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Introduction
Quantum theory, as a mathematical device to provide statistical predictions about the results of

experiments, is an extraordinary successful theory. It describes a wide range of physical phenomena,
without any significant bounds of the accuracy of its predictions. But it is still an open problem in
the foundations of physics to find its satisfactory physical interpretation. Quantum mechanics is
inherently indeterministic, but in such a way that the predicted statistics cannot be subsumed in
the framework of classical probability. It is then necessary to generalize the concept of probability
from commutative to noncommutative, and we get the the quantum probability.

The measurement problem suggests a necessity of division between microscopic and macroscopic
objects, but without any clear boundary between the two worlds. Also the phenomena of the
collapse of the wave packet, with its ”spooky action at a distance”, is apparently incompatible
with special relativity. These, and other problems, have motivated the suspicion that quantum
theory is not the most fundamental theory of nature. There have been many attempts to find
such a fundamental theory, which would explain all the paradoxes of quantum theory, reproduce
all its predictions, and hopefully provide some new ones. But despite a great effort, there is still
no satisfactory alternative to quantum theory.

The aim of this work was to investigate the validity of another attempt in this direction, to
derive quantum theory from first principles. It is called trace dynamics, and it was proposed by
Stephen Adler and his collaborators in a book and a series of papers including [1] through [4].
The relativistic quantum field theory, and then also quantum mechanics as its nonrelativistic limit,
is claimed to emerge from the statistical mechanics of a particular class of matrix models. If it
turned to be correct, it would be of interest to analyze the issues concerning indeterminism and
non-locality, and to draw some conclusions about the physical meaning and purpose of quantum
probability. But unfortunately, trace dynamics is appears as just another unsuccessful attempt
to rederive quantum theory. In this work, the structure of trace dynamics is analyzed, and the
drawbacks of the argument for emergence of quantum theory is pointed out.
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Chapter 1

Quantum probability

There are two notions of the concept of probability, which nevertheless eventually lead to mathe-
matically equivalent theories. The objective view regards a probability of an event as an objective
property of that event, a measure of potentiality of occurrence of that specific event in a random
experiment. This probability can be at least in principle measured in all aspects by observing
relative frequencies in a sufficient long run of independent random experiments. The aim is to find
a probability distribution good enough, such that the predicted probabilities match the observed
relative frequencies.

On the other hand, the subjective view regards probabilities merely as an information the ob-
server has about the object prior to observation. It is an expression of our ignorance of specific
details of the experiment, which, if they were known exactly, would uniquely determine the mea-
surement outcome. The purpose of the probability theory is to allow us to form at least some
conclusions prior to the experiment, in case when only limited knowledge is available, and definite
conclusions about the result are not possible. Unlike the objective view the probability distribution
is strongly dependent on the actual knowledge of the observer about the object. The observer
should use all information available to obtain the best estimate of what is going to happen in the
experiment. The probability distribution, not being an objective property of the events, is not ex-
pected to be verifiable in all aspects. A test of a good distribution is whether it correctly represents
our prior knowledge of the object.

It is also possible to contemplate a concept of probability that combines both views. The occur-
rence of a specific event is then associated with an ”irreducible” objective probability distribution
forming the core of all the uncertainty. However, this distribution might not not be available due
to incomplete knowledge of the object, and thereby the subjective probability has to be employed.
But the relative frequencies of the objective view can always be reinterpreted in terms of the sub-
jective probability by regarding the measurement outcome itself as the missing knowledge. In this
way the subjective view can be perceived as a broader concept. Even quantum mechanics can
be included into the subjective probability framework by means of, in the classification of [21], a
hidden-variables theory of the first kind.

1.1 General structure of probability theory

In general, a probability theory involves the dual concepts of algebra A and state φ. The algebra
contains elements that represent the objects which can be measured, and are therefore called
(random) observables. The state determines probabilities of various events, that occur as a result
of a random experiment, e.g. an observable taking a specific value. For the introduction of state
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it is further required, that the algebra A contains a subset A+, called the positive cone of A. An
important algebras relevant for probability theory are the unital ∗-algebras. A unital ∗-algebra is
a complex vector space with the properties

1. A product of any two elements A,B ∈ A is defined, which is associative and distributive.
There is a neutral element with respect to multiplication, the identity element I.

2. For any A ∈ A, there is a conjugated element A∗ ∈ A. The mapping A 7→ A∗ is complex
antilinear.

3. There is a norm, which has the additional property ‖A∗A‖ = ‖A‖2.

If the space is complete in the topology given by this norm, then it is called the C∗-algebra. The
positive cone of A is the set A+ = {A ∈ A | A = B∗B, B ∈ A}. The state is then any functional
on the algebra A, φ : A 7→ C, with the properties

1. φ is complex linear,

2. φ is positive, i.e. φ(A) ≥ 0 for any A ∈ A+,

3. φ is normalized, i.e. φ(I) = 1.

Usually the set of observables is identified with the subspace of hermitean elements of A. An
element O ∈ A is hermitean, if it satisfies O∗ = O. For an observable O ∈ A, φ(O) is interpreted
as the average value of O in the state φ. Since the algebra A contains all powers of O, the
state determines also all moments of O, φ(Ok), the characteristic function of the observable O,
φ(exp(iO)), and the probability distribution on the space of this values. Hence the state φ, that
assigns expectation value to all elements of A, is sufficient to determine probability distribution
and statistical properties of all observables.

The algebra A further contains a distinguished subset A0 of observables, which represent set of
all possible events associated with random experiments. It consists of those elements of A which
are positive, hermitean, and satisfy O2 = O. For O ∈ A0, the number φ(O) is interpreted as the
probability of occurrence of the event represented by O.

The examples of ∗-algebras are the set B(H) of bounded operators on a Hilbert space or the
algebra C(X) of all continuous bounded functions on a compact Hausdorff space1. The former is
in general a non-commutative algebra, whereas the latter is commutative, and it can be regarded
as a special case of the former with the set B(H) replaced by its suitable commutative subset. It is
even true, that any commutative C∗-algebra is isomorphic to C(X), for some compact Hausdorff
space X [8], [10], [26]. For A = B(H) the subset A0 is formed by the set of all projections on H,
whereas for A = C(X) it is a set of characteristic functions of subsets of X.

Concrete and abstract algebras

There is an important connection between abstract ∗-algebras and the concrete algebras of bounded
operators B(H) on a Hilbert space H. The algebra of bounded operators B(H) on a Hilbert space
is a ∗-algebra, and in turn an abstract ∗-algebra is associated with an algebra of bounded operators
on a Hilbert space H. The Hilbert space H is given by the GNS construction, a theorem of Gelfand,
Naimark and Segal, [10],[8],[26]. It shows, that there is no loss of generality to work with concrete
algebras of operators on a Hilbert space instead of the abstract ones.

1with the supremum norm, ‖f‖ = supx∈X |f(x)|, C(X) is a C∗-algebra
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Given an abstract ∗-algebra A and a state φ on A, there is a Hilbert space Hφ with a distin-
guished unit vector Ψ0, such that there is a ∗-algebra homomorphism2 πφ : A 7→ B(Hφ) : A 7→
πφ(A), and the state φ is determined by the scalar product on H as

φ(A) = 〈Ψ0, πφ(A)Ψ0〉Hφ . (1.1)

The homomorphism assigns a bounded operator πφ(O) on the Hilbert space Hφ to any element O
of the C∗-algebra A. The elements of the C∗-algebra is then said to be represented by bounded
linear operators on Hφ.

The Hilbert space is formed starting from the vector space A, with Ψ0 = I. The scalar product
on A is defined using the state φ as

〈A,B〉A = φ(A∗B). (1.2)

By the properties of the state, the scalar product is a positive sesquilinear form on A, and defines
a norm on A. The vector Ψ0 is of unit length with respect to this norm,

‖Ψ0‖2 = 〈Ψ0,Ψ0〉 = φ(I) = 1. (1.3)

If the scalar product is not positive definite, the subset of zero norm form an ideal3 I of A, and we
can replace A by its quotient space modulo this ideal. The Hilbert space Hφ is then obtained by
completing of A (or the quotient space) in the norm ‖.‖. The representation of an algebra element
A ∈ A as the operator πφ(A) on Hφ is defined by

πφ(A)B = AB, for any B ∈ Hφ. (1.4)

As seen from the construction, πφ(A)Ψ0 is a dense set in Hφ, and hence all observables can be
extended by continuity to the entire Hilbert space. The representation of A is then said cyclic with
Ψ0 the cyclic vector. Moreover, the dense set πφ(A)Ψ0 is invariant with respect to the action of
πφ(A) for any A ∈ A.

Operator algebras

The algebra of bounded operators B(H) on a Hilbert space H, with ∗ as the operator conjugation,
is a ∗-algebra. A ∗-subalgebra C of B(H) is a C∗-algebra, if it is closed with respect to the uniform
operator topology (given by the operator norm). If it is closed also with respect to the strong
operator topology4, then it is called the von Neumann algebra. In particular, the algebra B(H)
is a von Neumann algebra. The notions of von Neumann algebra and C∗-algebra coincide on a
finite-dimensional Hilbert space, since the strong and the uniform operator topology are the same.
But in infinite dimensions the strong operator topology is weaker, and the closure is then larger

2Given ∗-algebras A1 and A2, a ∗-algebra homomorphism π is a mapping A1 → A2 satisfying

1. π(λA+B) = λπ(A) + π(B) (linearity),

2. π(AB) = πφ(A)π(B),

3. π(A∗) = (π(A))∗.

3This follows from the Schwarz and the triangle inequalities. For A,B in I, by the triangle inequality ‖A+B‖ ≤
‖A‖ + ‖B‖ = 0, hence A + B ∈ I. For A ∈ I and B ∈ A, by the Schwarz inequality ‖AB‖ ≤ ‖A‖ · ‖B‖ = 0, and
AB ∈ I.

4A sequence of operators {An} converges in the strong operator topology, if for any Ψ ∈ H the sequence of vectors
{AnΨ} converges in the Hilbert space norm.
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(there are more limit points). Therefore any von Neumann algebra is also a C∗ algebra, but the
converse is not in general true. An important subset of the von Neumann algebra B(H) (but not
subalgebra) is the set P of all projection operators on H. This is the set A0 mentioned above,
that represents random events in a probability theory. A normal state on B(H) is a state with the
additional continuity property

φ

(∑
n∈N

Pn

)
=
∑
n∈N

φ(Pn), (1.5)

where {Pn} is an arbitrary sequence of mutually orthogonal projection operators from P. By a
theorem of Gleason5 ([21],[26],[10]), every normal state φ is given by

φ(A) = Tr(ρA), for A ∈ B(H), (1.6)

where ρ ∈ B(H) some hermitean operator with Trρ = 1, determined uniquely by the state φ. A
special case of a normal state is the vector state, where ρ is a one-dimensional projector Pψ given
by a vector ψ ∈ H,

φ(A) = Tr(PψA) = 〈ψ,Aψ〉, for A ∈ B(H). (1.7)

Since the state6 on the algebra (as defined above) can be equivalently given by density operator ρ,
or in a special case by a Hilbert space vector ψ, the term ’state’ can be used also when referring to
ρ or ψ.

1.2 Classical probability

A classical probability theory is given by a triple (Ω,Σ, µ) (the probability space), where Ω is the
space of individual outcomes (the sample space), Σ is a σ-algebra of µ-measurable subsets, and µ
is a probability measure µ : Σ 7→ R satisfying the probability axioms of Kolmogorov,

(c1) µ(A) ≥ 0, for all A ∈ Σ,

(c2) µ(Ω) = 1,

(c3) µ
(⋃

n∈NAn
)

=
∑

n∈N µ(An), for any sequence {An} of mutually disjoint sets from Σ.

The system of µ-measurable sets represent the set random events, and form a Boolean algebra
with the operation of set-theoretic union ∪, intersection ∩, and complement {. The algebra is
associative and commutative. Impossible event is represented by the empty set, the sure event by
Ω, two disjoint events (those that can not occur simultaneously) by two disjoint subsets, and if
A ⊂ B then the event B occurs whenever occurs A.

A random variable (observable) is any µ-measurable function f : Ω 7→ R, it represents an
observable quantity in a random experiment. A distinguished subset of random variables is the set
L∞(Ω,Σ), which is the von Neumann algebra of essentially bounded measurable functions on Ω.
Any random variable g ∈ L∞(Ω,Σ) define a linear multiplication operator Lg on the Hilbert space
H = L2(Ω,Σ, µ) 7, by Lgf = gf for any f ∈ L2(Ω,Σ, µ). This subset contains the subset P of
characteristic functions of the sets in Σ,

χA(x) = 1 for x ∈ A, and χA(x) = 0 for x 6∈ A, (1.8)

5Actually, the theorem asserts that the most general normal state on P with the property (1.5), is given by a
density operator.

6We shall consider normal states only.
7By the Schwarz inequality, H = L2(Ω,Σ, µ) ⊂ L1(Ω,Σ, µ).
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which is the set of orthogonal projections in the commutative Hilbert space H. The projections
are in one-to-one correspondence with then subsets in Σ, and represent the random events. A
probability of occurrence of an event given by A ∈ Σ is given by the state as φ(χA). The state φ
is defined for any µ-integrable random variable f from L1(Ω,Σ, µ) by

φ(f) =

∫
Ω
f(x)dµ. (1.9)

Due to the σ-additivity of the measure, the state φ satisfy the condition (1.5), and it is a normal
state on H. Then the classical probability theory can be reformulated in terms of the Hilbert space
H = L2(Ω,Σ, µ) with the set of bounded operators from B(H) = L∞(Ω,Σ) acting on it.

If µ is absolutely continuous measure with respect to the Lebesgue measure ν on Ω, then by
the Radon-Nikodym theorem [8] there is a probability density ρ, such that dµ = ρdν. Then ρ is
the density operator on the Hilbert space H = L2(Ω,Σ, ν), since it is hermitean and

Trρ =

∫
Ω
ρdν =

∫
Ω
dµ = µ(Ω) = 1.

Therefore classical probability is in this way subsumed into the more general framework of non-
commutative probability theory.

1.3 Quantum probability

Quantum probability is the general probability theory given by the triple (A,P, φ), with A the full
noncommutative ∗-algebra (which is now represented by a ∗-algebra of operators on a Hilbert space),
P the subset of projections, and φ a normal state on A. The set of projection operators P, which
is a subset of the subalgebra of bounded operators B(H) on H, has an important role in quantum
probability, since it represents the set of random events (the quantum propositions). Moreover,
the projections determine the operator structure of all other observables, and the structure of P
determines the properties of B(H) and of the full algebra A.

The set P is a counterpart of the set of measurable subsets Σ of classical probability. For
P1, P2 ∈ P, the set-theoretic intersection becomes replaced by P1 ∧ P2 (the projection onto the
intersection of ranges of P1 and P2), the set union becomes P1 ∨ P2 (the projection onto the linear
span of the union of ranges of P1 and P2, or equivalently onto the sum of the subspaces represented
by P1 and P2), and the set complement is now an orthogonal complement. If P1 and P2 are
compatible, then P1 ∧ P2 = P1P2, and if they are orthogonal, P1 ∨ P2 = P1 + P2. The impossible
event is given be the zero projection, and the sure event by the identity I. If P1 ≤ P2 (i.e. the
range of P1 is contained in those of P2) then the occurrence of P1 implies P2. If P1 ∧ P2 = 0, then
the events cannot occur simultaneously. With the operations ∧ and ∨, the algebra (P,∧,∨) is no
longer a boolean algebra of classical random events, but it forms a lattice of quantum propositions.
It is associative and commutative, but in general not distributive,

P1 ∨ (P2 ∧ P3) 6= (P1 ∧ P2) ∨ (P2 ∧ P3).

The state φ assigns each proposition P ∈ P its probability φ(P ), and it has the properties

(q1) 0 ≤ φ(P ) ≤ 1 for any P ∈ P,

(q2) φ(I) = 1,

(q3) µ
(∨

n∈N Pn
)

=
∑

n∈N µ(Pn), for any sequence {Pn} ⊂ P of mutually orthogonal projections.
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These properties correspond to the probability axioms (c1)-(c3) of Kolmogorov, with the exception
that (q3) requires {Pn} to be mutually orthogonal. The orthogonality of the projections P1 and
P2 is a stronger requirement than the disjointness of the corresponding events, which is given by
the condition P1 ∧ P2 = 0, unless the projections are mutually compatible. This is in contrast
with a commutative (classical) probability, where the disjointness of events already means the
orthogonality of the corresponding projections.

By the von Neumann spectral theorem, a general observable can be constructed out of the
projection operators. If A is an operator on H (possibly unbounded), then there exist a one-
parameter set of projections λ 7→ P (λ) ∈ P, such that

A =

∫
λdP (λ), (1.10)

where the integration is over the spectrum σ(A) of A, and it converges in the strong operator
topology on the domain of A. Furthermore, for any bounded measurable function f ∈ F on the
spectrum of A,

f(A) =

∫
f(λ)dP (λ), (1.11)

and image of F under the mapping f 7→ f(A) is a commutative subalgebra of the algebra of
operators on H. Restricting ourselves to this commutative subalgebra, we obtain an algebra of
observables of classical probability as embedded into the full noncommutative algebra of quantum
probability, with the probability measure given by the state φ as µ(A) = φ(PA), with

PA =

∫
A
dP (λ),

and dµ(λ) = φ(dP (λ)). Therefore the quantum probability can be seen as a generalization of
classical probability by transition from a commutative algebra of the random variables to the
noncommutative algebra of quantum observables.

An important difference between the two types of probability is, that quantum probability
does not admit dispersion free states. A state φ on A is dispersion free, if φ(A2) = φ(A)2 for
all observables A. In a commutative algebra, the dispersion free states are the pure states, the
multiplicative states satisfying φ(AB) = φ(A)φ(B). In general a spectrum of algebra is the set of
all multiplicative states. Setting A = B, all elements of the spectrum are dispersion free states.
For example, given a n-dimensional commutative matrix ∗-algebra Cn, it can be diagonalized by a
suitable unitary transformation Cn 7→ U+CnU (applied to all matrices of the algebra). Then there
are n multiplicative states, φi(ej) = δij for i = 1, 2, ..., n, where ej is the matrix with the jj element
1 and the rest zero. These states are clearly dispersion free, and for any matrix A ∈ Cn the set
{φi(A) | i = 1, 2, ..., n} is the spectrum of A.

The fact that there are no dispersion free states on a noncommutative algebras, does not imply
that there can be no rule, that could assign a definite outcome to any observable of the algebra. In
particular, it does not mean that there could not be any underlying hidden variables theory, that
would reproduce all predictions of quantum theory. A state φ on the algebra has been defined as
a linear functional on A, so for any two observables A,B ∈ A,

φ(A+B) = φ(A) + φ(B). (1.12)

With this definition, a theorem of von Neumann8 shows, that an assumption of existence of a
dispersion free state leads to a contradiction. But this proof is not conclusive, since a hidden-
variables state s need not be committed to the linearity property (1.12). If the operators in (1.12) are

8This is the so called von Neumann proof of impossibility of hidden variables theories, e.g. [21].

7



represented by random functions fA, fB and fA+B on the hidden-state space of a hidden-variables
theory (which is a sample space classical probability theory), then fA+B need not be given as fA+fB.
If the observables A and B are not compatible, they refer to two measurements that require different
experimental set-up and cannot be carried out simultaneously. In a noncommutative probability
theory, the observables do not represent the particular outcomes of an experiment, but rather
the statistical properties of the ensemble of outcomes of a sufficiently long run of repetitions of
the experiment associated with a given observable. It is then admissible to represent the sum of
averages of A and B by the sum A+ B, since the average value is linear functional, and so (1.12)
gives the correct result. But since a hidden-variables theory deals directly with individual outcomes,
there is no reason that the individual outcomes of three different and incompatible experiments,
represented by fA, fB and fA+B, satisfy

fA+B(ξ) = fA(ξ) + fB(ξ) (1.13)

for a hidden variable ξ, hence the dispersion free hidden-variables state need not satisfy the property
(1.12) of a quantum state.

1.4 The problem of measurement

Quantum mechanics is obtained from the quantum probability, if we identify observables (of a
suitable algebra A) with observed physical quantities, and specify their dynamics. The dynamics
is given either for the elements of the algebra A (the Heisenberg picture) of equivalently for the
states on A (the Schrödinger picture). The time evolution is determined by a unitary operator Ut,
as ρ(t) = UtρU

+
t for a density operator ρ, and Ψ 7→ Ψ(t) = UtΨ for a statevector Ψ. In particular,

the time evolution is linear. If the initial state Ψ = Ψ(0) is given by a superposition

Ψ = αΨ1 + βΨ2,

then the statevector at time t is given by the time evolved superposition Ψ(t) = αΨ1(t) + βΨ2(t).
Suppose we want to perform a measurement on a quantum system S, whose initial state is

described by the statevector |S〉. The measurement process is an interaction between the measured
system and a measurement device M . The result of measurement depend on the initial state of
the system S, but it is not necessarily a property that S possesses prior to the measurement. Let
the initial state of the measuring apparatus be |M〉, and let the statevectors |Mi〉 correspond to
the different macroscopic state of the apparatus, which is directly observable by an observer O and
indicate the result of the measurement. The initial state of combined system of the measured system
and the apparatus is described by the statevector Ψ = |S〉 ⊗ |M〉. If the quantum mechanics has
universal validity, then the quantum mechanical evolution law should apply also to the combined
system. Then the dynamics of the measurement process is governed by the Schrödinger equation,
and the combined system evolves as

Ψ(0) = |S〉 ⊗ |M〉 7→ Ψ(t) = Ut(|S〉 ⊗ |M〉) =
∑
i

|Si(t)〉 ⊗ |Mi〉, (1.14)

where the vectors |Si(t)〉 are just the coefficients of the particular expansion of the final statevector.
We get a superposition of the final macroscopic states of the measurement apparatus. But in a real
measurement situation, the observer O always finds the combined system in a state given by only
one of the terms of the superposition. The particular results can not be predicted, but in a series of
experiments they occur with definite relative frequencies, determined on the basis of the coefficients
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|Si〉. Therefore the linear evolution given by the Schrödinger equation, from the point of view of
the observer O, is apparently suspended at the moment of measurement, and the statevector Ψ(t)
collapses into one of the statevectors of the superposition.

The act of observation by O is also a kind of interaction between O and the combined system
of S and M . The problem is, what is the real state of the system between the two measurements,
whether it is a superposition or a collapsed state. Suppose there is another observer O′. Since
the combined system of the measured system S, the apparatus M and the first observer O should
obey the quantum laws as well, we could apply the quantum evolution law also in this case, and
according to O′ no collapse due to O happens, the state is given by a superposition. The state
collapses with respect to the second observer O′, only when O′ asks O, what was the measurement
result. Before that, according to O the measurement has a definite outcome, but for O it is just a
superposition. Therefore, the reality seems to be relative to the particular observer.

Quantum mechanics tells us, that after a measurement the state of the measured system should
be updated according to the measurement result (the projection postulate). In case when the
measurement has been carried out but results have not been recorded, the state of the system
has to be still collapsed to the corresponding mixed state. Within the subjective approach to
probability, this would correspond to the strategy of using the maximum information available
to predict the state of the system. The fact that the measurement took place, could be also a
relevant piece of information, even without knowing the result. But in a quantum measurement,
the change of the state of the system is not only subjective (updating one’s knowledge of a property
of the system independent of the act of measurement), but it is also objective. It is even possible
to determine from subsequent measurements, whether the first one took place or not, e.g. in the
double slit experiment.

If we admit that the collapse occurs upon measurement, we have the problem of determining,
what process in nature is a measurement, and what is an ordinary unitary evolution according to
the Schrödinger equation. Usually, the process is regarded as a measurement, when a microscopic
system interacts with a macroscopic system (e.g. the measurement apparatus), and it is a unitary
evolution when two microscopic interact between each other. But since no strict boundary between
these two cases is known, such a division is somewhat obscure. The theory of quantum decoherence
[23][24] attributes the collapse to the interaction of the measured system with the apparatus and
the surrounding environment with many degrees of freedom. The evolution of the combined system
is regarded as unitary at any time. When the internal degrees of freedom of the apparatus and
the environment are discarded as being uninteresting, the time evolution of the system in the
measurement situation (when coupled to the environment) become effectively non-unitary, and in
a short time period its state becomes one of the eigenstates of the measured observable. However,
decoherence still cannot explain the projection postulate, since the superfluous degrees of freedom
are discarded by tracing over them, but this already involves a collapse of the state vector (of the
apparatus and environment). Hence the apparatus measuring a quantum system shows a definite
result only when it is observed (and the projection postulate is employed).

1.4.1 The EPR experiment

A problem closely related to the measurement problem is that of the apparent non-locality of
quantum mechanics. In the early days after the discovery of quantum mechanics, it was realized,
that the description by the wave function combined with the projection postulate, though perfectly
agreeing with observations, has a sort of non-locality hidden in it. The wave function of a single
particle can be spread over large portion of space, and when an observation is made, the particle
appears sharply localized at a definite (but unpredictable) point in space. The probability of
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occurrence at a specific point is determined on the basis of knowledge of the wave function. By the
act of measurement, as the wave function collapses, the probability to find the particle in the rest
of the space suddenly vanishes. This would not cause any problems, if the probabilities could be
regarded as epistemic only, i.e. if the position of particle has been somehow determined prior to
the measurement, and the measurement just revealed this position. Then there is no non-locality
in the immediate vanishing of the probability in the rest of the space. But some phenomena, e.g.
the two-slit experiment or the EPR experiment combined with the Bell inequalities, show that it
is not possible to regard probabilities in quantum mechanics as merely epistemic. If the position of
the particle is decided only at the moment of the measurement, then it is suspected, there is some
kind of non-local influence, which assures the particle does not appear yet on another place than
it actually did.

The well known thought experiment of Einstein, Podolsky and Rosen [17] shows, that if the
locality principle should be valid even for the phenomena described by quantum mechanics, then
the probabilities must be epistemic. Suppose we have two quantum systems, which have interacted
in the past, but then they have been separated, and now they are far apart and can no longer
interact with each other. The idividual systems are associated with the Hilbert spaces H1 and H2,
and the combined system can be described by the vectors from the Hilbert space H = H1⊗H2. The
state, described by the statevector Ψ ∈ H, of the combined system at the time of separation could
be the (pure) entangled one, i.e. such a vector Ψ, that cannot be written as the tensor product
Ψ = Ψ1 ⊗Ψ2 with Ψ1,Ψ2 ∈ H1 the statevectors of the individual subsystems. The state Ψ evolves
undisturbed according to the Schrödinger equation until a measurement take place; we denote the
statevector at the moment of measurement again by Ψ.

Now we perform a measurement on the first system, we can measure an observable (represented
by the operator) A with eigenstates {an}, or another observable B with eigenstates {bn}. The
actual observable, that is measured on the combined system, is A⊗ I or B ⊗ I. This is a quantum
mechanical expression of the principle of locality, a general observable for the first system is of
the form A ⊗ I and for the second system I ⊗ B. Then no measurement of an observable on the
first system can influence the statistical properties predicted by quantum theory for the second
system. Since A⊗ I and I ⊗ B commute, they have the same systems of eigenvectors, which also
represent the quantum events. The statistical properties of the two observables are determined by
the probabilities assigned to these events, and it follows from the projection postulate, that they
are independent of the order of measurement of A⊗ I and I ⊗B.

The statevector of the combined system Ψ can be always written in the form

Ψ =
∑
n

an ⊗ ψn =
∑
m

bm ⊗ ϕm, (1.15)

where the vectors {ψn} and {ϕn} are regarded as coefficients of the expansions of Ψ into the basis
given by {an} and {bn} respectively. If we measure the observable A and find the eigenvalue
corresponding to an eigenvector ak, by the projection postulate we can infer that the state of the
second system is described by the statevector Ψk. But we can also chose to measure B, then
similarly when we find bk, the second system collapses into the state described by ϕk. Since both
systems can be separated by an arbitrarily large distance, by the principle of locality, the choice
between A or B to measure on the first system cannot influence the state of the second one.

Quantum mechanics does not assign simultaneous values to two incompatible observables. This
could be a consequence of an irreducible indeterminism in nature, that does not allow to tell in
advance the result of measurement in both cases9. The EPR argument against such an irreducible

9This does not refer to our actual ability to make such a prediction, but rather to whether the result is determined
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indeterminism now goes as follows. It is possible, that the two sets of vectors {ψn} and {ϕn} form
two systems of eigenvectors of two mutually incompatible observables, A′ and B′ respectively, of
the second system. Then by choosing between the measurement of A or B on the first system,
we can predict the measurement outcome of either A′ or B′ with certainty without disturbing the
second system. Then since the measurement results for A′ or B′ can be told in advance, they must
be determined prior to the measurement.

1.4.2 The quantum non-locality

The EPR experiment can be carried out with a correlated pair of electrons or photons [8],[22]. In
the case with electrons, the measured observables are their spin orientations with respect to two
different directions. The observables for the first particle are denoted by A and B, and for the
second one by A′ and B′. Using the Pauli matrices ~σ = (σ1, σ2, σ3), (2.101), they are given by

A = ~a · ~σ ⊗ I, B = ~b · ~σ ⊗ I, A′ = I ⊗ ~a′ · ~σ, B′ = I ⊗~b′ · ~σ, (1.16)

where the spatial vectors ~a,~b,~a′,~b′ determine the direction of spin measurement. The (spin structure
of) initial state of the system of two electrons is the singlet Bell state,

Ψ =
1√
2

(ψ+ ⊗ ψ− − ψ− ⊗ ψ+). (1.17)

This state is spherically symmetric, it does not depend on any spatial direction. Moreover, since
(1.17) is already in the form of (1.15), we see that any measurement of spin in the same direction
always yields opposite spin orientations of the electrons.

Suppose there are some hidden variables ξ, that determine the result of measurement of the
spins of electrons locally, i.e. a spin orientation of one particle is predicted without any reference
to the particular observable being measured on the other particle10. The result predicted by such
a hidden-variables theory of measurement of A is denoted by A(ξ), and similarly for the other
observables. the locality principle requires, that the observable A is represented by the same
random variable A(ξ), regardless whether A′ or B′ is chosen to be measured on the second particle.
In other words, it is assumed that there is a classical probability theory, such that all the quantum
observables A through B′ can be uniquely represented by some random variables denoted by A(ξ)
through B′(ξ). If the quantum observables are not compatible, this is not possible, and the Bell
inequalities will show a possible contradiction.

The empirical correlation for measurement outcomes of the observables A and A′ is obtained
as an average value of their product,

〈AA′〉E =
1

N

N∑
n=1

AnA
′
n, (1.18)

with An and A′n the measurement outcomes in n-th out of N repetitions of the experiment, +1
for spin up and −1 for spin down. Both quantum mechanics and a hidden-variables theory are
required to predict this correlation. According to quantum mechanics,

〈AA′〉Q = 〈ψ,AA′ψ〉 = −~a · ~a′, (1.19)

in advance or not.
10According to the classification of [21], it is a hidden-variables theory of the second kind.
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and when A and A′ are represented by their corresponding random variables A(ξ) and A′(ξ), a
hidden-variables theory predicts

〈AA′〉H =

∫
A(ξ)A′(ξ)dµ(ξ). (1.20)

Consider the quantity

C = AA′ +AB′ +BA′ −BB′ = A(A′ +B′) +B(A′ −B′). (1.21)

When C is represented using the random variables A(ξ) through B′(ξ), its value for any ξ is either
+2 or −2. Then by (1.20) the Bell-CHSH inequality follows,

|〈C〉H | = |〈AA′〉H + 〈AB′〉H + 〈BA′〉H − 〈BB′〉H | ≤ |〈AA′ +AB′ +BA′ −BB′〉H | = 2. (1.22)

A similar reasoning cannot be used for the quantum mechanical prediction of C, since unless
[A,A′] = 0 and [B,B′] = 0, the two terms on the right hand side of (1.21) are not observables. The
average value of C predicted by quantum theory is instead committed to the Tsirelson inequality
[19], 〈C〉Q ≤ 2

√
2. Bell showed, that for a specific choice of the directions ~a...~b′, the upper bound

can be attained, contradicting (1.21).

Now suppose that there are no hidden variables determining the results of the spin measure-
ments, but the results are nevertheless determined prior to the measurements, while still no inter-
action between the two particles is possible [25]. The experiment is carried out by measuring spin
of both particles in three coplanar directions making angle 2π/3 with each other. The measure-
ment result in the n-th repetition of the experiment is denoted A(i, n) for the first and A′(j, n)
for the second particle, where i, j ∈ {1, 2, 3} numbers the three directions. The strict correlations,
predicted by quantum mechanics and observed in real experiments, require

A(i, n) = −A′(i, n), for any i ∈ {1, 2, 3}. (1.23)

The pairs of directions (i, j) is chosen randomly in each repetition, there are nine possible choices,
and six of them with i 6= j. Now there are two possible cases for the n-th repetition. In the first
case, the measurement result is predetermined such that A(i, n) would be the same for all i (if the
spin was measured in that direction). Then, by (1.23) and the locality principle, the results for
A and A′ are always opposite irrespective of the (i, j) chosen. In the second case, A(i, n) would
not be always the same, and there are two out of the six different pairs of directions that lead to
the opposite sign of A and A′. Therefore if i 6= j, the spins are opposite in at least 1/3 of the
repetitions. Quantum theory by (1.19) predicts the correlation 〈AA′〉Q = 1/2 when the directions
are unequal (with the angle 2π/3). This implies the probability of opposite spin to be 1/4, which
contradicts the prediction above.

The apparently only way to establish the strict correlations in spin measurements while main-
taining locality is to let the results be determined by a common cause, arising from the interaction
of the particles in the past. If this is not possible, then either the locality must be violated, or the
measurement outcomes are not a part of objective reality. In the latter case, the statevector would
always collapse only with respect to the particular observer. Hence in the above experiment, the
spin relations between the results, obtained by two observers independently measuring the spins
of the two electrons, would be established only after one of the observers communicates his results
to the other. Quantum theory is not committed to the Bell and similar no-go theorems, since it
employs the noncommutative quantum probability instead of the commutative classical one, and
it avoids most statements about results of individual experiments. Therefore quantum theory as a
description of nature is allowed to be a local theory, but it does not imply that also the physical
processes, incompletely described by quantum theory, must be local.
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Chapter 2

Trace dynamics

The basic idea of trace dynamics is to generalize classical Hamiltonian and Lagrangian mechanics for
non-commutative dynamical variables. The dynamical variables are operators on an N -dimensional
underlying vector space M, and are represented by N × N matrices. Every dynamical variable
of classical mechanics, such as position of conjugate momentum, is replaced by a matrix valued
quantity, which is nevertheless regarded as a single degree of freedom. No commutativity properties
are assumed at this stage, the canonical algebra of quantum theory should appear only as an
approximate property of a statistical ensemble. The dynamics and other physical properties is
assumed to be be invariant with respect to a global unitary transformations of the form A 7→ U+AU
for any U ∈ U .

The basic elements of a trace dynamics theory are dynamical variables represented by matrices
composed either of ordinary or of Grassmann numbers. Both cases of complex and real ordinary
or Grassmann numbers are considered, but ultimately we would like to choose the reals since they
are more plausible physically. It turns out that trace dynamics gives some possibilities to recover
the complex Hilbert space of quantum theory, even when started with the real case.

2.1 Grassmann algebra

The Grassmann numbers are used to include fermionic degrees of freedom into the theory. Grass-
mann algebra is built up from products of a set of basic Grassmann anticommuting elements {ei},
eiej + ejei = 0, together with an unit element e of the algebra. The basic elements or product of
odd number of them are called odd grade (or fermionic) elements, a product of even number of
basic elements or the unit is called an even grade (or bosonic) element of the Grassmann algebra.
We denote the odd grade elements by ei and even grade elements by bi. General (either even or
odd grade) basic element is ai with its grade gi, where gi = 0 for even and gi = 1 for odd grade.
Then

{ei, ej} = 0, [ei, bj ] = 0, [bi, bj ] = 0, [e, ai] = 0. (2.1)

where {., .} stands for matrix anticommutation and [., .] for matrix commutation.
The full Grassmann algebra G is finally given by linear span of the set of all Grassmann elements

over the complex or real numbers F. The field F can be viewed as (isomorphic to) a subalgebra of
G given by the linear span of the unit element e.
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2.2 Dynamical variables

The dynamical variables of trace dynamics are operators on M = GN , they are represented by
N × N matrices with elements from the Grassman algebra G. Any operator can be decomposed
into the odd grade and the even grade part. The even grade (or bosonic) matrices will be denoted
by Bi, odd grade (or fermionic) matrices by χi, and odd or even grade by Ai with gi its grade
(gi = 0 for even and gi = 1 for odd grade).

2.2.1 Trace quantities

The dynamical variables are operators rather than their representing matrices, hence there is an
implicit invariance of the dynamical variables with respect to the passive transformations Ai 7→
R−1AiR, for all R ∈ G = GL(G,N), i.e. those induced by a change of coordinates on the underlying
space M. But in trace dynamics it is assumed that the dynamics is also invariant with respect to
(global, i.e. applied to all Ais simultaneously) active transformations of the form Ai 7→ R−1AiR, for
all R ∈ G′ ⊂ G = GL(G,N). An invariant function of dynamical variables A 7→ F (A) = F (R−1AR)
is given by a function of the coefficients of the characteristic polynomial of A. An invariant function
which as also linear in A is function of one of the coefficients only, the trace of A. Generally, a
linear functional on the set of matrices A is given by

F (A) = Fρ(A) =
∑
i,j

ρTijAij = TrρA,

where ρ is a matrix. For constant ρ the invariance requirement F (A) = F (R−1AR) yields ρ =
RρR−1 for all R ∈ G. Hence, up to c-number multiple, ρ = I, the unit matrix, and F (A) = TrA. If ρ
is created from the dynamical variables using c-number coefficients only, then upon transformation
ρ 7→ R−1ρR, and there is no restriction on ρ. For trace dynamics, it is considered the case of
constant ρ. The traces of operators will be further denoted by bold letters,

F (A) = TrA ≡ A. (2.2)

Therefore, in trace dynamics there are two important types of quantities, operator quantities given
by matrices Ai ∈ A, and trace quantities (or trace functionals) given by their traces.

2.2.2 Trace identities and cyclic identities

Although there are no general commutation properties for operator quantities, some properties
arise for operators under the trace. For any two even grade bosonic matrices B1 and B2 we have

TrB1B2 =
∑
m,n

(B1)mn(B2)nm =
∑
mn

(B2)nm(B1)mn = TrB2B1, (2.3)

but for any two odd grade fermionic matrices χ1 and χ2

Trχ1χ2 =
∑
m,n

(χ1)mn(χ2)nm = −
∑
mn

(χ2)nm(χ1)mn = −Trχ2χ1,

and for one even and the other odd grade matrix, TrBχ = TrχB. This means that it is possible
to perform a cyclic permutation under the trace, but permuting an odd grade element may change
the sign of the trace,

TrA1A2 . . . An = (−1)(g1g2+...g1gnTrA2 . . . AnA1. (2.4)
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Conventionally the trace quantities P are constructed such that they are real and even grade
element of the Grassmann algebra. Hence permuting an odd grade element always changes the
sign,

TrA1A2 . . . An = (−1)g1TrA2 . . . AnA1. (2.5)

Using (2.4) we obtain useful trilinear cyclic identities, denoting {., .}± as matrix anticommuta-
tor/commutator,

TrA1{A2, A3}± = (−1)g1(g2+g3)Tr
[
A2(A3A1 ± (−1)g3(g1+g2)A1A3)

]
= (2.6)

= (−1)g3(g1+g2)Tr
[
A3(A1A2 ± (−1)g2(g1+g3)A2A1)

]
,

which, when written out for bosonic and fermionic variables for the relevant (even grade) trace
quantities, become

TrB1{B2, B3}± = TrB2{B3, B1}± = TrB3{B1, B2}± (2.7)

TrB1{χ2, χ3}± = Trχ2{χ3, B1}∓ = −Trχ3{B1, χ2}∓ (2.8)

Trχ1{B2, χ3}± = −TrB2{χ3, χ1}∓ = −Trχ3{χ1, B2}± (2.9)

Trχ1{χ2, B3}± = −Trχ2{B3, χ1}± = −TrB3{χ1, χ2}∓ (2.10)

2.2.3 Operator conjugation

There is a scalar product 〈., .〉 on the space M = GN , such that for x, y ∈M

〈x, y〉 = (x,My), (2.11)

where (., .) is the standard dot product and M the (generally symmetric) matrix corresponding
to 〈., .〉. The operator conjugation A 7→ A∗ is defined in the usual way by Riesz lemma and the
requirement 〈x,Ay〉 = 〈A∗x, y〉 for all x, y ∈ M. For the standard dot product (M = I) this
amounts to transpose and complex conjugation A 7→ (Ag)+ = (Ag)T , irrespective of the grade of
A, which is denoted by the g superscript,

(Ag)∗mn = (Ag)+
mn ≡ (Ag)nm. (2.12)

Note that A 7→ A+ denotes always the conjugation with respect to standard dot product, whereas
A 7→ A∗ is the conjugation with respect to the actual metric M .

The grade is important for conjugation of product of two matrices Ag1
1 and Ag2

2 , since

(A1A2)+
mn = (A1A2)nm =

∑
k

(A1)nk (A2)km = (−1)g1g2
∑
k

(A2)km(A1)nk =

= (−1)g1g2
∑
k

(A+
2 )mk(A

+
1 )kn = (−1)g1g2

(
A+

2 A
+
1

)
mn

, (2.13)

and in matrix notation,
(A1A2)+ = (−1)g1g2A+

2 A
+
1 , (2.14)

hence conjugation changes sign in case of two odd grade matrices.

For a general dot product the conjugation is given by

(A+M+x, y) = (x,MAy) = 〈x,Ay〉 = 〈A∗x, y〉 = (A∗x,My) = (M+A∗x, y),

15



A∗ = (M−1)+A+M+, (2.15)

and (2.13) holds also in the general case. Upon change of coordinates

x 7→ R−1x, A 7→ R−1AR, M 7→ R+MR, A∗ 7→ R−1A∗R,

and the transformation preserves all adjointness properties of the matrices (with respect to the
corresponding dot products). The basis in M is chosen such that 〈., .〉 becomes the standard dot
product. The assumed active transformations in general change the adjointness properties. Since
adjointness properties of the dynamical variables are of interest for the emergence of quantum
theory, the active transformations are restricted to unitary ones, i.e. we restrict the transformations
A 7→ R−1AR from the group G to its unitary (with respect to the standard dot product) subgroup
G′ = U , so that A 7→ U+AU for U ∈ U .

2.2.4 Properties of trace quantities

The trace quantities P = TrP are chosen real and of even grade. It follows that if P = AO, then
A and O are of the same grade.

If TrAO vanishes for all O (of the respective grade), then it implies also P = 0 as an operator.
Write P =

∑
nCnKn, with Kn distinct c-number mononomials in Grassmann elements and Cn

their real or complex matrix coefficients, Cn ∈ FN×N . All Kn are of the same grade as P . For
arbitrary but fixed Cp from the sum, take O = αC+

p with α a real number for Kp bosonic, and a
Grassmann element not contained in Kp for Kp fermionic (otherwise Kpα = 0), to obtain

0 = Tr

(∑
n

CnC
+
p Knα

)
. (2.16)

The coefficients of the distinct Grasmann monomials Knα have to vanish separately, in particular
CpC

+
p = 0, Cp = 0, an this is true for all p giving P = 0.

The assertion still holds, if O is restricted to all self-adjoint or all anti-self-adjoint and either
bosonic or fermionic matrices. For example consider the case of all self-adjoint bosonic O. Decom-
pose P into its self-adjoint and anti-self-adjoint part, P = P sa + P asa. Since

TrP saO = Tr(P saO)+ = TrOP sa = TrP saO,

TrP asaO = Tr(P asaO)+ = −TrOP asa = −TrP saO,

the trace TrP saO is real and TrP asaO is imaginary, and so they must vanish separately in TrPO = 0.
Taking O = Csap for the first trace and O = iCasap for the second in (2.16), both P sa and P asa must
vanish giving P = 0.

If PO is such that TrPO is real and bosonic for any self-adjoint or any anti-self-adjoint O of
either odd or even grade, then P has the same grade and adjointness properties as O. For example,
for all O self-adjoint bosonic matrices, using (2.5) and (2.13),

0 = ImTrPO = TrPO − TrPO = TrPO − Tr(PO)+ = Tr(PO −OP+) = Tr((P − P+)O),

which implies P = P+, i.e. P is self-adjoint. For O anti-self-adjoint fermionic matrices, analogously,

0 = ImTrPO = TrPO − Tr(PO)+ = TrPO − TrOP+ = TrPO + TrP+O = Tr((P + P+)O),

and since O as arbitrary anti-self-adjoint, P + P+ must vanish, and P is anti-self-adjoint.
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2.2.5 Operator derivative of a trace quantity

Let P is a polynomial constructed from the dynamical variables including an operator O. The
derivation of trace quantity P = TrP with respect to O is defined by an infinitesimal variation of
P in O, O 7→ O+ δO, discarding the higher order terms in δO, and cyclic permutation to make δO
stand in the trace on the right,

δP = Tr
δP

δO
δO, (2.17)

which for arbitrary infinitesimal δO gives the derivative δP/δO. This definition is useful together
with (2.5), when P is a polynomial or a rational function of the dynamical variables. Rewriting
(2.17) by using matrix indices

δP =
∑
m,n

(
δP

δO

)
mn

(δO)nm,

we get for the matrix components of the derivative(
δP

δO

)
mn

=
∂P

∂Onm
. (2.18)

According to a remark above, since we choose P such that TrP is real and bosonic, the derivative
of P with respect to an operator O is always of the same grade, and shares the same adjointness
properties as O. From (2.18) it also follows that the derivative with respect to an operator obeys
the Leibniz rule, for any two trace quantities of general functions P and Q,

δ(PQ)

δxr
=
δP

δxr
Q + P

δQ

δxr
. (2.19)

2.3 Dynamics of matrix models

Let the configuration space of a system with n degrees of freedom be described by the set {qr(t)},
for r = 1, 2, . . . , n, of dynamical variables with t as a time parameter. The variables are even grade
(bosonic) or odd grade (fermionic) matrices representing bosonic or fermionic degrees of freedom
respectively. The dynamics is given by the trace Lagrangian L,

L({qr}, {q̇r}) = TrL({qr}, {q̇r}), (2.20)

where L is the Lagrangian operator, which is chosen such that L is real and Grassmann even
grade. This allows us to define conjugate momentum operator pr to each qr of the same grade and
adjointness properties by

pr =
δL

δq̇r
.

The variation of the trace action

S =

∫ t2

t1

Ldt (2.21)

with respect to qr with fixed qr(t1) and qr(t2) gives

δS =

∫ t2

t1

∑
r

Tr

(
δL

δqr
− d

dt

δL

δq̇r

)
δqr,
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and for stationary action δS = 0 and arbitrary independent variations δqr we obtain the operator
Euler-Lagrange equations

δL

δqr
− d

dt

δL

δq̇r
= 0, r = 1, 2, . . . , n. (2.22)

The Legendre transformation of the trace Lagrangian defines the trace Hamiltonian function
H({qr}, {pr}) as

H = Tr
∑
r

pr q̇r − L. (2.23)

By variations of H with the use of the Euler-Lagrange equations (2.22),

δH = Tr
∑
r

(δpr q̇r + p+ rδq̇r − ṗrδqr − prδq̇r) = Tr
∑
r

(εr q̇rδpr − ṗrδqr) ,

with εr = (−1)gr is +1 for bosonic and −1 for fermionic variable. Then the Hamilton equations
reads

ṗr = −δH
δqr

, q̇r = εr
δH

δpr
. (2.24)

It is convenient to introduce a compact notation. Set x2k−1 = qk and x2k = qk for k = 1, 2, . . . n,
and define a 2n× 2n matrix ω by

ω = diag(Ω1,Ω2, . . .Ωn), (2.25)

where Ωk = ΩB for r bosonic and Ωk = ΩF for r fermionic with

ΩB =

(
0 1
−1 0

)
, ΩF =

(
0 −1
−1 0.

)
(2.26)

For future reference, we note that the matrix ω has the following properties,

(ω2)rs = −εrδrs, ωsr = −εrωrs = −εsωrs,
∑
t

ωtrωts =
∑
t

ωrtωst = δrs. (2.27)

The Hamilton equations (2.24) now become

ẋr =
∑
s=1

ωrs
δH

δxs
, r = 1, 2, . . . , 2n.

We use them to determine the time derivative of a bosonic trace functional A,

dA

dt
=
∂A

∂t
+

2n∑
r=1

Tr

(
δA

δxr
ẋr

)
=
∂A

∂t
+

2n∑
r,s=1

(
δA

δxr
ωrs

δH

δxs

)
=
∂A

∂t
+ {A,H}. (2.28)

The last term on the right hand side is the generalized Poisson bracket. For any two bosonic trace
quantities A and B it is defined by

{A,B} =

2n∑
r,s=1

(
δA

δxr
ωrs

δH

δxs

)
= Tr

n∑
r=1

εr

(
δA

δqr

δB

δpr
− δB

δqr

δA

δpr

)
. (2.29)
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The generalized Poisson bracket has all the properties of ordinary Poisson bracket, it is antisym-
metric in its arguments, satisfies the Jacobi identity

{A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0, (2.30)

and obeys the Leibniz rule
{AB,C} = A{B,C}+ {A,C}B. (2.31)

This follows by expanding (2.29) into the matrix components with the use of (2.18),

{A,B} =
N∑

i,j=1

n∑
r=1

εr

((
∂A

∂qr

)
ij

(
∂B

∂pr

)
ji

−
(
∂B

∂qr

)
ij

(
∂A

∂pr

)
ji

)

and using the Jacobi identity for the ordinary Poisson bracket (extended to the Grassmann algebra)
on each term of the sum over i, j.

The equation (2.28) implies, that if A has no explicit time dependence, it is conserved by the
time evolution if and only if its Poisson bracket with the trace Hamiltonian H vanishes. The
trace Hamiltonian itself is a conserved quantity, since by assumption L nor H has explicit time
dependence. From the generalized Jacobi identity it follows, that the Poisson bracket of two
conserved quantities is also conserved, hence the algebra of symmetries form a Lie algebra under
the action of the generalized Poisson bracket.

2.4 Symplectic structure of trace dynamics

Trace dynamics has a natural symplectic structure of classical mechanics1, since at the level of
the matrix components it is essentially classical mechanics. The configuration manifold M of
trace dynamics is coordinatized by the operators (matrices) q = (q1, . . . , qn). Any curve on the
configuration manifold γ : τ 7→ q(τ) determines a tangent vector V γ

p at the point p = γ(0) by its
action on a trace functional A = A({qr}),

V γ
p A =

d

dτ
(A ◦ γ)(0) =

∑
rij

∂A

∂(qr)ij

dγr,ij
dτ

(0) = Tr
∑
r

δA

δqr

dγr
dτ

(0) = Tr
∑
r

(
εr
dγr
dτ

(0)
δ

δqr

)
A.

(2.32)
Denote the coordinates of the tangent vector at the point p by {Xr(p)},

Xr(p) = εr
dγr
dτ

(0), (2.33)

then we see that the action of a general vector field X on the configuration manifold M , given by
some curve γ with γ(0) = p, at a trace functional A at the point p ∈M can be written as

X|pA = Tr
∑
r

(
Xr(p)

δA

δqr

)
. (2.34)

Given a vector field X (or the corresponding vector Xp at the point p ∈M) and a trace functional
A, we can define a 1-form FA by the action of X at the functional A by

FAX = XA = Tr
∑
r

(
Xr

δA

δqr

)
=
∑
rij

∑
smn

(
(Xr)ij

(
∂

∂(xr)ij
, (dxs)mn

)
∂A

∂(qr)mn

)
= (2.35)

1The case of symplectic structure of classical mechanics is treated for example in [5].
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=
∑
rij

∑
smn

(
(Xr)ij

((
δ

δxr

)
ji

, (δxs)mn

)(
δA

δqr

)
nm

)
= Tr

∑
r

(
Xr

δ

δxr

)
Tr
∑
s

(
δA

δxs
δxs

)
,

where we have introduced the symbols and their mutual relation(
δ

δxr

)
ji

=
∂

∂(xr)ij
, (δxs)mn = (dxs)mn,

((
δ

δxr

)
ji

, (δxs)nm

)
= δrsδimδjn. (2.36)

Denoting the coordinates of the form FA at p by

Fs =
δA

δqs
, (Fs)mn =

(
δA

δqs

)
nm

, (2.37)

we can infer the shape of a general differential form F on the manifold M , and from (2.34) of a
general vector field X,

F |p = Tr
∑
s

(Fs(p)δxs) , X|p = Tr
∑
r

(
Xr(p)

δ

δqr

)
. (2.38)

The configuration space of trace dynamics is M , the tangent bundle of M is TM , and the cotangent
bundle is T ∗M . The cotangent bundle of the configuration manifold is a natural space for the
formulation of classical symplectic mechanics, and it is called the symplectic space. To extend the
symplectic formulation to trace dynamics, we introduce coordinates {xr} on T ∗M , which split to
the coordinates {qr} of a point on the manifold M and the coordinates {pr} of the 1-forms at this
point. The notation is the same as in previous section. The vector fields and differential forms on
T ∗M have the same shape as in (2.38) with qr replaced by xr. There is a natural projection π that
takes a point in T ∗M with coordinates x = (q, p) to the point q on the configuration manifold M ,
and its derivative π∗ maps T (T ∗M) to TM . It is used to define a distinguished differential 1-form
ω1 ∈ T ∗(T ∗M) on the symplectic manifold T ∗M . Given a point x = (q, p) ∈ T ∗M , i.e. a 1-form
F =

∑
r Tr(prδqr) ∈ T ∗M , the 1-form ω1 is defined by its action at a vector ξ ∈ T (T ∗M) by

ω1(ξ) = F (π∗ξ). (2.39)

The form ω1 can be written in coordinates as

ω1 =
∑
r

Tr(prδqr). (2.40)

Given a form ω ∈ T ∗(T ∗M),

ω =
∑
r

Tr(ωrδxr) =
∑
rij

(ωr)ji(δxr)ij =
∑
rij

(ωr)ij(dxr)ij ,

and taking advantage of the decomposition to matrix components, we can define the differential
operator δ acting on the form ω by

δω =
∑
rij

∑
smn

∂(ωs)nm
∂(xr)ij

(dxr)ij ∧ (dxs)mn = Tr
∑
rs

(
δωs
δxr

δxr ∧ δxs
)
. (2.41)

Applying this result to the 1-form ω1, we obtain the symplectic 2-form ω2,

ω2 = δω1 = Tr
∑
rs

(
δps
δxr

δxr ∧ δqs
)

= Tr
∑
r

δpr ∧ δqr. (2.42)
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This 2-form has a close connection to the Hamiltonian formulation of trace dynamics. It establishes
an isomorphism between vector fields ξ and 1-forms ω1

ξ on T ∗M by

ξ 7→ ω1
ξ (χ) = ω2(χ, ξ), χ ∈ T (T ∗M). (2.43)

Denote the decomposition of the coordinates of ξ and χ to the q and p components, ξr = (ξq,s, ξp,s)
and χ = (χq,s, χp,s), where r = 1, 2, . . . 2n and s = 1, 2, . . . , n. Then by (2.41),

ω2(ξ, χ) = (δω1)(χ, ξ) = Tr
∑
s

(εsχq,sξp,s − χp,sξq,s) . (2.44)

This gives the mapping ξ 7→ ω1
ξ the component representation (ξq,s, ξp,s) 7→ (−ξp,s, εsξq,s). The

inverse mapping I : ω1
ξ 7→ ξ is in the q and p components given by

I : (ω1
ξ,q,s, ω

1
ξ,p,s) 7→ (εsω

1
ξ,p,s,−ω1

ξ,q,s), (2.45)

which corresponds just to the matrix ω from previous section, (2.25) and (2.26)

Given a bosonic trace functional H({xr}) = H({qs}, {ps}) on the symplectic space T ∗M , its
differential is

δH = Tr
∑
r

(
δH

δxr
δxr

)
= Tr

∑
s

(
δH

δqs
δqs +

δH

δps
δps

)
, (2.46)

and it is a 1-form on T ∗M . Its image under the mapping I, IδH ∈ T (T ∗M), is a vector on the
symplectic space T ∗M . Denoting the integral curve of this vector field by xr(t), then it obeys the
equation

ẋr(t) = IδH, (2.47)

or in coordinates

(q̇s, ṗs) =

(
εs
δH

δqs
,−δH

δps

)
, ẋr =

∑
s

ωrs
δH

δxs
. (2.48)

If the trace functional H is interpreted as the trace Hamiltonian, then (2.48) are just the Hamilton
equations of motion (2.24). The vector field IδH is then called the Hamiltonian vector field. For a
general (bosonic) trace functional, it represents the one-parameter canonical transformations (2.56)
on the phase space - the symplectic manifold T ∗M .

Denote the vector field associated with a trace functional A through the mapping I by XA =
IδA. Any trace functional H generate a flow t 7→ xr(t) on the phase space T ∗M . The derivative
of a trace functional A along this flow at the point p = xr(0) is, with the use of the definition of
ω2 (2.42),

d

dt
A({xr(t)})|0 = (XH)|pA = δA(XH) = ω2(XH, XA).

Evaluating ω2(XH, XA) with the use of (2.44), (2.45) and (2.46), we find

ω2(XH, XA) = −Tr
n∑
r=1

εr

(
δH

δqr

δA

δpr
− δA

δqr

δH

δpr

)
= {A,H},

which is just the generalized Poisson bracket (2.29). Hence the derivative of A in the direction of
the vector field XH = IδH is given by the Poisson bracket,

XHA = {A,H}.
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The other way round, the Poisson bracket associates a vector field XH to any (bosonic) trace
functional H by

XH = −{H, .} = −Tr
∑
rs

(
δH

δxr
ωrs

δ

δxr

)
. (2.49)

As a consequence of the Jacobi identity for the generalized Poisson bracket, XH obeys the Leibniz
product rule

XH{A,B} = {XHA,B}+ {A, XHB},

and the commutator of vector fields satisfies

[XA, XB]C = XAXBC −XBXAC = X{A,B}.

for any trace functionals A,B,C. The last identity implies, that the vector fields XH form a Lie
algebra under commutation, which is isomorphic to the Lie algebra of trace functionals H under the
generalized Poisson bracket. The Poisson bracket is independent of the time evolution generated by
the Hamiltonian vector field XH, or more generally, of any one-parameter canonical transformation
generated by a trace functional G. Hence the symplectic 2-form ω2 is invariant with respect to
these transformations. It follows that also all the exterior powers of ω2 are invariant. In particular
its nN -th power (which corresponds, up to a constant multiple, to the operator phase space element
volume) is invariant under canonical transformation.

For A not explicitly time dependent bosonic functional the equation of motion is

Ȧ = {A,H} = −{H,A}.

If we define the trace quantity Xr = Trjrxr, the equations of motion can be formally integrated,

Xr(t) = exp(−tXH)Xr(0), xr(t) =
δ

δjr
[exp(−tXH)Tr(jrxr(0))] ,

with the expansion for small t,

Xr(t) = Xr(0)− t{H,Xr}t=0 +
1

2
t2{H, {H,Xr}}t=0 −

1

6
t3{H, {H, {H,Xr}}}t=0 + . . . .

Note that, up to some special cases, the evolution generated by the trace Hamiltonian is not unitary.
It is expected to become approximately and effectively unitary in statistical averages only.

2.5 Conserved quantities

Conserved quantities are of interest in statistical mechanical treatment, since they are used to
condition the statistical ensemble on their expectations. Besides the trace Hamiltonian, which is
always conserved, there is an important operator conserved due to the global unitary invariance of
L and H, the C operator, and in case of r as the infinitesimal spatial box index in a field theory
there are conserved trace Poincaré generators. These additional conserved quantities appear when
certain assumptions about the Lagrangian and Hamiltonian operators are made.
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2.5.1 The conserved C operator

When the Hamiltonian operator H is constructed from the dynamical variables with c-number
coefficients only, then the trace Hamiltonian H is invariant with respect to global unitary transfor-
mations on the underlying vector space M,

qr 7→ U+qrU, pr 7→ U+prU,

the invariance of H means that

H({qr}, {pr}) 7→ H({U+qrU}, {U+prU}) = H({qr}, {pr}). (2.50)

The conserved operator C is obtained, if we consider infinitesimal unitary transformations U =
exp(εΛ) with Λ a constant even grade anti-self-adjoint matrix, and ε an infinitesimal c-number
parameter. Then U = I + εΛ + o(ε) and

qr 7→ U+qrU = qr − ε[Λ, qr] + o(ε), pr 7→ U+prU = pr − ε[Λ, pr] + o(ε). (2.51)

The invariance of H implies

o(ε) = δH = −εTr
∑
r

(
δH

δqr
[Λ, qr] +

δH

δpr
[Λ, pr]

)
+ o(ε).

Since δH is of order less than ε, the coefficient of ε must vanish. Using the Hamilton equations
(2.24) and cyclic identities under the trace,

0 = Tr
∑
r

(ṗr[Λ, qr]− εr q̇r[Λ, pr]) = Tr
∑
r

(εrqrṗr − ṗrqr − pr q̇r + εr q̇rpr) Λ =
d

dt
Tr
∑
r

(εrqrpr − prqr) Λ,

and since Λ is arbitrary anti-self-adjoint, the operator

C =
∑
r

(εrqrpr − prqr) (2.52)

is conserved by the evolution generated by the trace Hamiltonian H. The operator can be also
equivalently written as

C =
∑
r∈B

[qr, pr]−
∑
r∈F
{pr, qr} =

∑
rs

(xrωrsxs) , (2.53)

where the first sum on the right is over bosonic and the second over fermionic degrees of freedom.

The conserved operator C does not change, if general transformations of the form A 7→ R−1AR
for R ∈ G = GL(G,N) are considered. In that case the generator Λ is an arbitrary matrix, and
the infinitesimal transformation becomes (2.51) with U replaced by R and U+ by R−1,

R = exp(εΛ) = I + εΛ + o(ε), R = exp(−εΛ) = I − εΛ + o(ε).

The C operator is the Noether charge associated with the global unitary invariance. Generally,
if the trace Lagrangian L is invariant under the infinitesimal transformations,

qr 7→ qr + ε∆r,

q̇r 7→ q̇r + ε∆̇r,
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then with the use of the Euler-Lagrange equations (2.22)

0 = δL = Tr
∑
r

(
δL

δqr
ε∆r +

δL

δq̇r
ε∆̇r

)
=

d

dt
Tr
∑
r

(
δL

δq̇r
∆r

)
,

and there is a conserved Noether trace charge

J = Tr
∑
r

(
δL

δq̇r
∆r

)
. (2.54)

In the case of unitary transformations (2.51), the conserved trace charge reads

J = −Tr
∑
r

(
δL

δq̇r
[Λ, qr]

)
= Tr

∑
r

(prΛqr − prqrΛ) = Tr
∑
r

(prqr − εrqrpr) Λ = TrCΛ,

which together with the arbitrariness of Λ again implies the conservation of the operator C, (2.52).

Usually, conserved quantities can be used as generators of those transformations, with respect
to which they are conserved. The conserved operator C can be used as a generator of global
unitary canonical transformations on the operator phase space. General infinitesimal canonical
transformations in trace dynamics are defined for any self-adjoint bosonic operator G by

δqr = εεr
δG

δqr
, δqr = −εδG

δpr
, δxr = ε

∑
s

ωrs
δG

δxs
, (2.55)

with ε an infinitesimal parameter. If qr(τ) and pr(τ) is a curve in the operator phase space
parametrized by τ and letting ε→ 0 with

1

ε
δxr ≡

1

ε
(xr(τ + ε)− xr(τ))→ ∂xr

∂τ
,

the infinitesimal transformation (2.55) becomes

∂

∂τ
qr(τ) = εr

δG

δqr
,

∂

∂τ
qr(τ) = −δG

δpr
,

∂

∂τ
xr(τ) =

∑
s

ωrs
δG

δxs
. (2.56)

It is a Hamiltonian phase flow (2.24) parametrized by τ and generated by the trace functional G.
We get an infinitesimal unitary transformation with the special choice

GΛ = TrΛC, (2.57)

for Λ some bosonic anti-self-adjoint operator. Inserting GΛ into (2.55),

δxr = ε
∑
s

ωrs
δTr(ΛC)

δxs
= ε

∑
s

ωrs
δ

δxs
Tr

(
Λ
∑
m,n

xmωmnxn

)
=

= ε
∑
s,n

Tr (ωrsωsnεnxnΛ + ωrsωnsΛxn) = ε[Λ, xr],

where we have used the properties (2.27) of ω in the last step. The resulting formula corresponds
(up to the sign which can be nevertheless included into Λ) to the unitary transformation (2.51) and
can be written xr 7→ exp(εΛ)xr.
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The infinitesimal transformation of a trace functional A generated by another trace functional
G (bosonic, even grade) can be written in direct analogy with (2.28) as

A 7→ A + δA = A + ε

2n∑
r=1

Tr

(
δA

δxr
δxr

)
A+ = ε

2n∑
r,s=1

(
δA

δxr
ωrs

δG

δxs

)
= A + ε{A,G},

hence the difference and the phase flow is given by the generalized Poisson bracket as

δA = ε{A,G}, ∂A(τ)

∂τ
= {A,G}. (2.58)

For the case of unitary transformations, G = GΛ, which leave the trace functional A unchanged,
(2.58) implies

0 = δA = ε{A,GΛ}.

But this can be also interpreted as that GΛ is invariant under canonical transformations generated
by any A which is unitary invariant,

δGΛ = ε{GΛ,A} = 0,

and since Λ in (2.57) is arbitrary anti-self-adjoint, the operator C is invariant under any canonical
transformation with unitary invariant generator (when Λ is anti-self-adjoint).

The generalized Poisson bracket of two generators of unitary transformations GΛ and GΣ given
by (2.57) can be evaluated with the help of (2.51) and (2.56) as

{GΛ,GΣ} = Tr
∑
rs

δGΛ

δxr
ωrs

δGΣ

δxs
= Tr

∑
r

(
δGΛ

δxr
[Σ, xr]

)
= Tr

∑
rs

[Λ, xr]ωrs[Σ, xs]) =

= Tr
∑
rs

ωrs (ΛxrΣxs + xrΛxsΣ− ΛxrxsΣ− xrΛΣxs) = Tr
∑
rs

ωrs (−ΣΛxrxs − ΛΣxsxrεr) =

= Tr[Λ,Σ]C = G[Λ,Σ],

where we were using the cyclic identities under the trace and the properties of the ω matrix
(2.27). The algebra of unitary transformation generators GΛ under the generalized Poisson bracket
(a subalgebra of generators of general canonical transformations) is therefore isomorphic to the
subalgebra of anti-self-adjoint matrices Λ under matrix commutation.

The conserved operator C plays a central role in the emergence of quantum theory from the
statistical mechanics of matrix models with trace dynamics as the underlying deterministic theory.
For that sake it is needed that the statistical ensemble average of C is anti-self-adjoint or at least
with only small self-adjoint contribution. This can be achieved by assigning suitable adjointness
properties to the operators representing bosonic and fermionic degrees of freedom. If bosonic and
fermionic variables are represented by self-adjoint or anti-self-adjoint, the resulting C is always anti-
self-adjoint. An alternative assignment is to take the bosonic (anti-)self-adjoint and the fermionic
variables arbitrary with the constraint pr = q+

r . This has of course implications for the kinetic part
of the fermionic Lagrangian Lkin,F , for example it could have the form

Lkin,F = Tr
∑
r,s∈F

q+
r Arsq̇s, (2.59)
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where Ars for r, s = 1, 2, . . . , n are constant even grade matrices. Generally the trace Lagrangian is
required to be real and bosonic up to a time derivative, which vanishes in the action integral. This
condition holds, if the matrices Ars are chosen such that A+

rs = Asr, since then

L+
kin,F = −Tr

∑
r,s∈F

(
q̇+
s A

+
rsqr

)
= − d

dt

∑
r,s∈F

q+
s A

+
rsqr

+ Tr
∑
r,s∈F

qrA
+
sr q̇r = Lkin,F +

d

dt
(. . . ) .

With this Lagrangian, the canonical momentum is

pr =
δL

δq̇r
=
∑
r∈F

q+
r Ars,

and the resulting Hamiltonian is independent of the constant matrices Ars and so (as a function of
{qr} and {pr}) it is unitary invariant. The bosonic part of C is anti-self-adjoint and the fermionic
is

CF = −
∑
s∈F
{qs, ps} = −

∑
r,s∈F

{qs, q+
r Ars} = −

∑
r,s∈F

(
qsq

+
r Ars + q+

r Arsqs
)
,

This, together with

C+
F =

∑
r,s∈F

(
Asrqrq

+
s + q+

s Asrqr
)
,

gives the self-adjoint part of C as

CsaF =
1

2

(
CF + C+

F

)
=
∑
r,s∈F

[
Asr, qrq

+
s

]
. (2.60)

For the special choice Ars = δrsI, the C operator is purely anti-self-adjoint, and for more general
choice it can have a self-adjoint part. The trace of C vanishes with any choice of adjointness
assignments for the dynamical variables, and the self-adjoint and anti-self-adjoint part of C is
conserved separately.

2.5.2 The conserved ”number” quantities

Apart from the trace Hamiltonian, there are additional conserved trace quantities in the case, when
the Hamiltonian operator is constructed from equal number of the dynamical qr and pr variables.
Denote the number of occurrences of qr in H as nqr and the number of pr as npr . Then from the
definition of the derivative of a trace quantity with respect to an operator,

Tr
δH

δqr
qr = nqrH, Tr

δH

δpr
pr = nprH, (2.61)

since each monomial with k operators qr yields k terms in the differential δH with respect to
variations of qr, and this differential is obtained from (2.61) by qr 7→ δqr on the right. Then if
the number of fermionic q-s and p-s in the trace Hamiltonian are equal, there is conserved trace
”fermion number” NF , and similarly if the bosonic variables are balanced, there is conserved trace
”boson number” NB,

NF =
1

2
Tr
∑
r∈F

[qr, pr] = Tr
∑
r∈F

qrpr, NB =
1

2
Tr
∑
r∈B
{qr, pr} = Tr

∑
r∈B

qrpr. (2.62)
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The conservation follows from taking the time derivatives,

ṄF = Tr
∑
r∈F

(q̇rpr + qrṗr) = Tr
∑
r∈F

(
−δH
δpr

pr +
δH

δqr
qr

)
=
∑
r

(−npr + nqr)H = 0,

where we have used the Hamilton equations for fermionic degrees of freedom, the fact that the
fermionic variables anticommute under the trace, and (2.61). Similarly for the bosonic case,

ṄB = Tr
∑
r∈F

(q̇rpr + qrṗr) = Tr
∑
r∈F

(
δH

δpr
pr −

δH

δqr
qr

)
=
∑
r

(npr − nqr)H = 0.

It is obvious, that if the numbers of qr and pr are balanced separately for some r, then the quantity
Nr = qrpr is conserved too. Also in case of local field theories, if the numbers are balanced locally,
there are local conserved ”number” charges.

In the case of complex underlying vector space and the fermionic adjointness assignment pr =
q+
r , the conserved trace ”fermion number” NF is the Noether charge associated with c-number

rephasings of the dynamical variables,

pr 7→ eiεpr, qr 7→ eiεqr.

If the trace Lagrangian L is invariant with respect to these rephasings, that is, if the number
of fermionic q-s and p-s are balanced in the trace Lagrangian, then the corresponding conserved
Noether charge is (2.54) with ∆r = iqr,

−iNF = −i
∑
r∈F

(
δL

δq̇r
iqr

)
= −Tr

∑
r∈F

prqr = Tr
∑
r∈F

qrpr = Tr
∑
r∈F

qrq
+
r .

2.5.3 Conserved quantities in a trace dynamics field theory

If the trace dynamics is treated as a continuum spacetime field theory, the degrees of freedom
become labeled by composite indices r = (xµ, l), where x = (x0, ~x) is the spacetime point, and l
numbers the field components. The Greek letters denote Lorentz indices, and they are lowered and
raised by the Minkowski metric tensor η = diag(1,−1,−1,−1). The Einstein summation convention
will be used, the summation over repeating upper and lower Greek indices is understood.

To deal with the uncountably infinite degrees of freedom that arise in this way, it is customary
to impose a kind of locality condition by linking the spacetime points with the field amplitudes by
a continuous and differentiable function ql : xµ 7→ ql(x

µ). The continuity of ql gives the topology of
the spacetime to the infinite dimensional configuration space consisting of {qxµ,l}xµ,l for all x and l.
The state of the system (field) is now given by a correlation between the variables xµ and the values
of ql, i.e. by a surface in a finite dimensional space. The interaction between individual degrees
of freedom enters the dynamics only through the spacetime derivatives ∂µql(x), which allows to
formulate the dynamics through the trace Lagrangian density L,

L =

∫
d3xL({ql(x)}, {∂µql(x)}). (2.63)

The variation of the action (2.21) with respect to ql(x), with ql(x) vanishing in spatial infinity,

δS =

∫
d4xTr

∑
l

(
δL

δql(x)
δql(x) +

δL
δ∂µql(x)

δ∂µql(x)

)
,
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gives the local operator Euler-Lagrange equations,

δL
δql(x)

− ∂

∂xµ
δL

δ∂µql(x)
= 0. (2.64)

In general any field, regarded as a mapping from spacetime to some target space T , is associated
with a representation of the Poincaré group on T ,

{aµ,Λµν} 7→ S,

where a is the fourvector of a spacetime translation, Λ represents a Lorentz transformation, and
S acts on the field component indices. In the case of a trace dynamics field theory, {Skl} is a set
of c-number multiples of the identity matrix I on the underlying vector space. Upon a Poincaré
transformation xµ 7→ x′µ = θµ.νxν + aν , the field x 7→ qk(x) becomes

qk(x) 7→ q′k(x
′) =

∑
l

S(θ−1)klql(θ
−1(x− a)). (2.65)

There are conserved quantities associated with the transformation properties of the local trace
Lagrangian density L with respect to the Poincaré transformations. The trace Lagrangian density
is required to be a scalar field (a scalar function on the spacetime), i.e. upon transformation x 7→ x′

the Lagrangian density x 7→ L(x) becomes x′ 7→ L′(x′) = L(x(x′)).

If the trace Lagrangian density is a scalar density with respect to spacetime translations, the
conserved current is the trace energy-momentum tensor T µν and the conserved charge is the energy-
momentum trace four-vector P. A spacetime translation is given by an infinitesimal constant
four-vector aµ,

xµ 7→ xµ
′

= xµ + aµ,

which induces the transformation (2.65) of the fields ql and their spacetime derivatives ∂µql,

ql(x) 7→ ql(x+ a) = ql(x) + ∂νql(x)aν + o(a)

∂µql(x) 7→ ∂µql(x+ a) = ∂µql(x) + ∂µ∂νql(x)aν + o(a).

The trace Lagrangian

L(x) = Tr
∑
l

L({ql(x)}, {∂µql(x)}) (2.66)

changes to

L(x′(x)) = L(x) + Tr
∑
l

(
δL
δql

∂µqla
µ +

δL
δ∂µql

∂µ∂νqla
ν

)
+ o(a).

Subtracting L(x) from L(x′(x)), using the Euler-Lagrange equations, and dropping the higher order
terms in a,

∂µLaµ = Tr
∑
l

∂µ

(
δL
δ∂µql

∂νql

)
aν .

Stripping away the arbitrary constant aµ, we see that the trace energy-momentum tensor,

T µν = −ηµνL+ Tr
∑
l

(
δL
δ∂µql

∂νql

)
, (2.67)
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is a conserved current (with respect to µ),

∂µT µν = 0. (2.68)

The conserved trace charge is then the trace energy-momentum four-vector,

Pν =

∫
d3xT 0ν , (2.69)

with the trace Hamiltonian H being the time component P0 in the chosen Lorentz reference frame,

P0 =

∫
d3x

(
−L+ Tr

∑
l

δL
δ∂0ql

∂0ql

)
=

∫
d3x (−L+ plql) = H,

since the conjugate momentum pl is defined using the x0 derivative as

pl(x) =
δL
δ∂0ql

. (2.70)

The components of the trace energy-momentum four-vector can be used as the trace generators of
canonical transformations - spacetime translations, of which is the time evolution a special case.

If the trace Lagrangian density is a scalar density with respect to spacetime rotations, we get
the spacetime rotation trace generators Mµν as the conserved charge. An infinitesimal spacetime
rotation is given by

xµ 7→ x′µ = xµ + θµ.νx
ν ,

with θµν the infinitesimal rotation parameters given by an antisymmetric matrix. The rotation
induces an infinitesimal transformation (2.65) on the field components ql,

ql(x) 7→
∑
m

Slm(θ)qm(x′) = ql(x) + ∂µql(x)θµνx
ν − 1

2
θµν
∑
m

Σµν
lmqm(x) + o(θ), (2.71)

and their spacetime derivatives, with the use of antisymmetry of θµν ,

∂λql(x) 7→ ∂λql(x) + ∂λ∂µql(x)θµνx
ν − 1

2
θµν
∑
m

Σµν
lm∂λqm(x) + o(θ). (2.72)

The mapping S represents the action of the rotation group on the field components, and Σµν
lm for

µ, ν = 0, 1, 2, 3 represent its generators. The trace Lagrangian (2.66) changes to

L(x′) = L(x) + Tr
∑
l

(
δL
δql

δql +
δL
δ∂µql

δ∂µql

)
+ o(θ),

and after the substitution for δqr and δ∂µql from (2.71, (2.72), using the Euler-Lagrange equations,
and some computation, we get for the difference δxL = L(x′)− L(x),

∂µ(Lθµ.νxν) = δxL = ∂µ

[
θµ.νx

νL − Tr
∑
l

δL
δ∂µql

(
∂σqlθσνx

ν − 1

2
θσν
∑
m

Σσν
lmqm

)]
.

Removing the arbitrary rotation parameters θµν , and regrouping some terms with the use of the
definition of trace energy-momentum tensor T µν (2.67), we get the conserved trace current

Mµαβ = xαT µβ − xβT µα + Tr

(
δL
δ∂µql

∑
m

Σαβ
lmqm

)
, (2.73)
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∂µM
µαβ = 0. (2.74)

Spatial integrations then give the conserved trace charges,

Mµν =

∫
d3xM0µν , (2.75)

which are generators of the canonical transformations - spacetime rotations.

Note that the generators of Poincaré transformations (2.67) and (2.73) are both trace quantities,
thus global unitary invariant, and therefore, according to a remark in section 2.5.1, the conserved
C operator is Poincaré invariant.

2.6 Statistical treatment of trace dynamics

The deterministic evolution equation of trace dynamics gives a definite state of system at all times
t, if the state at an initial time t0 is known. If this is not the case, if the knowledge of the initial state
is limited, we have to resort to statistical methods. The dynamical equations and commutation
relations of quantum theory is expected ([1],[3]) to emerge, when statistical methods are applied
to trace dynamics evolution and some further assumptions and ”low energy” approximations are
made. Although quantum mechanics is non-classical, the assumed underlying theory of such an
emergent quantum theory is essentially a classical deterministic theory, formulated in the framework
of trace dynamics. The probabilities in the statistical treatment of trace dynamics are therefore
also classical. The state of a (deterministic2) system can be equivalently given either by a point in
operator phase space at a given (e.g. initial) time slice, or by the whole graph ({qr(t)}, {pr(t)}, t)
of the motion. The state space is therefore taken as the operator phase space Ω at a given time
slice, or a spacelike hypersurface in case of trace dynamics as a field theory.

Let us assume the system has n degrees of freedom, each represented by N ×N matrices {qr}
and their conjugate momenta {pr}. Then the operator phase space can be represented by the space
Ω = G2nN2

, in any case it is required to be invariant under infinitesimal shifts xr 7→ xr + δxr.
Each operator degree of freedom xr, r = 1, 2, . . . , 2n, is expected to spawn exactly one (quantum-
mechanical) operator in the emergent quantum theory. The probability measure on Ω is estimated
through the standard maximum entropy principle methods of statistical mechanics.

2.6.1 Operator phase space measure

Since we are dealing with deterministic systems, the state space is given by the operator phase
space Ω. The natural measure on Ω is

dµ({xr}) =
∏
εrmn

d(xr)
ε
mn, (2.76)

where (xr)
ε
mn = (xr)mn + i(xr)

ε
mn is the decomposition of xr into real (ε = 1) and imaginary part

(ε = −1)3

dP ({xr}) = ρ({xr})dµ({xr}). (2.77)

According to the remark at the end of section 2.4, an analog of Liouville theorem apply also for
trace dynamics, the operator phase space volume element is invariant with respect to any canonical

2Were the system not deterministic, we would be limited to the latter option only.
3In case of the real variables, ε is restricted to ε = 1 only.
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transformation (generated by any bosonic trace functional G), in particular the time evolution, a
Poincaré transformation or a global unitary transformation. This remains true, even when specific
restrictions associated with the adjointness properties of {xr} are imposed on the measure (2.76).

The expansion of δG into components is

δG = Tr
δG

δxr
δxr =

∑
mn

(
δG

δxr

)
nm

(δxr)mn =
∑
mn

(
δG

δxr

)0

nm

(δxr)
0
mn −

∑
mn

(
δG

δxr

)1

nm

(δxr)
1
mn,

hence with the definition of the real/imaginary marker ε from above and the definition of the
derivative with respect to an operator (2.17),(

δG

δxr

)ε
mn

= ε
∂G

∂(xr)εnm
. (2.78)

For a direct check of the Liouville theorem, consider a general infinitesimal canonical transformation
(2.55),

xr 7→ xr + ε
∑
s

ωrs
δG

δxs
,

with a trace functional G as its generator, which in components reads,

(xr)
ε
mn 7→ (xr)

ε
mn + ε

∑
s

εωrs

(
∂G

∂xs

)ε
nm

.

The Jacobi matrix of this transformation is

J =
∂(xr′)

ε′
m′n′

∂(xr)εmn
= δεε′δrr′δmm′δnn′ + ε

∑
s

ε′ωr′s
∂2G

∂(x′r)
ε′
m′n′∂(xr)εmn

,

and since in general the determinant of a matrix J = 1 + εX is detJ = 1 + εTrX + o(ε),

detJ = 1 + ε
∑
rsmnε

εωrs
∂2G

∂(xr)εmn∂(xs)εnm
+ o(ε). (2.79)

For bosonic variables the trace is zero, because ωrs ((2.25) and (2.26)) is antisymmetric, whereas the
second derivative is symmetric in r, s. For fermionic variables it is also zero, since ωrs is symmetric,
but the derivative is antisymmetric in r and s. Hence the Liouville theorem holds in the unrestricted
case. Since with our definition of matrix conjugation (x+

r )εmn = ε(xr)
ε
nm, the determinant (2.79)

can be rewritten also as

detJ = 1 + ε
∑
rsmnε

ωrs
∂2G

∂(xr)εmn∂(x+
s )εmn

+ o(ε). (2.80)

If the dynamical variables are restricted to self-adjoint or anti-self-adjoint, the measure is appropri-
ately restricted to exclude the redundant elements. The m,n indices in the measure (2.76) is chosen
such, that for self-adjoint variables m > n and m = n only with ε = 1, and for anti-self-adjoint
variables m > n and m = n only with ε = −1. Since the trace term in the expansion of detJ
vanishes only by virtue of the symmetry and antisymmetry in r and s, it follows from (2.80) that
the Liouville theorem holds even with these adjointness restrictions.

Another assignment is to let the bosonic variables be self-adjoint or anti-self-adjoint, an the
fermionic arbitrary with pr = q+

r . Then measure in the fermionic sector is restricted to the qr
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fermionic variables only, and the bosonic sector is as above. Since ωrs is nonzero (and equal to −1)
for conjugate r and s only, the fermionic part of the trace term in (2.79) becomes

−ε
∑
rmnε

ε
∂2G

∂(qr)εmn∂(qr)εnm
= 0, (2.81)

by the property of Grassmann odd grade numbers, and so the Liouville theorem holds for this
assignment too.

2.6.2 Statistical ensembles

The generalized Liouville theorem implies, that the phase space measure is invariant under a global
unitary transformation, and the time evolution of probability measure is given solely by the time
dependence of the probability density. If the probability measure happen to be time independent,
then ρ can depend on conserved quantities only. For trace dynamics, these are mainly the C
operator and the trace Hamiltonian H or the trace Poincaré generators Pν and Mµν (in case
of trace dynamics field theory with Poincaré invariant trace Lagrangian). For specific operator
Hamiltonians, when the number of fermionic and/or bosonic {qr} are balanced with {pr}, there
are the additional conserved ”number” trace quantities NF and/or NB. Hence the general static
ensemble is of the form

ρ = ρ(λ,C, τµ,P
µ, κµν ,M

µν , α,NF , β,NB). (2.82)

The operator-valued parameter λ and the c-number parameters τµ, κµν , α, and β are the respective
stochastic conjugate quantities. Note that the trace Hamiltonian H is already included in (2.82)
as P0, and it turns out that λ and C appear in ρ only through Tr(λC), hence we have

ρ = ρ(TrλC, τµP
µ, κµνM

µν , αNF , βNB). (2.83)

The parameters τµ are constants of the ensemble, but τ transforms as a covector upon a Lorentz
transformation, and similarly for κµν . The statistical ensemble is therefore Lorentz covariant.

Moreover, since the matrix elements of the operator parameter λ are statistically conjugated
to the matrix elements of C, the tracelessness and adjointness properties of λ is carried over from
C to λ, i.e. Trλ = 0, and if C is anti-self-adjoint, so is the parameter λ. If C has dimension of
action, the dimension of λ is inverse action, and its statistical ensemble average is conjugated to be
associated with the Planck constant in the emergent quantum theory.

The ensemble averages of an operator quantity A = A({xr}) and of a trace quantity A are given
by

〈A〉ρ =

∫
Ω
Aρdµ, 〈A〉ρ =

∫
Ω

Aρdµ. (2.84)

There is an important observation. If A is constructed from the dynamical variables {xr} using
c-number coefficients only, the matrix structure of its average 〈A〉ρ is a function of the operator
parameter λ only. This follows, if we make a unitary transformation xr 7→ U+xrU of all the
dynamical variables, with U an even grade unitary matrix. The operator phase space measure
is always unitary invariant, dµ 7→ dµ. The assumption that A does not contain matrix-valued
constant coefficients implies A 7→ U+AU . Since the probability density ρ, (2.82), contains the fixed
operator λ, we have for general U ,

ρ({xr}, λ) 7→ ρ({U+xrU}, λ) = ρ({xr}, UλU+). (2.85)
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The unitary transformation of integration variables with general U does not change the value of
the integral (2.84),

FA(λ) =

∫
Ω
Aρdµ 7→ U+

∫
Ω
Aρ({xr}, UλU+)dµU = U+FA(UλU+)U = FA(λ), (2.86)

hence the matrix structure of FA is given only by the operator λ. In particular [λ, FA(λ)] = 0, and
[Ue, FA(λ)] = 0 for all unitary Ue commuting with λ.

2.6.3 A static ensemble

For simplicity, the Lorentz frame is chosen such that the statistical ensemble is at rest, i.e. there
is no mean spatial translation ( Pk = 0 for k = 1, 2, 3 ), mean rotation ( Jk = εkmnMmn = 0 ) nor
mean acceleration ( Kk = M0k = 0 ). This allows to simplify the static ρ to

ρ = ρ(λ,C, τ,H, α,NF , β,NB), (2.87)

but it also apparently breaks the relativistic covariance of the statistical ensemble. However, this
will not do any harm as long as we keep the chosen coordinate frame fixed; otherwise the general
ρ, (2.82), should be used instead.

The probability distribution is estimated using the maximum entropy principle. The entropy

S = −〈log ρ〉ρ =

∫
Ω
ρ log ρdµ, (2.88)

is maximized subject to the constraints imposed by giving the average values 〈C〉ρ, 〈H〉ρ and
〈NB/F 〉ρ, together with the normalization condition 〈1〉ρ = 1. The maximum of the functional

F (ρ) = S − θ〈1〉ρ −
∑
mn

λTmn〈Cmn〉ρ − τ〈H〉ρ − α〈NB〉ρ − β〈NF 〉ρ,

where λT , τ , α and β are the Lagrange multipliers, is found to be

ρ =
1

Z
exp (−τH− Tr(λC)− αNF − βNB) , (2.89)

with Z the partition function,

Z =

∫
Ω
ρdµ =

∫
Ω

exp (−τH− Tr(λC)− αNF − βNB) dµ. (2.90)

The Lagrange multipliers are to be chosen such that their statistically conjugated quantities have
their prescribed average values. Depending on the specific form of the Hamiltonian, NF or NB may
not be a conserved quantity, and should be dropped, if one wants to maintain a static distribution.
The trace Hamiltonian has a secondary role to ensure the convergence of Z. It should be positive
and grow sufficiently fast in the q and p variables, since the C operator is not positive definite. In
general, the partition function Z could become negative due to the fermionic integrations, but this
only sets the correct sign to the probability density after the fermionic variables are integrated out.
No constraints on the fermionic variables and/or the fermionic part of the Hamiltonian is placed
by the requirement Z > 0.

The distribution ρ has the usual properties as in classical statistical mechanics, appropriately
generalized to trace dynamics. From (2.82) it follows that the ensemble averages of C, H, NF and
NB can be expressed using the partition function as

〈C〉ρ = −δ logZ

δλ
, 〈H〉ρ = −∂ logZ

∂τ
, 〈NF 〉ρ = −∂ logZ

∂α
, 〈NB〉ρ = −∂ logZ

∂β
. (2.91)
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2.6.4 Ensemble average of the C operator

The C operator is always given by a traceless even grade matrix. If the adjointness properties of
the dynamical variables are such, that the C operator is anti-self-adjoint, so is its ensemble average.
In the case when the Grassmann algebra is over complex numbers, there is always a unitary matrix
U , for which U+〈C〉ρU is purely imaginary diagonal matrix. This matrix can be decomposed into
a product of a real positive ”magnitude” matrix D and an imaginary ”phase” matrix ieff ,

〈C〉ρ 7→ U+〈C〉ρU = Dieff , (2.92)

with i+eff ieff = I and i2eff = −I.

The diagonal matrix Dieff is determined uniquely up to a permutation of the vector space basis.
A crucial assumption of trace dynamics is made at this point. Because of symmetry reasons - the
physics and the statistical distribution of the dynamical variables should be such, that no direction
in the underlying vector space M would be preferred among others. Therefore the ensemble
average of C is assumed to be a c-number times an anti-self-adjoint unitary matrix. This is the
most symmetric anti-self-adjoint matrix, i.e. not preferring any direction in the underlying vector
space, and determined up to unitary equivalence. Since the C operator is traceless, this assumption
also implies Trieff = 0. In other words, the ”magnitude” matrix is assumed to be a c-number times
the identity matrix I, D = ~I.

The matrix ieff is composed from equal number of +i and −i, from which it follows, that the
dimension N of the underlying vector space M has to be even. Therefore 〈C〉ρ in the diagonal
basis becomes

U+〈C〉ρU = ~ieffI = ~ieff , ieff =

(
+i 0
0 −i

)
⊗ IN/2. (2.93)

The notation in (2.93) is chosen in this particular way, because ~ will appear as the reduced Planck
constant in the emergent quantum theory, and ieff will effectively give rise to the imaginary unit
associated with the emergent complex Hilbert space4. The imaginary unit appears even in the
physically more appealing case of the Grassmann algebra over real numbers. Although an anti-
self-adjoint (now skew-symmetric) matrix can no longer be diagonalized over real numbers, we can
still obtain an analog of decomposition (2.93). The ”symmetry” assumption from above gives (up
to a c-number multiple) the condition 〈C〉+ρ 〈C〉ρ = I (unitarity) and 〈C〉2ρ = −1 (unitarity with
self-adjointness). This implies that 〈C〉ρ is a c-number times a skew-symmetric orthogonal matrix,
the most symmetric matrix in the sense from above. The dimension ofM is even, and there exists
an orthogonal matrix O (in fact a permutation matrix), such that in the corresponding new basis
the 〈C〉ρ operator becomes represented by

O+〈C〉ρO = ~ieffIN = ~ieff , ieff =

(
0 −1
1 0

)
⊗ IN/2, (2.94)

with IN the N ×N identity matrix. This is one of a few differences between the real and complex
underlying vector space M of trace dynamics. In both cases we have

〈C〉ρ = ieff~, Tr ieff = 0, i+eff ieff = 1, i2eff = −1. (2.95)

As noted above, the matrix structure of the ensemble average of any operator is a function of
a single operator, the operator parameter λ of ρ. It follows that all operators which are ensemble

4That is why the anti-self-adjointness of C is sought for. Then the anti-self-adjoint unitary matrix ieff is preferred
in the above argument over an even more symmetric self-adjoint unitary matrix, a multiple of identity.
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averages commute among themselves, and there is a basis ofM in which all averages are diagonal.
In particular the ensemble average of C is

〈C〉ρ =

∫
Ω
Cρdµ = ~ieff = FC(λ), (2.96)

and all averages commute with ieff . The operator parameter acquires the matrix structure from its
statistically conjugated operator 〈C〉ρ, hence it is an anti-self-adjoint unitary matrix (or antisym-
metric orthogonal in the real case), which is up to a c-number multiple equal to ieff ,

λ = λ0ieff . (2.97)

The ensemble average of any operator is then given by a linear combination of just two operators,
ieff and the unit operator I.

The dimension of the vector space M is N = 2K. Any matrix of an operator M on M can be
decomposed as

M = τ+M+ + τ−M− + τaMa + τbMb, (2.98)

with

τ+ =

(
1 0
0 0

)
, τ− =

(
0 0
0 1

)
, τa =

(
0 1
0 0

)
, τb =

(
0 0
1 0

)
, (2.99)

or (in the case of complex M) as

M =
1

2
(σ0 + σ3)⊗M+ +

1

2
(σ0 − σ3)⊗M− + σ1 ⊗M1 + σ2 ⊗M2, (2.100)

where {σi} are the Pauli σ-matrices,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.101)

with M+, M−, M1, M2, Ma and Mb some K ×K matrices, and

M1 =
1

2
(Ma +Mb), M2 =

i

2
(Ma −Mb). (2.102)

Denote the first two terms in (2.98) by Meff and the last two by Mab = M12 so that

M = Meff +M12, Meff = τ+M+ + τ−M−, Mab = τaMa + τbMb. (2.103)

This splits any operator M into the part Meff which commutes with ieff and the part Mab = M12

which anticommutes with ieff ,

[Meff , ieff ] = 0 {Meff , ieff} = 2iτ+ ⊗M+ − 2iτ− ⊗M− = 2ieffMeff , (2.104)

{M12, ieff} = 0 [M12, ieff ] = −2iτa ⊗Ma + 2iτb ⊗Mb = −2ieffM12.

Therefore the ensemble average through ieff effectively splits the vector space M into two sectors,
in which the averaged operators act with opposite sign. The part of an operator M , which mixes
these two sectors, M12, vanishes upon taking the average. The anticommutator or commutator
with ieff can be used to form the projection M 7→Meff or M 7→M12 respectively,

Meff = −1

2
ieff{M, ieff}, M12 =

1

2
ieff [M, ieff ]. (2.105)
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The projection M 7→Meff removes a part M12 of M which vanishes in the average over the statistical
ensemble (2.89), hence it is called the effective projection. Note that only the effective projection
Meff of M affects the trace of M ,

TrM = TrMeff , TrM12 = 0. (2.106)

However, although the part M12 of M does not influence the ensemble average 〈M〉ρ nor ensemble
average of another operator A, it nevertheless contributes to the covariance of M and A,

Cov(M,A) = 〈(M − 〈M〉ρ)(A− 〈A〉ρ)〉ρ,

since [M12A12, ieff ] = 0.

2.6.5 Unitarily fixed ensembles

The presence of the fixed operator λ in the probability density breaks the original unitary invariance
of trace dynamics, and picks a preferred basis in which all averages are diagonal matrices. A global
unitary transformation xu 7→ U+xuU of the dynamical variables changes the average values of
{xu}, unless U commutes with λ. The assumed global unitary invariance can be viewed either as a
kind of gauge invariance, the actual physical situation does not change upon taking such a global
unitary transformation, or as a real change of the physical situation, which nevertheless has no
influence on the dynamics. In the first case it is not a priori clear, whether the integrations should
be carried out over the whole gauge symmetry group, or a unitary fixing should be introduced into
the operator phase space measure.

A unitarily fixed phase space measure dµ̂ is given by the decomposition of the unfixed measure
dµ,

dµ = d[Û ]dµ̂, (2.107)

with d[Û ] the Haar measure for integration over a given subgroup of the full group of global
unitary transformations. The fixed averages are then evaluated with this subgroup factored away
from the integration measure. It can be for example carried out by picking one or two dynamical
variables, and restricting the original integration measure dµ and the integration range Ω, such that
these dynamical variables are fixed and not integrated over. The fixed probability density ρ̂ and
the fixed averages may depend on the particular selection of the variables, whose overall unitary
transformation is fixed in the integrations.

The equation (2.86) admits that the unitarily fixed averages may involve constant matrix coef-
ficients commuting with the subgroup, which is not fixed in the integration. If this subgroup was
taken to be the whole group, i.e. the measure was completely unitarily fixed, the matrix structure
of unitarily fixed averages would no longer be a function of λ only, but it could involve arbitrary
constant matrix coefficients. If only the subgroup of all those operators that commute with λ is
fixed, then all terms in ρ, including TrλC, are invariant with respect to a global unitary trans-
formation xu 7→ U+xuU for any U from this subgroup. Hence the unitarily fixed average of an
operator A (constructed from the dynamical variables using c-number coefficients only),∫

Ω̂
Aρ̂dµ̂, (2.108)

is the same as the unfixed one, ∫
Ω
Aρdµ =

∫
Ω
Aρd[U ]dµ̂, (2.109)
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unless A contains the variables xf , on which the unitary fixing is performed.
The derivation of Ward identities in the next section requires the possibility to make arbitrary

shifts of selected integration variables xr. When unitary fixing is employed, the fixed variables xf
have to be chosen to be different from the variables xr in the Ward identity (2.116). Therefore
the unitary fixing can affect only the average values of those operators, which involve the variables
xf , such as the ’global’ operators C, H or NF/B. It is nevertheless assumed by [1], since the
fixing is performed on one or two variables only, that the unitarily fixed average of the extensive C
operator is assumed approximately unchanged. Moreover, the ensemble average of the C operator
is a more physically fundamental quantity than its statistically conjugate operator λ. Therefore
〈C〉ρ should remain unchanged by the fixing, and from symmetry reasons, the λ parameter should
then be unchanged too. By (2.109), any trace of fixed average of an operator is the same as the
trace of unfixed average, and independent of the choice of the variables xf . In particular, the trace
quantities H, NF and NB are preserved by any unitary fixing. As a result, the above unitary fixing
has not any significant effect on the statistical properties of the trace dynamics matrix models, and
it will not be considered further.

2.7 Ward identities

The quantum-theoretic behavior is expected to be an emergent property connected with statistical
averages of the dynamical variables over a suitable ensemble. We are interested mainly with the
time evolution law of the ensemble averages of xr, and with the ensemble averages of two point
correlations of the form 〈xrxs〉ρ.

For future convenience, let us introduce sources jr into the statistical ensemble distribution
density (2.89),

ρj =
1

Zj
exp

(
−τH− Tr(λC)− αNF − βNB − Tr

∑
r

jrxr

)
, (2.110)

with Zj the partition function with sources,

Zj =

∫
Ω
ρjdµ =

∫
Ω

exp

(
−τH− Tr(λC)− αNF − βNB − Tr

∑
r

jrxr

)
dµ. (2.111)

This allows to express the ensemble average 〈xr〉ρ of a dynamical variable xs, the coefficient of jr,
by taking the derivative of Z with respect to the operator js, and setting all sources to zero, j 7→ 0,

〈xs〉ρ = 〈xs〉ρj=0 =

(
δZj
δjs

)
j=0

. (2.112)

The Ward identities are based on the possibility of making an infinitesimal shift5 xr 7→ xr + δxr
of the integration variables {xr} in∫

Ω
A({xr})Zjρj(τ, λ, . . . , {xr})dµ({xr}) (2.113)

without changing the value of the integral. Since the integration measure dµ is invariant with
respect to this shift, the difference of shifted and the original integral gives

0 =

∫
Ω

[(AZjρj)({xr + δxr})− (AZjρj)({xr})] dµ({xr}) =

∫
Ω

∑
s

Tr

(
δ(AZjρj)

δxs
δxs

)
dµ. (2.114)

5As always, assuming all δxr of the same grade and adjointness properties as xr.
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The variation δxs of xs is arbitrary, hence we obtain the equations,∫
Ω

δ(AZjρj)

δxs
dµ = 0 (2.115)

for all s = 1, 2, 3, . . . , 2n. Using the Leibniz property (2.19) of the derivative with respect to an
operator, and dividing out the nonzero Zj factor which appears in both terms, we can rewrite the
equations (2.115) to obtain the general Ward identities,〈

δA

δxr
+ A

δ log(Zjρj)

δxr

〉
ρj

= 0. (2.116)

These identities can give us an information about the statistical properties of our system for some
suitable choices of A.

2.7.1 Variation of sources

Inserting a particular trace functional A into the general Ward identity (2.116), and evaluating the
derivatives, we obtain an expression of the form,

〈Dxu + A
∑
r

ωurjr〉ρj = 0, (2.117)

where Dxu denote all terms not containing the sources {jr}, and it depends on the particular choice
of A. We now use the sources to extend this identity further. Such an extended formulation of
Ward identity is of interest for the argument of emergence of quantum theory. By variation of the
sources before setting to zero, it can be arranged that (2.117) holds even when inserted between
two polynomials6 in the dynamical variables SL and SR before taking the zero source average,

〈SLDxuSR〉ρ = 0.

This is an average of an operator quantity, and it is convenient to contract the two open matrix
indices by multiplying by an arbitrary matrix denoted by δju and taking the trace. By picking a
suitable value for δju, it is always possible to recover any matrix component of the original operator,
hence also the entire matrix. So multiplying (2.117) by δju and taking the trace,〈

Tr(δjuDxu)−A
∑
r

ωurTr(δjujr)

〉
ρj

= 0. (2.118)

The result can be multiplied further with the nonzero bosonic c-number Zj to rewrite (2.118)
equivalently as an integral∫

Ω

[
Tr(δjuDxu)−A

∑
r

ωurTr(δjujr)

]
exp

(
−τH− Tr(λC)− αNF − βNB − Tr

∑
r

jrxr

)
= 0.

(2.119)
Now we perform independent sequential variations of all the sources {js} corresponding to the
dynamical variables {xs} contained in the polynomials SL and SR (due to additivity, it is enough to
consider monomials only). Each variation yields a bosonic c-number term Tr(δ(k)js xs) multiplying
the rectangular bracket in (2.119), with s = ki the index of a desired xs to appear in SL or SR, and

6But not entirely arbitrary, there are some restrictions.

38



i labeling the variations (which are all distinct and independent). In such a way, for i = 1, 2, . . . ,m
with m the number of factors in SR and SL, we get∫

Ω
(Trδ(1)jk1xk1)(Trδ(k2)jk2xk2) . . . (Trδ(m)jkmxkm)(TrδjuDxu) exp

(
· · · − Tr

∑
r

jrxr

)
. (2.120)

If s = ki in the ith step is such that ωus 6= 0, i.e. the operator xs is canonically conjugated to xu,
there appears an additional term under the integral sign,

(Trδ(1)js1xk1)(Trδ(ki−1)jsi−1xk2)(ωu,kiATr(δjuδ
(i)jki)) exp

(
· · · − Tr

∑
r

jrxr

)
. (2.121)

After performing all the variations, setting all sources to zero, and dividing by the Zj factor, we
obtain〈

(Trδ(1)jk1xk1) . . . (Trδ(m)jkmxkm)(TrδjuDxu) +

m∑
i=1

ωu,kibfA
∏
l:kl 6=i

(Trδ(l)jklxkl)(Trδjuδjki)

〉
ρ

= 0.

(2.122)
Now we strip away the arbitrary δ(i)jki and δju in such a way that resulting matrices xki become
linked in the appropriate order to create the desired structure of the regular term SLDxuSR,∑

Tr(δ(1)jk1xk1) . . .Tr(δ(l)jklxkl)Tr(δjuDxu)Tr(δ(l+1)jkl+1
xkl+1

) . . .Tr(δ(l+r)jkl+rxkl+r), (2.123)

with l and r the numbers of matrices in the monomials SL and SR respectively. The sum ranges
over the subset of (l + r + 1)-tuples of source matrices which is needed to reconstruct the desired
matrix structure. In this process the superfluous terms (2.121) on the right in (2.122) yield a similar
structure as (2.123), but in each of them the factor with Dxu is missing, and in ith term the factor
Tr(δ(i)jkixki) become substituted by Tr(δjuδ

(i)jki),∑
Tr(δ(1)jk1xk1) . . .ATr(ωukiδjuδ

(i)jki) . . .Tr(δ(l)jklxkl) 1 Tr(δ(l+1)jkl+1
xkl+1

) . . .Tr(δ(l+r)jkl+rxkl+r).

(2.124)
This results into a term of the form of the regular term SLDxuSR, in which the operators Dxu and
xki are removed, and the operators between them are contracted into a trace, we denote it as

S
L,k̂i

SR or SLSR,k̂i , (2.125)

depending on whether xki comes from SL or SR. A closer examination of the influence of fermionic
variables, when stripping away the graded source matrices from the regular and superfluous terms
(2.123) and (2.124), shows, that an odd number of fermionic variables between Dxu and xki causes a
relative change of sign with respect to the regular term, otherwise the relative sign is left unchanged.

Having in mind all these facts, we introduce a shorthand expression for the superfluous terms∑
v∈SL∪SR

ωuvA(SLDxuSR)v̂ ≡
∑

i:xki∈SL

±ωukiA(S
L,k̂i

SR) +
∑

j:xkj∈SR

±ωukjA(SLSR,k̂j ) (2.126)

where v is an index going through all occurrences of all the dynamical variables in SL or SR, and
the possible sign changes are understood to be included. In this way the extended Ward identity
becomes, 〈

SLDxuSR +
∑

v∈SL∪SR

ωuvA(SLDxuSR)v̂

〉
ρ

= 0. (2.127)
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From (2.123) and (2.124) it also follows, that the source variations can be used to create the
structure SLDxu(TrST )SR, with ST = TrST the trace of a monomial in the dynamical variables
(extension by additivity to a polynomial is straightforward). The Ward identity (2.127) then
becomes 〈

SLDxuSTSR +
∑

v∈SL∪ST∪SR

ωuvA(SLDxuSTSR)v̂

〉
ρ

= 0, (2.128)

where the index v belongs to a variable xv from ST ,

ST = x1 . . . xlxvxl+1 . . . xl+r,

and the shorthand notation means that (for v ∈ ST )

(SLDxuSTSR)v̂ = ±SLxl+1 . . . xl+rx1 . . . xlSR.

Hence the trace is opened at the place of xv, and inserted into the regular term instead of Dxu,
discarding both Dxu and xv. The sign is determined as above according to the number of fermionic
variables between Dxu and xv in the regular term. By additivity this construction is readily
extended from monomials to polynomials. Note that the polynomials SL, SR and ST may even
involve constant matrix coefficients. From the definition of the derivative of a trace with respect
to an operator, it follows that the sum over indices v ∈ ST in (2.128) is given simply by∑

v∈ST

(SLDxuSTSR)v̂ =
∑
v

SL
δST
δxv

SR, (2.129)

where v on the right hand side sweeps through all distinct variables xv used to construct ST , instead
through all occurrences as before.

In addition, if we define DS for any polynomial S in the dynamical variables by the Leibniz rule,

D(x1x2 . . . xm) = Dx1x2 . . . xm + x1Dx2 . . . xm + · · ·+ x1x2 . . . Dxm, (2.130)

then the Ward identity (2.128) can be extended further to〈
SL DS STSR +

∑
u∈S

∑
v∈SL∪ST∪SR

ωuvA(SLSûSTSR)v̂

〉
ρ

= 0, (2.131)

with the index u going through all occurrences of all the dynamical variables xu used to create S,
the corresponding xu from S now being picked to be Dxu in (2.127), and the remaining variables of
S included in the left or right monomial in (2.127). This extension follows from additivity and the
possibility to include the extra variables from (2.130) into SL or SR. No additional contribution
to the superfluous terms in (2.127) appears, since for any two xu1 and xu2 from S (even if they
happen to be canonically conjugated, i.e. ωu1u2 6= 0), the contribution to (2.121) is

ωu1u2

∏
l:kl 6=u1

(Trδ(l)jklxkl)(Trδju1δjk2) + ωu2u1

∏
l:kl 6=u2

(Trδ(l)jklxkl)(Trδju2δjk1). (2.132)

The conjugated variables xu1 and xu2 can be either both fermionic or both bosonic. If they are
fermionic(bosonic), ωu1u2 is symmetric(antisymmetric), and the products in (2.132) are antisym-
metric(symmetric) in the indices u1 and u2, hence the two terms always cancel each other.
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2.7.2 Trace dynamics Ward identities

A choice for A in the general identity (2.116), suggested by [1] and [3] as the relevant one for
the argument of emergence of quantum-theoretic structures from the statistical thermodynamics
of trace dynamics matrix models, is

A = {C, ieff}W, A = Tr ({C, ieff}W ) , (2.133)

where W is a bosonic operator constructed from the dynamical variables. For specific choices of W ,
the Ward identity (2.116) is expected to yield the canonical commutation relations, the Heisenberg
evolution equations, and general unitary canonical transformations of the emergent quantum theory.

Using (2.104) and (2.106), the trace quantity A, (2.133), can be written also as

A = Tr ({ieff , C}W ) = Tr ({ieff ,W}C) = 2Tr (ieffCeffWeff) . (2.134)

We now proceed to evaluate the general Ward identity, (2.116), for A and the probability density
with sources ρj , given by (2.110). According to the definition of the derivative with respect to
an operator, we first consider the variations δxr of A and log(Zjρj) with respect to same type
variations of xr. For the first term in (2.110),

δxrA = Tr ({ieff ,W}δxrC) + Tr ({ieff , C}δxrW ) . (2.135)

The variation of the C operator is

δxrC = δxr

(∑
ab

ωabxaxb

)
=
∑
a

ωraδxrxa + ωarxaδxr , (2.136)

hence by cyclic permutations and the properties of ωrs, (2.27), the first term in (2.135) becomes

Tr ({ieff ,W}δxrC) = Tr
∑
a

(ωar [{ieff ,W}, xa] δxr) . (2.137)

For the second term in (2.135), we write the W operator as

W =
∑
k

xlk1
xlk2

. . . xlknk
, (2.138)

where xlki
is the ith factor of the kth term (a monomial with nk factors) of the expansion of W into

a polynomial in the dynamical variables {xs}. Then its variation is

δxrW =
∑
k

nk∑
j=1

xlk1
. . . xlkj−1

(δxrxlkj
)xlkj+1

. . . xlknk
=
∑
l

WLl
r δxrW

Rl
r , (2.139)

with WLl
r denoting all nonzero (those for which lkj = r) terms indexed by the composite index

l = lki standing on the left, and WRl
r the corresponding terms on the right from δxr. Then by cyclic

permutation,

Tr ({ieff , C}δxrW ) = Tr
∑
l

(
εlW

Rl
r {C, ieff}WLl

r δxr

)
. (2.140)

This gives
δA

δxr
=
∑
a

ωar [{ieff ,W}, xa] +
∑
l

εlW
Rl
r {C, ieff}WLl

r . (2.141)
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The second term in (2.110) is a derivative of

log(Zjρj) = −τH− TrλC − αNF − βNB − Tr
∑
s

jsxs, (2.142)

and we have for the variation of the first and the last term,

δxrH = Tr
δH

δxr
δxr, δxrTr

∑
s

jsxs = Trjrδxr . (2.143)

It is convenient to rewrite the ”fermionic number” trace quantity NF as

NF =
1

2
Tr
∑
r∈F

[qr, pr] =
1

2
Tr
∑
r∈F

(qrpr − prqr) =
1

2

∑
a,b∈F

αabxaxb, α = (0, . . . , 0,ΩB, . . . ,ΩB),

(2.144)
and the ”bosonic number” trace quantity NB as

NB =
1

2
Tr
∑
r∈F
{qr, pr} =

1

2
Tr
∑
r∈F

qrpr + prqr =
1

2

∑
a,b∈F

βabxaxb, β = (−ΩF , . . . ,−ΩF , 0, . . . , 0),

(2.145)
with notation of (2.25) and (2.26). Then the variations of NF and NB are

δxrNF =
1

2
Tr
∑
a

(αarxaδxr − αraxaδxr) = Tr
∑
a

αarxaδxr, (2.146)

δxrNB =
1

2
Tr
∑
a

(βarxaδxr + βraxaδxr) = Tr
∑
a

βarxaδxr, (2.147)

by antisymmetry of α and symmetry of β. Collecting (2.141) and (2.143) through (2.147) together,
we get the relevant term of the general Ward identity (2.116),

∑
a

ωar [{ieff ,W}, xa]+
∑
l

εlW
Rl
r {ieff , C}WLl

r −A

(
τ
δH

δxr
+
∑
s

ωrs[λ, xs] +
∑
a

(ααar − ββar)xa

)
,

(2.148)
which becomes zero when averaged over the statistical ensemble with sources given by the distri-
bution (2.110). It can be further simplified multiplying by ωur and summing over r, to finally get
the identity,〈

[{ieff ,W}, xu] +
∑
lr

ωurεlW
Rl
r {ieff , C}WLl

r +

(
−τ ẋu + εu[λ, xu] + γuxu −

∑
r

ωurjr

)
A

〉
ρj

= 0

(2.149)
with A given by (2.134), since

ẋu =
∑
r

ωur
δH

δxr
,

∑
r

ωurωrs = −εrωus,
∑
r

ωurαar = εFu ,
∑
r

ωurβar = −εBu ,

with the notation ε
F/B
u = +1 for xu a fermionic/bosonic q, ε

F/B
u = −1 for xu a fermionic/bosonic

p, ε
F/B
u = 0 zero for xr not being a fermionic/bosonic variable, and

γu = αεFu − βεBu . (2.150)
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Denoting all the terms not containing sources inside the average brackets in (2.149) by Dxu,

Dxu = [{ieff ,W}, xu] +
∑
lr

ωurεlW
Rl
r {ieff , C}WLl

r + (−τ ẋu + εu[λ, xu] + γuxu) Tr({ieff , Ceff}Weff),

(2.151)
the basic zero-sources Ward identity (2.149) becomes

〈Dxu〉ρ = 0, (2.152)

and with the definition of DS, (2.130), from the extended Ward identity (2.131) we obtain,

〈SL({xr})DS({xr})SR({xr})〉ρ = −

〈∑
u∈S

∑
v∈SL∪SR

ωuvA(SL({xr})DSû({xr})SR({xr}))v̂

〉
ρ

,

(2.153)
for any polynomials S, SL and SR in the dynamical variables with c-number coefficients. Moreover
with the restriction, that S does not contain any variable conjugated with some variable in SR or
SL, the Ward identity reduces to

〈SL({xr}) DS({xr}) SR({xr})〉ρ = 0. (2.154)

Ward identity for effective variables

As noted above, the zero source average of any operator constructed of dynamical variables (here
also the integration variables) using only c-number coefficients is a function of the constant operator
parameter λ, and for that reason [λ, 〈xu〉ρ] = 0. Then the term εu[λ, xu] in (2.149) vanishes in the
average over the zero source ensemble, and we obtain the identity〈

[{ieff ,W}, xu] +
∑
lr

ωurεlW
Rl
r {C, ieff}WLl

r + (−τ ẋu + γuxu) A

〉
ρ

= 0. (2.155)

Since ieff commutes with λ (as being also its function with c-number coefficients), the zero source
average already involves the effective projection. Hence the identity (2.155) without sources could
be equally well written in terms of the effective projection of the dynamical variables,〈

[{ieff ,Weff}, xueff ] +
∑
lr

ωurεl

(
WRl
r {C, ieff}WLl

r

)
eff

+ (−τ ẋueff + γuxueff) A

〉
ρ

= 0. (2.156)

Although the term with commutator εu[λ, xu] vanishes in the basic Ward identity (2.152), in general
it does not in the extended one (2.153).

The commutator εu[λ, xu] can be completely removed, if we consider the effective projections
of the variables xueff instead of the variables xu themselves. Apart form the vanishing of εu[λ, xu],
the effective variables xueff obey the same Ward identities as xu. This can be seen, if we first take
the effective projection of (2.149) using (2.105) prior to the variations. Then we get〈

[{ieff ,Weff}, xueff ] +
∑
lr

ωurεl

(
WRl
r {C, ieff}WLl

r

)
eff

+

(
−τ ẋueff + γuxueff −

∑
r

ωurjr,eff

)
A

〉
ρj

= 0,

(2.157)
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which (up to the sources) is the basic Ward identity (2.156), equivalent to (2.155). Starting from
(2.157) instead of (2.149), and performing the variations with respect to the effective projections
jreff of the sources in the same way as before, we eventually arrive at the extended Ward identity
(2.131), but with Dxu, (2.151), replaced by Dxueff

,

Dxueff = [{ieff ,W}, xueff ] +
∑
lr

ωurεlW
Rl
r {C, ieff}WLl

r + (−τ ẋueff + γuxueff) Tr({ieff , Ceff}Weff).

(2.158)
The only difference in the derivation leading to (2.131) is that the variations are performed with
respect to the effective projection jreff of the sources jr. This brings only the effective projection
xreff from the exponential, since

Trjrxr = Trjreffxreff + jr12xr12.

Hence the extended Ward identity holds for the effective variables xreff as well,

〈SL({xreff})DS({xreff})SR({xreff})〉ρ = −

〈∑
u∈S

∑
v∈SL∪SR

ωuvA(SLDSûSR)v̂

〉
ρ

, (2.159)

with DS({xreff}) given by the Leibniz rule (2.130) with Dxueff in place of Dxu.

2.8 Consequences of Ward identities

The trace dynamics Ward identity 〈Dxu〉ρ = 0 with

Dxu = [{ieff ,W}, xu] +
∑
lr

ωurεlW
Rl
r {ieff , C}WLl

r + (−τ ẋu + εu[λ, xu] + γuxu) Tr({ieff , Ceff}Weff),

(2.160)
(2.152) and (2.151), evaluated for the simplified static ensemble (2.89), already suggests the possible
emergence of quantum theory in the trace dynamics framework. However, some rather stringent
conditions are to be met before the structure of quantum theory could actually appear. There are
still some disturbing superfluous terms present in (2.160), namely the last three terms on the right,

(−τ ẋu + εu[λ, xu] + γuxu) Tr({ieff , Ceff}Weff). (2.161)

The argument for emergence of quantum theory of [1] and [3] requires these terms to effectively
vanish. Therefore some additional conditions on trace dynamics are to be found, that would allow
to make these odd terms vanish, or at least negligible with respect to the other terms. This has
to happen even when inserted between any two polynomials before averaging over the ensemble.
Since all the superfluous terms come from the variation of the probability density, such conditions
could be satisfied by some kind of rigidity of the distribution, i.e. that it changes little when the
xr are varied. First the suggested conditions, assumptions and approximations are reviewed, and
the consequences of their validity are drawn. Then some consistency issues associated with the
possibility of imposing such assumptions are discussed.

The conditions and approximations suggested by [1] and [3] are:

1. The quantum field operators are expected to emerge from the effective projections xueff instead
of the xu dynamical variables. This cancels the commutator [λ, xu], even if it is inserted
between any two polynomials and then averaged over the ensemble. Further reasons for
making this assumption are given below.
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2. There can be such an underlying trace dynamics theory, that the term τ ẋueffTr({ieff , Ceff}Weff)
can be made approximately zero with respect to the other terms. It is supposed that the xueff

variable can be split into a slow and a fast part. The fast part is expected to be effectively
unaccessible to observation due to its rapid fluctuations, and/or its time derivative vanishes
due to the disjoint operator phase space supports of ẋueff and of the C operator. The slow part
of ẋueff is expected to become effectively suppressed by the parameter τ , which is assumed to
be small.

3. The coefficient γu is set to zero. It effectively removes the condition on the average values of
NB and NF . This is supposed to correspond to approximately zero ensemble averages of NF

and NB. If NB (or NF ) is not a conserved quantity, it is dropped anyway.

4. The extensive conserved C operator in the second term in (2.160) can be replaced by its
average value 〈C〉ρ = ~ieff , and its fluctuations over this average can be neglected.

5. The properties of the underlying trace dynamics theory allows to drop the terms on the right
hand side of the Ward identity (2.159), hence the Ward identity approximately holds when
Dxu is inserted between arbitrary polynomials SL and SR in the dynamical variables.

2.8.1 The emergence of quantum-theoretic structures

Taking granted that the underlying trace dynamics theory can be made such that the above as-
sumptions are satisfied, and unwanted terms in (2.151) vanish or become negligible, we evaluate
some of its consequences. With these assumptions and (2.134), the Ward identity 〈Dxu〉ρ = 0 with
(2.160) becomes

〈SLDxuSR〉ρ = 0, Dxu ≈ 2 [ieffWeff , xu] + 2
∑
lr

ωurεlW
Rl
r ieffCeffW

Ll
r , (2.162)

up to some restrictions for any two polynomials SL and SR in the dynamical variables, and

〈SLDxuSR〉ρ ≈ −

〈 ∑
v∈SL∪SR

ωuvA(SLDxuSR)v̂

〉
ρ

, (2.163)

in the general case without any restrictions. With the assumption, that the conserved C operator
can be replaced by its average value 〈C〉ρ = ~ieff , Dxu in (2.162) simplifies to (by going back from
(2.140) to (2.139))

Dxu ≈ 2 [ieffWeff , xu]− 2~
∑
lr

ωurεlW
Rl
r WLl

r = 2 [ieffWeff , xu]− 2~
∑
r

ωur
δW

δxr
. (2.164)

Canonical commutation relations

Specializing the operator W to σvxv, where σv is an auxiliary odd grade c-number7, and even grade
unity otherwise, (2.164) becomes

Dxu ≈ 2 [ieffσvxveff , xu]− 2~ωuvσv. (2.165)

Stripping away the auxiliary σv and reordering, the basic Ward identity gives,

〈[xu, ieffxveff ]−εu + ~εuωuv〉ρ ≈ 0, (2.166)

7Its purpose is to make W even grade, if xv is fermionic.
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which is the same as with the effective projections of the dynamical variables xu and xv,

〈ieff [xueff , xveff ]−εu + ~εuωuv〉ρ ≈ 0. (2.167)

But only the latter expression allows us to pull the ieff matrix out of the commutator, even when
inserted between two polynomials SL and SR, and averaged over the statistical ensemble,

〈SL([xueff , xveff ]−εu − ieff~εuωuv)SR〉ρ ≈ 0, (2.168)

where ieff has been included into SL. With the restriction on the polynomials SL and SR not to
contain the variable canonically conjugated to xueff , this equation implies that the averages of the
effective dynamical variables xueff satisfy the usual canonical commutation relations of quantum
field theory in a weak sense. This is one of the reasons to suggest the identification of the dynamical
variables in the emergent quantum theory with the effective projections {xreff} of trace dynamics
variables, rather than with the dynamical variables {xr} themselves.

It is convenient to introduce the notation

A
ρ,S
≈ B,

when the operators A and B become approximately equal, when inserted between polynomials SL
and SR, and averaged over the statistical ensemble, with the polynomials SL and SR restricted to
not contain any variable canonically conjugated to some variable used to construct A or B. With
this definition, (2.168) is rewritten as

[xueff , xveff ]−εu
ρ,S
≈ ieff~εuωuv. (2.169)

Expanding the compact notation using the definition of the ω matrix, (2.25), for bosonic variables
we obtain

[qreff , pseff ]
ρ,S
≈ ieff~δrs, [qreff , qseff ]

ρ,S
≈ [preff , pseff ]

ρ,S
≈ 0, (2.170)

for fermionic variables,

{qreff , pseff}
ρ,S
≈ ieff~δrs, {qreff , qseff}

ρ,S
≈ {preff , pseff}

ρ,S
≈ 0, (2.171)

and for mixed bosonic and fermionic variables,

[qreff , pseff ]
ρ,S
≈ [qreff , qseff ]

ρ,S
≈ [preff , pseff ]

ρ,S
≈ 0, (2.172)

since no fermionic variable is canonically conjugated to any bosonic one.

The operator ieff has the role of the imaginary unit i in the complex Hilbert space of quantum
theory. It arises naturally, even if the underlying vector space of trace dynamics is taken over real
numbers. In that case, ieff is an antisymmetric matrix with vanishing trace, and i2eff = −I. Due to
the tracelessness of ieff , there appears no contradiction when taking the trace of the relation

[qreff , preff ]
ρ,S
≈ ieff~, (2.173)

in spite of the fact that the matrices qreff and preff are finite dimensional. But due to the restrictions
on SL and SR, the commutation relations cannot be used freely as in ordinary quantum theory.
There is an example [1] of a possible contradiction. When we evaluate the expression q2p2 + p2q2−
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2qp2q for a canonically conjugated bosonic pair q, p using the commutation relations (2.173) for
q = qreff and p = preff , we obtain

q2p2 + p2q2 − 2qp2q = q[q, p]p− p[q, p]q + qp[q, p]− [q, p]pq
ρ,S
≈ −2~2, (2.174)

which is not consistent with the vanishing trace of the left hand side. The suggested resolution [1]
to this apparent contradiction is to enlarge the underlying vector space by taking N →∞ in such
a way that the cyclic permutation under the trace ceases to hold. But this would lead to entire
breakdown of trace dynamics formalism, as it heavily relies on this property. Since the condition
on SL and SR not to contain a canonically conjugated variable to at least one variable in the
commutator is violated in (2.174), it would seem that the contradiction is brought in by unjustified
using (2.173) for the last equality in (2.174). However, a more precise calculation with the use of
(2.163) points rather towards some consistency issues with the approximations made in getting to
(2.164). This point will be discussed in more detail below.

Heisenberg evolution equations

Specializing W to the operator Hamiltonian H and using the effective projection of dynamical
variables, (2.164) implies,

Dxueff ≈ 2ieff [Heff , xueff ]− 2~ẋueff , (2.175)

where the ieff operator can be pulled out of the commutator due to the commutativity of ieff

with Heff . It is further assumed that Heff({xu}), the effective projection of H({xu}), can be
effectively represented as a function of the effective projections {xueff} of the dynamical variables
only, Heff({xueff}). This approximation is being justified by the hypothesis, that quantum theory
emerges only as a low energy approximation to a more complete theory, and in this low energy
regime the non-effective components {xu12} of the dynamical variables do not make a significant
contribution to the dynamics. This assumption enables us to use the Ward identity with the
effective projections xueff , (2.159). It tells us, that Dxueff is approximately zero when inserted
between SL and SR (regarded as functions of {xreff} with the usual restrictions not to contain the
canonically conjugated variable to xueff), and averaged over the ensemble. In this way we obtain
the effective Heisenberg evolution equations for xueff ,

ẋueff
ρ,S
≈ ieff

~
[Heff , xueff ] or 〈SL (~ẋueff − ieff [Heff , xueff ])SR〉ρ ≈ 0. (2.176)

Let S = S({xueff}) be an arbitrary polynomial in the effective dynamical variables. The operator
DS is defined using the Leibniz rule by (2.130). Substituting Dxueff from (2.175) into the expansion
of DS, and using the Leibniz property of the commutator and time derivative in (2.176), we obtain

Ṡ
ρ,S
≈ ieff

~
[Heff , S] or 〈SL (~ẋueff − ieff [Heff , S])SR〉ρ ≈ 0. (2.177)

Note that this is the case when the Ward identity 〈SLDSSR〉ρ = 0 holds without any restrictions
on the dynamical variables used to construct S. Therefore any operator function of the dynamical
variables, up to the approximations considered, obeys an effective Heisenberg evolution law of
quantum theory. Moreover, by choosing S = Heff , we learn, that the effective Hamiltonian Heff is
conserved under the time evolution it generates, as required for consistency of its interpretation as
an effective Hamiltonian.
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Given a value of a dynamical variable xueff(t0) at the time t0, its value at the time t is

xueff(t)
ρ,S
≈ U+

eff(t− t0)xueff(t0)Ueff(t− t0), (2.178)

with the effective evolution operator Ueff given by

Ueff(s) = exp

(
− ieff

~
sHeff

)
. (2.179)

This is readily verified by taking the time derivative of xueff(t) and comparing with the effective
Heisenberg equations (2.176). Hence, although the evolution of the underlying trace dynamics
theory is not unitary, it becomes approximately unitary in the emergent effective theory. By
(2.177) this result is immediately extended to any operator function S of the dynamical variables,

S(t)
ρ,S
≈ U+

eff(t− t0)S(t0)Ueff(t− t0). (2.180)

Given two such operator functions S1(t) and S2(t) at equal time, the ensemble average of their
product S1(t)S2(t+ ∆t) at distinct times (or vice versa) can be evaluated by

〈S1(t)S2(t+ ∆t)〉ρ ≈ 〈S1(t)U+
eff(∆t)S2(t)Ueff(∆t)〉ρ, (2.181)

as long as S1 does not contain variables canonically conjugated to those of S2. This identity is later
used to define Wightman functions by the ensemble averages of polynomials in dynamical variables.

General canonical transformations

The time evolution is only a special case of a general canonical transformations, in which the
parameter of the one-parameter group of time evolution transformations in the chosen reference
frame is interpreted as time. Therefore the results from previous sections can be carried over to
general canonical transformations, generated by a bosonic operator G, through the general relations
(2.56). The infinitesimal canonical transformations are represented by the effective infinitesimal
unitary transformations xueff 7→ xueff + δxueff ,

δxueff
ρ,S
≈ ieff

~
[εGeff , xueff ] or 〈SL (~δxueff − ieff [εGeff , xueff ])SR〉ρ ≈ 0, (2.182)

and the corresponding one parameter group of canonical transformation is given by the effective
unitary operator UGeff

UG,eff(τ) = exp

(
− ieff

~
τGeff

)
. (2.183)

Similarly as the Hamiltonian operator above, the Geff operator is assumed to be effectively given
(with some approximation) as a function of the effective dynamical variables only.

In case of a field theory with the field operators x 7→ qk(x), the spacetime translations and
rotations are also special cases of general canonical transformations. The generators of translation
are given by the effective part Pµeff of the operators corresponding to the components of trace energy-
momentum four-vector Pµ, (2.69). Then the translation qkeff(x) 7→ qkeff(x + a) of the ensemble
averaged effective fields is represented by an effective unitary transformation given by UPeff(a),

qkeff(x) 7→ qkeff(x+ a)
ρ,S
≈ U+

Peff(a)qkeff(x)UPeff(a), with UPeff(a) = exp

(
− ieff

~
aµP

µ
eff

)
, (2.184)
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and with the parameter τ included in a. Spatial translation and time evolution is then a special
case of (2.184), for which a is purely spatial or purely temporal vector in the given Lorentz frame.
The spacetime rotations of the fields are similarly represented by the unitary transformation with
UMeff(Λ),

qkeff(x) 7→ qk(Λx)
ρ,S
≈
∑
l

Skl(Λ)U+
Meff(Λ)qleff(x)UMeff(Λ), (2.185)

with

UMeff(Λ) = exp

(
− ieff

~
ΛµνM

µν
eff

)
, (2.186)

and Mµν
eff the effective part of the operator associated with the trace quantity Mµν , (2.75). This

gives the relation, ∑
l

Skl(Λ
−1)ql(Λx)

ρ,S
≈ U+

M,eff(Λ)qkeff(x)UM,eff(Λ). (2.187)

Taking both cases together, the general Poincaré transformation of the fields induced by the trans-
formation x 7→ {a,Λ}x = Λx+ a is given by

qkeff(x) 7→ {a,Λ}−1qkeff(x) = qk(Λx+ a)
ρ,S
≈
∑
l

Skl(Λ
−1)U+

{a,Λ},effqleff(x)U{a,Λ},eff , (2.188)

with the unitary operator U{a,Λ},eff given by

U{a,Λ},eff = exp

(
− ieff

~
(
aµP

µ
eff + ΛµνM

µν
eff

))
. (2.189)

2.8.2 Correspondence with quantum field theory

The assumptions on trace dynamics from previous section, that are needed (e.g. by [1]) to recover
the usual quantum-theoretic structures, can be summed up in the following points.

1. It is possible to find an underlying trace dynamics theory such that the superfluous terms
(2.161) in the Ward identities can be made zero of negligible comparing to the other terms,
when inserted between two polynomials in the dynamical variables and averaged over the
statistical ensemble.

2. The extensive conserved operator quantity C can be replaced by its ensemble average value
in the last term of Dxu, (2.162), even when inserted between two polynomials and averaged.

3. The effective projection of the operator Hamiltonian Heff or generators of general canonical
transformations, in a low energy approximation for which quantum theory is expected to
emerge, can be represented using the effective projections of dynamical variables only.

4. The additional assumptions on the polynomials SL and SR not to contain a canonically con-
jugated variable to xu of Dxu or to any variable in S of DS, can be with some approximation
dropped. Then the Ward identity (2.163) holds with approximately zero right hand side, and
the relevant equalities from previous section hold in a weak sense as operator equalities.

Provided these assumptions are satisfied by an underlying trace dynamics theory, the averaged
effective projections of the trace dynamics dynamical variables xueff are seen to acquire (in a specific
sense) the properties of quantum operators - they obey the usual commutation relations and the
unitary evolution law of quantum theory.
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Ensemble averages and Wightman functions

As remarked in section 2.5.1, the ensemble average of any operator is a linear combination of two
fixed operators ieff and I. Therefore the averages are uniquely determined by the two coefficients of
the linear combination, and these coefficients are expected to correspond in some sense to observed
values. Since both operators ieff and I commute with all averaged dynamical variables 〈xueff〉ρ,
the matrix ieff could be identified with the imaginary (c-number) unit i in the emergent complex
quantum Hilbert space. This applies even in case of the real vector space of trace dynamics, since
the pair I and ieff have all the algebraic properties of the generators 1 and i of the complex field
C. With the identification

I ↔ 1 ∈ C ieff ↔ i ∈ C, (2.190)

the ensemble average 〈xueff〉ρ of the effective projection of a trace dynamics variable xueff is essen-
tially given by a complex number. In this way trace dynamics could offer a natural explanation
of the appearance of complex numbers in quantum physics. In both cases of complex and Hilbert
vector space of trace dynamics, we can assign any matrix-valued ensemble average 〈xueff〉ρ of xueff a
complex number 〈xueff〉cρ by the identification (2.190). Equivalently, the identification can be made
by means of a trace of the averages with the operator I − ieff i,

〈xueff〉cρ =
1

N
Tr ((I − ieff i)〈xueff〉ρ) . (2.191)

The same reasoning apply also to any polynomial S in the effective or non-effective dynamical
variables with c-number coefficients. Hence the ensemble average 〈S〉ρ of S corresponds to a
complex number given by the trace

〈S〉cρ =
1

N
Tr ((I − ieff i)〈S〉ρ) . (2.192)

Given a probability distribution ρ and a set of trace dynamics variables {xueff}, the averages of
any polynomial S({xueff}) can be evaluated, yielding a complex number 〈S({xueff})〉cρ. The corre-
spondence between the trace dynamics variables xueff and the field operators Xu of the emergent
quantum field theory,

{xueff} ↔ {Xu}, (2.193)

is established by the identification of these ensemble averages of polynomials in xueff with vacuum
expectation values of the corresponding polynomials in Xu. The Wightman reconstruction theorem
can be used for this purpose. The ensemble average of a polynomial S defines the Wightman
function WS ,

WS({Xueff}) = 〈S({xueff})〉cρ. (2.194)

The properties of Wightman functions and their relation to quantum field theory are summarized
in the appendix. Several conditions have to be satisfied by the hierarchy of ensemble averages,

〈S({xueff})〉cρ for all mononomials S,

before the Wightman reconstruction theorem can be used to reconstruct the corresponding local
quantum field theory. Then it provides a separable Hilbert space H with a scalar product 〈, 〉H,
a distinguished normalized vector state Ψ0 (the vacuum state), and operators Xu acting on it,
such that the trace dynamics ensemble averages are given by the vacuum expectation values of
polynomials in Xu,

〈S({xueff})〉cρ = WS({Xueff}) = 〈Ψ0, S({Xueff})Ψ0〉H. (2.195)
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If S is a monomial S({xu}) = x1x2 . . . xn, then expanding the composite index u = (iu, xu) into
the infinitesimal space box label xu and the field component label iu, (2.195) becomes

〈xi1eff(x1)xi2eff(x2) . . . xineff(xn)〉cρ = W
(n)
i1i2...in

(x1, x2, . . . , xn) = 〈Ψ0, Xi1(x1)Xi2(x2) . . . Xin(xn)Ψ0〉H.
(2.196)

which is of the form of the Wightman function (A.18).

The identification between ensemble averages and Wightman functions is at a first sight carried
out in a different way by [1]. Since trace Lagrangian density is already assumed to be Poincaré
invariant, there exists the conserved trace four-vector Pµ and the corresponding three-vector ~P.
Then some additional assumptions are made, which again are to be understood as constraints on
the underlying trace dynamics theory. The effective Hamiltonian operator Heff({xseff}) is assumed
to be bounded from below, and there should be a unique eigenvector ψ0 with the lowest eigenvalue
of Heff and zero eigenvalues of ~Peff . Then the proposed correspondence with Wightman functions
is

ψ+
0 〈S({xueff})〉ρ̂ψ0 = WS({Xu}), (2.197)

where the unitarily fixed average given by the fixed density ρ̂ (section 2.6.5) is used instead of the
unfixed one. But as remarked in the section concerning unitarily fixed ensembles, both average
differ only for the operator quantities involving those variables whose overall unitary transformation
xu 7→ UeffxuUeff has been fixed. This is the case of the conserved C operator, but the difference is
considered negligible [1]. But if the variables on which the unitary fixing is performed are different
that those in S, both averages give the same result. This is the case of the choice S({xreff}) to be
xueff or a monomial in {xreff}. Since ψ0 is an eigenvector of Heff , and [Hieff , ieff ] = 0, it is also an
eigenvector of λ = λ0ieff (2.97). Therefore, up to a possible constant factor,

ψ+
0 〈S({xueff})〉ρ̂ψ0 ∝ 〈S({xueff})〉cρ,

and both identifications lead to the same emergent quantum theory.

Properties of Wightman functions

The Wightman functions defined by the ensemble averages in (2.196) are expected to be complex
valued distributions. Furthermore, the conditions (a) through (f) of section A.2 have to be satisfied
by the ensemble averages:

(a) Relativistic transformation law

The relativistic transformation law for the ensemble averages of the effective variables queff

is (2.188) with the effective unitary transformation U = U{a,Λ},eff given by (2.189). Then we
obtain for the Wightman functions (2.196),

W
(n)
i1...in

(x1, ..., xn) = 〈qi1(x1)...qin(xn)〉cρ = 〈U+qi1(x1)UU+qi2(x2)U...U+qin(xn)U〉cρ =

=
∑

j1,...,jn

Si1j1(Λ−1)...Sinjn(Λ−1)〈qj1(x1 + a)qj2(x2 + a)...qjn(xn + a)〉cρ =

=
∑

j1,...,jn

Si1j1(Λ−1)...Sinjn(Λ−1)W
(n)
j1,...jn

(Λx1 + a, ...,Λxn + a). (2.198)

The second equality follows from the observation, that U commutes with ieff , and by (2.191)
for an operator A the quantity 〈A〉cρ is Tr(I − ieff i)A, so the two outermost U operators
cancel each other by the cyclicity property, and the equality becomes an identity. Hence the
Wightman functions have the required relativistic transformation property (A.8).
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(b) Hermiticity

The hermiticity condition (A.9) is satisfied for all adjointness assignment for the trace dy-
namics variables and for arbitrary combinations of fermionic and bosonic variables, since the
averages of monomials have the same properties with respect to conjugation as the vacuum
expectation values,

W
(n)
i1...in

(x1, ..., xn) = 〈(qi1(x1)...qin(xn))+〉cρ = 〈qin(xn)+...qi1(x1)+〉cρ = W
(n)
i∗n,...i

∗
1
(xn, ..., x1).

(2.199)
The bosonic trace dynamics variables qi1 , ...qin are assumed to be self-adjoint, hence

W
(n)
i1...in

(x1, ..., xn) = W
(n)
i1...in

(xn, ..., x1). (2.200)

For fermionic variables we have either the self-adjointness or the assignment: qi(x) arbitrary
and pi(x) = qi(x)+. The latter option leads to non-self-adjoint field operators.

(c) Local commutativity

The local commutativity condition, (A.12), requires the arguments of Wightman functions
to commute or anticommute, when they refer to mutually spacelike separated points. This
condition is satisfied due to the commutation/anticommutation relations for the effective
variables, which hold when inserted between any two polynomials in the variables ql(x) and
averaged over the statistical ensemble. For instance,

W
(n)
i1...ijij+1...in

(x1, ..., xj , xj+1, ...xn) = 〈qi1(x1)...qij (xj)qij+1(xj+1)...qin(xn)〉cρ = (2.201)

= ±〈qi1(x1)...qij+1(xj+1)qij (xj)...qin(xn)〉cρ = ±W (n)
i1...ij+1ij ...in

(x1, ..., xj+1, xj , ...xn),

with the sign varying according to the exchange of bosonic or fermionic variables. Since
the canonical conjugate momenta are not among the field variables {ql} considered for the
definition of the Wightman functions, there are no additional restrictions on the polynomials.

(d) Positivity property

For any sequence {fj} and {gj} of test functions with fj ∈ S(R4j), in which only finite number
of entries are different from zero,

∑
j,k

∑
j1...kk

∫
fj,j∗j ...j∗1W

(k+j)
j∗k ...j

∗
1k1...kk

fk,k1...kk =

〈∑
j,k

∑
j1...kk

∫
fj,j∗j ...j∗1 q

∗
jj ...q

∗
j1qk1 ...qkkfk,k1...kkdµ

〉c
ρ

≥ 0,

which can be seen by noting that the right hand side is 〈A+A〉cρ with

A =
∑
k

∑
k1,...,kk

∫
fk,k1...kk(x1, ...xk)qk1(x1)...qkk(xk)dx1...dxk.

Therefore the Wightman functions have the positivity property required by (A.13).

(e) Spectral condition

The spectral condition requires that any Wightman function W
(n)
i1...in

(x1, ..., xn) can be ex-

pressed as a function W(n−1)
i1...in

(x1−x2, ..., xn−1−xn) of the differences of {xk}. By the unitary
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representation of spacetime translations (2.187),

W
(n)
i1...in

(x1, ..., xn) = 〈qi1(x1)...qin(xn)〉cρ = (2.202)

=
〈
e
ieff
~ Pµx

µ
1 qi1(0)e−

ieff
~ Pµ(x1−x2)µqi2(0)...qin−1(0)e−

ieff
~ Pµ(xn−1−xn)µqin(0)e−

ieff
~ Pµx

µ
n

〉c
ρ
.

Unless x1 = xn, the outer exponentials do not cancel each other as before. To establish
the spectral property, it is necessary these exponentials to effectively vanish upon taking the
average. This corresponds to the requirement of [1] mentioned above, that there is a common
eigenvector ψ0 of the operators Pµ with zero eigenvalue, and the connection between ensemble
averages and Wightman functions being made by (2.197). Assuming there is a trace dynamics
theory, in which it is possible, we obtain the function W of differences ξk = xk+1 − xk of the
coordinates,

W(n−1)
i1...in

(ξ1, ..., ξn−1) =
〈
qi1(0)e

ieff
~ Pµξ

µ
1 qi2(0)...qin−1(0)e

ieff
~ Pµξ

µ
n−1qin(0)

〉c
ρ
. (2.203)

This is a distribution acting in the variables ξ1...ξn−1. Its Fourier image,

W̃(n−1)
i1...in

(p1, ..., pn−1) =

∫
W(n−1)
i1...in

(ξ1, ..., ξn−1)e−i
∑
k pkξkdξ1...dξk, (2.204)

is, since the matrix ieff acts effectively as an imaginary unit,

W̃(n−1)
i1...in

(p1, ..., pn−1) = (2π~)4(n−1)
〈
qi1(0)δ(P − p1)qi2(0)...qin−1(0)δ(P − pn−1)qin(0)

〉c
ρ
.

(2.205)

Thus W̃(n−1) vanishes, if one of the pk lies outside the spectrum of all P of the statistical
ensemble, in particular outside the forward light cone. The relation (A.16) between W̃(n−1)

and the Fourier image W̃ (n) of W (n) follows, by the use of the Abel summation formula,

n∑
j=1

pjxj = (p1 + ...+ pn)xn −
n−1∑
j=1

(p1 + ...+ pj)(xj − xj),

from

W̃
(n)
i1...in

(p1, ..., pn) =

∫
W

(n)
i1...in

(x1, ..., xn)e−i
∑
j pjxjdx1...dxk = (2.206)

= (2π)4δ

 n∑
j=1

pj

 W̃(n−1)
i1...in

(p1, p1 + p2, ..., p1 + p2 + ...+ pn−1).

(f) Cluster decomposition property

The cluster property can be established by introducing yet another assumption, that the
fields at sufficiently separated points become statistically independent. Then if there are two
mononomials S1 and S2 constructed of fields of sufficiently separated supports, the average
of their product by the independence satisfy

〈S1S2〉ρ = 〈S1〉ρ〈S2〉ρ. (2.207)

The matrix structure of both averages on the right hand side is given by a function of the
ensemble parameter λ, and according to the discussion around (2.190) it can be represented by
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a single c-number. It follows, that the Wightman function defined by the average of S1S2 also
splits into a product of Wightman functions associated with S1 and S2, WS1S2 = WS1WS2 .
Then

lim
λ→+∞

〈qi1(x1)...qij (xj) qij+1(xj+1 + λ)...qin(xn + λ)〉cρ = (2.208)

= lim
λ→+∞

〈qi1(x1)...qij (xj)〉cρ 〈qij+1(xj+1 + λ)...qin(xn + λ)〉cρ =

= 〈qi1(x1)...qij (xj)〉cρ 〈qij+1(xj+1)...qin(xn)〉cρ, (2.209)

with the last equality due to the invariance of Wightman functions with respect to space-
time translation. Therefore the cluster property required by (A.17) is also satisfied by the
Wightman functions derived from the trace dynamics ensemble averages.

Reconstruction of quantum field theory

Since all the conditions are satisfied, the Wightman functions given by the ensemble averages have
all the properties of Wightman functions of a local quantum field theory. The Wightman recon-
struction theorem can now be used to reconstruct such a local quantum field theory corresponding
to the statistical ensemble of the classical trace dynamics fields, provided all the various assumptions
stated above can be met by a specific trace dynamics theory.

The construction of the Hilbert space H and field operators is described in more detail in the
appendix. The Hilbert space is the completion (in the norm given by the scalar product) of a set
of equivalence classes (f, g are in the same class, if ‖f − g‖ = 0) of sequences

f = (f0, f1, f2, f3, . . . ) (2.210)

of test functions fk ∈ S(R4k). The functions are complex valued for a single-component (scalar)
field, and take values in an appropriate tensor algebra for multi-component field. The action
of field operators on the vectors (2.210) is given by (A.22) or (A.30), and the scalar product is
defined using the Wightman functions by (A.20) or (A.27). There is distinguished cyclic vector
Ψ0 = (1, 0, 0, ...), the vacuum state, which is unique up to a complex multiple. The vectors of
the form (0, f1, 0, ...) (which depend on a single spacetime point), correspond to the one particle
states within the standard interpretation of quantum theory. Similarly the vector (0, 0, f2, 0, ...)
corresponds to a two-particle state, and (0, ..., fk, 0, ...) to a k-particle state. The designation ”k-
particle state” is adopted also in the context of trace dynamics, although the particle interpretation
has not been established there. The Hilbert space H, together with Ψ0 and the field operators, are
determined uniquely up to a unitary equivalence, hence it is unitarily equivalent to the Fock space.

The Wightman functions are defined using the trace dynamics field variables {qreff} only, and
they correspond to the vacuum expectation values of the field operators ϕr. The canonically
conjugated momenta preff can be nevertheless expressed using the field variables qreff and their
spacetime derivatives. Therefore both field variables and their momenta are carried over to the
emergent quantum theory, together with their canonical commutation relations and Heisenberg
evolution equations. The corresponding variables of trace dynamics and of quantum field theory
are denoted by

qreff(x)↔ ϕr(x), preff(x)↔ πr(x), xreff(x)↔ Xr(x), (2.211)

where r is the field component index. The commutation relations of trace dynamics for bosonic
fields (2.170) then become

[ϕr(x), ϕs(y)] = 0, [πr(x), πs(y)] = 0, [ϕr(x), πs(y)] = i~δrsδ(x− y), (2.212)
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the anticommutation relations for fermionic variables,

{ϕr(x), ϕs(y)} = 0, {πr(x), πs(y)} = 0, {ϕr(x), πs(y)} = i~δrsδ(x− y), (2.213)

and all fermionic variables commute with any bosonic one. For simplicity of notation, we further
consider only the one component (scalar) field, and drop the component indices r, s.

The Hilbert space obtained by the reconstruction theorem has a non-standard scalar product,
given by the Wightman functions. For example, the one particle space is formed by (the norm
closure of) the set of vectors

{Φn(x) = (0, φn(x), 0, ...)|φn ∈ S(R4)},

and the scalar product is

〈Φn,Φm〉H =

∫
φn(x)W (2)(x, y)φm(y)dxdy = 〈φn, φm〉H1 , (2.214)

hence the one particle space is effectively (the closure of) S(R4). Sometimes it is convenient to omit
the completion step of the reconstruction of H. Then the resulting space is not a Hilbert space,
since it is not complete in the norm given by the scalar product. We obtain rather the structure of
rigged Hilbert space of quantum theory, [6]. For any φ ∈ S(R4), the scalar product can be used to
define a functional on S(R4), a generalized function Fφ ∈ S′(R4),

φ 7→ Fφ(ψ) = 〈φ, ψ〉H1 . (2.215)

Then the rigged Hilbert space is given by the triple S(R4) ⊂ L2(R4) ⊂ S′(R4), with S′(R4) the set
of distributions associated with S(R4). In quantum theory, the operators are defined on (a subset
of) L2(R4), and they can be extended even beyond L2(R4) to include the vectors associated with
the continuous part of the spectra.

To obtain the one particle space with the usual scalar product, we have to find a basis in which
W diagonalizes. We can introduce the field operators A(x) and A+(y),

A =
1√
2

(ϕ+ iπ), A+ =
1√
2

(ϕ− iπ), (2.216)

and the relations (2.212) and (2.213) can be rewritten in terms of the operator A as

[A(x), A(y)]± = 0 = [A+(x), A+(y)]±, [A(x), A+(y)]± = ~δ(x− y), (2.217)

with the plus sign for fermionic, and the minus sign for bosonic operators. If A(x) annihilate the
vacuum, then A(x) and A(x)+ can be regarded as annihilation and creation operator respectively.
The creation and annihilation operators can be used to form one or multiple-particle states with
the standard scalar product. For one particle subspace formed by all the one particle states, by the
annihilation property of A and (2.217),

〈Ψ0, A(x)A(y)+Ψ0〉H = ~δ(x− y). (2.218)

Inserting a complete orthonormal (with respect to the scalar product on H) set {φn}, we obtain∑
n

~−1/2〈A(x)+Ψ0, φn〉H ~−1/2〈φn, A(y)+Ψ0〉H =
∑
n

ψn(x)ψn(y) = δ(x− y), (2.219)
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with
ψn(x) = ~−1/2〈φn, A(x)+Ψ0〉H, (2.220)

a one particle wavefunction, which is a generalized function from S ′(R4). Multiplying (2.219) by
ψ(x) and integrating over x 8, we learn that the set {ψn(x)}n is an orthogonal set with respect to
the standard scalar product on S(R4),∫

ψn(x)ψm(x)dx = δmn, (2.221)

and it is the basis (of the one particle space), in which the scalar product becomes the standard
one.

The reconstruction theorem provides also the Hamiltonian operator (denoted again Heff), since
it is given by a polynomial in the dynamical variables, and the Heisenberg evolution operator Ueff .
Both are operators acting on the Hilbert space H of the emergent quantum field theory, and

Ueff(t) = exp

(
− i
~
tHeff

)
. (2.222)

The unitary operator Ueff acts on those vectors, whose support is confined onto the spacelike
surface orthogonal to the time direction in the chosen Lorentz frame, as it comes from the operator
(2.179). Changing the reference frame changes the Hamiltonian and hence the evolution operator,
since the conserved energy-momentum trace four-vector transforms as a vector. These vectors
are the Heisenberg picture vectors. Let Φt0 be such a vector. Then t 7→ Φt = Ueff(t − t0)Φt0 is
the corresponding Schrödinger picture vector, from which it follows that Φt obeys the Schrödinger
equation

i~
∂Φt

∂t
= HeffΦt. (2.223)

This is an evolution equation on the multi-particle space of quantum field theory. For a suitable
Hamiltonian (with the one particle space as its invariant subspace) it can be specialized to the
one particle Schrödinger equation by restriction to the one particle space. With the notation

Φt = (0, φt, 0, ...), and H
(1)
eff the restriction of Heff to the one particle space, the one particle

Schrödinger equation reads

i~
∂φt
∂t

= H
(1)
eff φt. (2.224)

Therefore on the basis of validity of the assumptions made in the simplification of the Ward identities
in section 2.8, the averages of trace dynamics variables are associated with quantum field operators,
and their dynamics is governed by the usual quantum-theoretic dynamical laws.

2.9 Consistence of approximations

All the above results can be derived as soon as the effective canonical commutation/anticommutation
relations, the Heisenberg evolution law, and the general unitary canonical transformation equations
are established for the ensemble averages of trace dynamics variables. But this could be made only
after some rather far reaching conditions have been imposed on those underlying trace dynamics
theory. It is not a priori clear, whether there exists such a theory, that would meet all the condi-
tions and assumptions. Therefore there appears a necessity to examine the consistency of all the
conditions and assumptions, that lead to the emergence of the structure of quantum theory. These
assumptions are mostly summarized in section (2.8.2).

8This is not entirely mathematically correct, since the action of the distribution ψ(x) is defined only for the test
functions from S(R+). On the other hand, any generalized function can be approximated by a function from S(R4).
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2.9.1 Commutation relations

Some consistency issues with the assumptions and approximations leading to the emergence of
quantum theory were already encountered in the discussion around the equation (2.174). Using the
emergent canonical commutation relations (2.170) (for bosonic variables) leads to the equation,

q2p2 + p2q2 − 2qp2q
ρ,S
≈ −2~2. (2.225)

This should in average hold as a weak operator identity, i.e. the difference of both sides should
be zero, when inserted between arbitrary polynomials and averaged over the zero source ensemble.
This raises doubts about the existence of a trace dynamics theory with all the required properties
to meet the various assumptions.

Consider the Ward identity given by (2.160),〈
[{ieff ,W}, xu] +

∑
lr

ωurεlW
Rl
r {ieff , C}WLl

r + (−τ ẋu + εu[λ, xu] + γuxu) Tr({ieff , Ceff}Weff)

〉
ρ

= 0.

(2.226)
Taking A = 1 in the general Ward identity (2.116), and using the result of variation of the term
(2.142), we get

〈Dxu〉ρj = 0, with Dxu = −τ ẋu + εu[λ, xu] + γuxu −
∑
r

ωurjr. (2.227)

The variation of the sources jr can be used to obtain the ensemble average of the superfluous term,

(−τ ẋu + εu[λ, xu] + γuxu) Tr({ieff , Ceff}Weff), (2.228)

in (2.226), that is assumed to be approximately zero for the argument of emergence of quantum
theory. Setting W = σsxs as in the derivation of the commutation relations, and using the most
general form of the extended Ward identity (2.153), we learn that the second variation terms given
by the right hand side of this Ward identity yield exactly the first two terms in (2.226) with
W = σsxs. This indicates that the superfluous term (2.228) is not approximately zero with respect
to the remaining terms (leaving the latter also zero, as needed for the emergent commutation
relations to hold), but they are both nonzero and rather cancel each other.

Moreover, the average value of the commutator of effective projections of any two bosonic
dynamical variables xueff and xveff is always zero. This follows from the fact, that the average of
[xueff , xveff ] is a function of the ensemble operator parameter λ = λ0ieff , and by (2.191) it can be
expressed as

〈[xueff , xveff ]〉cρ =
1

N
Tr ((I − ieff i)〈[xueff , xveff ]〉ρ) . (2.229)

Since all effective variables commute with ieff , the average of the commutator is zero. Similarly, the
average of the anticommutator of effective projections of any two fermionic dynamical variables is
also zero. Then the Ward identity (2.226) with W = σvxv becomes

〈ωuvσv{C, ieff}+ (−τ ẋu + γuxu) Tr({ieff , Ceff}σvxveff)〉ρ = 0. (2.230)

Since 〈ωuvσv{C, ieff}〉ρ = −2~ωuvσv, it is not possible to neglect the average value of the superfluous
term (2.228). In particular, the assumption for vanishing the term with τ due to different support
properties of ẋu and C cannot be true. This spoils the argument for the emergence of commutation
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relations and similarly also for the emergence of Heisenberg evolution equations for the effective
dynamical variables. Therefore the identification of quantum variables with the averages of effective
projections of trace dynamics variables is not viable.

However, without the effective projection, the ensemble averaged commutators/anticommutators
of the bosonic/fermionic variables xu and xv can in general be nonzero, since they no longer com-
mute with ieff . We can derive another Ward identities by taking A = CW in the general Ward
identity (2.116), with the use of the derivation of (2.225) replacing {ieff , C} by C,〈

[W,xu] +
∑
lr

ωurεlW
Rl
r CWLl

r + (−τ ẋu + γuxu) TrCW

〉
ρ

= 0. (2.231)

For W = σvxv it becomes〈
[xv, xu]−εu + ωuvieff~ + (−τ ẋu + γuxu) TrCxv

〉
ρ

= 0, (2.232)

with the auxiliary c-number σv stripped away, and with the use of

[σvxv, xu] = σv[xv, xu]−εu .

Hence we obtain the commutation relations

εu [xu, xv]εu
ρ
= ωuvieff~ + (−τ ẋu + γuxu) TrCxv, (2.233)

where the
ρ
= sign means, that the equality holds exactly when averaged over the ensemble, but

without inserting between polynomials. For bosonic variables it becomes, with the definition of γu
in (2.150), and ωuv in (2.25),

[qr, ps]
ρ
= δrsieff~ + (−τ q̇r + αqr) TrCps

ρ
= δrsieff~ + (τ ṗs + αps) TrCqr (2.234)

and for fermionic variables,

{qr, ps}
ρ
= δrsieff~ + (τ q̇r + βqr) TrCps

ρ
= δrsieff~ + (τ ṗs − βps) TrCqr. (2.235)

If the commutation/anticommutation relations were to hold, then the terms with traces should
effectively vanish or become negligible. From the derivation of the C operator (2.53) it follows that

ieff~ = 〈C〉ρ
ρ
= ieff~(nB − nF )−

∑
r∈B∪F

(τ q̇r − γrqr)TrCpr, (2.236)

with nB and nF denoting the total number of bosonic and fermionic variables respectively. Hence
in any trace dynamics theory, in which the superfluous terms approximately vanish, there has to
be approximately equal number of fermionic and bosonic variables.

In the general case, when the relations are to hold even when inserted between two polynomials
in the dynamical variables, we have to reintroduce the εu[λ, xu] term and the C operator, and use
the extended Ward identity (2.127) to obtain

εu [xu, xv]εu
ρ,S
= ωuvC + (−τ ẋu + εu[λ, xu] + γuxu) TrCxv +

∑
v∈SL∪SR

ωuv(SLDxuSR)v̂. (2.237)
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Expanding the compact symplectic notation, the exact commutation relations for bosonic variables
become

[qr, ps]
ρ,S
= δrsC + (−τ q̇r + [λ, qr] + αqr) TrCps +

∑
ps∈B∩(SL∪SR)

(SLDxsSR)ŝ, (2.238)

and the anticommutation relations for fermionic variables,

{qr, ps}
ρ,S
= δrsC + (τ q̇r + [λ, qr] + βqr) TrCps +

∑
ps∈F∩(SL∪SR)

(SLDxsSR)ŝ. (2.239)

Using these commutation relations in (2.225), and denoting B = (τ q̇− [λ, q] +αq)TrCp, we obtain,

q2p2 − p2q2 − 2qp2q
ρ,S
= q(C +B)p− p(C +B)q + qp(C +B)− (C +B)pq, (2.240)

which removes the previous contradiction arising from different traces of the left and right hand sides
of (2.225). This nevertheless shows, that even if the superfluous terms could be made negligible and
C replaced by its ensemble average ieff~, the averaged (anti)commutation relations are not (neither
approximately) equivalent to those of ordinary quantum field theory. With such assumptions, up
to the approximations involved,

(2.240)
ρ,S
≈ qieffp− pieffq + qpieff − ieffpq = ~(qp̃− pq̃ + qp̃− p̃q̃)ieff = ~(qpeff − peff q̃)ieff

ρ
= 0,

since [ieff , x] = x̃, for x ∈ {q, p}, and with the notation x̃ = xeff − x12 for x = xeff + x12. The last
equality follows from the fact that all the ”12” components of any operator and the commutator
[qeff , peff ] vanish in the ensemble average.

2.9.2 Heisenberg evolution

Taking W = H in the Ward identity 〈Dxu〉ρ with Dxu given by (2.226), we get the identity〈
(−τ ẋu + γuxu)TrCH + [H,xu] +

∑
s,l

ωusH
Rl
s CHLl

s

〉
ρ

= 0. (2.241)

Since the operators HRl
s in general commute neither with C nor with ieff , the last term no longer

(approximately) equals to ieff ẋu. Moreover, if we admit that the γu can be set to zero, from (2.227)
it follows, that 〈ẋu〉ρ = 0 independently of the trace dynamics operator Hamiltonian H. Therefore
the time evolution of the averages of trace dynamics variables is not governed by the Heisenberg

evolution law ẋu
ρ,S
≈ [H,xu] in the static ensemble, (2.89).

From all these remarks it can be concluded, that the necessary conditions for emergence of
quantum theory apparently cannot be satisfied by the static ensemble averages associated with
any underlying trace dynamics theory. It nonetheless cannot be used to completely exclude the
possibility, that the commutation relations and unitary canonical transformations could be a feature
of a trace dynamics theory with another operator phase space probability distribution, or even of
some non trace dynamics matrix model (a matrix model whose dynamics is not determined by a
trace Hamiltonian). It is therefore worthwhile to keep assuming that such an underlying theory
could exist, and try to draw some conclusions about the possible emergence of quantum probability.
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2.10 Trace dynamics and quantum probability

In this section it is taken for granted, that there exists a theory, whose statistical properties give rise
to the emergence of quantum field structures as in the previous sections. The ensemble averages of
its dynamical variables obeys the appropriate commutation relations and unitary transformation
laws, and they define the Wightman functions satisfying all the axioms of a local quantum field
theory. This then allows their identification with the vacuum expectation values and the recon-
struction of the Hilbert space formalism of quantum field theory. We are concerned with whether
the quantum probability already emerges from such an identification, as the effective probability
associated with the statistical description of the deterministic underlying theory.

The construction of quantum field theory from the Wightman functions (section A.3) suggests9,
that the field theory is complete, i.e. any vector of the emergent Hilbert space H can be obtained
by the action of a polynomial in the field operators on the vacuum state Ψ0. The field operator Xu

correspond to a statistical ensemble of trace dynamics operators xu, given by the operator phase
space distribution. We can reinterpret the moments of xu as the moments of the corresponding field
operator Xu, and similarly all the cross-moments of {xu} with their corresponding cross-moments
of {Xu}. The moments and cross-moments of {Xu} are not given by a probability distribution, but
directly by the Wightman functions. For example, we interpret 〈Ψ0, X1Ψ0〉H = 〈x1〉cρ as the average
value of X1, 〈Ψ0, X

2
1 Ψ0〉H = 〈x2

1〉cρ as the second moment of X1, and 〈Ψ0, X1X2Ψ0〉H = 〈x1x2〉cρ as
the covariance of X1 and X2.

If we know all the Wightman functions, we know also all the moments of an observable O (a
function of the field operators {Xu}), and they can be used to recover the probability distribution on
the space of values the observable could take. These possible values have to be actually inferred only
from the values of the moments of O, since the correspondence between values of trace dynamics
variables and the individual observed values has not been established. Since all the moments of O
are c-numbers, the recovered values of O are c-numbers too, whereas the trace dynamics variables
are matrices. Such a theory then could give only a statistical prediction of results of experiments,
the set of possible values and their probability distribution.

Consider two observables O and O′ that correspond to trace dynamics operators A and A′

respectively10. If A effectively commutes with A′ when averaged over the statistical ensemble11,
then there is a common classical probability space of the values of O and O′, on which probability
distributions for both observables, including the joint probability distribution, can be recovered from
the moments and cross-moments. Thus the moments and cross-moments of any fixed commutative
set of operators {Ok} are compatible with the moments of some random variables of a classical
probability theory. Then it is in principle possible to find a classical probability space (the space
of individual outcomes and a probability distribution), on which the operators are represented by
random variables, such that their statistical properties are the same as those of the operators.

But it could also happen, than A and A′ do not commute in the average due to the commutation
relations (2.170) and (2.171). In this case there exists no classical probability space on which both
O and O′ could be represented by random variables, since otherwise their correlation would have
to be commutative, but that contradicts

〈Ψ0, OO
′Ψ0〉H = 〈AA′〉cρ 6= 〈A′A〉cρ = 〈Ψ0, O

′OΨ0〉H. (2.242)

9This actually holds, and it is proved for example in [7].
10If O is given by a polynomial S in the field operators, then A is given by the same polynomial S, but in the

corresponding trace dynamics variables.
11This means that AA′

ρ,S
= AA′, and it happens, if A does not contain a canonically conjugated variable of some

variable in A′. Then also the corresponding observables O and O′ commute.
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Therefore the statistics associated with {O} are in general described by a noncommutative prob-
ability. The trace dynamics (random) variables are operator valued, but their ensemble averages
are given by the c-numbers 〈xu〉cρ. The ensemble averages are nevertheless still noncommutative in
the sense of (2.242). Let A be the algebra of the trace dynamics variables, and define a state φ
on A by (2.192) with subsequent averaging over the ensemble. Then for any polynomial in the dy-
namical variables S, φ(S) is the Wightman function WS . Therefore the emergent noncommutative
probability is just a consequence of the fact, that another noncommutative probability has been
effectively employed at the trace dynamics level.

The physical interpretation of the trace dynamics fields as the hidden-variables and the emer-
gence of definite measurement outcomes does not immediately follow from the underlying theory.
If the underlying trace dynamics determined all the quantum measurement outcomes, it would
either have to be non-local or in some way deny the reality of the measurement outcomes in order
to avoid the Bell theorem. The connection between locality and commutativity of observables (i.e.
two spacelike separated observables in a local theory have to commute) is only a consequence of
the projection postulate and the Born probability rule. But these quantum-theoretic rules are not
available for an underlying trace dynamics theory. Hence although the trace dynamics variables
are given by completely noncommutative matrices, it still does not imply, that the underlying trace
dynamics theory is necessarily non-local. Actually, there is no non-locality in trace dynamics, unless
it is explicitly inserted into the dynamics of the underlying theory.

The underlying trace dynamics theory is Lorentz covariant, since the trace dynamics fields are
classical fields with an assumed Lorentz covariant Lagrangian. The non-locality need not necessarily
be in a conflict with Lorentz covariance and causality. In a deterministic theory with reversible
dynamics, the cause and the corresponding effect are interchangeable, and the possible reversed time
ordering of both events in a specific Lorentz frame makes no problem. On the other hand, a non-
local stochastic theory has to pick a preferred Lorentz frame, in which the non-local interactions
propagate instantaneously. Such a theory then cannot be Lorentz covariant, but this does not
exclude the Lorentz covariance of some statistical approximation, of which quantum theory might
be an example.

2.10.1 Born probability rule

The probability interpretation and the Born probability rule is proposed [1] to be a consequence
of the statistical ensemble fluctuations of the C operator in (2.162). These fluctuations have been
neglected in the passage from (2.162) to (2.164), which subsequently yielded the effective Heisenberg
unitary evolution equation (2.176). Keeping these fluctuation terms, the effective evolution equation
become modified, and if the C operator is not purely anti-self-adjoint, the evolution may cease to
be unitary. Then also the Schrödinger equation (2.224) become modified by the fluctuation terms.
The equation is still linear, but it is no longer unitary, hence it does not preserve the norm of the
statevector.

The fluctuation terms are modeled by time dependent classical stochastic process, which is
added to the Schrödinger equation, turning it into a stochastic Schrödiger equation. Taking an
average over the realizations of the stochastic process, it becomes again the original Schrödiger
equation without any fluctuation terms. These fluctuation terms causes the time evolution of a
statevector ψ not to be deterministic, and the norm of ψ may change with time. It is then suggested
to replace ψ by the normalized vector Ψ,

ψ 7→ Ψ = ψ/〈ψ,ψ〉H. (2.243)
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As a consequence, the time evolution of the normalized vector Ψ becomes governed by a nonlinear
Schrödinger equation.

In general, a nonlinearity in the Schrödinger equation is responsible for non-local effects, such as
the instantaneous action-at-distance [15], [16]. But the nonlinearity12 can also be made responsible
for the dynamical reduction of the statevector [18] during the measurement of an observable O.
This is a process, in which (with a suitable non-linear Schrödinger equation) an initial statevector
continuously evolves into exactly one of the eigenstates of O, with the particular eigenstate deter-
mined by the actual trajectory of some stochastic process. Since the nonlinearity is present only in
the fluctuations, which vanish when averaged with respect to the (unobservable) stochastic process,
the non-locality is not directly observable through the statistical predictions of the theory.

With some additional assumptions, the Schrödinger equation for the normalized statevector Ψ
is shown ([1],[2],[4]), to be of a suitable form to trigger the dynamical reduction of Ψ into one of the
eigenvectors ϕk of O, when the system interacts with a measurement apparatus associated with an
observable O. Moreover, the probability of transition Ψ → ϕk turns out to be given by the Born
rule, |〈Ψ, ϕk〉H|2.

The Born probability rule also follows already from the structure of the probability algebra (as
a set of linear operators on a Hilbert space), the interpretation of the state on the algebra as the
expectation functional, and the assumption, that the collapse takes place during the measurement
process. By the Gleason theorem (section 1.1), any (normal) state φ is given by a density operator
ρ, and φ(O) = TrρO. After the collapse, the observable O takes definite value, hence ρ has to be
the one-dimensional projection Pϕk given by an eigenvector ϕk of O. The initial state φ0 is given
by the density operator ρ0 = PΨ, due to a statevector collapse in the preparation stage of the
experiment. Then from the interpretation of the state, the probability of the transition Ψ→ ϕk is
φ0(Pϕk) = TrPΨPϕk = |〈Ψ, ϕk〉H|2.

The correspondence between trace dynamics variables and field operators provides the prob-
ability algebra, the state on this algebra, and the interpretation of the state. The last thing to
establish the Born rule is the reduction of the statevector, and this is not possible, when the dy-
namics of the measurement process is given by a linear Schrödinger equation. Unfortunately, the
renormalization of the statevectors ψ → Ψ, (2.243), which has brought the nonlinearity into the
stochastic Schrödinger equation, is not well justified and presumably invalid. The statevectors are
obtained by the action of field operators on the vacuum state, and there is no a priori reason for
them to be normalized. And even if the initial statevector is normalized, its norm need not be con-
served by the evolution with the stochastic Schrödinger equation, since the stochastic terms disturb
the unitarity of the evolution13. Moreover, the renormalization artificially introduces non-locality,
which is not (or need not to be) present in the underlying trace dynamics theory. This is a kind
of non-locality, that appears even in the case, when the underlying theory is local. This suggests
that the renormalization of the statevector is not correct, and consequently the fluctuating terms
in the stochastic Schrödinger equation do not actually lead to the statevector reduction.

12As noted in the first chapter, the linear Schrödinger equation cannot lead to a collapse of the statevector.
13The norm is conserved, only when averaged over the realizations of the stochastic process. In this case the

stochastic terms are averaged out, and the stochastic Schrödinger equation becomes the ordinary deterministic one.
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Conclusion
The effective projections of trace dynamics variables, at a first sight, could provide the correct

Wightman functions of an emergent quantum field theory. But we have seen that some of the the
relevant terms in the Ward identities have a tendency to vanish, while the the unwanted superfluous
terms are likely to persist. If we use the full dynamical variables, we get non-zero results, and we
also spare the assumption, that all the effective operators are composed only from the effective parts
of the dynamical variables. But then the familiar structure of quantum theory does not appear,
since the emergent imaginary unit no longer commutes with the other operators.

Furthermore, the argument effectively requires, at least in some approximation, that the aver-
aged effective dynamics and commutation relations to be independent of the probability distribution
of the trace dynamics fields. This condition is likely not to be possible to satisfy, and it also spoils
the interpretation of the state of a quantum system as a specific configuration of the trace dynamics
fields. The quantum probability is recovered anyway, but in a trivial way, since it was effectively
imposed on the underlying theory by the specific way, in which the correspondence with Wightman
functions has been established. The appearance of definite outcomes of measurements and the
particle interpretation of the fields have remained unexplained. The underlying theory would have
to be non-local, in order to imply an effective dynamical state vector reduction, but trace dynamics
is not. Therefore trace dynamics cannot explain the collapse of the state vector. Unless a way to
overcome all these problems is found, the emergence of quantum theory from trace dynamics is
likely to be a lost cause.
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Appendix A

Quantum fields and Wightman
functions

This appendix, reviews some basic properties of Wightman functions, [7] and [10], their relation
to vacuum expectation values and the Hilbert space formalism of quantum field theory. Such a
correspondence can be used to reconstruct the Hilbert space and the quantum field operators acting
on it from the statistical ensemble averages of the operators of a trace dynamics theory, provided
certain requirements placed on this averages are satisfied.

A.1 Axiomatic quantum field theory

A classical field is a function defined on spacetime and taking values in R or Rn. The natural
generalization of the notion of classical field to quantum field would be a function defined on
spacetime, and taking values in the set of operators on a Hilbert space. However, it turns out
that the fields in their dependence on spacetime points are more singular than the classical fields.
This singularity is an inevitable consequence of the requirement of relativistic covariance of the
function x 7→ φ(x). It is even true, that if the field was a relativistic covariant operator function
on the spacetime, the corresponding Hilbert space would have to be trivial, i.e. consisting of the
vacuum state only, [13]. To remedy this, the quantum field φ can be defined as an operator valued
distribution, a linear functional from a space of test functions from S(R4) with values in the set of
linear operators on a Hilbert space. The space S(R4) can be either the Schwartz space or the space
of infinitely differentiable functions with compact support. Unlike the field x 7→ φ(x), the smeared
field f ∈ S(R4) 7→ φ(f) is a well defined operator.

A field theory is required to have the following properties (the Wightman axioms, [7]):

1. General properties
The states of the quantum field theory are described by unit rays in a separable Hilbert space
H with the scalar product

(ϕ,ψ) ∈ H ×H 7→ 〈ϕ,ψ〉 ∈ C.

For any two fixed vectors ϕ,ψ ∈ H, the expression

f ∈ S 7→ 〈ϕ, φk(f)ψ〉

defines a complex valued distribution (generalized function) acting on S(R4), and φk(f) is
then an operator valued distribution. There is a dense subset D of the Hilbert space H, such
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that for any f ∈ S(R4) the operators φk(f) and their adjoints φk(f)+ are defined on D, and
D is their common invariant subset,

φk(f)D ⊂ D, φk(f)+D ⊂ D.

This subset is large enough to ensure that any symmetric operator defined on D has a unique
self-adjoint extension. There is a distinguished vector Ψ0, the vacuum state, that is a cyclic
vector for the smeared fields, i.e. the set D0 ⊂ D ⊂ H,

D0 =
⋃
P

P ({φk(fl)})Ψ0,

is dense in H (the completeness property of the field theory), where the union is over all
polynomials P in the field operators.

2. Relativistic properties
The Poincaré transformation law is given by a continuous unitary representation of the
Poincaré group,

{a,Λ} 7→ U(a,Λ),

where a is a four-vector of spacetime translation, and Λ an element of the proper Lorentz
group.1 The field operator φi(f) transforms as

φi(f) 7→ U{a,Λ}φi(f)U+
{a,Λ} =

∑
ij

Sij(Λ
−1)φj({a,Λ}f), (A.1)

with the action of the Poincaré group element {a,Λ} on f ∈ S(R4) given by

{a,Λ}f(x) = f(Λ−1(x− a)), (A.2)

and where Λ 7→ Sij(Λ) the representation of the Lorentz group on the field components. The
vacuum state Ψ0 and the set D are invariant under the action of U{a,Λ},

U{a,Λ}D ⊂ D, U{a,Λ}Ψ0 = Ψ0. (A.3)

The spacetime translations are given by U{a,I} = exp(iPµa
µ), with the generator Pµ an

unbounded self-adjoint operator. The operator PµPµ = m2I represents a squared mass of a
particle associated with the particular representation of Poincaré group. The spectrum of Pµ

is restricted to be contained in the forward light cone, PµPµ ≥ 0 (the spectral condition).

3. Causality properties

For any two test functions f, g ∈ S with spacelike separated support, i.e. f(x)g(y) = 0 for x
and y spacelike separated points, the fields φi(f) and φj(g) either commute or anticommute
(not both),

[φi(f), φj(g)]± = 0.

1The proper Lorentz group is the subgroup of the full Lorentz group, which is connected with the unit element.
In the notation, the Poincaré group elements and the corresponding matrices Λ or four-vectors a (associated with
the representation of the group on the spacetime) are identified.
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It is often convenient to represent the distribution f 7→ φ(f) by the symbol φ(x), where x
indicates that φ(x) acts on the test functions of the form x 7→ f(x). The relativistic transformation
law (A.1) then can be symbolically restated as

φi(x) 7→ U{a,Λ}φi(x)U+
{a,Λ} =

∑
j

Sij(Λ
−1)φj(Λx+ a). (A.4)

It is generally required that the field theory contains enough field operators to express any
statevector using fields and functions of fields. This can be achieved by requiring the vacuum
vector to be a cyclic vector (as in the first property above), by the requirement the field operators
to form an irreducible set of operators on H, or by postulating the commutation/anti-commutation
relations,

[φi(x), πj(y)]± = iδ(~x− ~y)δij , (A.5)

with πj a definite linear combination of the fields and their spacetime derivatives (the canonically
conjugated field operator to φi).

A.2 Wightman functions and vacuum expectations

The Wightman functions are defined as the vacuum expectation values of monomials in the field
operators,

W
(n)
i1i2...in

= 〈Ψ0, φi1(x1)φi2(x2) . . . φin(xn)Ψ0〉, (A.6)

with the superscript denoting the number of arguments, and the (i1, i2, . . . , in) is an ordered n-
tuple of field component indices. All monomials for all combinations of the field components φik
are considered, giving a hierarchy of Wightman functions labeled by the n-tuples (i1, . . . , in) for
all positive integers n. For n = 0 we define W (0) = 1. We admit also Wightman functions with
non-self-adjoint operators, in that case the indices corresponding to conjugated operators will be
denoted by an asterix, i.e. for example

W
(n)
i∗1i2i3

= 〈Ψ0, φ
+
i1

(x1)φi2(x2)φi3(x3)Ψ0〉.

The term φi1(x1)φi2(x2) . . . φin(xn) on the right hand side is regarded as the tensor product,

Ŵ
(n)
i1i2...in

(x1, x2, . . . , xn) = φi1(x1)⊗ φi2(x2)⊗ · · · ⊗ φin(xn).

of the operator valued distributions φik . It is an operator valued distribution on S(R4n), and the
Wightman function W , (A.6), is a complex valued distribution on S(R4n). The action of W on a
special test function f ∈ S(R4n) of the form f(x1, . . . , xn) = f1(x1)f2(x2) . . . fn(xn) is defined by

W
(n)
i1i2...in

(f) = 〈Ψ0φi1(f1)φin(fn) . . . φin(fn)Ψ0〉,

which is a separately continuous (i.e. with respect to the functions fi individually) linear functional,
and by the properties of the space of test functions S(R4) it is extended to a continuous linear
functional on S(R4n),

W
(n)
i1i2...in

: f ∈ S(R4n) 7→ C.

This functional is then represented by the symbol W
(n)
i1i2...in

(x1, x2, . . . , xn) on the left hand side of
(A.6), and it is a well defined complex valued distribution.

66



There are several properties of the vacuum expectation values of a quantum field theory, which
are carried over to the Wightman functions. These properties are not separate postulates, they
follow ([7], or [10]) from the axioms listed in the previous section. Given a set of Wightman

functions {W (n)
i1...in

(x1, . . . , xn)} for all possible n, (i1, i2, . . . , in) and (x1, x2, . . . , xn) with all that
properties, it is possible to recover the corresponding quantum field theory from the Wightman
functions. These properties of W are:

(a) Relativistic transformation law

The law (A.1) of Poincaré transformation, represented by the unitary operator U = U{a,Λ},
carries over to the vacuum expectation values as, in the symbolic notation of (A.4),

〈Ψ0, φi1(x1) . . . φin(xn)〉 7→ 〈Ψ0, Uφi1U
+ . . . UφinU

+Ψ0〉 = (A.7)

=

〈
Ψ0,

∑
j1,...,jn

Si1j1(Λ−1) . . . Sinjn(Λ−1)φj1(Λx1 + a) . . . φjn(Λxn + a)Ψ0

〉
,

All vacuum expectation values are Poincaré invariant by virtue of the property of the vacuum
state Ψ0,

Ψ0 7→ UΨ0 = Ψ0, Ψ0 7→ U+Ψ0 = Ψ0.

It follows immediately from (A.7), that the Wightman functions satisfy

W
(n)
i1...in

(x1, . . . , xn) =
∑

j1,...,jn

Si1j1(Λ−1) . . . Sinjn(Λ−1)W
(n)
j1,...,jn

(Λx1 + a, . . . ,Λxn + a). (A.8)

(b) Hermiticity

The vacuum expectation values satisfy

〈Ψ0, φi1(x1)φi2(x2) . . . φin(xn)Ψ0〉 = 〈Ψ0, φin(xn)+ . . . φi2(x2)+φi1(x1)+Ψ0〉, (A.9)

hence we have the condition for the Wightman functions,

W
(n)
i1i2...in

(x1, x2, . . . , xn) = W
(n)
i∗n...i

∗
2i
∗
1
(xn, xn−1, . . . , x1), (A.10)

and in case of self-adjoint field operators it reduces to

W
(n)
i1i2...in

(x1, x2, . . . , xn) = W
(n)
in...i2i1

(xn, xn−1 . . . , x1). (A.11)

(c) Local commutativity

For any permutation π of the set {1, 2, . . . n},

W
(n)
iπ(1)iπ(2)...iπ(n)

(xπ(1), xπ(2), . . . , xπ(n)) = (−1)m(π)W
(n)
i1i2...in

(x1, x2, . . . , xn), (A.12)

if the spacetime points xi are all mutually spacelike separated. The sign of the left hand side
is determined by the number m(π) of exchanges of anticommuting fields in the permutation.

(d) Positivity property
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Denote f = {fj | j = 0, 1, 2, ...} a sequence of test functions, with f0 ∈ C and fk ∈ S(R4k) for
k > 0. Then

+∞∑
k,l=0

∫
dx1...dxkdy1...dylfk(x1, ..., xj)W

(k+l)
i∗kk...i

∗
k1il1...ill

(xk, ..., x1, y1, ..., yl)fl(y1, ..., yl) ≥ 0,

(A.13)
for all f and all possible sets {ikj |k, j = 0, 1, 2, . . . } of field indices. The equation (A.13)
corresponds to the Hilbert space norm of the vector

φ = (f0 + φi11(x1)(f1) + (φi21φi22)(f2) + (φi31φi32φi33)(f3) + . . . ) Ψ0,

indexed by the test function f = (f0, f1, f2, . . . )
2. The positiveness of (A.13) is then implied

by the positiveness of the Hilbert space scalar product, and in turn enables us to define a
positive scalar product using the Wightman functions.

(e) Spectral condition

For a given Wightman function W , an operator valued distribution on S(R4n),

W (n)(x1, . . . , xn) ≡W (n)
i1...in

(x1, . . . , xn) = 〈Ψ0, φi1(x1) . . . φin(xn)Ψ0〉, (A.14)

there exists an operator valued distribution W(n−1) on S(R4(n−1)), such that

W (n)(x1, x2, . . . , xn) = W(n−1)(x1 − x2, x2 − x3, . . . , xn−1 − xn). (A.15)

This follows from the relativistic transformation law of the fields, (A.4) with

a = xi, Λ = I, U{a,Λ} = exp(iPµx
µ
i ), i = 1, 2, . . . , n,

and the invariance of the vacuum state (A.3), which together gives the vacuum expectation
vales in terms of the coordinate differences only,

〈Ψ0, φi1(x1)...φin(xn)Ψ0〉 = 〈Ψ0, φi1(0)eiPµ(x2−x1)µφi2(0)...φin−1(0)eiPµ(xn−xn−1)µφin(0)Ψ0〉.

The Fourier transforms of the two distributions W̃ (n)(p1, . . . , pn) and W̃(n−1)(q1, . . . , qn−1)
are related by

W̃ (n)(p1, . . . , pn) = (2π)4δ

 n∑
j=1

pj

 W̃(n−1)(p1, p1 + p2, p1 + p2 + p3, . . . , p1 + p2 + · · ·+ pn−1).

(A.16)

Furthermore, W̃(n−1)(q1, . . . , qn−1) = 0 whenever one of the qk lies outside the energy-
momentum spectrum, in particular outside the forward light cone.

(f) Cluster decomposition property

For any spacelike vector a and any j = 1, 2, . . . , n,

lim
λ→+∞

W
(n)
i1...in

(x1, . . . , xj , xj+1+λa, . . . , xn+λa) = W
(k+l)
i1...ij

(x1, . . . , xj)W
(k+l)
ij+1,...,in

(xj+1, . . . , xn).

(A.17)
This property is interpreted as no interaction between two points separated by a sufficiently
large spacelike interval.

2It is generally assumed that the sequence contains only finite number of nonzero entries, hence the sum in (A.13)
is over a finite number of terms.
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A.3 Wightman reconstruction theorem

Given a set of complex valued distributions {W (n)
i1...in

(x1, . . . , xn)}, for all n and all ordered n-tuples
of indices ik

3, with the properties (a) through (f) of the Wightman functions, the Wightman recon-
struction theorem4 asserts, that a local quantum field theory can be recovered from the knowledge

of this set {W (n)
i1...in

}. There exists a separable Hilbert space H, field operators {φik} defined on a
dense subspace D ⊂ H, and a vacuum state Ψ0, such that all Wightman functions can be obtained
as the corresponding vacuum expectation values,

W
(n)
i1i2...in

(x1, x2, . . . , xn) = 〈Ψ0, φi1(x1)φi2(x2) . . . φin(xn)Ψ0〉. (A.18)

Moreover, there is a unitary representation {a,Λ} 7→ U{a,Λ} on H of the Poincaré group, and the
vacuum state Ψ0 is invariant under the action of the group, U{a,Λ}Ψ0 = Ψ0 for any {a,Λ}. Such a
quantum field theory is unique up to a unitary equivalence, i.e. if there is another Hilbert space H′
with vacuum state Ψ′0, field operators {φ′ik} with domain D, unitary representation of the Poincaré
group U ′{a,Λ}, and with all the vacuum expectation values given by the same Wightman functions
as above,

〈Ψ′0, φ′i1(x1)φ′i2(x2) . . . φ′in(xn)Ψ′0〉 = W
(n)
i1i2...in

(x1, x2, . . . , xn),

then there exists a unitary isomorphism V : H → H′, such that

Ψ′0 = VΨ0, U ′{a,λ} = V U{a,Λ}V
−1, φ′ik = V φikV

−1, D′ = V D.

The proof of the theorem is constructive, and it is illustrative to sketch its main ideas for the
case of a self-adjoint scalar field. To construct the Hilbert space of the quantum field theory, we
start from a vector space H0, which is formed by sequences f of test functions of the form

f = (f0, f1, f2, . . . ), (A.19)

where the components are test functions, fk ∈ S(R4k) for k > 0, and f0 ∈ C. Only the sequences
with at most finite number of nonzero components are considered. The addition of two vectors
f, g ∈ H0 and multiplication of f by a scalar α ∈ C is defined component-wise. The vector space
H0 is then given by linear span of the vectors (A.19). The Wightman functions are used to define
scalar product on H0, with the definition W (0) = 1, by

〈f, g〉 =
+∞∑
k,l=0

∫
dx1...dxkdy1...dylfk(x1, ..., xj)W

(k+l)(xk, ..., x1, y1, ..., yl)gl(y1, ..., yl), (A.20)

which is sesquilinear, and positive by virtue of the positivity property of Wightman functions. By
the hermiticity property of Wightman functions, 〈f, g〉 = 〈g, f〉.

The representation of Poincaré group is introduced by

U{a,Λ}f = U{a,Λ}(f0, f1, f2, . . . ) = (f0, {a,Λ}f1, {a,Λ}f2, . . . ), (A.21)

3In case of a quantum field theory with non-self-adjoint operators, also the Wightman function with the asterisked
indices are needed. If the Wightman functions does not depend on the choice between ik and i∗k, they correspond
to a self-adjoint field, in that case we set ik = i∗k. If only the ik indices are given, only the self-adjoint parts of the
quantum field operators can be recovered. For the simplicity of notation, only the ik indices will be indicated.

4The reconstruction theorem is related to the GNS construction, which assigns a representation to a C∗ algebra
by operators on a Hilbert space, but it does not need an a priori knowledge of the C∗ algebra.
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where the action of the group element {a,Λ} on the function fk is given by

{a,Λ}f(x1, . . . , xk) = f
(
Λ−1(x1 − a), . . . ,Λ−1(xk − a)

)
,

and the constant number f0 = {a,Λ}f0 is left unchanged. It is indeed a representation ot the
Poincaré group, the inverse transformation is given by U{−a,Λ−1}, and the composition of U{a1,Λ1}
and U{a2,Λ2} is

U{a1,Λ1}U{a1,Λ1} = U{a1+Λ1a2,Λ1Λ2}.

Its unitarity follows from the relativistic transformation properties of the Wightman functions,
W (n)({a,Λ}x) = W (n)(x),

〈U{a,Λ}f, U{a,Λ}g〉 =
∑
j,k

∫
d4jxd4ky{a,Λ}fj(x)W (j+k)(x, y){a,Λ}gk(y) =

=
∑
j,k

∫
d4jxd4ky{a,Λ}fj(x)W (j+k)({a,Λ}x, {a,Λ}y)gk(y) = 〈f, g〉,

for all f = (f0, f1, f2, ...), g = (g0, g1, g2, ...) ∈ H0. The vacuum state is Ψ0 = (1, 0, 0, . . . ), and it is
clearly Poincaré invariant.

The field operator φ(h), indexed by the test function h ∈ S(R4), is defined by its action on the
vector f = (f0, f1, f2, . . . ) ∈ H0,

φ(h)f = φ(h)(f0, f1, f2, . . . ) = (0, h⊗ f0, h⊗ f1, h⊗ f2, . . . ). (A.22)

The definitions of U{a,Λ} and φ(f) together imply, that φ(f) transforms according to the rule,(
U{a,Λ}φ(h)U+

{a,Λ}

)
f = φ({a,Λ}h)f, ∀f = (f0, f1, f2, . . . ) ∈ H0. (A.23)

With the definition of scalar product (A.20), the vacuum state Ψ0 = (1, 0, 0, ...), and the field
operator φ, (A.22), the Wightman functions are given by the vacuum expectation values of the
reconstructed field theory,∫

dx1 . . . dxnf1(x1) . . . fn(xn)W (n)(x1, . . . , xn) = 〈Ψ0, φ(f1) . . . φ(fn)Ψ0〉, (A.24)

or symbolically in the unsmeared form,

W (n)(x1, . . . , xn) = 〈Ψ0, φ(x1) . . . φ(xn)Ψ0〉.

The space H0 is in general only a pre-Hilbert space, since the scalar product may not be
positive definite or the space may not be complete. If the scalar product is not positive definite,
the set of zero-norm vectors form a subspace of H, in which all vectors are mutually orthogonal
(a consequence of the triangle and Schwarz inequalities). This allows us to consistently define an
equivalence relation on H (two vectors are equivalent if they differ by a zero-norm vector), and
factorize the space H0 modulo this equivalence. If the resulting quotient space is not a complete
space, the standard completion procedure can be used. We consider all sequences of vectors from
H0, and choose all Cauchy sequences with respect to the norm given by the scalar product in H0.
Two Cauchy sequences are regarded equivalent, if the norm of their difference converges to zero.
Then the quotient space of the space of all Cauchy sequences (of sequences of test functions) with
respect to this equivalence becomes the completed space.
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The subspace D ⊂ H is formed from those equivalence classes that correspond to the vectors of
H0 (i.e. equivalent to constant sequences). This is the dense subspace D ⊂ H required by the first
axiom of field theory, which is contained in the domain of all the field operators. Since the space
H0 is invariant with respect to all the original operators defined on H0, after the completion the
field operators as extended to H (or to a subspace of H containing D) map D to D, in particular
we have

φ(f)D ⊂ D, U{a,Λ}D ⊂ D, Ψ0 ∈ D.

The subspace D0 ⊂ H is obtained by acting by all polynomials P ({φ(h)}) (indexed by arbitrary
test functions) on the vacuum state Ψ0. Eventually, we end up with a separable Hilbert space H
with the unitary representation U{a,Λ} of Poincaré group extended by continuity from H0 to H,
and continuous in a and Λ.

For any f, g ∈ D, f = (f0, f1, f2, . . . ) and g = (g0, g1, g2, . . . ), and with the definition g−1 = 0
and f−1 = 0, we obtain

〈f, φ(h)g〉 =

+∞∑
k,l=0

∫
fk(x1, ...xk)W

(k+l)(xk, ...x1, z, y1, ...yl−1)(φ(h)g)l(z, y1, ...yl−1)d4kxd4zd4(l−1)y =

=
+∞∑
k,l=0

∫
fk(x1, ...xk)W

(k+l)(xk, ...x1, z, y1, ...yl−1)gl−1(y1, ...yl−1)d4kxd4zd4(l−1)yh(z) =

=
+∞∑
k′,l′=0

∫
(φ(h)f)k′W

(k′+l′)gl′d
4k′xd4zd4l′y = 〈φ(h)f, g〉 = 〈φ(h)+f, g〉.

Therefore the field operator φ(h) for any h ∈ S(R4) is symmetric on D,

φ+(h)f = φ(h)+f = φ(h)f, f ∈ D.

The commutativity of the fields at spacelike separated regions of spacetime, represented by the
supports of the test functions h1 and h2, follows from the corresponding commutativity property
of the Wightman functions. For any f, g ∈ S(R4),

〈f, φ(h1)φ(h2)g〉 =
+∞∑
k,l=0

∫
fk(x)W (x, z1, z2, y)h1(z1)h2(z2)gl(y)d4kxdz1dz2d

4ly =

=

+∞∑
k,l=0

∫
fk(x)W (x, z2, z1, y)h1(z1)h2(z2)gl(y)d4kxdz1dz2d

4ly = 〈f, φ(h2)φ(h1)g〉.

The vacuum state Ψ0 is invariant with respect to any Poincaré transformation, U{a,Λ}Ψ0 = Ψ0,
and up to a complex multiple of Ψ0 there is no other such vector. For if there was such a vector
Ψ′0 (we can assume Ψ′0 to be normalized and orthogonal to Ψ0), then with the use of invariance of
Ψ′0 = (f0, f1, f2, . . . ) and picking a spacelike vector a,

〈Ψ′0,Ψ′0〉 = lim
λ→+∞

〈Ψ′0, U{λa,I}Ψ′0〉 = 〈Ψ′0,Ψ0〉〈Ψ0,Ψ
′
0〉 = 0,

by the assumed orthogonality, hence the vector Ψ′0 must be zero in H. The second equality follows,
by definition of the scalar product (A.20), from the cluster decomposition property (A.17),

lim
λ→+∞

+∞∑
k,l=0

∫
dx1...dxkdy1...dylfk(x1, ..., xj)W

(k+l)(xk, ..., x1, y1, ..., yl){λa, I}fl(y1, ..., yl) =
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=
+∞∑
k,l=0

∫
dx1...dxkfk(x1, ..., xj)W

(k)(xk, ..., x1)

∫
dy1...dylW

(l)(y1, ..., yl)fl(y1, ..., yl),

and this is 〈Ψ′0,Ψ0〉〈Ψ0,Ψ
′
0〉, recalling Ψ0 = (1, 0, 0, . . . ) and the hermiticity property of the Wight-

man functions,

〈Ψ′0,Ψ0〉 =

+∞∑
l=0

∫
dx1...dxk1W

(l)(x1, ..., xl)fl(x1, ..., xl) = 〈Ψ0,Ψ
′
0〉.

The reconstruction of Hilbert space of a field theory from a given hierarchy of Wightman
functions can be carried through also in case of multi-component and non-hermitean fields φk(x),
with n vector and/or spinor components. The relativistic transformation properties are in general
given by the representation {a,Λ} 7→ S(a,Λ) of the Poincaré group on the space of field components.
These properties are already encoded in the given set of Wightman functions. The initial vector
space is composed of linear combinations of the vectors f ,

f = (f0, f1, f2, . . . ) (A.25)

where the fk are test functions defined on S(Rk) with values in the k-th tensor power of Cn. The
Poincaré transformation law is defined through (A.21) with

{a,Λ}fk(x) =
(
S(Λ−1)⊗ ...⊗ S(Λ−1)

)
fk({a,Λ}x). (A.26)

The scalar product is introduced similarly as (A.20),

〈f, g〉 =

+∞∑
k,l=0

∫
f+
k (x1, ...xk)W

(k+l)
∗− (xk, ..., x1, y1, ..., yl)gl(y1, ..., yl)dx1...dxkdy1...dyl. (A.27)

or in the the tensor components,

〈f, g〉 =
+∞∑
k,l=0

∫ ∑
ik1...ikk

∑
il1...ill

fk,ikk...ik1
(xk, ..., x1)W

(k+l)
i∗kk...i

∗
k1gl1...gll

(xk, ..., x1, y1, ..., yl)gl,il1...ill(y1, ..., yl)dµ,

(A.28)
with the definition of f+

k ,

f+
k,ik1...ikk

(x1, ..., xk) = fk,ikk...ik1
(xk, ..., x1). (A.29)

It has all the properties as in the case of scalar field, in particular it is positive and sesquilinear.
The unitarity follows from the fact, that the transformation law of Wightman functions (A.8) is the
opposite of those for f , (A.25) and (A.26). Finally, the field operator φ(h), indexed by a Cn-valued
test function h, is defined by the action on f as

φ(h)f = (0, h⊗ f0, h⊗ f1, h⊗ f1 . . . ). (A.30)
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