
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

RESEARCH WORK

The Asymptotic Behaviour of
the Heat Equation in Twisted

Waveguides

Gabriela Malenová
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Abstract: We consider the heat equation in the twisted waveguides. As known
from the theory, the decay rate of the heat semigroup increases if the waveguide
is twisted. Our goal is to support this data by numerical results. The suitable
methods are developed in the Wolfram Mathematica environment.
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Figure 1: Twisted waveguide.

1 Introduction

The time evolution profile of some quantity such as heat or chemical concentra-
tion within an object depends upon the conduction to its boundaries. This is
mathematically described by the heat equation

ut −∆u = 0, (1)

with imposed boundary conditions. Physically, the Dirichlet condition on the
boundary describes the quantity distribution within the object while such a
substance is of a high capacity and of zero temperature/concentration on the
boundary. Neumann boundary condition gives evolution of the quantity distri-
bution of a medium surrounded by a perfect insulator. (1) also represents the
simplest version of the stochastic Fokker-Planck equation describing the Brown-
ian motion in the object which is normally reflected on the Neumann boundary
trace and killed on the Dirichlet trace [7].

In present work, the heat equation in the inifinite tube Ωθ, called waveguide,
is considered. We are introducing a problem, how the solution depends on the
geometrical properties, namely what happens if the waveguide were twisted.
The idea behind this research goes back to the quantum waveguides and the
solution of Schrödinger equation. On the Figure 1, there is an example of a
three-dimensional twisted waveguide. More precisely, the section 2.2 is devoted
to them.

More details about the two-dimensional waveguides are involved in the sec-
tion 4.3. An example of such a waveguide is displayed on the Figure 2.

Noteworthy progress has been made in the theory of geometrically shaped
quantum waveguides from the very beginning in 90’s since Exner and Šeba pub-
lished their crucial article [5]. They postulated that the bending of a quantum
waveguide represents an effective attractive potential perturbation in the sense
that bound states under the threshold energy are generated.

Other types of geometrical deformations, such as twisting, has been thor-
oughly investigated later, from this perspective the breakthrough article by
T. Ekholm, H. Kovař́ık and D. Krejčǐŕık [3] presents a connection of spectral
stability to the Hardy inequalities. The authors showed that the twist causes
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Figure 2: a) An untwisted and b) a twisted waveguide. The bold line denotes
the Dirichlet and the thin line the Neumann boundary condition.

notwithstanding a repulsive perturbation which suppresses existence of eigen-
states below the essential spectrum, in other words the Hamiltonian is sub-
critical. A survey article [6] on comparing these two deformations has been
published.

The natural question arises whether the twist influences other processes be-
side Schrödinger equation as well. The first connection between Hardy inequali-
ties in the twisted three-dimensional waveguide Ωθ and heat equation (1) subject
to Dirichlet boundary condition in ∂Ωθ, has been investigated in [8]. In the ar-
ticle a discovery was made that the decay rate of the heat equation increases if
the twist is considered. More precisely, the decay rate γ(Ωθ) may be defined in
the fashion of the heat equation solution u(x, t) (1) as

γ(Ωθ) := sup
{
γ
∣∣ ∃C, ∀t, u0‖u(t)‖ ≤ C(1 + t)−γe−E1t‖u0‖K

}
, (2)

∀u0 ∈ L2(Ωθ,K), where E1 is the threshold energy of the Dirichlet Lapla-
cian −∆ω

D spectrum on the cross-section ω and ‖.‖K indicates the norm in the
weighted space

L2(Ωθ,K), K(x) := ex
2
1/4.

D. Krejčǐŕık and E. Zuazua stated the value of γ(Ωθ) as follows:

γ(Ωθ)
{

= 1/4 if Ωθ is untwisted,
≥ 3/4 if Ωθ is twisted.

By using the same approach the authors estimated in [7] the above asymp-
totical decay rate in the two-dimensional Dirichlet-Neumann waveguide.

The main goal of present work is to support this data numerically. Some
procedures in Wolfram Mathematica environment are developed, which agree
with the statement that decay rate increases as the twist is imposed. Unfortu-
nately, they seem to be unstable and are not giving the correct limit behaviour
so far.

In the last section some related results are presented. To get familiar with
the spectral method, we solved the heat equation in MATLAB on the finite area
either in one or in two dimensions. The moving frame of the heat equation time
evolution in the finite rectangle is provided there.
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2 Preliminaries

Let us first recall some basic facts about twisted waveguides and heat equation.
In order to carry out the time-evolution of its solution, one should introduce
some parts of semigroup theory as well.

2.1 Semigroup theory

Semigroup is a mathematical structure where the associative binary operation
on a set is defined. It naturally generalizes the group, since every element does
not have to have an inverse. More specifically [12]:

Definition 1. {S(t), t ≥ 0} is a linear contraction semigroup if S(t) : H → H
is a linear contraction

‖S(t)‖ ≤ 1

for each t ≥ 0 and

S(t+ τ) = S(t)S(τ) for t, τ ≥ 0, (3)
S(0) = I, (4)
S(.)x ∈ C([0,∞),H) for each x ∈ H, (5)

‖.‖ here denoting the operator norm.

Definition 2. Let H be the Hilbert space, D a subspace, and A : D → H an
unbounded linear operator. The Cauchy problem of the evolution equation

u′(t) +Au(t) = 0, t > 0, (6)

is to find a solution u ∈ C([0,∞),H)∪C1((0,∞),H) such that u(t) ∈ D(A) for
t > 0 and u0 ∈ H is prescribed.

The operator −A can be recovered from semigroup as the right derivative in
t = 0:

−Au0 = lim
t→0+

u(t)− u(0)
t

. (7)

Definition 3. The generator of linear contraction semigroup is the operator
B : D(H)→ H defined through

Bu := lim
t→0+

t−1(S(t)− I) u,

where u ∈ D(B) iff this limit exists.

Suppose A be an self-adjoint operator in some Hilbert space H. Then, ac-
cording to spectral theorem [1], A can be expressed as an integral of projections:

A :=
∫
σ(A)

λ dP (λ),
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where P (λ) is a projection valued measure. The family of projection operators
P (λ) is called resolution of the identity for A. Then any function of A may be
assigned as

f(A) :=
∫
σ(A)

f(λ) dP (λ).

For f being the exponential of A we conclude with

exp (A) =
∫
σ(A)

eλ dP (λ).

Requiring an operator A being bounded, the exponential operator may be
defined in L(H) as

exp (A) :=
∞∑
n=0

An

n!
. (8)

We take advantage of this notation for the unbounded operators exponential as
well. The detailed procedure may be found in the proof of Hille-Yosida Theorem
in [4].

Theorem 2.1. Hille-Yosida. Let A be a closed, densely-defined linear operator
on X. Then A is the generator of the contraction semigroup {S(t) : t ≥ 0} if
and only if

(0,∞) ⊂ ρ(A), and ‖Rλ‖ ≤
1
λ

for λ > 0.

Proof. Firstly, we regularize the not necessarily unbounded operator A as

Aλ := −λI + λ2Rλ = λRλA,

where λ belongs to the ρ(A), resolvent set of A, provided the operator

λI −A : D(A)→ X

is on-to-one and onto, and Rλ : X → X denotes the resolvent operator defined
by

Rλu := (λI −A)−1u.

According to the closed graph theorem [D.3 [4]] the resolvent operator is a
bounded linear operator, out of which we conclude that the exponential of Aλ
exists in the sense of (8) and we are allowed to define a semigroup Sλ(t) as

Sλ(t) := etAλ = e−λt eλ
2tRλ = e−λt

∞∑
k=0

(λ2t)k

k!
Rkλ.

By claiming ‖Rλ‖ ≤ λ−1 we may deduce

‖Sλ(t)‖ ≤ 1,
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thus {Sλ(t) : t ≥ 0} is a contraction semigroup and is easy to check its generator
is Aλ, with D(Aλ) = X. Consequently,

S(t)u := lim
λ→∞

Sλ(t)u,

exists for each t ≥ 0, u ∈ D(A). It remains to show that A is the generator of
{S(t) : t ≥ 0}. Indeed, the extended proof is performed in [4].

In the case A has a complete orthonormal system {un}∞n=1 of eigenvectors,
i. e. the spectrum is purely discrete

Aun = λnun,

we may recall Galerkin method [7.1, [4]] for converting a continuous operator
problem (such as a differential equation) to a discrete problem. It may be shown
that

Au =
∞∑
n=1

λn〈un, u〉un,

for all u ∈ D(A) iff
∑
|λn〈un, u〉|2 < ∞. Thus the exponential of A is defined

as following:

e−Atu :=
∞∑
n=1

e−λnt〈un, u〉 un, ∀t ≥ 0.

Thereby for the family of operators

S(t) = exp(−tA).

in L(H), where t ≥ 0, holds

d

dt
S(t) = −AS(t).

Hence
u(t) = S(t)u0 (9)

is the solution of the Cauchy problem with u(0) = u0.
Let Ã be the Fridriech’s extension [1] of an operator A. Then the equation

u′ + Ãu = 0 with u(0) = u0 is a generalized problem to the Cauchy problem
(6). The solution u = u(t) is called mild (generalized) solution. The following
proposition says how the self-adjoint extension looks like. The proposition as
well as the proof is findable in [12].

Proposition 2.2. Let a linear operator A ∈ L(D,H) be closed and accre-
tive, D dense in H, and assume for every u0 ∈ D there exists a solution
u ∈ C1([0,∞),H) of (6) on t ≥ 0 with u(0) = u0. Construct {S(t), t ≥ 0}
as above, so u(t) = S(t)u0, t ≥ 0. Then {S(t), t ≥ 0} is a linear contraction
semigroup on H whose generator is an extension of −A.
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Proof. A is accretive, therefore the Cauchy problem (6) has at most one solution.
While D is dense in H each S(t) has a unique extension to a contraction on H.
Thus we are able to construct {S(t), t ≥ 0} according to Definition 3. Setting
u0 ∈ D and recalling (7) we have

S(t)u0 − u0 = u(t)− u0 =
∫ t

0

u′ = −
∫ t

0

Au(s)ds, t > 0.

Since the integrand is continuous on [0,∞) we arrive at

Bu0 = −Au0.

Function u(t) := S(t)u0, for all t ≥ 0 and u0 fixed, is called possible process.
According to the semigroup property (3) it follows, that

u(t+ τ) = S(t)u(τ), ∀t and fixed τ.

This allows interpretation:

• Causality. The state of the system for t > τ is uniquely determined by
the state u(τ).

• Homogenity. If t 7→ u(t) is a possible process ∀t ≥ 0, then so is the process
t 7→ u(t+ τ) for all t ≥ 0 and fixed τ .

• Irreversibility. If t 7→ u(t) is a possible process, we can not achieve the
initial state by reversing the time, t 7→ u(−t) is not possible process.

2.2 Waveguides

One may imagine a waveguide as an infinite tube. Bending and twisting are
examples of geometrical deformations of the waveguides which have influence
on the physical properties as well. We will consider the latter one (see Figure
1), bending properties has been intensively studied in the last decades, see the
breakthrough article [5].
More specifically, the untwisted waveguide is denoted by Ω0 := R × ω, where
ω ∈ R2 is a non-circular cross-section. The twisted waveguide Ωθ is created from
the untwisted one by rotating ω around the x1-axis with the non-constant angle
θ : R → R. At the same time, ω is not rotationally symmetric with respect to
the origin in R2 [8].
Mathematically, the waveguide properties are performed by the Dirichlet Lapla-
cian −∆Ωθ

D : L2(Ωθ)→ L2(Ωθ). To avoid difficulties with the operator domain,
it is more convenient to work instead of Laplacian with its associated quadratic
form ψ 7→ ‖∇ψ‖2 with the domain D(Ωθ) := H1

0 (Ωθ).
Both the twisted and the untwisted operators −∆Ωθ

D and −∆Ω0
D have the

same spectrum:
σ(−∆Ωθ

D ) = σess(−∆Ωθ
D ) = [E1,∞),
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where E1 is the lowest eigenvalue of the spectrum of Dirichlet Laplacian −∆ω
D

on the cross-section.
The difference, however, lies in the existence of the so-called Hardy inequality

in the twisted case [3]:
−∆Ωθ

D − E1 ≥ ρ,

ρ is a positive function which decays at the infinity. Such an inequality does
not change the spectrum of the operator, but it makes the operator resistant to
generating eigenvalues below the essential spectrum by a small potential per-
turbations. Indeed, eigenvalues below the essential spectrum, so-called bound
states, occur for the untwisted Dirichlet Laplacian for arbitrary small attrac-
tive potentials. This does not happen in the twisted case, the validity of the
Hardy inequality implies the absence of bound states. Such an operator is called
subcritical, while the untwisted Laplacial is critical.

Hardy inequalities for special potential have been studied in [3]. The authors
have shown that

−∆Ωθ
D − E1 ≥

cH
1 + x2

1

,

where cH = cH(θ̇, ω) ≥ 0 is positive if and only if Ωθ is twisted. Some more
quantitative results about cH are presented in [9].

2.3 Heat equation

Heat equation is a parabolic partial differential equation. It is designed as

ut(x, t)−∆u(x, t) = 0 on Ωθ × R+, (10)

subject to Dirichlet boundary condition on ∂Ωθ×R+. The initial state is denoted
u(x, 0) = u0(x) on Ωθ.

It is easy to see that the heat equation is a Cauchy problem (6) where A is
the Friedrich’s extension of A′ := −∆ and D(A′) := C∞0 (Ωθ). In other words,
A := −∆Ωθ

D with D(A) := {u ∈ H1
0 (Ωθ) : ∆u ∈ L2(Ωθ)}. From the semigroup

theory it follows that ∀u0 ∈ L2(Ωθ) there exists uniquely determined generalized
solution of the heat equation.

Proof. (Uniqueness) Let u, v : R+ → L2(Ωθ); u, v be the C1([0,∞)) solutions
of (6). Let us define a new function

w(t) := u(t)− v(t),

which also satisfies (6), since w′ + ∆w = u′ − v′ + ∆u −∆v = 0. This implies
w(0) = 0 because the initial conditions are the same. Then

d

dt
〈w(t), w(t)〉 = 2〈w′(t), w(t)〉 = 2〈∆w(t), w(t)〉 ≤ 0, ∀t ≥ 0.

The inequality follows from the fact, that −∆ is a positive operator. Conse-
quently, the inequality can be replaced by equal sign.
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Using the initial condition w(0) = 0 we get

〈w(t), w(t)〉 = 0,

what implies w(t) = 0, ∀t ≥ 0. This leads to a contradiction u(t) = v(t) for
t ≥ 0, indeed, the solution is unique.

Recalling the notation for the Hamiltonian in the twisted waveguide using
above, we find the solution of (10) in the form

u(x, t) = e∆
Ωθ
D tu0(x), (11)

where e∆
Ωθ
D t : L2(Ωθ) → L2(Ωθ) is the semigroup operator associated with the

Laplacian −∆θ
D.

It follows from the spectral mapping theorem that

‖e∆
Ωθ
D t‖L2(Ωθ)→L2(Ωθ) = e−E1t.

3 Asymptotic behaviour

3.1 Decay rate

In order to get more information about the long-time behaviour of the heat
equation which we are interested in, we define a new quantity to measure the
asymptotics, called additional (polynomial) decay rate of the semigroup. At
first, we restrict the class of initial data on weighted space

L2(Ω,K), K(x) := ex
2
1/4,

in other words, the initial data are required to be sufficiently rapidly decaying
at the infinity of the tube. Then the decay rate is defined:

γ(Ωθ) := sup
{
γ
∣∣ ∃Cγ > 0,∀t ≥ 0,

∥∥e(∆
Ωθ
D +E1)t

∥∥
K
≤ Cγ(1 + t)−γ

}
, (12)

where ‖.‖K : L2(Ω,K)→ L2(Ω).
The striking result which is presented in [7] yields:

Theorem 3.1. We have γ(Ωθ) = 1/4 if Ωθ is untwisted, while γ(Ωθ) ≥ 3/4 if
Ωθ is twisted.

Thus the decay rate for the twisted case possesses the increment about 1/2,
one can imagine this physically as the heat distribution feathering away faster
in the twisted than in the untwisted case.

The proof is carried out by the authors in [7]. We just outline the idea of
the extensive and rigorous proof provided there. For this we need to introduce
the self-similarity transformation.
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3.2 Self-similarity transformation

Motivation: The twisted as well as bent 3-dimensional waveguide can be ap-
proximated in such a manner that the cross-section diminishes, thus the tube
can be geometrically approximated by the string. The natural question arises,
what happens to Laplacian. As investigated in [13], the Laplacian converges
in the norm resolvent sense to a 1-dimensional Schrödinger operator with an
effective potential holding the information about the twisting/bending.

From this point of view we are able to effectively approximate the dynamics
in the thin waveguide, hence we can suppose the heat equation (10) being in
the one-dimensional form

ut − uxx + V (x)u = 0, (13)

with V = Cω θ̇
2. Here Cω depends on the cross-section ω and is identically zero

if the cross-section is rotationally symmetric.

Definition 4. The self-similarity transformation is defined as

u(x, t) = (t+ 1)−1/4w(y, s), (14)

in the new coordinates y and s, where y := (t+ 1)−1/2x, s := ln (t+ 1), so the
meaning of y, respectively s, being spatial, respectively time coordinate, still
stays on [7].

By applying the self-similarity transformation (14) to the heat equation (13)
we get the expression

ws −
1
2
ywy −

1
4
w − wyy + esV (es/2y)w = 0. (15)

The self-similarity transformation is unitary in space variables:

‖u(t)‖ = ‖w(s)‖.

But this is not the end of the story- it is more comfortable to transform (15) by
obeying

z(y, s) := ey
2/8w(y, s). (16)

After this transformation we come to the form

zs − zyy +
y2

16
z + esV (es/2y)z = 0. (17)

The complete proof of Theorem 3.1 is findable in [7], here we just sketch it to
demonstrate the background behind the self-similarity theory.

Proof. Let us multiply (17) by z and then integrate by parts the expression with
respect to y. We arrive at the equation

1
2
d

ds
‖z‖2 + 〈z,Hsz〉 = 0, (18)
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where

Hs := −∂yy +
y2

16
+ esV (es/2y). (19)

The longitudinal part of Hs coincides with the quantum harmonic oscillator
Hamiltonian

H := − d2

dy2
+

1
16
y2 in L2(R). (20)

From the Rayleigh-Ritz principle it follows that

〈z,Hsz〉 ≥ λ1(s)‖z‖2, (21)

where λ1 is the time-dependent first eigenvalue of the operator Hs. By combin-
ing (18) and (21) we get

1
2
d

ds
‖z‖2 ≤ λ1(s)‖z‖2.

The solution is known:

‖z(s)‖ ≤ e−
∫ s
0 λ1(σ)dσ‖z(0)‖. (22)

Therefore, if V = 0, (18) turns to Hamiltonian of harmonic oscillator in spatial
coordinates, thus the first eigenvalue is λ1 = 1/4 (as will be stated below).
Plugging this into the equation (22) we get

‖z(s)‖ ≤ e− 1
4 s‖z(0)‖.

As shown in Proposition 1. in [7], we may return to the original coordinates
taking advantage of the weighted space properties. According to Corollary
1. in [7], the transition from the exponential to the polynomial decay rate
is made. Indeed, the desired result is proved that γ(Ωθ) = 1/4 if the waveguide
is untwisted.

Summing up, if V = 0 then the heat equation via the harmonic oscillator
solution is explicitly solvable and we found out that it behaves as t−1/4, which
conforms to the first eigenvalue of the oscillator.

The twisted case is more involved. Because V ≥ 0, V is not identically equal to
zero, in every time λ1(s) ≥ 1/4. Let us suppose we found the first eigenvalue
λ1(s) of the operator Hs associated with the normalized eigenvector ψs:

〈ψs, Hsψs〉 = λ1(s)‖ψs‖2 = λ1(s). (23)

The left-hand side can be altered by using the exact form of Hs from (19):

〈ψs, Hsψs〉 = ‖ψ̇s‖2 +
∥∥∥x

4
ψs

∥∥∥2

+
∫
esV (es/2y)ψ2

s(y)dy.

Firstly, we know from the minimax principle that for λ1(s) as the threshold
energy ∀ψ ∈ D(Hs) holds

λ1(s) ≤ 〈ψ,Hsψ〉
‖ψ‖2

, (24)
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hence for the second eigenvector ψ = ψ2 the right-hand side goes to the second
eigenvalue λ2(s) = 3/4 as s→∞. Indeed, the right-hand side of (24) is in the
form 〈

ψ2,

(
− d2

dy2
+
y2

16

)
ψ2

〉
+
〈
ψ2, e

sV (es/2y)ψ2

〉
,

and while the first term coincides with the harmonic oscillator Hamiltonian and
thus equals to λ2(s) (when ψ2 normalized to 1), the second term is vanishing at
the infinity according to (29), as listed below. As a consequence, λ1(s) has an
upper bound which implies that (23) is also bounded. In particular, every term
on the left-hand side of (23) must be bounded:

‖ψ̇s‖ ≤ C (25)
‖xψs‖ ≤ C (26)∫

esV (es/2y)ψ2
s(y)dy ≤ C (27)

Consequently, the condition (25) together with normalization ‖ψs‖ = 1 suggests
that ψs is bounded in the Sobolev space H1 as well: ‖ψs‖H1 ≤ C. Which means
that ψs weakly converges to ψ∞ as s→∞ in H1.

We recall the fact mentioned in [7] that the form domain of H

D(H1/2) = H1(R) ∩ L2(R, |x|2dx)

is compactly embedded in L2(R), so that the spectrum of H, consequently of
Hs as well, is purely discrete. Indeed, according to Theorem XIII.64 in [10], the
operator with compact resolvent has purely discrete spectrum and a complete
set of eigenfunctions, i.e. there exists a complete orthonormal basis {ψn}∞n=1 in
D(Hs) so that Hsψn = λn(s)ψn with λ1(s) ≤ λ2(s) ≤ . . . and λn(s) → ∞ as
n→∞. Also, {λn(s)}∞n=1 has no finite accumulation point.

Thus, the eigenvectors converge even in the strong sense:

ψs
s−→ ψ∞, in L2(R). (28)

The third condition (27) obeys

es/2
∫
V (es/2y) dy |ψs|2 ≤ Ce−s/2. (29)

The right-hand side of (29) goes to 0 as s→∞.
The Dirac delta interaction may be expressed as a limit in the distributional

sense by
1
ε
V
(x
ε

)
ε→0−→ δ(x)

∫
V (x)dx. (30)

Distributions, also called generalized functions, are essentially functionals. The
Dirac delta function δ as an example of distributions was defined in a very rough
way as a function that was 0 for every x except x = 0 and was infinite at x = 0
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in such a way that the integral
∫∞
−∞ δ(x)dx = 1. Of course, there is no such

function, the definition in the words of distributions yields

δ(ϕ) = 〈δ, ϕ〉 = ϕ(0), (31)

setting ϕ a test function.
All in all, plugging (28) (and taking consequences of (31)) and (30) into (29)

we arrive at the limit inequality∫
V (y) dy |ψ∞(0)|2 ≤ 0,

since V is non-negative, we can conclude with

ψ∞(0) = 0. (32)

So clearly the potential scalling is more singular than the Dirac ∆-interaction
scalling, which leads to Dirichlet condition at the origin of coordinates in the
long-times limit. This problem of the harmonic oscillator with Dirichlet condi-
tion is already explicitly solvable. More specifically:

Let φ ∈ C∞0 (R\{0}) be arbitrary. Then taking it as a test function in (19)
(the brackets are not anymore arranged in the weighted space but in L2(R)) we
set:

〈φ̇, ψ̇s〉+ 〈φ, x
2

16
ψs〉+

∫
φesV (es/2y)ψs dy = λ1(s)

∫
φψs dy.

Sending s to infinity and taking use of (32) we arrive at

〈φ̇, ˙ψ∞〉+ 〈φ, x
2

16
ψ∞〉 = λ1(∞)〈φ, ψ∞〉.

In particular, λ(s) converges to the first eigenvalue of H with Dirichlet condition
at x = 0 as s→∞ which coincides with the second eigenvalue of H, in the view
of symmetry. This conforms to

λ(∞) := lim
s→∞

λ(s) =
3
4
.

The advantage of (17) lies in the compactness of the resolvent of the operator,
while the dependence of the potential on time is not convenient at all. We can
interpret the consequence of Theorem 3.1 as that since V = 0 in the untwisted
case, the norm of the solution of the heat equation ‖u(t)‖ ∼ t−1/4, however for
V ≥ 0, V 6= 0 in the twisted case, the decay rate gains a further increment at
least 1/2 and the solution norm is estimated from upper as

‖u(t)‖ ≤ Cε‖u0‖Ke−E1tt−(3/4−ε)

for arbitrary small ε.
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Figure 3: Time evolution of the heat equation solution

4 Numerical results

The analytical results are due to the article [7] well-known, but the numeri-
cal confirmation is still missing. We used the Wolfram Mathematica 7.0 and
MATLAB R2010a environment to support the data given by David Krejčǐŕık
and Enrique Zuazua. For the untwisted one-dimensional problem we know the
exact solution hence the comparison of used methods is available. All three
methods utilized below are rewritten in their Mathematica code in Appendix.

4.1 Untwisted case

4.1.1 Exact solution in one-dimensional case

The solution of the heat equation (13) with V = 0 on the string is analytically
known. The derivation of the fundamental form is available in [4], the following
Green’s function solution is recorded there:

u(x, t) =
∫

R
G(x, y, t)u0(y)dy, (33)

where the Green’s heat kernel is defined

G(x, y, t) =
e−
|x−y|2

4t

√
4πt

.

We are thus able to numerically compute the time evolution of some initial state
as well as the asymptotical norm behaviour. More importantly, we can use this
exact solution for comparing the other methods in order to pick out the most
suitable of them also for the case the solution is not exactly findable anymore.

Mathematical model of (33) evolution with the first eigenfunction of the
harmonic oscillator as the initial state is evolved in Mathematica environment
on the Figure 3.
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4.1.2 Solution via eigenbasis decomposition

The equation (13) with V = 0 a bit admonish of about the harmonic oscillator
Hamiltonian. Hence, the first way how to numerically solve it without knowing
the exact solution is via the oscillator eigenbasis decomposition. The Ansatz is
imposed:

u(x, t) =
∞∑
n=1

an(t)ψn(x). (34)

ψn satisfies the stationary Schrodinger equation with the harmonic oscillator
potential −ψ′′n + x2

16ψn = λnψn, from quantum mechanics (findable for instance
in [11]) we know the exact expression of the eigenvectors and eigenvalues:

λn =
1
2

(
n+

1
2

)
, ψn(x) = NnHn

(x
2

)
e−

x2
8 ,

in the coordinates where ω = m = 1/2, ~ = 1 and where Hn is the Hermite
polynomial.

When (34) applied to (13) we arrive at

a(t) = e−Mta(0),

where

Mmn = λnδmn −
〈
ψm,

x2

16
ψn

〉
.

By setting the initial condition as u0(x) = ψ0(x), we are able to find the numer-
ical solution in Mathematica, before we compare this method with the exact
solution, we propose a third method, the self-similarity transformation defined
above.

4.1.3 Solution via self-similarity transformation

Let us attempt to find a solution in the fashion of self-similarity transformation.
Let us recall the transformed heat equation (17) without potential. The initial
condition u0(x) = ψ0(x) has to be transformed as well; then the new constants
an(0) satisfy the prescription

an(0) =
∫
ψn−1(x) ψ0(x) ex

2/8 dx. (35)

The solution of zs − zyy + y2

16z = 0 may be again found in the form of harmonic
oscillator decomposition (34). After some algebra we end up with

a(t) = e−Mta(0),

where
Mmn = λnδmn

which is possible to be computed via Mathematica and then re-transformed in
the original units again.
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Figure 4: Time evolution of ‖u‖ in the exact [violet], oscillator [blue] and self-
similarity case [grey].

4.1.4 Comparison

The exact solution allows us to compare the preceding methods. To get more
information about the asymptotics let us define a new quantity q which coincides
with the decay rate (12):

q(t) := − ln ‖u(t)‖
ln (1 + t)

. (36)

When evolving ‖u(t)‖ one get the result shown in Figure 4. Here the violet
line denotes the exact solution, the blue line the solution via harmonic oscillator
eigenbasis expansion and the grey one the solution via self-similarity transfor-
mation. One can easily see the diference between these three methods- while
the blue case coincides with the exact solution at small times, the self-similarity
solution is very inaccurate near the origin, actually, the solution at time t = 0 is
not even normalized to 1 anymore. On the other side- the grey line is merging
with exact solution as time goes to infinity, however, the violet line deviates
more and more.

Indeed, by the same time the limit of the exact decay rate is 1/4 as well as
in the self-similarity case, the decay rate in the solution via oscillator eigenbasis
diverges, however. This was proved numerically as well. Another confirmation
of such behaviour gives the Figure 5 where the divergence of the rate in the
oscillator case is obvious. The two lines- exact solution and the self-similarity
case, coincide.

As a conclusion we can state that in spite of being suitable at small times,
the harmonic oscillator eigenbasis expansion method fails as time increases. The
opposite statement holds true for the self-similarity transformation, thus the
latter method is more useful for asymptotical times in which we are interested.
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Figure 5: Time evolution of the decay rates in the exact [violet], oscillator [blue]
and self-similarity case [grey].

Figure 6: Scalled potential evolution. The thicker, the higher.

4.2 Twisted case

As we already know from the analytical part, the potential V which is not
identically equal to zero increases the decay rate about 1/2. Mathematically,
the background lies in scalling which is more singular than the Dirac’s delta
interaction and thus leads to the Dirichlet condition at the origin. To illustrate
this statement, the scalled potential V is to seen on Figure 6. As the support
is getting thicker, the peak is getting higher.

This problem is already explicitly solvable: the first eigenvalue is 3/4, which
coincides with the second eigenvalue of the harmonic oscillator without Dirichlet
condition.

To show this numerically we carry out the method of self-similarity trans-
formation which is more accurate for asymptotical times, as was proved above.
Thus we come out from the transformed equation (17). Two slightly different
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approaches are utilized. In the first case the Ansatz (34) is used, in the second
case the direct counting command NDSolve is applied.

Let us start with the oscillator eigenbasis expansion. The same approach for
transforming the initial condition as in (35) is utilized. Then (17) gets the form∑

n

(ȧn + anλn + esV (es/2y) an) ψn = 0, (37)

where λn are the eigevalues of the harmonic oscillator Hamiltonian (20). Hence-
forth, for numerical computations we simply consider the potential V , which
simulates the twist, being a unit box:

V (x) =
{

1 if x ∈ [−1, 1]
0 otherwise. (38)

Then by applying (38) to (37), multiplying the whole expression with ψm
and integrating with respect to y we get the formula

˙am + anλnδmn +
∑
n

es
∫ e−s/2

−e−s/2
anψnψm dy = 0.

This system of equations is solved in the Mathematica environment with help of
the predefined command NDSolve. With the view of the computational duration
we considered n = 9.

Is spite of the resulting plot seeming to behave stable in the asymptotic
times, the decay rate isn’t approaching the correct limit. For all the initial
conditions and different integers n of eigenvectors in the expansion, the decay
rate in the twisted case increased more rapidly then in untwisted case, but we
were not able to show the asymptotic behaviour as stated in the crucial article
[7].

The second approach gives slightly better results. We compute directly the
transformed equation (17) with the command NDSolve. The initial state is not
anymore expanded to the eigenbasis and we directly employ (14) and (16). Thus
we arrive at the transformed initial condition

z0(y) := ψ0(y) ey
2/8.

Then the re-transformed solution of the heat equation in the twisted waveg-
uide is plotted on the Figure 7.

On the Figures 8 and 9 you may see the norm evolution and decay rate
in comparison to the untwisted case. As obvious, the norm is decaying more
sharply where the step-like potential is imposed. The decay rate seems to be
satisfactorily tending to 3/4 as was prescribed. Unfortunately, the time is not
asymptotical and the program is really unstable for larger times. Moreover, it is
also very much ill-conditioned, depending on the initial conditions, which means
that the given results despite looking like precise may not be taken as proof for
the statement given in [7].
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Figure 7: Solution of the heat equation with a step-like potential.

Figure 8: The norm evolution comparison in the untwisted (blue) and twisted
(violet) case.
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Figure 9: Decay rate in the untwisted (blue) and twisted (violet) case.

4.3 Spectral methods

At last but not at least, the task also included the spectral method and its
usage in MATLAB. Spectral methods are one of the techniques successfully
used to numerically solve certain partial differential equations which provide an
alternative to finite difference or finite element methods.

Where applicable, spectral methods can achieve the fastest convergence, for
problems with simple domains and smooth solutions the spectral methods are
the best tool. The error decreases very rapidly and this behaviour is called
spectral accuracy. It is confirmed by both the theory and the numerical experi-
ence. While the error in a finite difference or finite element methods decreases
as O(N−m) for some constant m as N increases, for a spectral method, conver-
gence at the rate O(N−m) for every m is achieved and even faster convergence
at a rate O(cN ) (0 < c < 1) is achieved if the solution is analytic [14].

As we made ourselves familiar with spectral methods we are able to apply
them on solution of the heat equation (1). We successively solved the series of
problems:

• 1D finite interval

• 2D finite rectangle

4.3.1 One-dimensional interval

Let us consider the heat equation on finite interval [−π, π] with the boundary
conditions

a1u(1) + b1u
′(1) = c1, aNu(−1) + bNu

′(−1) = cN ,

where N is the number of points rescalled to the interval, and ai, bi, ci are
some real constants for i = 1, 2. The Dirichlet conditions respond to the case
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Figure 10: Time evolution of the heat equation with a) DD b) ND c)NN boudary
conditions. L2-norm.

a1 = aN = 1, b1 = bN = c1 = cN = 0. Numerican computation follows the
theoretical prescription in the semigroup fashion (9) with

u0(x) = cos (x/2) + 2 cos (3x/2) + sin (x)

as the initial state. The result is introduced on Figure 10, at the first subfigure.
The second subfigure presents the Neumann-Dirichlet case. Here the bound-

ary conditions are a1 = bN = 1, b1 = c1 = aN = cN = 0. We choose initial state
as

u0(x) = cos ((x+ π)/4)− cos (3(x+ π)/4)/5− 3 cos (5(x+ π)/4).

We take adventage from ready-made MATLAB programes chebdif and cheb2bc
by S. C. Reddy, J. A. C. Weideman which are free available in
http://dip.sun.ac.za/ weideman/research/differ.html.

The Neumann-Neumann condition is embeded similary as in previous case,
the only difference is in taking b1 = bN = 1, a1 = c1 = aN = cN = 0 and

u0(x) = 1/5− sin (x/2)/3− cos (x)/2

as the initial state.
The last subfigure of Figure 10 shows the decrease of L2-norms in the previ-

ous problems. The blue line denotes the DD-case, the most rapidly decreasing
green line denotes the DN-case, the red one is the NN-case. The initial states are
chosen as a finite linear combinations of solutions of the stationary Schrödinger
equation on the finite interval with given boundary conditions.

25

http://dip.sun.ac.za/~weideman/research/differ.html


Figure 11: White noise, short-time evolution.

Figure 12: White noise, long-time evolution.
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There is also another advantage of u(x) being expressed in the semigroup
form (9), namely the generality of such formula. For instance, let us set a
random function, so-called white noise, as the initial state and evolve it in time.
After some time the randomness disappears and the function is getting closer
to the first eigenvector of the operator. This behaviour is illustrated on the
Figure 11 and Figure 12.

On Figure 11 you can see the short-time evaluation. The initial function
is getting smoother and waver to the first eigenvector. On Figure 12 the long-
term effects are shown. In t = 4.5 the white noise almost coincides with the first
eigenvector of the operator (here denoted by the bold line), thus the influence
of the first eigenvalue in the semigroup operator e−∆t is crucial.

4.3.2 Two-dimensional finite rectangle

In the 2D computations we naturally set up a grid based on grid points in-
dependently in each direction, called a tensor product grid, where the great
majority of points lie near the boundary. Let us firstly consider a finite rect-
angle (−a, a)× (−b, b) with the Dirichlet and Neumann boundary condition on
the lines (see Figure 2a). The twist of the waveguide is realized as a switch of
the boundary conditions in one point (Figure 2b).

A ready-made application herdif again by J.A.C Weideman and S.C. Reddy,
which computes the differentiation matrices up to given order, is uploaded. In
the transversal direction the boundary conditions are changing with x-coordinate,
what we have to count with. Then again cheb2bc function is used. As a result
we can see the Figure 13 where the first four eigenvalues with the countour plot
of such problem are plotted.

Finally, the moving frame is presented on the webpage. Here, the time
evolution of heat equation in finite twisted rectangle is performed. The initial
condition is chosen as v0 = v2 + 3v4− 2v3 and one can graphically see the norm
decay. Advice- to see the frame moving one should open the pdf file in Acrobat
Reader, not by the build-in Google docs pdf converter.

5 Conclusion

In the research work we were concerned with the asymptotical properties of the
decay rate of the heat equation semigroup. Firstly, we introduced twisted waveg-
uides and heat equation and defined the self-similarity transformation which
plays an important role in modeling of the asymptotical behaviour. Further,
we were interested in the decay rate as a measurement of the decay. As proved
in [7] the decay rate is about 1/2 greater in the twisted than in the untwisted
case. Our aim was to numerically support this data and thereby complete the
article, where analytical approach has been reached. The last chapter is devoted
to numerical modeling of described situations.

The motivation for the present work was to get familiar with some up-to-
date results in the waveguide theory as well as with the numerical methods
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Figure 13: Eigenvectors of the twisted 2D case.

useful in such computations, above all the spectral method. The results are
unfortunately not sufficiently conclusive, the developed methods are unstable
and ill-conditioned. It is however obvious, that in the twisted case the decay
rate is greater in the untwisted waveguide.

Some numerical results related with the topic are presented as a introduction
to the spectral methods.

The desirable aim how to extend the work lies of course in evolving more
precise numerical method which would be more stable. Another possible goal
is to provide a computation for non-approximated 3D waveguides, not only for
those introduced through the effective potential.

This work freely follows-up present author’s bachelor thesis [9] where the
influence of twisting of a quantum waveguide on the free particle’s Hamiltonian
spectrum has been investigated.
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Appendix

The source code for Wolfram Mathematica

In this section we provide the source code for the numerics in Wolfram Mathe-
matica 7.0. Three methods for solving heat equation without potential, i. e. the
untwisted case, are provided here. The decay rate in all the cases is computed
below.

(*preliminaries: eigenfunctions of the harmonic oscillator *)(*preliminaries: eigenfunctions of the harmonic oscillator *)(*preliminaries: eigenfunctions of the harmonic oscillator *)

psi[n , x ] = Sqrt[1/(2∧n ∗ n!)] ∗ (1/4/Pi)∧(1/4) ∗ E∧(−x∧2/8) ∗HermiteH[n, x/2]psi[n , x ] = Sqrt[1/(2∧n ∗ n!)] ∗ (1/4/Pi)∧(1/4) ∗ E∧(−x∧2/8) ∗HermiteH[n, x/2]psi[n , x ] = Sqrt[1/(2∧n ∗ n!)] ∗ (1/4/Pi)∧(1/4) ∗ E∧(−x∧2/8) ∗HermiteH[n, x/2]

(* solution via the heat kernel *)(* solution via the heat kernel *)(* solution via the heat kernel *)

p[t , x , y ] = E∧(−(x− y)∧2/4/t)/Sqrt[4 ∗ Pi ∗ t]p[t , x , y ] = E∧(−(x− y)∧2/4/t)/Sqrt[4 ∗ Pi ∗ t]p[t , x , y ] = E∧(−(x− y)∧2/4/t)/Sqrt[4 ∗ Pi ∗ t]
uexact[t , x ] = Integrate[p[t, x, y] ∗ psi[0, y], {y,−Infinity, Infinity},uexact[t , x ] = Integrate[p[t, x, y] ∗ psi[0, y], {y,−Infinity, Infinity},uexact[t , x ] = Integrate[p[t, x, y] ∗ psi[0, y], {y,−Infinity, Infinity},
Assumptions→ {t > 0}]Assumptions→ {t > 0}]Assumptions→ {t > 0}]
normuexact[t ] =normuexact[t ] =normuexact[t ] =
Sqrt[Integrate[uexact[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]]Sqrt[Integrate[uexact[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]]Sqrt[Integrate[uexact[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]]

(* solution via expansion of the solution into the eigenbasis of the harmonic oscillator*)(* solution via expansion of the solution into the eigenbasis of the harmonic oscillator*)(* solution via expansion of the solution into the eigenbasis of the harmonic oscillator*)

Clear[range]; range = 10;Clear[range]; range = 10;Clear[range]; range = 10;
m = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n]−m = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n]−m = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n]−
Integrate[psi[m− 1, x] ∗ x∧2/16 ∗ psi[n− 1, x], {x,−Infinity, Infinity}],Integrate[psi[m− 1, x] ∗ x∧2/16 ∗ psi[n− 1, x], {x,−Infinity, Infinity}],Integrate[psi[m− 1, x] ∗ x∧2/16 ∗ psi[n− 1, x], {x,−Infinity, Infinity}],
{m, 1, range}, {n, 1, range}];{m, 1, range}, {n, 1, range}];{m, 1, range}, {n, 1, range}];
expm[t ] = MatrixExp[−m ∗ t];expm[t ] = MatrixExp[−m ∗ t];expm[t ] = MatrixExp[−m ∗ t];
a0 = Table[If[n == 1, 1, 0], {n, 1, range}];a0 = Table[If[n == 1, 1, 0], {n, 1, range}];a0 = Table[If[n == 1, 1, 0], {n, 1, range}];
a[t ] = expm[t].a0;a[t ] = expm[t].a0;a[t ] = expm[t].a0;
u[t , x ] = Sum[a[t][[n]] ∗ psi[n− 1, x], {n, 1, range}];u[t , x ] = Sum[a[t][[n]] ∗ psi[n− 1, x], {n, 1, range}];u[t , x ] = Sum[a[t][[n]] ∗ psi[n− 1, x], {n, 1, range}];
normu[t ] =normu[t ] =normu[t ] =
Sqrt[Integrate[u[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];Sqrt[Integrate[u[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];Sqrt[Integrate[u[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];

(*solution via expansion of the self-similar solution into the eigenbasis of the harmonic oscillator *)(*solution via expansion of the self-similar solution into the eigenbasis of the harmonic oscillator *)(*solution via expansion of the self-similar solution into the eigenbasis of the harmonic oscillator *)

Clear[range]; range = 5;Clear[range]; range = 5;Clear[range]; range = 5;
ms = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n], {m, 1, range}, {n, 1, range}];ms = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n], {m, 1, range}, {n, 1, range}];ms = Table[(n− 1 + 1/2)/2 ∗KroneckerDelta[m,n], {m, 1, range}, {n, 1, range}];
expms[s ] = MatrixExp[−ms ∗ s];expms[s ] = MatrixExp[−ms ∗ s];expms[s ] = MatrixExp[−ms ∗ s];
a0s = Table[Integrate[psi[n− 1, x] ∗ psi[0, x] ∗ E∧(x∧2/8),a0s = Table[Integrate[psi[n− 1, x] ∗ psi[0, x] ∗ E∧(x∧2/8),a0s = Table[Integrate[psi[n− 1, x] ∗ psi[0, x] ∗ E∧(x∧2/8),
{x,−Infinity, Infinity}], {n, 1, range}];{x,−Infinity, Infinity}], {n, 1, range}];{x,−Infinity, Infinity}], {n, 1, range}];
as[s ] = expms[s].a0s;as[s ] = expms[s].a0s;as[s ] = expms[s].a0s;
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ws[s , y ] = Sum[as[s][[n]] ∗ psi[n− 1, y], {n, 1, range}];ws[s , y ] = Sum[as[s][[n]] ∗ psi[n− 1, y], {n, 1, range}];ws[s , y ] = Sum[as[s][[n]] ∗ psi[n− 1, y], {n, 1, range}];
us[t , x ] = (t+ 1)∧(−1/4) ∗ ws[Log[t+ 1], (t+ 1)∧(−1/2) ∗ x]∗us[t , x ] = (t+ 1)∧(−1/4) ∗ ws[Log[t+ 1], (t+ 1)∧(−1/2) ∗ x]∗us[t , x ] = (t+ 1)∧(−1/4) ∗ ws[Log[t+ 1], (t+ 1)∧(−1/2) ∗ x]∗
E∧(−(t+ 1)∧(−1) ∗ x∧2/8);E∧(−(t+ 1)∧(−1) ∗ x∧2/8);E∧(−(t+ 1)∧(−1) ∗ x∧2/8);
normus[t ] =normus[t ] =normus[t ] =
Sqrt[Integrate[us[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];Sqrt[Integrate[us[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];Sqrt[Integrate[us[t, x]∧2, {x,−Infinity, Infinity},Assumptions→ {t > 0}]];

rateexact[t ] = −Log[normuexact[t]]/Log[1 + t];rateexact[t ] = −Log[normuexact[t]]/Log[1 + t];rateexact[t ] = −Log[normuexact[t]]/Log[1 + t];
rate[t ] = −Log[normu[t]]/Log[1 + t];rate[t ] = −Log[normu[t]]/Log[1 + t];rate[t ] = −Log[normu[t]]/Log[1 + t];
rates[t ] = −Log[normus[t]]/Log[1 + t];rates[t ] = −Log[normus[t]]/Log[1 + t];rates[t ] = −Log[normus[t]]/Log[1 + t];
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