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Introduction

This paper is summary and enhancement of existing rather scattered literature regarding
finite-dimensional quantum mechanics. In the later parts Feynman’s path summation is
discussed.

Purpose of chapter 1 is to get familiar with finite-dimensional appoximation opera-
tor using discrete Fourier transformation as an example. In chapter 2 idea of inducing
discrete kinematics using pair of mappings is discussed for special case of Schwinger
approximation on flat configuration manifold R. In chapter 3 convergence question for
defined Hilbert space imbedding of Swinger approximation on R is discussed. In chap-
ter 4 most intuitive discrete-time evolution definitions are discussed. Special attention is
paid to Feynman’s path integral. Feynman’s checkerboard problem closely connected to
Feynman’s path integral is also included in this chapter.
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Chapter 1

Discrete fourier transformation

Definition 1 ((odd) Discrete fourier transformation).

〈ρ1 |
(
FN |ρ2 〉

)
=

√
2π

2N + 1
.
exp(i 2π

2N+1
ρ1ρ2)√

2π
,

where dimension in which we define this unitary operator is 2N + 1 i.e. odd

and {|ρ〉} is orthonormal basis denoted ρ ∈ {−N,−N + 1 . . . N}, N ∈ N

From the following example its similarity to the fourier transform on R or finite inter-
vals can be easily seen.

Example 1.

〈ρ1 |
(
FN |ψ〉

)
=

N∑
ρ2=−N

√
2π

2N + 1

exp(i 2π
2N+1

ρ1ρ2)√
2π

〈ρ2 |ψ〉

Theorem 1 (Basic theorems).

(1.) F 2
N = antidiag(1, 1, . . . ), F 3

N = F ∗N , F
4
N = 1

(2.) σ(FN) = {1,−1, i,−i} = {ik|k ∈ {0, 1, 2, 3}}

(3.) FN |hD
k 〉 = ik|hD

k 〉, where 〈ρ|hD
k 〉 :=

+∞∑
p=−∞

hk

(√
2π

2N + 1
(ρ+ (2N + 1)p)

)
and hk are Hermite functions i.e. orthonormal basis on L2(R, dx).

(4.) 〈ρ|hD
k 〉 =

+∞∑
l=−∞

exp(i
2π

2N + 1
lρ)hk

(√
2π

2N + 1
l

)
(5.) {|hD

k 〉|k ∈ {0, 1, . . . 2N}} is non-orthogonal basis of Hilbert space.

Proof. Done in [12].
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In the following section it will be further mentioned that in the model employed in this
paper, spacial and momentum eigenvectors are connected through the discrete Fourier
transformation, i.e.

〈ρ|k〉 =

√
2π

2N + 1
.
exp(i 2π

2N+1
ρk)

√
2π

.

A theorem of convergence of discrete Fourier transformation to the Fourier transform on
L2(R, dx) will be proven in chapter. 3.
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Chapter 2

Induced discrete kinematics

Idea of this chapter is to introduced cannonical way of using specific pair of mappings
between continuous functions on configuration manifold C(M) and functions defined on
lattice approximating this manifoldC(MD) to induce approximation of kinematics. Since
only case M = R is covered it is possible to use Weyl tranformation to obtain quantum
observables from classical ones.

2.1 Induced classical kinematics on discrete space
At first configuration sets will be defined: discrete ordered set and manifold from which
we will induce kinematics. There are two simplest confuguration manifolds on which we
can introduce model used in this paper. They are R and the circle. In this paper only
former possibility will be covered.

Definition 2.

M := R,H := L2(R, dx),

MD := {−N,−N + 1, . . . , N} ⊂ Z, where N ∈ N, Ñ := 2N + 1,

{|ρ〉 : ρ ∈MD} is orthonormal basis of finite dimensional hilbert spaceHN

C∞(MD, T ) := {f : MD → T}

Definition 3 (modulo with sign and floor).

(mmod Ñ) = l ∈MD ⇔ exp(i
2π

Ñ
m) = exp(i

2π

Ñ
l)

byc := l ∈ Z : l − y ≤ 0.5 ∨ y − l < 0.5, y ∈ R

Let us define natural flat imbedding with real parameter a.
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Definition 4 (natural flat imbedding).

iM : Z→M : iM(ρ) := ηNρ

cM : M →MD : cM(x) := ηN(b x
ηN
cmod Ñ),

where ηN :=

√
2π

Ñ
a, a > 0

For both set there is natural group acting transitively - groups of translations:

Definition 5 (groups of translations).

G := (R,+) : σ(g, x) := x+ g,

GD := {−N,−N + 1, ..., N}, : σ(j, ρ) := (ρ+ jmod Ñ)

Since TmM ' M ' G for every point m ∈ M and there is isomorfism φ : TmM →
G : φ(v) := exp(v), we define:

Definition 6.

TρM
D ' T ∗ρM

D ' GD

iT : Z→ T ∗iM(ρ)M : iT(j) := ηNj,

iT* : Z→ T ∗iM(ρ)M : iT*(j) := ηNj,

cT : TiM(ρ)M → TρM
D : cT(p) := ηN(b x

ηN
cmod Ñ),

cT* : T ∗iM(ρ)M → T ∗ρM
D : cT(p) := ξN(b x

ξN
cmod Ñ),

where ξN :=

√
2π

Ñ

1

a
.

Imbedding into trivial tangent bundle can be defined in analogy, but will not be needed.
I will now introduce special mappings that are essential to model that will be treated in
this paper.

Definition 7 (Schwinger approximation).

appS[f ] :=

=

{∑N
j,ρ=−N ηNξN ei iT*(j2)(q−iM(ρ)) f(k, ρ) ∈ C∞(M) f ∈ C(MD)∑N
j1,j2,k,ρ=−N ηNξN ei iT(j1)(p−iT*(k)) ηNξN ei iT*(j2)(q−iM(ρ)) f(k, ρ) f ∈ C(T ∗M)

redS[f ] :=

{
f(iM(ρ)) ∈ C(MD) f ∈ C(M)

f(iT*(k), iM(ρ)) ∈ C(T ∗MD) f ∈ C(T ∗M)
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Other models utilize other mappings e.g. spline interpolation. This approximation is
not covered in this paper, but can be easily modified for this.

It is evident that both introduced mappings differ for every N ∈ N. Mapping app[.] is
linear and functions app[f ] are periodic i.e.:

appS[f ](p, q) = appS[f ](p+ ÑξNj, q + ÑηNρ), where j, ρ ∈ Z.

Approximation of derivation and vector action will be defined in following:

Definition 8.

∂yf := redS[∂y[appS(f)]]

v(f) :=

( N∑
j=−N

iT(v
(q)
j )∂q + iM(v

(p)
j )∂p

)
f , where f ∈ C∞(T ∗MD), v ∈ T (T ∗MD)D

Interesting feature of Schwinger approximation of derivative is that it has ”non-local
character” i.e. value of Schwinger derivative in every point depends on value of wave-
function at all points, althought with weight falling quickly with rising distance.

There is convergence theorem to this definition of derivation in chapter 3.

Definition 9 (phase-space).

Γ := T ∗M ' R2, ΓD := T ∗MD ' {−N,−N + 1, ..., N}2 ⊂ Z2, where N ∈ N

To obtain approximation of observables f ∈ C(Γ,R) on discrete phase-space reduc-
tion mapping on Γ will be used.

Definition 10 (Induced observables on discrete phase-space).

(.)D : C(Γ,R)→ C∞(ΓD,R) : fD := red[f ],

where f ∈ C(Γ,R)

On discrete phase-space we can introduce induced Poisson bracket, thus induce ap-
proximation of clasical kinematics on discrete space.

Definition 11 (discrete Poisson bracket).

{., .}DP : C∞(ΓD,R)× C∞(ΓD,R)→ C∞(ΓD,R) : {f, g}DP := red[{app[f ], red[g]}P ]

Following theorem is related to hamiltonian equations of motion.

Theorem 2 (discrete Poisson bracket properties).

{p,H(p, q)}DP = −∂qH(p, q), {q,H(p, q)}DP = ∂pH(p, q)

Proof. Using unitarity of discrete fourier transformation.

Some convergence theorems regarding pervious matter are included in section 3.
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2.2 Induced quantum kinematics on discrete space
Only available mapping between spaces are approximation and reduction mappings, which
has to be modified to be well defined L2 mappings converging to original ones.

Definition 12 (Schwinger reduction).

ÔD := lim
δ→0

( N∑
ρ=−N

|ρ〉〈iM(ρ)± δ/2 |
)
Ô

( N∑
k=−N

|iT*(k)± δ/2 〉〈k |
)

where |iM(ρ)± δ/2 〉 := ÊQ̂

(iM(ρ)+ δ
2
,iM(ρ)− δ

2
)
L2(R, dx),

|iT*(k)± δ〉 := ÊP̂
(iT*(k)+

δ
2
,iT*(k)+

δ
2
)
L2(R, dx),

EP̂ and EQ̂ are spectral measures of corresponding operators,

Ô is operator on L2(R, dx) for which above limit exists.

Corollary 1 (Asymptotic properties of Schwinger reduction ).

∂nx 〈x |
∑N

k=−N |iT*(k)± δ/2 〉〈k |f 〉 −−→
δ→0

∂nx appS[f ](x),

〈ρ2 |
∑N

ρ=−N |ρ〉〈iM(ρ)± δ/2 |ψ〉 −−→
δ→0

redS[ψ](ρ2),

where f : MD → C, ψ ∈ C(R,C).

Name for this reduction is justified by following definition and theorem.

Definition 13 (Schwinger operators).

Q̂Schwinger|ρ〉 = iM(ρ)|ρ〉, where U(α)|ρ〉 = ei iM(ρ) iT(α) |ρ〉,
P̂Schwinger|k〉 = iT*(k)|k〉, where V (β)|k〉 = ei iT*(k) iT(β) |k〉,
where U , V are operators obtained from analogue of Mackey’s quantization method [5]

in finite dimension [6], ρ, k ∈MD

It is sufficient to define scalar product of base vec. :〈ρ|k〉 :=

√
2π

Ñ

ei iM(ρ) iT*(k)

√
2π

Note that: U(α)V (β) = V (β)U(α) eiM(α) iT*(β) .

Theorem 3 (Schwinger reduction of position and momentum operators).

Q̂D = Q̂Schwinger, P̂D = P̂Schwinger
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Proof. Directly from definitions.

That means that pervious procedure using special pair of mappings delivered same
spacial and momentum observable as Mackey’s quantization method in finite dimension
[6, 5].

Theorem 4 (Schwinger reduction of Fourier transformation).

F̂D = FN which was defined in chapter 1.

Proof. Directly from definitions.

Since configuration space M = R is flat, we can use Weyl quatization method. I
will simply use approximation of observables from discrete space to create self-adjoint
operators on L2(R, dx) and then by approximation and reduction mapping reduce this
operator to spaceHN .

This method is particulary suitable for Schwinger quantum kinematic on discrete space.
Also I am proposing general convergence theorem for special class of classical observ-
ables on phase-space, which is how ever not yet proven.

Let us define operators to special set of real functions on phase-space.

Definition 14 (Weyl transformation).

(ΦW [f(p, q)]ψ)(y) :=

(
F[g(q)](β), eiQ̂β

(
F[h(p)](α), ei

αβ
2 eiP̂α ψ

))
where f(p, q) := h(p)⊗ g(q) : h, g ∈ {s ∈ C∞(R,R)|∃cn : |s(x)| <

C∑
n=0

cnx
n},

ψ ∈ C∞0 (R) and ( , ) has common sense used for Schwartz space distributions.

Using pervious, we can define Weyl tranformation on linear span of above set.

Theorem 5 (Simplification of Weyl transformation).

(ΦW [h(p)⊗ g(q)]ψ)(y) =

(
h(P̂ )g

(
Q̂+y
2

)
ψ

)
(y)

Proof. Using theory of distributions and fourier transform on Schwartz space.

Example 2 (common Hamiltonian).

H(p, q) := p2 ⊗ 1 + 1⊗ V (q)

(ΦW [H(p, q)]ψ)(y) = (−∂2qψ)(y) + V (y)ψ(y)
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Following example demonstrates problems that may occure, when using Weyl trans-
formation.

Example 3.

(ΦW [e−p
2+q2 ]ψ)(y) = (ΦW [e−p

2 ⊗ e−q
2

]ψ)(y) = [F−1 e−Q̂
2

F e−(
Q̂+y
2

)2 ψ](y) =∫
R
dx

1√
2

e−
(x−y)2

4 e−
(x+y)2

4 ψ(x) =
1√
2

e−
y2

2

∫
R
dx e−

x2

2 ψ(x) =
1√
2
|h0 〉〈h0 |ψ〉

Theorem 6 (Weyl transformation of Schwinger approximated functions).

(ΦW ◦ appS)[f ] :=
∑N

j1,j2,k,ρ=−N (ηNξN) ei iT(j1)(P̂−iT*(k))

(ηNξN) ei iT*(j2)(Q̂−iM(ρ)) ei
iT(j1) iT*(j2)

2 f(k, ρ),

where ΦW is Weyl transformation defined above for all f ∈ C(ΓD,R)

Proof. Using theory of distributions and fourier transform on Schwartz space.

We have now obtained opertator on L2(M,dx). To reduce it to HN we need suitable
unitary mappings.

Corollary 2 (discrete Weyl transformation).

(ΦW ◦ appS)D[f ] :=
∑N

j1,j2,ρ1,ρ2=−N (ηNξN) ei iT(j1)(P̂D−iT*(ρ1))

(ηNξN) ei iT*(j2)(Q̂D−iM(ρ2)) ei
iT(j1) iT*(j2)

2 f(ρ1, ρ2)

ΦW is Weyl transformation.

Theorem 7 (Simplification of discrete Weyl transformation).

(ΦW [h(ρ1)⊗ g(ρ2)]ψ)D(ρ) =

(
h(P̂D) appS[g]

(
Q̂D+iM(ρ)

2

)
ψ

)
(ρ)

Proof. Using theory of discrete fourier transformatin 1.

Thus we have quantization mechanism for obtaining operators of observables form
their classical couterparts on flat phase-space Γ. Possible general operator convergence
theorem may be consequence appeareance of only two kinds of operators on the right-
hand side i.e. position and momentum operators.

Example 4 (common Hamiltonian).

H(p, q) := p2 ⊗ 1 + 1⊗ V (q)

((ΦW ◦ appS)D[H(p, q)] = P̂ 2
D + V (Q̂D)

9



Chapter 3

Convergence

3.1 Imbedding
Let us have sequence of finite dimensional hilbert spaces and operators of certain observ-
ables on it and their counterparts on HN space. We expect that physics on discrete space
would be same as on continuous one for sufficiently largeN i.e. observations on one state
ψ ∈ L2(M,dx) are in limit N →∞ the same. This is question of convergence of sequi-
linear forms and of mapping sequilinear forms that are defined on discrete space HN to
their L2(R) counterpart. This can be solved by analogue of approximation and reduction
mappings. Approximation and reduction mapping of smooth functions on flat spaces in
principle are badly defined on L2(R).

Definition 15 (L2-convergence characterictic function map.).

(ÔCf)(x) := ηN

( N∑
ρ2=−N

|iM(ρ2 )± ηN/2 〉〈ρ2 |
)
Ô

( N∑
ρ1=−N

|ρ1 〉〈iM(ρ1 )± ηN/2 |
)

appL2 [f,N ](x) := 〈x |
N∑

ρ2=−N

|iM(ρ2 )± ηN/2 〉〈ρ1 |f 〉,

redL2 [f,N ](ρ) := |ρ〉
N∑

ρ1=−N

|ρ1 〉〈iM(ρ1 )± ηN/2 |f 〉,

where Ô is operator onHN

Some basic properties of above mapping are listed below.
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Corollary 3.

1.) redL2 ◦ appL2 = idL2(MD,dµ)

2.) appL2 ◦ redL2 = orthogonal projector on L2(M,dx)

3.) ÔC is degenerate Hilbert-Schmidt integral operator,

4.) ÔC = Ô∗C ⇔ Ô = Ô∗, where [.]∗ denotes adjoint operator,

5.) σ(ÔC) \ {0} = σp(ÔC) \ {0} = σ(Ô) \ {0}, where σ denotes spectra of operator,

6.) 0 ∈ σp(ÔC) and has infinite multiplicity,

7.)
∥∥∥ÔC

∥∥∥
2

=
∥∥∥Ô∥∥∥

2
, where ‖.‖2 are Hilbert-Schmidt norms,

3.2 Strong resolvent convergence
Definition 16 (strong resolvent convergence).

AN , A are self-adjoint operators.

AN
s.res.−−−→
N→∞

A⇔ Rλ(AN)
s.−−−→

N→∞
Rλ(A) (strongly) ∀λ ∈ C \ R

Theorem 8 (strong resolvent convengence for self-adjoint operators).

AN , A are essentially self-adjoint on set D ∧ ∀ψ ∈ D,ANψ
s.−−−→

N→∞
Aψ

⇒ AN
s.res.−−−→
N→∞

A

Proof. Proof done in [7].

Pervious work [11] to this subject regarded only special cases of follwing theorems
and proving in complicated way using older version of the book. Here second edition of
the book [8] is used and we have:

Theorem 9.

{AN}∞N=0, A self-adjoint operators ∧ AN
s.res.−−−→
N→∞

A

1.) (∀N, (a, b) ∩ σ(AN) = ∅)⇒ (a, b) ∩ σ(A) = ∅, where a, b ∈ R
2.) λ ∈ σ(A)⇒ ∃λN ∈ σ(AN) : λN → λ

3.) a, b /∈ σp(A)⇒ E(a,b)(AN)
s.−−−→

N→∞
E(a,b)(A), where a, b ∈ R

4.) f(AN)
s.res.−−−→
N→∞

f(A), where f is bounded continuous function on R
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Proof. Proof done in [8].

Corollary 4.

1.) ∃λ, ε : (λ− ε, λ+ ε) ∩ σp(A) = {λ} ⇒ ∃{|λ(1 )N 〉, |λ
(2 )
N 〉, ... |λ(dimRanEλ)

N 〉} :

AN |λ(j )N 〉 = λ
(j)
N |λ

(j )
N 〉 ∧ λ

(j)
N → λ ∧

dimRanEλ∑
j=1

|λ(j )N 〉〈λ
(j )
N |

s.−−−→
N→∞

Eλ,

where Eλ := E(λ−ε,λ+ε)

2.) dimRanEλ = 1⇒ ∃φ : eiφ |λN 〉
s.−−−→

N→∞
|λ〉

Theorem 10.

{AN}∞N=0, A self adjoint operators ⇒
(AN

s.res.−−−→
N→∞

A)⇔ (eitAN
s.res.−−−→
N→∞

eitA,∀t ∈ R)

Proof. Proof done in [8].

3.3 Convergence theorems
In [11] was proven following strong convergence theorem for discrete Fourier transfor-
mation:

Theorem 11 (strong convergence of discrete Fourier transformation).

(redS(ql))C [FN ]C
s.−−−→

N→∞
qlF,

where FN is defined in chapter 1 and F is corresponding operator on L2(R).

Pervious theorem was than used to prove following:
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Theorem 12 (Schwinger strong resolvent convergence).

h ∈ {s ∈ C∞(R,R)|∃cn : |s(x)| <
C∑
n=0

cnx
n}}, g ∈ C(R,R)

V1 ∈ C(R,R) ∧
∫
R
|V1(x)|2dx ≤ ∞, V3 ∈ C(R,R) ∧ ∃C2 : C2 ≤ V3(x)

V4 ∈ C∞(R,R)

⇒ (1.) h((P̂D))C
s.res.−−−→
N→∞

h(P̂ )

(2.) g((Q̂D))C
s.res.−−−→
N→∞

g(Q̂)

(3.)
(P̂D)2C

2m
+ V1((Q̂D))C + V2((Q̂D))C

s.res.−−−→
N→∞

P̂ 2

2m
+ V1(Q̂) + V2(Q̂)

(4.) (P̂D)2Cσz −mσx + V4((Q̂D))C
s.res.−−−→
N→∞

P̂ 2σz −mσx + V4(Q̂),

where σx, σz are Pauli matrices.

Proof. (1.) Operator h(P̂ ) is essentially self-adjoint on Schwartz space S(R) since it is
unitary (fourier trf.) equivalent of operator which is. Now is only left to prove h(P̂D)Cψ →
h(p̂)ψ : ψ ∈ S(R). ∥∥∥F−1N g((Q̂D)C)FNψ − F−1g(Q̂)Fψ

∥∥∥ ≤
≤ C

∥∥∥g((Q̂D)C)FNψ − g(Q̂)Fψ
∥∥∥+

∥∥∥(F−1N − F−1)g(Q̂)Fψ
∥∥∥ −−−→

N→∞
0

(2.) is trivial. (3.) Operator is essentially self-adjoint onC∞0 (R) [9]. Convergence follows
trivially. (4.) Operator is essentially self-adjoint on C∞0 (R) [10]. Convergence follows
trivially.

Example 5 (0-spin relativistic hamiltonian).

H(p, q) :=
√
p2 +m2

((ΦW ◦ appS)D[H(p, q)] =

√
(P̂D)2C +m2 s.res.−−−→

N→∞

√
P̂ 2 +m2

Theorem 13 (Schwinger Weyl systems operator convergence).

eiα[[P̂ ]D]C eiβ[[Q̂]D]C −−−→
N→∞

eiαP̂ eiβQ̂ , where α, β ∈ R

Proof. Using previous and uniform boundeness principle.

Following proposal for theorem might offer, if it holds, convergence for large set of
observables. However proof is yet not known .
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((ΦW ◦ appS ◦ redS[f ])D)C
s.res.−−−→
N→∞

ΦW [f ]

f ∈{h(p)⊗ g(q)|h, g ∈ {s ∈ C∞(R,R)|∃cn : |s(x)| <
C∑
n=0

cnx
n}}

ΦW is Weyl transformation.

Following proposal for theorem might also offer some additional insight into character
of convergence of discrete to continuum quantum kinematics.

Although proof is not available I expect that order of sumation in

+∞∑
p=−∞

+∞∑
l=0

a(g)l,khl

(√
2π

Ñ
(ρ+ Ñp)

)
can be exchanged and thus following theorem would hold:

Let g ∈ C∞ ∧ g
(√

2π

Ñ
(ρ+ Ñp)

)
= g

(√
2π

Ñ
(ρ)

)
expecting that order of summation can be exchanged in
+∞∑
p=−∞

+∞∑
l=0

a(g)l,khl

(√
2π

Ñ
(ρ+ Ñp)

)
⇒

(1.) g(Q̂D)|ψ〉 =
+∞∑
l=0

al|hD
l 〉,

where al := 〈hl |g(Q̂)|ψ〉

(2.) g(P̂D)|ψ〉 =
+∞∑
l=0

al|hD
l 〉,

where al := 〈hl |g(P̂ )|ψ〉
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Chapter 4

Time evolution

4.1 Ambiguity of time evolution definition
Having some observables we turn our attention to time evolution on discrete configuration
space.

If we assume continuous time than evolution is trivially defined by Schödinger equa-
tion with discrete hamiltonian operator i∂tψ(t, ρ) = Ĥψ(t, ρ). However if we assume
discrete time, there is ambiguity in definition. There are three most intuitive definitions
of time evolution:

1.) Sampling of continuous time evolution ψτ = ei iM(τ)H ψo, where τ ∈ N.
2.) Swinger approximation of Schödinger equation P 0

DΨ =mod HΨ ,
where P 0 := i∂t differential operator on L2(R, dx) and Ψ : MD ×MD → C

3.) Feynman’s short time evolution operator based on Trotter’s formula:

U(τ) :=

[
eiεH0(p̂) eiεV (q̂)

]τ
, where ε > 0 is time slicing parameter

and H = H0(p) + V (x) is Hamiltonian.
Configuration imbedding is also used for time imbedding because I expect that some

discrete analogue of Poincaré group may be instroduced. This idea however is not covered
in this paper. Interesting feature of Swinger approximation of derivative is that it has
”non-local character” i.e. value of swinger derivative at every point depends on value of
wavefunction at all points, althought with weight falling quickly with rising distance.

Definition 17 (operator modulo).

Â =mod B̂ ⇔ σ(Â), σ(B̂) ⊂ iT*(Z) ∧ cT*(Â) = cT*(B̂)
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Definition 18 (evolution operator).

1.) sampling type: U(τ) := ei iM(τ)H

2.) swinger type: τ → U(τ) is operator solution of P 0
DU =mod HU,

3.) feynman type: U(τ) :=

[
eiεH0(p̂) eiεV (q̂)

]τ
where τ ∈ Z

Next theorem can be put simply: Both definitions give same result for Hamiltonias
with spectrum ”on lattice”.

Theorem 14.

1.) 1.1) P 0
DU =mod HU has solution ⇔ σ(H) ⊂ iT*(Z)

2.) σ(H) ⊂ iT*(M
D)⇒ 2.1) ei iM(τ)H is unique operator solution of P 0

DU =mod HU

2.2) U(τ) are unitary operators

2.3) evolution is periodic i.e. U(τ mod Ñ) = U(τ)

Proof.

1.1) Due to spectra of P 0
D and following proof.

2.1) σ(H) ⊂ iT*(M
D)⇒ P 0

D

∑
τ∈MD

ei iM(τ)H ⊗|τ〉〈τ |

=
∑

n:iT*(n)∈σ(H)

|n〉〈n| ⊗
(
P 0
D|τ〉〈τ | ei iM(τ) iT*(n)

)
=mod H ei iM(τ)H ,

where hamiltonian spectrum decomposition have been used.

For uniqueness let us have two solution U, V with property U(0), V (0) = 1.

〈n1 |P 0
D(U − V )|n2 〉 = P 0

D〈n1 |(U − V )|n2 〉 = iT*(n1)〈n1 |(U − V )|n2 〉
Using spectral decomposition of momentum

P 0
D =

∑
l

l|l〉〈l |, 〈l |τ〉 = ηN ei iM(τ) iT*(l) ,

we rewrite above vector equation into sum of equations:

iT*(l − n1)〈l |〈n1 |(U − V )|n2 〉〉 = 0.

So only free parameter is 〈l = n1 |〈n1 |(U − V )|n2 〉〉
which is set by initial condition.

(2.2,3)are evident from definition and spectral decomposition.
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Pervious theorems can be put in following way: If discrete analogue of Schödinger
equation is to have solution, spectrum of Hamiltonian has to lie on same lattice as mo-
mentum, thus we can expect some discrete analogue of Poincaré group also on energy-
momentum space.

Easiest way of obtaining hamiltonian with spectrum on momentum lattice is using
floor, expecting that in N →∞ it converges in strong resolvent sence to former hamilto-
nian limit.

Theorem 15.

H̃ := cT*(Ĥ)⇒ σ(H̃) ⊂ iT*(Z)

If there is some analogue of Poincaré symmetry we may also introduce analogues of
Klein-Gordon, Dirac equation which are strainghtforward. However spectrum would not
lie on momentum lattice sinceE = ±

√
p2 +m2 containes square root. However for pairs

(p/xiN ,m/ξN) that are Pythagorean i.e. (E, p,m)/ξN ∈ Z3 ∧ E2 = p2 + m2. would
spectra lie on momentum lattice. For large N density of pythagorean pairs (p,m)/ξN for
small E/ξN grows significantly thus I expect convergence to continuum case.

4.2 Feynman’s path integral
As defined above evolution operator of Feynmann type is multiplication of two unitary
operators generated by self-adjoint operators which in sum give total hamiltonian of sys-
tem H = H0(p) + V (x). Two separate parts of Hamiltonian depend always only on one
of the parameters q or p. This is usually used as an approximation based on Trotter’s
formula (eA+B = (e

A
N e

B
N )N ) when Feynman path integral is being derived. Thus we can

define approximation of our evolution in this manner expecting convergence as ε→ 0 and
similarities when deriving propagator.

Corollary 5.

〈ρ2 |
(
Û(τ)|ρ1 〉

)
=

∑
ρ2,ρ3...ρτ−1∈(MD)τ−2

∑
k2,k3...kτ−1∈(T ∗MD)τ−2

1

(
√
Ñ)τ−2

exp

(
iε

τ−1∑
l=0

− iT*(kl) iM(ρl+1 − ρl) +H0(iT*(kl)) + V (ρl)

)

For special hamiltonian it is possible to carry out summation over momentum space as
in continuous case we obtain lagrangian.
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Theorem 16.

〈ρ2 |
(

eiε
p̂(p−iT*(1))

2m eiεV (q̂) |ρ1 〉
)

=

exp

(
i ε
2

(
iM(ρ2−ρ1 mod Ñ)+ 1

2
iM(1)

ε

)2

+ εV (iM(ρ1))

)
√
Ñ

where ε =
a2

m
,m > 0.

Proof. Done in [1] using formula derived in [2, 3, 4].

This however is problematic since time-slicing ε = a2

m
remains constant whenN →∞

thus proper time evolution is not obtained in continuum limit.
Other possibility is to add some additional N -dependent time slicing. As mentioned

above simplest way is to use space imbedding also for time i.e. ε := iM(1) as in following
example:

Example 6.

H0 :=
√
p2 + iT*(cT*(m))2, ε := iM(1)⇒ H0ε =

N∑
k=−N

2π

Ñ

√
k2 + cT*(m)2

4.2.1 Feynman’s checkerboard
Feynman proposed problem [13] closely connected to Feynmnan’s path integral on lattice
futher developed in [16] and whose simplified solution [14] I will include into this paper.

Suppose particle traveling by jumping at speed of light on space-time Z2 lattice. At
every step particle jump left or right in space and one step forward in time. Let use define
propagator function on this lattice in special way so that it’s continuum limit will be Dirac
particle propagator in 1+1 space-time.

Definition 19.

Kα,β(xf , tf ;x0, t0) :=
1

2ε

∑
C∈N0

Φα,β(C)(iεm)C ,

where Φα,β(C) is number of histories with start-ending points (x0, t0), (xf , tf )

with C changes in path direction and starting resp. ending

with right/left direction α ∈ {+,−} resp. β ∈ {+,−}

ε =
tf − t0
N

is space-time-slicing parameter (c = 1)

N ∈ N and m > 0 is mass.
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Theorem 17.

Φ−,+(C) = Φ+,−(C) =


(
R−1
C−1
2

)(
L−1
C−1
2

)
∼N→∞ (RL)

1
2 (C−1)

[( 1
2
(C−1))!]2 for C odd

0 for C even.

Φ+,+(C) =

0 for C odd,(
R−2
C
2
−1

)(
L−1
C
2

)
∼N→∞ L (RL)

C
2

(C
2
−1)!(C

2
)!

for C even.

Φ−,−(C) =

0 for C odd,(
R−1
C
2

)(
L−2
C
2
−1

)
∼N→∞ R (RL)

C
2

(C
2
−1)!(C

2
)!

for C even.

where R,L are numbers of steps right, left. using approximation(
n

k

)
∼n→∞

nk

k!

Proof. First part is simple combinatorics where C � N,R,L.

Theorem 18.

K+,−(xf , tf ;x0, t0) = K−,+(xf , tf ;x0, t0) ∼N→∞
im

2

+∞∑
k=0

(−1)k
(z/2)2k

(k!)2
=
im

2
J0(z),

K+,+(xf , tf ;x0, t0) ∼N→∞ im
t+ x

z

+∞∑
k=0

(−1)k
(z/2)2k+1

(k!)(k + 1)!
= im

t+ x

z
J1(z),

K−,−(xf , tf ;x0, t0) ∼N→∞ im
t− x
z

+∞∑
k=0

(−1)k
(z/2)2k+1

(k!)(k + 1)!
= im

t− x
z

J1(z),

where z := m
√

(tf − t0)2 − (xf − x0)2 and J0, J1 are Bessel functions.

Proof. Using RL = 1
4
(N + R − L)(N − R − L) = z/2, oddness or eveness of R and

definitions.

Theorem 19.

K(xf , tf ;x0, t0) =

(
K+,+ K+,−

K−,+ K−,−

)
∼N→∞

(
im t+x

z
J1(z) im

2
J0(z)

im
2
J0(z) im t−x

z
J1(z)

)
,

where right side is propagator of dirac particle in 1+1 dimension

Proof. Propagator of Dirac particle in 1+1 dimension can be found easily using properties
of Pauli matrices, trigonometrical identities and integral definition of Bessel functions.
Note that H = p̂σz −mσx.
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Concluding remarks

Quantum mechanics can be effectively approximated on finite-dimensional Hilbert spaces,
which is sometimes used for deriving propagators in Feynmann’s path integral. Further
research could be directed towards studying detailes of Feynman’s checkerboard prob-
lem, proving complementary theorems and applications on particular quantum systems.
It might also be interesting investigating approximation maping first Ñ discrete hermite
functions to corresponding hermite fuctions and as reduction to map all hermite function
to corresponding discrete hermite functions with scalar product defined such that first Ñ
discrete hermite functions would be orthonormal basis.
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