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Introduction

The faithful transfer of a state is a very important part of designing a fully working quantum
computer. For practical use of quantum computers for actual calculations or simulations, it is
necessary to develop a reliable way of transferring the state from one component of the computer
to another in analogy to classical computers. The state of the component is what carries the data,
thus we could compare the transfer of the state to, for example, reading or writing the data from
the hard drive of a classical computer.

There are many approaches to building a quantum computer (based on superconductors, quan-
tum dots, nuclear magnetic resonance (NMR) - both on liquid and solid state substances, electro-
magnetic cavities, trapped ions or optical lattices...) and thus, not surprisingly, there is more than
one possible approach to transferring the state of the components. An example of an experimental
success in the Perfect State Transfer (PST) are recent experiments with rays of trapped ions com-
municating by transferring their states over photons and optical �bers. Currently, the two most
successful (experimentally) designs of the quantum computer are the ones using trapped ions and
the ones using spin resonance (the NMR methods), the reason being a long development that the
NMR technology has been subjected to over the past decades and its massive commercial success.
Even some of the quantum algorithms have been successfully presented on the NMR based com-
puters. The reason for the success of the trapped ions lies in their relatively simple obtainability
resulting from well-developed methods of cooling ions (e.g. sideband cooling) and the simple idea
behind trapping them with rapidly varying electromagnetic �elds. It was prof. Theodor W. Hän-
sch and his team who have demonstrated the principle of trapping them on trapping macroscopic
charged lycopodium seeds with many traps of di�erent shapes, prof. Hänsch even trapped them
with a conventional paper clip and made an amusing video where the seeds dance to a ballet music
in the traps. Furthermore, above the other designs, the trapped ions do not su�er from limited
scalability, in principle, which is important for experiments with larger numbers of qubits.

The one method of transferring the state we shall be focusing on throughout this thesis is
using the components of the quantum computer itself to transfer the information. This approach
is called passive quantum wires and it should bring new possibilities to experiments, since, for
example, photons are excellent carriers over long distances, for short distances, however, they are
not very economical because the imprinting of the state onto the photon and back is a rather
complicated procedure. The idea behind passive quantum wires is to use the interaction (e.g. spin
interaction) between the components in a way that allows for the information to travel through
the computer without a necessity of any external driving.

Even though the framework for PST that has been developed and is presented in this thesis
is very general and no specialization is needed, the �rst step to successful experimental imple-
mentation is �nding a suitable physical system that would be capable of a passive perfect state
transfer. Of course it is desirable to �nd this system amongst the systems that are being pursued
for building the quantum computers. For that we would like to explore the possibility of PST
on trapped ions, because the recent development in this area suggests that the most signi�cant
advantage of the NMR methods, the well-developed technology, could be used for driving the ions
in the traps and thus eliminating the major experimental obstacle of the trapped ions being used
as quantum computer: the fact that expensive and rare lasers had to be used for driving the ions.
The driving electromagnetic radiation that could be used for driving the ions has to be stable
against variations in frequency, phase and amplitude in order to achieve long decoherence times
for the quantum computer and that is di�cult to achieve experimentally with lasers, however, the
NMR technology is capable of producing suitable rf or mw radiation.

The theoretical research behind the quantum computers suggests that even a few tens of qubits
could solve tasks that are beyond the potential of classical computers. Examples of the tasks are
popular Shor's algorithm for integral factorization, or many simulations of quantum systems that
could serve for �nding the eigenvalues and the eigenvectors of the Hamiltonians of the quantum
systems. It is the parallelism of quantum computers that allows for solving problems whose time
of completion grows exponentially with the seriousness of the task. Furthermore, the simulations
could help us understand the elusive world of quantum mechanics.

In order to understand the tools of quantum physics used and the PST and the approaches to
trapping ions, some basic principles and experiments from quantum mechanics are described and
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explained in Part I of this thesis. Part II is devoted to introducing the perfect state transfer and
passive quantum wires. And �nally Part III describes the trapping of the ions and shows the latest
approach to driving them.

Part I

Fundamentals of Quantum Physics behind

Quantum Computing

Throughout this work notation common in quantum mechanics is being used together with common
mathematical conventions, such as the Dirac's bras and kets. Unless said otherwise we will identify
our physical system with a separable complex Hilbert space H , vectors of which will be denoted
by kets |k〉 with dual bras 〈b|. As is common in quantum mechanics the scalar product with respect
to incident Hilbert space will be denoted by the braket: 〈k | b〉. If we later on would like to talk
about two or more systems, then the general state space of them combined will be a tensor product
of the states of individual systems.

We will also be using the Pauli notation for Pauli matrices:

σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
. (0.1)

1 Information Unit in Quantum Information Processing

1.1 Qubit

Any information is usually broken down to ones and zeros in information processing. For example
the sequence of characters �eye� which is forming a word could be encoded into a sequence of ones
and zeros just by assigning �e� to one and �y� to zero. The result of this would then be 101. This
would be a rather simple way of encoding the information and indeed would not be using the full
potential of the sequence of zeros and ones. One can easily see that 3 bits (from now on we will
be calling one variable holding value of one or zero a bit) can hold 23 = 8 di�erent values and
therefore 8 di�erent numbers/values.

QIP (Quantum Information Processing) like any other information processing therefore needs
a bit container, something to hold the value of the bit, from which the value could be read at any
time and changed at any time. And preferably used for calculation purposes at any time. Although
this work focuses on the trapped ions as carriers of the quantum bit unit � the qubit � there is
no need to restrain our thoughts on the trapped ions and the simplest qubit can be any two-level
quantum system. That is a system with state space spanned by two basis vectors {|0〉 , |1〉}. In
this work we follow the general convention and assume the basis vectors to be orthogonal and
normalized with respect to the scalar product in the space:

〈k | l〉 = δkl. (1.1)

We will see that a qubit has many di�erent properties from a classical bit caused by the fact
that we work with qubits with tools provided by quantum physics. One of the most peculiar ones
results from the fact that we called a two level system a qubit - the possibility of superposition of
basic states. Because we identi�ed qubit with two-level system, the qubit can be in any state

|ψ〉 = a |0〉+ b |1〉 , (1.2)

not only in the two that form the basis. The qubit really is a subspace/ray in the general state
space.

1.2 Representations of Qubit

A general state of any two-level system can be written as:

|ψ〉 = c1 |0〉+ c2 |1〉 , (1.3)
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Figure 1.1: The Bloch Sphere

and c1, c2 ∈ C. We require the general state to be normalized:

|||ψ〉||2 = 1 = |c1|2 + |c2|2 . (1.4)

As c1 and c2 are complex numbers, they are determined by four real numbers, however normaliza-
tion �xes one of them and we can write general state as:

|ψ〉 = eiη
(

cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
)

(1.5)

As the state in quantum physics is denoted by |ψ〉 up to arbitrary phase, the parameter η does
not in�uence the state, however if we were considering multiple two-level systems, we would have
to take into account relative phases [1, 2]. If we now choose to encode any information into our
two level system using the numbers c1, c2; the basis {|0〉 , |1〉} will be called computational basis.

1.2.1 Bloch Sphere

A geometrical representation of a qubit is possible by de�ning the coordinates as follows:

u := 〈ψ|σ1 |ψ〉 = c1c2 + c1c2 (1.6)

= e−iη cos

(
θ

2

)
e+iηeiϕ sin

(
θ

2

)
+ e+iη cos

(
θ

2

)
e−iηe−iϕ sin

(
θ

2

)
(1.7)

= (cosϕ+ i sinϕ) cos

(
θ

2

)
sin

(
θ

2

)
+ (cosϕ− i sinϕ) cos

(
θ

2

)
sin

(
θ

2

)
(1.8)

= cosϕ sin θ, (1.9)

v := 〈ψ|σ2 |ψ〉 = i (c1c2 − c1c2) = . . . = sinϕ sin θ, (1.10)

w := 〈ψ|σ3 |ψ〉 = c1c1 − c2c2 = . . . = cos θ, (1.11)

where we have used (1.5) and (0.1). We will denote the u, v, w as components of a Bloch vector

~R :=

 u
v
w

 . (1.12)

If we lay the coordinates on three axes we get Figure 1.1. As we can see, the general state of
two-level system can be uniquely represented by a point on the Bloch sphere. This could come in
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handy when talking for example about spins, as the spin operator is operator with two eigenvalues
relevantly acting on vectors from C2 and therefore spin can be displayed on the Bloch sphere and
one can associate the purely abstract idea with visual. However, it is important to note that the
3D space and the sphere is only a projection.

The representation on the Bloch sphere has several interesting properties and points. For
example the state |ψ〉 = |0〉 will be projected to the �north pole� (w = 1, u = 0, v = 0) and the
state |1〉 to the �south pole�. And we can see that two orthogonal states will be displayed as two
opposite points on the sphere, because the angle α between the Bloch vectors of two di�erent states
is given by:

cos
α

2
= 〈ψ |ω〉 . (1.13)

And if the states are orthogonal:

cos
α

2
= 0⇒ α = π. (1.14)

Let us now skip a little bit forward in the text and de�ne an operator called density matrix for the
two-level system using the Pauli vector from 0.1

~σ =

 σ1

σ2

σ3

 , (1.15)

as

ρ =

(
c1c1 c1c2
c2c1 c2c2

)
=

1

2

(
I + ~R · ~σ

)
, (1.16)

we will be talking more about this object in the following section 2.1. It is very simple to show
that if the density matrix is de�ned as in 2.1, for the two level system it has to take the form (1.16)
and the de�nitions are therefore in conformity.

1.2.2 Poincaré Sphere

There is one more way of representing the general state of the two-level system on a sphere, which
is called the Poincaré sphere. To introduce the sphere correctly, we will rewrite the general state
(1.3) as follows

|ψ〉 =

(
c1
c2

)
= c1

(
1
z

)
, (1.17)

where z ∈ C and

z =
c2
c1

= eiϕ tan
θ

2
. (1.18)

We now take z and represent it by a point in the complex plane as is common and denote the real
axis as axis u and the imaginary axis v, we will introduce the axis w as axis orthogonal to the two
and passing through the origin of the complex plane. Next step is to perform a stereo graphical
projection of the point z from the complex plane to the south pole of the sphere (See Figure 1.2)
and assign the point where it penetrates the sphere to the state of the two-level system. It is very
easy to see that this is a one-to-one mapping of the complex plane and therefore the point similarly
to the case of Bloch sphere uniquely represents quantum state.

The Poincaré has as well several interesting properties, such as that the state
(

1
0

)
is repre-

sented by the north pole because ||z|| = 0 in this case and the stereo graphical projection is rather

simple in this case. Using similar path we would arrive to representation of the state
(

0
1

)
as

the south pole. This corresponds with the Bloch sphere and its properties. In mathematics this
sphere is usually called the Riemann sphere. If we tried to compare the two spheres, using only
basic geometry we could arrive to the fact that both the spheres represent the state identically,
the only di�erence with the Poincaré sphere is that it has additional representation of a state in z
and the complex plane.
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Figure 1.2: The Poincaré Sphere

Polarization of Photons and Poincaré Sphere We know that we can describe the polariza-
tion of any photon by a linear combination of the two basic linear polarizations - in the horizontal
and vertical directions - ←→, l [1, 2]. In quantum mechanics the photon is one quantum of an
electromagnetic �eld and to describe its polarization state the basis {|↔〉 , |l〉} denoting the two
basic polarizations mentioned before can be chosen [1, 2]. As such, the description of photon po-
larization is a beautiful example of a two-level system that can be represented by a point on the
Poincaré sphere. Also it is one of the most common systems to be represented on the P-sphere.

To see how it can be represented and what tools we are provided we will now denote the two
states by

|l〉 =:

(
1
0

)
, |←→〉 =:

(
0
1

)
, (1.19)

so that we are able to use the theory from previous subsections. Another basis that could be
equivalently used is a basis that is achieved by rotating the previous basis vectors by π

4 in the real
plane, which can be written in the previous basis as:

|↗〉 =
1√
2

(|1〉+ |0〉) , (1.20)

|↖〉 =
1√
2

(|1〉 − |0〉) . (1.21)

We know [2] that the angle α between two Bloch vectors which represent two di�erent states is
given by

cos
α

2
=
〈ϕ |ψ〉
||ϕ|| ||ψ||

, (1.22)

which specially for two vectors from the two bases gives

cos
α

2
= 〈l |↗〉 =

1√
2

(1.23)

from which we can see that the angle between these two vectors must be π
2 . In direct analogy to

previous subsections and as a consequence to how we chose the basis vectors it is easy to see which
states are represented by north and south poles.

The circularly polarized photons can be described by linear combination of the vectors we chose
as basis by [2]:

|�〉 =
1√
2

(|1〉+ i |0〉) , (1.24)

|	〉 =
1√
2

(|1〉 − i |0〉) . (1.25)

10



Polarization of Electromagnetic Fields and Poincaré Sphere, Stokes Vector Alterna-
tively we can use the Poincaré sphere to describe a polarization state of an electromagnetic �eld,
which can be viewed as very similar to previous paragraph as we will be essentially treating photons
as well. Without limiting the generality of experiment, we will consider a transverse wave in the
z-direction. With that said we know we can write the components of the electric �eld as [1, 2]:

Ex = A1 cosωt, (1.26)

Ey = A2 cos (ωt+ δ) . (1.27)

We can now switch to a phasor representation, which is more illustrative for the terms from previous
paragraph as circular or linear polarization:(

Ex
Ey

)
= Re

(
eiωt

(
Ex
Ey

))
= Re

(
eiωt

(
A1

A2e
iδ

))
. (1.28)

This gives
Ey
Ex

=
A2

A1
eiδ, (1.29)

which shows that δ is a relative phase of the phasors Ex, Ey in the complex plane. If we now have
δ = mπ,m ∈ N, the phasors are in opposite directions and the polarization is linear. For δ = ±π2
and A1 = A2 we can see that the phasors are of the same size and the polarization is circular. For
δ > 0 is the polarization called right-handed and for δ < 0 left-handed. Using simple derivations
from the formulas above it is possible to show that in general the polarization is elliptic (the Ex
and Ey with δ as parameter satisfy the equation for ellipse), however the process is not important
and if reader wanted to see the process, it can be found in [2].

Alternative and for experimental measurements very important way of describing the polariza-
tion of electromagnetic waves are the Stokes parameters/Stokes vector. The parameters are de�ned
by:

s1 =
(
Ex, Eye−iδ

)
σ3

(
Ex
Eyeiδ

)
= A2

1 −A2
2, (1.30)

s2 =
(
Ex, Eye−iδ

)
σ1

(
Ex
Eyeiδ

)
= 2A1A2 cos δ, (1.31)

s3 =
(
Ex, Eye−iδ

)
σ2

(
Ex
Eyeiδ

)
= 2A1A2 sin δ. (1.32)

Sometimes are these parameters considered as components of the Stokes vector of length

||s|| = s2
1 + s2

3 + s2
3 =

(
A2

1 +A2
2

)2
. (1.33)

And this vector can be directly represented on the Poincaré sphere introduced in the previous
subsection 1.2.2, only with di�erent orientation, that should show us relation between the two
paragraphs (Polarization of Photons and Poincaré Sphere and this one), because the circular po-
larization with δ = ±π2 , A1 = A2 = A yields

~s =
(
0, 0,±2A2

)
, (1.34)

which are in correspondence with previous paragraph north and south poles of the sphere. It
can be shown [2] that the linear polarization is represented by equator which separates the north
half of right-handed polarization from the south one of left-handed polarization. It can also be
shown that the angle between two Stokes vectors is in direct relation to the phase di�erence δ.
The experimental signi�cance of the Stokes parameters lies in their simple measurement using
polarization �lters [1].

2 No State Cloning in Quantum Mechanics

One would think why is it necessary to investigate the perfect state transfer, wouldn't it be easier
to clone the state of one component of the quantum computer to another similarly to how we
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reproduce many copies of the same photograph? In this section we want to focus on why that is
not a possibility and therefore why the PST has to be investigated. We will demonstrate in two
ways why coning is not allowed and we will explore the possibility of �almost� faithful copying of
the state.

2.1 Density Operator

One of the basic rules in quantum mechanics is that every system can be described by a state
vector |ψ〉. However, knowing exactly in what state the system is doesn't always have to be
possible. Example of that can be taken even from classical mechanics, the large ensembles of many
subsystems. So how do we describe such a large quantum system? The answer is: with a set of
possible states {|ψi〉} each occurring with certain probability.

De�nition. If it is possible to describe the system with a single state vector |ψ〉, we will call that
a pure state, otherwise a mixed state.

Let us now investigate an ensemble of quantum systems with a set of possible states {|ψi〉},
where state |ψi〉 occurs with the frequency/probability pi, pi ∈ R+

0 , obeying
∑
i pi = 1. The pi's

can be easily measured for many systems starting with gases of �uids.
The average value of any observable A is then given by following relation:

〈A〉 =
∑
i

pi 〈ψi|A |ψi〉 = Tr(ρA). (2.1)

Where we have de�ned the density operator as follows from (2.1) as:

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.2)

Now, we could ask if the de�nition of density operator is dependent of the basis in which we
express the vectors |ψi〉. Let us write the average value of A using arbitrary basis {ϕµ}:

〈A〉 =
∑
µυ

〈ϕµ|A |ϕυ〉 〈ϕυ| ρ |ϕµ〉 . (2.3)

And we see that (2.1) can be evaluated in any basis using (2.3).

Note. It is important to note that there is no requirement on the vectors |ψi〉, they don't have to
form a basis (i.e. they do not have to be orthogonal nor complete). In case they are orthogonal,
we call (2.2) the spectral decomposition of ρ.

The kind of systems where the density operator comes into the picture are systems where we
do not have complete control of all the parameters and we cannot be sure in which of the states
we prepare our systems; we only know probabilities for each state and we treat the system as a
quantum ensemble; example of that could be a beam of photons, where we are not sure of the
polarization of photons.

Interesting thing to mention about the density operator is that even knowing the matrix ele-
ments for the density operator 〈ϕµ| ρ |ϕυ〉 is not equal to knowing what state the ensemble is in,
because there are many states that produce the same statistics. Example of that can be a system
of four two-level systems, e.g. photons. If we label the photons 1..4 and compare following cases,
we will come to the searched conclusion. First case is when the �rst photon is in polarization state
|←→〉 and the other photons are in state |l〉, then the probability of |←→〉 is 1

4 and of the |l〉 state
3
4 . It is easy to see that the same statistics would be valid for the state of the system where it
would be the second, the third... photon in the state |←→〉, however, the state of the system of
four photons would be di�erent each time. This property of the density operator is not surprising
as we started using it when we were not certain of the state the system is in.

Another way we can view the quantum ensemble under investigation is as a set of subsets of
systems in states |ψ(k)〉. If we denote the number of systems in the subset k by Nk, we can rewrite
(2.2) as follows:

ρ =
∑
i

Ni
N
|ψi〉 〈ψi| , (2.4)
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with
∑
iNi = N = total number of systems present in the ensemble. If we now change the index

i which runs through all the states present to index k that will go through all the subsets in states
|ψ(k)〉, we can rewrite the density operator to form:

ρ =
1

N

∑
k

|ψ(k)〉 〈ψ(k)| . (2.5)

For pi = δi0 equation (2.2) gives a very simple result for an ensemble where only one state |ψ0〉
is present. In this case the density operator becomes a projector, thus:

ρ2 = ρ, (2.6)

holds. We have called such a state a pure state. For any state obeying (2.6) we have Tr
(
ρ2 − ρ

)
= 1

and Tr ρ2 = 1, we will use that later to test if the state is pure or if more then one state is present
in the system. Consider a system with more then two pi > 0. Then we get for the trace:

Trρ2 =
∑
i,j

pipjTr(|ψi〉 〈ψi |ψj〉 〈ψj |) (2.7)

=
∑
ij

pipj |〈ψi |ψj〉|2 ≤
∑
i

pi
∑
j

pj = 1.

Now, we can see that when the states |ψi〉 are linearly independent, the sum must be:∑
i

p2
i < 1. (2.8)

And so for a given density matrix, we can decide if the state is pure or mixed.

2.2 Correlated States and Schmidt Decomposition

Let us consider two systems S1 and S2 determined by their bases {|ϕi〉1} and
{
|ϕj〉2

}
, respectively.

Then, as mentioned before, the basis in the combined space is given by states of the form:{
|ϕi〉1 ⊗ |ϕj〉2

}
, i, j ∈ N. (2.9)

The scalar product in the combined space is given as a product of scalar products in involved
systems.

The general pure state can be written as:

|ψ〉12 =
∑
i,j

Ci,j |ϕi〉1 |ϕj〉2 . (2.10)

If the coe�cients can be written as Ci,j = ai · bj , then the state can be factorized and is called
separable:

|ψ〉12 = |α〉1 |β〉2 , (2.11)

with
|α〉1 =

∑
i

ai |ϕi〉1 , |β〉2 =
∑
j

bj |ϕj〉2 , (2.12)

and every probability statement about the combination of the systems becomes product of proba-
bility statements about each system separately. We, nevertheless, have to take into consideration
even states which can not be factorized - the non-separable states. These states are called correlated
and in QIP are of signi�cant importance.

If we had a system in a special state (linear combination of tensor products of the same state
vectors from the basis):

|ψ〉12 =
∑
i

Ci |ϕi〉1 |ϕi〉2 , (2.13)
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we could easily show how measurement on one of the systems a�ects the other one by calculating
the probability of occurrence of a state |ϕα〉1 |ϕβ〉2 in the system (2.13):

12 〈ψ |ϕα〉1 |ϕβ〉2 2 〈ϕβ |1 〈ϕα |ψ〉12 = |Cα|2 δαβ . (2.14)

From that we can see that the systems S1 and S2 cannot be found in states with di�erent α's,
and any measurement on one of the systems determines outcomes of all later investigations of the
other system. And we haven't been mentioning any spatial distance between the two systems.
This property is sometimes referred to as to Non-locality of quantum theory [2] and is caused by
strong correlation between the two systems.

We will now come back to the non-separable state of the two systems (2.10). To achieve this
kind of combination of the two systems, one has to let them interact, no action carried out on them
separately could cause this state; even if the systems are not interacting in the present, to posses
entanglement they must have interacted in the past. Another possibility, of course, is interaction
with common third system.

We would now like to �nd the mapping ω of the states
{
|ϕj〉2

}
so that the basis states

{
|ω [ϕj ]〉1

}
are the states entangled/conditioned by the observations of states

{
|ϕj〉2

}
similarly to (2.13).

Next we write the state (2.10) as:

|ψ〉12 =
∑
α

Nα |ω [ϕα]〉1 |ϕα〉2 , (2.15)

de�ning the states:

|ω [ϕα]〉1 := N−1
α

∑
i

Ciα |ϕi〉1 , (2.16)

N2
α :=

∑
i

|Ciα|2 .

If we now choose to perform measurement on the system S2 and we measure that it is in the
basis state |ϕα〉2, we will know that all the measurements on the system S1 must be carried out
knowing that it is in the associated state |ω [ϕj ]〉1. It is easy to see from (2.15) that probability of
that happening is:

Pα = N2
α , (2.17)

which using (2.16) is seen to be normalized:∑
α

Pα =
∑
α,i

|Ciα|2 = 1. (2.18)

What we can do now is execute large number of measurements on the system S2, which would
give us frequencies of states |ϕα〉2 appearing in our measurements, in other words, we would
measure the N2

α's. Note again that any prediction made for system S1 after measuring |ϕα〉2 must
be based on the presumption that S1 is in |ω [ϕα]〉1. Following that and using (2.17) and the
de�nition of density operator we can now see the density operator of the system S1 must be:

ρS1
:=
∑
α

N2
α |ω [ϕα]〉1 1 〈ω [ϕα]| . (2.19)

Di�erent way of deducing (2.19) would be (as suggested by Paul Dirac in 1930) forming a
reduced density matrix by partially tracing the general density matrix over the states of S2 (by
�tracing out� the system S2):

ρS1
= Tr S2

ρ =
∑
α

2 〈ϕα| |ψ〉12 12 〈ψ| |ϕα〉2 . (2.20)

From which we can derive (2.19) by inserting (2.15).
If we wanted to calculate the expectation value of some observable AS1

in the system S1, we
would use the reduced density operator:
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〈AS1〉 = Tr (AS1ρ) = Tr S1 Tr S2 (AS1ρ) = Tr S1 (AS1ρS1) . (2.21)

In the general case, the states {|ω [ϕα]〉1} are neither orthogonal nor complete. We could ask when
they would form a basis... Let α 6= β determine two di�erent states |ω [ϕα]〉1 , |ω [ϕβ ]〉1 and to see
when these two are orthogonal we have to ask for:

NαNβ1〈ω [ϕα] |ω [ϕβ ]〉1 = 12〈ψ |ϕα〉2

(∑
i

|vi〉1 1〈vi|

)
2〈ϕβ |ψ〉12 = N2

αδαβ , (2.22)

with {|vi〉1} being arbitrary orthonormal basis. If we now multiply previous equation by |ϕβ〉2
from the left and sum it over β, we obtain:∑

i

1 〈vi |ψ〉12 12〈ψ | vi〉1 |ϕα〉2 = Tr S1
(|ψ〉12 12〈ψ|) |ϕα〉2 = N2

α |ϕα〉2 . (2.23)

And from that we can see that the condition required for the states {|ω [ϕα]〉1} to form a basis is
equivalent to asking the states {|ϕα〉2} to be the eigenstates of reduced density operator

ρS2
= Tr S1

(|ψ〉12 12〈ψ|) . (2.24)

From (2.15) it can be seen that these states are as well eigenstates of ρS1
. In this situation

({|ω [ϕα]〉1} being the eigenstates of reduced density operators) the (2.15) is called a Schmidt
decomposition and it always exists [2].

2.3 State Cloning Is Not Allowed

The quantum perspective of the world is in many ways di�erent from the classical one. One of
the di�erences is that from the classical point of view we could inspect a classical system at will
and produce arbitrary number of identical copies of it, from the quantum point of view we can
not produce any copy of a given quantum system, we will demonstrate this fact based on following
thoughts.

First we need to de�ne what exactly we mean by state cloning. Let us assume that we have
two systems labeled S as source and D as destination/target in arbitrary states |ϕ〉S and |0〉D,
respectively. And we now de�ne cloning as a unitary transformation USD which will act on the
tensor product of the two states in a speci�c way:

USD |ϕ〉S |0〉D = |ϕ〉S |ϕ〉D . (2.25)

The �rst way of showing that cloning is not allowed [2] is taking two arbitrary (but di�erent)
states |ϕ1〉S |0〉D and |ϕ2〉S |0〉D and applying the transformation to both. If we then take a look
at the results, we see that their scalar product is:

S 〈ϕ2 |ϕ1〉SD 〈ϕ2 |ϕ1〉D = S 〈ϕ2|D 〈0|U
†
SDUSD |0〉D |ϕ1〉S (2.26)

= S 〈ϕ2 |ϕ1〉SD 〈0 | 0〉D ,

from which one can immediately see that S 〈ϕ2〉ϕ1S has to be 1 or 0. In the former case |ϕ1〉 = |ϕ2〉
which is in con�ict which our presumption that the two states are di�erent; in the latter case |ϕ1〉
and |ϕ2〉 are part of certain basis and therefore not arbitrary. And so we see that there is no such
a unitary transformation possible.

One more of the basic principles of quantum physics forbids the state cloning, the requirement
of the state space being a linear space where all the elements belong with their linear combinations.
Let us consider a state:

|ψ〉S = c1 |ϕ1〉S + c2 |ϕ2〉S . (2.27)

What happens if we now apply transformation (2.25) to (2.27):

USD |ψ〉S |0〉D = c1 |ϕ1〉S |ϕ1〉D + c2 |ϕ2〉S |ϕ2〉D , (2.28)

we see that the result of such a cloning operation would not be |ψ〉S |ψ〉D, which would be the
proper result of state cloning.
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Note. From (2.26) we can see that cloning of arbitrary state can not be possible; however, we also
see that if we choose basis in the space {|ϕ1〉 , |ϕ2〉 , . . .}, we can always design a cloning operation
of these orthogonal states.

2.4 Possibility of Almost Faithful State Copying

After we have seen that there is no state cloning allowed in QM, one could ask how well could it
be �almost� copied. Let the basis of our space be {|0〉 , |1〉} and let the source system be in state:

|ϕ1〉S = α |0〉S + β |1〉S . (2.29)

And let the state be chosen to be normalized:

αα+ ββ = 1. (2.30)

We would like to transfer this state to the destination system as faithfully as possible while
keeping the source system in its original state. To achieve this, we will need the A (as ancillary)
system to be used.

Notation.
|a〉S |b〉D |c〉A =: |a b c〉 . (2.31)

Let us say that we would like to have the following transformation:

|0 0 0〉 →
√

2

3
|0 0 0〉 − 1√

6
(|0 1 1〉+ |1 0 1〉) , (2.32)

|1 0 0〉 → −
√

2

3
|1 1 1〉+

1√
6

(|0 1 0〉+ |1 0 0〉) .

As we can see, the transformation maps orthogonal vectors onto orthogonal vectors, therefore we
know that such a unitary transformation can be found (Note from 2.3 on Page 16).

We will now apply the transformation on the state

|ψ〉SDA = |ϕ1 0 0〉 , (2.33)

where |ϕ1〉S is taken from (2.29). From that we get:

|ψ〉SDA →
√

2

3
(α |0 0 0〉 − β |1 1 1〉)− α√

6
(|0 1 1〉+ |1 0 1〉) (2.34)

+
β√
6

(|0 1 0〉+ |1 0 0〉) =:
∣∣∣ψ̃〉

SDA
.

If we now calculate the reduced density matrices in source and destination systems by tracing out
the other degrees of freedom

ρS = TrDA ρ, (2.35)

ρD = TrSA ρ,

by �rst calculating ρ = |ψ̃〉SDA SDA 〈ψ̃|. And then from ρ we get ρS by identifying the terms that
contain:

{ |0〉D |0〉A A 〈0|D 〈0| ; |0〉D |1〉A A 〈1|D 〈0| ; (2.36)

|1〉D |0〉A A 〈0|D 〈1| ; |1〉D |1〉A A 〈1|D 〈1|}.

Putting the remaining terms together we get:
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ρS = ρout =
1

6

(
1 0
0 1

)
+

2

3

(
αα αβ

αβ ββ

)
=

1

6
I +

2

3
ρin, (2.37)

where ρin corresponds to the initial state (2.29). If we now perform exactly the same operations
for ρD, we get expression identical to (2.37). And so we see that both systems S and D contain
the same level of information about the initial state (2.29) of the source system.

We can now rewrite (2.37) as follows:

ρout =
5

6
|ψ〉SDASDA 〈ψ|+

1

6
(I − |ψ〉SDASDA 〈ψ|) . (2.38)

And use this expression to calculate the expectation value of projector |ψ〉 〈ψ|, which will give us
the probability of �nding either of the systems {S,D} in the state (2.29):

〈|ψ〉SDASDA 〈ψ|〉 = SDA 〈ψ| ρout |ψ〉SDA =
5

6
. (2.39)

And so we have shown that there is an operation that will copy the original state of the source
system to the destination system with probability of ' 83%. This number is called �delity and it
can be shown [2] that this is the extreme value in the investigated situation. It follows from (2.37)
that the Bloch vector from page 7 is transformed in the process as:

−→
R out =

2

3

−→
R in, (2.40)

the norm of which is: ∣∣∣∣∣∣~Rout∣∣∣∣∣∣ =
4

9
< 1. (2.41)

And that indicates the loss of information, we can imagine that in previous analogy with the photos
as a process where the �rst picture coming out of the machine is perfect, with sharp edges and the
second one would come out as a blurry copy of the �rst one.

3 Experiments Associated with Spin Operator

Let us now move in the text to some fundamental experiments that led to introducing the spin
operator, an event in physics that allowed the Paul traps and trapping ions to be developed. In this
section we will explain using these experiments basic ideas behind the trapped ions and quantum
computation on the trapped ions.

3.1 Stern�Gerlach Experiment, Spin

Named after Otto Stern and Walther Gerlach, the Stern-Gerlach experiment is a well-known
demonstration of certain quantum properties such as the spin of the particles. Alternatively it
can serve as a demonstration of how measurement in quantum mechanics a�ects the system itself.
The experiment is based on sending a beam of particles through an inhomogeneous magnetic �eld
and observing their de�ection (See Figure 3.1). Most usually particles with no charge are used to
neglect the de�ection due to known laws of movement of a charged particle through a magnetic �eld
(the Lorentz force). The de�ection of the particles (e.g. electrons) observed is rather remarkable
as it can not be understood using any quantum analogue of a classical property. What is observed
in the experiments is a splitting of particles into two separate beams. Based on the experiments
it has been necessary to introduce an analogue to angular momentum - the intrinsic angular mo-
mentum/the spin which every particle possesses and that can only take certain quantized values
(Landé, Stoner, Pauli 1923-25).

In order to introduce the spin/the intrinsic angular momentum operator correctly, we now need
to switch from original space H to space H ⊗ C2, this can be viewed as switching from a one-
component Hilbert space H to a two-component Hilbert space H ⊗ C2, where each component
of a vector is from H ; and therefore describing the state of the system by a linear combination
of vectors from the original Hilbert space. Operators acting on the new Hilbert space will now
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Figure 3.1: The Stern-Gerlach Experiment

be denoted by matrices of operators A ∈ B
(
H ⊗ C2

)
, where B denotes a Banach space of all

continuous linear maps, A = {Aij}2i,j=1 , Aij ∈ B (H ). It is worth noticing that the new space
truly is a Hilbert space; with the scalar product of vectors de�ned by

(u, v) :=

2∑
i=1

(ui, vi), ui, vi ∈H , u, v ∈H ⊗ C2, (3.1)

u =

(
u1

u2

)
, v =

(
v1

v2

)
. (3.2)

All the operators we have been using so far have been acting only on H and we can now view
them as tensor products of the original operator with unity operator, for example the Hamiltonian
operator will now be:

H = H ⊗ IC2 . (3.3)

To a projection of the intrinsic angular momentum to the z-axis we will now assign operator:

µz =

(
µ0 0
0 −µ0

)
, (3.4)

where µ0 = e~
2M is the Bohr magneton (µ0

.
= 0, 9274 · 10−23JT−1 for electron). Notice that the

operator of projection of the spin to z-axis acts only as a multiplication by a constant factor in
the original Hilbert space and it is nontrivial operator only in the C2. In complete analogy to
commutation relations of components of the angular momentum [1, 3] we will now de�ne the spin
operator as a vector operator ~S nontrivial only on C2, components of which follow the commutation
relations:

[Si, Sj ] = i~εijkSk, (3.5)

where [A,B] := AB−BA and where the relation follows the Einstein summation convention with
εijk being the Levi-Civita symbol [1]. It would be straightforward to show that the components of
the spin operator must be in a following relation with the Pauli matrices (0.1):

Si =
~
2
σi,∀i ∈ {1..3} . (3.6)
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We will now de�ne the intrinsic magnetic moment (analogue to magnetic moment
[3]) by

~µ :=
2µ0

~
~S, (3.7)

which will allow us to write the Hamiltonian of a particle in an electromagnetic �eld as dependent
on the spin of the particle in the following form:

H =
1

2M
[P − eA]

2
+ eφ− µ0

~B · ~σ, (3.8)

where P is the operator of the momentum, e is the charge of the particle, A and φ are the
electromagnetic potentials:

~E = −∇φ− ∂ ~A

∂t
, ~B = ∇× ~A, (3.9)

and ~E, ~B are the electric �eld and the magnetic �eld. The equation:

i~
∂ψ

∂t
= Hψ, (3.10)

where H is taken from (3.9) and ψ being the two-component function is called Pauli equation, the
corresponding equation

Hψ = Eψ, (3.11)

is called time-independent Pauli equation.

3.2 Zeeman Shift

The Stern-Gerlach experiment is not the only experiment that led to introducing the spin operator,
also putting atoms into magnetic �eld (similarly to Stark e�ect for electric �eld [1, 3]) was showing
some properties that were not in correspondence with the theory. If we tried to solve the motion of
electrons in atoms in external homogeneous magnetic �eld using only the correspondence principle
[1] without the spin interaction, we would learn that the eigenenergy corresponding to state vector
|E, l,m〉 of electron in a spherically symmetric potential of the core would with the magnetic �eld
become (E − µ0m) and depend on the magnetic quantum number, we would see from this fact
that the magnetic �eld would change the degeneracy of the spectrum of the Hamiltonian. To
each state vector corresponding to azimuthal quantum number l the magnetic �eld would create
(2l + 1) di�erent possible energy levels with distance µ0

∣∣∣∣∣∣ ~B∣∣∣∣∣∣. This prognosis has, however, not
been con�rmed by experiment as according to this formula, there should be no degeneracy of the
ground state with magnetic �eld present, but the experiments have proven, that even the ground
state will split into two levels with the magnetic �eld present.

As mentioned before, the solution to this is to introduce the spin operator and the spin interac-
tion with magnetic �eld and come to the form of Hamiltonian (3.8). We will now attempt to �nd
this solution for homogeneous time-independent magnetic �eld ~B 6= ~B (t). It is possible to show
that solving of the Pauli equation can be directly transformed to solving the Schrödinger equation,
because it is possible to show that if φj , j = 1, 2 are solutions of the Schrödinger equation:

i~
∂ψ

∂t
= H1ψ, (3.12)

where H1 is the spin-independent part of (3.8) then the solution of Pauli equation can be written
as (

ψ1 (~x, t)
ψ2 (~x, t)

)
= e

i
~ ~µ· ~Bt

(
φ1 (~x, t)
φ2 (~x, t)

)
, (3.13)

with

e
i
~ ~µ· ~Bt = cos

(µ0

~

∣∣∣∣∣∣ ~B∣∣∣∣∣∣ t)+ i
~B~σ∣∣∣∣∣∣ ~B∣∣∣∣∣∣ sin

(µ0

~

∣∣∣∣∣∣ ~B∣∣∣∣∣∣ t) . (3.14)
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The correct splitting of energy levels we can now get from the Pauli Hamiltonian:

HP = H0 −
µ0

~
~B · ~L− 2µ0

~
~B · ~S, (3.15)

where H0 describes the part of the Hamiltonian that does not depend on the spin (e.g. the
Hamiltonian of particle in a Coulombic �eld). We can derive the energy splitting by solving time-
independent Pauli equation

HPψ = Eψ (3.16)

with known solution to the Schrödinger equation.
For spherically symmetric Hamiltonian without limiting the generality we can choose the z-axis

in the direction of magnetic �eld. It would now be easy to verify that if the particle had energy
E0 = Enl when the magnetic �eld was not present; therefore Enl is the eigenvalue of H0 with
ψn,l,m being the eigenfunction of H,L2, Lz - of the Hamiltonian, angular momentum squared and
the third component of the angular momentum - then functions

ψn,l,m,+(~x) =

(
ψn,l,m(~x)

0

)
, ψn,l,m,−(~x) =

(
0

ψn,l,m(~x)

)
, (3.17)

are the eigenfunctions of the Pauli Hamiltonian with eigenenergies

En,l,m,± = Enl − µ0Bz (m± 1) (3.18)

The number of the new energy levels in this case is (2l + 3) , l = 1, 2, 3, ... for l = 0 we are getting
two energy levels, which corresponds with both experiments. This splitting of energy levels in
magnetic �eld is called the Zeeman shift.

Part II

Perfect State Transfer

An essential part of any quantum computer is a faithful transfer of arbitrary state between two
components of a quantum computer [4]. In order to achieve this, we have to attempt to engineer
a quantum wire. Quantum wires should serve as a transport for a state of one component to
another, meaning that the stationary state of the starting component has to be encoded onto a
��ying� qubit which will then be transferred through the wire and encoded back to stationary state
of the destination component. It is important to note that the state of the starting component
can not be copied, only transferred (see page 11 [No State Cloning in QM]) without any losses of
information.

Two approaches seem to have been developed in this area � active and passive quantum wires.
Example of the former one could be a photon transmitted over large distances through optical �ber.
Photons are known to be excellent carriers even over large distances, however, the most promising
ideas for quantum computers are based on for example trapped ions, atoms or solid-state systems
and physical realization of such a state-imprinting onto the photon and back does not always have
to be an easy task. Therefore for short distances, such as transport of the information between two
quantum processors, alternative path seems to be more appropriate, the passive quantum wires.

Passive quantum wire should be a system fully compatible with the quantum computer itself.
Passive quantum wires tend to use the elements of the quantum computer itself to achieve the Per-
fect State Transfer. Usually the quantum computer is composed of several quantum mechanical
objects of one kind who form a linear chain (ions, quantum dots...) with bipartite interactions,
whose strength can be manipulated for desirable e�ect (usually to provide di�erent kinds of in-
teractions). The idea behind the passive wire is to imprint the state on the �rst element of our
network and only using unperturbed time evolution let the system evolve for a well de�ned time
to a situation, where the last site of the chain is in the initial state of the �rst one.

Although there is no dissipation or dephasing present in passive wires, another obstacle prevents
the passive wires to be an easy task for physicists � the dispersion of the quantum information
over the wire [4]. Also there is a major advantage in using the passive wires and that is minimal
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necessary control of the system, there has to be no measurement or external control, which is
important for practical use.

This work focuses on the passive quantum wires and their application for computers based on
trapped ions. So far the existence of the perfect passive quantum wires has been shown for systems
involving coupled harmonic oscillators, arrays of quantum dots, and spin chains [4, 5]. This work
aims to summarize previous work in the �eld of designing interactions � couplings etc. � that force
the information to be refocused after a well de�ned time at certain site of the chain [4, 5]. In
the following text some of the previous results are presented: determining form of Hamiltonians
suitable for PST and showing that there are in�nitely many without setting any prior restrictions
on topology of network or coupling interactions, from there we will see that there are no PST
Hamiltonians with NN (nearest-neighbor) interactions only for onecycle permutations of the states
of the sites. Based on these results the process of quantum wire engineering has been suggested
and �nally it will be shown that the passive wires can be used as so called logical buses where
several sites communicate using the same shared media.

4 One-cycle Permutations in Perfect State Transfer

4.1 Requirements

Let the Sn = {1, 2, 3, . . . , n} be a set of permanently coupled quantum objects labeled by 1, 2, 3, . . . , n
respectively, the Sn will be our network; we will also require the site labeled 1 to be prepared in an
arbitrary input state |1〉 and the remaining sites to be prepared in their ground states |0〉. If we
can achieve transfer of a single qubit state, that will be su�cient for transferring arbitrary multi
qubit states. In the simplest case we can use the same quantum wire multiple times or if the total
number of excitations and the transmitted state are preserved, the global Hilbert space can be
decomposed into one excitation subspaces and treated separately. On a contrary to Subsection
2.4, we will not be interested in state copying from the �rst site as well as we will not be interested
in state cloning because we know that the basic laws of QM forbid such a behavior (see Subsection
2.3). We will rather attempt to construct a whole class of Hamiltonians CH that only by unper-
turbed (with no external control) time evolution leads to perfect state transfer from the �rst site
to the n-th site after a well de�ned time t with unit e�ciency. Instead of using t for measuring the
time we will be using a dimensionless quantity τ = t/J , where J is our time units. It will allow
us to work with a rather general framework as the physical realization of such networks can be a
wide variety of systems, where J can be characterizing energy of the system, a coupling constant
or tunneling rate. The parameter τ doesn't even have to be continuous variable, in passive linear
optical networks the excitation of photons is governed by practically instant unitary evolutions
and τ would present a number of these transformations applied. We will also assume that the
network does not disturb the transmitted state (the system Hamiltonian H preserves the total
number of excitations) and the only source of possible dissipation is that the wave packet spreads
along the network. Speci�cally for the networks formed by spin chains or quantum dots this would
be guaranteed when the Hamiltonian commutes with total spin operator [4].

Our way of satisfying all of these conditions will be to concentrate on Hamiltonians for which
the time evolution leads to a permutation matrix after �time� τ :

U (τ) ≡ e−iHτ = P, (4.1)

where

P =


0
... P̃
0
1 0 . . . 0

 , (4.2)

is a permutation matrix as P̃ is also a permutation matrix in the computational basis. This
condition will guarantee that after �time� τ the information will refocus on the last site; if we
denote the state of the system where excitation is present on the α-th site by:
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|α〉 := |0〉1 . . . |1〉α . . . |0〉n , (4.3)

we can easily see that the time evolution leads to:

U (τ) |1〉 = |n〉 . (4.4)

The condition 4.1 is severely restrictive for the Hamiltonians; nevertheless, we will show that
in�nitely many Hamiltonians ful�ll it, many of which contain previously derived PST Hamiltonians
[4].

In general we can �nd (n− 1)! permutations in the form (4.2) as we have (n− 1) positions to
�ll; we will attempt to �nd associated Hamiltonians for each of these permutations. We will, at
�rst, distinguish between one and many cycle permutations.

4.2 Permutations

To correctly understand our approach, we need to correctly de�ne permutations and their distinc-
tion important for our approach.

De�nition. Let S be an ordered set of arbitrary objects. Bijection P from S to itself is called a
permutation.

Another way of understanding permutations is to consider the permutation a map of the set
S to itself for which every element of S appears exactly once as image value and we see that
permutation introduces rearrangement of the set S. This view is equivalent to our de�nition, but
it can help a better imagination of permutations.

We can denote the permutation in two ways, �rst and rather simple to understand is a two-line
notation. If we had a set {1, 2, 3, 4} and a permutation that would map this set onto {2, 3, 4, 1},
we could denote the permutation by writing the original order on the �rst line of a two-line matrix
and the result on the second line:

P =

(
1 2 3 4
2 3 4 1

)
. (4.5)

Another way of denoting the permutations is to decompose them into disjoint cycles corresponding
to orbits. It works as follows: starting from �rst element of the set S, we write into parenthesis
subsequent images of the �rst element until we get the original element, at which point we close
the parenthesis and start writing the same for next unincluded element:(

x,P (x) ,P (P (x)) , . . . ,Pi (x)
)
, wherePi+1 (x) = x, (. . .), . . . (4.6)

One parenthesis is an orbit (we would not call it orbit if it only had one element) and the correspond-
ing permutation is called a cycle. In the following will not distinguish orbits and corresponding
permutations.

The example from the previous can be rewritten using the next notation as:

(1, 2, 3, 4) . (4.7)

Example of a two-cycle permutation could be:

P =

(
1 2 3 4
4 3 2 1

)
, (4.8)

which is easily seen to be decomposed into two cycles of length 2:

C1 = (1, 4) andC2 = (2, 3) . (4.9)

De�nition. The cycles of length 2 are called transpositions.

Note. One can easily see that if the cycles are disjoint, they commute and the order of their
application is irrelevant for the result.
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4.3 Hamiltonians Associated With One-Cycle Permutations.

For n-sites there are (n− 2)! possible one-cycle permutations. We can see that from the simplest
permutation:

P =


0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1
1 0 · · · 0

 . (4.10)

The other permutations would be achieved by relabeling the sites {2, . . . , n− 1}. Next we will
derive the class of Hamiltonians leading to (4.10). First we need to �nd the spectrum σ (P) of the
operator P, characteristic equation for which is:

0 =

∣∣∣∣∣∣∣∣∣∣
−λ 1 . . . 0
...

. . .
...

0 0
. . . 1

1 0 . . . −λ

∣∣∣∣∣∣∣∣∣∣
. (4.11)

Next we assume λ 6= 0 and we derive the equation for λ's by adding the �rst line multiplied by 1
λ

to the last one:

(4.11) =

∣∣∣∣∣∣∣∣∣∣
−λ 1 · · · 0
... −λ 1

...
...

. . .
. . . 1

0 1
λ · · · −λ

∣∣∣∣∣∣∣∣∣∣
. (4.12)

we continue with second, third... and (n − 1)-th line always multiplied by
(

1
λ

)i
, where i is the

number of incident line and we get:

(4.11) = . . . =

∣∣∣∣∣∣∣∣∣∣

−λ 1 · · · 0

0 −λ
. . .

...
...

. . .
. . . 1

0 · · · 0 −λ+
(

1
λ

)n−1

∣∣∣∣∣∣∣∣∣∣
, (4.13)

which is determinant of upper-diagonal matrix and the determinant is simply product of the
diagonal elements and we get:

(−1)
n−1

(−λ)
n−1

(
−λ+

(
1

λ

)n−1
)

= −λn + 1, (4.14)

and so we see that characteristic equation can be written as:

λn = 1, (4.15)

and therefore the spectrum of P is:

σ (P) =
{
λi|λi = ei2π

j
n , i ∈ Zn = {0, 1, . . . n− 1}

}
. (4.16)

Note. The value of λ = 0 can not be in the spectrum as the only vector that would correspond to
it would be a zero vector.

Our next step will be �nding corresponding eigenvectors to incident eigenvalues expressed in
the computational basis:
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
−λj 1 · · · 0
...

. . .
...

0
. . . 1

1 0 · · · −λj




ỹ1

...

...
ỹn

 =


0
...
...
0

 . (4.17)

We immediately see that (4.17) is equivalent to recurrence relation for yk:

ỹk+1 = λj ỹk, (4.18)

with solution:

ỹk = (λj)
k−1

, k = 1, . . . n. (4.19)

We will require the eigenvectors to be normalized:∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 y1

...
yn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = 1, (4.20)

and because the norm of the eigenvectors is:∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


λ0
j

λ1
j
...

λn−1
j


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2

=

n−1∑
i=0

∣∣λij∣∣2 =

n−1∑
i=0

1 = n, (4.21)

we see that normalized eigenvectors corresponding to eigenvalue λj expressed in the computational
basis must be:

|yλj 〉 =
1√
n

∑
α∈Sn={1,2,3,...,n}

λα−1
j |α〉 =

1√
n

(
1, λ1

j , . . . , λ
n−1
j

)
, (4.22)

hence the spectral representation of P is:

P =
∑

λj∈σ(P)

λj |yλj 〉 〈yλj | . (4.23)

From the properties of exponential of operator and using previous equations it is straightforward
to construct the �rst Hamiltonian satisfying equations (4.1) and (4.2) in following manner:

H =
1

τ

∑
λj∈σ(P)

arg (λj) |yλj 〉 〈yλj | , (4.24)

where arg (λj) is the phase of the j-th eigenvalue.
Now we can immediately see that this not the only Hamiltonian that leads to permutation

(4.10), we can shift each eigenenergy of the Hamiltonian (4.24) by an arbitrary integer multiple of
2π:

H~l = H+
∑

λj∈σ(P)

2πlλj
τ

∣∣yλj〉 〈yλj ∣∣ (4.25)

=
1

τ

∑
λj∈σ(P)

[
arg (λj) + 2πlλj

] ∣∣yλj〉 〈yλj ∣∣ ,
where ~l ∈ Zn ≡

{(
lλ0
, lλ1

, . . . , lλn−1

)
|lλj ∈ Z, j ∈ Zn

}
.

And we see that the whole class of Hamiltonians satisfying (4.1) for the particular one cycle
permutation is:
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CH =
{
H~l |~l ∈ Z

n
}
. (4.26)

We can see that the class of Hamiltonians is parametrized by integer vector ~l and therefore there
are in�nitely many Hamiltonians in the class.

Next we can mention here that equation (4.25) can be rewritten using the projectors Πλj

projecting on the eigensubspaces of the permutation P:

H−→
E

=
∑

λj∈σ(P)

ελj |yλj 〉 〈yλj | ≡
∑

λj∈σ(P)

ελjΠλj , (4.27)

where the spectrum vector ~E ∈ Rn ≡
{(
ελ0

, ελ1
, . . . , ελn−1

)
| ελj ∈ R, j ∈ Zn

}
.

Using (4.22) we can express the Hamiltonian in the computational basis:

H~E =
∑

α,β∈Sn

∑
λj∈σ(P)

1

n
ελjλ

α−β
j |α〉 〈β| , (4.28)

because we see that for the eigenvalues of P is valid relation:

λα−1
j = λ1−α

j , (4.29)

which can be rewritten to more usual form:

H~E = H(0)
~E

+ V~E , (4.30)

with de�ning the diagonal part:

H(0)
~E

:=
∑
α∈Sn

Eα |α〉 〈α| , (4.31)

and the interaction part:

V~E :=
∑

α6=β∈Sn

G (α, β) |α〉 〈β| . (4.32)

And so the energies and the couplings are given by

Eα =
1

n

∑
λj∈σ(P)

ελj , (4.33)

G (α, β) =
1

n

∑
λj∈σ(P)

ελjλ
α−β
j . (4.34)

From (4.33) we can see that Hamiltonians may only lead to PST when involving the same
energy level for all the sites. Important case in PST are the NN (nearest-neighbor) interactions,
Hamiltonians of which are typically tridiagonal in the computational basis (G (α, β) = 0 for all
β /∈ {α, α± 1}). It has been previously shown [4] that there are none NN-interaction Hamiltonians
that would lead to PST in the framework presented.

Theorem. For networks of arbitrary dimension (n > 2), there exists no nearest-neighbor-interaction
Hamiltonian satisfying condition (4.1) in the framework of permutation (4.2).

Proof. See [4].

The theorem (4.3) is valid for any one cycle permutation, not only the presented one [4].
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4.4 Hamiltonians Associated With Many-Cycle Permutations

In this subsection we would like to �nd the class of Hamiltonians that lead to a many-cycle
permutation of the states of the sites. Such a permutation can be decomposed into several disjoint
cycles (see Subsection 4.2 on page na stran¥ 22). Each cycle is of the length d < n and does not
involve all the sites in the network, only a subset of them Sd ⊂ Sn and the cycle can be treated
separately as one cycle permutation on the subset and therefore we know from previous subsection
that its eigenvalues must be:

λj = ei2π
j
d for j ∈ j ∈ Zd, (4.35)

and for the projection of the corresponding eigenvectors onto the computational basis we have in
analogue way as in (4.22): 〈

α
∣∣∣ v(k)
λj

〉
=

{
λα−1
j√
d

for α ∈ Sd
0 otherwise

. (4.36)

We can see from (4.35) that the spectrum of a many cycle permutation is always degenerate
as eigenvalue λ0 appears as many times as the total number of cycles. We denote the number of
distinct vectors corresponding to eigenvalue λj by δλj , i.e. the δλj is degeneracy of the value λj .
And we denote the subspace spanned by the eigenvectors belonging to λj by Eλj .

Now using the Gram-Schmidt orthonormalization process we choose in every subspace Eλj
orthonormal basis {

|y(k)
λj
〉
}
, (4.37)

where |y(k)
λj
〉 are linear combinations of original eigenvectors belonging to λj and therefore also

eigenvectors with eigenvalue λj .
In direct generalization to derivation of (4.25), here we also can shift the phase of each eigenvalue

of the Hamiltonian by 2π, however, here we can do it for every vector from every (4.37) and we
can write:

H~l =
1

τ

∑
λj

δλj∑
k=1

[
arg(λj) + 2πl

(k)
λj

] ∣∣∣y(k)
λj

〉〈
y

(k)
λj

∣∣∣ (4.38)

=
1

τ

∑
λj

δλj∑
k=1

ε
(k)
λj

∣∣∣y(k)
λj

〉〈
y

(k)
λj

∣∣∣ ,
where ~l ∈ Zn ≡

{
(l

(1)
λ0
, . . . , l

(δλ0 )

λ0
; l

(1)
λ1
, . . . , l

(δλ1 )

λ1
; . . .) | l

(δλj )

λj
∈ Z

}
.

Part III

Application of Fundamentals to Trapping

Ions

In this part of this work we will be using some of the basic ideas presented in 3, such as the Zeeman
shift, to introduce �rst some of rather early approaches to quantum computers based on trapped
ions [6] and then we will present some ideas from more recent works of experimental physicists
[7�10]. We will explain why the development has been taking the path presented and compare the
new results to the previous ones.

Several approaches have been developed to building a quantum computer [2, 11] such as com-
puter based on electromagnetic cavities, solid-state systems or macromolecules besides the trapped
ions, which we will focus on in this part and this work. The other principles described in detail
can be found e.g. in [2, 11] together with their comparison, advantages and disadvantages.
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5 Trapping Cold Ions (Paul Traps)

The term cold ions in the title of this subsection could be a little confusing as we will be talking
about just a few particles and so this thermodynamical property doesn't really have a good meaning
and more appropriate would be to say ions with low energy. The reason ions have been chosen
for trapping is that their laws of motion are strongly dependent on external �elds present and as
experiments have shown, even individual ions can be con�ned to a very small space into very stable
traps [6, 9, 10].

First thing we need to mention here is the Earnshaw theorem that suggests that only static
potentials can never trap charged particles in all three dimensions in a limited area. We can see
that from the condition which every potential V (r) must obey in the empty space

∇2V (r) = 0, (5.1)

which implies that there cannot be any extreme value in the region, the only place where extremes
could happen is at the edges of the area, but that is where electrodes are placed and therefore
stable trapping by static potentials truly isn't possible. We will try to �nd trapping potentials
amongst rapidly oscillating electric �elds. If we look at the equation of motion in one dimension

mẍ = λx cos (ωt) . (5.2)

at the �rst glance there seems to be no trapping happening as we cannot see any stable solution
because the force acting on the object averages to zero over longer periods of time. However, for
large frequencies ω (i.e. in the limit for ω) it is justi�able to separate the quick motion of the
object that follows the oscillations of the �eld and the slower drift relevant for longer periods of
time. We will be calling these a micromotion ξ(t) and a smooth motion X(t)

x(t) = X(t) + ξ(t). (5.3)

After we put (5.3) into (5.2) we get

mẌ +mξ̈ = λX cosωt+ λξ cosωt. (5.4)

We now need to add one more condition on ξ and X and that is relations between them and their
second derivatives

ξ � X, (5.5)

ξ̈ � Ẍ. (5.6)

that will allow us to compare the lowest order in Taylor series of (5.3) to get

mξ̈ = λX cosωt, (5.7)

solution of which is well known

ξ(t) = −λX(t)

mω2
cosωt. (5.8)

If we insert this into remaining part of (5.4), we get

mẌ = λξ cosωt = −λ
2X

mω2
cos2 ωt, (5.9)

which is an equation for the smooth motion. Now comes the time for using the separation of
motion as we will replace the cos2 ωt with its time average and get equation

Ẍ = −Ω2X, (5.10)

which is commonly referred to as to the equation of harmonic oscillator with frequency

Ω =
λ√

2mω
. (5.11)

This shows us how we can trap charged objects with rapidly varying electric �elds with vanishing
average. This kind of traps is called the Paul traps named after German physicist Wolfgang Paul.
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5.1 Commonly Used Trapping Potential

The example given in the previous paragraph isn't the one that is the most commonly used, the
most common trap is usually a quadrupole �eld of the type

V (x, y, z) = V0(x2 + y2 − 2z2) cosωt, (5.12)

that can be simply put into (5.1) to see that the condition is ful�lled. And what is important is that
this potential gives equation of motion similar to (5.10) in every direction. Electrode con�guration
that is capable of creating such a potential is on Figure 5.1. The resulting potential barrier is in

Figure 5.1: Electrodes for potential (5.12)

the order of couple of electron volts and therefore quite stable. The frequencies on which the ions
oscillate in the trap (5.10) is in the range from 100 kHz to 10MHz, with the driving �eld on the
frequencies of the order of 100 MHz (from that we can see that the separation of the micromotion
really was justi�ed).

Using results from quantum mechanics [2] such as calculation of the probability of laser induced
energy transitions of the ion in the trap (we're using the external laser �elds for cooling the ion) -
let A± be the transition rates up/down - we can assign an e�ective temperature to the trap

A+

A−
= exp

(
− ~Ω

kBT

)
, (5.13)

where kB is the Boltzmann constant (kB
.
= 1.3806504 · 10−23JK−1), and using the Planck distri-

bution we could �nd the �nal energy of the cooling [2]

Ef = ~Ω

 1

exp
(

~Ω
kBT

)
− 1

+
1

2

 . (5.14)

It is clear that the condition on the transition rates

A+ < A−, (5.15)

is a condition equal to saying that cooling of the ion is prevailing. And if the cooling is very e�cient

A+ � A−, (5.16)
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we can �nd that
kBT =

~Ω

log
(
A−
A+

) � ~Ω. (5.17)

And we see that (5.16) is a condition for cooling to cool the ion into its ground state.

5.2 Multiple Ions and Collective Motion

When multiple ions get into the trap, strong repulsive Coulombic forces start acting between them
and they tend to form a linear structures, preferably linear chain (Figure 5.2) [2]. Because of the

Figure 5.2: Multiple Ions in the Trap (From [2], originaly from work of Rainer Blatt's group.)

repulsive force the distance between the ions in the trap is rather large, however, the Coulombic
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forces are still strong enough to induce collective modes of motion. If the transverse trapping is
very e�ective, the simplest mode the ions can oscillate in is a uniform oscillation with the center
of their mass along the trap with frequency Ω. Another mode is the breathing mode similar to the
breathing mode of linear chain of pendulums connected by springs (Figure 5.3), the frequency of
this mode is higher then Ω (See Figure 5.4).

Figure 5.3: The Breathing Mode

The collective motion becomes one of the main tools for quantum computation on the ion chain
as it couples the internal motions of each ion. One would ask how we could imprint the information
onto the internal motion of each ion and the answer to that lies in the large distances between
the ions, the distances are large enough to focus lasers on each ion separately and we can use the
laser to drive each ion [2]. This approach, although experimentally achievable, is not the most
e�cient one for the real experiments and alternative path of driving each ion has been developed
[7�10], which relies on applying an additional magnetic �eld to the trap which allows for driving
using rf or microwave radiation, but this time the focusing on each ion does not have to take place
and we can illuminate even the whole chain. We will discuss the alternative approach later, in
this subsection we will be discussing only the laser driving and we will try to explain the simplest
operations using lasers.

5.3 Quantum Logic in an Ion Trap

Neglecting the external couplings we may write the Hamiltonian in the form [2]

H = ~
(
ωe |e〉 〈e|+ ωg |g〉 〈g|+ Ωa†a

)
, (5.18)

here a† and a act on the vibrational level of the collective vibrational level and e stands for the
excited and g for the ground levels. Transition between the ground state and the excited state
(|g, ni〉 ←→ |e, nf 〉) happens whenever the laser frequency is given by

ω0 = ωe − ωg + Ω (nf − ni) , (5.19)

where nf and ni represent the initial and the f inal state of the collective oscillation. This gives us
the possibility to drive each ion if we do not take into consideration the o�-resonant excitations;
however, as mentioned before, we have to focus each ion separately with frequency that depends
on the collective motion state. The resonant laser is assumed to a�ect the coupling

Σ = a |e〉 〈g|+ a† |g〉 〈e| , (5.20)

where a and a† act on the oscillation states of the motion. The laser therefore generates the
transformation [2]

Uθ = e−iθΣ, (5.21)

where the parameter θ is proportional to the coupling strength times the interaction time. And so
we get

Uθ |g, 0〉 = |g, 0〉 . (5.22)
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Figure 5.4: The Modes of the String, the vertical axis represents the time; the breathing mode is
mixed with the left uniform motion (From [2], originaly from work of Rainer Blatt's group.)

It is also easy to see that
Σ2 = aa† |e〉 〈e|+ a†a |g〉 〈g| . (5.23)

Letting Σ2,Σ act on states {|e, 0〉 , |g, 1〉} we get

Σ2 |e, 0〉 = |e, 0〉 ; Σ |e, 0〉 = |g, 1〉 , (5.24)

Σ2 |g, 1〉 = |g, 1〉 ; Σ |g, 1〉 = |e, 0〉 . (5.25)

If we now expand the transformation, we will get

Uθ = e−iθΣ =

∞∑
k=0

(−iθ)k

k!
Σk

=

∞∑
ν=0

(−iθ)2ν

(2ν)!
Σ2ν +

∞∑
ν=0

(−iθ)2ν+1

(2ν + 1)!
Σ2ν+1. (5.26)

If we now use the relations (5.24), (5.25), we can get

Uθ |g, 1〉 = cos θ |g, 1〉 − i sin θ |e, 0〉 , (5.27)
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Uθ |e, 0〉 = cos θ |e, 0〉 − i sin θ |g, 1〉 . (5.28)

And so we can see that a π-pulse (2θ = π) a�ects the system in a following way

|g, 1〉 → −i |e, 0〉 , (5.29)

|e, 0〉 → −i |g, 1〉 . (5.30)

And a 2π-pulse (θ = π) a�ects the ion as follows

|g, 1〉 → − |g, 1〉 , (5.31)

|e, 0〉 → − |e, 0〉 . (5.32)

Using these pulses we could introduce a two-quibit logical gate [2]. Let two ions in the trap be
indexed 1 and 2. Now we can use two two-level systems to encode four numbers into their internal
states (see Subsection (1.1)):

{|g〉1 |g〉2 , |g〉1 |e〉2 , |e〉1 |g〉2 , |e〉1 |e〉2} ←→ {|00〉 , |01〉 , |10〉 , |11〉} . (5.33)

We denote by Ukπ a π-pulse applied to k-th ion (k = 1, 2) and Uk2π similarly a 2π-pulse and by Ũk2π
a 2π-pulse transforming |g〉2 → −|g〉2 without a�ecting anything else. Using these operations we
can achieve a fundamental logical gate [2].

6 Modi�ed Ion Traps

In this section of this work we will discuss an alternative approach to driving the ions in the
Paul traps which may be considered better than that in Sec. 5, from an experimental point of
view. In the above we mentioned driving the ions and their oscillation levels with lasers focused
on each ion, this approach is experimentally achievable [6�10], but with growing number of ions
in the trap is still more di�cult and �expensive�, also the technology allowing experimentalists to
focus each ion is not a common commercial technology and therefore all the procedures are very
di�cult to achieve. And so instead of focusing each ion with rare technology, another and rather
simple method that uses rf or microwave radiation for driving all the ions at once instead of optical
lasers has been developed. Advantage in using radiation in these regions lies in many decades of
development commercially available technologies such as nuclear magnetic resonance, which are
now on very high level of sophistication. In this part we will talk about why it is necessary to
use the optical radiation/lasers without the new approach, then we will modify the ion trap using
additional magnetic �eld.

6.1 Coupling Strength Between Internal and Motional Dynamics

In this subsection the variable called Lamb-Dicke parameter will be discussed. This variable usually
labeled η is a way of determining the coupling strength between internal and motional dynamics
of ions in the trap that depends on the mass of the ion m, the wave-vector of driving light k and
the frequency of trapping potential ν1 [2, 7�10]:

η =

√
(~k)

2

2m~ν1
= ∆z1 k, (6.1)

Where ∆z1 =
√

~
2mν1

signi�es the spatial extent of the oscillator ground function. The physical
meaning of the Lamb-Dicke parameter is that a square of it gives the ratio between the change
of kinetic energy of the ion after the absorption or emission of the photon of the driving �eld
and the energy spacing of the harmonic trapping potential with frequency ν1. Only for signi�cant
(non-vanishing) values of η can the absorption or emission of photon be accompanied by a change
of the motional state of the ion. For example trapping a 171Yb+ ion with ν1 = 2π 100kHz gives
∆z ≈ 17nm and 6.1 unfolds that the Lamb-Dicke parameter is non-vanishing only for frequencies
from optical regime [2]. This example is very good illustration of why optical radiation has to be
used in order to couple the internal and motional states of the ions.
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6.2 Adding Axial Magnetic Field Gradient to Ion Trap

Let there be N singly ionized two-level ions in a harmonically trapped ion chain. The electronic
part of the total Hamiltonian can be solved independently for each ion by virtue of the distances
between the ions as spatial extent of their wave-functions is much lower then the distances [2]. Let
us now denote the two Zeeman states of n-th ion corresponding to energies E0 and E1 by |E0n〉
and |E1n〉, n = 1 . . . N . In correspondence with previous text we will think of each ion as of one
qubit. The global electronic state of the ions has to agree with:

Helφa (z) = Eel,a (z)φa (z) , (6.2)

where

Hel =
1

2
~

N∑
n=1

ωn (zn)σz,n, (6.3)

and

φa (z) =

N∏
n=1

|Ecn (zn)〉 ; (6.4)

with
a = 1 . . . 2N , c = 0, 1. (6.5)

The zn here denotes the axial position of n-th ion and σz,n is the usual Pauli matrix, the n here
denotes that it is an operator acting in a non-trivial way only on the n-th ion and in the other
subspaces it acts as identity (which follows our previous de�nition of how we will consider a system
of quantum particles). The

ωn =
E1n − E2n

~
,

is similarly to previous sections the transition frequency of n-th ion. If we now apply a non-zero
magnetic �eld gradient in the axial direction to the trap ( ~B = bz · ~z + ~B0, with ~z being the unity
vector in z direction), the qubit states |Ecn〉 will get shifted; and the extension of the shift will
depend on the position of each ion in the chain. We will now denote the general Hamiltonian by

H = Hel (z) + TA (z) + VA (z) (6.6)

= Hel (z) +
1

2m

N∑
n=1

p2
z,n +

m

2

N∑
n=1

ν2
1z +

e2

8πε0

N∑
n,l;n 6=l

1

|zn − zl|
.

The parts of potential energy that are acting in a way that a�ects the motion of the ions can be
found from

〈φa| (Hel + VA (z)) |φa〉 = Eel,a + VA (z) . (6.7)

With zero �eld gradient (b = 0 in magnetic �eld), the electronic energy does not depend on the
position of each ion and it simply gives additive constant and only VA and TA have to be taken
into consideration. We can now expand the VA around the equilibrium positions z0,n of each ions
in terms of

qn := zn − z0,n, (6.8)

up to second order. That gives us similarly to classical case of small oscillations the dynamical
matrix Â, where

Aln = ∂zl∂znVA, (6.9)

which can be indirectly used to get Hamiltonian of a harmonic oscillator:

TA + VA =
1

2m

N∑
n=1

P 2
Q,n +

m

2

N∑
n=1

ν2
nQn, (6.10)

with N uncoupled vibrational modes. The normal coordinates ~Q are connected with the local ones
~q by relation

~q = S ~Q, (6.11)
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where S is a unitary matrix that diagonalizes A (that is the reason for saying indirectly in previous
text). Also the following relation is valid

PQ,n = mQ̇n. (6.12)

Much more helpful for our problems with lasers and optical regime is to use the magnetic �eld
with b 6= 0. Now a new term in the electronic energy arises for the j-th ion:

〈φa|Hel,j (z) |φa〉 = Ecj (z0,j) +
~
2

∂ωj
∂zj

∣∣∣∣
z0,j

qj (−1)
c+1

︸ ︷︷ ︸
VB

. (6.13)

We can get an estimate of the ratio between the additional potential energy VB and the ground
energy of unperturbed lowest oscillator mode to see the signi�cance of VB by inserting substitution

qj ≈ ∆z1, (6.14)

into the previous equation. By that we achieve

ε :=
|VB |
~ν1

=

∣∣∣∂ωj∂z ∣∣∣∆z1

ν1
. (6.15)

If ε is much smaller then 1, the eigenfrequencies of the oscillator modes will be only slightly
dependent on the additional potential term induced by the Zeeman shift and we can approximate
the global motional state of the ion string with unperturbed harmonic oscillator and write the
complete Hamiltonian as:

H =
~
2

N∑
n=1

ωn (z0,n)σz,n +
1

2m

N∑
n=1

P 2
Q,n +

m

2

N∑
n=1

ν2
nQ

2
n (6.16)

+
~
2

N∑
n=1

[
∂ωn
∂zn

∣∣∣∣
z0,n

σz,n

N∑
l=1

SlnQl

]

=
~
2

N∑
n=1

ωn (z0,n)σz,n +
1

2m

N∑
n=1

P 2
Q,n (6.17)

+
m

2

N∑
l=1

ν2
l

[
Ql +

~
2mν2

l

∑
n

∂ωn
∂zn

∣∣∣∣
z0,n

σz,nSln

]2

− ~
4m

N∑
l=1

1

ν2
l

[∑
n

∂ωn
∂zn

∣∣∣∣
z0,n

σz,nSln

]2

︸ ︷︷ ︸
HSS

,

with the electronic part expanded up to �rst order in qn. It would be easy to see that a unitary
transformation of the form

U = e
−i
∑
l

(
1

2mν2
l

∑
n

∂ωj
∂zj

∣∣∣
z0,j

σz,nSln

)
PQ,l

, (6.18)

would give for
H̃ = U†HU, (6.19)

the result:

H̃ =
~
2

N∑
n=1

ωn (z0,n)σz,n +

N∑
n=1

P 2
Q,n

2m
+
m

2
ν2
nQ

2
n −HSS . (6.20)

If we now de�ne

εnl := Snl

∂ωl
∂z ∆zn

νn
, (6.21)
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b(T/m; N = 10) b(T/m; N = 20) b(T/m; N = 40)
ωz/2π = 100kHz 9,89 22,1 54,7
ωz/2π = 1kHz 459,0 1030,0 2540,0

Table 6.2: Magnetic �eld gradients required to separate the driving frequencies of the ions of
171Yb+ (taken from [8]).

Jnl :=

N∑
j=1

νjεjnεjl, (6.22)

and insert these into (6.20) together with using the creation and annihilation operators a†n, an and
dropping the constant terms, we will get:

H̃ =
~
2

N∑
n=1

ωn (z0,n)σz,n +

N∑
n=1

~νn
(
a†nan

)
− ~

2

N∑
n,l;n<l

Jnlσz,nσz,l. (6.23)

The H̃ we have derived is a description of linear string of ions, but what is very remarkable, is
that each ion is accessible on its own frequency, di�erent from the other ions. This allows for us
not to have to focus each ion with laser, but rather we can now illuminate the whole trap (both
experiments and numerical simulations have shown that o�-resonant excitations do not occur with
this model), or at least even the neighboring ions of the one we want to drive, without a�ecting
the other ions [6].

If we now wrote the Hamiltonian of the j-th ion in the trap that is illuminated with driving
electromagnetic wave, using rotating wave approximation and experimental results, we would �nd
that resonant frequency of each ion almost does not depend on the internal motion of each ion and
that there is a constant shift in qubits resonant frequency related to the order of the ion in the
trap [6, 8].

There is one more bene�t in using the additional magnetic �eld gradient; if applied, it enables
driving with mw or rf radiation instead of lasers [7�10], which is very good for experiments as
working with radiation in these regions is very well-developed and accessible. One could ask what
�eld gradients are experimentally achievable, according to [8], the gradient can go up to 8000T/m.
For comparison there is a table of �eld gradients necessary to separate the resonant frequencies of
the 171Yb+ ions (Table 6.2).

Conclusion

We have summarized the results of recent research that in�uences the perfect state transfer on
trapped ions and we have laid down the main direction in which we should continue in �nding the
con�gurations of ions that would allow for the perfect state transfer to happen. The next step
will be to �nd the Hamiltonians of trapped ions that would belong to the classes of Hamiltonians
derived in 4.3 and 4.4.

To �nd con�gurations for PST it will be necessary to use many parts of perturbation theory
both with its experimental veri�cation similarly to what we have done and commented in 6.2,
and afterwards verify that the Hamiltonian found is a member of the classes derived. There are
several questions that need to be answered by future research, there is a heating problem with the
trapped ions that can disturb the long decoherence times of the ion trap, caused by many factors
[6, 7, 9, 10]. The heating problem is yet not fully understood, however it seems to be solvable
because very stable and long lived ground states of 171Yb+ in the traps have been presented [7].
Furthermore, there has been part of the theory developed for optimizing the �delity of the network
once the Hamiltonian is found by optimizing the parameters of the interactions [4], that could be
of great use for designing an actual experiment and improving it. Similar tasks as perfect state
transfer on trapped ions have been solved on other systems as mentioned in the introduction to
Part II. It seems that PST on trapped ions is a viable possibility.
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