
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Nuclear Sciences and Physical Engineering

BACHELOR’S THESIS

2010 Jan Korbel



CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Nuclear Sciences and Physical Engineering

BACHELOR’S THESIS

Application of Generalized Statistics
in Econophysics

Author: Jan Korbel
Supervisor: Ing. Petr Jizba, PhD.
Year: 2010



Acknowledgement

I would like to thank to my supervisor Ing. Petr Jizba, PhD., for all con-
sultations and advices, he gave me during the last year. I have discovered a
fascinating branch and I am very happy that he enabled me to get acquaint
with that branch - econophysics. I would also like to thank to Jana Strouhalová
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Abstrakt

Ekonofyzika je vědńı obor, který analyzuje finančńı trhy pomoćı fyzikálńıch
metod. Tato práce popisuje výhody použit́ı Lévyho distribućı ve finančńıch
trźıch. Velké, otevřené systémy (jako finančńı trhy) se daj́ı často popsat dis-
tribucemi, které maj́ı nekonečný prvńı nebo druhý moment. Pro tato rozděleńı
neplat́ı centrálńı limitńı teorém. Po zavedeńı nezbytných matematických pojmů
je odvozena Black-Scholesova rovnice, která je nejběžněji použ́ıvanou rovnićı
pro oceňováńı općı. Posledńı část nastiňuje některá možná zobecněńı Black-
Scholesova modelu.
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Abstract

Econophysics is a discipline that analyzes financial markets with physical
methods. The thesis describes benefits of Lévy statistics applied to financial
markets. Large, open systems (as financial markets) can be often well described
by distributions that have infinite first or second moment. For these distri-
butions central limit theorem does not hold. After introduction to necessary
mathematical concepts, as stable distributions and stochastic calculus, we de-
rive Black-Scholes equation, which is the most common equation used for option
pricing. The last part outlines some possible generalizations of Black-Scholes
model.
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Introduction

Every work about econophysics begins with citation of L. Bachelier’s Theory
of speculation [1]. We cannot start other way. His doctoral thesis was the
first in that a physician tried to use mathematical and physical methods to fi-
nancial markets. It seems to be the best definition of econophysics: Physical
methods used in financial markets. Since that many physicists published papers
about theory of financial risks and financial markets. We should mention at
least Rosario Mantegna, Eugene Stanley [14], Steve Heston [12], Silvio Lévy,
and Benoit Mandelbrot [13]. On the other hand, this branch is still quite new
and there can be discovered many new ideas which would lead to better un-
derstanding of behavior of financial markets. There is much literature about
econophysics, for all we can mention [2, 5, 16].

This thesis tries to show main benefits of econophysics. In financial markets
are very important option-pricing models. For every stock and for traders, as
well, is very important to have a mechanism, how to price a derivative of an
asset. One possible and the most widespread model is Black-Scholes model. It
was introduced by Fisher Black and Myron Scholes in 1973 and they received
the Nobel prize for this model in 1997.

Before we derive Black-Scholes equation, we have to go through some math-
ematical background. The first part is about probability theory and it con-
centrates on the part of probability theory where is not possible to use central
limit theorem, because distributions, we are interested in have infinite first or
second moment. The second part is about stochastic processes, their definition
and special classes of stochastic processes. Very important is Wiener process,
a continuous analog of random walk. In the end of this chapter we define Itō
stochastic integral that will be fundamental for deriving Black-Scholes equation.
In the next part we make assumptions that are necessary to derive Black-Scholes
equation and we derive it. The last part is devoted to limitations, generalizations
and possible improvements of Black-Scholes model, especially about limitations
of Wiener process. There will be shown some physical concepts used often in
physics that can be suitable for financial markets, as well.
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Chapter 1

Probability Theory

In the first chapter we begin with some basic formulas of probability theory
often used in the next chapters, then go through random walk and show how
works the central limit theorem and its limitations. The chapter will end with
the generalization of central limit theorem and the concept of stale distributions.
More about probability theory can be found in [9, 10].

1.1 Basic Results of Probability Theory

In this section we want to recapitulate some basic results of probability theory.
These results are generally known, so we will not get to many details.

Definition 1.1.1 Let Ω be a sample space, F system of Borel sets (σ-algebra)
on Ω and µ probability measure on F , (Ω,F , µ) is a probability space. Every
F-measurable function on the probability space is called random variable.

We usually assume random variables X : Ω → R(Rn) and we will usually
assume measure equivalent1 to Lebesgue measure: dµ(x) = p(x)dx. p(x) is
called probability density function and we will immediately see, how is defined.

Definition 1.1.2 For a random variable X : Ω → R is the function:

F (x) = P [X(ω) ≤ x] (1.1)

called cumulative probability distribution (or cumulative density function - CDF).

It is obvious that F is positive nondecreasing function, i.e.: F (−∞) = 0, F (∞) =
1. F (x) is a probability of (−∞, x ]. When F (x) is differentiable function, we
get definition of probability density function:

Definition 1.1.3 Let F(x) be a differentiable cumulative probability distribu-
tion. Then probability density function (PDF) p(x) is defined as:

dF (x) = p(x)dx. (1.2)

1equivalent means: for measures µ1, µ2: µ1(X) = 0 ⇔ µ2(X) = 0
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Probability density function gives us probability in the interval [x, x+ dx]. It is
evident that probability in the interval [a, b] is given by integral:

P [x ∈ [a, b]] =

∫ b

a

p(x)dx. (1.3)

We can define also the expectation value and variance as:

E(x) =

∫ ∞

−∞
xp(x)dx, (1.4)

V ar(x) = E
(
(x− E(x))2

)
=

∫ ∞

−∞
(x− E(x))2p(x)dx (1.5)

when in discrete case integration changes to summation.

1.1.1 Multivariable Probability, Conditional Probability

Similarly we can define cumulative density for n variables and n-variable prob-
ability density. For random variables X1, X2, . . . , Xn is joint CDF given as:

F (x1, x2, . . . , xn) = P [X1 ≤ x1;X2 ≤ x2; . . . ;Xn ≤ xn], (1.6)

and PDF is defined as:

dF (x1, x2, . . . , xn) = p(x1, x2, . . . , xn)dx1dx2 . . . dxn. (1.7)

Definition 1.1.4 Random variables X1, X2 are statistically independent, iff 2

p(x1, x2) = p′(x1)p′′(x2). (1.8)

When two variables are not statistically independent, we can define conditional
probability. We take 2-dimensional joint distribution p2(x1, x2). We define
marginal distribution p1(x1):

p1(x1) =

∫
R
p(x1, x2)dx1 (1.9)

and similarly for p1(x2).

Definition 1.1.5 Let p1(x2) ̸= 0. Conditional probability is defined as:

p(x1|x2) =
p(x1, x2)

p1(x2)
. (1.10)

Conditional probability can be defined for more than one variables and more
than one condition. The general formula has the form:

pn|m(xm+1, xm+2, . . . , xm+n|x1, x2, . . . , xm) =
pn+m(x1, x2, . . . , xm+n)

pm(x1, x2, . . . , xm)
.

(1.11)
Note: We shall denote n-point distribution pn and n-point distribution with m
conditions pn|m.

2if and only if
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For fixed x2 is p(x1|x2) density function for x1, so e.g. conditional expecta-
tion value is:

E(x1|x2) =

∫ ∞

−∞
x1p(x1|x2)dx1.

Note: If x1 ⊂ G then E(x1|G) = x1 a.s.3

We can define also covariance of two random variables. If x, y are random
variables, then covariance is defined as:

Cov(x, y) = E((x− E(x))(y − E(y))) =

∫
R2

(x− E(x))(y − E(y))p(x, y)dxdy,

(1.12)
we can define also correlation of two random variables:

Corr(x, y) =
Cov(x, y)√

V ar(x) · V ar(y)
. (1.13)

Covariance has this property:

Cov(x, y) = E((x− E(x))(y − E(y))) = E(xy) − E(x)E(y), (1.14)

so for independent random variables is covariance and correlation zero. It is
also obvious that:

Cov(x, x) = V ar(x). (1.15)

1.2 Random Walk

Let us start with the random walk on the line. The walker starts at time
t0 = 0 at position x0 = 0. He can in the time ∆t make a step of the length
∆x with probability p to the right and with the probability q = 1 − p to the
left. Our question is: What is the probability that the walker will be in time t
at position x?

Because we have a fixed time increment, we can work with discrete time steps
labeled n ∈ N0. The same situation is with the position, we have a discrete net
of points, they can be marked with m ∈ Z. If the walker does a step to the
right, his original position m changes to m + 1 and analogically for step to the
left. Probability p(m,n) means probability in time n at position m.

To calculate the probability we have to evaluate, how many ways we can
get from the start to the position m after n steps. The walker makes n steps
together. If he ends at position m, he must do m + l steps to the right and
l steps to the left. From this we can calculate l because n = (m + l) + l, so
l = n−m

2 . The walker makes n+m
2 steps to the left and n−m

2 steps to the right.

The walker can do these steps in any order, so there are n!
(n+m

2 )!(n−m
2 )!

ways how

to get to the point m.
Finally, the probability of doing n+m

2 steps to the left and n−m
2 to the right

is: p
n+m

2 (1 − p)
n−m

2 , so we can write that the probability is:

p(m,n) =
n!

(n+m
2 )!(n−m

2 )!
p

n+m
2 (1 − p)

n−m
2 . (1.16)

3a.s. : almost surely:X
a.s.
= Y ⇔ P [X = Y ] = 1
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Figure 1.1: Random Walk distribution for n = 1000

From the last expression we can see that:

• For |m| > n is p(m,n) = 0.

• If n is even number, m can be only even number and vice versa (otherwise
the formula (1.16) would not have sense).

• The probability has binomial distribution with parameter r = n+m
2 .

If we rewrite the probability distribution with terms of r, from the last
property we can easily calculate the moments of the distribution by using power
series:

E(r) =
n∑

r=0

rp(r, n) =
n∑

r=0

r

(
n

r

)
pr(1−p)n−r =

[
n∑

r=0

r

(
n

r

)
pr(1 − p)n−rxr

]
x=1

=

[
x
d

dx

n∑
r=0

(
n

r

)
pr(1 − p)n−rxr

]
x=1

=
[
nxp(px + q)n−1

]
x=1

= np. (1.17)

Similarly we calculate the second moment, while is:

E(r2) = np + n(n− 1)p2,

then variance is:

V ar(r) = E(r − E(r))2 = E(r2) − E(r)2 = npq.

The deviation is:
σ =

√
V ar(r) =

√
npq. (1.18)

1.2.1 Relation to the Gaussian Distribution

Now, let us see, how can we approximate p(m,n) for long times around the
expected value E(m).
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We can write: m = E(m) + ∆m.
Within we rewrite the terms included in the formula to these terms:

n + m

2
= np +

∆m

2
,

n−m

2
= nq − ∆m

2
.

We also use Stirling’s formula

N ! ≈
√

2πN

(
N

e

)N

(1.19)

to approximate factorial and calculate logarithm of probability distribution. We
get:

ln p(m,n) = (n +
1

2
) lnn− n− n + m + 1

2
ln

n + m

2
+

n + m

2
+

n−m + 1

2
ln

n−m

2
+

n + m

2
+

n + m

2
ln p +

n−m

2
ln q − 1

2
ln 2π

= n lnn+
1

2
lnn−

(
Np +

∆m

2
+

1

2

)
ln

(
np +

∆m

2

)
−
(
nq − ∆m

2
+

1

2

)
ln

(
nq − ∆m

2

)

+

(
np +

∆m

2

)
ln p +

(
nq − ∆m

2

)
ln q − 1

2
ln 2π

=
1

2
ln 2πnpq−

(
np +

∆m

2
+

1

2

)
ln

(
1 +

∆m

2np

)
−
(
nq − ∆m

2
+

1

2

)
ln

(
1 − ∆m

2nq

)
.

If we use an approximation of logarithm

ln(1 ± x) ≈ ±x− 1

2
x2,

we get this formula:

ln p(m,n) =
1

2
ln (2πnpq) − 1

2

(∆m)2

4npq
− ∆m(q − p)

4npq
.

Because m is only a linear transform of r: m = 2r − n, variance of m is
proportional to variance of r. This leads to the fact that ∆m is proportional to
the deviation of r. We get from (1.18) that the last term is proportional to the

n− 1
2 , so we can neglect it for large values of n. Finally, for large n we get this

formula:

p(m,n) → 1√
2πnpq

exp

(
− (∆m)2

8npq

)
, forn → ∞. (1.20)

Because minimal ∆m for given n is 2 (For odd n the walker can be only
in “odd” position and vice versa), we have to count with the factor 2 in the
numerator.

We can recognize that the distribution converges to the normal distribution.
If we calculate a sum of distributions xi where xi is distribution of one step of
a walker 4, the sum of distribution goes to the normal distribution for n → ∞.

4The distribution xi is an alternative distribution with probability p for step to the right
and q = 1− p. to the left
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This property describes central limit theorem, which we will discus in the next
section.

We can now move to the continuous time and position. We can define time
and position this way: t = n∆t; x = m∆x.
Now we can send ∆t and ∆x to zero. When we require the condition:

2pq
(∆x)2

∆t
= D = const,

then distribution becomes this form:

p(x, t)dx =
1√

4πDt
exp

(
− (x− E(x))2

4Dt

)
dx. (1.21)

1.3 Central Limit Theorem

In the last section we revealed an interesting property of random walk distri-
bution. As the walker was doing more steps, the distribution was quite similar
to the normal distribution. This is the property of many distributions, and the
answer, which distributions converge to the normal distribution, gives us the
central limit theorem:

Theorem 1.3.1 (Central limit theorem) Let Xi be an i.i.d.5 variable with
finite mean µ and finite variance σ2. We define Yn =

∑n
i=1 Xi.Then

Yn − µn

σ
√
n

d→ N(0, 1) (1.22)

where N(0, 1) is normal distribution with µ = 0 and σ2 = 1 .

Notes:

• A proof of CLT can be found in [10].

• Symbol:
d→ means convergence in distribution. It is defined this way: The

sequence Xn of random variables converges in distribution to X, iff

lim
n→∞

F (xn) = F (x)

where Fn is CDF of Xn and F is CDF of X.

• CLT can be formulated as well for sequence of distributions that are not
i.i.d. The only assumption is that every distribution Xi must have finite
mean and variance.

As we see, the fact that the first two moments must be finite is essential. Many
distributions, that we know, satisfy these requirements, so they converge to the
normal distribution. (We have seen that this property has binomial distribution,
of course normal distribution and for example uniform distribution, as shown in
figure 1.2.) On the other hand, in financial markets are important some distri-
butions that are quite simply defined but have infinite first or second moment.
For these distributions we cannot use central limit theorem. Next section will
show us conditions when a sequence of distributions converges and what is the
limit (or we can say attractive) distribution.

5independent, identically distributed
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Figure 1.2: On the picture is illustrated the principle of the central limit theorem. We
can see here the sum of n independent random variables with uniform distribution
(p(x) = 1

b−a
for a ≤ x ≤ b, 0 else) Here are PDFs for n = 1, 2, 3, 4. Already for

n = 4 it is possible to see that the distribution has a trend to get close to the normal
distribution.

1.4 Stable Distributions

As we will see later, stable distributions have a huge role among other distribu-
tions. We will start first with definition:

Definition 1.4.1 Probability distribution p(x) is stable, if it is invariant under
convolution, i.e.: for every a1, a2 > 0, b1, b2 ∈ R exist a > 0, b, so that:

p(a1l+b1)∗p(a2l+b2) =

∫ ∞

−∞
p (a1[z − l] + b1) p(a1l+b1)dl = p(az+b). (1.23)

This definition is natural, because when we sum up two independent random
variables with probability densities p1 and p2 respectively, we get the random
variable with PDF that can be calculated by convolution. So we can say that
stable distributions are distributions that do not change their form when we
sum two variables with this probability distribution.

Quite useful is when we apply Fourier transform6 to the equation (1.23). For
p(z) = f(l) ∗ g(l) we can write:

p(k) = F [p(z)] =

∫ ∞

−∞
e−ikzp(z)dz =

∫ ∞

−∞
e−ikzdz

∫ ∞

−∞
f(z − l)g(l)dl =

[
y = z − l
dy = dz

]
=

∫ ∞

−∞
e−ik(y+l)dy

∫ ∞

−∞
f(y)g(l)dl = f(k)g(k)

We have now a good criterion to decide whether a distribution is stable or not.
Let us give one example: Is normal distribution stable? For simplicity, we

take normal distribution with µ = 0, σ2 = 1.

6Here we use the definition where in front of integral in Fourier transform is factor 1 and
in inverse Fourier transform is factor 1

2π
, This definition does not preserve norm, but is a bit

simpler in calculations.
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F
[

1√
2π

exp

(
−x2

2

)]
= exp

(
−k2

2

)
So if we convolute two random variables X1, X2 with normal distribution, with
Fourier transform we get:

F [p(X1) ∗ p(X2)] = exp

(
−k2

2

)
exp

(
−k2

2

)
= exp

(
−k2

)
= F

[
1√
2π

exp

(
−x2

4

)]
.

That means that convolution of two normal distributions gives normal distri-
bution, here with parameters µ = 0, σ2 = 2. The conclusion is that normal
distribution is stable.

From this example is obvious that if we take for instance this Fourier image:

F [p] (k) = exp

(
|k|
2

)
,

then the convolution of these two distribution gives also the same distribution:

exp

(
|k|
2

)
exp

(
|k|
2

)
= exp (|k|) ,

which is the Fourier transform of the Cauchy distribution:

F−1 [exp(−|k|)] =
1

2π

∫
R
e−|k|eikxdk =

1

π

1

1 + x2
. (1.24)

We have two examples of stable distributions. Interesting about Cauchy distri-
bution is the fact that it has indeterminate mean as well as variance. Why are
stable distributions so important will explain the next theorem. It will answer
us the question, what distributions can be the limit distribution of the sum of
random variables. Let be an ∈ R, bn > 0 normalizing constants, Xi random,
i.i.d. variables with PDF p(x). We define:

Sn =
1

bn

n∑
i=1

Xi − an (1.25)

and we ask, what is the limiting PDF L(x).

Theorem 1.4.1 (Lévy, Kchintchin) A probability density L(x) can be lim-
iting distribution of sum (1.25) of independent, randomly distributed variables,
only if L(x) is stable.

What more, next theorem gives us “explicit” form, of the distribution.

Theorem 1.4.2 A probability density Lαβ(x) is stable, iff logarithm of its char-
acteristic function has this form:

lnLαβ(k) = ick − γ|k|α (1 + iβsgn(k)ω(k, α)) (1.26)

where: 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0, c ∈ R,

ω(k, α) =

{
tan(πα/2) if α ̸= 1
2
π ln |k| if α = 1.

(1.27)

10



Both theorems and their proofs can be found in [11].

• Characteristic function of function Lαβ(x) is its Fourier transform :

Lαβ(k) =

∫ ∞

−∞
Lαβ(x) exp(−ikx)dx. (1.28)

• Constant c is the shift from origin and constant γ is a scale parameter.
These constants do not influence what kind of distribution it is. But
constants α and β influence shape and behavior of distribution.

• For some parameters α, β can happen that probability distribution Lαβ(x)
cannot be written in analytical form. It is the most common case. We
will see a few exceptions.

Parameter α influences behavior for large x and decides if the first or second
moment exists. Parameter β refers to asymmetry of the distribution. Note that
the third moment (skewness) does not have to be defined. Distributions that
satisfy condition (1.26) are called Lévy distributions.

For some special choices of parameters we get these properties:

• β = 0: Lαβ is even function.

• α = 2: ω(k, 2) = 0 and it is normal distribution.

• α = 1, β = 0: we get Cauchy distribution.

• β = ±1: in this case has a distribution an extreme asymmetry: for α < 1
lies support of Lαβ(x) in (−∞, c ] for β = 1 and in [c,∞) for β = −1.

For us will be very important case when β = 0. Then the distribution is
called α-stable Lévy distribution. We shall look at Lévy distributions in the next
section.

1.4.1 Lévy Distributions

As shown in the last section, Lévy distributions are distributions that satisfy
condition (1.26). We assume α ≤ 2. (For α = 2 is distribution Gaussian). In the
next, we shall discus only distributions with β = 0. Very important attribute
of Lévy distribution is behavior for x → ±∞:

Lα(x) ∼ 1

|x|1+α
for |x| → ∞. (1.29)

We can show it without loss of generality for c = 0. Then the PDF would
be calculated with inverse Fourier transform:

Lα(x) =
1

2π

∫ ∞

−∞
e−γ|k|αeikxdk =

1

2π

∫ ∞

0

e−γ|k|α (eikx + e−ikx
)

dk

=
1

2π

∫ ∞

0

e−γ|k|α2ℜ
(
eikx

)
dk =

1

π
ℜ
∫ ∞

0

e−γ|k|αeikxdk.

We will calculate the integral by the expansion of e−γ|k|α to the Taylor series:

11
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Figure 1.3: On the graph is shown Cauchy distribution with γ = 1, γ = 0.8, γ = 1.2.
For comparison the thick graph is normal distribution with σ = 1.

∫ ∞

0

e−γ|k|αeikxdk =

∫ ∞

0

∞∑
n=0

(−γ|k|α)n

n!
eikxdk.

We change the order of summation and integration and after substitution
we get the expression for the Γ function:

∞∑
n=0

(−γ)n

n!

∫ ∞

0

|k|αneikxdk =
∞∑

n=0

(−γ)n

n!

Γ(αn + 1)

(−ix)αn+1
.

If we calculate the real part for the whole sum, and if we use identity:

ℜ
(
(±i)αn+1

)
= − sin

παn

2
,

we finally get asymptotic expansion of Lα(x):

Lα(x) = − 1

π

∞∑
n=1

(−γ)n

n!

Γ(αn + 1)

|x|αn+1
sin

παn

2
. (1.30)

For large values (when |x| → ∞) we can assume only the first term of the
sum, so we get expression (1.29).

This attribute is called “heavy tails” or “fat tails”, because for large x tends
the distribution to zero polynomially, but normal distribution tends to zero
exponentially, for large x. From this law we can derive that Lévy distributions
do not have variance, and for α ≤ 1 even mean does not exist. It is obvious
that for finiteness of integral must integrand converge to zero for x → ±∞.
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Figure 1.4: The graph shows “fat tails” of the Cauchy distribution with γ = 1, γ =
0.8, γ = 1.2. Here are the tails compared with normal distribution with σ = 1, σ = 10.

As said above, there is no algebraic expression of Lα(x) except for α = 1,
α = 2. In comparison with Gaussian distribution has Lévy distribution sharper
peak, and fatter tails. These distributions describe well situation when it is
common to measure values around the expected value. But sometimes can
come some large fluctuation and it is possible to measure values far from mid
point. A good example are the financial markets, which will be discussed later.
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Chapter 2

Stochastic Calculus

Stochastic calculus is a branch of mathematics working with random variables
and stochastic processes. We will go through some special classes of stochastic
processes and define the most important concept of the stochastic calculus -
stochastic integral. More about stochastic calculus can be found e.g. in [6].

2.1 Stochastic Processes

In this section we define the term stochastic process, which is important for
describing processes in financial markets. Basic term will be for us random
variable, as defined in 1.1.1.

Typical example of random variable is coin tossing. Probability that head
is thrown is p and probability that tail is thrown is q = 1 − p (p ̸= q for biased
coin). It can be a situation from section 1.2 where can the walker throws a coin
to decide, what will be his next step. So then we can say, if head is thrown,
the walker goes to the right and if tail thrown, the walker goes to the left. The
random variable can mean how the walker changes his position. The random
variable X can be

X(head) = 1

X(tail) = −1.

This random variable describes well one step of random walk. In many
processes we can see that the process is composed of many random variables.
Like random walk, where every step is random variable. These processes are
called stochastic processes.

Definition 2.1.1 A stochastic process is a family of random variables (ξ(t))t∈T ,
where T ⊂ R .

If T is discrete, we call it discrete stochastic process. An example is random
walk. But often is T = R or T = [0,∞ ), typically, when parameter t represents
time.

Definition 2.1.2 Let ξ(t, ω),where ω ∈ Ω, be a stochastic process. Then func-
tion:

t 7→ ξ(t, ω) (2.1)

14



is called sample path.

An example is a particle doing a Brownian motion, where sample path is
a possible path of the particle, or a stock index changing at time. If some
phenomena is influenced by many negligible effects, like a particle of pollen
grain in water when molecules of water hitting to the grain, or a stock index
influenced by many trades, we can assume that the process is stochastic. For
us will be important some special classes of stochastic processes.

2.1.1 Martingale Processes

Martingale processes are very important for financial applications. These pro-
cesses have origin in gambling when gamblers wanted to know, if their odds to
win are good or bad. Let us give this example. A gambler bets 1$ on coin toss-
ing. The coin can be biased, so probabilities are not necessary 1

2 . The question
is how much money will he win or lose on average after n rounds. Before the
first round the player has s$ and the probabilities are:

P [win] = p,

P [loose] = q = 1 − p.

We have in chapter 1.2 calculated, what is average value of a walker, and here
is it the same problem. From formula (1.17) we get that the walker does on
average np jumps to the right. Similarly, the average number of jumps to the left
is nq. The average position of the walker and average winnings of the gambler)
after n steps is:

s + n(p− q). (2.2)

It is clear that if p > q, then the game is for player favorable (he will get more
and more many when playing more rounds) when p < q is the game for a player
disfavorable. When p = q = 1

2 , then the average winnings are 0, and the game
is fair for player and for casino as well.

We can look, how is influenced the amount of money that the player has in
n-th round with respect to the amounts of previous rounds. If the game is fair,
the average amount must be the same as in previous round. This leads us to
the definition of a martingale process.

Definition 2.1.3 The sequence of random variables {Xi}∞i=1 is martingale iff:

1. E(|Xn|) < ∞,

2. E(Xn+1|X1, X2, . . . , Xn) = Xn.

I.e., martingale is a process, where the actual value of a stochastic process is
the best for estimate next value.

If we take a sequence of random variables {Xi}∞i=1 for which:

1. E(X1) = 0,

2. E(Xn+1|X1, X2, . . . , Xn) = 0,

then the sequence {Yi}∞i=1 defined as:

Yn = K + X1 + X2 + . . . + Xn ∀K ∈ R

15



is a martingale. Let us verify it:

E(Yn+1|Y1, Y2, . . . , Yn) = E(Yn+1|X1, X2, . . . , Xn)

= E(K + X1 + X2 + . . . + Xn + Xn+1|X1, X2, . . . , Xn) =

= E(Yn + Xn+1|X1, X2, . . . , Xn) =

= E(Yn|X1, X2, . . . , Xn) + E(Xn+1|X1, X2, . . . , Xn) = Yn.

Process {Xi}∞i=1 is called fair game, because it is the situation when average
winnings/loss are 0.

An example of the martingale process can be given from our last example: if
the probability to win (and to loose) is 1

2 , then the average winnings are 0. This
process is martingale and we shall label it Xn. Another example of martingale
is when we have process:

Yn = X2
n − n. (2.3)

Similar situation is with continuous stochastic process:

Definition 2.1.4 Continuous stochastic process {ξ(t), t ∈ [0,∞ )}
is called martingale iff:

1. ∀ t : t ∈ [0,∞ ) is ξ(t) integrable,

2. E(ξ(s)|ξ(r) : r ∈ [0, t]) = ξ(t) for 0 ≤ s ≤ t.

Martingale processes are very important in markets, as we will see later,
Wiener process defined in section 2.1.3 has martingale property. In next section
will be described another property of stochastic processes.

2.1.2 Markov Processes

Markov processes are stochastic processes that have no memory. That means
that the only information relevant for next evolution is the actual configuration
of the system.
Let us have a stochastic process ξ(t). If we denote:

pn|m(x1, t1; t2, x2; . . . ;xn, tn|y1, t1; . . . ; ym, tm)

multivariable conditional probability, where xi, yi belong to the random variable
ξ(ti), then next definition gives us the way, how to write Markov property.

Definition 2.1.5 Stochastic process ξ(t) has Markov property, iff for all
t1 < t2 < . . . < tn+1:

p1|n(xn+1, tn+1|xn, tn; . . . ;x1, t1) = p1|1(xn+1, tn+1|xn, tn). (2.4)

We can recursively use this formula n point distribution pn a together with
formula (1.11) we get:

pn(x1, t1; . . . ;xn, tn) = p1(x1, t1)
n∏

i=2

p1|1(xi, ti|xi−1, ti−1). (2.5)
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That means that probabilities p1 and p1|1 give us full information about the
process. When we use formula (2.5) for n=3:

p3(x1, t1;x2, t2;x3, t3) = p1(x1, t1)p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)

and integrate over x2, we get:

p3(x1, t1;x3, t3) = p1(x1, t1)

∫
R
p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)dx2.

When we divide this equation by p(x1, t1), from (1.11) we get Chapman-Kolmogorov
equation:

p1|1(x3, t3|x1, t1) =

∫
R
p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)dx2. (2.6)

Markov processes have essential role in Black-Scholes model. The assump-
tion of no memory will lead us to using Itō calculus. But before that, we have
to get acquainted with Wiener processes.

2.1.3 Wiener Process

In section 1.2 we were talking about random walk. At the end of the section,
we tried to estimate, what would happen if time jumps tend to zero and the
time begins to be continuous. This stochastic process is called Brownian motion
and is well known from physics. A pollen grain is flowing in some liquid (e.g.
water). The particle is much bigger, than liquid molecules, so we can see only
the particle, not the molecules. As the molecules are moving, they hit to the
particle. The energy of every hit is very small, but together it can move with
the particle. Because we are not able to calculate motion equation for every
molecule, we are not able to say, where will the particle move. But we want to
know about the process something more, for example, what is the probability
we find a particle in some area.
We would like to find a stochastic process that would have the same properties
as brownian motion. For example, density function would have similar form
as (1.21). Because, there is no preferred direction, the process should keep
martingale property, as (symmetric) random walk.

Definition 2.1.6 Stochastic process W(t) is called Wiener iff:

1. W (0)
a.s.
= 0,

2. sample paths t 7→ W (t) are continuous a.s.,

3. (∀t, s|t > s) : W (t) −W (s) ∼ N(0, t− s),

4. W (t) has independent increments of t1.

From this we can see that probability density function is:

p(x, t) =
1√
2πt

exp

(
−x2

2t

)
. (2.7)

1(∀t1, s1; t2, s2): W (t1)−W (s1) and W (t2)−W (s2) are independent random variables
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Figure 2.1: Typical paths of Wiener process

That is just equation (1.21) with D = 1
2 , so that is the same form, as we derived

from random walk. The property 3 of definition of Wiener process tells us that
Wiener process has Markov property.

We verify that W has a.s. continuous sample paths: for M > 0

lim
∆t→0

P [|W (t + ∆t) −W (t)| > M ] = lim
∆t→0

∫ ∞

M

2√
2π∆t

exp

(
− x2

2∆t

)
dx =

=

∫ ∞

M

lim
∆t→0

2√
2π∆t

exp

(
− x2

2∆t

)
dx =

∫ ∞

M

2δ(x)dx = 0.

On the other hand, sample paths are a.s. nowhere differentiable:

lim
∆t→0

P

[∣∣∣∣W (t + ∆t) −W (t)

∆t

∣∣∣∣ > M

]
= lim

∆t→0

∫ ∞

M∆t

2√
2π∆t

exp

(
− x2

2∆t

)
dx =

∫ ∞

−∞
lim

∆t→0

1√
2π∆t

exp

(
− x2

2∆t

)
︸ ︷︷ ︸

δ(x)

dx− lim
∆t→0

∫ M∆t

0

2√
2π∆t

exp

(
− x2

2∆t

)
dx︸ ︷︷ ︸

→0

= 1.

Very important property of Wiener process is that W (t) is martingale:

E(W (s)|W (r), r ∈ [0, t )) = E(W (s)−W (t)|W (r), [0, t ))+E(W (t)|W (r), [0, t ))

= E(W (s) −W (t)) + W (t) = W (t).

Also process W (t)2 − t is martingale:

E(W (s)2|W (r), r ∈ [0, t )) = E((W (s)−W (t))2|W (r))+E(2W (t)W (s)|W (r))−

−E((W (t))2|W (r)) = E((W (s)−W (t))2)+2W (t)E(W (s)|W (r))−W (t)2 = s−t+W (t)2.

Another interesting and in the next section needful result is expected value
of joint distribution of Wiener process in time t, s. In case s > t:

E(W (s)W (t)) =

∫ ∫
xyp(s− t, x− y)p(t, y)dydx =
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∫ ∫
xy

1√
2π(s− t)

exp

[
− (x− y)2

2(s− t)

]
1√
2πt

exp

[
−y2

2t

]
dxdy = t. (2.8)

So generally:
E(W (s)W (t)) = min{s, t}. (2.9)

With knowledge of Wiener process, we can deduce Itō stochastic integral,
which will be the next section about.

2.2 Itō Stochastic Integral

Let us imagine a stochastic process whose increments are proportional to Wiener
process

dX(t) = σdW (t). (2.10)

This description has a few unfavorable attributes: at first the probability
that X(t) < 0 is positive for any t > 0. Imagine that X(t) would be a price of
an asset. This price can be obviously never negative. It is usual to express total
gain or total loss in proportion of all the money invested (as we will see in the
next chapter). We can rewrite (2.10) as:

dX(t)

X(t)
= σdW (t). (2.11)

But there is another problem: as shown in previous section, W (t) is a.s.
nowhere differentiable and dW (t) is not a common differential. The way, how
to interpret these equations gave Kiyoshi Itō and is known as Itō integral. We
shall follow the definition of Riemann-Stieltjes integral.

Definition 2.2.1 Let us consider function f(t) over interval (t0, t), partition of
this interval, i.e. a sequence of points {ti}ni=0, where t0 < t1 < . . . < tn−1 <
tn = t and sequence of τi, where τi ∈ [ti−1, ti]. Then stochastic integral is equal
to: ∫ t

t0

f(t′)dW (t′) = ms− lim
n→∞

n∑
i=1

f(τi) [W (ti) −W (ti−1)] , (2.12)

where ms−lim is mean square convergence, i.e.:

ms− lim
n→∞

Xn = X ⇔ lim
n→∞

E((Xn −X)2) = 0.

Note: As in case of Riemann integral, where we can define Riemann-Stieltjes
integral, we can here define more general form of stochastic integral. Let us have
for example continuous function F(x), then we can define stochastic integral:∫ t

t0

g(t′)d[F (W (t′))] = ms− lim
n→∞

n∑
i=1

g(τi)F [W (ti) −W (ti−1)] . (2.13)

Contrary to the Riemann integral, the value of stochastic integral depends on
the choice of τi, because W (t) is a.s. nowhere differentiable. For every interval
[ti, ti+1] we choose one point and we enumerate, how integral depends on the
choice of these points.
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We take f(t) = W (t), τi = αti−1 + (1 − α)ti, α ∈ (0, 1) and calculate:

E

(
n∑

i=1

W (τi) [W (ti) −W (ti−1)]

)
=

=
n∑

i=1

E[W (αti−1 + (1 − α)ti)W (ti)] − E[W (αti−1 + (1 − α)ti)W (ti−1)] =

=

n∑
i=1

(ti − αti−1 + (1 − α)ti) = α(tn − t0). (2.14)

We used formula (2.9) to simplify the sum.
Here are two most common and most important choices of α:

• α = 0 defines Itō integral,

• α = 1
2 defines Stratonovich integral.

We will be using Itō integral. We will not be using any other kind of stochas-
tic integral, so we will not distinguish it from general stochastic integral.

Stratonovich integral is widely used in other parts of physics, especially in
quantum field theory. Its advantage is that things like integration per partes,
or substitution in integral are similar to Riemann integral, contrary to Itō inte-
gral. On the other hand, using Itō integral has a few advantages. At first, Itō
integral is natural description of processes, like evolution of stock price when
from present value we estimate the future vaules. The second reason is that
stochastic process defined by integral:

X(t) =

∫ t

0

f(t′)dW (t′) (2.15)

is martingale.
If we denote: ∆Wi = W (ti)−W (ti−1) and without loss of generality we assume
that for every division of interval (0, t) ∃k : tk = s, then:

E(X(t)|X(s)) = ms− lim
n→∞

(
n∑

i=1

E(f(ti−1)∆Wi|X(s))

)
,

for i < k (ti < s):

E(f(ti−1)∆Wi|X(s)) = f(ti−1)∆Wi,

for i ≥ k (ti ≥ s) is W (ti) independent of W (tj) ∀j ≤ k:

E(f(ti−1)∆Wi|X(s)) = f(ti−1)E(∆iW ) = 0.

The integral is the equal to:

ms− lim
k→∞

(
k∑

i=1

E(f(ti−1)∆Wi)

)
= X(s). (2.16)

In stochastic calculus has special role class of functions, which do not antic-
ipate the future behavior of Wiener process.
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Definition 2.2.2 Function g(t) is called non-anticipating of t when g(t) is sta-
tistically independent of W (s) −W (t) for all s,t; s > t.

Examples of non-anticipating functions are: W (t) ,
∫ t

t0
dW (t) or

∫ t

t0
g(t)dW (t)

when g(t) is non-anticipating. Let g(t) be a non-anticipating function, then these
stochastic integrals can be calculated this way:∫ t

t0

g(t′)d
[
W (t′)2

]
=

∫ t

t0

g(t′)dt′, (2.17)

∫ t

t0

g(t′)d [W (t′)n] = 0 for n ≥ 3. (2.18)

We shall prove the first formula, the second one can be proved analogically.
With: ∆Wi = W (ti) − W (ti−1), ∆ti = ti − ti−1, g(ti) = gi, we can prove
formula (2.17) from definition:

lim
n→∞

E

( n∑
i=1

gi−1

(
(∆Wi)

2 − ∆ti
))2

 =

= lim
n→∞

E

[
n∑

i=1

g2i−1((∆Wi)
2 − ∆ti)

2

+2
n∑

j=1

n∑
i=j

gi−1gj−1((∆Wj)
2 − ∆tj)((∆Wi)

2 − ∆ti)


= lim

n→∞

(
n∑

i=1

E[g2i−1]E
[
((∆Wi)

2 − ∆ti)
2
]

+2
n∑

i=1

n∑
j=i

E
[
gi−1gj−1((∆Wj)

2 − ∆tj)
]
E
[
((∆Wi)

2 − ∆ti)
2
]

from the fact that g(t) and W (t) are non-anticipating.
Because E

[
(∆Wi)

2
]

= ∆ti (from property 3 of definition 2.1.6),

E
[
((∆Wi)

2 − ∆ti)
2
]

= 2(∆ti)
2. (2.19)

We can rewrite the last expression as:

lim
n→∞

2

n∑
i=1

E(g2i−1) + 4

n∑
j=i

E(gi−1gj−1)(∆tj)
2

 (∆ti)
2 → 0

when e.g. g is bounded. Similarly we would be able to derive formula (2.18).
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2.2.1 Stochastic Differential Equations

Now, with knowledge of stochastic integrals, we can interpret equation (2.11).

Definition 2.2.3 A stochastic process x(t) obeys (Itō) stochastic differential
equation (SDE):

dx(t) = a(x(t), t)dt + b(x(t), t)dW (t) (2.20)

iff for all t0, t:

x(t) = x(t0) +

∫ t

t0

a(x(t′), t′)dt′ +

∫ t

t0

b(x(t′), t′)dW (t′). (2.21)

Now equation (2.18) is well defined stochastic equation in form:

dX(t) = σX(t)dW (t). (2.22)

With this terminology we can rewrite formulas (2.17) and (2.18) to simply form:

d[W (t)2] = dt, (2.23)

d[W (t)n] = 0, (2.24)

which is only the shorter notation of expressions written above.

2.2.2 Properties of Itō Integral, Itō’s Lemma

Now, we would like to calculate some Itō integrals and stochastic differential
equations. For this we would like to learn, how to deal with stochastic integrals.
Some features we already know:

• linearity∫ t

t0

(f + αg)(t′)dW (t′) =

∫ t

t0

f(t′)dW (t′) + α

∫ t

t0

g(t′)dW (t′), (2.25)

• martingale property

X(t) =

∫ t

0

f(t′)dW (t′) : E(X(t)|X(r) : r ∈ (0, s)) = X(s). (2.26)

As in Riemann calculus, we would like to have some more tricks, how to deal with
integrals, like integration per partes, or substitution in integral case, respectively
Leibnitz rule or chain rule in differential case. For us will be important to have
some form of chain rule, which is essential for deriving Black-Scholes equation
in the next chapter.

We shall assume a non-anticipating function F (t, x) ∈ C1[ [0,∞ )] × C2[R],
and consider division {ti}ni=1 of interval [0, t],where:

0 = t0 < t1 < . . . < tn−1 < tn = t,

and sequences {τi}ni=1,{ξi}ni=1 , where τi, ξi ∈ (ti−1, ti). We shall denote:

∂F (t, x)

∂t
= Ft(t, x) ,

∂F (t, x)

∂x
= Fx(t, x).
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Then:

F (t,W (t)) − F (0,W (0)) =
n∑

i=1

F (ti,W (ti)) − F (ti−1,W (ti−1)) =

=
n∑

i=1

F (ti,W (ti)) − F (ti−1,W (ti)) +
n∑

i=1

F (ti−1,W (ti)) − F (ti−1,W (ti−1)),

and we shall use Taylor formula to the first order in (∆ti). But in the second
sum is not possible to expand the expression only to the first order, because we
know from (2.23), (2.24) that even the terms with (∆Wi)

2 will contribute to
the terms of (∆ti).

With Lagrange formula and Taylor polynomial we can rewrite last expression
as:

n∑
i=1

Ft(τi,W (ti))∆ti+

n∑
i=1

Fx(ti−1,W (ti−1))∆Wi+
1

2

n∑
i=1

Fxx(ti−1,W (ξi))(∆Wi)
2 =

=
n∑

i=1

Ft(τi,W (ti))∆ti +
1

2

n∑
i=1

Fxx(ti−1,W (ti−1))∆ti+

+

n∑
i=1

Fx(ti−1,W (ti−1))∆Wi +
1

2

n∑
i=1

Fxx(ti−1,W (ti−1))((∆Wi)
2 − ∆ti)+

+
1

2

n∑
i=1

[Fxx(ti−1,W (ti−1)) − Fxx(ti−1,W (ξi))](∆Wi)
2.

Now, we use to the expression mean square limit and look what is going to
happen to each term.

• Because Ft and Fxx are continuous on [t0, t], and W (t) has a.s. continuous
sample paths, then the first converges a.s. to the integral:∫ t

t0

Ft(t,W (t))dt (2.27)

and the second sum converges a.s. to the integral:

1

2

∫ t

t0

Fxx(t,W (t))dt. (2.28)

• because Fx is differentiable (and bounded) on [t0, t], and W(t) is again
a.s. continuous, the third sum converges (in the sense of mean square
convergence) to Itō integral:∫ t

t0

Fx(t,W (t))dW (t). (2.29)
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• The fourth sum converges to zero in mean square convergence, because
with help of (2.19):

E

(1

2

n∑
i=1

Fxx(ti−1,W (ti−1))((∆Wi)
2 − ∆ti)

)2
 =

=
1

2

n∑
i=1

E[Fxx(ti−1,W (ti−1))2]E[((∆Wi)
2 − ∆ti)

2] → 0. (2.30)

• Because the same arguments of the continuity, the last sum converges to
zero:

1

2

n∑
i=1

[Fxx(ti−1,W (ti−1)) − Fxx(ti−1,W (ξi))](∆Wi)
2 ≤

≤ sup
i

[Fxx(ti−1,W (ti−1)) − Fxx(ti−1,W (ξi))]︸ ︷︷ ︸
→0

n∑
i=1

(∆Wi)
2

︸ ︷︷ ︸
→(t−t0)

→ 0. (2.31)

From (2.27) - (2.31) we get formula:

F (t,W (t)) − F (0,W (0)) =

∫ t

t0

(
Ft(t,W (t)) +

1

2
Fxx(t,W (t))

)
dt +

+

∫ t

t0

Fx(t,W (t))dW (t). (2.32)

If we rewrite the statement to the differential formulation, we get special version
of Itō’s lemma:

dF (t,W (t)) = [Ft(t,W (t)) +
1

2
Fxx(t,W (t))]dt + Fx(t,W (t))dW (t). (2.33)

If we compare it with “classical” chain rule:

dF (t, y(t)) = Ft(t, y(t))dt + Fy(t, y(t))dy(t) (2.34)

we see that there is one term added. That is caused by the fact that W(t) is
stochastic process, so it is called Itō correction.

If we have a general stochastic process x(t) fulfilling stochastic differential
equation:

dx(t) = a(t)dt + b(t)dW (t), (2.35)

we can formulate general version of Itō’s lemma:

Theorem 2.2.1 Let F(t,x) be real function from C1[ [0,∞ )] × C2[R] and x(t)
stochastic process fulfilling equation (3.4), then:

dF (t, x(t)) =

(
Ft(t, x(t)) + a(t)Fx(t, x(t)) +

1

2
b(t)2Fxx(t, x(t))

)
dt

+b(t)Fx(t, x(t))dW (t). (2.36)

With these instruments we are able to derive Black-Scholes equation, which
is next chapter about.
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Chapter 3

Black-Scholes Model

In this chapter we would like to present Black-Scholes model usually used for
pricing of European options. Before we derive Black-Scholes equation, we have
to learn some terminology of financial markets.

3.1 Financial Markets

Financial market is a place, where money are invested in commodities, lend or
borrowed, invested, etc. Traders can deal in commodities as wheat, gold or oil,
securities as assets, bonds or options, or foreign currencies. Whereas commodi-
ties are real goods, securities are just papers that represent some financial value.
An example of security is an asset. Asset represents part of wealth of e.g. some
corporation.

There are two ways how to trade: on the stock exchange, or by the over-the-
counter exchange. The stock exchange is official place for trading these financial
instruments. There are given rules how to trade, and the stock organizes the
process of trading. On the other hand over-the-counter (OTC) exchange means
that the traders arrange the conditions of trade among themselves. Trading at
the stock exchange is more common. The best known stock exchange is New
York Stock Exchange (NYSE) in the USA, Tokyo Stock Exchange (TSE) in
Japan and London Stock Exchange (LSE) in the UK. The exchange gives to
traders all possible information about traded asset and determines the price
of assets due to actual supply and demand. Stock exchanges guarantee that
certain rules are obeyed, e.g. only approved assets can be traded, the traders
are tested if they can pay their obligations, etc.

3.1.1 Financial Derivatives: Futures and Options

In the following we will be interested in the special class of securities that are
called derivatives. The name comes from the fact that their value is derived
from the value of other, more basic asset. This asset is called underlying. Math-
ematically said: if S(t) is price of an underlying in a time t, then the price of
a derivative is only a function of S(t). There are two most important kinds of
derivatives: futures and options. In the case of future, buyer and seller sign a
contract, which states that after exactly defined period the owner of an asset
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sells this asset for an arranged price to the buyer. In this context is often used
a terminology that buyer is in long position or shortly long and the seller is in
short position or simply short.

What is the reason to trade in futures? Good reason for trading in futures is
to minimize the risk. Let us give an example: A farmer grows wheat. He has to
pay for the fuel for tractors, for the pesticides etc. But in the market the price
of wheat fluctuates because of supply and demand of wheat. When the wheat
will be ready to crop, the price of wheat can be high and the farmer will earn
money, but it can happen that the price will be low and he will loose money.
In order to minimize the risk, he decides to make a contract that he will sell
the corn for a given price. For him is it favorable, because he will be able to
pay for the fuel and for the seeds for next season. For the party that is in long
position it can be profitable when the price of corn will be higher than agreed
price. The future carries the risk to the long position.

While in case of future both parties participating in the contract have the
same duties (the short has to sell the asset and the long has to buy the asset),
in case of options is the situation different. The simplest kind of options are
European options. The seller of the option is called writer and guarantees
to the buyer of the option, who is called holder, the right (not the duty) to
buy or sell the asset in given time (also called expiration time) for given price.
In case of the right of buying asset from the writer is the option called call
option, in case of selling to the writer, the option is called put option. There
exist other types of options, as American option that can be exercised any time
before its expiration time. It would be more difficult to describe these option in
mathematical formulation of our problem, so we will not work with them.

The price of the option is given by stock exchange in case of exchange options,
or by the parties agreeing the contract, as in case of OTC options. We can ask,
how to define a price of an option, so that it would be optimal to both writer
and holder. Possible solution gives Black Scholes model.

3.2 Assumptions of the Black-Scholes Model

As said above, Black-Scholes model is option pricing model used specifically for
European options. In order to derive some solutions we have to make a few
assumptions, to simplify the model that we would be able to formulate with
mathematical structures we already know.

In the next we denote T as the expiration time of the option (= the time
when option can be exercised), S(t) price of an asset and O(S, t) price of a
derived option.

Possible Risks on the Market

In finance we recognize a few kinds of risk. The first is credit risk. This kind of
risk comes from the possibility that the other side of contract would not be able
to pay its claims. This is inhibited in case of exchange options, where the stock
exchange guarantees you to pay for the debtor. The other risk is operational risk.
This is the kind of risk when a firm looses because of its internal policy, behavior
of its employees or systems. For example in computer program is hidden a bug,
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and the program gives wrong predictions, so the firm looses money. Or when
the firm forgets to pay a bill and must pay some penalty.

We will assume that there is no credit and operational risk. The only risk
assumed is market risk that comes from trading assets and their unfavorable
evolution.

Efficient Market Hypothesis

We will assume that the market is efficient. That means that:

1. It is possible to get immediately all information relevant to trading.

2. The market is liquid.

3. There is no, or negligible market friction.

With term liquid we mean that prices of products reflect current situation and
it is possible to buy or sell a product in any time without any delay. Market
friction is term for all trading costs, as provisions, taxes etc. We assume that
the sum of these costs is negligible to the sum of money invested in the market.

These assumptions have one important consequence: If the market is effi-
cient, then all information about market is contained in the present state of
market. This leads to the conclusion that processes on the market must be
Markov processes.

Geometric Brownian Motion

Next question is, how to describe an asset price evolution. From here we will
denote the price of an asset in time t as S(t). Let us imagine the situation that
we have some amount of money and we want to invest them. One possibility is
to deposit the money in the bank. At the beginning we have sum of M(0) in
the bank. The bank guarantees a risk-free interest rate r for the deposit. If the
bank would pay an interest once at the end of period [0, T ], then

M(T ) = M(0) (1 + rT ) .

If the bank would pay twice, at first at the half of the period and then at the
end of time period, then:

M(T ) = M(0)

(
1 +

rT

2

)2

,

etc. For n → ∞ would it look like this:

M(T ) = lim
n→∞

M(0)

(
1 +

rT

n

)n

= M(0) exp(rT ). (3.1)

This interest is called continuously compounded. If we rewrite it in differential
notation, then

dM(t) = rM(t)dt. (3.2)

Then we have another choice how to invest our money. We can invest in
some assets. The evolution of their price would have two parts, deterministic
and stochastic part. The first will describe general trends of the asset price, the
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second will describe fluctuations on the market. The first part will be similar
to the equation (3.2) so it will be:

dSdet(t) = µS(t)dt, (3.3)

the parameter µ is called drift parameter and we can assume µ > r, because
otherwise would be not wise to buy asset when the risk-free interest rate is
higher.

We assume that the stochastic part is stochastic process that should have
Markov property. This fulfills for example Wiener process, so:

dSstoch(t) = σS(t)dW (t). (3.4)

We will assume σ > 0, the factor σ is called volatility. Processes with higher
volatility are not so stable and their price can more fluctuate. Given (3.3) and
(3.4) together we get a stochastic differential equation describing price of an
asset:

dS(t) = µS(t)dt + σS(t)dW (t) (3.5)

with initial condition that the price of asset in the time 0 is positive,i.e.: S(0) > 0.
We assume that interest rate r and volatility σ are constants. On the other

hand there are models that assume that volatility or interest rate are not con-
stant in time. We will mention it in the next chapter.

Now we can solve this stochastic differential equation. When we use Itō’s
lemma for the function ln[S(t)], we get:

d ln[S(t)] =

(
µ− 1

2
σ2

)
dt + σdW (t). (3.6)

Because ∫ t

0

dW (t′) = W (t),

by interpreting SDE we get:

lnS(t) = lnS(0) + (µ− 1

2
σ2)t + σW (t), (3.7)

and written in integral form:

S(t) = S(0) exp

[
(µ− 1

2
σ2)t + σW (t)

]
. (3.8)

This process is called geometric Brownian motion, or sometimes exponen-
tial martingale. This process will be for us the process that simulates stock
price movement at time. We see that lnS is normally distributed, and we can
calculate mean and variance. Because from property:

E(W (t)) = 0, V ar(W (t)) = t

we get:

E(ln[S(t)/S(0)]) = (µ− 1

2
σ2)t, V ar(ln[S(t)/S(0)]) = σ2t.

We can finally write a PDF of a stochastic process S(t):

p(S, t) =
1

S
√

2πσ2t
exp

(
−
(
ln[S/S(0)] − [µ− 1

2σ
2]t
)2

2σ2t

)
. (3.9)
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Figure 3.1: Geometric Brownian motion

Other Assumptions

There are some more assumptions important for the model:

1. The first is that the underlying pays no dividends.

2. The second is that the underlying is infinitely divisible, i.e. the holder can
own k assets, where k is not necessarily the natural number (k can be any
real number).

3. The last is that there exists no arbitrage.

The term arbitrage means, if a trader lends money from the bank with interest
rate r, then does not exist any risk-less strategy (e.g. deposit these money to
other bank, etc.) with drift parameter ν, so that ν > r. That would lead to the
situation that if borrowed some amount of money C, after time T the investor
would have:

C exp(νT ) − C exp(rT ) > 0

and he would get richer and richer even if he had no money at the begin.

3.3 Delta-Hedging Strategy

Now, we look at the position of the writer of option. He runs a risk of selling the
underlying asset under the the market price. This risk should be compensated
by the price of the option that he sold. We would like to find an optimal strategy
that would eliminate the risk. There are many risk hedging strategies. We will
not need to go through all of them, for more about hedging, see [5, 14].

One possible strategy is called delta-hedging. During the time before ex-
piration time can writer own only a fraction of an underlying (it is possible
from assumptions above) depending on price S(t). When S is rising, the writer
should own a bigger fraction of an underlying, because it is more probable that
the option will be exercised, and vice versa. The writer of course needs money
for enlarging the fraction of asset when necessary. These money can be invested
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in the risk-free process, e.g. deposited to the bank. The process has to be risk-
free, because the writer must be sure that he would be able to buy the part of
asset in any case. So if we denote ∆(t) the fraction of the underlying owned,
and Π(t) the sum of money, necessary to possible buys, then the total richness
R(t) of the writer should be:

R(t) = ∆(t)S(t) + Π(t). (3.10)

How can the writer get this sum of money? He can get the money right from
selling the option, so the writer should require that the price of the option is
equal to the sum of money he needs. That means:

O(t) = R(t) = ∆(t)S(t) + Π(t). (3.11)

If we make a differential of O(t), we get:

dO(t) = ∆(t)dS(t) + rΠ(t)dt, (3.12)

where we assumed d∆(t) = 0. This we can perceive that asset price (and from
that option price, because it is function of S(t)) is not influenced by change of
∆(t), On the contrary, ∆(t) is influenced by fluctuations of asset price. The
second term comes from the fact that the best risk-free investment has interest
rate r, and from (3.2).

3.4 Black-Scholes Equation

If we rewrite differential dO with help of Itō’s lemma, we get:

dO(S(t), t) =

(
∂O

∂t
+ µS(t)

∂O

∂S
+

1

2
σ2S(t)2

∂2O

∂S2

)
dt + σS(t)

∂O

∂S
dW (t),

(3.13)

dO(S(t), t) =

(
∂O

∂t
+

1

2
σ2S(t)2

∂2O

∂S2

)
dt +

∂O

∂S
dS(t). (3.14)

If we compare the coefficients in equations (3.12) and (3.14), we get these
two formulas:

∆(t) =
∂O

∂S
, (3.15)

rΠ(t) =
∂O

∂t
+

1

2
σ2S(t)2

∂2O

∂S2
. (3.16)

The first equation comes from the delta-hedging, and tells us that if the writer
will own in every time this amount of underlying, he will eliminate the risk com-
ing from the option. Sometimes can be this equation interpreted as a definition
of delta-hedging strategy.

If we rewrite the second equation with help of equation (3.10), we get
Black-Scholes formula for European options:

∂O

∂t
+

1

2
σ2S2 ∂

2O

∂S2
+ rS

∂O

∂S
− rO = 0. (3.17)

Note that in this equation occurs no µ. The price of option is independent of
drift parameter of an underlying.
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3.4.1 Boundary Conditions

It would seem, that Black-Scholes model describes all options with the same
way, no matter, if they are call options, or put options. The difference between
these two kinds is hidden in boundary conditions of Black-Scholes equation. In
the next, we shall denote T as expiration time, K as strike price (= agreed
price, for that can be the option exercised), C(S, t) will be price of a call option
and P (S, t) will be price of a put option.

For call and put options we have these boundary conditions:
call option:

C(S, T ) = max(S(T ) −K, 0) (3.18)

C(0, t) = 0 (3.19)

C(S, t) → S for S → ∞, (3.20)

put option:

P (S, T ) = max(K − S(T ), 0) (3.21)

P (0, t) = K exp(−r(T − t)) (3.22)

P (S, t) → 0 for S → ∞. (3.23)

We will look at the price of the call option in the time T . If the price of an
asset S(T ) would be lower than strike price, the holder would not exercise the
option, because for him is cheaper to buy an asset directly. So C(S, T ) = 0. If
the price of an asset would be higher than strike price, the writer will require
that he would like at least not to loose any money. So the option should cost
at least the difference between actual market price and strike price. Because if
the price would be more, than this minimum price, the holder will not buy the
option. We get for both cases, S(T ) < K,S(T ) > K, the condition (3.18).

Very similar situation is with the put option. If the asset price K would
be higher than strike price at expiration time T , the holder would not exercise
the option, so P (S, T ) = 0. If S(t) < K, the holder would exercise the option,
and the writer would loose K − S(T ). This loss would writer compensate with
the price of the option, so similarly given these two conditions together, we get
(3.21).

Another conditions we get, if we look at behavior of option price for S(t) = 0.
Then we can see from (3.5) that if at any time t0 would be price of an asset 0,
then would stay 0 for all times.

If we look at call option when a price of an underlying asset is 0, than it is
obvious that this option will not be exercised, so the price of call option is 0.
On the other hand, the put option will be certainly exercised. So the price of
put asset should be strike price, discounted by risk free interest rate.

The last condition results from behavior when the price of an asset goes to
infinity. Then we can assume S ≫ K, so the price will be influenced only by
price S.
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3.4.2 Solution of the Black-Scholes Equation

Using Green’s function method, we get the solution of the Black-Scholes equa-
tion (the whole solution and all details are in [16]):

C(S, t) = SΦ(d1) −K exp(−r(T − t))Φ(d2) (3.24)

P (S, t) = K exp(−r(T − t)) − S + C(S, t), (3.25)

where

d1 =
ln( S

K ) + (r + σ2

2 )(T − t)
√
σ(T − t)

d2 = d1 −
√
σ(T − t)

and Φ(x) is CDF of normal distribution.
This solution has some advantages, but as we will see in the next chapter,

the Black-Scholes model has some limitations. The next chapter will be all
about improvements of Black-Scholes model.
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Chapter 4

Beyond Black-Scholes
Model

The Black-Scholes model is the most used model for pricing options. Its ad-
vantage is that the solution is in analytical form, and the fact that the model
is simple and easy to understand. Moreover, it really works well for the most
of time. On the other hand, the model has some assumptions that sometimes
make the it unreal. We will look at the limitations of Black-Scholes model and
outline some of possible generalizations.

4.1 Limitations of Black-Scholes Model

In order to derive Black-Scholes equation, we had to make a few assumptions.
Many of them are in usual situations a good approximation of real markets. We
will analyze them.

The first sort of deflections of the model have technical character. The
assumption of no dividends is not necessary, if we modify the function for the
asset price. If we know, how will be dividends paid (the sum of dividends paid
in time t D(t) is known function od time), then

S′(t) = S(t) exp

(
−
∫ T

t

D(t′)dt′

)
. (4.1)

As well the assumption of constant σ and r can be relaxed if they are known
functions of time. Then we can use average values:

σ2 =
1

t− T

∫ T

t

σ2(t′)dt, r =
1

t− T

∫ T

t

r(t′)dt. (4.2)

Assumptions as divisibility of assets or no market friction assumption are
usually well fulfilled in bigger transactions. Discussions about validity of efficient
market hypothesis is beyond this thesis. These problems are more economical
character and will not discus them.
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Figure 4.1: Figure shows the evolution of Dow Jones Industrial Averages in the year
2001. Dow Jones index consists of 30 companies as Coca-Cola, IBM, etc. On the
graph we can see rapid fall after terrorists attacks in 11. 9. 2001. The index steeply
declined after the attacks and after a few weeks it began to rise again.

4.1.1 Large Deviations

For us will be more important the problem of suitable model for an asset price.
We have decided that the part of price evolution, which describes stochastic be-
havior of an asset price, will be described by the Wiener process. Wiener process
is described by normal distribution (or the process of price evolution is described
by log-normal distribution) and for this distribution are very improbable large
deviations.

We can return again to the continuous random walk which is described with
the the the standard deviation σ. We can ask, what is the probability that the
walker will get further during time interval ∆t = 1, than for example σ, 2σ, 3σ . . .
For the distance β > 0 from actual position is the probability given by CDF of
normal distribution Φ :

P [|∆x| > β] = 2(1 − Φ(β)) (4.3)

For value σ is the probability 31.73%, for 2σ is the probability 4.55% and
for example, the probability that the the walker will be further than 6σ is about
1.97·10−7%. That means that large steps are very improbable. Because prices of
assets are described with distributions based on normal distribution, for them
it means that for the prices are large fluctuations almost impossible, or they
can happen very rarely, something like once per 107 units of time when talking
about fluctuations 6σ large. But we know that in financial markets are these
large fluctuations are more frequent. It is possible to see on figures 4.1, 4.2
and 4.3, that events as natural disasters, terrorists attacks, or fatal decisions
of politicians can influence markets so much that even very improbable fall or
rise can happen. So during the period when markets are not much influenced
by these outer effects, can markets be well described by Wiener process. When
markets are influence by e.g. a natural disaster, then Wiener process is not good
for modeling asset prices. It is the same when we imagine a grain of pollen in
the container with water. When the container is at the rest, the process of grain
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Figure 4.2: On the graph we can see the evolution of Lehman Brothers Holding, Inc.
stock. The investment bank suffered from subprime mortgage crisis in 2006 - 2007 and
this led the bank to the bankruptcy in 15. 8. 2008. This incident started the global
financial crisis.
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Figure 4.3: This graph shows the fall of Standard & Poor’s 500 index during global
financial crisis in the years 2008 and 2009. During the year the index fell from 1,565.15
points in 9. 10. 2007 to 676.53 points in 9. 3. 2009. The fastest slump was at the
beginning of financial crisis in the September 2008 when the index suddenly lost more
than 300 points.
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Figure 4.4: Figure shows a simulation of typical random walk with different probability
distribution of steps. In the simulation were made 105 steps. In the first case (blue
line) is it classical Wiener process, i.e. the probability distribution is normal with
mean 0 and variance 5. In the second case (purple line) was the probability distribution
Student distribution with parameter ν = 1.7. Student distribution with this parameter
has mean µ = 0 and indefinite variance, so the behavior of the “walker” is quite similar
to situation when the distribution would be Lévy with parameter 1 < α < 2, and Lévy
distribution is its limit distribution. The arrow marks the large deviation, this behavior
we can see in financial markets, e.g. during some disaster. In the third case (yellow
line) is the probability distribution is Cauchy distribution. This distribution is too
sharp and has too fat tails, so it products very small fluctuations alternated by huge
jumps.

movement can be described by Wiener process, but when we hit the container,
then the process cannot be well described by Gaussian process.

We can ask, what distributions are the best for describing financial markets.
It may be surprising that heavy tailed distributions can be a good candidate
for the suitable distribution. It may seem that because they may not have
defined mean or variance, they cannot describe any real physical system, less
so financial markets. But it is not so. Heavy tails property leads to the fact
that large deviations are much more probable, than in normal distribution case.
On the other hand, they usually have sharper peak around the mean (if it is
defined), so these processes stay for some time oscillate around the expected
value and then make a big jump and then again.

Special role have Lévy distributions, because they are attractors of sums of
random variables. For longer times, we can see that the process that is described
by heavy tail distribution behaves similarly as the process with Lévy distribu-
tion with appropriate parameter α. For example for S&P index is α ≃ 1.4
[16, p. 162].

In the next section we would like to suggest some financial models that would
work better even for extreme situations, and Lévy distribution will usually have
a fundamental role in these models.
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4.2 Generalizations of Black-Scholes Model

Here we would like to show a few models that extend Black-Scholes model. Our
aim is not to precisely derive all details, but we would like to suggest, how is
possible to improve ideas shown in previous chapter.

4.2.1 Double Stochastic Equation

The idea of double stochastic equation comes from Steven Heston and is pub-
lished in [12]. The main concept is simple: assumption of constant volatility, or
volatility that we can predict is usually not satisfied. We do not usually know,
how volatile will markets be. The idea is that not only asset price, but also
volatility is a stochastic process. If volatility fulfills Ornstein-Uhlenbeck process
[15], we get these two equations:

dS(t) = µS(t)dt + σ(t)S(t)dW1(t) (4.4)

dσ(t) = −βσ(t)dt + δdW2(t). (4.5)

Processes W1(t) and W2(t) are not independent, but

Corr (W1(t),W2(t)) = ρ, (4.6)

where |ρ| < 1.
Using Itō’s lemma we get an expression for differential of σ2(t), which will

be more useful for next calculations:

dσ2(t) = [2δ2 − βσ2(t)]dt + 2δσ(t)dW2(t). (4.7)

This process is called square-root process and usually is written in this form:

dv(t) = κ[θ − v(t)]dt + ξ
√

v(t)dW2(t). (4.8)

We will be also using this form, so σ2(t) = v(t).
For option price O we assume that O = O(S, v, t) and calculate dO with

Itō’s lemma for more stochastic processes [7]:

dF (t, x1, . . . , xn) =
∂F

∂t
dt+

n∑
i=1

∂F

∂xi
dxi+

1

2

n∑
i,j=1

∂2F

∂xi∂xj
d[Cov(xi, xj)]. (4.9)

For option price we get (for lucidity we omit arguments):

dO =

(
∂O

∂t
+ µS

∂O

∂S
− κ[θ − v]

∂O

∂v
+

1

2
vS2 ∂

2O

∂S2
+

1

2
ξ2v

∂2O

∂v2
+

+ ξSvρ
∂2O

∂S∂v

)
dt +

√
vS

∂O

∂S
dW1(t) + ξ

√
v
∂O

∂v
dW2(t). (4.10)

We again assume sum of money needful to suitable hedging strategy:

R(t) = ∆(t)S(t) + Π(t) + γ(t)C(S, v, t), (4.11)

where we should own not only the part of underlying, but also a part of some
concrete option.
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If we calculate a differential od R(t) and compare coefficients similar to
Black-Scholes model, we get Double-stochastic equation [12]:

∂O

∂t
+

1

2
vS2 ∂

2O

∂S2
+ ρξvS

∂2O

∂S∂v
+

1

2
ξ2v

∂2O

∂v2
+

+rS
∂O

∂S
+ (κ[θ − v] − λ(S, v, t))

∂O

∂v
− rO = 0. (4.12)

Term λ represents market price of volatility risk and depends on the concrete
market. The other advantage is that this model is applicable for more kinds of
options because of suitable choice of λ.

Next sections will be about concepts that have their background in thermo-
dynamics. We will see that assets dealt in financial markets and molecules of
gas moving in a container can have some similar properties and it can be useful
to use these methods in financial markets.

4.2.2 Superstatistics

The main idea of superstatistics is: “Superstatistics is statistics of statistics.”
One of the first scientist engaged in superstatistics was Christian Beck [4]. The
first stimulus came from thermodynamics. We know that energy distribution of
molecules of gas with inverse temperature β in equilibrium is:

p(E, β) =
1

Z(β)
ρ(E)e−βE , (4.13)

where Z(β) is partition function and ρ(E) is density of states with energy E.
Here we assume that the system is in equilibrium. That means that tem-

perature in the whole system is the same. We can assume that it is true locally,
i.e. we can divide the volume into many small areas with constant tempera-
ture. We can count, how many of these areas have given temperature. If the
volume of these areas were infinitely small, we can measure the distribution of
the temperature f(β). Then PDF of energy, p(E) is given by superposition of
these density functions:

p(E) =

∫ ∞

0

f(β)
1

Z(β)
ρ(E)e−βEdβ. (4.14)

In our case can volatility change during the time. A probability distribution
of asset price is given by (3.9), we can assume that volatility is constant in
every time interval (ti, ti+1), but it is not necessary, to be the same constant in
all of time intervals. If these intervals were infinitely small, volatility could be
given by suitable distribution. The question is, what is the right distribution of
volatility.

We can see that the distribution of X = lnS is normal, so it depends on
volatility as:

p(X,σ) ∼ 1√
σ2

exp

[
−X2

σ2

]
.

If the PDF depends on the parameter β more like 1
β , then it is natural to use
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for probability distribution of β inverse gamma distribution1 (more in [3, 4]).
From the form of PDF, we can recognize that the role of “inverse temperature”
here has the term 1

σ2 . If we put these distributions into formula (4.14) now for
σ2 we get new distribution p̃ of X. These distributions are heavy-tailed, we will
demonstrate in on an example that is analytically expressible.

As distribution f(σ2) we take inverse gamma distribution InvGamma(α, β)
and we assume that µ = 1

2σ
2. Then the distribution is:

p̃(X, t) =

∫ ∞

0

βα

Γ(α)σ2α+2
√

2πσ2t
exp

(
− β

σ2
− X2

2σ2t

)
2σdσ =

=
2α(tβ)α√

2π

Γ
(
1
2 + α

)
Γ (α)

1

(x2 + tβ)α+
1
2

. (4.15)

We can see here the connection between volatility and temperature. This
connection will be seen even more in next section.

4.2.3 Tsallis Entropy

When in thermodynamics we derive the most probable energy distribution for
particles with given expectation value E , we use the concept of minimal entropy.
We denote pi probability that the system will be in the state xi ∈ X, where X
is a set of all possible states. We demand that probability distribution should
be normalized, i.e.: ∑

i

pi = 1, (4.16)

We also demand that expectation value of energy is E , so:

E = E(Ei)xi∈X =
∑
i

Eipi, (4.17)

where Ei is energy in the state i. The logical question is, what is the best
function for entropy. The entropy function S should measure the information
we do not know about the system.

It should obtain these properties:

1. For pi = 1 : S(pi) = 0. We know that this state is the only one that will
be realized.

2. For pi → 0 : S(pi) → ∞. When improbable state is realized, we will know
much more about the system.

3. For independent states xi, xj : S(pipj) = S(pi) + S(pj). This property is
sometimes called additivity of entropy.

1Inverse gamma distribution: continuous distribution defined on positive real line with two
parameters: α is a shape parameter, β is scale parameter. Probability function is :

p(x;α, β) =
βα

Γ(α)xα+1
exp

(
−
β

x

)
.
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The most common choice of entropy function that fulfills these properties,
is −k ln pi, where k is not specified constant. Because we have many parti-
cles, or events, so we take an expectation value. So we get the definition of
Gibbs-Boltzmann2 entropy:

S = −k
∑
i

pi ln pi, (4.18)

and we try to minimize the entropy with respect to conditions (4.16), (4.17).
We solve this problem by Lagrange multipliers’ method. The Lagrange function
is equal to:

Λ = −k
∑
i

pi ln pi − αk

(∑
i

pi − 1

)
− βk

(∑
i

Eipi − E

)
. (4.19)

We find an extreme value of Λ. That means to solve system of equations:

∂Λ

∂pi
= 0 ∀i : xi ∈ X∑

i

pi − 1 = 0 (4.20)∑
i

Eipi − E = 0.

When we derive Λ, we get:

∂Λ

∂pi
= −(ln pi + 1) − α− βEi = 0. (4.21)

From this we get an expression for pi:

pi = exp (−1 − α− βEi) , (4.22)

and after normalization of pi with equation (4.16), we get well known formula
for the most probable distribution:

pi =
1

Z(β)
exp(−βEi), (4.23)

where Z(β) is partition function and it is defined as:

Z(β) =
∑
i

exp(−βEi). (4.24)

If we compare this solution with our previous remarks that β ∼ 1
σ2 and energy

can be representation of (lnS)2, we see that it gives us prediction that the best
way, how to describe our problems will be by Wiener processes with normal
distribution.

Generalization of Gibbs-Boltzmann entropy is called Tsallis entropy [17].
The main principle is that postulation of exactly the form of entropy shown
above, gives in many cases good predictions, but there is no physical reason,

2also called Shannon entropy
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why must logarithm be the only function suitable to describe uncertainty of the
system. Tsallis gives another class of functions that can be suitable and defines
entropy as:

Sq = − k

1 − q

(
1 −

∑
i

pqi

)
. (4.25)

This entropy for q → 1 becomes Gibbs-Boltzmann entropy3 . This entropy
has the problem that it does not obey property 3 of suggested properties of
entropy, i.e. additivity. But it is not necessarily a problem, in large open
systems, as financial markets, it is possible to see that this property is not
fulfilled. Here is a generalized version of additivity:

Sq(pipj) = Sq(pi) + Sq(pj) + (1 − q)Sq(pi)Sq(pj). (4.26)

Now, we can make again Lagrange function and solve system 4.20:

∂Λ

∂pi
= − q

q − 1
pq−1
i − α− αβEi = 0.4 (4.27)

From that we get the expression for pi:

pi = α
1

q−1

(
1 − q

q

) 1
q−1

(1 + βEi)
1

q−1 (4.28)

and from normalization condition we get:

pi =
1

Zq(β)
(1 + βEi)

1
q−1 , (4.29)

where partition function Zq(β) is equal to:

Zq(β) =

(
1 − q

q

) 2−q
1−q ∑

i

(1 + βEi)
1

1−q . (4.30)

An interesting thing about this result is the fact that this distribution is heavy-
tailed. It shows that for large, open systems is more natural to use heavy-tailed
distributions, although they do not have defined first or second moment.
Note: Another possibility is to work with Rényi entropy defined as:

Sα =
k

1 − α
ln

(∑
i

pαi

)
. (4.31)

4.2.4 Fractals in Financial Markets

Another point of view to the Brownian motion can be trough fractals. The
founder of the fractal analysis is Benoit Mandelbrot, and he also studied appli-
cations of fractals in financial markets (e.g. [13]). Fractals are geometric objects
that are self-similar under scaling. These object are usually defined recursively

3it can be shown by L’Hospital rule
4i Instead of β we chose the second multiplyer αβ. That is possible for α ̸= 0.
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and have special properties. Brownian motion can also be generated as fractal.
If we change variables x, t:

x 7→ αx

t 7→ α2t,

then the probability density does not change:

p(αx, α2t) d(αx) =
α√

2πα2t
exp

(
− (αx)2

2α2t

)
dx = p(x, t) dx. (4.32)

This property is called self-affinity. We could see it also from the martingale
property of W 2(t) − t, because from that results:

E(W 2(t)) = t (4.33)

All of these results lead us to the idea that Brownian motion is a fractal (all
details are in [8]), and we can this motion generate as fractal.

Let us start with a line shown in the first picture of 4.5. It is called initiator.
The line symbolizes a drift of an asset price given by parameter. In every
iteration we divide the line into three parts. These lines are called generator.
The first part will be from 0 to 4

9 of the length of the line, the second will be
from 4

9 to 5
9 and the last part will be the rest of the line. Now we replace the line

with three lines. We denote the boundary coordinates of the line (0, 0),(d, d),
then the first line be given by points (0, 0), ( 4

9d,
2
3d), the second line will be

given by: (4
9d,

2
3d) ,( 5

9d,
1
3d) and the last line will have coordinates (49d,

2
3d),

(d, d). In next iterations every line breaks to three lines in the same way. In 4.5
are shown first three iterations of this pseudo-Brownian motion.

Note that if we look at any line and compare differences of x-coordinates
and y-coordinates, then the ratio will be:

∆y

∆x
=

l

l2
, (4.34)

which corresponds to the properties of Brownian motion, where ∆x ∼ ∆t and
∆x ∼ ∆(lnS).

Instead of fractals it is possible to use multifractals. The multifractal is a
geometric object that consists more fractal structures5. That means, we can
choose a few generators, and in every step use another generator. That seems
to be effective way of modeling more realistic processes.

The formalism of multifractals is connected with the concept that says that
market time passes differently from clock time. We can see that in some time
periods, especially when a stock opens, or just before closing, we can see much
more trades, so the prices of financial products change their values much more
in these time periods. So we can imagine that in the morning and before closing
passes trading time slower, than clock time, and in the lunch time when many
traders are not available, passes trading time faster.

When we know, how behave markets during the day, we can use an appropri-
ate generator. This concept can generate very realistic behavior of asset prices
[13].

5This is not the definition of multifractal, for more details, see [8].
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Figure 4.5: Generating pseudo-Brownian motion: on the top figure we can see initiator,
and on the next figures are first three iterations. Every line is divided into three parts
and it is broken into three lines, as prescribed.
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