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Abstract
In this work we discuss the ground state of the point interaction Hamiltonian
in one dimension. We introduce a mathematically rigorous definition of this
Hamiltonian as the self-adjoined operator on the appropriate Sobolev space
with the boundary condition at the point interactions sites. We study the
spectral problem for the point interaction Hamiltonian and the ground state
of the operator with help of the Krein’s formula. We demonstrate the rela-
tion between the distance of the point interactions sites and the ground state
on the line, the halfline and the star graph. We prove that the increase in
the distance between the point interactions results in increase of the energy
of the ground state.

Key words
The point interaction operator, point interactions in one dimension, the
ground state of the point interaction Hamiltonian, Krein’s formula

Abstrakt
V této práci se zabýváme základńım stavem operátoru bodových interakćı.
Zavedeme matematicky rigorozńı definici tohoto operátoru, jakožto samos-
druženého operátoru na odpov́ıdaj́ıćım Sobolevově prostoru s vhodnými okra-
jovými podmı́nkami v mı́stech bodových interakćı. Zabýváme se spektrálńım
problémem operátoru bodových interakćı a jeho základńım stavem za pomoci
Kreinovy formule. Dokážeme vztah mezi vzdálenost́ı jednotlivých bodových
interackćı a energíı základńıho stavu na př́ımce, polopř́ımce a hvězdicovém
grafu. Ukážeme že zvětšeńı vzdálenosti mezi bodovými interakcemi vede k
zvýšeńı energie základńıho stavu.

Kĺıčová slova
Operátor bodových interakćı, bodové interakce v jedné dimenzi, základńı
stav operátoru bodových interakćı, Kreinova formule
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Chapter 1

Introduction

In this work we will discuss the ground state of Hamiltonian operator, which
can be formally written in the form:

Ĥ = −∆ +
∑
y∈Y

λyδy(·) (1.1)

where ∆ denotes self-adjoint Laplacian with the domain H2,2(R). The quan-
tum mechanical particle with Hamiltonian of this form moves in the field
of contact potentials placed at the the points of a discrete set Y with the
interaction strengths λy. Such operators are interesting, because the corre-
sponding spectral and scattering problem can be solved exactly and used as
an approximation to more realistic models of such systems. These Hamilto-
nians are useful in atomic and nuclear physics (as approximations of short
range interactions), in solid state physics (for instance, as a description of
nonrelativistic electron which moves freely in crystal lattice with fixed atoms,
usually called Kronig-Penney model), or in electromagnetism (propagation
in dielectric media), etc. A survey of such solvable models can be found in
the monograph [1].

In this work we are going to discuss properties of the ground state of the
operator (1.1) in one-dimensional systems, that is, for a particle living on line
or a more complicated configuration space composed of line segments. The
ground state of the system as the state with the lowest energy is of natural
physical importance. While in an isolated system the particle remains in
a given eigenstate, in reality any physical system interacts with the rest
of the universe which can be regarded as a heat bath, often in form of an
electromagnetic field. This leads to an energy dissipation which brings the
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system eventually into the ground state as its stable configuration. We will
be particularly interested here in the case with attractive point interactions,
i.e. with the coupling constants λy < 0. In this situation the existence of the
spectral gap is guaranteed, i.e. the ground state is an isolated eigenvalue,
whenever Y is a finite and non-empty set. We will introduce a mathematically
rigorous definition of the formal expression (1.1) as a self-adjoint operator
defined on the appropriate Sobolev space with the help of suitable boundary
conditions at the point interactions sites. To find the ground state we have
to solve the equation

Ĥψ = −∆ψ +
∑
y∈Y

λyδy(·)ψ = Eψ (1.2)

This spectral problem can be simplified to an algebraic one using the so-called
Krein’s formula which expresses the resolvent of the operator, or rather its
difference from that of the Laplacian as a specific finite-rank operator. Our
main result is that a change of the set Y which increases distances between
the point interaction sites results in an increase of the ground-state energy.

After solving the problem on the line we will present some generalizations.
In particular, we will consider point interactions on a halfline with various
boundary conditions at the endpoint. We will show that a similar result
is valid regarding to changes of distances between the point interactions.
With respect to the distances from the halfline end the situation is more
complicated. The behavior is similar as long as the boundary condition is
Neumann or Robin with a negative parameter, g′(0+) = α0g(0) with α0 < 0
while for its positive value or Dirichlet condition it needs not to be true.
We also generalize this result to point interactions on a star graph under
additional assumptions.

The result may look natural but it is general and new to our knowledge.
Moreover, it opens interesting questions if we impose constraints on the min-
imum distance between the point interactions, as a possible simple model of
the crystallization process. Further generalizations may concern a version of
our result in presence of a regular potential and, in particular, its analogue
for point interactions in dimension two and three. These questions, however,
go beyond the scope of the present thesis and will be a subject of a future
work.
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Chapter 2

Point interactions in one
dimension

In this chapter we summarize basic properties of point interactions in one
dimension. We begin with properties of a single point interaction on the line.
Afterwards we introduce finite number of point interactions on the line.

2.1 The one-center point interaction

We have more than one way how to introduce the quantum Hamiltonian
which describes δ-interaction in one dimension. One of the easiest ways
is to employ self-adjoint extension of a suitable densely defined symmetric
operator. First we take closed and nonnegative operator

Ḣy = − d2

dx2
(2.1)

with the domain D(Ḣy) = {g ∈ H2,2(R)|g(y) = 0}. Its adjoint acts as

Ḣ∗y = − d2

dx2
(2.2)

with the domain D(Ḣ∗y ) = H2,2(R \ {y}) ∩H2,1(R), where Hm,n(R) are cor-
responding the Sobolev spaces. Solution of the equation

Ḣ∗yψ(k) = k2ψ(k) (2.3)
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is given by
ψ(k, x) = eik|x−y| (2.4)

where ψ(k) ∈ D(Ḣ∗y ), k2 ∈ C − R and =k > 0. From this we can infer that

Ḣy has deficiency indices (1,1).
According to [4, Section X.1] and [1, Appendix A] we know that all self-

adjoint extensions can be then parameterized by θ ∈ [0, 2π) in the following
way.

Theorem 2.1. Let Ḣ be densely defined, closed, symmetric operator in
Hilbert space H with deficiency indices (1,1). Let ψ(z) ∈ D(Ḣ∗), =z > 0
fullfill (2.3). Then we may parameterize all self-adjoint extensions Hθ of Ḣ
with θ ∈ [0, 2π) as follows: the domain of Hθ is

D(Hθ) = {g + cψ+ + ceiθψ−|g(z) ∈ D(Ḣ), c ∈ C} (2.5)

and the operator acts as

Hθ(g + cψ+ + ceiθψ−) = Ḣyg + icψ+ + iceiθψ− (2.6)

where ψ± = ψ(±i, ·), ‖ψ−‖ = ‖ψ+‖.
When we apply this theorem to extensions of our operator Ḣy we see that

the self-adjoint extensions Hθ,y satisfy the condition

lim
ε↓0

[(g + cψ+ + ceiθψ−)′(y + ε)− (g + cψ+ + ceiθψ−)′(y − ε)] =

−c(1 + eiθ) = α[g(y) + cψ+(y) + ceiθψ−(y)]
(2.7)

where α =
−2 cos( θ2)
cos( θ2−π4 )

and the functions in the domain are continuous at the

point y. We can thus parameterize the self-adjoint extensions using boundary
conditions.

Theorem 2.2. Let the operator −∆α,y be defined as

−∆α,y = − d2

dx2
,

D(−∆α,y) = {g ∈ H2,1(R) ∩H2,2(R\{y})| g′(y+)− g′(y−) = αg(y)},
−∞ < α ≤ ∞

(2.8)
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The family {−∆α,y|−∞ < α ≤ ∞} coincides with all self-adjoint extensions
of Ḣy. The case α = 0 gives us the free Hamiltonian, or kinetic energy
operator in L2(R),

−∆α,y = − d2

dx2
, D(−∆α,y) = H2,2(R) (2.9)

The case α = ∞ corresponds to separated halflines with Dirichlet boundary
condition at y,

−∆∞,y = (−∆D−)⊕ (−∆D−),

D(−∆α,y) ={g ∈ H2,1(R) ∩H2,2(R \ {y})|g(y) = 0}
= H2,2

0 ((−∞, y)) ∪H2,2
0 ((y,∞))

(2.10)

where −∆D± is Dirichlet Laplacian (for the definition see [3, Section XIII.15])
on (y,∞) and (−∞, y), respectively.

Proof can be found in [1, Section I.3.1]

The operator −∆α,y describes one dimensional quantum particle with δ-
point interaction of strength α at y ∈ R. According to [1, Theorem 3.2.3] we
can obtain the self-adjoint operator −∆α,y as limit of the operator

Hε,y = − d2

dx2
+ ε−1V (

· − y
ε

) (2.11)

where ε > 0, y ∈ R, and V (x) ∈ L1(R). For the ε ↘ 0 the operator Hε,y

converges to the operator −∆α,y in the norm resolvent sense that means

lim
ε↘0
‖ (Hε,y − k2)−1 − (−∆α,y − k2)−1 ‖= 0.

Also we know that α =
∫
R dx V (x).This kind of approximation scheme auto-

matically yields finite strength of the point interaction, |α| <∞.
The proof of this result is not easy but one can illustrate its essence using

a formal argument. When we integrate Schrödinger equation corresponding
to H = − d2

dx2 + αδ(x− y) from x = y − ε to x = y + ε for ε > 0, we get

ψ′(y + ε)− ψ′(y − ε) + αψ(y) = E

∫ y+ε

y−ε
ψ(x)dx (2.12)
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which is the boundary condition in (2.8). If we replace δ(x− y) by 1
ε
V
(
x−y
ε

)
we get the same result with α =

∫
R dxV (x).

Next we will express the resolvent of −∆α,y by means of Krein’s formula.

Theorem 2.3. The resolvent of −∆α,y is given by

(−∆α,y − k2)−1 = Gk − 2αk(iα + 2k)−1(Gk(· − y), ·)Gk(· − y),

k2 ∈ ρ(−∆α,y), =k > 0, −∞ < α ≤ ∞, y ∈ R (2.13)

where
Gk(x, x

′) = (i/2k)eik|x−x
′|, =k > 0 (2.14)

is the integral kernel of (−∆α,y−k2)−1 in L2(R) which means that the integral
kernel of (−∆α,y − k2)−1 is

(−∆α,y − k2)−1(x, x′) = (i/2k)eik|x−x
′| + α(2k)−1(iα + 2k)−1eik[|x−y|+|y−x′|],

k2 ∈ ρ(−∆α,y), =k > 0, x, x′ ∈ R.
(2.15)

Proof can be found in [1, Section I.3.1]

Next we will say a few things about spectral properties of −∆α,y

Theorem 2.4. Let −∞ < α ≤ ∞, y ∈ R then we have

σess(−∆α,y) = σac(−∆α,y) = [0,∞), σsc(−∆α,y) = ∅ (2.16)

If −∞ < α < 0, then −∆α,y has one simple, negative eigenvalue, namely

σp(−∆α,y) =

{−α2

4

}
, −∞ < α < 0, (2.17)

with an eigenfunction which can be chosen strictly positive:

ψ(x) = (α/2)1/2eα|x−y|/2 (2.18)

If 0 ≤ α ≤ ∞, the operator −∆α,y has no eigenvalues, i.e.

σp(−∆α,y) = ∅, 0 ≤ α ≤ ∞. (2.19)

Proof can be found in [1, Section I.3.1]
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2.2 Finitely many point interactions

In this section, we will generalize the case of one point-interaction to the case
of finitely many point-interactions. First we define the minimal operator ḢY

as

ḢY = − d2

dx2
,

D(ḢY ) = {g ∈ H2,2(R)| g(yj) = 0, yj ∈ Y, j = 1, . . . N},
Y = {y1, . . . , yN}, N ∈ N

(2.20)

ḢY is a closed and nonnegative operator. The adjoint operator Ḣ∗Y to ḢY is
given by

Ḣ∗Y = − d2

dx2
,

D(Ḣ∗Y ) = H2,1(R) ∩H2,2(R \ {Y })
(2.21)

The solution of Ḣ∗Y ψ(k) = k2ψ(k), for ψ(k) ∈ D(Ḣ∗Y ), k2 ∈ C − R, =k > 0,
is

ψj(k, x) = eik|x−yj |, =k > 0, yj ∈ Y, j = 1, . . . , N (2.22)

thus ḢY has deficiency indices (N,N). Consequently, all the self-adjoint ex-
tensions of ḢY form an N2-parameter family of self-adjoint operators. We
restrict ourselves to the case of local boundary conditions coupling the bound-
ary values at each point yj, j = 1, . . . , N separately. Similarly as for one point
interactions we introduce self-adjoint extension of ḢY as

−∆α,Y = − d2

dx2
,

D(−∆α,Y ) = {g ∈ H2,1(R) ∩H2,2(R \ Y )|
g′(yj+)− g′(yj−) = αjg(yj), j = 1, . . . , N}

(2.23)

where α = (α1, . . . , αn), −∞ < αj ≤ ∞, j = 1, . . . , N . The operator −∆α,Y

is self-adjoint([1, Section II.2.1]). The case α = 0 leads to the kinetic energy
operator −∆ on H2,2(R). The case αj0 =∞ leads to the Dirichlet boundary
condition at yj0 , that is, g(yj0+) = g(yj0−) = 0. According to [1, Section
II.2.2] the operator −∆α,Y can be approximated by the operators

Hε,Y = − d2

dx2
+ ε−1

N∑
j=1

Vj(
· − yj
ε

). (2.24)
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It can be proven that the operators Hε,Y converge to the operator −∆α,Y

in the norm resolvent sense and αj =
∫
R dx ε

−1Vj(
−̇yj
ε

) for all j = 1, . . . , N .
From this we can see that −∆α,Y describes N δ-interactions at points yj ∈ Y
of strength αj, where j = 1, . . . , N .

Now we will point out some properties of −∆α,Y . First we will state
Krein’s formula in this case:

Theorem 2.5. Let αj 6= 0, j = 1, . . . , N . Then the resolvent of −∆α,Y is
given by

(−∆α,Y − k2)−1 = Gk +
N∑

j,j′=1

[Γα,Y (k)]−1
jj′(Gk(· − yj′), ·)Gk(· − yj),

k2 ∈ ρ(−∆α,Y ), =k > 0, −∞ < αj ≤ ∞, yj ∈ Y, j = 1, . . . , N,

(2.25)

where
[Γα,Y (k)]jj′ = −[α−1

j δjj′ +Gk(yj − yj′)]Nj,j′=1 (2.26)

where Gk is the free resolvent kernel given by (2.14) ,i.e.

Gk(yj − yj′) =
i

2k
eik|yj−yj′|. (2.27)

Proof can be found in [1, Section II.2.1]

Theorem 2.6. Let αj 6= 0, yj ∈ Y, j ∈ {1, 2, ..., N}. Assume that there is
at most one index j = j0 for which αj0 = ∞. Then −∆α,Y has at most
N eigenvalues which are all negative and simple. If αj = ∞ for at least
two different values j ∈ {1, 2, ..., N}, then −∆α,Y has at most N negative
eigenvalues (counting multiplicity) and infinitely many eigenvalues embedded
in [0,∞) accumulating at ∞. In particular, k2 ∈ σp(−∆α,Y ) ∩ (−∞, 0) if
det[Γα,Y (k)] = 0, =k > 0, and the multiplicity of eigenvalue k2 < 0 equals
the multiplicity of the eigenvalue zero of the matrix Γα,Y (k). Moreover, if
E0 = k2

0 < 0 is an eigenvalue of −∆α,Y , the corresponding eigenfunctions are
of the form

ψ0 =
N∑
j=1

cjGk0(x− yj), =k0 > 0, (2.28)

where (c1, c2, ..., cN) are eigenvectors of the matrix Γα,Y (k0) corresponding to
the eigenvalue zero. If ∆α,Y has a ground state (the lowest isolated eigen-
value) it is nondegenerate and the corresponding eigenfunction can be chosen
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to be strictly positive, i.e. the associated eigenvector (c1, c2, ..., cN) fulfills
cj > 0, j ∈ {1, 2, ..., N}.

Proof can be found in [1, Section II.2.1]

13



Chapter 3

Energy of the ground state

3.1 Finite number of point interactions on

the line

In this section we shall discuss how the ground state of −∆α,Y is affected by
a change of distance between point interactions. We prove that an increase
in distance between point interactions causes an increase of the energy of
the ground state. We can consider a change of the distance between two
neighboring interactions which will, of course, result into a modification of
distances between the other point interactions as well. As a preliminary, let
us recall a useful tool for comparing operators.

Lemma 3.1 (About Neumann bracketing). Let Ω1,Ω2 be disjoined sub-

sets such that Ω1 ∪ Ω2
int

= Ω, and Ω\Ω1 ∪ Ω2 has Lebesgue measure zero.
Then 0 ≤ ∆Ω1∪Ω2

N ≤ ∆Ω
N .

Proof can be found in [3, Section XIII.15]

There are different methods to address our problem. First we will prove
a slightly weaker claim under an additional assumption, namely that the
ground-state eigenfunction derivative changes sign between the two point
interactions in question. A stronger claim will follow in the next theorem.

Theorem 3.1. Let −∆α,Y1, −∆α,Y2 be the point interaction Hamiltonians
defined above where Yi = {yi,1, . . . , yi,N} and yi,1 ≤ yi,2 ≤ . . . ≤ yi,n. Suppose
that cardY1 = cardY2, αk < 0 for all k. Suppose that there is an i such that
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y2,j = y1,j for j = 1, . . . , i and y2,j = y1,j + η for j = i + 1, . . . , N . Suppose
further that for the ground state of the first operator we have ψ′(yi+) < 0 and
ψ′(yi+1−) > 0. If η ≥ 0 then the ground states of the two operators −∆α,Y1,
−∆α,Y2 satisfy min σp(−∆α,Y1) ≤ min σp(−∆α,Y2)

Proof. We consider the operator −∆α,Y discussed above. From Theorem 2.6
we know that for this operator the eigenfunction of the ground state can be
chosen as strictly positive. That means ∀x ∈ R \ Y ⇒ ψ(x) > 0. We also
have

−∆α,Y ψ = −E0ψ

where E0 > 0. This means
∂2ψ

∂x2
= E0ψ

∀x ∈ R\Y . Because ψ(x) > 0 and E0 > 0, we can conclude that this
eigenfunction is convex for all x ∈ R \ {Y }. By assumption we also have
ψ′(yi−) > 0 and ψ′(yi+1+) < 0. Thanks to that we can find x ∈ (yi, yi+1)
such that ψ′(x) = 0 Now we add Neumann condition at x to −∆α,Y . We

denote the operator with the Neumann condition as −∆
(1)
α,Y . The domain of

−∆
(1)
α,Y is

D(−∆
(1)
α,Y ) = {g ∈ H2,1(R) ∩H2,2(R \ Y )|

g′(yj+)− g′(yj−) = αjg(yj), g
′(x) = 0}.

Properties of the ground state for −∆α,Y and −∆
(1)
α,Y are the same, because

we chose x in such a way the ψ fulfills Neumann condition for the wave
function of the ground state. Next we write −∆

(1)
α,Y as direct sum of two

self-adjoint operators

−∆
(1)
α,Y = −∆β,Y1,x ⊕−∆γ,Y2,x (3.1)

where α = (α1, α2, ..., αn), β = (α1, α2, ..., αi), γ = (αi+1, αi+2, ..., αn), Y =
(y1, y2, ..., yn), Y1 = (y1, y2, ..., yi), Y2 = (yi+1, yi+2, ..., yn), 1 ≤ i ≤ n, and

D(−∆β,Y1,x) = {g ∈ H2,1((−∞, x)) ∩H2,2((−∞, x) \ Y1)|
g′(yj+)− g′(yj−) = αjg(yj), g

′(x) = 0}
D(−∆γ,Y2,x) = {g ∈ H2,1((x,∞)) ∩H2,2((x,∞) \ Y2)|

g′(yj+)− g′(yj−) = αjg(yj), g
′(x) = 0}
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Now we define −∆
(2)
α,Y

−∆
(2)
α,Y = −∆β,Y1,x ⊕−∆

(x,y)
N ⊕−∆γ,Y2,x (3.2)

where −∆x,y
N is Neumann Laplacian at the interval (x, y) (for the definition

see [3, Section XIII.15]). We choose x ≤ y and denote y−x = η. The domain
of the newly constructed operator is

D(−∆
(2)
α,Y ) = D(−∆β,Y1,x)⊕D(−∆

(x,y)
N )⊕D(−∆γ,Y1,x).

Neumann Laplacian is a positive operator, in particular, all its eigenvalues
are positive. We are interested in the ground state of −∆

(2)
α,Y . The discrete

spectrum of −∆
(2)
α,Y is the union of discrete spectra of the orthogonal sum

components,

σp(−∆
(2)
α,Y ) = σp(−∆β,Y1,x) ∪ σp(−∆

(x,y)
N ) ∪ σp(−∆γ,Y2,x)

The ground state of −∆
(2)
α,Y is negative which implies that the ground state

is not affected by ∆
(x,y)
N because ∆

(x,y)
N ≥ 0. Next we define −∆

(3)
α,Y which

is obtained from the operator −∆
(2)
α,Y by removing the Neumann conditions

at the points x and y. It can be easily seen that −∆
(3)
α,Y is equal to −∆α,Y ′

where Y ′ = (y1, y2, . . . , yi, yi+1 + η, . . . , yn + η). According to Lemma 3.1 we

have −∆
(2)
α,Y ≤ −∆

(3)
α,Y . Also as we pointed out earlier we can write −∆α,Y =

−∆
(1)
α,Y and −∆

(3)
α,Y = −∆α,Y ′ . In combination with minmax principle [3,

Section XIII.1] we arrived at the inequality:

inf σ(−∆α,Y ) = inf σ(−∆
(1)
α,Y ) ≤ inf σ(−∆

(2)
α,Y ) ≤ inf σ(−∆

(3)
α,Y ≡ −∆α,Y ′)

(3.3)
From this we have −∆α,Y ≤ −∆α,Y ′ . We note that

Y ′ = (y′1, y
′
2, . . . , y

′
n) = (y1, y2, . . . , yi+1 + η, . . . , yn + η),

which implies that yj − yj+1 ≤ y′j − y′j+1 for all j ∈ {1, 2, . . . , n− 1} which
completes the proof.

Remark 1. Now we would like to note a few things concerning the assump-
tions about the first derivative of the wave function. According to Theorem
2.6 we can write eigenfunction of the ground state as

ψ0(x) =
N∑
i=1

ciGk0(x− yi) =
N∑
i=1

ci
i

2k
eik|x−yi|,
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where ck > 0 for all k and =k0 > 0. The vector C = (c1, . . . , cN) according
to Theorem 2.6 fulfills Γα,Y (k0)C = 0. From this we have

ck

(
1

αk
+

i

2k

)
+

N∑

j=1,j 6=k
cj
i

2k
eik|yk−yj | = 0. (3.4)

After algebraic manipulations we get

ck = −
(

1

αk
+

i

2k

)−1 N∑

j=1,j 6=k
cj
i

2k
eik|yk−yj |

= −
(

iαk
2k + iαk

) N∑

j=1,j 6=k
cje

ik|yk−yj |,

We can choose the vector C = (c1, . . . , cN) to fulfill
∑N

i=1 ci = 1. We are
interested in the values of ψ′(yk−) and ψ′(yk+1+). A simple calculation will
show that for x ∈ R \ Y we have

ψ′0(x) =
N∑
j=1

cj
i

2k
ik sgn (x− yj)eik|x−yj |, (3.5)

We substitute x− yk = −ε with ε > 0 into (3.5) obtaining

ψ′0(yk − ε) =
N∑
j=1

cj
i

2k
ik sgn (yk − ε− yj)eik|yk−ε−yj |

=
k−1∑
j=1

cj
i

2k
ikeik|yk−ε−yj | − cj i

2k
ikeikε −

N∑

j=k+1

cj
i

2k
ikeik|yk−ε−yj |

= −
k−1∑
j=1

cj
1

2
eik|yk−ε−yj | + ck

1

2
eikε +

N∑

j=k+1

cj
1

2
eik|yk−ε−yj |

From this equation we can see that our premise about ψ′(yk−) will be fulfilled
when cke

ike ≥ |∑N
j=1,j 6=k cj

1
2
eik|yk−ε−yj ||. This is true when we place point

interactions far enough from each other. Similar conclusion can be made
about ψ′(yk−1+) in the same way as for ψ′(yk−) so we omit the details.
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The previous result is special in several respects. First of all, it requires
the derivative sign assumption. The relation between Y1 and Y2 is also par-
ticular: the latter is obtained from the former y splitting it and shifting
one group of points. This is rather a problem of an elegant formulation, of
course, since one can compose more complicated changes from elementary
ones. What is more important, finally, is that the inequality we have ob-
tained is not sharp. All these deficiencies can be removed if we use another
method based on the secular equation derived from Krein’s formula according
to Theorem 2.6.

Theorem 3.2. Let −∆α,Y1, −∆α,Y2 be the point interaction Hamiltonians
defined above. Suppose that cardY1 = cardY2, αk < 0 for all k and that
y1,i − y1,j ≤ y2,i − y2,j holds for all i, j and y1,i − y1,j < y2,i − y2,j for at least
one pair of i, j then the ground states of the operators −∆α,Y1, −∆α,Y2 satisfy
min σp(−∆α,Y1) < minσp(−∆α,Y2)

Proof. We are interested in behavior of the ground state of −∆α,Y . In view
of the secular equation det Γα,Y (κ) = 0, we have to investigate the lowest
eigenvalue λ0 of Γα,Y (κ). The latter is given by

λ0(α, Y ;κ) = min
|C|=1

(C,Γα,Y (κ)C) (3.6)

where C ∈ Cn with |C| = 1. The energy of the ground state −κ2 corresponds
to the value of κ which fulfills λ0(α, Y ;κ) = 0. From Theorem 2.6 (after
introducing substitution −κ = ik < 0) we know that

Γα,Y (κ)ij = −δij
αi
− 1

2κ
e−κLij , (3.7)

where Lij = |yi − yj|. From this we can calculate (C,Γα,Y (κ)C) as

(C,Γα,Y (κ)C) =
N∑
i=1

|ci|2
(
− 1

αi
− 1

2κ

)
− 2

N∑
i=1

i−1∑
j=1

Re

(
cicj

e−κLij

2κ

)
, (3.8)

We will notice that the semigroup
{
e−tΓα,Y (κ)

}
is positivity improving accord-

ing to [3, Section XIII.12] and [3, Problem XIII.97] and therefore C for which
the minimum is achieved can be chosen strictly positive, i.e. ci > 0 for all
i = 1, . . . , n. Put together we have

λ0(α, Y ;κ) = min
|C|=1,C>0

(C,Γα,Y (κ)C). (3.9)
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Now we take two configurations of point interactions, namely (α, Y ), (α, Ỹ )
which fulfill Lij ≤ L̃ij for all (i, j) and Lij < L̃ij for at least one pair of (i, j).
For any fixed C > 0 we have

(C,Γα,Y (κ)C) < (C,Γα,Ỹ (κ)C) (3.10)

which can be seen from explicit form of (C,Γα,Y (κ)C) given above and thus
we see that an increase in distance will make the exponential smaller. Because
this is valid for every fixed C we have the second term smaller, from which
we have

λ0(α, Y ;κ) < λ0(α, Ỹ ;κ). (3.11)

Sharp inequality is a consequence of the fact that we know that C for which
the minimum is achieved does exist. This inequality implies the statement
of the theorem.

3.2 Finite number of point interactions on

the halfline

In this section we will discuss the ground state of N point interactions placed
on the halfline. Properties of the ground state have similar properties as on
the line with small differences based on the condition which we put at the
endpoint of the halfline. Without loss of generality we can renumerate point
interactions to fullfill yi < yi+1 ∀i ∈ {1, 2, . . . , n− 1}.

First we will discuss the situation with Neumann condition at the end-
point. We define self-adjoined operator −∆α,Y introduced in the first chapter
with the domain of

D(−∆α,Y ) = {g ∈ H2,1(R+
0 ) ∩H2,2(R+

0 \ Y )|
g′(yj+)− g′(yj−) = αjg(yj), g

′(0) = 0} (3.12)

where Y = {y1, y2, . . . , yn} yi > 0 ∀i ∈ {1, 2, . . . , n}
Theorem 3.3. Let −∆α,Y1, −∆α,Y2 be operators defined above. Suppose
either:
a) that there is an i such that y2,j = y1,j for j = 1, . . . , i and y2,j = y1,j + η
for j = i+ 1, . . . , N and further that for the ground state of the first operator
we have ψ′(yi+) < 0 and ψ′(yi+1−) > 0 or
b) that for y2,j = y1,j + η for all j ∈ N.
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If either a) or b) is fulfilled for η ≥ 0 then the ground states of the two
operators −∆α,Y1, −∆α,Y2 is min σp(−∆α,Y1) ≤ min σp(−∆α,Y2)

Proof. The proof is quite similar as proof for the case on the line. The only
difference is when we are enlarging distance between the endpoint and the
first point interaction. We split the proof to two parts:
a) Changing the distance between the endpoint and the first interaction
b) Changing the distance between two point interactions

a) First we have the operator −∆α,Y defined above. Because we already
have Neumann boundary condition fulfilled at the endpoint of the halfline,
we can construct new operator as

−∆
(1)
α,Y = −∆α,Y ′ ⊕−∆

(0,η)
N (3.13)

where −∆
(0,η)
N is Neumann Laplacian with the domain D(−∆

(0,η)
N ) = {g ∈

H2,2((0, η)|g′(0) = 0, g′(η) = 0} and the operator −∆α,Y ′ with the domain

D(−∆α,Y ′) = {g ∈ H2,1((η,∞)) ∩H2,2((η,∞) \ Y ′)|
g′(y′j+)− g′(y′j−) = αjg(y′j), g

′(η) = 0}, (3.14)

where Y ′ = Y + η. We know that the eigenvalues of −∆
(1)
α,Y are calculated as

union of eigenvalues of operators which our operator is made from. That is

σp(−∆
(1)
α,Y ) = σp(−∆

(0,η)
N ) ∪ σp(−∆α,Y ′)

Because Neumann Laplacian have nonnegative eigenvalues and because we
are interested in negative eigenvalues, negative point spectrum remains the
same that is why we can write min σp(−∆α,Y ) = min σp(−∆

(1)
α,Y ). Next we

define −∆
(2)
α,Y as −∆

(1)
α,Y without Neumann condition in η. We can easily see

that −∆
(2)
α,Y = −∆α,Y+η. Put all together we have for the ground state

minσp(−∆α,Y ) = min σp(−∆
(1)
α,Y ) ≤ min σp(−∆

(2)
α,Y ) = min σp(−∆α,Y+η)

From there we have −∆α,Y ≤ −∆α,Y ′ . We note Y ′ = (y′1, y
′
2, . . . , y

′
n) = Y +η.

The relation η ≤ 0 implies that y1 − 0 ≤ y′1 − 0 which completes the proof.
b) Same as for the problem on the line, first we note that the function for
the ground state can be chosen strictly positive, i.e. ∀x ⇒ ψ(x) > 0. Also
we have

−∆α,Y ψ = −E0ψ (3.15)
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where E0 > 0. This means
d2

dx2
ψ = E0ψ (3.16)

for all x ∈ R\Y . From this we can conclude that ψ is convex for ∀x ∈ R\Y .
By assumptions we have ψ(yi+) > 0 and ψ(yi+1−) < 0. Put together we
have that we can find x ∈ (yi, yi+1) such that ψ′(x) = 0. Now we add the
Neumann condition at x to −∆α,Y . We denote the operator with Neumann

condition as −∆
(1)
α,Y . The domain of −∆

(1)
α,Y is

D(−∆
(1)
α,Y ) = {g ∈ H2,1(R) ∩H2,2(R \ Y )|

g′(yj+)− g′(yj−) = αjg(yj), g
′(0) = 0, g′(x) = 0}.

Properties of the ground state for−∆α,Y and−∆
(1)
α,Y are the same, because we

chose x in such a way the ψ fulfill Neumann condition for the wave function
of the ground state. Next we write −∆

(1)
α,Y as direct sum of two self-adjoint

operators
−∆

(1)
α,Y = −∆β,Y1,x ⊕−∆γ,Y2,x (3.17)

where α = (α1, α2, ..., αn), β = (α1, α2, ..., αi), γ = (αi+1, αi+2, ..., αn), Y =
(y1, y2, ..., yn), Y1 = (y1, y2, ..., yi), Y2 = (yi+1, yi+2, ..., yn), 1 ≤ i ≤ n, and

D(−∆β,Y1,x) = {g ∈ H2,1((0, x)) ∩H2,2((0, x) \ Y1)|
g′(yj+)− g′(yj−) = αjg(yj), g

′(0) = 0, g′(x) = 0}
D(−∆γ,Y2,x) = {g ∈ H2,1((x,∞)) ∩H2,2((x,∞) \ Y2)|

g′(yj+)− g′(yj−) = αjg(yj), g
′(x) = 0}

Now we define −∆
(2)
α,Y

−∆
(2)
α,Y = −∆β,Y1,x ⊕−∆

(x,y)
N ⊕−∆γ,Y2,x (3.18)

where −∆x,y
N is Neumann Laplacian at the interval (x, y). We choose x ≤ y

and denote y − x = η. The domain of the newly constructed operator is

D(−∆
(2)
α,Y ) = D(−∆β,Y1,x)⊕D(−∆

(x,y)
N )⊕D(−∆γ,Y1,x).

Neumann Laplacian is a positive operator, in particular, all its eigenvalues
are positive. We are interested in the ground state of −∆

(2)
α,Y . The discrete
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spectrum of −∆
(2)
α,Y is the union of discrete spectra of the orthogonal sum

components,

σp(−∆
(2)
α,Y ) = σp(−∆β,Y1,x) ∪ σp(−∆

(x,y)
N ) ∪ σp(−∆γ,Y2,x)

The ground state of −∆
(2)
α,Y is negative which implies that the ground state

is not affected by ∆
(x,y)
N because ∆

(x,y)
N ≥ 0. Next we define −∆

(3)
α,Y which

is obtained from the operator −∆
(2)
α,Y by removing the Neumann conditions

at the points x and y. It can be easily seen that −∆
(3)
α,Y is equal to −∆α,Y ′

where Y ′ = (y1, y2, . . . , yi, yi+1 + η, . . . , yn + η). According to Lemma 3.1 we

have −∆
(2)
α,Y ≤ −∆

(3)
α,Y . Also as we pointed out earlier we can write −∆α,Y =

−∆
(1)
α,Y and −∆

(3)
α,Y = −∆α,Y ′ . In combination with minmax principle [3,

Section XIII.1] we arrived at the inequality:

inf σ(−∆α,Y ) = inf σ(−∆
(1)
α,Y ) ≤ inf σ(−∆

(2)
α,Y ) ≤ inf σ(−∆

(3)
α,Y ≡ −∆α,Y ′)

(3.19)
From this we have −∆α,Y ≤ −∆α,Y ′ . We note that

Y ′ = (y′1, y
′
2, . . . , y

′
n) = (y1, y2, . . . , yi+1 + η, . . . , yn + η),

which implies that yj − yj+1 ≤ y′j − y′j+1 for all j ∈ {1, 2, . . . , n− 1} which
completes the proof.

Next we will discuss the case when at the endpoint of the halfline is the
Robin condition g′(0+) = α0g(0) where α0 < 0. We will show that for this
similar properties are met. This means that we will introduce the operator
−∆α0,α,Y with the domain D(−∆α0,α,Y ) = {g ∈ H2,1(R+

0 ) ∩H2,2(R+
0 \ Y )|

g′(yj+)− g′(yj−) = αjg(yj), g
′(0+) = α0g(0)}.

Theorem 3.4. Let −∆α0,α,Y1, −∆α0,α,Y2 be operators defined above. Suppose
that cardY1 = cardY2, αk < 0 for all k = 0, 1, . . . , n, y1,i − y1,j ≤ y2,i − y2,j,
y1,1 ≤ y2,1 holds for all i, j and y1,i − y1,j < y2,i − y2,j, for at least one
pair of i, j then the ground states of the operators −∆α0,α,Y1, −∆α0,α,Y2 is
min σp(−∆α0,α,Y1) < minσp(α0,−∆α,Y2)

Proof. First we restate the problem to the operator on the line. We have
the operator −∆α0,α,Y defined above. We define operator −∆α′,Y ′ where
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α′ = {αn, . . . , α1, 2α0, α1, αn} and Y = {−yn, . . . ,−y1, 0, y1, yn} with the
domain

D(−∆α′,Y ′) = {g ∈ H2,1(R) ∩H2,2(R \ Y ′)|
g′(yj+)− g′(yj−) = α′jg(yj)}.

Operator −∆α′,Y ′ commutes with the parity operator which implies that
when g(x) solves

−∆α′,Y ′g = −Eg (3.20)

then g(x) = g(−x). We prove that when g(x) solves (3.20), E > 0 then

f(x) = g(x)+g(−x)
2

= g(x) for x ∈ R+
0 solves −∆α0,α,Y f = −Ef . We can

see that every condition of the type f ′(yj+) − f ′(yj−) = αjf(yj) is ful-
filled, because g(x) fulfills g′(yj+) − g′(yj−) = α′jg(yj). The boundary con-
dition f ′(0+) = α0f(0) is fullfiled because g′(0+) − g′(0−) = 2α0g(0) and
g′(x) = −g′(−x). The operator −∆α′,Y ′ fulfills conditions of Theorem 3.2
that means that increase in distance between α′i, α

′
i+1 and α′n+i+1, α′n+i+2

results in elevation of the energy of the ground state of −∆α′,Y ′ which is
equivalent to increase in distance between αi, αi+1 for the operator −∆α0,α,Y

and the same elevation in its ground state energy.

Remark 2. As with the problem on the line we could formulate weaker
version of the previous theorem with condition placed on the first derivative
around the point of interactions, which could be proven in the same way as
on the line. The advantage of this approach is that the theorem will be valid
for any condition at the endpoint of the halfline. On the other hand we get
only unsharp inequality and the first point interaction cannot be moved.

Theorem 3.5. Let −∆α,Y1, −∆α,Y2 be operators with the domain D(−∆α,Yi) =
{g ∈ H2,1(R+

0 ) ∩ H2,2(R+
0 − Yi)|g′(yi,j+) − g′(yi,j−) = αjg(yi,j)}. Suppose

that there is an i such that y2,j = y1,j for j = 1, . . . , i and y2,j = y1,j + η for
j = i+1, . . . , N . Suppose further that for the ground state of the first operator
we have ψ′(yi+) < 0 and ψ′(yi+1−) > 0. If η ≥ 0 then the ground states of the
two operators −∆α,Y1, −∆α,Y2 we have min σp(−∆α,Y1) ≤ minσp(−∆α,Y2).

Proof. Proof is analogous to the one of finitely many interactions on the line
so we omit the details.

23



3.3 Finite number of point interactions on a

star graph

In this section we will discuss properties of the ground state on the star
graph. We have a star graph from N halflines connected by the endpoint of
the halflines. We focus our attention to the condition at the endpoint of a
star graph.We impose two conditions. The first is

ψi(0) = ψj(0) = ψ(0), (3.21)

and the second is
N∑
i=1

ψ′i(0) = α0ψ(0) (3.22)

where ψi is wave function on the i-th halfline and α0 < 0. We denote the
operator

−∆α0,α,Y (i) = − d2

dx2
(3.23)

where α = αi,j, Y
(i) = y

(i)
j,k i ∈ {1, . . . , n}, j ∈ {1, . . . , kn} with the domain

D(−∆α0,α,Y (j)) = {g(x) ∈
L
⋃
i∈N

D(−∆
αi,Y

(j)
i

)} (3.24)

where −∆
αi,Y

(j)
i

is the operator on the i-th halfline. Without loss of generality

we can presume y1,j < y2,j < . . . < yn,j for all j. Similarly as the problem on
the halfline there can be proven that for αi,j, αk,l < 0 for all i, j, k, l, where
first index is number of the point interaction on the halfline and the second is
the number of the halfline, decreasing distance between 2 point interactions
on the one halfline will lead to decrease of the energy of the ground state.
This can be easily proven in the same manner as the problem for the line.
That is

Theorem 3.6. Let −∆α0,α,Y (i) be the operator defined above. Suppose that

cardY (1) = cardY (2), α0 < 0, αk,l < 0 for all k, l. Suppose

∀j ∃kj ∀l ∈ {1, . . . kj} y(1)
l,j = y

(2)
l,j (3.25)

and
∀j ∀i ∈ {kj+1, kn} ∃ηj ≥ 0, y

((1))
i,j = y

(2)
i,j + ηj. (3.26)
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Suppose further that for the ground state of the first operator we have ψ′j(ykj ,j+) <
0 and ψ′j(ykj+1,j−) > 0. Then the ground states of the operators −∆α0,α,Y (1),
−∆α0,α,Y (2) satisfy

minσp(−∆α0,α,Y (1)) ≤ min σp(−∆α0,α,Y (2)) (3.27)

Proof. We create the operator −∆α0,α,Y (i) as

−∆α0,α,Y (i) = −∆
α1,Y

(i)
1

⊕
−∆

α2,Y
(i)
2

⊕
. . .
⊕
−∆

αN ,Y
(i)
N

(3.28)

where −∆
αi,Y

(i)
k

is self-adjoint operator describing point interactions on the

k-th halfline. We know that σp(−∆α,Y (i)) =
⋃
k∈N σp(−∆

αk,Y
(i)
k

). From this

we have min σp(−∆α,Y (i)) = mink σp(−∆
αk,Y

(i)
k

). Now we use Theorem 3.5 on

−∆
α0,αk,Y

(i)
k

which completes the proof.
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Chapter 4

Examples

4.1 Solution of two point interactions on the

line

We are interested in the ground state of the operator −∆α,Y where α =
{α1, α2} and Y = {y1, y2}. According to Theorem 2.6 we know that every
eigenvalue k2 of the point spectrum of the operator −∆α,Y , is a solution of

the secular equation det Γα,Y (k) = 0, where {Γα,Y (k)}i,j = −[
δi,j
αi

+ eik|yi−yj |

2ik
].

Without loss of generality we can choose y1 ≤ y2. We introduce substitution
−κ = ik < 0, y1 − y2 = L. We have =k > 0, because we are interested
in the ground state which has negative eigenvalue. The secular equation is
explicitly

∣∣∣∣
1
α1
− 1

2κ
1

2κ
e−κL

1
2κ
e−κL 1

α2
− 1

2κ

∣∣∣∣ = (
1

α1

− 1

2κ
)(

1

α2

− 1

2κ
)− e−2κL

4κ2
= 0, (4.1)

which is trancendent equation for κ. However, we can say a few things
about the ground state introducing the substitution κL = L′ where L′ > 0.
According to Theorem 2.6 and because we know that −∞ < αi we can infer
that every eigenvalue of the operator −∆α,Y fulfills the condition −∞ < −κ2.
This implies that ∞ > |κ| from which we can state that L ↘ 0 ⇒ κL ↘ 0.
Solutions for κ with respect of L′ are

κ1 =
1

4
(α1 + α2 − e−2L′

√
4α1α2e2L′ + α2

1e
4L′ − 2α1α2e4L′ + α2

2e
4L′)

κ2 =
1

4
(α1 + α2 + e−2L′

√
4α1α2e2L′ + α2

1e
4L′ − 2α1α2e4L′ + α2

2e
4L′)
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Note that those are still equations for unknown κ. When we perform the
limit for L′ ↘ 0 we get:

a) E0 = −(α1+α2

2
)2 for αi < 0 when L 7−→ 0+

b) E0 = −(α1+α2

2
)2 for (α1 < 0 < α2) ∧ (|α1| > |α2|) when L 7−→ 0+

c) E0 = 0 for (α1 < 0 < α2) ∧ (|α1| < |α2|) when L 7−→ 0+

This will also give us a starting point for the numeric solution of the equation
(4.1).

There are a few plots to illustrate properties of the ground state. First
we will illustrate the claim of Theorem 3.2. On figures 4.1 and 4.2 we can
see that increasing distance between two point interactions with negative
strength results in increase of the ground state energy. If some αj > 0 the
behavior could be different. We can see that on figures 4.3 and 4.4. Also on
the figure 4.4 we can see that when total sum of the interaction strength is
greater than zero, it results in disappearing of the eigenvalue when the point
interactions are close to each other. It is also worth noticing that when the
point interactions are far away from each other the ground state energy goes

to the value E0 ≈ −
(
α
2

)2
where α is the minimum of the negative point

interaction strength, i.e. α = min{αj} where αj < 0 for all j.
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Figure 4.1: Energy of the ground state for α1 = −1, α2 = −2 as a function
of L

Figure 4.2: Energy of the ground state for α1 = −3, α2 = −2 as a function
of L
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Figure 4.3: Energy of the ground state for α1 = −3, α2 = 2 as a function of
L

Figure 4.4: Energy of the ground state for α1 = −3, α2 = 4 as a function of
L
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4.2 Solution of three point interactions on

the line

We are interested in the ground state of the operator −∆α,Y where α =
{α1, α2, α3} and Y = (y1, y2, y3). According to Theorem 2.6 we know that
every eigenvalue k2 of the point spectrum of the operator −∆α,Y is the solu-
tion of the secular equation

det Γα,Y (k) = 0, (4.2)

where {Γα,Y (k)}i,j = −
[
δi,j
αi

+ eik|yi−yj |

2ik

]
. Without loss of generality we can

choose y1 ≤ y2 ≤ y3. The Solution of the equation (4.2) is similar to the
problem with two point interactions. We introduce substitution −κ = ik <
0, yi− yi+1 = Li. We know that Li ∈ R+

0 . As in the two dimensional case we
come to the transcendent equation. As in the two point interactions case we
introduce substitution κLi = −L′i where L′i > 0. According to the Theorem
2.6 and because we know that −∞ < αi we can infer that every eigenvalue
of the operator −∆α,Y fulfills −∞ < −κ2. This implies that ∞ > |κ| from
which we can state that Li ↘ 0 ⇒ κLi ↘ 0. Solution for κ with respect of
L′1, L

′
2 can be solved exactly however we omit the details of solution because

it can be easily done with help of Cardano’s method.
As for the two point interactions problem there are a few things we can

say from the form of this limit solution for the ground state. These are:

a) E0 = (1
6
(α1 + α2 + α3 − (−(α1 + α2 + α3)3)

1
3 + (−(α1+α2+α3)3)

2
3

α1+α2+α3
))2 for

α1 + α2 + α3 ≤ 0 when L1 7−→ 0+, L2 7−→ 0+
b) E0 = 0 for α1 + α2 + α3 ≥ 0 when L1 7−→ 0+, L2 7−→ 0+

There are a few plots to illustrate properties of the ground state.
First we will illustrate the claim of Theorem 3.2. On figures 4.5, 4.6 and

4.7 it can be easily seen that increase of distance between point interactions
with negative strength results in increase of the energy of the ground state.
On practically every figure for the three point interactions it can be seen
the same thing as for the case of two point interactions which is that when
we place the point interactions far from each other the ground state energy
goes to the ground state energy of the point interaction with lowest negative

strength, i.e. E0 ≈ −
(
α
2

)2
where α is α = min{αj} where αj < 0 for all
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Figure 4.5: Energy of the ground state for α1 = −5, α2 = −3, α3 = −1 as a
function of L1 and L2

j. If some αj > 0 the behavior could be quite different from the claim of
Theorem 3.2. This can be seen on figures from 4.8. to 4.13. We can see
on the figure 4.8 that when we decrease the distance between the negative
point interactions it results in decrease of the ground state energy even if
the third point interaction is positive. It is worth mentioning that when the
first or last point interaction on the line is positive, i.e. α1 > 0 or αN > 0
respectively, its moving away from the other interaction results in decrease of
the ground state energy (see figures 4.10,4.11 and 4.13). It is worth noticing
but not at all surprising fact that when we have middle point interaction
with strength equal zero the three interactions problem will degenerate to
the two interactions problem (see figure 4.12).

31



Figure 4.6: Energy of the ground state for α1 = −2, α2 = −2, α3 = −4 as a
function of L1 and L2

Figure 4.7: Energy of the ground state for α1 = −1, α2 = −2, α3 = −3 as a
function of L1 and fixed L2 = 5
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Figure 4.8: Energy of the ground state for α1 = −1, α2 = −2, α3 = 3 as a
function of L1 and fixed L2 = 5

Figure 4.9: Energy of the ground state for α1 = −1, α2 = 2, α3 = −1 as a
function of L1 and L2
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Figure 4.10: Energy of the ground state for α1 = 1, α2 = −2, α3 = 1 as a
function of L1 and L2

Figure 4.11: Energy of the ground state for α1 = −5, α2 = −5, α3 = 10 as a
function of L1 and L2
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Figure 4.12: Energy of the ground state for α1 = −5, α2 = 10−12, α3 = −1
as a function of L1 and L2

Figure 4.13: Energy of the ground state for α1 = 1, α2 = −2, α3 = −3 as a
function of L1 and fixed L2 = 5
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4.3 Conclusion

In this work we have shown a relation between the distance of attractive
point interactions, i.e. point interactions with negative interaction strength
αj < 0, and the energy of the ground state for some one dimensional objects,
namely the line, the halfline and also for star graphs under some additional
assumptions.
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