic)

 . (5.6)
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It will be shown that the one-parameter family of walks with coin G4(c) preserves

the localization effect. The time evolution operator for the family of walks is

Ũ(~k, c) =


e−ik1 0 0 0

0 eik1 0 0

0 0 e−ik2 0

0 0 0 eik2

 ·G4(c), (5.7)

where ~k = (k1, k2). We are looking for the eigenvalues of the time evolution

operator ηj = eiωj(
~k,c), where ωj(~k, c) is the frequency. The eigenvalues are

η1,2 = eiω1,2(~k,c),

η3,4 = eiω3,4(~k,c) = ±1.

There are two constant eigenvalues having the same value as for the four-dimensio-

nal Grover time evolution operator (3.9). This indicates that the localization

effect remained untouched.

We should note, why the permutation matrices P3,4 are not appropriate choice.

The Grover matrix has with these matrices the same shared eigenvectors as with

the permutation matrix P, equation (5.3). However, the permutation matrices

P3,4 have two eigenvalues different. If we add phase factors in front of the two

members in the spectral decomposition (5.5), we do not obtain a coin preserving

the localization effect. Nevertheless, if we consider in the previous chapter as

the parameter p = 0 or p = 1, the matrices G(p) eq.(4.1) are equal to the

permutation matrices P3 or P4. Thus we can say, that the previous case with

parameter p includes remaining suitable permutation matrices.

5.1 Velocities of the probability peaks

The dependences of the frequencies ωj(~k, c) on the wave vector ~k correspond to

the dispersion relations given by

ω1,2(~k, c) =
c

2
± arccos

[
−1

2
(cos k1 + cos k2) cos

c

2

]
. (5.8)

and

ω3,4(~k, c) = 0. (5.9)
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The group velocities of the walk are given by the gradient of the frequencies

ωj, j ∈ {1, 2, 3, 4} as follows:

~v = ∇~kω1,2(~k, c) = (
∂ω1,2

∂k1
(~k, c),

∂ω1,2

∂k2
(~k, c))

~vS = ∇~kω3,4(~k, c) = ~0. (5.10)

The first equation from (5.10) results in

v
(±)phase
1 = ±

cos c
2

sin k1√
(2− cos c

2
(cos k1 + cos k2))(2 + cos c

2
(cos k1 + cos k2))

,

v
(±)phase
2 = ±

cos c
2

sin k2√
(2− cos c

2
(cos k1 + cos k2))(2 + cos c

2
(cos k1 + cos k2))

,

(5.11)

where ~v = (v
(±)phase
1 , v

(±)phase
2 ).

As in the section (3.1) we are looking for the group velocity of the highest

probability peaks. This velocity is found at the point ~k = ~k0 where the Hessian

matrix is singular. The group velocity ~vS for ω3,4 is easily solved using equation

(5.11) and belongs to the central locating peak. Thus we are interested only in

ω1,2(~k, c). We have to solve when the Hessian matrix

H(ωj(~k, c)) =

 d2ωj(~k,c)

d2k1

d2ωj(~k,c)

dk1dk2

d2ωj(~k,c)

dk2dk1

d2ωj(~k,c)

d2k2

 , j = 1, 2 (5.12)

has its determinant

detH((ωj(~k, c))) =
2a4 cos 2k1 + 8a2(a2 − 2) cos k1 cos k2 + 2a4(2 + cos 2k2)

4(−2 + a(cos k1 + cos k2))2(2 + a(cos k1 + cos k2))2

(5.13)

equal to zero. The second derivatives are

∂2ω1,2(~k, c)

∂2k1
= ±acos k1(4− a2(cos k1 + cos k2)

2)− a2 sin2 k1(cos k1 + cos k2)

[(2− a(cos k1 + cos k2))(2 + a(cos k1 + cos k2))]3/2
,

∂2ω1,2(~k, c)

∂2k2
= ±acos k2(4− a2(cos k1 + cos k2)

2)− a2 sin2 k2(cos k1 + cos k2)

[(2− a(cos k1 + cos k2))(2 + a(cos k1 + cos k2))]3/2
,

∂2ω1,2(~k, c)

∂k1∂k2
= ±a3 (cos k1 + cos k2) sin k1 sin k2

[(2− a(cos k1 + cos k2))(2 + a(cos k1 + cos k2))]3/2
,

(5.14)
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where we have identified

a = cos
c

2
. (5.15)

Here we have to divide the solution according to the rank of the Hessian

matrix. The highest probability peaks are now located at the position, where the

Hessian matrix is the zero matrix. It is satisfied for

~k0 =
(
±π

2
,±π

2

)
. (5.16)

Now the equations (5.11) give us the velocities of the highest moving probability

peaks

~vHPphase = (v
HPphase
1 , v

HPphase
2 ) =

(
∂ω1,2

∂k1
(~k0, c),

∂ω1,2

∂k2
(~k0, c)

)
(5.17)

that are

~v
HPphase
1 =

(
1

2
cos

c

2
,

1

2
cos

c

2

)
,

~v
HPphase
1 =

(
−1

2
cos

c

2
,

1

2
cos

c

2

)
,

~v
HPphase
1 =

(
−1

2
cos

c

2
,−1

2
cos

c

2

)
,

~v
HPphase
1 =

(
1

2
cos

c

2
,−1

2
cos

c

2

)
. (5.18)

The vector ~k0 leads to the Hessian matrix with rank equal to zero. In the previous

cases we found that the Hessian matrix is singular with rank equal to one for

k1 = ±k2 and it led to the velocities of the highest peaks. The Hessian matrix

has rank equal to one for

cos k2 =
2 cos k1 − a2 cos k1 ± 2 cos k1

√
1− a2

a2
, (5.19)

provided that

a = cos
c

2
6= 0, ⇒ c 6= 0;π. (5.20)

The phase c = 0 corresponds to the Grover walk and c = π is the trivial

walk with permutation matrix (5.2) as its coin. It is not necessary to con-

sider both signs plus and minus in front of the square root in (5.19). The

only difference is that the velocities v
(±)phase
1,2 are shifted by π, but the norm

43



v(±)phase =

√
(v

(±)phase
1 )2 + (v

(±)phase
2 )2 remains unchanged. Further in the text

we will consider only the solution (5.19) with minus sign.

The solution (5.19) does not lead to the same velocities as for the highest

peaks. Thus it has to correspond to the smaller probability peaks. The equations

(5.11, 5.19) imply for the velocities of the smaller peaks

v
SPphase
1 = ± a2 sin k1

2
√
a2 + cos2 k1(a2 − 2 + 2

√
1− a2)

,

v
SPphase
2 = ±1

2

√
a4 − (cos k1(a2 − 2 + 2

√
1− a2))2

a2 + cos2 k1(a2 − 2 + 2
√

1− a2)
, (5.21)

where

~vSPphase = (v
SPphase
1 , v

SPphase
2 ). (5.22)

The probability distribution of the walk is shown in the Fig. (5.1) for several

phases c.We see that the boundary of the walk is formed by the probability peaks.

The highest peaks appear in four symmetrically distributed locations. The rest of

the boundary is formed by the smaller peaks. Further, the region covered by the

walk decreases with the increasing phase c and the smaller peaks become more

significant. For the trivial walk with phase c = π the probability distribution is

formed only by the central peak. In all figures is the initial state chosen such

that the central peak disappears (except for the walk with phase c = 0). This

initial state is the same as for the Grover walk ψ0 = 1
2
(1, 1,−1,−1). However for

the one-parameter family of coins with parameter p and the initial state ψ0 the

central peak does not disappear for arbitrary choice of p. In addition, to obtain

the probability distribution without the central peak, we need different initial

state for each p.

In the figures (5.2) and (5.3) we see that the velocities ~vSPphase from equation

(5.21) truly correspond to the boundary of the probability distribution, i.e. to the

smaller probability peaks. For the phase c ∈ (0, π) are there chosen two values

c = π
2
; π

8
. In the figures (5.1) and (5.1) are illustrated appropriate velocities of

the smaller peaks v
SPphase
1,2 in comparison with the velocities describing the walk

v
(±)phase
1,2 from equation (5.11). Each of these figures has four horizontal and four

vertical grid lines depicting the velocities of the highest peaks and the maximal

velocities in both directions. The velocities are complex in general, both real and
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Figure 5.1: The probability distributions for the family of Grover walks with

phase c. The number of steps is t = 50 and the initial state ψ0 = 1
2
(1, 1,−1,−1)

is for all figures the same. The phases, starting from the figure in the upper left

corner, are c = π
8
, π
4
, π
2
, 3π

4
, 7π

8
, π.
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Figure 5.2: Parametric figures of the velocities ~vSPphase = (v1
SPphase , v2

SPphase) =

(vSP1 , vSP2 ) from equation (5.21) on the left and ~vphase = (v1
(±)phase , v2

(±)phase) =

(v1, v2) from equation (5.11) on the right. The right figure illustrates the velocities

of the walk by red. It also depict the shape of the region covered by the walk. The

left figure corresponds to the velocities of the probability peaks (5.21), it forms

a boarder of the velocities on the right figure. The phase of the walk is c = π
2
.

Grid lines represent important velocities. Outer lines correspond to the maximal

velocities that are v1,2 = vMAX
1,2

.
= ±0, 3827. Inner lines correspond to the velocities

of the highest probability peaks that are v1,2 = vHP1,2 = 1
2

cos π
4

.
= ±0, 3536.
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Figure 5.3: Parametric figures of the velocities ~vSPphase = (v1
SPphase , v2

SPphase) =

(vSP1 , vSP2 ) from equation (5.21) on the left and ~vphase = (v1
(±)phase , v2

(±)phase) =

(v1, v2) from equation (5.11) on the right. The right figure illustrates the velocities

of the walk by red and also depict the shape of the region covered by the walk.

The left figure corresponds to the velocities of the probability peaks (5.21), it

forms a boarder of the right plot. The phase of the walk is c = π
8
. Grid lines

represent important velocities. Outer lines correspond to the maximal velocities

that are v1,2 = vMAX
1,2

.
= ±0, 6344. Inner lines correspond to the velocities of the

highest probability peaks that are v1,2 = vHP1,2 = 1
2

cos π
16

.
= ±0, 4904.
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Figure 5.4: Figures of the positive velocities v
SPphase
1,2 = vSP1,2 from equation (5.21)

for the phase c = π
2
, i.e. a = cos π

4
. The velocities are complex in general.

The real part is given by thick blue line, imaginary part is given by thick red

line. Grid lines depict interesting velocities. Grid line for k1 = 0 shows zero

velocity in the horizontal direction, bud maximal velocity in the vertical direction.

Outer grid lines depict the maximal velocity in the horizontal direction, but

zero velocity in the vertical direction that arise for k1 = kMAX
1

.
= ±1, 7432.

Inner bud not central grid lines show the velocities of the maximal probability

peaks, where the velocities on both horizontal and vertical lines are equal. It

occurs for k1 = ±π
2
.There is no point in taking momentum k1 out of the range

(−kMAX
1 , kMAX

1 ) because out of it is always one of the velocities purely imaginary.
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Figure 5.5: Figures of the positive velocities v
SPphase
1,2 = vSP1,2 from equation (5.21)

for the phase c = π
8
, i.e. a = cos π

16
. The velocities are complex in general. The

real part is given by thick blue line, imaginary part is given by thick red line. Grid

lines depict interesting velocities. Grid line for k1 = 0 shows zero velocity in the

horizontal direction, bud maximal velocity in the vertical direction. Outer grid

lines depict the maximal velocity in the horizontal direction, but zero velocity

in the vertical direction that arise for k1 = kMAX
1

.
= ±2, 3097. Inner bud not

central grid lines show the velocities of the maximal probability peaks, where the

velocities on both horizontal and vertical lines are equal. It occurs for k1 = ±π
2
.

There is no point in taking momentum k1 out of the range (−kMAX
1 , kMAX

1 )

because out of it is always one of the velocities purely imaginary.
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imaginary part are plotted. Maximal (minimal) velocities are given by

v
MAXphase
1,2 = ±

√
−2 + 2a2 + 2

√
1− a2 − a2

√
1− a2

−2 + 2a2 + a
√

1− a2
. (5.23)

Maximal velocity in the second direction v
SPphase
2 = v

MAXphase
2 appears always for

k1 = 0 and the velocity v
SPphase
1 is at the same time equal to zero. This relationship

is satisfied also conversely, i.e. if v
SPphase
1 = v

MAXphase
1 than at the same time the

velocity v
SPphase
1 = 0. It seems not to be possible to find unique explicit solution for

k1 where the velocity v
SPphase
1 = v

MAXphase
1 together with the velocity v

SPphase
2 = 0.

It is because the velocities are in general complex. Nevertheless, it is easy to

enumerate for some c appropriate value of k1 where v
SPphase
2 = 0 if we know the

value of the phase c of the walk. From the velocities of the smaller peaks we can

simply obtain the velocities of the highest peaks. There are several ways how to

do that. The highest peaks appear if k1,2 = ±π
2
. Let k1 = ±π

2
, then from equation

(5.19) we get k2 = ±π
2
. Also

v
SPphase
1,2 |k1=±π2 = v

HPphase
1,2 . (5.24)

Further we know that maximal peaks have absolute value of its velocities in both

direction equal. Therefore solution of the equation v
SPphase
1 = v

SPphase
2 give us

the velocities of the highest peaks too. Moreover, as we might from the further

computations assume,

dv
SPphase
1,2

dk1
|±π

2
= 0. (5.25)

Thus the highest peaks of the walk are given by the stationary points of the

velocities on the boundary.

5.2 Decrease of the highest probability peaks

It was shown that the decreasing behavior of the highest peaks has for the Grover

walk and for the one-parameter family of Grover walks with parameter p the same

character. They decrease proportional to the inverse value of the total number

of steps. This behavior was explained using the theory of stationary phase. For

the family of Grover walks with phase c the situation is different. In the figures

(5.6),(5.7)we can see the decreasing value of the dominant probability peaks in

dependence on the increasing number of steps. There is still a number of open
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questions in the theory of the asymptotic expansion of double integrals. We are

interested in the vector of probability amplitudes given by the integral (3.10)

dependent on the phase and its behavior for t→∞. It has the form

ψ(~m, c, t) =
1

(2π)2

4∑
j=1

∫ π

−π
dk1

∫ π

−π
dk2e

i(ωj(~k,c)− ~m·~k
t

)t(vj(~k, c), ψ0)vj(~k, c), (5.26)

where j ∈ {1, 2, 3, 4}. The expansion of this type of integral can be found in

[3], where the results are divided according to the properties of the integral.

However none of the results coincides with the numerical results seen in the figures

(5.6),(5.7). The highest probability peaks of the walk for phases c ≥ π
2

(figure

(5.6)) decreases as t−
6
5 , where t is the total number of steps. The simulation is

made for t ranges from 0 to 150. The deviations of the maximal probabilities

from the power law approximation is slightly greater than it was for the Grover

walk and the walk with parameter p. However for increasing number of steps

the deviations are still less significant. The probability of finding the particle at

position ~m in time t is square of norm of the probability amplitudes vector. Thus

ψ(~mHP , c, t) ∼ t−
3
5 , where ~mHP is the location of the highest probability peaks.

For the phases c < π
2

is the situation illustrated in the figure (5.7). The

decrease in the logarithmic scale is not entirely linear as before. The highest

peaks correspond to the zero Hessian matrix, nevertheless all expansions of our

type of integrals are solved for non-zero Hessian matrix.

5.3 Change of the basis variables

One can see that the previous Grover walk and the generalized Grover walk with

parameter p have many similar features. In addition, in this chapter we have

seen, that the generalized Grover walk with phase c behaves slightly different.

Here the behavior is also different. We can switch from the wavenumbers k1,2

using the equations (5.11) into the velocity variables v
(+)phase
1,2 , but the resulting
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Figure 5.6: The decrease of the maximal probability peaks in dependence on the

number of steps t. For better recognition the logarithmic scale on both axes is

used. Black points correspond to the probability value of the highest peaks and

the red line is the approximation t
6
5 . The figures are made for three different

choices of the phases c = π
2
, 3π

4
, 7π8 starting from the figure in the upper left

corner. The initial state for the walk is ψ0 = 1
2
(1, 1,−1,−1).
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Figure 5.7: The decrease of the maximal probability peaks in dependence on the

number of total steps t. The logarithmic scale on both axes was used. Black points

correspond to the probability value of the highest peaks. The figures are made

for three different choices for the phase. It is c = π
8
, π
6
, π4 starting from the figure

in the upper left corner. The initial state for the walk is ψ0 = 1
2
(1, 1,−1,−1). We

see that due to the behavior of the highest peaks the approximation t−x does not

fit very well for any x.
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Figure 5.8: Figure representing contours of the velocities of the highest probability

peaks for the one-parameter family of walks with phase c. This figure is made

for the parameter c = π
2

i.e. a = cos π
4

= 1√
2
. The velocities represented by

the contours are v
(±)phase
1,2 = vHP1,2 from equations (5.18). Blue and green lines

correspond to the v
(±)phase
1 = 1

2
a, red and black dashed lines corresponds to the

v
(±)phase
2 = 1

2
a, where a = cos c

2
. It is seen that there is no curve of stationary

points as in the Grover case and the generalized Grover case with parameter p

(Fig. (3.3, 4.4)). First figure illustrates the velocities v
(±)phase
1,2 .
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relations are much more difficult. The equations are

sin k1 =
v1
a

√
−2(a2 + 2(−1 + v21 + v22))− 2f(v1, v2, a)

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

cos k1 =
1

a

√
4v21(−1 + v21 + v22) + a2(1 + v41 + v42 − 2(1 + v21)v22) + 2v21f(v1, v2, a)

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

sin k2 =
v2
a

√
−2(a2 + 2(−1 + v21 + v22))− 2f(v1, v2, a)

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

cos k2 = −1

a

√
4v22(−1 + v21 + v22) + a2(1 + v41 + v42 − 2(1 + v22)v21) + 2v22f(v1, v2, a)

(v1 + v2 + 1)(v1 − v2 + 1)(v1 + v2 − 1)(v1 − v2 − 1)

(5.27)

where we denoted v
(+)phase
1,2 = v1,2, a = cos c

2
and

f(v1, v2, a) =
√
a4 + 16v21v

2
2 + 4a2(v41 + v42 − v22 − v21(1 + 2v22)). (5.28)

The determinant of the Hessian matrix H(ωj(~k, c)), where ωj(~k, c) are given in

equation (5.8), is in the momentum variables

detH((ωj(~k, c))) =
2a4 cos 2k1 + 8a2(a2 − 2) cos k1 cos k2 + 2a4(2 + cos 2k2)

4(−2 + a(cos k1 + cos k2))2(2 + a(cos k1 + cos k2))2
.

Switching of the determinant into the velocity variables does not bring a great

simplification. Thus we do not specify here the expression for its complexity,

nevertheless we present the result graphicaly.

In figure (5.3) the determinant of the Hessian matrix depending on the ve-

locities v1,2 is given. As we can see, for certain velocities are in the figure empty

places. It indicates that the determinant is for those velocities not real. The only

part of the determinant which can acquire imaginary values is one square root

that is equal to the function f from equation (5.28). The function is depicted

in figure (5.10). Indeed, comparing the figures (5.3) and (5.10) we see that the

function f is responsible for the imaginary value of detH. Moreover, it can be

seen that the central parts of the figures noticeably remind the regions covered

by the walk, i.e. the velocities of the walk depicted in the figures (5.1, 5.2, 5.3).

Further we might be interested if there exist simple solution for the region, where

the function f becomes imaginary. Solving the equation

f(v1, v2, a) = 0 (5.29)
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Figure 5.9: Figure illustrating the determinant of the Hessian matrix in the ve-

locity variables for the family of Grover walks with phase c. The choice for the

phase is c = π
2
, i.e. a = cos c

2
= 1√

2
. The formula for the determinant is for its

complexity not given in the text.
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Figure 5.10: Figure representing the function f given by equation (5.28). The

choice of the phase is c = π
2
, i.e. a = cos c

2
= 1√

2
. It can be seen that the non-

plotted (imaginary) part is the same as for the determinant of the Hessian matrix

in the figure (5.3).
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give us the answer. The interface between the real and the imaginary function is

given by two ellipses described by the equations

E1 : v21
2(2− a2 − 2

√
1− a2)

a2(1−
√

1− a2)
+ v22

2

1−
√

1− a2
= 1

E2 : v21
2(2− a2 + 2

√
1− a2)

a2(1 +
√

1− a2)
+ v22

2

1 +
√

1− a2
= 1. (5.30)

The intersection of the ellipses E1,2 is given by

vintersection2 = ±

√
a2(1 + 2v21)− 4v21 − (a2 − 4v21)

√
(1− a2)

2a2
(5.31)

and its interior points are real. If the region covered by the central real part of the

functions f and detH correspond to the region covered by the quantum walk,

then the intersection of the ellipses (5.31) have to correspond to the velocities

that appears on the boarder of the region covered by the walk. These are the

velocities of the smaller peaks given by the equations (5.21). The question is,

if the intersection truly corresponds to those velocities. By substituting v
SPphase
1

from equation (5.21) for the variable v1 from equation (5.31) we truly obtain that

vintersection2 = v
SPphase
2 . (5.32)

In the figure (5.11) the ellipses E1,2 from equation (5.30) with marked inter-

section (5.31) are given. It is for the phase c = π
2

i.e. a = 1√
2
. The important

velocities are as in figure (5.2) for the velocities and the same phase ticked.
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Figure 5.11: The ellipses E1,2 from equation (5.30). The intersection given by

equation (5.31) is represented by the thick red line. The phase of the walk c =
π
2
, i.e. a = cos c

2
= 1√

2
. The grid lines illustrates the velocities of the highest

probability peaks and its location is v1,2 = ±1
2

1√
2
.
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Conclusion

It is known that the three-state Grover walk on a line exhibits the localization

effect, the probability distribution has extra peak at the origin. We presented its

generalization, one-parameter family of Grover walks, which is by the continuous

transition between the Grover matrix and the permutation matrix formed. The

Grover walk has three probability peaks. The central one does not move, but

there are other two peaks traveling to the left and right with increasing number

of steps.The generalized walk depends on the phase parameter c ∈ (0, π). The

family of walks contains the Grover walk as well, it is for c = 0. The shape of

the probability distribution does not change. The localizing non-moving peak at

the origin is preserved. The two remaining peaks travel with the group velocities

that slow down with increasing c. The Grover walk is the fastest one from this

family of localizing walks.

The Grover walk on the square lattice also exhibits the localization effect.

In two dimensions, its probability distribution has two more peaks. Except the

central one we can find four moving symmetrically distributed peaks. The prob-

ability distribution of the walk forms a circle. We presented two generalization of

this walk. The first, inspired by [6], depends of the parameter p ∈ (0, 1), where

the choice p = 1
2

leads to the Grover walk. The walk deforms the probability dis-

tribution into the ellipse, nevertheless the central peak and four remaining peaks

are still observed. The group velocities of the highest moving probability peaks

are determined by the parameter p. The second generalization of the Grover walk

in two dimensions is based on the same principle as in the one-dimensional case.

The continuous transition between the 4× 4 Grover matrix and the permutation

matrix give us the generalization dependent on the phase c ∈ (0, π). The choice

of c = 0 is equal to the Grover walk. The probability distribution is formed by

the intersection of the two ellipses that differ on the factor a = cos c
2
. The cen-

tral peak is preserved and the four remaining peaks are symmetrically distributed
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around the central one. Moreover, in contrast to the previous cases, the velocities

on the whole probability boundary can be calculated. The four highest peaks are

only the part of the boundary, the rest of it is formed by smaller (but significant)

probability peaks.

In each chapter, when appropriate, we describe the wave-packet propagation

using the concept of group velocity. This representation allowed us to find addi-

tional interesting properties of the walk.

The thesis presents new families of localizing coins for one and two dimensional

walks. It is certainly worth to investigate whether these are the only possible

walks or other classes can be found, especially in higher dimensions.
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Appendix A

Asymptotic of integrals

For an easier treatment of the time evolution equation of the quantum walk we

use the Fourier transformation. We replace the spatial variable by the more

convenient momentum variable. However, we want the solution in the position

variable. Therefore, we use the inverse Fourier transformation. The solution of

the time evolution equation then has the form

I(t) =

∫
g(k)eitf(k)dk, f(t) ∈ R. (A.1)

This integral is called a generalized Fourier integral. Naturally we are interested in

its asymptotic time behavior. There is a well-developed theory of the asymptotic

expansion of Fourier integrals which gives us effective tools how to work with them

and allows us to express the long time behavior as powers of time t. According

to [3], the method of stationary phase asserts that the major contribution to the

integral (A.1) comes from points where f(k) has a vanishing derivative.

In the following we briefly review the fundamentals of the method of stationary

phase for one and two dimensional integrals.

A.1 Method of stationary phase for one-dimen-

sional integrals

The probability amplitude of the quantum walk on a line is given by the one-

dimensional Fourier integral. Its asymptotic behavior is determined by the prop-

erties of the stationary points of the phase. Let us look in more detail into the

possible cases.
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A.1.1 No stationary point

Assume that there is no stationary point it the interval 〈a, b〉. Integration by part

for large time.

I(t) =

[
g(k)

itf ′(k)

]k=b
k=a

− 1

it

∫ b

a

d

dk

g(k)

f ′(k)
eitf(k)dk. (A.2)

From the Riemann-Lebesgue lemma the second component of the (A.2) asymp-

totically decreases faster than 1/t. Therefore for t→∞ we find

I(t) ∼
[
g(k)

itf ′(k)

]k=b
k=a

. (A.3)

We see that the decrease of the integral is proportional to 1/t.

A.1.2 Simple stationary point

We cannot use integration by part, if there exist such a point c ∈ 〈a, b〉, where

f ′(c) = 0 (stationary point). When there exist stationary points, the Fourier

integral must still vanish for long time from the Riemann-Lebesgue lemma, but

the integrand oscillates slower near the stationary point. For this reason the

integral decrease less rapidly and the leading term in the asymptotic behavior of

the integral is constituted by the stationary point neighborhood.

Consider there is only one stationary point on (a, b). Without loss of generality

we can consider stationary point as a, since every integral can be rewritten as

a sum of integrals with stationary point on its boundary. Assume f(a) is a

minimum on the given interval. Then according to [4] we decompose I(t) into

two terms

I(t) =

∫ a+ε

a

g(k)eitf(k)dk +

∫ b

a+ε

g(k)eitf(k)dk, t→∞. (A.4)

The second term in the previous equation has no stationary point in the inte-

gration range. Hence it decreases as 1/t for large t and does not establish the

leading behavior. Therefore we can exclude it. Since ε is a small positive number

we can replace g(t) with g(a), and make the second order of the Taylor expansion

of f(k) around the stationary point a. It holds f ′(a) = 0 and we obtain

I(t) ∼ g(a)

∫ a+ε

a

eit(f(a)+
f ′′(a)

2
(k−a)2)dk, t→∞. (A.5)
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Now we replace ε by ∞ and substitute x = (k − a)

I(t) ∼ g(a)eitf(a)
∫ ∞
0

eit
f ′′(a)

2
x2dx, t→∞. (A.6)

After the substitution (note f ′′(a) > 0)

y =

√
tf ′′(a)

2
x (A.7)

we obtain

I(t) ∼ g(a)

√
π

2tf ′′(a)
ei(tf(a)+π/4), t→∞. (A.8)

Similarly, if f(a) is a maximum, i.e. f ′′(a) < 0, then

I(t) ∼ g(a)

√
π

2t|f ′′(a)|
ei(tf(a)−π/4), t→∞. (A.9)

As we can see from equations (A.8) and (A.9), if the stationary point has non-

zero second derivative, i.e. f ′(a) = 0, f ′′(a) 6= 0, then for t→∞ the integral I(t)

behaves like reciprocal square root of time

I(t) ∼ 1

t1/2
. (A.10)

A.1.3 Higher-order stationary points

The calculation can be generalized for any number of zero valued derivatives. If

f(t) is flatter, then the integral I(t) decreases less rapidly for t → ∞. Consider

the stationary point c on the given interval, provided that f ′(c) = f ′′(c) = 0

and f ′′′(c) 6= 0 than I(t) ∼ 1/t1/3. Similarly, let p ∈ N, such as f ′(c) = ... =

f (p−1)(c) = 0 and f (p)(c) 6= 0 then I(t) ∼ 1/t1/p. Point c is called a stationary

point of the order p − 1. To verify this claim we repeat the same procedure as

in equations (A.6)-(A.9). Let us consider again boundary stationary point a,

where f(a) 6= 0, f ′(a) = ... = f (p−1)(a) = 0 and f (p)(a) 6= 0, p ∈ N. After

the decomposition of the integral on two terms as in (A.4) and exclusion of the

second therm with no stationary point in the integration range we replace g(k)

by g(a) and make Taylor expansion of f(k) around the stationary point a. Thus,

we find

I(t) ∼ g(a)

∫ a+ε

a

eit(f(a)+
f(p)(a)
p!

(k−a)p)dk, t→∞. (A.11)
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After replacing of ε by ∞ and substitution x = (k − a) we obtain

I(t) ∼ g(a)eitf(a)
∫ ∞
0

eit
f(p)(a)

2
xpdx, t→∞. (A.12)

To evaluate this integral we rotate the x-axis by an angle±π/2p. The sign depends

on the value of f (p)(a), + sign for f (p)(a) > 0, − sign for f (p)(a) < 0. We make a

substitution

x = e±iπ/2p
(

p!y

t|f (p)|(a)

)1/p

, (A.13)

which leads us to the result

I(t) ∼ g(a)ei(tf(a)±π/2p)
(

p!

t|f (p)(a)|

)1/p
Γ(1/p)

p
, t→∞. (A.14)

We find that the integral behaves like 1/t1/p for large t.

A.2 Double integral

For the probability amplitude of the two-dimensional quantum walk we obtain,

after the inverse Fourier transformation back to the position variables, integral

in the form

I(t) =

∫∫
D

g(x, y)eitf(x,y)dxdy, f(x, y) ∈ R, t > 0, (A.15)

where D is a bounded domain. The entire chapter in [3] is dedicated to the

asymptotic behavior of integrals of this type. Let us mention only few of the re-

sults. Assume that f and g are smooth function. Again as in the one-dimensional

case, the main significant contributions for large parameter t come from critical

points. The critical points comprise stationary points of the function f on D

or its boundary ∂D or points on the ∂D where it has a discontinuously turning

tangent.
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A.2.1 Local extrema

Now we look at the stationary points. Let (0, 0) be the stationary point of f(x, y).

We denote the partial derivatives evaluated at the stationary point by

fij =
∂i+jf

∂xi∂yj

∣∣∣∣
(0,0)

. (A.16)

The expansion around the stationary point the function f(x, y) takes the form

f(x, y) = f00 + f11xy + f20x
2 + f02y

2 + ... = f20x
2 + f02y

2 + ... (A.17)

Without loss of generality we can assume f00 = 0. Now we rewrite the equation

(A.17) and make several substitution

f(x, y) = f20x
2(1 + p(x, y)) + f02y

2(1 + q(x, y)) = f20u
2 + f02v

2, (A.18)

where u = (1 + p(x, y)), v = (1 + q(x, y)). Subsequently substitute functions in

integral (A.15)

G(u, v) = g(x, y)
∂(x, y)

∂(u, v)
, F (u, v) = f20u

2 + f02v
2. (A.19)

Afterwards, the integral (A.15) turns into

I(t) ∼
∫∫
D

G(u, v)eitF (u,v)dudv, F (u, v) ∈ R, t > 0, t→∞. (A.20)

Further

G(u, v) =
∞∑

m,n=0

Giju
ivj, G00 = g00. (A.21)

We do not go into the details of the following calculation and write only the re-

sulting formula. For more information about the method see [3]. The asymptotic

behavior of the integral is given by

I(t) ∼ 1√
f02f20

∑
G∗2m,2ne

iπ(m+n±1)/2Γ(m+ 1/2)Γ(n+ 1/2)

tm+n+1
, t→∞. (A.22)
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The sign in the exponent depends on whether the stationary point is minimum

(plus sign) or maximum (minus sign). The coefficients G∗ij reads

G∗ij =
Gij

f
i/2
20 f

j/2
02

. (A.23)

We see that the integral decays like 1/t.

A.2.2 A continuous curve of stationary points

Consider that the domain D contains a curve of stationary points. Assume the

validity of the following conditions

• The domain D contains a curve γ from C∞ and ∇f = (0, 0) on the curve,

∇f 6= (0, 0) onD\γ. Further γ has no loops, and the derivatives fxx+fyy 6= 0

on γ.

• Let parametrize the curve γ by its arc length s. Denote x = ξ(s), y =

η(s), 0 ≤ s ≤ L, where L is the length of γ. Let Γ be the boundary of the

domain D. If A = (ξ(0), η(0)), B = (ξ(L), η(L), then A,B ∈ Γ. Moreover

A 6= B, (ξ(s), η(s)) /∈ Γ for 0 < s < L.

• At A and B, γ and Γ are not tangent to each other.

Theorem: Under the above conditions we obtain

I(t) ∼
∞∑
s=0

bst
− s+1

2 , t→∞ (A.24)

and coefficients bs are independent of t.

The above theorem is the main result for the asymptotic behavior. We will

show how to get the result only briefly, for more precise derivation see [3]. The

first condition implies that f = f0 is constant on γ. Thus we can suppose that

f0 = 0 without loss of generality. It should be assumed that the functions f, g

are extended to C∞ in some open neighborhood of D̄ and ξ, η are extended to

C∞ in some open neighborhood of [0, L]. Now we can define a transformation

M : (s, p)→ (x, y)

x = ξ(s)− pη′(s), y = η(s) + pξ′(s). (A.25)
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The absolute value of p represents the distance from (x, y) to γ and from s as

the arc length of the curve γ follows that ξ′(s) + η′(s) = 1. The Jacobian of the

transformation M is

∂(x, y)

∂(s, p)
= 1 + p(ξ′′(s)η′(s)− ξ′(s)η′′(s). (A.26)

It can be shown that the transformation M is one-to-one on the rectangle. Thus

there exist suchε, δ positive that M is one-to-one in Qδ = (−ε, L + ε) × (−δ, δ).
Changing the variables (x, y)→ (s, p) in the integral I(t) we obtain

I(t) =

∫∫
Rδ

G(s, p)eitF (s,p)dsdp, (A.27)

where Rδ = M−1(Dδ) and F (s, p) = f(x, y), G(s, p) = g(x, y)∂(x,y)
∂(s,p)

. Assume δ

sufficiently small that Rδ in Qδ can be determined by equations s = a(p), s =

b(p). Then we can write

I(t) =

∫ b(p)

a(p)

∫ δ

−δ
G(s, p)eitF (s,p)dsdp. (A.28)

Now we list some facts resulting from the conditions above and from the

transformation M. From the first condition follows ∇F (s, 0) = (0, 0), 0 ≤ s ≤ L,

thus
∂k+1F

∂sk+1
(s, 0) =

∂k+1F

∂sk∂t
(s, 0) = 0, k ≥ 0, s ∈ [0, L]. (A.29)

This relation shows that F (s, 0) is constant, without loss of generality we can put

F (s, 0) = 0. Moreover from equation (A.29) we obtain the following expansions

F (s, p) = Fpp(s, 0)
p2

2
+ Fppp(s, 0)

p3

6
+O(p4)

Fs(s, p) = Fpps(s, 0)
p2

2
+ Fppps(s, 0)

p3

6
+O(p4)

Fp(s, p) = Fpp(s, 0)p+ Fppp(s, 0)
p2

2
+O(p3)

Fp,p(s, p) = Fpp(s, 0) + Fppp(s, 0)p+O(p2). (A.30)

Since F (s, p) = f(x, y) we have

Fpp = fxxη
′2 + fyyξ

′2 − 2fxyξ
′η′. (A.31)
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The condition ξ′2 + η′2 = 1 gives

Fpp = fxx + fyy − (fxxη
′2 + fyyξ

′2 + 2fxyξ
′η′), (A.32)

also

Fpp(s, 0) = fxx(ξ(s), η(s))+fyy(ξ(s), η(s))− d2

ds2
f(ξ(s), η(s)), 0 ≤ s ≤ L. (A.33)

Since the function f is constant on the curve γ we have

Fpp(s, 0) = fxx(ξ(s), η(s)) + fyy(ξ(s), η(s)), 0 ≤ s ≤ L. (A.34)

The first condition at the beginning gives non-zero Fpp(s, 0), without loss of gen-

erality Fpp(s, 0) > 0 can be supposed. Let us choose δ sufficiently small, thus we

can assume also Fpp(s, p) > 0 in Rδ. Now the relations

F (s, p) > 0

sgnFp(s, p) = sgn p, (s, p) ∈ Rδ, p 6= 0. (A.35)

can be deduced. We would like to transform the integral (A.28) to a one-

dimensional Fourier integral. To do that, we have to define a second transforma-

tion N : (s, p)→ (w, z) as follows:

w = s

z2 = F (s, p); sgn z = sgn p. (A.36)

The Jacobian of this transformation is

∂(w, z)

∂(s, p)
=

Fp(s, p)

2
√
F (s, p)sgn p

→
√
Ftt(s, 0)

2
, t→ 0, 0 ≤ s ≤ L. (A.37)

Note that the mapping is one-to-one on Rδ. The integral (A.28) now has form

I(t) =

∫ ρ

−ρ
eitz

2

Φ(z)dz, (A.38)

where

ρ2 = sup{F (s, p) : (s, p) ∈ Rδ},

Φ(z) =

∫
γ(z)

G(s, p)
2z

Fp(s, p)
dw. (A.39)
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The curve is given by γ(z) = {w : (w, z) = N(s, p); (s, p) ∈ Rδ}. From the

definition of G(s, p) the function Φ(z) vanishes for z → ±ρ. The asymptotic

behavior of I(t) is then determined by the behavior of the function Φ(z) near

zero. Rewrite

I(t) = I+(t) + I−(t), (A.40)

where

I±(t) =

∫ ρ

0

eitz
2

Φ(±z)dz. (A.41)

For sufficiently small z we can write

Φ(z) =

∫ βz2

αz2
G(s, p)

2z

Fp(s, p)
dw. (A.42)

Repeating integration by parts we obtain

I±(t) = 1/2
n−1∑
s=0

1

s!
Γ

(
s+ 1

2

)
ei(s+1)π/4(±1)sΦ(s)(0±)t−

s+1
2 +O(t−

n+1
2 ). (A.43)

This implies the statement of the theorem.
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