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Abstract

In this work we discuss the ground state of the point interaction Hamiltonian
in one dimension. We introduce a mathematically rigorous definition of this
Hamiltonian as the self-adjoined operator on the appropriate Sobolev space
with the boundary condition at the point interactions sites. We study the
spectral problem for the point interaction Hamiltonian and the ground state
of the operator with help of the Krein’s formula. We demonstrate the rela-
tion between the distance of the point interactions sites and the ground state
on the line, the halfline and the star graph. We prove that the increase in
the distance between the point interactions results in increase of the energy
of the ground state.

Key words
The point interaction operator, point interactions in one dimension, the
ground state of the point interaction Hamiltonian, Krein’s formula

Abstrakt

V této préaci se zabyvame zakladnim stavem operatoru bodovych interakei.
Zavedeme matematicky rigorozni definici tohoto operatoru, jakozto samos-
druzeného operdtoru na odpovidajicim Sobolevové prostoru s vhodnymi okra-
jovymi podminkami v mistech bodovych interakci. Zabyvame se spektralnim
problémem operatoru bodovych interakei a jeho zakladnim stavem za pomoci
Kreinovy formule. Dokazeme vztah mezi vzdalenosti jednotlivych bodovych
interackci a energii zakladniho stavu na primce, polopiimce a hvézdicovém
grafu. Ukazeme ze zvétSeni vzdéalenosti mezi bodovymi interakcemi vede k
zvyseni energie zédkladniho stavu.

Klicova slova
Operator bodovych interakci, bodové interakce v jedné dimenzi, zakladni
stav operatoru bodovych interakci, Kreinova formule
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Chapter 1

Introduction

In this work we will discuss the ground state of Hamiltonian operator, which
can be formally written in the form:

H=—-A+Y )5, (1.1)

yey

where A denotes self-adjoint Laplacian with the domain H*?(R). The quan-
tum mechanical particle with Hamiltonian of this form moves in the field
of contact potentials placed at the the points of a discrete set Y with the
interaction strengths \,. Such operators are interesting, because the corre-
sponding spectral and scattering problem can be solved exactly and used as
an approximation to more realistic models of such systems. These Hamilto-
nians are useful in atomic and nuclear physics (as approximations of short
range interactions), in solid state physics (for instance, as a description of
nonrelativistic electron which moves freely in crystal lattice with fixed atoms,
usually called Kronig-Penney model), or in electromagnetism (propagation
in dielectric media), etc. A survey of such solvable models can be found in
the monograph [1].

In this work we are going to discuss properties of the ground state of the
operator (1.1) in one-dimensional systems, that is, for a particle living on line
or a more complicated configuration space composed of line segments. The
ground state of the system as the state with the lowest energy is of natural
physical importance. While in an isolated system the particle remains in
a given eigenstate, in reality any physical system interacts with the rest
of the universe which can be regarded as a heat bath, often in form of an
electromagnetic field. This leads to an energy dissipation which brings the



system eventually into the ground state as its stable configuration. We will
be particularly interested here in the case with attractive point interactions,
i.e. with the coupling constants A, < 0. In this situation the existence of the
spectral gap is guaranteed, i.e. the ground state is an isolated eigenvalue,
whenever Y is a finite and non-empty set. We will introduce a mathematically
rigorous definition of the formal expression (1.1) as a self-adjoint operator
defined on the appropriate Sobolev space with the help of suitable boundary
conditions at the point interactions sites. To find the ground state we have
to solve the equation

Hy = =Np+ > N0, ()9 = B (1.2)

yey

This spectral problem can be simplified to an algebraic one using the so-called
Krein’s formula which expresses the resolvent of the operator, or rather its
difference from that of the Laplacian as a specific finite-rank operator. Our
main result is that a change of the set Y which increases distances between
the point interaction sites results in an increase of the ground-state energy.

After solving the problem on the line we will present some generalizations.
In particular, we will consider point interactions on a halfline with various
boundary conditions at the endpoint. We will show that a similar result
is valid regarding to changes of distances between the point interactions.
With respect to the distances from the halfline end the situation is more
complicated. The behavior is similar as long as the boundary condition is
Neumann or Robin with a negative parameter, ¢’(0+) = aog(0) with oy < 0
while for its positive value or Dirichlet condition it needs not to be true.
We also generalize this result to point interactions on a star graph under
additional assumptions.

The result may look natural but it is general and new to our knowledge.
Moreover, it opens interesting questions if we impose constraints on the min-
imum distance between the point interactions, as a possible simple model of
the crystallization process. Further generalizations may concern a version of
our result in presence of a regular potential and, in particular, its analogue
for point interactions in dimension two and three. These questions, however,
go beyond the scope of the present thesis and will be a subject of a future
work.



Chapter 2

Point interactions in one
dimension

In this chapter we summarize basic properties of point interactions in one
dimension. We begin with properties of a single point interaction on the line.
Afterwards we introduce finite number of point interactions on the line.

2.1 The one-center point interaction

We have more than one way how to introduce the quantum Hamiltonian
which describes d-interaction in one dimension. One of the easiest ways
is to employ self-adjoint extension of a suitable densely defined symmetric
operator. First we take closed and nonnegative operator

. d2
with the domain D(H,) = {g € H**(R)|g(y) = 0}. Its adjoint acts as
. 2

with the domain D(H}) = H**(R\ {y}) N H*'(R), where H™"(R) are cor-
responding the Sobolev spaces. Solution of the equation

Hyi (k) = k> (k) (2.3)



is given by A
Wk, ) = el (2.4)

where (k) € D(H;), k* € C — R and Sk > 0. From this we can infer that
H, has deficiency indices (1,1).

According to [4, Section X.1] and [1, Appendix A] we know that all self-
adjoint extensions can be then parameterized by 6 € [0,27) in the following
way.

Theorem 2.1. Let H be densely defined, closed, symmetric_operator in
Hilbert space H with deficiency indices (1,1). Let ¢(z) € D(H*), Sz > 0
fullfill (2.3). Then we may parameterize all self-adjoint extensions Hy of H
with 0 € [0,2m) as follows: the domain of Hy is

D(Hy) = {g + ety + ce”_|g(2) € D(H), c € C} (2.5)
and the operator acts as

Hy(g+ by + ey ) = Hyg + ichy +iceyp_ (2.6)

where P+ = (i, -), ||| = [|¢+]].

When we apply this theorem to extensions of our operator Hy we see that
the self-adjoint extensions Hy, satisfy the condition

lim{(g + ety + ceP) (y + ) = (g + by + ™) (y — )] =

A A (2.7)
—c(1+ €)= algy) + by (y) + cev_(y)]
—2COS(§) . . . .
where a = m and the functions in the domain are continuous at the
2 4

point y. We can thus parameterize the self-adjoint extensions using boundary
conditions.

Theorem 2.2. Let the operator —A,, be defined as

_A — d2
oy — _@7
D(=Aa,) = {g € HX(R) N H22R\{y}) ¢'(y+) — ¢/ (y—) = ag(y)}, |

—o0o < a< oo

2.8)



The family {—Aqy| — 00 < a < 0o} coincides with all self-adjoint extensions
of Hy. The case a = 0 gwes us the free Hamiltonian, or kinetic energy
operator in L*(R),

—A d—2 D(-A,,) = H**(R) (2.9)

ay — _d$27

The case o = oo corresponds to separated halflines with Dirichlet boundary
condition at y,

—Asy = (—Ap-) & (—Ap-),
D(~Aay) ={g € H*'(R) N H**(R\ {y})9(y) = 0}
= Hy™((—00,)) U Hy™*((y, 00))
(2.10)

where —Ap. is Dirichlet Laplacian (for the definition see [3, Section X1II.15])

on (y,o0) and (—00,y), respectively.

Proof can be found in [1, Section 1.3.1]

The operator —A,, describes one dimensional quantum particle with 6-
point interaction of strength v at y € R. According to [1, Theorem 3.2.3] we
can obtain the self-adjoint operator —A,, , as limit of the operator

2 1 Ty
e T Vi)

where € > 0, y € R, and V(z) € L'(R). For the € \, 0 the operator H,,
converges to the operator —A, , in the norm resolvent sense that means

He,y ==

(2.11)

y{% || (He,y - kQ)_l - (_Aa,y - k2)_1 ”: 0.

Also we know that a = [, dx V(). This kind of approximation scheme auto-
matically yields finite strength of the point interaction, |«| < oco.

The proof of this result is not easy but one can illustrate its essence using
a formal argument. When we integrate Schrodinger equation corresponding
ton—%%—aé(x—y) fromz =y —etox=1y+efore>0, weget

Wty - s =E [ v@d (212

9



which is the boundary condition in (2.8). If we replace §(z —y) by 1V (£2£)
we get the same result with a = [, dzV/(z).
Next we will express the resolvent of —A, , by means of Krein’s formula.

Theorem 2.3. The resolvent of —A,, is given by

(=Au, — k)7 = Gy — 2ak(ia + 2k) N (GL(- — y), ) Gi(- — 1),

; N (2.13)
k* e p(—Any), Sk>0, —oco<a<oo, yelR

where '
Gr(z, 2') = (i/2k)e*=="| Sk >0 (2.14)

is the integral kernel of (—Aq,—k?)~' in L*(R) which means that the integral
kernel of (—An, — k)71 s
(=Aqy — )N, ') = (i/2k)e™e= 1 a(2k) (i + 2k) LetkllevltHlv=2l]
€ p(=Asy), Sk>0, x2 eR

(2.15)
Proof can be found in [1, Section 1.3.1]
Next we will say a few things about spectral properties of —A,,
Theorem 2.4. Let —o0 < o < 00, y € R then we have
ess(—Aay) = Oac(—Aay) = [0,00),  0se(—Aay) = & (2.16)

If —oo < a < 0, then —A,, has one simple, negative eigenvalue, namely

—a?

op(—Aay) = {T} , —oo<a<0, (2.17)

with an eigenfunction which can be chosen strictly positive:
b(a) = (a/2)!/ 26t/ (2.18)
If 0 < a < o0, the operator —A,, has no eigenvalues, i.e.
o

p(—Bay) =2, 0<a< oo (2.19)

Proof can be found in [1, Section 1.3.1]

10



2.2 Finitely many point interactions

In this section, we will generalize the case of one point-interaction to the case

of finitely many point-interactions. First we define the minimal operator Hy
as

HY = _@7

D(Hy) ={g € H**(R)|g(y;)) =0,y; € Y, j = 1,... N},

Y = {yla--'7yN}7N eN

(2.20)

Hy is a closed and nonnegative operator. The adjoint operator H{} to Hy is
given by

d2
Cdx? (2.21)
D(Hy) = H*'(R) N H**(R\ {Y'})

Hy =

The solution of Hiv(k) = k*¢(k), for (k) € D(H$), k* € C — R, Sk > 0,
is
ik, x) = e*leul Sk >0y, €Y, j=1,...,N (2.22)

thus Hy has deficiency indices (IV, N). Consequently, all the self-adjoint ex-
tensions of Hy form an NZ2-parameter family of self-adjoint operators. We
restrict ourselves to the case of local boundary conditions coupling the bound-

ary values at each point y;, j = 1,..., N separately. Similarly as for one point
interactions we introduce self-adjoint extension of Hy as
d2
_Aa Y = T 57 5
’ dzx?
(2.23)

D(-Aay) ={g e H*'(R)Nn H**(R\ Y)
9'(yi+) — 9 (y;—) = ag(y;),i=1,..., N}

where o = (g, ..., a,), —00 < oj <00, j=1,...,N. The operator —A, y
is self-adjoint([1, Section 11.2.1]). The case o = 0 leads to the kinetic energy
operator —A on H??(R). The case o, = oo leads to the Dirichlet boundary
condition at y;,, that is, g(y;,+) = 9(y;,—) = 0. According to [1, Section
I1.2.2] the operator —A,y can be approximated by the operators

dz? €

d2 N S — Y,
Hey = ———+e 'Y Vi(—2). (2.24)
j=1

11



It can be proven that the operators H.y converge to the operator —A,y
in the norm resolvent sense and o; = [, dee 'V;(=2) for all j = 1,..., N.
From this we can see that —A, y describes N d-interactions at points y; € YV
of strength «;, where j =1,..., N.

Now we will point out some properties of —A,y. First we will state
Krein’s formula in this case:

Theorem 2.5. Let o # 0, j = 1,...,N. Then the resolvent of —A,y s
given by

(—Qay — k) =G+ Y Cay (W) (G- = ), )Grl(- — ),

£ (2.25)
Jy'=1
k* € p(—Auy), k>0, —co <a;<oo,y; €Y,j=1,...,N,
where
Loy (B)]j5 = —log 05 + Grly; — yi0)] )= (2.26)
where Gy, is the free resolvent kernel given by (2.14) ,i.e.
_ iy |

2k
Proof can be found in [1, Section I1.2.1]

Theorem 2.6. Let a; # 0, y; € Y,j € {1,2,..., N}. Assume that there is
at most one indexr j = jo for which aj, = oo. Then —A,y has at most
N eigenvalues which are all negative and simple. If a; = oo for at least
two different values j € {1,2,...,N}, then —A,y has at most N negative
eigenvalues (counting multiplicity) and infinitely many eigenvalues embedded
in [0,00) accumulating at co. In particular, k* € o,(—Asy) N (—00,0) if
det[Tny (k)] = 0, Sk > 0, and the multiplicity of eigenvalue k* < 0 equals
the multiplicity of the eigenvalue zero of the matriz I'yy (k). Moreover, if
Eo = k3 < 0 is an eigenvalue of —A,y, the corresponding eigenfunctions are

of the form
N

o =Y ¢;Gr(r—y;), Sko >0, (2.28)

j=1
where (c1, ¢a, ..., cn) are eigenvectors of the matriz Iy y (ko) corresponding to

the eigenvalue zero. If A,y has a ground state (the lowest isolated eigen-
value) it is nondegenerate and the corresponding eigenfunction can be chosen

12



to be strictly positive, i.e. the associated eigenvector (ci,ca,...,cn) fulfills
¢;>0,j€{1,2,..,N}.

Proof can be found in [1, Section I1.2.1]

13



Chapter 3

Energy of the ground state

3.1 Finite number of point interactions on
the line

In this section we shall discuss how the ground state of —A, y is affected by
a change of distance between point interactions. We prove that an increase
in distance between point interactions causes an increase of the energy of
the ground state. We can consider a change of the distance between two
neighboring interactions which will, of course, result into a modification of
distances between the other point interactions as well. As a preliminary, let
us recall a useful tool for comparing operators.

Lemma 3.1 (About Neumann bracketing). Let Q2;,Q be disjoined sub-

sets such that Q0 Uy o Q, and Q\Q; U Qs has Lebesque measure zero.
Then 0 < AU < AL

Proof can be found in [3, Section XIII.15]

There are different methods to address our problem. First we will prove
a slightly weaker claim under an additional assumption, namely that the
ground-state eigenfunction derivative changes sign between the two point
interactions in question. A stronger claim will follow in the next theorem.

Theorem 3.1. Let —A,y,, —Aay, be the point interaction Hamiltonians
defined above where Y; = {y;1,...,yin} and yi1 < yi2 < ... < Yin. Suppose
that cardY; = card Ys, ag < 0 for all k. Suppose that there is an i such that

14



Yoj =t forj=1,...;i andys; = yh; +n for j=i+1,...,N. Suppose
further that for the ground state of the first operator we have ' (y;+) < 0 and
' (yir1—) > 0. If n > 0 then the ground states of the two operators —Agy;,
—Auy, satisfy mino,(—Ayy;) < mino,(—Aay,)

Proof. We consider the operator —A,, y discussed above. From Theorem 2.6
we know that for this operator the eigenfunction of the ground state can be
chosen as strictly positive. That means Vx € R\ Y = ¢(x) > 0. We also
have

_Aa,Y¢ = —E077Z)
where Ey > 0. This means
0%
9z = Y

Vz € R\Y. Because ¢(x) > 0 and Ey > 0, we can conclude that this
eigenfunction is convex for all z € R\ {Y}. By assumption we also have
' (y;—) > 0 and ¥'(y;41+) < 0. Thanks to that we can find x € (y;, ¥it1)

such that ¢'(z) = 0 Now we add Neumann condition at x to —A,y. We

denote the operator with the Neumann condition as —AS%,. The domain of

—AS%/ is
D(-ALy) = {g € H*'(R) N H*?*(R\Y)|
9'(y;+) — 9'(y;—) = a;9(y;), ¢'(x) = 0}.
Properties of the ground state for —A, y and —AS)Y are the same, because
we chose x in such a way the v fulfills Neumann condition for the wave

function of the ground state. Next we write —AS&, as direct sum of two
self-adjoint operators

_A((xl,%/ = _Aﬁ,Yl,a: D _A’Y,Yg,a; (31)

where o = (a1, g, ..., ), B = (1,09, ..., ), ¥ = (Qir1, Qiyo, ..., y), Y =
(Y1, Y25 s Yn)s Y1 = (W1, Y2, - ¥i), Yo = (Yir1: Yig2s - Yn), 1 <0 <, and
D(—Apy.) = {g € H*'((—00,2)) N H*?*((—00,z) \ Y1)
9'(y+) — ' (y;—) = aj9(y;), g’ () = 0}
D(=Ayvs0) = {g € H*((x,00)) N H**((z,00) \ Y2)|
9'(yi+) — 9'(y;—) = aj9(y;), ¢'(x) = 0}

15



Now we define —A((j%/

_At(f,%/ - _Aﬁuylvx S _Ag\af;,y) S _A”/,Yg,a; (32)

where —A%Y is Neumann Laplacian at the interval (z,y) (for the definition
see [3, Section XIII.15]). We choose z < y and denote y —z = 7. The domain
of the newly constructed operator is

D(-AL) = D(~Agy0) @ D(-AFY) © D(~Ayy,.0).
Neumann Laplacian is a positive operator, in particular, all its eigenvalues
are positive. We are interested in the ground state of —Ag%,. The discrete
spectrum of —A((j)y is the union of discrete spectra of the orthogonal sum
components,

0p(—ALY) = 0)(~Dpyie) U (AR ) Uy (A y,0)

The ground state of ~A® oy is negative which implies that the ground state
is not affected by AU because AZY > 0. Next we define —A&Y which
is obtained from the operator —Ag)y by removing the Neumann conditions

at the points x and y. It can be easily seen that —Ag, is equal to —A, vy
where Y/ = (y1,y2, -, ¥i, Yix1 + 15 - -, Yn + 7). According to Lemma 3.1 we
have A( < A(3 Also as we pointed out earlier we can write —A, y =
—Al Y and A = —A,y’. In combination with minmax principle [3,
Sectlon XIIL.1] we arrlved at the inequality:

inf o(—A,y) = info(—~A}) <info(-A%)) <info(-AY), = Aa,?) |
3.3

From this we have —A,y < —A,y’. We note that

Y/: (yllayéa7y;z) = (y1>y27--'ayi+1+777--'7yn+77)7

which implies that y; — y;11 < yj — yj,, for all j € {1,2,...,n — 1} which
completes the proof. O

Remark 1. Now we would like to note a few things concerning the assump-
tions about the first derivative of the wave function. According to Theorem
2.6 we can write eigenfunction of the ground state as

N N
= Gy (T — yi) = igetrvil
R O

16



where ¢ > 0 for all k and Sk > 0. The vector C' = (¢4, ..., cy) according
to Theorem 2.6 fulfills 'y y (ko)C = 0. From this we have

N

1 ¢ . iklyr—yj| _
ck( +2k> + Z Cigre = 0. (3.4)

=157k

After algebraic manipulations we get

1 i\ ' & i
N e T 2 iklyr—yjl
* (ak * Qk) D gt

J=1j#k

. N
- _ % kY —y;]
(2k+mk> ,Z e ’

J=15#k

We can choose the vector C' = (cq,...,cy) to fulfill Zf\;l ¢, = 1. We are
interested in the values of ¢/(y,—) and ¥’ (yxs11+). A simple calculation will
show that for x € R\ Y we have

N

vo(x) = Z cj kzk; sgn (z — y;)e*l=vil, (3.5)

j=1

We substitute z — y, = —e with € > 0 into (3.5) obtaining

oYk — € Z cj zk: sgn (yr, — € — yj)eiklyk*“yjl

2k

k=1 . .

{

— JQkaelklyk eyl — ¢j——ike etke _ E CJQkaezklyk el
]: ] k“‘rl

:_Z 1k|yk e yjl_,_ck;ezke_i_ Z ; ik|yr—e—y;]

j=k+1

From this equation we can see that our premise about ¢ (y;—) will be fulfilled
when cpete > ]Zf:L#k c;se*lve=e=uil| " This is true when we place point
interactions far enough from each other. Similar conclusion can be made
about ¢’ (yr_1+) in the same way as for 1'(yx—) so we omit the details.

17



The previous result is special in several respects. First of all, it requires
the derivative sign assumption. The relation between Y; and Y3 is also par-
ticular: the latter is obtained from the former y splitting it and shifting
one group of points. This is rather a problem of an elegant formulation, of
course, since one can compose more complicated changes from elementary
ones. What is more important, finally, is that the inequality we have ob-
tained is not sharp. All these deficiencies can be removed if we use another
method based on the secular equation derived from Krein’s formula according
to Theorem 2.6.

Theorem 3.2. Let —A,y,, —A.y, be the point interaction Hamiltonians
defined above. Suppose that cardY; = cardYs, ap < 0 for all k and that

Y,i — Y1,j < Y2 — Yo, 5 holds for all i, j and y1; — y1,; < Y2 — Yo,; for al least
one pair of i, j then the ground states of the operators —Auy,, —Aay, satisfy
mino,(—A.y;) < mino,(—Auy,)

Proof. We are interested in behavior of the ground state of —A,y. In view
of the secular equation detI',y(x) = 0, we have to investigate the lowest
eigenvalue \g of I', y (k). The latter is given by

Ao(a, Y k) = ‘gl'i:nl(c‘, Loy (k)C) (3.6)

where C' € C" with |C| = 1. The energy of the ground state —k? corresponds
to the value of x which fulfills Ag(a,Y;k) = 0. From Theorem 2.6 (after
introducing substitution —x = ik < 0) we know that

me(li)ij = —— — —€_KLU, (37)

where L;; = |y; — y;|. From this we can calculate (C,T'yy(k)C) as

(C,Tay (K)C) = zNj oi]2 (—ai - i) 9 i i Re (c—icj‘fQKL”) (38)

- - K
=1 j5=1

We will notice that the semigroup {e‘trmyw} is positivity improving accord-

ing to [3, Section XIII.12] and [3, Problem XIII.97] and therefore C' for which
the minimum is achieved can be chosen strictly positive, i.e. ¢; > 0 for all
1=1,...,n. Put together we have

Xo(a,Y; k) = ‘Clr:nll’gw(C, Foy(k)C). (3.9)

18



Now we take two configurations of point interactions, namely (a,Y’), (a, 37)
which fulfill L;; < L;; for all (4, j) and L;; < L;; for at least one pair of (¢, 7).
For any fixed C' > 0 we have

(C.Tay(r)C) < (C, T, 3(k)C) (3.10)

which can be seen from explicit form of (C, ',y (k)C) given above and thus
we see that an increase in distance will make the exponential smaller. Because
this is valid for every fixed C' we have the second term smaller, from which
we have

Xo(a, Y3 8) < Xo(a, Y k). (3.11)

Sharp inequality is a consequence of the fact that we know that C' for which
the minimum is achieved does exist. This inequality implies the statement
of the theorem. O]

3.2 Finite number of point interactions on
the halfline

In this section we will discuss the ground state of N point interactions placed
on the halfline. Properties of the ground state have similar properties as on
the line with small differences based on the condition which we put at the
endpoint of the halfline. Without loss of generality we can renumerate point
interactions to fullfill y; < y;4q Vi € {1,2,...,n — 1}.

First we will discuss the situation with Neumann condition at the end-
point. We define self-adjoined operator —A, y introduced in the first chapter
with the domain of

D(—Aay) ={g € H*'(R]) N H**(Ry \'Y)|
9'(y+) — d'(y;—) = a;9(y;), 4'(0) = 0}

where Y = {y1, 92, ..., yn} vi >0Vie {1,2,...,n}

(3.12)

Theorem 3.3. Let —A,y,, —A.y, be operators defined above. Suppose
either:

a) that there is an i such that yoj = y1; for j=1,...,i and ya; = y1; + 1N
forj=1i+1,..., N and further that for the ground state of the first operator
we have ' (y;i+) < 0 and ¥'(y;1—) > 0 or

b) that for ysj =y ; +n for all j € N.

19



If either a) or b) is fulfilled for n > 0 then the ground states of the two
operators —Agy,, —Aay, s mino,(—Ayy;) < mino,(—Aay,)

Proof. The proof is quite similar as proof for the case on the line. The only
difference is when we are enlarging distance between the endpoint and the
first point interaction. We split the proof to two parts:

a) Changing the distance between the endpoint and the first interaction

b) Changing the distance between two point interactions

a) First we have the operator —A,y defined above. Because we already
have Neumann boundary condition fulfilled at the endpoint of the halfline,
we can construct new operator as

AN = ALy @ AR (3.13)

where —Ag\?’”) is Neumann Laplacian with the domain D(—Ag\?’")) ={g €
H?*2((0,1)|¢'(0) = 0,¢'(n) = 0} and the operator —A, y+ with the domain

D(=Aay) ={g € H*!((n,00)) N H**((n,00) \ Y")|

JW+) — g y—) = a;9(s), d'(n) = 0}, (3.14)

where Y/ =Y + 7. We know that the eigenvalues of —AS&, are calculated as
union of eigenvalues of operators which our operator is made from. That is

op(—=AU)) = 0, (~AY") U oy (—Auy)

Because Neumann Laplacian have nonnegative eigenvalues and because we
are interested in negative eigenvalues, negative point spectrum remains the
: . . s (1)
same that is why we can write mino,(—A,y) = mino,(—A, ). Next we

define —Af%, as —AS)Y without Neumann condition in 7. We can easily see

that —Af’)y = —A,y4,. Put all together we have for the ground state

min o,(—A,y) = min ap(—AS’%,) < min ap(—Af,)Y) =mino,(—Asy4y)

From there we have —A,y < —A,y,. Wenote Y' = (v}, y5,...,y,) =Y +n.
The relation < 0 implies that y; — 0 < 3} — 0 which completes the proof.
b) Same as for the problem on the line, first we note that the function for
the ground state can be chosen strictly positive, i.e. Yo = ¢(z) > 0. Also
we have

—Aayth = —Egy) (3.15)
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where Ey > 0. This means ,
d
wlp = By (3.16)

for all z € R\ Y. From this we can conclude that ¢ is convex for Vo € R\ Y.
By assumptions we have ¢(y;+) > 0 and ¥(y;11—) < 0. Put together we
have that we can find = € (y;,¥;+1) such that ¢'(z) = 0. Now we add the
Neumann condition at x to —A,y. We denote the operator with Neumann

condition as _Aél,)y- The domain of —AS)Y is

D(-Aly) = {g € H*'R) N H**(R\Y)|

9'(yi+) = 9'(y;=) = a;9(y;), ¢'(0) = 0, ¢'(x) = O}
Properties of the ground state for —A, y and —AS}Y are the same, because we
chose x in such a way the 1 fulfill Neumann condition for the wave function
of the ground state. Next we write —AS,)Y as direct sum of two self-adjoint

operators
_AS,)Y = _Aﬁ,Yl,x S2) _AW,Yz,m (317)

where a = (a1, g, ..., ), 0 = (a1,09, .., ;), 7 = (Qiy1, Qigo, .y tn), Y =
(yhyQa "'7yn)7 )/1 = (917927 "'7yi)a YQ = (y’i-‘rhyi-‘r?) "'7y7l)7 1 S i S n, and

D(—Apyi2) = {g € H*'((0,2)) N H**((0,z) \ Y1)

9 (yi+) — g'(y;—) = a;gly;), ¢(0) =0, g'(x) = 0}
D(—A,y,.0) = {g € H*!((x,00)) N H**((z,00) \ Y2)|
9'(yi+) — d'(y;—) = aj9(y;), g'(x) = 0}

Now we define —Afj%,
A — A o _AlEY) o —-A 3.18
oY B,Y1,x N v,Y2, ( : )

where —A%Y is Neumann Laplacian at the interval (z,y). We choose = < y
and denote y — x = 1. The domain of the newly constructed operator is

D(~AP)) = D(=Asy0) @ D(—AGY) & D(~As i ).

Neumann Laplacian is a positive operator, in particular, all its eigenvalues
are positive. We are interested in the ground state of —AS)Y. The discrete
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spectrum of —Af,)y is the union of discrete spectra of the orthogonal sum
components,

op(—=ALY) = 0,(~Dpyie) Uoy(—AGY) Uy (AL v, 0)

The ground state of —Ag%, is negative which implies that the ground state
is not affected by A" because AT > 0. Next we define —AS?Y which
is obtained from the operator —Ag)y by removing the Neumann conditions
at the points x and y. It can be easily seen that —AS:%/ is equal to —A, y
where Y = (y1,%2, .-+, Yi, Yix1 + 15 - - -, Yn + 1). According to Lemma 3.1 we
have —A((f%/ < —AS%,. Also as we pointed out earlier we can write —A, y =
—AS%/ and —Ag/ = —A,y. In combination with minmax principle [3,
Section XIII.1] we arrived at the inequality:

info(—A,y) = infa(—AS%,) < infa(—A((f%/) <inf 0(—A$’7%, =-Auyr)
(3.19)
From this we have —A,y < —A,y. We note that

Y,: (y/17y§57y:1> = (y1>y27"'7yi+1+777"'7yn+77>7

which implies that y; — ;11 < yj — yj,, for all j € {1,2,...,n — 1} which
completes the proof. O

Next we will discuss the case when at the endpoint of the halfline is the
Robin condition ¢'(0+) = apg(0) where oy < 0. We will show that for this
similar properties are met. This means that we will introduce the operator
—A .0y With the domain D(—A,, oy) = {g € H*'(R) N H**(RS \ V)|
9'(yi+) — g'(y;—) = a;g(y;), g'(0+) = apg(0)}.

Theorem 3.4. Let —Ayy 0v,, —Dag.ay, be operators defined above. Suppose
that card Y, = card Ys, ag, <0 for all k =0,1,....n, y1; — v1; < Y20 — Y25,
yi,1 < ya1 holds for all 4,5 and yi; — y1; < Y2 — Yo, for at least one
pair of i,j then the ground states of the operators —Auygayvi, —Dagay, 18
min o,(—Anyay;y) < minoy, (g, —Asy,)

Proof. First we restate the problem to the operator on the line. We have
the operator —A,, .y defined above. We define operator —A, y+ where
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o = Han,...,a1,2a0, 1,0, and Y = {—y,,...,—v1,0,91,y,} with the
domain

D(—Ayy)={g9€ H*'(R)NH**(R\ Y')|
9'(yi+) — ' (y;—) = g(y;)}-

Operator —A,/y» commutes with the parity operator which implies that
when g¢(z) solves
_Aa’,Y’g = —Eg (320)

then g(z) = g(—z). We prove that when g(z) solves (3.20), £ > 0 then
flx) = w = g(z) for x € R{ solves —Ayayvf = —Ef. We can
see that every condition of the type f'(y;+) — f'(y;—) = a;f(y;) is ful-
filled, because g(x) fulfills ¢'(y;+) — ¢'(y;—) = ajg(y;). The boundary con-
dition f'(04) = aof(0) is fullfiled because ¢'(0+) — ¢'(0—) = 2a0g(0) and
¢ (x) = —¢'(—x). The operator —A, y+ fulfills conditions of Theorem 3.2
that means that increase in distance between o, a;,; and o, ;. 1, a; ;o
results in elevation of the energy of the ground state of —A,/ys which is
equivalent to increase in distance between o, a;41 for the operator —A, oy

and the same elevation in its ground state energy. O

Remark 2. As with the problem on the line we could formulate weaker
version of the previous theorem with condition placed on the first derivative
around the point of interactions, which could be proven in the same way as
on the line. The advantage of this approach is that the theorem will be valid
for any condition at the endpoint of the halfline. On the other hand we get
only unsharp inequality and the first point interaction cannot be moved.

Theorem 3.5. Let —A,y,, —A.y, be operators with the domain D(—A,y,) =
{g € H*'(R]) N H**(R] — Y))|g'(yij+) — ¢'(yi;—) = @;g9(yi;)}. Suppose
that there is an © such that yoj = y1,; for j=1,...,% and y2j = y1; +n for
j=14+1,...,N. Suppose further that for the ground state of the first operator
we have ' (y;+) < 0 and ' (y;1—) > 0. Ifn > 0 then the ground states of the
two operators —Agy,, —Aqy, we have mino,(—A,y,) < mino,(—Aqy,).

Proof. Proof is analogous to the one of finitely many interactions on the line
so we omit the details. ]
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3.3 Finite number of point interactions on a
star graph

In this section we will discuss properties of the ground state on the star
graph. We have a star graph from N halflines connected by the endpoint of
the halflines. We focus our attention to the condition at the endpoint of a
star graph.We impose two conditions. The first is

¥i(0) = ;(0) = ¥(0), (3.21)
and the second is

Zw ) = agth(0) (3.22)

where ); is wave function on the i-th halfline and ag < 0. We denote the
operator

A ey = =75 (3.23)

where a = a; ;, Y = yj(l,i ie{l,....,n},je{l,..., k,} with the domain

D(=Ayayw) ={g(x U D(— _(j) (3.24)

iEN

where _Aamy.(j) is the operator on the i-th halfline. Without loss of generality
we can presufne Y1; < Ya,; < ... <Yy, forall j. Similarly as the problem on
the halfline there can be proven that for o ;, oy < 0 for all 4, j, k, [, where
first index is number of the point interaction on the halfline and the second is
the number of the halfline, decreasing distance between 2 point interactions
on the one halfline will lead to decrease of the energy of the ground state.
This can be easily proven in the same manner as the problem for the line.
That is

Theorem 3.6. Let —A, ,y@ be the operator defined above. Suppose that
card YV = card Y®, oy < 0, agy <0 for all k,1. Suppose

i3k Ve {1, ki yl) =y (3.25)

l,j

and
ViV € {kj1,ka} 30y > 0, ) =y 4y (3.26)
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Suppose further that for the ground state of the first operator we have ¥} (yx, ;+) <
0 and ¥ (yr; ., ;—) > 0. Then the ground states of the operators —A, .y,
_Aoao,oz,Y@) satisfy

mino,(—A, 0ym) < minoy(—=A, ,ye) (3.27)
Proof. We create the operator —A, vy« as
_Aao,a,Y(i) = —Aahyl(i) @ —AO%YQ@) @ . @ _AaN,Y]Sf) (3.28)
where —A_ @ is self-adjoint operator describing point interactions on the
(2} k

k-th halfline. We know that o,(—=A,y®) = Uen ap(—Aak,Yk(i)). From this

we have mino,(—A, y@) = ming 0,(—A . Now we use Theorem 3.5 on

ak,Yk(i)>
y which completes the proof. Il

i
04070%,Yk(
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Chapter 4

Examples

4.1 Solution of two point interactions on the
line

We are interested in the ground state of the operator —A,y where o =
{a1,a0} and Y = {y1,y2}. According to Theorem 2.6 we know that every
eigenvalue k2 of the point spectrum of the operator —A, y, is a solution of

h 1 ion det 'y y (k) = h L.y (k — (8 il

the secular equation det I'q v (k) = 0, where {I'oy (k)}i; = —[3 )
Without loss of generality we can choose y; < yo. We introduce substitution
—k = ik < 0,y17 —y» = L. We have Sk > 0, because we are interested
in the ground state which has negative eigenvalue. The secular equation is

explicitly

1 1 1 —kL —2kL

= — = e 1 1. 1 1

TR (Y P R R
5.6 % " 3m a2k o 2K 4K

which is trancendent equation for x. However, we can say a few things
about the ground state introducing the substitution kL = L’ where L' > 0.
According to Theorem 2.6 and because we know that —oo < a; we can infer
that every eigenvalue of the operator —A,, y fulfills the condition —oco < —x?2.
This implies that oo > || from which we can state that L \, 0 = kL \ 0.
Solutions for k with respect of L’ are

1 /

k1= —(ag + g — e 2k \/4oz1a262L' + aZetl — 2aqa0ett + adetl)
4
1 /

Ko = Z(oq + ag + e ?F \/404104262” + a2etl — 2aqanetl + adetl)
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Note that those are still equations for unknown x. When we perform the
limit for L'\, 0 we get:

a) By = —(4492)? for o; < 0 when L — 0+

b) Ey = —(2322)? for (ay < 0 < ag) A (Jas| > |ag|) when L — 0+

c) By =0 for (ay <0 < ag) A (Jou| < |ae|) when L —— 0+

This will also give us a starting point for the numeric solution of the equation
(4.1).

There are a few plots to illustrate properties of the ground state. First
we will illustrate the claim of Theorem 3.2. On figures 4.1 and 4.2 we can
see that increasing distance between two point interactions with negative
strength results in increase of the ground state energy. If some a; > 0 the
behavior could be different. We can see that on figures 4.3 and 4.4. Also on
the figure 4.4 we can see that when total sum of the interaction strength is
greater than zero, it results in disappearing of the eigenvalue when the point
interactions are close to each other. It is also worth noticing that when the
point interactions are far away from each other the ground state energy goes
to the value Ey ~ — (9)2 where « is the minimum of the negative point

2
interaction strength, i.e. @ = min{«;} where a; < 0 for all j.
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Figure 4.1: Energy of the ground state for a; = —1, 9 = —2 as a function
of L
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Figure 4.2: Energy of the ground state for a; = —3, s = —2 as a function
of L
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Figure 4.3: Energy of the ground state for a; = —3, a3 = 2 as a function of
L
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Figure 4.4: Energy of the ground state for a; = —3, a3 = 4 as a function of
L
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4.2 Solution of three point interactions on
the line

We are interested in the ground state of the operator —A,y where o =
{a1, 0,3} and Y = (y1,99,y3). According to Theorem 2.6 we know that
every eigenvalue k? of the point spectrum of the operator —A, y is the solu-
tion of the secular equation

det Doy (k) = 0, (4.2)
where {T'oy(k)}i; = — [‘;—J + %] Without loss of generality we can

choose ;1 < y2 < y3. The Solution of the equation (4.2) is similar to the
problem with two point interactions. We introduce substitution —xk = ik <
0,9 —vyir1 = L;. We know that L; € Rg . As in the two dimensional case we
come to the transcendent equation. As in the two point interactions case we
introduce substitution xL; = —L; where L, > 0. According to the Theorem
2.6 and because we know that —oo < «; we can infer that every eigenvalue
of the operator —A, y fulfills —oo < —x?. This implies that oo > |k| from
which we can state that L; \, 0 = xL; \ 0. Solution for x with respect of
L}, L, can be solved exactly however we omit the details of solution because
it can be easily done with help of Cardano’s method.

As for the two point interactions problem there are a few things we can
say from the form of this limit solution for the ground state. These are:

2
a) E(] = (%(al + g + ag — (—(061 + ag + 063)3)% + (7(02110;2210;33)3)3))2 for
a1+ as + a3 < 0 when Ly — 0+, Ly — 0+
b) Ey =0 for ay + as + a3 > 0 when Ly —— 0+, Ly — O+

There are a few plots to illustrate properties of the ground state.

First we will illustrate the claim of Theorem 3.2. On figures 4.5, 4.6 and
4.7 it can be easily seen that increase of distance between point interactions
with negative strength results in increase of the energy of the ground state.
On practically every figure for the three point interactions it can be seen
the same thing as for the case of two point interactions which is that when
we place the point interactions far from each other the ground state energy
goes to the ground state energy of the point interaction with lowest negative

e

strength, ie. Ey =~ — (5)2 where o is @ = min{a;} where a; < 0 for all
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Figure 4.5: Energy of the ground state for oy = —5,a9 = —3,a3 = —1 as a
function of L; and Lo

J. If some a; > 0 the behavior could be quite different from the claim of
Theorem 3.2. This can be seen on figures from 4.8. to 4.13. We can see
on the figure 4.8 that when we decrease the distance between the negative
point interactions it results in decrease of the ground state energy even if
the third point interaction is positive. It is worth mentioning that when the
first or last point interaction on the line is positive, i.e. a; > 0 or ay > 0
respectively, its moving away from the other interaction results in decrease of
the ground state energy (see figures 4.10,4.11 and 4.13). It is worth noticing
but not at all surprising fact that when we have middle point interaction
with strength equal zero the three interactions problem will degenerate to
the two interactions problem (see figure 4.12).
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Figure 4.6: Energy of the ground state for oy = =2, = =2, 3 = —4 as a

function of L; and Lo
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Figure 4.7: Energy of the ground state for oy = —1,a9 = =2, 3 = —3 as a

function of Ly and fixed L,
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Figure 4.8: Energy of the ground state for «; = —1, a0 = —2,a3 = 3 as a
function of Ly and fixed Ly, = 5

Figure 4.9: Energy of the ground state for a; = —1,9 = 2,3 = —1 as a
function of L; and Lo
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Figure 4.10: Energy of the ground state for a; = 1,00 = =2, a3 = 1 as a
function of L; and Lo

Figure 4.11: Energy of the ground state for a; = —5, 9 = =5, 3 = 10 as a
function of L; and Lo
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Figure 4.12: Energy of the ground state for o,
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4.3 Conclusion

In this work we have shown a relation between the distance of attractive
point interactions, i.e. point interactions with negative interaction strength
a; < 0, and the energy of the ground state for some one dimensional objects,
namely the line, the halfline and also for star graphs under some additional
assumptions.
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