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Chapter 1

Introduction

1.1 Thin quantum waveguides and constrained systems

The notion quantum waveguide was introduced for a thin tubular neighborhood of a curve where
particles can move effectively freely. In two dimensions this means the thin strip built along a
planar curve, in three dimensions, the quantum waveguide is a tube built along a spatial curve.

Here we would like to give the motivation why to study such objects.

Figure 1.1: The three-dimensional quantum waveguide with the elliptic cross-section. On the
right-hand side see the effect of bending, on the left-hand side the effect of twisting.

The limit when the cross-section of the quantum waveguide tends to zero is usually studied. In
this sense, the quantum waveguide is a special case of quantum system with constraint which has
been studied for a long time and the works on this topic go back to [16]. Let A be an ambient space
and let C be a submanifold of A to that the particle is constrained. In the classical mechanics,
the d’Alembert principle would be used and we would compute the dynamics on the submanifold
C (where the particle is localized) from the dynamics on A using only the intrinsic properties of
C. However, in quantum mechanics, the uncertainty principle does not allow us to consider the
particle as localized on the submanifold and different approach has to be used. The potential that

pushes the particle to the submanifold is introduced and the limit when this potential grows to



infinity is studied. In this limit, the kinetic energy of the movement transverse to C is growing to
infinity, however, it is possible to look only at the effective movement on the submanifold. The
surprising result is that this effective dynamics does not depend only on the intrinsic properties of
C, but also on the extrinsic curvature of C, on the curvature of the ambient space A and on the
shape of the constraining potential we chose.

In this way, it was discovered in [16] that if A is R® and C is a curved surfaces, then the effective
dynamics on the surface depends on its mean and Gauss curvatures. Similarly in paper [15], the
case when R? is the ambient space and the particle is constraint to a spatial curve was considered
and it was shown that the dynamics depends on the curvature of the curve. In [27] the case
A =R? and C be a planar curve was considered as well as the more general case of d-dimensional
submanifold in R™ for n > d and again the result that the dynamics depends on the extrinsic
properties of the submanifold was obtained. A nuber of papers on this topic was written till today,
let us mention the paper [23] that handles the problem in very general form, or more rigorous [14]
where also interesting comparison with classical physics was given. From more recent papers let
us mention [28] or [26].

In this work the two- and three-dimensional quantum waveguides are considered. We set on
the boundary of this strip or tube the Dirichlet boundary conditions which plays here in fact the
role of the constraining potential (the potential is zero inside the strip and infinite outside). In the
limit when the cross-section of the strip or tube tends to zero, the kinetic energy in the transverse
direction tends to infinity due to the Dirichlet boundary conditions. However, we again look only
on the effective motion on the curve and the Hamiltonian describing this effective motion was
formally derived already in papers like [15].

On the other hand, more rigorous research on the convergence of the spectrum of the Hamil-
tonian for a particle in such waveguides was not made before the paper [11], where the existence
of bound states in a curved planar waveguide was discovered. The generalization of these results
to three-dimensional waveguides was given in [7]. In this paper only the effect of bending of the
waveguide was considered (see Figure 1.1), which yields the negative potential expressed in the
terms of the curvature x of the reference curve I' and in consequence causes the occurrence of
bound states. In two-dimensional case this result is complete and the effective Hamiltonian reads

Fd2

W= —ah - o

In three-dimensional case, this Hamiltonian describes the effective motion on the curve in case
when the cross-section of the tube is circular or when the non-circular cross-section is rotated with
respect to the Frenet frame by angle 6 satisfying 6 = 7 where 7 is the Frenet’s torsion. This
result was also derived in [7]. However, in paper [9] it is proved that for the three-dimensional
waveguides, there is also a counter-effect to bending which can then suppress the bound states.
We speak about the effect of twisting the waveguide and also of the torsion of the curve. The
formula for the positive potential in the effective Hamiltonian that arises from this effect was given
in [4]. Finally, the effective Hamiltonian describing the motion on the spatial curve I is expressed
in terms of the Frenet’s curvature x, torsion 7 and twisting angle 6:

K2

A 2
hR = —AL = T+ C(w) (T + 9) . (1.1)

The non-negative constant C(w) depends only on the cross-section w and is zero for rotationally
symmetric w.
A review on the effects of bending and twisting of the waveguide is given in [19], the asymptotic

expansion for eigenvalues of the Laplacian in the curved thin waveguide is given in [3]. There are



different directions, how to extend these results. In [12] the d-dimensional quantum waveguides for
general d > 2 are considered, in [24] the problematic of branched quantum waveguide is studied,
whereas [22] considers the tubes with varying cross-section.

Finally, we refer to the extended bibliography of [28] for various works on effective Hamiltonian

in thin quantum waveguides and more general constrained systems.

1.2 Quantum waveguides under mild regularity conditions

As we mentioned above, a great number of papers has already been written on the subject of
quantum waveguides. That’s why we would like to justify here that this work brings something
new to this problematic.

In papers like [7] the existence of bound states and other results were proved using the pertur-
bation theory and other methods standard in the theory of linear operators. However, then the

assumption on the curvature x of the reference curve
k€ C?

was required (and it will be shown in Section 2.2.2 why this was necessary). This assumption
excludes e.g. the curve on Figure 1.2 and the question arises, if the statements of paper [7] and
others do hold also for such curves or if there is some physical reason why the assumption x € C?
must be satisfied for these results to hold. We can partly answer this question using the results of
paper [4] or [6]. In there the method of I'-convergence is used and it is proved that the Laplacian
in the three-dimensional waveguide built along the curve I" where for the curvature it is assumed
only
k€ L,

converges with respect to the strong-resolvent convergence to the effective Hamiltonian (1.1). In [4]
the proof is given for bounded waveguides only, the paper [6] generalizes this result to unbounded
waveguides under assumption £ € C' and adds also the proof of the norm resolvent convergence

for the bounded waveguides.

Figure 1.2: A curve with non-continuous curvature.

We stated as a task of this work to prove the norm resolvent convergence of the Laplacian in the
tube to the effective Hamiltonian (1.1) under as mild regularity conditions on the curve as possible
and we would like also to include the unbounded waveguides. We will proceed in the same way as
in paper [7], however, some new ideas have to be used. It is namely the Steklov approximation of

the curvature and also working with quadratic forms instead of the operators.



1.3 The results and organization of the text

Our main result is stated in Theorem 3.1 which, roughly said, claims that the Dirichlet Laplacian in
the tube built along the spatial curve I' converges to the effective Hamiltonian (1.1) with respect
to the norm resolvent convergence. However, we have to be careful while stating such result,
since the effective Hamiltonian acts on the Hilbert space L?(I) where I is the interval, where the
curve I' is defined, whereas the Dirichlet Laplacian acts on the Hilbert space L?(£2) where Q is
the three-dimensional tube where moreover the cross-section of this tube is diminishing. Hence,
certain identification of Hilbert spaces must be done and also the results are not written straightly
in terms of the Dirichlet Laplacian, but in terms of a unitarily equivalent operator (which has the
same spectrum). This procedure will be described in Sections 2.2 and 3.1.

For Theorem 3.1 to hold, it is assumed that the curvature x and the derivative of twisting angle
0 are bounded. In case when the interval I is bounded, these are all assumptions we need. In case
when I is unbounded, we add one more assumption that, roughly speaking, forbids the functions
# and 0 to oscillate too quickly in the infinity. This assumption arises from the use of Steklov
approximation as is described in Section 2.3, hence it might seem to be only a technical assumption.
However, there are curves for that this assumption is not satisfied (the appropriate curvature is
found in Section 2.3.4) and we show in Section 4.4 (on the toy-model of two-dimensional quantum
waveguide) that for such curve, the statement of our main theorem does not hold. Moreover, we
show that the Laplacian on the waveguide built along such curve is not well approximated by the
standard effective Hamiltonian.

The proof of Theorem 3.1 is performed in Chapter 3 and it consists of proving a row of auxiliary
lemmas. We adopt here an idea from [13] which enables us to switch from comparing the resolvents
of the operators to comparing the associated quadratic forms. Also the technique of Hilbert space
decomposition is essential in the proof.

In our work we consider the curves that do not fulfil even I' € C?, i.e. its curvature need not be
even continuous (which is the case for curve on Figure 1.2). Moreover, the curvature is allowed to
vanish at some parts of the curve. The important consequence is that for such curves, the Frenet
frame need not exist. That’s why we use so called relatively parallel adapted frame which was
studied for C? curves in [2] and we generalize the results of this paper on even more general curves
(namely we assume that the first and second derivatives of the curve exist only in the weak sense).

The aspects of framing of a spatial curve are considered in Appendix A, the geometry of the
three-dimensional quantum waveguide is described in Section 2.1.

Finally, we state also similar result as in Theorem 3.1 for the two-dimensional waveguide. There
are two reasons why we included Chapter 4. Firstly since we promised in [8] that we will prove the
norm resolvent convergence for the Laplacian in a planar strip. At second, we want to consider
the essential spectrum of the waveguide built along the “counterexample” curve (curve that does
not fulfill the Assumptions of our main theorem, i.e. is oscillating too quickly in infinity) and this
is more illuminating in case of the two-dimensional waveguide (see Section 4.4).

The Conclusion of our results is given in Chapter 5, some mathematical details and theorems

stated in classical literature that we need in the text are given in Appendix B.
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Chapter 2

Preliminaries

2.1 The three-dimensional quantum waveguide

In the following paragraphs, we construct a thin tubular object along a spatial curve I, which will
be later called the quantum waveguide. The framing of the curve I' will be necessary, however,
as the scope of this paper is to get the convergence results for a waveguide with the minimal
regularity conditions, we won’t use the Frenet frame that can be introduced only for C? spatial
curve (even not for all of them, see Section A.1). Instead we will use the relatively parallel adapted
frame (RPAF) which is introduced in Section A.2. Let us note that the construction of RPAF for
W2 °(I) curves is the generalization of the paper [2] and it is one of the important results of this
work although it is for its technicality placed in Appendix.

Let I'(s) be spatial curve, i.e. the (image of the) embedding I': T — R?: s — (T''(s),T2(s),'3(s))
where the open interval I C R is allowed to be either finite, semi-infinite or infinite. For the RPAF
to exist we require I € W2 °(I) for i = 1,2,3 (see Section A.2). Without loss of generality we
also assume the curve to be parameterized by arc length.

Then, according to Corollary A.7, there exists a relatively parallel adapted frame {T'(s), M1 (s), M2(s)},
where the vector fields change continuously with s and their weak derivative exists and is bounded.
In fact there exists a whole class of such frames, however, we choose to work with {7, My, M}

without loss of generality. The (weak) derivatives of these vector fields satisfy

T 0 ki ko T
Ml == 7](11 O 0 M1 (21)
M, ~ky 0 0 M,

where k1 (s) and ko(s) are locally bounded functions. However, they need not to be neither globally
bounded, nor continuous. Using the RPAF composed of T', My and M, we can introduce a quantum
waveguide.

Let w be an open connected subset of R? and let us assume that w is bounded, i.e.

a:=sup|t| < co (2.2)
tew

where t = (ta,t3). Then we can define a curved tube (the waveguide) built along the curve T'" with

the uniform cross-section w as the image of the mapping £ : I x w =: Qg — R3

L(s,t) :=T(s) + eta (cos O My + sinOMs) + et3 (— sin OM; + cos 6 Ms) . (2.3)

11



Here 6 : I — R has the meaning of the twisting angle, i.e. the rotation of the cross-section with
respect to the RPAF. We suppose that 6 is bounded:

6] o< 1y =: Cy < o0. (2.4)
The waveguide is then the region in R? denoted by
Q= L(Q).

We assume the waveguide to be non-self-intersecting, i.e., the mapping £ to be injective. The
necessary (but not always sufficient) condition for the injectivity is the non-vanishing determinant
of the metric tensor

Gij = 0,L-0;L.

(- assigns the scalar product in R3). Here 0; denotes the partial derivative with respect to i

variable where the ordered set (s, t2, t3) corresponds to (1,2,3). In our case the matrix G = (G};)

reads
h? 4+ e2(h3 + h3) —e?hs —chy
G= —e2hg g2 0 (2.5)
—e2hy 0 e?
where
h = 1—c¢ty(kicosf + kaysin®) — ets (—ky1sin @ + kz cos ) (2.6)
hy = —tgé
hsy = tgé.

For the determinant we have
|G| = *h? (2.7)

hence the condition on this function being everywhere nonzero reads h > 0, i.e.
eto (k1 cosO + kosinf) + etz (—ky sinf + ko cosf) < 1 Y(s,t) € Q.
This condition can be satisfied only if the functions k1 and ko are bounded. Hence we assume that
[kl Lo (1) =: C < 00, (2.8)
where k = |I'| = /k? + k3 (see remark 2.1 below), and consequently
ki(s) <C,  Vsel, i=1,2. (2.9)
Together with the boundedness of w we can always find € so small that
eto (k1 cosl + ko sinf) + ets (—ky sin @ + kg cos0) < 4eaCl < 1.

Moreover, in the estimates we will often use that € can be chosen so small that 16eaCy < 1 and
thus 5
§1—5a0k§h§1+sack§1 (2.10)

e~ w

Remark 2.1. In other papers on quantum wavequides, the Frenet frame was used in most of
cases. Recall therefore that if the Frenet frame exists, then the Frenet’s curvature k(s) = ’F(s)‘ is
connected with the functions ki1 and ko by the relation

K=/ k2 4+ k2. (2.11)

12



In our computations (where we use the RPAF), the quantity k3 + k3 will occur and we will assign it
by k2 even if the Frenet frame does not exist (as we already did in (2.8)). Note that the curvatures
k1 and ko will occur in our results only in terms proportional to k, which means that the results
are not be dependent on the choice of RPAF.

In Section A.2 we also found that if es is the Frenet’s normal then

eo = cos fMy + sin S My

where f = arctan Z—f (or equivalently 3(s) = arcsin ];2((:)) if k1(s) = 0) and that consequently it holds
i

where T is the Frenet’s torsion. Hence if we consider the twisting angle of a particular waveguide
with respect to the relatively parallel adapted frame (Ogp) or the Frenet frame (O ), it holds

Orp = 0F + B,

hence
éRp:éF—f—T (212)

Using these relations we will be able to compare our results with the results of previous papers.

2.2 The Hamiltonian

We assume that the movement of a particle in the quantum waveguide is effectively free and that
the particle wavefunction is suppressed on the boundary of the waveguide. Hence the Hamiltonian

reads the Laplacian with Dirichlet boundary conditions (we set i = 2m = 1)
H=—-A%. (2.13)

Since we won’t require any regularity of the boundary of the domain Q (we only suppose that
w is an open set), we start with an operator H acting as the Laplace operator (i.e. —d;0;) and
Dom H, = C2°(Q) (smooth functions with the compact support in ). The operator H is then
symmetric and the Dirichlet boundary conditions are trivially satisfied. The associated quadratic

form reads
QI :=VYlliz  Dom(Q)=C(Q)
and is closable, the domain of the closure being W, () (the closure of C2°(€2) with respect to the

norm on the Sobolev space W12). The operator associated to this closure is then the self-adjoint
Friedrichs extension of H, which will be assigned by H. For the details of this construction see
Section B.5.

However, for the description of the waveguide the most suitable coordinates are the curvi-
linear coordinates (s,t) € o (recall Q = L£(£)) where £ is the mapping introduced by (2.3).
Hence we use the unitary transformation 1(z) — (¢ o £)(s,t), the Hilbert space becomes H. :=
L? (Qo, |G|'/2 ds dt) and the quadratic form reads

Q=[] := (9, GY0;9) ;. Dom (Q) = Wy*(Q) (2.14)

where G% is the inverse matrix to (2.5) and |G| is the determinant (2.7). The domain of this
(closed) quadratic form is the same Sobolev space W, *(Qp) as before, since the metric G¥ is

bounded (the functions k; and 0 are assumed to be bounded) and uniformly positive (i.e. there

13



exist a constant ¢ > 0 such that G > cFE in the sense of matrices, F is the unit matrix). This fact
follows from the construction in Section B.5 and holds even if the coefficients G¥ are not to be

differentiable. The associated operator acts in the weak sense as the Laplace-Beltrami operator
H. = —|G|7Y?8,|G|*?G" 9;,
the operator H. is again understood as the self-adjoint Friedrich’s extension where
Dom H'/? = Dom Q. = W, ().

Finally let us summarize the assumptions we made on the curve, the cross-section etc., so that
both the waveguide and the Hamiltonian were well defined.

Assumption 1. Let I': I — R3 be a spatial curve where the interval I C R is finite, semi-infinite
or infinite. Then we assume
(i) TP € W22(I) fori=1,2,3;

(i) supye; |(s)] < oo.

Further, let w be an open connected subset of R? and let §(s) be the angle describing the rotation
of the cross-section w with respect to the relatively parallel adapted frame constructed along I'. We
assume

(1ii) sup,e,, |t| < oo;
(iv) supye; 0] < oo.
Finally, let £: I x w — R3 be the mapping introduced by (2.3), we assume also that

(v) the properties of T' and w are such that L is injective for small enough €.

2.2.1 The asymptotic of the spectrum

In this section we will find the first term in the asymptotic of the spectrum of our Hamiltonian,
and using this knowledge we will renormalize the Hamiltonian to get an operator with the finite
spectrum even if £ tends to zero.

To get the explicit formula for the form (2.14), we use that

1 1 hs ho 0 0 O 1 1

_ 2

Glzﬁ hs By +h3 hehs | =] 0 = 0 [+5| hs (1 hs hz)-
hy  hohs i +h3 0 0 3 ha

It is convenient to introduce 9, := t39y — to05 since than 81 + h3Os + hods = s + 00,. When
assigning in addition the gradient in transverse variables to, t3 as V' = (0a, 03), we get

- 2 .
Q) = hIV’w?dsdH/ =)@, + 60, o P ds dt

Qo Qo

Let us note that we work in the Hilbert space H. = L? (Qo,|G|*/?dsdt) = L*(Q,2hdsdt), so
the first term is in fact O(%).

14



We will estimate this quadratic from below neglecting the positive second term and rewriting
the first term in terms of function ¢ = v/ha:

77.1\2
/ h|V’w|2dsdt:/ |V’¢|2dsdt—/ v hQ) |¢|22E1/ |¢|2dsdt—110,§/ £2|¢|? ds dt =
Qo Qo Qo 4h Qo Qo

£ 2 21,112 Ey 2 2
= (62 - 11ck) /Q he?|pP dsdt = ( 3 — 11CE ) 19115, (2.15)

where E is the first eigenvalue of the transverse Laplacian A%, and where we obtained the estimate
(v'n)?

|72

Thus we can see that the lower bound on the spectrum is asymptotically % +0(1).

| < 11C? after straight computation (where we assumed that € is so small that 16eaC), < 1).

The upper bound on the spectrum can be found using the min-max principle (see Section
B.8). We estimate the numbers A, (according to Theorem B.16 they are either eigenvalues or
they are equal to the bottom of the essential spectrum), that are the defined as the infimum over
the subsets L, (dim L, = n) of the domain of the quadratic form W, %(Qp), by the infimum over
smaller subsets L, = {cpxl|<p el,, 1, C W01’2(I), dim{,, = n ¢ where x; is the first eigenvalue of
the transverse Laplacian.

n \YeLl, Ly \ p€ln

An = inf ( sup QW]) < inf (sup Q[@Xﬂ)
Then we compute (using the integration by parts and the fact that h is linear in variables t)

/h|V’X1|2|<p|2dsdt+/ 2
Qg QO

Qlpx1]

) 2
Osox1 + 0@87)(1’ dsdt =

) 2
— hx1A%x1|e|? dsdt + |0spx1 + 9<p8TX1‘ dsdt =

Qo

Ey :
67||<PX1||315 + [0sox1 + 090, X117 -

Hence it is clear that all the eigenvalues and also the bottom of the essential spectrum can be
estimated from above by % + O(1) and we proved that the first term in the asymptotic expansion
Ey

in ¢ of the spectrum is 3.

In consequence, it is reasonable to renormalize the Hamiltonian by subtracting %:

similarly
x ~ Fy 9
Qel) = Qolu] — Hlwl3,.
Our task is now to show that the operator H. converges to some effective Hamiltonian acting only

on the interval I and we will see that looking for the terms O(1) in the asymptotic will be much

more difficult then finding the leading term %

2.2.2 The standard unitary transformation

As we are interested in the limit when ¢ — 0, we would like to work in e-independent Hilbert space
Ho = L*(Qo, dsdt), e-dependent being only the coefficients in the Hamiltonian. For this purpose

the following unitary transformation is usually performed.

Ue : L? (QO, G|/ dsdt) s L2(Q, dsdt)
Y — Ugth = |Gy
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Consequently the operator reads
UGﬁEU(;l - ‘G|1/4ﬁ'€‘G|71/4‘

However, the function |G| contains the functions ki, ko which need not to be in our case differen-
tiable. Together with the fact that H. contains the second derivative, it follows that this unitary

transformation can not be used in this form for our purposes and we will have to modify it.

2.2.3 The smoothing of the functions ki, ks

The main idea of how to follow the well-known procedure either without the strong smoothness
conditions is to smooth the functions k; and ks in the way that these smoothed functions converge
to the original ones as € goes to zero (which is the limit we are interested in). Together with
working with the quadratic forms instead of the operators we will be able to prove the convergence
properties of the Hamiltonian also for the waveguide with non-smooth curvatures.

The smoothing will be performed using so called Steklov approzimation (see e.g. [1]), i.e. we

introduce
5+M
K (s) '—L/ T h(ede i=1,2 (2.16)
TS e - |
where § is a function of € which is monotonically increasing in some neighborhood of zero and both
213% de)=0
and
€

It is clear that this function is differentiable

) k; 0y (s — 92
() = M )a(e) L=Z) s (2.18)

We will also find, that if some additional conditions on k; are required than kf 20, k; in certain

sense. We will dedicate to this problematic the Section 2.3, since the convergence properties of kf
are essential for the computations below.
Let us also mention that from (2.9) it follows that

ki(s)| <Cx  Vsel, i=1,2 (2.19)

2.2.4 The modified unitary transformation

The unitary transformation similar to the one from Section 2.2.2 will be performed using the

smoothed curvature. For this purpose we introduce
|G| = e*h? = e* [1 — ety (kS cos O + kS sin6) — ets (—kS sin 0 + k5 cos 0)]°

(the function h. is the function h introduced by (2.6) where k; is replaced by kf) and we use |é |

in the unitary transformation instead of |G|

1/2
.72 1/2 2 |G|
Ug: L (907 |G| dsdt) — L (Qo, TERE ds dt)

Y — Ugy = |G|"*
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to get

H.:=UgH.U." = |G| H|G|"/*. (2.20)

/
We denote H, := L? (QO, :g}i/z ds dt) and the scalar product, resp. the norm on this space is then
denoted by (-, -)e, resp. || - |le- By (+,-), resp. || - || will be denoted the scalar product, resp. the

norm on Hy, let us note that
3 2 2 _ 9 2
2Ha2 <12 < 2.
SR <2< 2
if € is so small that 16aCje < 1.
The operator H. is an operator unitarily equivalent to the (renormalized) initial Dirichlet
Laplacian H that was defined as self-adjoint Friedrichs extension, thus we define its action only in

the weak sense. That’s why we will work with the quadratic forms only, we can compute, that the

quadratic form associated to H. reads

1
Qﬁ[w] = /Qo hhs
h

1 1 3
+7/ — (kikf + kak3)[|* ds dt — 7/ —= (k) + (k3)?) [ dsdt +  (2.22)
2 QO hE 4 Qo hE

. 2 1 h E h
(as+98T)w’ dsdt+€—2/ﬂ h—|V’¢|2dsdt—€—21/Q h—|¢|2dsdt{2.21)
o '€ o '€

. 2
(2. +60,)h.) (Ou+ 6000
|y _f T IY)Re
+/QO 4hh? [l ds dt /Q N Re(¢(9s + 00, )¢) ds dt (2.23)

(recall that V' is the gradient operator in variables tq, t3 and 0; = t302 — t203). Again Dom Q. =
Wy ().

2.2.5 Existence and boundedness of (H. + )"

In Section 2.2.1 we proved that for all ¥ € Wy*(Q), Q)] > o - 110,3||w||§_~[ . Thus for the

renormalized quadratic form Q[] > —11C?% ”w”il and since the associated operator H. is unitarily

equivalent to H., we get also
Q:[¢] = —11CF||v||2. (2.24)

Hence there exists a real constant r such that the operator H] := H. +r is positive, in consequence
(HI)™! exists and we will prove that it is bounded, which will be used in the proof of the norm
resolvent convergence.

Lemma 2.2. Letr > 110,% be a real constant. Then

1
-1
[(He +7)" . < m (2.25)
Proof. This relation is a simple consequence of (2.24):
((Hp)=Y/2, (HL)=/29)
Y12 _ HY-1/2 — sup -
ICHD) ™ 50, I(HD) ™ s Sup TR
) @.9): G ol _
= sup — sup S Ssup 5 -
oEH. \/((Hg)l/%, (HD)2g)_ oeHe QLG — oene /1 —11C|19e
_ 1
- r—11C?
O
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2.3 Convergence properties of the Steklov approximation

As we mentioned above, the key point in the proof of the norm resolvent convergence will be
convergence of the expression |k; — k5| to zero when ¢ tends to zero. Since in the following also
the function # will be smoothed using the Steklov approximation and similar convergence will
be required, we will examine the behavior of the Steklov approximation for a general function

f € L*(I) in this section. Hence we introduce

s+ﬁ
SR NRGL (2.26)
U (€) Js—s22 '
where §(¢) is some continuous function of e satisfying
il_r)r%) d(e)=0.

In the following we will derive some estimates on |f(s) — f°(s)|. As we will show in Section 2.3.1,
for the pointwise convergence, very strong assumptions on f have to be required. However, we
want to find some convergence results either for more general f, in this case only the convergence in

the integral sense of |f(s) — f¢(s)| can be proved. Luckily, in the computations below, the relation
J15= 1P lePds =50 vee Wi (227)
I

will be sufficient. In Sections 2.3.2 and 2.3.3, we will prove this relation for different classes of

functions f.

2.3.1 The pointwise convergence

In order to state a lemma concerning the pointwise convergence we have to introduce some termi-
nology which is adopted from [1].

Definition 2.3. Let f be the uniformly continuous function on either finite or infinite interval I.

Then we introduce the modulus of continuity as

w0, f) = sup [f(&) = f(&)]  &&el

[€1—E€2|<o

Recall that f is uniformly continuous on [ if and only if
(V&> 0)(36 > 0)(V&1, & € 1, [&2 — &1| <6 = |K(&2) — w(&1)] < ).
Hence it is clear that the modulus of continuity tends to zero when § — 0.

Lemma 2.4. Let f(s) be a uniformly continuous function and f°(s) its Steklov approximation
given by (2.26). Then
. 0
1£(s) = f2(5)] S w (8(e), £) == 0.

Proof. The lemma is a simple consequence of the definition of the Steklov approximation and the
modulus of continuity:

5(e)

1[5tz
L / (Fs) = FE€)de| < sup  [£(s)— f(s +m)| = w(3(e), ).

)
0(e) Js- 5 <252 ser

1f(s) = f*(s)| =

18



2.3.2 The integral convergence for L? functions

At first we will examine the integral convergence in the special case when f € L?. In the next
section we will generalize these results, however considering the case of square integrable functions
will show us the basic ideas that we will use later. Some of the ideas in this section can be found

in [1] and we will again use the terminology of this book.

Definition 2.5. Let f be a function defined on interval I, let J C I and let f | J € L*(J). Then

we introduce the second modulus of continuity as

1/2
a6, 10 = s ([ 1ss )= s as)

Inl<$

This definition may involve function values outside I, it is understood that f is extended by zero

to the whole R in order to give a meaning to the definition.

Lemma 2.6. Let f(s) € L2(I) be a function and f(s) its Steklov approzimation given by (2.26).
Let also p € WH2(I). Then

J 1= P o < @a(6(6). £.1)° Il

Proof. At first we estimate the integral as
2 2
J18= 7 toPds <l [ 17 = 57 ds < Npllonanlls = £ (2.25)

Here the second estimate follows from

P = | (le(©)P) de = / “9Re (5(6)(€)) de < 2¢ / S |¢(§)|2d§\/ / () e <

< / o(6)de + / BO12E < ] (2.20)

which holds for all ¢ € W&’Q(I) and for all s € I. We assigned so = inf I, we used that since ¢ has
the compact support in I, p(sg) = 0, and we used also the Schwarz and Young inequalities. Now

we can adopt the proof of the convergence of ||f — f€||; from [1]. At first we use the generalized
Minkowski inequality (B.2) to get

1-rle=| [ <L /:i(:(/ 100 s@fas) " a

If we recall the definition of the second modulus of continuity, it is clear that

If = [l < ws2(é(e), £, 1)
which together with (2.28) proves the lemma. O

1/2

s+¥ 2
%/,@ (f(s) = f(£)) d¢| ds

Remark 2.7.

(i) In case when I is unbounded, we can use the Corollary B.3 stated in Appendix B.1 for p =2
to get
lim wy(6(e), f,I) =0 (2.30)
e—0

(if I # R, we prolong f by zero on R\ I). This relation then proves (2.27) for f € L*(I).

(ii) If I is bounded, for every function f € L°(I) it also holds that f € L*(I). If we prolong f
by zero on R\ I, we can apply the Corollary B.2 stated also in Appendiz B.1 to get (2.30).
Hence (2.27) is proved also for f € L*(I) in case I is bounded.
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2.3.3 The integral convergence for general functions

To get similar results for even more general functions f, we start with the following auxiliary

lemma:

Lemma 2.8. Let f € L°°(I) and let f¢ be the Steklov approzimation of f. Let ¢ € WY2(I) and
finally let {an}ntn_ C I, n € N be the strictly increasing sequence of numbers where a,_ = inf I,
=sup I, all the intervals (an,an+1) are finite and ny can be either finite or infinite. Then

U, =

1F = £ 12200
/I |f—f5|2s0|2ds<l sup ( Cntos) ) 9 sup 1 = F e ansny | 113200y

n_<n<ng Gp41 — An n_<n<ng
(2.31)

Proof. We start the proof by rewriting the integral in the following way.

ny—1

J 1Pl = s = > / ol2gnds

/|f €)2¢" (€)de

and (" () is the characteristic function of the interval (a,,amn + 1))

where Vs €

1 for E € [anvanJrl]

M) =
0 else.
Then
ny—1 niy—1 i1
[rotis=spas = 3 / Pitds = 3 ([m e | 2Re<w>g”ds)g
I n=n_ n=n_ QAn
ny—1 i1
< > (soan+1| / - roPas+ [ 2|¢|¢||g§|ds)s
ny—1 An+1 Ant1
< Z(/ |f(§)—f5(5)|2d§> (|so<an+1>2+ / 2<p||¢|d8>

where we repeatedly used that

Sup g7(5) = g% (ans1) = / O - o).

sel n

Then using similar steps as in (2.29) we estimate

Any1 it d T — an
lo(ann)? = |§D(an+1)|2+7_:/ <|90( ) _) dr <
41— Qn an Gp41 — an
An+1 9 1 An+1 B .
< [Tl e+ / MRe (p()p(x)) dir <
<

1
- 1 2 (an,a
(an+1 — ap * > HSOHWI Han,ant1)
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and finally

ny—1
1
/|g0|2|f7 fEPds S Z Hf* f€|‘%2(an7an+1) ( +2) HSOHWl’Q(an,an-‘rl) S
! n=n_ Ap4+1 — Qn
H‘f - fEH%Z(a a
< su nsant1) 2 .
B n,SnI%nJr ( Ap+1 — An ||S0||W1'2(I)
+2 iug ||f - f€||%2(an,an+1)HQOH%/VI,Q(I)
n_<n<ng
which completes the proof. -

Let us note that when we use the generalized Minkowski inequality we get

an+1
Hf - fE||L2(an~,an+l) = /

n

2 1/2

1
ds <

s+¥
5 / (f(s) — £(€)) de

1 S+¥ an+1 ) 1/2
%()/ (/ 1(9) = 1) ds) <
an+1 1/2
< sup (/ f(S)f(SJrn)st) | o)
<2 \Jan

Since (ant1 — ay) is a finite interval, Corollary B.2 yields that the last expression converges to zero
for e = 0 and thus Vn € N
2 e—0
||f_f6||L2(an,an+1) 0.

This need not to mean that the right-hand side of (2.31) (i.e. the supremum over such expressions)

converges to zero, however, we will now state a simple example, when it holds true.

Example 2.9. Let f € L®(R) be a periodic function. Then Vo € W12(T)
17 = 1P oPds =0,
I

Proof. Let the period of f be ¢ > 0. Then we can choose a,, = ng for n € Z and this sequence will
fulfil the hypothesis of Lemma 2.8. Consequently

2 1
1= £ oas < (5 42) 1 = FBsquagino
where the term on the right-hand side converges to zero according to remarks above. O

Clearly, it would be possible to give more examples of functions that fulfil (2.27) in consequence
of the lemma above. In fact, we need not require anything about the behavior of f on some finite
sub-interval, the only point is that the function is controlled somehow when s — +oco0. Thus for
example let f be a function that is constant on R\ (a,b) where (a,b) is arbitrary finite interval,
then f also fulfils (2.27). However, we will try to give some general condition on f to satisfy (2.27).

When considering a particular function f, then taking some special sequence {a,} might be
useful. However, while deriving estimates on general function f, it will be more convenient to fix
some simple sequence {a,}. The reason is also that for general f neither the choice of {a,} where
(an4+1 — ay) is small won’t give us finer estimate (because of the first term on the right-hand side

in (2.31)), nor the choice of {a,} with large (a,+1 — ay) will improve the estimate (because of the
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second term on the right-hand side in (2.31)). For example when I = R, we can use the sequence

an =n,n € Z,ie. n_ = —00, ny = o0o. Then the Lemma 2.8 gives us

€2 €
/Ilf — [P |plPds < 3sup (Hf —f |\i2<n,n+1)) lelfr.2ry-

From the relation (2.32) we get that
n+1 9
1f = 12 nmsn) < sup / |f(s) = f(s+m)|"ds = w2 (0(¢), f, (n,n+ 1))
[n|< =2/

Let us note, that the fact, if ws (6(¢), f, (n,n 4+ 1)) converges to zero or not, does not depend on
the choice of function §(g), however if ws (§(¢), f, (n,n + 1)) converges to zero, we might sometimes
improve the convergence properties by some convenient choice of d(¢).

We sum up the ideas above and also the idea of Remark 2.7 (i¢) in the following theorem which

gives us the most general criteria on the function f to fulfil (2.27).

Theorem 2.10. Let ¢ € W01’2(I), f e L) and let f< be the Steklov approzimation of f given
by (2.26). Then

/I 1 — £ lplPds < o (6@ o lZmm (2.33)
where

(i) for I bounded

e—0

o5(6(e)) = w2 (8(e), f, 1) — 0,
(ii) for I unbounded
n+1 5
77(6()) = 35up (w2 (6(0). £ (mom+ 1)) =3sup | sup [ [f(s) = fls )P ds
nez neZ |7]|S¥ n
(for I semi-bounded we compute the same for f prolonged by zero on R\ T ).
Remark 2.11. For the unbounded interval I,
op(6(e) =% 0 (2.34)

is fulfilled by functions from all the classes we already considered (i.e. uniformly continuous func-
tions, L? functions or periodic functions), we can add for evample the class of BV -functions
(functions of bounded variation) for that (2.34) also holds, however, we didn’t succeed to find any
class F of function that fulfil (2.34) and

fEF=limos(d(e)) #0.
e—0
Thus our most general result is that f satisfies (2.27) on I unbounded if for some §(¢) it holds

sup (wz (0(e), f, (n,n+ 1))) =9 0. (2.35)
nez

Since in the following we will also need some estimate on [, [f(s) — f°(s)| |¢|*ds, we state the
following Corollary.

Corollary 2.12. Let ¢ € W)(I) and f € L=(I). Then

/I\f(S) = F )l lelPds < yJop@E@)lelwrzm el (2.36)

where o5 is the same function as in Theorem 2.10.
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Proof. The relation (2.36) is the simple consequence of the Schwarz inequality in L? and the

Theorem 2.10:
] / F(s) — £(5)| [oPds| < \/ / F(s) — fo(s)? |sa2ds\/ / lof2ds < \Jor @) lelwraen ez
O

2.3.4 Counterexample

In Theorem 2.10 we found the condition on a function f such that the relation (2.27) is satisfied.
However, we will now show, that there are also functions, that do not fulfil (2.35).

Let us introduce

1 ifse(n—1+2 n—14 288
fose(s) = ( n ) neN, k=01.,n—1, (2.37)
—1 ifse(n—1+2& n—14 2842)

i.e. the function fos is defined on I = (0,00) and it is oscillating between the values 1 and -1

faster and faster when s — oo (see Figure 2.1).

fosc
1 j| EE— N — e

Figure 2.1: The plot describing the function fos.

Lemma 2.13. For all ¢ > 0 there exists ng € R such that

SUB )/ |fosc(s)_fosc(s+77)|2d5:4 vneNv nzno'
In|< =52

This holds true for any choice of function §.

Proof. If we choose ng = %, then Vn > ng 5- < 6(5) . Hence

n 2

sup /_1 ‘fosc(s) - fosc(s+n)|2 dS = /_1

3(e)
|77|§T€

fosc(s) - fosc(s - %)

n
ds = / 22ds =4
n—1
1

where we choose 7 = —5- since we know that in the interval (n—2,7n—1) the length of the segment

where fosc is constant equals m > i, hence the difference | fosc(8) = fosc(s — 71)| is indeed
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equal to 2 for all s € (n—1,n). It is clear that this construction works for any function ¢ as is also

stated in the lemma. O

Let us note that if we pose k; = f(s), k2 = 0 we can find a curve whose curvatures are ki, ko
and it is possible to built a waveguide along such curve. The properties of such waveguide will be

examined in Section 4.4 (see Remark 4.9).
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Chapter 3

The norm resolvent convergence

3.1 The main result

Our main result states that the Dirichlet Laplacian in the curved three-dimensional waveguide (or
more precisely the unitarily equivalent operator H.) converges in certain sense to a one-dimensional
effective Hamiltonian heg describing the dynamics on the curve I' as the cross section of the
waveguide diminishes. The effective Hamiltonian reads

2

hﬁ;>A§—%+C@W? (3.1)

where xk = |1"\ and @ is the twisting angle. The non-negative constant

C(w) :/(8TX1)2dt (3.2)

depends only on the cross section w, x; is the eigenfunction of the Dirichlet Laplacian on w
corresponding to its first eigenvalue. Let us note that 9, reads in polar coordinates (p, ) the
derivative with respect to the angle ¢, hence for rotationally symmetric w, C(w) = 0 since the
eigenfunction x; is independent of ¢ due to the symmetry. In fact, the constant C'(w) measures
the asymmetry of w.

Since the operators H. and heg act on different Hilbert spaces (namely L2 (QO, }g}—i;z ds dt) and
L?(I)), we will at first describe the way how to compare such operators. Then we will state our main
result as a Theorem 3.1. Let us note that in this Chapter, the norms on spaces Ho = L?(y, dsdt),
H. =1L (QO, }g}—ijz ds dt), L?(w), resp. L?(I) will be denoted by || - ||, || - |l || - lws resp. || - ||7 and
similarly for the scalar products on these spaces.

3.1.1 Comparing the operators acting on Hilbert spaces H. and L*(I)

In the first step, we will show, how to identify the operators and quadratic forms acting on the
Hilbert spaces L?(Q) and L?(I).

Let x1(t) be the eigenfunction corresponding to E; (the first eigenvalue of the transverse Dirich-
let Laplacian) which we can choose real, positive and normalized to 1 (i.e. ||x1]|l = 1). Then we

introduce the subspace H of Hy
Hy = { € Ho | Fp € LA(D), v(s.) = p()a(1)} (33)

which is closed, thus

Ho = Hi ® (HH)*.
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Here (H})+ is the orthogonal complement to H, and every function ¢ € Hy can be (due to the
projection theorem B.15) uniquely written in the form

Y =vix1+ ¢t =P+ (1— P (3.4)

By 91x1 we mean the function 11 ® x1 from H} (in every point we compute it as 1 (s)x1(t)),
however, we will use for simplicity (maybe not completely accurate) notation 1y in the whole
text. Further, ¥+ € (H})*, the projection P; acts like

caww¢r=([3ﬂwwawm)mu> (3.5)

and we assigned

P1 Z/Xl(t)w(s,t)dt.

We introduce the identification 7 of spaces H} and L?(I) as

(m (P1(s)x1(2))) (5) = P (s). (3.6)

The mapping 7 is an isometric isomorphism since this mapping is bijective and
ovall? = [ ol dsdt = [ s = ol
QO I

According to this identification we can identify also the quadratic forms on spaces Hg and
L2(I). We introduce a quadratic form Qg acting on the domain W,*(Q) N Hy € Ho and we
identify it with the quadratic form g.g associated to heg acting on T/VO1 ’2(I ) in the following way:

r(8)% b1 x1 2 dsdtJrC'(w)/ 9(3)2|w1X1|2d5dt:
Qo

Qesr [Y1 ] ::/Q |8S¢1x|2 dsdt—i/

Qo

:/|8sw1|2ds+0(w)/92|w1|2ds— %/n2|w1|2ds — qeltn].
I I I

Similarly we can identify the operators acting on H{ and L?(I). Let us note that if 11x; €
Wy (Q0) NHY then ¢y € Wy 2 (I).

Finally, by 0+ will be denoted the zero operator on the subspace (HJ)*.

As the second step, we have to find the way, how to come from the Hilbert space H. =
L? <QO, }g:—i;z ds dt) to Ho = L%*(Q, dsdt), i.e. how to compare the operator H. acting on H.
with some operator acting on Hy. For this purpose we introduce a unitary transformation

v, 2 (00,187 s L*(Q, ds dt 3.7
€ - O7‘G|1/2 S — (Oa S ) ()
_ lap
Yo er—@mw

We can not apply this unitary transformation straightly on H., since the function U.¥ need not
to be in its domain, however, (H. + r)~! is a bounded operator whose domain consist of whole
H., so also non-differentiable functions are in domain of (H. + r)~!. The operator (H. + r)~*
becomes after the unitary transformation U.(H. + r)~*U!, which is the operator acting on H.
Let us note that U.(H. +r)1U! is not self-adjoint on Hg, however we don’t mind this fact since
in definition of the norm resolvent convergence only the closedness of the operators is required and

the consequences for the spectrum still hold.
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3.1.2 The main theorem

Before stating the theorem, we will separately specify the assumptions on the curvatures k1, ko and
the twisting angle 6 of the waveguide. These assumptions follow from the convergence properties of
Steklov approximation described in Section 2.3 and it will be clear from the proof of the auxiliary

Lemma 3.7, why they are necessary.
Assumption 2. We assume that at least one of following conditions is satisfied.
(i) The interval I is bounded.

(ii) If we set

n+1 5
o1(5(2)) = 3sup sup/ 1£(s) = f(s +m)[*ds

7, 5
el i<

then both
li =1 . = .
lim o4 (3(¢)) := limy < max o, (0 (6))) 0, (3.8)
lim 04(5(g)) = 0 (3.9)
e—0

for some continuous functions 6(¢), 5(6) satisfying

&11_1% o(e) =0,
lim 6(g) = 0
e—0

and in addition
€

lim — = 0. 3.10

el—r>r(l) (5(6) ( )

Theorem 3.1. Let H. be the operator defined by (2.20), i.e. the operator unitarily equivalent to
the renormalized Hamiltonian —A% describing the dynamics on a curved quantum waveguide built
along a spatial curve T'(s), s € I, such that the Assumptions 1 and 2 are satisfied. Let heg be the
effective Hamiltonian on the interval I defined by (3.1) and let U, be the unitary transformation

(3.7). Then

HUE(HE rr)tust - ((heﬁ +r) '@ OL) H

§C<1)5+C(2)%+C(3) x(8(e)+C W/ 05(5(e))

for some r satisfying —r € C\ (0(H.) U o(heg)) and some constants C¥, i = 1,2,3,4. The
right-hand side tends to zero when € — 0.

B(Ho)

Remark 3.2.

(i) This theorem expresses in fact the norm resolvent convergence of the initial operator H
(resp. some unitarily equivalent operator) to the effective Hamiltonian. This implies e.g.
the convergence of the spectrum of H to the spectrum of heg (possible bound states etc.), see
Section B.3.

(ii) In Assumption 2, we state some requirements on the functions k1 and ko that are not unique
for the curve. However, let us fix some particular RPAF, for that the curvatures are kY and
kS and recall that the curvatures for different RPAFs are only the linear combination of kY
and kS. When we examine the condition (3.8), we easily find that if k) and kY satisfy it,
then all their linear combinations do satisfy it as well (due to the triangle inequality in L?),

hence there is no ambiguity in the theorem.
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Before coming to proof of this theorem we will give some examples, how this theorem is used.

Example 3.3. Let the curvatures k1(s), ka2(s), s € R be Lipschitz continuous. Then it holds

‘ki(Sl)—ki(SQH SLi|81—82| VSl,SQ EI, 1=1,2

and we get
n+1
0k (6(g)) = 3max sup | sup / ki(s) — ki(s +n)|°ds | < (3.11)
=2 nel \ pi< 2 Jn
2
<3max | sup Li(n)?| =3 (maxLi> (6(e))%. (3.12)
1=1,2 "’I‘S@ 1=1,2

Hence the quantity \/o(6(¢)) o d(€) and since the asymptotic also depends on 50y U is convenient

to choose §(e) = e'/2. If we assume in addition that for 6 we have \/0,(5(¢)) o< F(d(c)) where F

is some invertible function, then we can choose 6() = F~(e'/?), then F(§()) o €'/? and we get

HU(HE +r)7 Ut - ((hcf—f +7) 7 @ Ol) < Cel/2,

[

Example 3.4. Let us now consider one particular curve which has non-continuous curvatures,

namely

1 se(2n,2n+1

-1 se(2n+1,2n+2)
ka(s) =0 Vs € R. The curve with such curvatures is a curve lying in a plane and formed by arcs
of circle with radius 1 which have its center in one half-plane for s € (2n,2n+ 1) and in the other

half-plane for s € (2n 4+ 1,2n + 2). Then we compute

n+1
or(6(e)) =3sup [ sup / lki(s) — ki(s+n)|°ds | = (3.13)
n€L \ In|< st In
n+1 n+1
:3/ hals) —kals +m)ds| :3/ 22ds — 66(c), (3.14)
n =+ n+1—22)

hence \/a1,(5(¢)) o< \/6(g). Here it is convenient to choose §(c) = €2/, since than both \/og o /3

and 55 o /3. Again with suitable choice of 6(), we get

HU(He +r)U - ((heff +r) 7l e Ol) HB(H < Ce'/3.
0

3.2 Proof of Theorem 3.1

We will pro~of this theorem for real r > 11C%, since as we showed in Section 2.2.1, for all ¢ €
Wy2(Q), Q:[v)] > —11C2|[||, where Q. is a quadratic form associated with an operator unitarily
equivalent to H, thus —r is indeed in the resolvent set of the operator H.. In addition geg[t)1] >
—%’%leﬂj, hence r > 11C7% satisfies the hypothesis of the theorem.

The proof will be divided into several steps, in the first step we state a lemma which gives the
connection between operator H, defined by (2.20) and

1 . Eq I K2 )2
Hy:=1® *;QAD*? + *AD*1+C(W)‘9 ®1 (3.15)
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(recall that —AY, is the Dirichlet Laplacian in the cross section w). The associated quadratic form

reads
2 1 /2 El 2
Qolv] = |02 dsdt + = [ |V'¥|?dsdt — = [ |¢|*dsdt+
Qo €2 Qo g2 Qo
+ O(w) 92|1/J|2dsdt—1/ w2 ds dt (3.16)
QO 4 Q0
with

Dom Qo = Wy*().

2
We can estimate Qq[¢)] > —%|\¢||2, hence the operator Hy + r will be positive for » > 11C% and
using similar steps as in Section 2.2.5, we get for its inverse

1

cz”
— Zk
r—3

I(Ho +7)~" <

(3.17)

To compare the operators (Ho+7) ! and (H.+r)~! acting on Hilbert spaces Hg := L?(Qo, ds dt)
1/2
resp. H. := L? (Qo, }g:—l/z ds dt), we use the unitary transformation (3.7).

Lemma 3.5. Let r > 11C? be a real constant and let the assumptions of Theorem 3.1 be satisfied.
Then

|Ue(Ho+7) U7 = (Ho+7) 7o) < Cfl)s—i-C(Q)%-{—C(S)\/ak(é(s))—i—C(‘l)\/09(5(5)) (3.18)

for some constants C’fl) and CW i =23, 4.

The proof of Lemma 3.5 will be subject of Section 3.2.1.
The second part of the proof of Theorem 3.1 lies in proving another auxiliary lemma.

Lemma 3.6. Let Hy be the operator defined by (3.15) and let heg be the effective Hamiltonian
(3.1). Then
| (Ho+ )" = ((hest + 7)™ ©04) llaey) < CFe

for some real constants 02(1) and r > 11C%.

Proof. In this proof we will use the ideas of [13] (that were used also in [20]), i.e. we will get
the norm resolvent convergence by comparing the associated quadratic forms. The quadratic form
associated with Hy is (3.16), and the important feature of this form is that it acts on the functions
Pix1 € Wy (Qo) NHE as

1 E
Quloval = [ Panrtasde 5 [P (9P -5 ) s
Qo €% JQg €
: 1
+COw) [ 0*1]*xTdsdt — Z/ K21 2xE ds dt =
Qo Qo
. 1

= [10anPds+ o) [@inPas - 5 [@inPas v [onfds = galon) @19

I I I I

where we integrated the second term by parts with respect to ¢t and we used that —A%x1 = Eix1.

To prove the norm resolvent convergence we use that

=1 (e =1 ol
)™ = (i)~ @ 0%) |B(H0)szlél;{0‘(f7 ) ”](chT‘;ﬂ) 20)ls)

(3.20)
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where we assigned Hj = Ho + r and hlg = heg + 7. Recall that r is from the resolvent set of
both Hy and heg, thus the operators (Hg)™ ' and (hgﬁ)_1 are bounded and thus defined on the
whole Hilbert space Hy and we can compute the supremum over all f,g € Hy. Then we define the
functions ¢ € Dom Hj and ¥; € Dom heg by the resolvent equations

0% = f,
(heg1)x1 = Pig.

and we rewrite the numerator from the right-hand side of (3.20) (without the absolute value) as

(H50, [(H) ™ = ()" @ 04)] ((hiwvxa +94)) = (6 Gl +g%) = (Hio, vixa) =
= qlg(o1,01) + (o7, (Rlg1)x1) + (6, 97) — Qb(d1x1,¥1x1) — Qf (6, P1x1) -

Here we used the representation theorem (Theorem B.10) and we also use the decomposition (3.4)
with the notation used therein. By the similar computations as in (3.19) we get qlg(¢1,%1) —
Q5 (d1x1,%1x1) = 0. Also (¢F, (hlg1)x1) = 0 since ¢ Ly; in L?(w), and after straightforward
computation we get Qg (gZ)J-, 1 Xl) = 0 from the same reason (this will be shown in (3.45)). Hence
the only nonzero term is (gf), gl), and we can make the following estimate on numerator in (3.20)
which holds for all f, g € H,.

(7 [) ™ = (i)™ @04)] )| = [(0:97)| = [((H3) £, = POg)| = | (£ (HE) (1 = Pr)g)| <

< £ Mg (HE) ™ (1 = Pl sero)- (3.21)
The last task is then to show that [|(Hf) ™! (1 — Py)||gx,) x €. We rewrite this norm as
ry— ICHE) " ||
I(HE) (1= P)llsorgy = sup i
veup: 19l

and we will examine the expression u = (Hj) '1. We show that if Hju = ¢ € (H})* then also
u € (Hy)*. Indeed, for all n € Wy*(€p) it holds
(n, How) = Qo(n, u).

If we set n = Pyu then using Hju € (H})* we get

2

C
0=Qy(Pru,u) = Qy(Pru, Pru) > (7“ — 4k> | Pyul|

where we again used that Qf(Piu, (1 — Py)u) = 0. On the right-hand side there is a positive
2
constant r — %, hence ||Pyul| = 0, and u € (H})*. For every f € Wy?(Q) it holds

/1 < eCiy/ Q5]

(this estimate will be proved in Section 3.3.3 as relation (3.43)), hence

lull = [lu™]| < eC1y/ Qplul = eC1y/ Qpl(HE)~14] < eC1y/ ((HE) 7, v) < eCLy/II(HE) |1,

and we conclude
[(HG) (1 = P)lse3ey) < €Cry/lI(HE) .

Altogether it follows from (3.20) and (3.21) that
_ . — 1
185" = ()™ ©0-) s < <Cr/IH5) 1 < 200 [
e
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were we used that ||(Hj)™!| is bounded due to (3.17) and this relation completes the proof of
Lemma 3.6 with Cél) =0 L. O

Now it is easy to complete also the proof of Theorem 3.1, since from the triangle inequality for

the norm in B(Ho) we get
JU=(He + )70 = (e +7) 7 @04 ) llsgagg) <
<NUe(He )70 = (Ho + 7“)_1||B(Ho + || (Ho + 7”)_1 — (hetr +7) 7 ® 0 |5(340) <

5 +C®\/a1,(8()) + CDy/a;(8(e)).

Since H. is unitarily equivalent to H, it is possible to rewrite this relation into the form stated by
Theorem 3.1. O

<M +cMe o

3.2.1 Proof of Lemma 3.5

We start again with an auxiliary lemma and the proof will be again based on the ideas from [13].

Lemma 3.7. Let Q7, resp. Qf be quadratic form associated with H.+r =: H], resp. Ho+r =: H{
where r > 11C% and let the assumption of the Theorem 3.1 be satisfied. Then V¢, 1) € W(}’Q(Qo)

@2(000) = Q40,0 < (CVe + CO 55+ CONVEBEN + OO\ ay6(6)) ) v/ @plolazls

for some constants CW, i=1,2,3,4 and the right-hand side tends to zero when ¢ — 0.

The proof of this lemma will be the subject of Section 3.3 and it is the most difficult part of the
proof of the main theorem. However, assuming that it holds, we pose ¢ = (Hj) "1 f, v = (HI) g
for some functions f,g € Ho and we also assign o(e) = CMe + 0(2) G+ C®) /o (6(e)) +

c® 09(5(6)) to get
Q6 ((H) ™' f, (HD)™'g) — QL ((HE) ™ £, (HL)"'g)| = | (£, (HL)"'g) — ((Hg) ™' f.9).| <
<o(e) (Hy) ' f. f) (HD)'g.9), < 20(5)\/”(Hg)_lHB(Ho)H(Hg)_lHB(HE)HfHHgH' (3.22)

Here we again used the representation theorem and the fact that ¢ = (H{)~'f € Dom Hy C
Dom Q., ¥ = (HI) g € Dom H. C Dom Q. We also used the fact that ||.||. < 2|.||

Next we again use that

|Ue(He+7) U = (Ho+7) "B,y < sup (£, U(HD) " Ut g) — (f, (HE)g)| . (3.23)
F.9€Ho £ gll

Noticing that the scalar products on H. and H,y are related by

(¢> ’(/})E = (U€¢7 Usw)

we can rewrite the numerator on the right-hand side of (3.23) as

|(f U=(HE)™! g)—(f T‘l)!=|(f, (HD)7'U ) = ((HG) ' fr9)[ < (3:24)
< (A UHDTUS ) = (f (H) ™ g) | + | (U(H3) 7 f, Ung) = ((H) ™ f.9)| +

+[(f, (H)™! ) (U-(Hg) "1 Usg) | < (3.25)
< (s Ue =D)H)TU ) [+ [ (f (HD)THUZ = Dg) [ + [ ((HG) ™', (U2 = 1)g) | +

+[(f (H2)"g) — (U=(Hg) ™' f, Ueg)|
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For the unitary transformation U, : H. — Ho and arbitrary ¥ € Hg holds

2

G1/4
e A () G Creny (3.26)

similarly
IO =Dylle < GeaCylly],

102 =Dyl < 12eaCi[9ll,
I e [1]-

Hence using the Schwarz inequality and the relation (3.22) we get

|(f,U(HD) ™10 g) = (£, (HG) )| <
< [12eaCk (ICHD) sy + 1 CHE) " lsoae)) + 20/ )~ iy 1) Moy | 1719 <

< (Oe40 (0024 0O £ 4 CONVRTED + 01 oy(3(eD) ) Il

which proves Lemma 3.5. Here we used that [|(HZ) ™| gz and |[(HE) ™! ||5(3,) are bounded by
constants independent of £ (see (2.25) and (3.17)). O

3.3 Proof of Lemma 3.7

Let ¢, ¢ € WO1 ’Q(Qo). Then the proof consists of estimating the difference of appropriate terms in
the sesquilinear forms Q7 (¢, ) resp. Qf(¢, 1) which read

QL(d,) = hh ——(0s + 00;)$(0s + 00- )1 ds dt+ (3.27a)
Qo
1 h E,
+ . hvas V' ds dt—g/ﬂo — ) ds di+ (3.27b)
1 3 h _
+ 2/90 2 — (k1 kS + kokS) oy ds dt — 4/90 2 ((k5)% + (K5)?) oo ds dt+ (3.27¢)
- / 9, ;ho}i) (P(Ds + 00, )b + (D + 00, )nb) dis dit+ (3.27d)
Qo
(95 + 00-)
+/ ( i3 ) dsdt+r/ hig&/)dsdt (3.27e)
Qo Qo e
resp.
Q(o,9) = | 95001 ds dt + C(w) i 02 ds dt + (3.28a)
+i2 V'é-V'ids dt—& &) ds dt + (3.28b)
€% Jao €2 Qo
—i/ﬂ (k3 + k3)ppdsdt +r i o ds dt (3.28¢)

where C(w) is given by (3.2). The final formulas for individual estimates that form together
the proof of Lemma 3.7, will be denoted by (p1)-(p6) to point them out among all the auxiliary

estimates.
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3.3.1 Preliminaries

In the following, it will be convenient to estimate individual terms in |QZL(¢, %) — Qf(d, ¥)| by
norms like ||¢], ||0s¥|l, ||@|| etc., thus as the first step we will find the estimates on such norms by

QY] resp. /Q5l9].
At first we will have to find some finer estimate on the lower bound of Q7 then the one we
found in Section 2.2.5.

Lemma 3.8. Let ¢ € W01’2(Qo) and let r be a positive constant. Then
1 2
Q)= 5 | |+ o] dsar+ (v o) i (329)

Proof. The proof will consist of estimating individual terms in Q.[¢/], i.e. the terms in (3.27) with

¢ = . If we assume that ¢ is so small that eaC}, < % (we will assume this while doing all the

following estimates as well), then (2.10) holds and the same holds when in (2.10) h is replaced by

he. Consequently we get for the term corespondent to the term on line (3.27c)

1 h

3
’2/ h2<k1kf+kzk2>|w|2dsdt—f/ g ((6D)? (;)2)¢|2dsdt‘s5czllw||§-
Qo

The estimate on Z [, %\V’wz dsdt — L} Jo, [#? ds dt will be performed in the similar way
as in (2.15). We rewrite the integral using the function ¢ := \/%w, we use that for the functions
¢ € Wy ()

[ o [ jopar=0

and finally using the Fubini theorem we get

1 E h
7/ —|V1/z|2d dt — = —WJ\stdt:
€% Jao e2 Jo, b

= */ (|020]% + 050> — E1|¢|?) dsdt +

3(k? + k3)  kik§ + koks (k$)2 + (k5)2 )
_ >
/ ( 4h? ) 9l ds dt >

e 2hh.
(K2 4+ 3)  haks +haks (D)2 + (5%
= / ( An? 2hh. Ah? 6] ds dt =

e /Q (6? ds dt = —3C2|[ %

The second term on line (3.27d) can estimated using the Schwarz inequality and the simple

Young’s inequality (2ab < a? + b?)

/ O 990)he R0, + 00, ) ds di| < (3.30)
Q() th
. 2
! ((aﬁg&)hs) 2dsd 0. +60,)0| dsd
<z N ) 7
<y | s [ @ donye dsar
Using all the estimates above we get
. 2
1 ; 2 201112 201112 <(8S + eaT)ha) 2
Qi 2 5 [ [0+ 00| dsdr—3CRlwlz —sCRlvIE - [ AP asat
2 Jo, hhe i I
(3.31)
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Hence as the last step we have to estimate the last term above. For this purpose we rewrite
(05 + 60.)h. = —¢ [tg(kf cos 0 + k5 sin 0) + t3(— (kS sin @ + k5 cos 0)}
and recalling the relation (2.18) we get

(s + 00, )he| < 8—

@ack. (3.32)

In consequence of (3.10) we can assume

(@ +60n)" e
A I dsdt] < 31 e RV < G

and adding 7||¢||? to both sides of (3.31) we get the final estimate

1 1 . 2
Q:lv] > 5/ e |(0 + 00)0 | dsdt+ (r = 9C) w12
Qo €
O
Using similar steps, it is easy to prove that also
T 2 CI% 2
Qolg] 2 [19s911° + (r = =) 14]1%. (3.33)
As a consequence of relations (3.29) and (3.33), we get
[9I? < 20l € QL] < QL) (3.342)
- T (r=9CEH T T R
1 1
lol* < —-Q6ld] < 7 Q9] (3.34D)
(r——=) k
. . 2
10, + 60302 < 2/ h; (0, +00)0| " dsdt < 4Q7[y] (3.34¢)
Qo €
0s¢l* < Q5lgl. (3.34d)

To get simpler formulas in (3.34a) and (3.34b) we used the assumption that r > 11C%.

Similar inequalities for ||0,¢| resp. ||(9s + 60,)||* with QT[] resp. Qj[#] on the right hand
side cannot be derived straightly from the inequalities (3.29), (3.33), to prove them the techniques
used in following paragraphs will be necessary. Thus we state them as a lemma which will be
proved in Section 3.3.6.

Lemma 3.9. Let the assumption of the Theorem 3.1 be fulfilled. Then V¢, € VVOl’2

(95 + 60-)0)1> < 2Q5[4], (3.34e)
[0s9[I> < 8QL[Y]. (3.34f)

Finally, let us note that in the estimates below, the techniques that we used in proof of 3.8
will be often used automatically. Namely, we will assume that eaCy < %7 thus (2.10) holds, and
similarly for h. we have % < h: < % Also the Schwarz and Young inequalities will be often used

as well as the relations (2.9), (2.19) and (2.2).
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3.3.2 The easy estimates

Now we start to estimate individual terms in |Q7 (¢, v) — Qg (®, )|, in this section we will perform
the estimates where the simple ideas will be sufficient.

The terms (3.27d) and the first term on line (3.27¢) have to tend to zero since there are no
equivalent terms in Q. To estimate the term (3.27d) we use (3.32), then the Schwarz inequality
yields

(0. +d0,0m.)"
f

T3 5() 20mw¢nnwn<515() o/ Qpl61V/ QT

= C®) (5) Q3l61v/Qz[Y]. (p1)

Here % tend to zero since we assumed (3.10). The term (3.27d) can be decomposed using Schwarz

inequality similarly as in (3.30). We will estimate the two terms in the bracket individually, for

the first of them we have:

2hh2

[ ) e [T

<1 5( )aCk||¢||H(5 +60;) 1/)||<20 a\/Qo IV QL[Y \/Qo V@] (p2)

Similarly for the second one:

/ Os +000)he 55 Gy ds dt| <
Qo

. 2
(9, + eaT)@p‘ dsdt <

(9 + 00, )he :

<20 aﬁ\/QT \/?\/Q;

(p27)

Also the difference of the terms with r is easy to estimate:

r/ ﬁq_bwdsdtfr q_ﬁwdsdt‘gfr
Qo hE

h
e 1‘ [l < 12earCyl|ol[|4
12 : Q
= éfr QblolVQrlv] = C1Ve\/QplelVQLlv].  (93)

Next we estimate the difference of the terms on line (3.27¢) and the first term on line (3.28¢c):

Qo

3 h _
ol =[5 [ gttt s kakg)dvasar—3 [ 02 + 05 du dsare
+i/ (k%+k§)¢‘>¢dsdt’ = (3.35)
Qo
_ / (BKE + ka) (= k) + (3K5 + ko) (ko — K5) | (kahf + hok) (e = 1)
/o, 4h3 2h3
£\2 £\2 _ 2 2 3 _

3((k) +iz§) ) (=) | +k2}32(h€ 1)) S dsdi] <

§3Ck/Q (k1 = k5| + k2 — K5]) 0] [¢] ds dt + eaCR|o ][] (3.36)

The task is now to estimate somehow the first term on the last line. If we assumed e.g. that

the functions ki resp. ko are uniformly continuous, we could use Lemma 2.4 which says that
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e—0

|k1(s)—kS(s)| < w(d(e), k1) resp. |ka(s)—k5(s)| < w(d(e), ko) for all s € I where w(d(e),k;) — 0.
Then we could estimate the integral easily by (w(d(e), k1) + w(d(€), k2)) |||l||¢||. However, we don’t

want to restrict our results to uniformly continuous k;, thus the Hilbert space decomposition is
necessary for this estimate and we will continue with the estimate of (3.36) in the end of the next

paragraph. Also while estimating the sesquilinear forms

h - E h -
m(¢,) = 5%/9 (hs - 1) V'é-Vdsdt — g—l/ﬂ (hs — 1> o ds di (3.37)

(the difference of terms (3.27b) and (3.28b)) resp.

1(p, ) :=/Q i —— (05 + 00,)p(0s + 00, )pdsdt — | 0D pdsdt — C(w) | 0>y dsdt (3.38)

Qo Qo

(the difference of terms (3.27a) and (3.28a)) we will have to use the Hilbert space decomposition

and these estimates are subject of Sections 3.3.4 resp. 3.3.5.

3.3.3 The Hilbert space decomposition and some other technical tools

In Section 3.1 we have introduced the subspace HJ (see relation (3.3)) and we know that every

function ¥ € Ho can be uniquely decomposed into two parts, first of which is from H}:
=P+ (1— P = dxa+ ¢ (3.39)

where the projection P; was introduced by (3.5). The convenience of this decomposition lies in
the fact that the function 1+ vanishes for small € as will be proved in the following paragraph.

Similarly as in Lemma 3.8 we can find that for every ¢ € Wol’2

i 1 [ h E
@l = G [ vePdsde- [ iR dsdes (- oCh ol >
Qo 5 Q()
2 By 2
> / VP dsde— 2 [ o dsde >
e 6 QO
4gaCk /12 E1 1+4€aCk/ 2
> _— ds dt——i dsdt.
- 621+45aC’k/Q IVl 4eaCl, [l ds

where we used that 7 > 11C? and the relation (2.10). Then we can apply this estimate on the

function ¥ from (3.39) which is (as a function of ¢) orthogonal to y1, thus we have
| IVt P dsde > Eallot?
Qo

where E5 is the second eigenvalue of the transverse Laplacian —A¢%. Consequently

11— 4eaC Ei1 1+ 4eaCy,
A L>—7k/ w2 d dt——li/ L2 dsdt > 3.40
Qlv ]_521+4€a0k Qoww I"ds 21 —4eaCy Jo, o1 dsdt 2 (8-40a)
1 1 —4eaCy, 14 4eaCy 12 deaCl ), 112
> — — (1 - Ei —_— .40b
> 5 (B g (= 8) = Bl ) WP + 501t 190 (3.400)

where we multiplied the first term in (3.40a) by (8 + (1 — 8)) with § assigning a small positive
number. Then we estimated the terms with 5 and (1 — ) separately getting (3.40b). The point is
that 3 can be chosen in such way that the coefficient in front of ||¢)*||? in (3.40b) is positive. This
follows from the fact that for symmetric elliptic operators always Es > E; (see e.g. Theorem 2 in
Section 6.5.1. in [10]). It is reasonable to rewrite § := E"’E;QElB, then

1+ 4eaCl

B)y—By "k (1 B)(Ba—E) >0 VA<

lim 1-— 4£aC’k E2 — E1
1-— 45aC’k

£—0 21+45aC’k( B
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FEy—FE;

m the coefficient

Hence we choose e.g. 8= %, and it is possible to show that for all € <
in front of |[»||? in (3.40b) is greater then EQ_;,El. Finally

Es

Q') > ZH P + S IV = g 1P + V0
The desirable formulas then read
Il < ey, (3.41)
Vel < cOoyariut (3.42)
Similarly we can decompose ¢ = ¢1x1 + ¢+ and we can show that
Q)= 5 =IO + 5 IV 2 g0+ IV

where we for simplicity used rougher estimate in order to get the same coefficients as in the previous

o]l < eCiy/Qplot], (3.43)
V¢t < eCoy/Qplot]. (3.44)

Since our goal is to get some estimate where on the right side stands /Qj[¢] resp. / QL[] we
would also like to have some relation between \/Qf[¢1] and \/Qp[¢] resp. /Qr[¢1] and /QL[Y].
In the first case it is simple, since

Qbld1x1 + ] = Qplorxa] + 2ReQf(d1x1, ¢7) + Qo] = Qhld1xa] + Qpo]

where we used that

Qp(dr1x1,6") / 0sh1x105¢T ds dt + C(w)

estimate:

e 1 B
6‘2(151)(1(2Sl dsdt — i/ (k% + k%)(lﬁ)ﬁ(ﬁL dsdt+

Qo Qo

1 Ey
+r ¢1X1¢ dsdt—i—— ¢1v X1V(Z5 det—? ¢1X1¢ dsdt = 0.

Qo Qo Qo
(3.45)
Here all the individual terms on the first line are equal to zero since
f(s) = / xi(t)gt(s,t)dt =0  Vsel (3.46)

which follows straightly from the definition of the function ¢*. Thus also #T(:) = 0 which is
used in the first term and the two terms on the second line subtract in consequence of relation

—A%x1 = E1x1. Hence we get
Qblet] < Quldl, (3.47a)
Qoléxa]l < Qpldl- (3.47b)

More complicated is the situation for Q., since here Q7 (¢;x1,9%") # 0. That’s why we will
again state the following estimates as a lemma, which will be proved in Section 3.3.6 where the

techniques of the Sections 3.3.4 and 3.3.5 can be used.

Lemma 3.10. V¢ = ¢ x; + 9+ € VVOL2

Qrlv*t] < 2QI[¥], (3.47¢)
Qllvixal < 2QL[Y]. (3.47d)
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Now we can come back to the estimate of the first term in (3.36). At first we use the Schwarz

inequality to get

= 5]+ ke = 5 ol 0] d e <
Qo

< \// (Ik1 = k5| + |k — K3[) |¢2d8dt\// (k1 — Kf| + [k — KS) [¢]* ds dt
Qo Qo
and then we will for simplicity continue with the estimate of the second multiplicand only.
[ U =51+ s = k5l o + P ds e <
Qo

g/ <\k1—ki|+|k2—k;|>|¢1xlw2dsdt+4ck/ \wlxlnwﬂdsdtﬂck/ P2 ds dt <
Q() Q0

Qo

< [ (= 451+ ko — K51 1P + 4CheV QE Ty Q210 + 40221 <
I
< [y = K|+ b = k51) s + 8CueQlv] + 8Che Q2L
I
Similarly we would get the estimate of the first multiplicand using the decomposition ¢ = ¢1x1+¢*:
| = k51 e = 5 v + 642 dsde <
Qo
< [y = KL+ b = k51) 1 Pl + 4Cu2Qf 6] + 101 Q5 0
I

The first term again remains to be estimated. It looks similarly as [, (|ky — k| + k2 — k5]) |0|*ds
we started with, however the important point is that now there stands the function ¢; which is
only a function of one variable and lies in W12(I), thus the Theorem 2.10 or more precisely its

corollary (2.36) can be used. Hence

/Ikz‘ = killo1Pds < Vou(8@)orllwrznllells =12
I
where we for simplicity assigned

0k(0(e)) := e, o, (0(c)) (3.48)

and we assume in Assumption 2 that this quantity tends to zero (if the interval I is finite, this holds
automatically). Similar estimate holds for 1;. The last step consists of getting some estimate on
|0sé1||r which occurs in ||¢1||%V1,2(I) by \/Qp[#]. Here the key relation reads Vo = ¢1x1+¢- € W,

10811 = 10s1x1[I* + 2Re (Daiprx1, ™) + 10617 = [|0s1xa[I* + [|0sep™ ||
where (3s¢>1X1, gi)l) = 0 follows from (3.46). Hence

105 p1x1 )12 = 1056113 < (105012, (3.492)
18507 1* < (18591 (3.49b)

Consequently we can use the estimate (3.34f) or (3.34d) for estimating ||¢1||%,V1,2(1) and altogether
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we get

/(Ik1—ki|+|kz—k§|)|¢||¢ld8dt§
Qo
4 Ok
4+ — + 8Cke + 8C)e2

P
2

<4[V—

Qrly] x

Ck 02

2
ok (9 14+ — +4Ce + 4Ck521 Qolel <

1+ 02 + 2Cke + 203e? | 1/ Qpl0]V/ QL Y]

Hence we can finish the estimate (3.36):

+2sck+2g2ck +eaCi) QU OV = (04)
(e + éi“” 71(5(2) + éf‘”é) VQbleVQzTY] (3.50)

3.3.4 The estimate on m(¢, )

la(¢, ¥)]

IN

(12Ck

The form m(¢, ) was defined by (3.37) and the goal of this section is to prove that this form also
tends to zero for € — 0. For this purpose we will use the Hilbert space decomposition, thus we

rewrite m(¢, 1) as

m(p, ) = m(grx1+ ¢, Yixa +¥5) = m(dixi, Yixa) +m(dixi, v) +mrx1, o) +m(et, vr)

and we will estimate individual terms in this expression.

The first term will be estimated using integration by parts. Let us note that the integration by
parts can be used if we assume ¢,¢ € C2°(€y), for these functions the boundary term vanishes.
Then we can generalize the results also on ¢,4 € Wy*(Qp) since C°() is dense in W, ().
After integrating by parts twice we get

m(¢ix1,P1x1) = i/Q <h - 1> [0191(V'x1)? — Exdrep1 x| dsdt =

g2 he

1 h — 1 h _
= 7/ — = 1) d1ixa [ADX1 — Eixi] — 7/ A= —1)dnxidsdt
g Qo he 3} Qo he

Here the first term is zero since x; is the eigenfunction correspondent to eigenvalue F; of the

transverse Laplacian —A¢%. We compute

h 2 RS (ke — k) + 5 (ks — k)

to(—k§ sin @ + k5 cos 0) + t5(kS cos 0 + k5 sin 6)

+ 263 (kok§ — k1 k3) 3
€
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and hence we can estimate
1
2

Im(d1x1,¥1x1)| < .

h
A (=) sl asar <

),

SGCk/(Ikl*kilJrlkz*ki\)|¢1|\¢1|d8+48505/|¢1H¢1|dsé
I I

< 6C (\/ [ = kg2pon s + \/ [ ke —ks|2|¢1|2ds> o+
1 1

+ 48¢C3 || o1 || r][¥1 ]| <
< 12Ck/ ok (8(2)) o1 llwrzny vl + 48eCR Nl bl 1l | 1-

Here we used the relation (2.33) stated in Theorem 2.10 applied on k;:

ki — ki Plo1[Pds < on(0(e)|orllfray  Yor € WHA(I)  i=1,2
. 0

(again with simplification (3.48)).

By integrating by parts we also get
1 h - _
(¢1X1,¢ ) / (h — 1) [qﬁlv/le/wL _ E1¢1X1¢l] dsdt =
g
1 h -
== — -1 —AYx1— E +
) /Qo (hs )¢1[ DX1 X1 P+
- %/ 4 <h - 1> V' x1010+ ds dt.
g Qo hE
Again the first term is zero and

A (h - 1) V'x1 = (koS — klk;)w

he h3
N 582X1 ((k1 — k§) cos O + (ko — k5) sin @) 4+ O3x1 ((—k1 + k5 ) sin 0 + (ko — k5) cos 0)
h3 ’
Hence
1 1 / h / 1
Im(d1x1,07)] < A \Y% W —1)-V'xu|lg1|[yp~|dsdt <
1
< ?2/ (22 (Jk1 = k5| + [kz — K5]) + 4aCie) (192xa] + 95xa])|nl [ | ds dt <
Qo
<

1
(\/ JCRC T |¢1|2ds+\/ [ ke sl pas ) v

WLH
+82aCk || o111V X1 |lw

1
< 8VE: (VorG@lorllwr +eack||¢1|\)”7’” ” (351)

where we again substituted (2.33). In the last step we used that —AYx1 = E1x1 and ||x1]je =1

which yields
IVxille = vV Er. (3.52)
Recall also the relations (3.41) or (3.43) that ensure that the expression Hw:” is bounded.

Very similarly we would get

1
Im (7/}1X1a¢ |<8\/7 (\/r”q/)lHWlQ(I)+ack€||¢1” ) I ”
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Finally we estimate

@+, )| = i/

h
o~ Y (VOHIVY + Brfgtlg) dsdt <
L 1 1 1
L6, <|V¢ [ Hw [ 1||¢€ [ ||w€ ||)

IN

IV’ and |\v’;p¢|| are bounded due to (3.42) and (3.44).

Altogether we get

where

Im(e,¥)] < [12\/@(6(5)) (2 + CQ> +96eC} + 32eaCy (C3 + E1CY) +

k

+8v/ECy (x/ak( £)) <\/1+ 012 \/8+02]3> +3€a> \ Qolelverlv] =
= (C Ve 1+ CP /or(3(e)) ) )) \/Qblelv QL] (p5)

where again know, that the last expression tends to zero, if Assumption 2 is satisfied.

3.3.5 The estimate on (¢, 1)

The sesquilinear form [ was introduced by (3.38) and in the first step we will rewrite it as

g, ) = /Q<h28—1)( +00.)(ds + 00, )1 ds dt +

+/ (D5 + 00,)p(0s + 00 ) ds dt — |  Dspdstp ds dt — C(w)/ 02 gnp ds dt.
Qo Qo

Qo

Since

<1
hhs ‘_ GsaCk

we can estimate the first term as

/ (Jl —1) <as+e'a7>¢<as+e'a»wdsdt’<165ack||<as+e'a7>¢||<as+éaf>w||. (3.53)
Q

The remaining terms have to be again estimated using the Hilbert space decomposition, thus we
substitute v = ¢y x1 + ¥ and ¢ = ¢1x1 + ¢*. After rewriting also C(w) by (3.2) we get

I(¢,) = /Q (05 + 00, ) (dr1x1 + 1) (05 + 00;) (b1 x1 + ) ds dt+

- ds(d1xa +$L)as(¢1X1 +¢L)dsdt+

Q0

- /(5’TX1)2dt A 0%(h1x1 + 1) (rxs + L) dsdt =

= / 9X1 (8‘9(5167'¢l + arilasz/}l) + 9 (asélarwl + 6T(£Las,(/}L) + (354)
Qo

+600-x1 (0:6" 1 + G10,9) + 67 (510,x10-0" + 0- 0 410y x1 + 0,670,000 dsdi+

- C(W)/Q 62 (¢;1X11/JJ‘ + ¢ Pixa + ¢t Yt) dsdt

where we have rewritten the expression i1 (¢, 1) without the terms that straightly subtract and also

without the terms containing (after applying the Fubiny theorem) the expression fw X10-x1dt since

/ Xl(t27 t3) (t382 —t283)X1 (tg, tg)dtg dt3 = — / (tgag —tgag)xl(tg, t3) X1 (tQ, tg)dtg dt3 =0. (355)

w w
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Here the integration by parts could be done again using some approximation of y; € WO1 ’Q(w) by
functions from C.(w). For these functions the boundary term is evidently zero and since C.(w) is
dense in W,"*(w) the boundary term will be zero also in our integral above.

Now we have to estimate individual terms in (3.54). The terms where ¢+ or ¢t occur will
be proportional to e due to (3.41), (3.43). The same holds for terms with 9,9+ or d,¢" since
generally in every point (s,t) € Qo we can use the Schwarz inequality in C? in the following way

|0-0] = [(ts, —t2) - V'9| < |(ts, —t2)| V'] < a|V'Y].

In the first equality we mean by “” the scalar product in C? and of course |V'¢)| = ||[V'9)]|c2.
Hence

||aT¢||2=/Q |€)T¢|2dsdt§a2/ﬂ V[ ds dt = 2| V|2 (3.56)

and for 1) = 1+ resp. ¥ = ¢ the last expression can be estimated by (3.42) or (3.44).

The most problematic term in (¢, ©) is the third term in (3.54). We don’t know any convergence
properties of ds¢ or 04T, thus we need to integrate by parts with respect to s, then we would
get ¢+ or 11, that tend to zero. However the differentiation of 6 would be necessary in this case
and as we assumed only that 6 is once differentiable, we will use the Steklov approximation of 6

similarly as for the functions k;. Thus we define

5(e)

- o 44;!47 st
§°(s) := o /5() 6(¢)de (3.57)

where ¢ is again a continuous function of ¢ satisfying

lim §(¢) = 0.

e—0

This function is differentiable

VS
>
[0
N—
—~
»
~—
.
=
V)
JF
;M\x
Nl
N—
[
>
—
Vo)
[
>
Nl
=

in consequence we can rewrite

9'87X165¢3¢1dsdt:/ (0 — 0°)0-x 100y dsdt + | 0°0.x10:0 ¢y dsdt =

Qo Qo Qo

:/ (0 — 6°)8, X105 dsdt+/
Qo

Qo

(9'5) 10,0 i dsdt+ | 05x10,0 0 dsdt  (3.58)

Qo

where we integrated by parts also with respect to 7 (this can be done similarly as in (3.55)). Then
the second and third term in (3.58) are already proportional to € due to (3.42), (3.44) and also

since

‘(éE)'(s)‘ < 20, Vsel

98(8)‘ < Gy Vs el

where C; is the upper bound on || defined by (2.4).
The first term in (3.58) will be estimated using the Schwarz inequality as

/ (0 — 6°)0, X105 11 ds dt’ < ||87X1|w\// 16— 0°[2[p1 |2ds]| 05 ™.
Qo I
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Now we can apply the Theorem 2.10 on the function 0 to get
J 1= 8 s < oy BNl

which proves that also the first term in (3.58) tends to zero, if § satisfies (3.9) from Assumption 2
or [ is finite.

Similar estimates will hold for fﬂo 9.87X1¢;163wl ds dt. Finally, summing up all the ideas men-
tioned above and using also the inequality derived from (3.56) and (3.52)

10-x1 ]l < @l VX1 o = aV/Er

we get

B 0. €L O L - L 0, L
‘l(¢,¢)‘§€0@ <||as¢>1||1” L4 ||+||as¢1|1”;b> (nam 18-+ ”+|\@¢H\—” f )+

4 oaB)av/Br (11w sllon 1+ Ioallwzcn 1001) +
0, ¢t B,k 0, ¢t B,apt
+2:05 (ol L2 o 120 e (o 12 1 o 10

87_ €L 8.,— € 87— 1 o, 1

e

€L € € €

€

This expression is slightly long but the point is that all the terms here tend to zero. Finally we
use the estimates (3.49), (3.34), (3.41)-(3.44) together with (3.56) and (3.47) to get

(e, 0)] < [3501090(@ + 3aCy (13509' + nga\/E) + 4a\/09(5(€)) (1 + $2>
+ 2526‘02 (a*C3 + C(w)CF) + 64504Ck‘| \/@V QL[] =
= (O 4 0O\ foy(6(6)) + O 2 ) Qo /@ (06)

3.3.6 Proof of the technical Lemmas 3.9 and 3.10.

At the beginning of the Section 3.3 some estimates on the norms of the functions ¢, i or their
derivatives were made, however, the relations (3.34e) and (3.34f) stated by Lemma 3.9 were not
proved, since the results of Sections 3.3.4 and 3.3.5 would be needed. Also the Lemma 3.10
containing the relations (3.47c) and (3.47d) could not be proved without these new techniques.

Hence in this section we will prove the relations

10 +60.)8]> < 2Qp[d] (3.60)
1osw)* < 8QL[Y] (3.61)
QL] < 2Qr[, (3.62)
Qllixa] < 2QL[Y] (3.63)

using some ideas of Sections 3.3.4 and 3.3.5.
At first we prove (3.60). We will use that the form (3.54) as the quadratic form reads in fact

I[W] = [[(0s + 00, )¢ 1> — 0] — C(w) 100> (3.64)
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Using similar steps as while deriving (p6) we get

I[] < o1(e)Qp ).

This relation was derived similarly as (3.59), the estimates by Qp[¢] and QL[] differ only by
constants, thus o1 (¢) also tends to zero. The important point is that none of the relations (3.61)

- (3.63) were not used in these estimates. Hence

105 + 60, )31 < [|0s0]|* + C(w)109[|* + 1[¢] < (14 o1(e)) Qp[¥] < 2Q4[¥]

where the last estimate holds for small enough & and proves (3.60).
Next we will prove (3.62) and (3.63), since it is convenient to use the steps made here in proof
of (3.61). In fact we prove the relation

QL (1x1,v™)| < 6(e)V/Qr[Wrxa]y/ QL] < (T Qr[Y1xa] + Q[Y]) (3.65)

where & is some function of € that tends to zero for € — 0. Hence

QLlYix1 +¢7] = (1= 6(e))QL[¥xa] + (1 - 6()) QL]

and for small enough e we get the relations (3.62) and (3.63).

To get (3.65) we estimate individual terms in Q7 (¢;x1,%"), where we often use the estimates
made in proceeding paragraphs on |Qg(1/)1X17¢L) - Q5(1x1,v1)], r(1x1,9+) = 0. For
the terms corresponding to terms (3.27c), (3.27d) and (3.27e) in Q7(¢,v) we can straightly say
(using the estimates from the beginning of Section 3.3 or in case of the term (3.27¢) using the
orthogonality of y; and 1) that they are proportional to \/ Qr[t1x1]/ QL[] and vanishing
for small e. The reason is that in these estimates only the terms with |[¢1x1]], || or ||(s +

00,)(¥1x1) |, |(0s+600,)(11)]|| occur and these expressions can be estimated using relations (3.34a)
- (3.34d) that were proved in Section 3.3. Hence

|QL(Wr1x1, ") — m(vix1, ") — Whixa, ¥)| < 02(e) v/ QL[ x1 ]/ QLY ]

where o3(¢) 29 0. In the estimate on m(11x1,¢*) similar to (3.51) the norm 051017 occurs.

The relation (3.61) is not proved, yet, however, it is easy to see that

1050117 = 10591 xa1* = [1(9s +68:) (1 x1) > = C@) |0rxall* < [[(0s +607) (Yrxa)|I* < 4QL1xA]
(3.66)
where the last inequality follows from (3.34c) and thus we get

|m(v1x1, )| < o3(e)V/ Qi1 xa]y/ QL]

where o3(g) can be evaluated using (3.51) and tends to zero for e — 0. The last term to estimate
is [(1x1,9%+). Recalling that we can already estimate [0s11]|2 by QZ[¢1x1], we can use (3.53)
and (3.59) to get the estimate of form

1) < 0a VT Q2] + 2y/05(5()av/ Bl lwrenloast . (3.67)

where o4 tends to zero with e. Again we have to estimate the term ||0s9| without using (3.61),

for this purpose similar estimate as in the proof of (3.60) can be used. We know that

10612 < 10017 + C@) 91> < [1(8s + 60 )0 |1* + ‘f[l/*]
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using (3.59) we get

87- 112 aT 112 112

[\D

hence

LH2

||(8S+9.87)¢J'||2+§C'H8*;/’;‘|2 + 2202 “675)2”'2 4 C20(w) Hl[)az )
B . < 6QI[] (3.68)
20

105w |* <

for small enough e. This can be substituted into (3.67) and we again get some o5(¢) 2% 0 such
that

[l(h1x1, ¥ )| < o5(e)V/ Qi1 xa]y/ QL[]
In conclusion we get
|QL(1x1,9)| < (03(e) + 03(e) + 05()) V QL1 1]/ QL]

which together with the arguments mentioned above proves (3.62) and (3.63).
To proof (3.61) we can now use the relations (3.66) and (3.68). Combining them with (3.65)
and relations (3.62) and (3.63) we get

105611 = 101 I* + 19517 < 4QC[Yxa] + 6QZ[w ] < 6 (QL[Yxa] + QElyH]) <
< 6(Q:[¥] +45(e)Q:[¥)) = 8Q:[Y]-

O
3.3.7 Conclusion
It follows from (p1)-(p6) that
Q7 (6, %) — Q5 (e, 9)] < (C‘f) +CP 4+ CM 4+ CM 409 + eéfﬁ)) £+ <C‘§2) + 5(65)0560 %Jr

(6 6) VAT + 0 i1V

which proves Lemma (3.7) since we can assume ¢ < 1 and % < 1 without loss of generality. Let

us note that we did not mention in the statement of the lemma the dependance on €2 and %

since the leading terms are ¢ and % < 1 that converge slower. O
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Chapter 4

The two-dimensional quantum

waveguide

In [8], where we considered the two-dimensional waveguides and where we proved the strong
resolvent convergence of the Hamiltonian on these planar strips, we stated as a task for future to
prove also the norm resolvent convergence. We would like to fulfill this promise now, however, the
proofs will be very similar as those in the three-dimensional case, so we won’t write them with all
the details and we will often refer to Chapter 3. We will also use the same notation as in case
of the three-dimensional waveguide for the equivalent notions. In this Chapter, such notions will
always refer to the two-dimensional case.

Let us note that the two-dimensional waveguide (a strip in plane whose width tends to zero)
can be understood as a model of infinite “wall” built above the strip where we separated out
one variable. It might seem that this object is a special case of the three-dimensional waveguide
we considered before, however, this is not true, since we assumed the cross-section of the three-

dimensional waveguide to be bounded, which is not fulfilled in case of the infinite wall.

4.1 Preliminaries

4.1.1 Strip in plane

Figure 4.1: The two-dimensional quantum waveguide
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Let I be a unit-speed plane curve, i.e. the (image of the) embedding I': T — R?: s — (I'}(s),T'%(s))
satisfying T'(s) := |['(s)| = 1 for all s € I. T is an open interval in R, we allow both finite and
semi-infinite or infinite intervals. We assume T" € W2 >°(I) for i = 1,2, then the tangent vector
field T is again continuous and its derivative exists in the weak sense and is locally bounded. The
function N := (—f‘Q, I‘l) defines a unit normal vector field with the same properties as the tangent
one and the couple (T, N) gives an adapted moving frame for the curve. We introduce a scalar

function «(s) called the curvature, that satisfies the equation

(4)-(2 )

From T% € W2>>(I) it follows that & (which is defined in the weak sense) is locally bounded,

however, we will assume in addition that the curvature is globally bounded, i.e.
1£(8)]|oo =: Cx < 00. (4.1)

Let Qp := I x (—1,1) be a straight strip in the plane. We define a curved strip Q := £(Qp)
using the mapping
L:R? 5 R?*: {(s,t) — I'(s) +etN(s)}. (4.2)

If we denote the coordinates (s,t) by (1,2), we can compute the metric tensor G = (G;;) in Q

using G5 = 0;L - 0;L, then
G (1 —etr(s))®> 0 .
0 g2

We denote by |G| the determinant of the matrix G;;:
|G| = €*(1 — etr(s))? =: ?h? (4.3)
where we denoted
h(s,t) :=1— etr(s).

To ensure that |G| # 0 we state the condition eC,, < 1. However, this is only the necessary
condition for injectivity of the mapping £, we have to require the injectivity of £ as an extra
condition.

Finally let us note that for our computations we will often assume eC), < i, so that

3 5
ZSl—aCﬁghzl—gtﬁ(s)gl—i—ecﬁgi. (4.4)

Let us summarize the assumptions on the curve I' that we make in this section.

Assumption 3. Let I': I — R? be a planar curve where the interval I C R is finite, semi-infinite
or infinite. Then we assume
(i) TP € W2°(I) fori=1,2

(i6) supe [5(s)] < oo,

(#ii) the properties of T are such that L introduced by (4.2) is injective for small enough .
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4.1.2 The Hamiltonian

If we describe our curved strip €2 with the cartesian coordinates we again consider the Hamiltonian
Q
H=-A},

i.e. the Dirichlet Laplacian where Dom H = {7,/} e W22(Q)|y | 0Q = O}, since the boundary 92
is smooth enough here. However, we will again work rather with curvilinear coordinates (s,t),
the Hilbert space becomes then H. := L?(2, |G|'/2dsdu) and H becomes the Laplace-Beltrami

operator

H. = —|G|7Y%9,|G|'?G" 9;

which has to be understood in the weak sense, since the elements of matrix G need not to be
differentiable (because of the occurrence of k there). Thus we will again work with the associated

quadratic form
Q-[v] = (94, G90;0) ;. Dom (Q) = Wy ().

On this domain, the quadratic form QE is closed (in the construction of the closure, it was again
needed that the coefficients in G are bounded, this is ensured by the assumption on boundedness
of k). This form is then associated with the self-adjoint Friedrichs extension of H. which will be
denoted by the same symbol.
Using similar steps as in Section 2.2.1, we would show that the first term in the asymptotic in
By

e of the spectrum of H., is =+ where Ey = % is the first eigenvalue of the Laplace operator on

segment (—1,1) with Dirichlet boundary conditions in points ¢ = +1. Hence we will renormalize

similarly

x ~ Fy 9

Gely] = Gely] - Tl
The next step will consist of introducing the unitary transformation to “straighten” the strip,
however, again the standard unitary transformation (the multiplication by |G|'/*) won’t work

since |G| is not differentiable. That’s why we will use the smoothing of the function x with help

of the Steklov approximation.

4.1.3 Smoothing of the curvature s

We introduce the Steklov approximation of x as

+ 5(25)
f _8(e) K(&)dE
— 2
w5
where J is a continuous function of € satisfying
gl_r}(l) de)=0
and also
= _—o. (4.5)

lim

e—0 5(6)
We consider that the curve is defined on an opened interval I, if I is finite or semi-infinite, we
prolong the function by zero on R\ I to give the definition of k. a good sense.
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As a consequence of (4.1) we get that
"fa(s) <C,. Vs e 1.

Also in the two-dimensional case we will use the results of Section 2.3 on the convergence properties

of the expression |k — Kke|.

4.1.4 The unitary transformation

Now we can set
he :=1— etrc(s)

and
|G|(s,t) = thﬁ. (4.6)

Using this expression we introduce the unitary transformation

1/2
_ .72 1/2 2 |G|
Ug: L (907|G| dsdt) — L (QO, G dsdt)

b o Ugtp = |G|y

to get ~ _

H.:=UgH.UZ' = |G| H |G|, (4.7)
We denote H, := L? (Qo, :g}% ds dt) and the scalar product, resp. the norm on this space is then
denoted by (-, -)e, resp. || - |le- By (-,-), resp. || - || will be denoted the scalar product, resp. the

norm on Hg := L?(Qo, dsdt).
The formula for the associated quadratic form Q. with Dom Q. = WO1 2 (Q) reads then

1 , 1 [ h El/ -
W] = WP dsdt+ — | - dsdt — =L [ P dsdt
Qulil = [ glowPasae 5 [ owPasa— 2 [ iR dsas
1 1 9 3 h 5 19 / |0she|? | o
+ 2/90 hgmﬁe\w dsdt 4/00 hgfia|¢| dsdt + o, 42h []* ds dt+
[ Ol Re(¥0sv) ds dt (4.8)
o, W2h 3 . :

4.1.5 Boundedness from below of H.

It will be again necessary to find some lower bound on the operator H.. This could be done on
the level, when we worked with the unitarily equivalent operator H., however, similarly as in the
case of three dimensions, some more precise result concerning in the lower bound also ||0s9| will

be needed in the following steps, hence we will skip to the finer estimate (analogue of Lemma 3.8).

Lemma 4.1. Let ¢ € W, *(Q) and let r be a positive constant. Then

1 1

> - 2 — 6C2||l0||2. .
23 Jo, il |0s|™ ds dt — 6C |92 (4.9)

Qe[V]

Proof. We will proceed similarly as in proof of Lemma 3.8, hence we will not give the details of

the estimates any more. At first the second and third term in (4.8) will be estimated using the
substitution ¢ := /-1 and using that fQo |0:¢|? ds dt > By fﬂo |¢|? ds dt to get the formula

1 b E,

h
i Lo dsdt = —2C2v]2.
o e

0 €
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Then we estimate the third and fourth term as

1 1 9 3 h o 9 9
— —KKe dsdt — — — dsdt| > 3C
‘2 /QO hg/m [1]* ds 1 /QO hgmew\ sdt| > 3C;

and we decompose the seventh term using Schwarz and Young inequalities:

1

Oshe . - 1 1 )
< — _
/QO W Re(q/;&sw)dsdt‘ < 2/90 R dsdt+2/ﬂo

|0she ]
h3h

4|2 ds dt.

In consequence we get

Q[¢]>1/ L j,uf? dsdtfw?uwnt/ Ohel? 12 4 gy
W23 ) e S T

However, for all (s,t) € Qg it holds

4(e)

é(e)
k(s + 557) — k(s +557) | _ 2¢C
Oshe(s,t)] = |—<t 2 2 K
) ‘ ] ) =56
and since we assumed (4.5), we can estimate that
|0she|? 4e2C?2
’/Q dan [V dsdi) < () [0lI2 < CRlIwli2 (4.10)
0 €

to get the final estimate

1 1 2 201112
QL = 5 [ g 100F dsde—6CE U2

o hhe
O
Hence for sure also
Qc[¥] > —6C%||4||2
and we get similarly as in Lemma 2.2 that if r > 6C? is a real constant, then
I + ) s € g (411)
r —6C}

4.2 Norm resolvent convergence

4.2.1 The main result

At first, we will again have to find the way how to compare the operator H. acting on H. and the
one dimensional effective Hamiltonian

K2

her =~ —

)

Let x1 be the eigenfunction of the transverse Dirichlet Laplacian —ASM associated with the

first eigenvalue F;, normalized to 1:

t
x1(t) = cos % (4.12)

Then we introduce the subspace H} in the same way as in the three-dimensional case, i.e. by (3.3),

the functions 1 € Hy are then decomposed as
Y=vix1+ ¢t =P+ (1— P
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where

(P (s,) = ( / 1 X1<t>w<s,t>dt) ()

—1

in the projection on subspace Hg and

1

1 = / X1 (t)¥ (s, t)dt.
-1

The isomorphism 7 between the spaces H$ and L2(I) is defined in the same way as before (see

(3.6)) and the quadratic forms on these spaces can be identified in the following way.

Qcﬁ[qplX} IZ/Q |851)[J1X1‘2d8dt — i/

Qo

/{(s)2|wlxl\2ds dt = /1 \831/)1\2ds - E/I/i2|1/)1|2ds =: Qo [t)1].
(4.13)

Similarly we identify the associated operators. By 0+ we will again assign the zero operator on
the orthogonal complement of Hy in Ho.

Also the comparison of spaces H. and Hg will be done in the same way as in three dimensions,
i.e. we apply the unitary transformation U, given by (3.7) on the (bounded) operator (H. + 7)1,
the only difference is that the terms |G| and |G| are now given by (4.3) and (4.6).

Let us summarize the assumptions of our main theorem in case of two-dimensional waveguide.
Assumption 4. We assume that at least one of following conditions is satisfied.
(i) The interval I is bounded.

(i) If we set

n+1
0:(0(2)) =3sup | sup / k(s) — k(s +n)* ds
neL \ |n|<d Jn

then

lim 0, (6()) =0 (4.14)

e—0

for some continuous functions 0(g) satisfying

EII_I% d(e) =0,
£

811_13(1) @ =0. (4.15)
Theorem 4.2. Let H. be the operator defined by (4.7), i.e. the operator unitarily equivalent to
the renormalized Hamiltonian fA% describing the dynamics on a curved quantum waveguide built
along a planar curve I'(s), s € I, such that the Assumptions 8 and 4 are satisfied. Let heg be the
effective Hamiltonian on the interval I defined by (3.1) and let U, be the unitary transformation
(3.7). Then

‘ <oWe 4 0(2)% +C®/5,.(5(e))

for some r satisfying —r € C\ (¢(H.)Uo (heg)) and some constants C, i = 1,2,3. The right-hand
side tends to zero when € — 0.

U.(H. +r)"\UT — ((heﬁ rr) e oi) HB(H )
0
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4.2.2 Proof of Theorem 4.2

We will prove the theorem for some real r > 8C? (since for such r, (H. +7)~! is bounded and since
it will be convenient in the proof of the auxiliary Lemma 4.4) and we will again divide the proof

into proving two lemmas. The first one compares the operators H. and Hy where in this case

. 1 (_111) El I HQ

The associated quadratic form reads
E 1
Qo] = / \agw|2dsdt+—/ 0s2p|* ds dtf—l/ |1/;|2dsdt—1/ K2 Y|? ds dt
E Q() QO

with Dom Qg = WO’ (). Tt again acts on the functions 11x1 € Hy in the same way as Qeg
2
given by (4 13). We can estimate Qq[¢)] > —%||’Q/JH27 hence the operator Hy + r will be positive

for r > < and again for its inverse holds

1

cz’
T

[(Ho +7)71| < (4.16)

In the following lemma we again use the unitary transformation (3.7) (with appropriate (4.3)
and (4.6)).

Lemma 4.3. Let r > 8C} be a real constant and let the assumptions of Theorem 4.2 be satisfied.
Then

|U=(He + 7)1 U = (Ho +7) " sy < CFVe+ 0@ 5o " C® /0, (5(¢))
for some constants C’{l), C® and OB,

Proof. The proof will be again based on the auxiliary lemma with the estimate on the difference

of quadratic forms . and )g. This lemma will be proved in Section 4.3.

Lemma 4.4. Let Q7, resp. Qf be quadratic form associated with H.+r =: H], resp. Ho+r =: H{
where r > 8C? and let the assumption of the Theorem 4.2 be satisfied. Then ¥, € WOLQ(QO)

|@%W%%WK(ﬁ%+@%é+ﬁ“aM@O Q5lHIQz Y.

for some constants C’(i), 1 =1,2,3 and the right-hand side tends to zero when € — 0.

Using this lemma, we can make similar estimates as in proof of Lemma 3.5, namely we use the
special choice of functions ¢, ¥ as in (3. 22) and then we can estimate analogously to (3.24) (we
assign o(e) = C’(l)e + C(Q) E 5+ C® o (6 . For all f,g € Ho

ymmeww—«ww»k

<[ (f, (U= = 1)(H o) |+ (. (HD)THUZ = Dg) | + |[((H) ' f, (U2 = 1)g) |+
+wmmﬂw4w )71 Ueg)| <
SPM@WWVMm+W)me+%/Wﬂ)%mW 5 s | 1119l <

< (C’ 1)5+C(C(1)E+C(2 e +O(3W<T>) I£1lgll

where we used similar estimates as (3.26) on norms like ||(U; — 1)%| and also the boundedness of
I(HD) sy and [[(HE) '|sy) (see (4.11) and (4.16)). This relation proves the Lemma 4.3
according to relation (3.23). O

52



The second lemma expresses the connection between the operator Hy acting on Hy and the

operator heg acting on L*([).

Lemma 4.5. Let Hy be the operator defined by (3.15) and let heg be the effective Hamiltonian
(3.1). Then
I (Ho +7)7" = ((her +7) 7" @04 llsuy) < CVe

for some real constants 02(1) and r > 80,%.

Proof. The proof is completely analogous to proof of Lemma 3.6. If we now assign by C7 the

constant from (4.21a), we get

iy = (0~ 00, < VIR < 200 [ =V
T4

O
Now we can proof the main theorem using simple estimate
—177—1 -1 L
_ <

e (X L |

< NU(He + ) 702" = (Ho ) sy + 1| (Ho 7)™ = (et + 7)™ @ 0 Il <

< (" +cf) e+ c<2>% +C®\/o.(3()).
O

4.3 Proof of Lemma 4.4

Our task is to proof the difference of the sesquilinear forms

r _ [ L5 1 [ hyz _ B[k
QE(¢>,¢)_/QO hh663¢8swdsdt+€2/ 060y ds dt 52/9 P ds di+ (4.17a)

Qo e o he
1 1 n 3 h o- |0she|? -
+/ Oshe (005t + O dsdt + / ﬁqmd dt (4.17¢)
Qo thh ° ° 3 " Qo hs 5 1/iC
and
5 L - By [ -
Qp(d,0) = | 000 dsdt + = / 09O dsdt — — | Py dsdt+ (4.180)
Qo e Ja, e2 Jo,
1 - _
—*/ K2 dsdt + o dsdt. (4.18b)
4 Jo, Q

We will again assign the final formulas by (p1)-(p6).
From (4.9) and the relation

02
a4l = 1owiP + (v = ) ol
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it follows that

I < 2112 < ;= QL] < @il (4190)
10s]1* < 4QL[¥] (4.19b)
lll? < T_lizQS[w] < Ci bl (4.19¢)
109 11” < Qplw] (4.19d)

where we used the assumption r > 8C? in the first an third relation. Now we can perform the easy
estimates.

Using the estimate (4.10) from Section 4.1.5, the Schwarz inequality, the relations (4.19) and
also the assumption (4.15), we get

2
/ ‘aShE‘ (b’(/Jd dt <4——
Qo

S
4h3h Qoo)QI[W] < 4

o(e)

() QlolQilv] = O 55/ @slolerivl. (o)

Similarly we would get

O,h.
| S 000+ 0u60) dsat < 8555\ JQplelazl) = OF s oozl 02)

It is easy to estimate the difference of terms with r,

r/Qo (: - 1) S ds dt < —W CMe/QslolQrlvl. (p3)

In the two-dimensional case the difference of first terms on line (4.17a) resp. (4.18a) falls also into

easy estimates:

<hh >s¢8swdsdt‘<350 10581[10s0| < 6eCrer/ Qp[0]Qz W] =: C5Ve\/QplolQ v

)

The estimate on the difference of first two terms on line (4.17b) and the first term in (4.18b)
will be slightly harder. It is easy to start with

1 3 h -
ol =[5 [ pmmdvdsar =5 [ otvasaer [ o <

<3C. [ ke —kl¢ydsdt + 3eC2||o|l|| v, (4.20)
Qo

however, to proceed further, we will have to use the Hilbert space decomposition.

4.3.1 Hilbert space decomposition

It was already mentioned in Section 4.2.1, how we introduce the subspace Hy. Let us only recall

that we decompose the functions ¢ € Hg as

Y=Pp+(1—P)Y=vixq1+y"

where the projection P; and the function 1, were introduced also in Section 4.2.1. We again show
that the function ¢ vanishes for small ¢ similarly as in (3.41) and (3.42).
From the proof of Lemma 4.1 and from the fact that r > 8C? it follows that for all ¢ € VVO1 -2

1 hooo By [ h, .,
> = [ — =2 = )
QE[QM = g2 /QO hs |atw‘ dsdt e2 h |¢| dsdt

Qq 'be
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If we apply this inequality on 9+, if we realize that fQo |02 dsdt > Es||v||? and if we use the

same trick with small parameter § as in (3.40), we get

1 h E h
Q2 5 [ il dsar— 5 [ G dsar >
0 (>

52
1-<C, i E11+€C L
- = >
> e ), Vet Pasd- T | et Pasdr
1 1—eCy 1+sC’ L2 1—eCy Tl 2
> 5 (B (1= 0) = By ogs ) 0P + 501 o IV P

Since here we know Fj and Fs explicitly (Fy = T Ea = 72), we know that if eC,, < 1 1, We can

put 8= 1 to get

2
oL ™ L2 4 2
Q > 0,
5[’(/} ] = 3082” tw || 20 Q‘W ||
This yields

20¢?
et < S Qi) = 2CtQrvt, (4.21a)
0t < S5e2Qrlu] = C3QIu . (4.210)

Similarly as while deriving (3.43) and (3.44) we would get for ¢ = ¢1x1 + ¢ that

" |1? < £2CrQ5[¢™], (4.21c)
18:0|* < e*C3Qg [0 ). (4.21d)
The estimate
Qole¢t] < Qplel (4.222)
is obvious, on the other hand, to prove the estimate analogous to (3.47c¢)
QL] < 2QC[Y] (4.22b)

again longer computation is made (similarly as we saw in Section 3.3.6), however, we will not give
here these details.
Now we can finish the estimate on the term g.(¢,) started in (4.20). Using the Schwarz

inequality we get

/ |ke — K|QY ds dt < \// |ke — K||@]2 ds dt\// |ke — K||Y]2 ds dt (4.23)
Qo Qo Qo

where we can estimate
[ o= wllvr + P dsae < [ e = wlli s + 20,0 <
Qo I
< Vo (6@ [Wallwr2 1l L2y + 2Cx [0+ ]1* <
1
< ( adé(s))cﬂ 2+ — o] +4C,$01€2> Qr[y].

Above, we used the relation (2.36) and the relations (4.21a), (4.22b). We also used that the relation

1012 = 1911220, + 617 yields [[91]2ap) < 6] and similarly |0,1]2a ;) < 95%]. For the
first term in (4.23) we find

/ |f~eg—n||¢1xl+w|2dsdts< A 14+ o + 26, clg> Q3lol.
Qo
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Altogether we get (similarly as (p4))

N

1g:(¢, )| < [ (\/ 1 + = + 2520201) + 3eCy, Qv QL[] =
= (CVe+ 0P \/crﬁ(a(e))) NCILNCRT (05)

In the two-dimensional case, the most problematic term is the difference of second and third

term on line (4.17a) and the second and third term on line (4.18a) which reads

h E h _
m(¢,) = 512/90 (he ) 0,0, ds dt — 51 /QO (ha - 1) o ds dt.

It is analogous to m(¢, 1) in three-dimensional case, hence we will estimate it using the Hilbert
space decomposition and the integration by parts. Using the integration by parts twice and using
the relation —0?y; = E1x1 we get

h _
/ o} (h — 1) drbix3| <
< 4c, / e — Al [ ]ds + 106 b1l 2l 2y <
I

< Vam(é(a))\/H¢1HW1‘2(I)||¢)1||L2(I) \/”¢1HWl‘Q(I)”leL"‘(I) +10eCEl1o1 2y v ll 2 )

1

[m(d1x1,1x1)] = 222

The estimate on |m(¢1x1,%")| is performed integrating by parts once:

Im(é1x1,vH)| = ’_512/9 ) (: - 1> Prx1yt dsdt‘ <

1 1
< 2¢ [ e = o sl s aec2ion e 1D <
I

< Vo (5() [ 4eC? [
< Vou( (E))||¢1||w112(1)75 + 4e m||¢1HL2(1)7€ .

Similarly
H o |

(6 1| < VB s L+ a2l

In the last estimate we don’t need any integration by parts.

1 h - E h .
mietvi< 5| [ (1) astonasal s G| [ (G -1) 5| <
1 1 N n

< 3ECKMH@ZJ I +3€E10KH¢6 [ ||w€ Iy

Altogether we get (using the relations (4.21), (4.22) and (4.19)), we get

m(¢, )| < l 7,.(6()) 1+% (02

K

+301> +

e (10C, + Cy, (1201 +5C5 + 5E1CT)) |1/ Qb o]/ QL[] = (4.24)

— (C’il)e + 653)) \/@ VOr ] (p6)
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4.3.2 Conclusion

According to relations (pl)-(p6), we get that

< [(éf” + 0D+ O +CD) e+ (O + 0 55+ (G + ) \/aﬁ<6<s>>] QsleQrlv].
The right-hand side converges to zero due to Assumption 4. O

However, in Section 2.3.4 we saw that the Assumption 4 does not hold for all curves and in

next section we show that then the Theorem 4.2 need not to hold.

4.4 The essential spectrum for the counterexample waveg-
uide

In this section we will find the lower bound on the essential spectrum of the Dirichlet Laplacian on
the strip  built along the curve I'oge : I = RT — R? (see Figure 4.3), whose curvature is oscillating
more and more when s — oo (see Figure 4.2). The function describing the curvature of T'os. was
already introduced in Section 2.3.4, we slightly modified it so that the picture of the curve was
nicer, however, its properties (namely that x does not satisfy the assumption o, (é(¢)) — 0 for any
d(e)) are preserved. When describing 2, we will again use the coordinates (s,t), recall Q = L()
where Qy = R x (—1,1) and the mapping £ was introduced by (4.2). On the line {0} x (—1,1)
we will pose the Dirichlet boundary condition. Recall that we introduce the Dirichlet Laplacian
H = —A$% as the self-adjoint Friedrich’s extension and for the associated quadratic form @ it
holds

QW}} = (@% Gijajw)LQ(QOJGP/?dsdt) Dom@ = WOLQ(QO)'

Figure 4.2: The plot describing the curvature k(s) of the curve I'og.

If the curve I'os. satisfied the assumptions of Theorem 4.2, according to our main result, the

spectrum of the (renormalized) Dirichlet Laplacian on this strip —A% would converge to the
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Figure 4.3: The curve I'oqc.

spectrum of the 1D operator acting on L?(R*), heg = —Ap — %2 = —-Ap — %. Recall that the
renormalization of the Hamiltonian consisted of subtracting %, that’s why the threshold of the
essential spectrum of —A% would be shifted by this quantity, thus equal to % — i.

However, as we already mentioned above, the curve I',s. does not satisfy the assumptions of
the Theorem 4.2, hence we did not prove the norm resolvent convergence of the renormalized
Hamiltonian to heg. In this section we will find that the essential spectrum of —A$ for the strip
Q built along the curve I'gs. does not start below % thus it can not be % - i. Therefore the

spectrum of —A% is indeed not well approximated by heg in the limit as € — 0.

Theorem 4.6. Let H = —A% be the Dirichlet Laplacian in the strip built along the curve Iogc.
Then
inf oess(H) > —

where 2e is the width of the strip.

Remark 4.7. In this section we consider the width of the strip 2¢ as fized, the only requirement
on € is to be so small that the strip is non-self-intersecting which is for our curve satisfied in case

€ < 1 (since the curve consists of arcs, whose radius is 1).

Proof. In the proof of this theorem we will proceed similarly as in the paper [21]. We will use
repeatedly the so called Neumann bracketing (see Section B.8.1), in the first step we will divide
the waveguide into two parts. Let ' = (0, ngm) (I®* = R* \ Tint), then Q' := (I x (—1,1))
and Q% := Qg \ Qnt where ng € N will be specified later. On the segment {ngmw} x (—1,1)
we will pose the Neumann boundary condition, the Laplacian with this extra Neumann boundary
condition will be assigned Hy = H @ HS, the associate quadratic form reads Qn = Q@ Q%"

where
QnlY] = (&'w’Gijajw)ﬁ(ﬂn\cv‘llﬂdsdt) ’
Pom @y = {v 11 x (+1,1)|v € Dom @},

¢ € {int, ext}.
Here we can use the Proposition B.24 (or more precisely its modification in the sense of Remark
B.25 point (7)) to get H > Hy and together with Lemma B.22 we get

N(H) > N(Hy) V> 1,
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Due to the Theorem B.16, the threshold of the essential spectrum for the operator H is lim;_,o A;(H)
and similarly for Hy. From the inequality above it follows that also lim;_,oo A;j (H) > im0 Aj(Hn),
hence the threshold of the essential spectrum of the operator H is greater or equal to the threshold
of the essential spectrum of Hpy. Furthermore since Q™ is finite and regular enough (i.e. it has

the extension property, see [5]), the spectrum of H is purely discrete and we get

inf Ooss(H) > inf oss (HS) > inf o (HEY). (4.25)

Now we will examine the spectrum of H' and we will again use the Neumann bracketing.

On interval ((n — 1)m,n) for each n € N there are subintervals ((n — 14 25)r, (n — 1 4 25t)7)
251 (n — 1+ 25£2)7) where the curvature

is -1, k=0,1,..n — 1. We will divide R into subintervals

Sk = ((nl+§l€)ﬁ,(nl+2k+2)7r>,
n

where the curvature is 1 and subintervals ((n — 1 +

2n

and the strip Q%' will be divided into segments
QF .= 8F x (—-1,1)

(one of those segments is depicted on Figure 4.4). Let us note that the segments QF for fixed n
differ only in position, the shape is the same. Between two such segments there is again placed a
Neumann curve and we get the operator f{]e\}‘t associated with the quadratic form
0o n—1
o= D D
n=ng k=0

where

QZWJ] = (aiw’Gijaﬂ/’)L2(Q§,\G\1/2dsdt) ’
Dom QF = {w Ok |y e DomQ‘f\’,‘t}.

Using similar arguments as before we get HX® > HY® and thus Ay (HEY) > A (HS?) yields

inf o (HZ') > infa(]:fje\}‘t) > iilf (infU(Hﬁ)) . (4.26)
n-=no
where HY is the operator associated with Q*. The last inequality follows again from the min-max
principle, since Ym > ng, VI =0,1..m — 1

N (HSY = inf sup Q5[] > inf sup Q! =\ (H!
]( N ) ngean’k Dom Q¥ vel, N WJ] L;."‘lgDolem ¢€L;ml m[¢] ]( m)

where dim L; = dim L;”’l = jand ¢ € Dom Q!,, can be considered as the function from ®,. , Dom QF
when we prolong it by zero on all the segments QF where either n = m Ak # [ or n # m. Now
the last task is to evaluate the term on the right-hand side of (4.26) (in there we didn’t write the
supremum over k since all the H,’j for fixed n have the same spectrum due to the fact that the
shape of QF is the same for all k).

Our last task is to prove following lemma which gives us the estimate on the spectrum of the

operators HE.

Lemma 4.8. )

s
infa Hk >—.
( ”>—4(s+2sm2ﬁ)
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(X, ¥, b)

(l-s)(l-cos%)

(1+€)(1-cos )

(Xna YO) EL ',"' D (X0+ a, YO)

Figure 4.4: The segment Qﬂ“\, for some k € {0,1,..,N —1}.

Proof. To find the estimate on spectrum of the Laplacian on the segment QF where there is
Neumann boundary condition on the lines dividing the strip from the neighbor segments and the
Dirichlet boundary condition on 9QF N0 (see Figure 4.4), we will use the (slightly modified) idea of
the Proposition B.23. We confine the segment QF by a rectangle of height b := 242 (1 — cos %) =
2¢+4sin? 1, as depicted on Figure 4.4 and we will pose on the vertical lines the Neumann boundary
condition and on the horizontal ones the Dirichlet boundary conditions. The Laplacian on this
rectangle will be assigned Hp, the associated quadratic form QQn. The rectangle is denoted by
Qo C Q, however we will come back to the cartesian coordinates (x,y) when describing it. If
the lower left corner of the rectangle has the coordinates (zg,yo) and we denote the width of the

rectangle a, then (zg,zo + a) X (yo,y0 + b) = L(Qa). Consequently

Qoly] = (aiwﬂGijajw)L2(Qg,|G|1/2dsdt) ’
Dom Qo = {?/1 c W1,2(QD)‘¢ (571(%%)) — (Efl(m,yo +b)) =0 for a.e. & € (w0, o +a)}.

Note that ©(z, ) denotes the trace of ¥ on the boundary part of the rectangle. Our task is now to
show that
Dom QZ C Dom Q.

To prove this it is enough to realize that if we prolong the function ¢» € Dom Q¥ (i.e. the function
which is in fact the restriction of some ¥ € W,*(€) on QF) by zero on Qg \ QF, we will get the
function that is for sure in W12(Q)g), and also this function is zero on the horizontal lines (the
only points where this need not to be satisfied are the corners (xg+a,yo) and (zq, yo +b), however,
this is the set of zero measure). It is also clear the forms act in the same way on the functions
from Dom QF. Hence

H* > Hy. (4.27)

j,ll,2...}.

It is easy to show that

G | Gy

o(Hg) = {
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Using (4.27) and rewriting b = 2¢ + 4 sin? 1, we get

info(H*) > info(Hp) = ———5—~

which proves the lemma. O

Using this result we get

7('2 7T2
inf (info(HE)) > inf — 3 = 5. (4.28)
A asn® 5”4 (et 2sin? )
Combining the estimates (4.25), (4.26), and (4.28) we get
2
inf oess (H) > T 5
4 (5 + 2sin? %)
no
which yields the statement of Theorem 4.6 since ny can be chosen arbitrarily big. O

Remark 4.9. In Section 2.3.4 we mentioned that along the curve I'ose we can built also a three-
dimensional wave-guide. If we chose e.g. the waveguide with the uniform square cross-section
without any twisting, the proof of the fact that the spectrum of the Hamiltonian on such tube is not
well approzimated by the spectrum of the effective Hamiltonian, would be very similar to one we
performed here.
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Chapter 5

Conclusion

It is known that the Hamiltonian in quantum waveguides built along a spatial curve I'(s), s €
I, converges, under rather restrictive conditions on the curve I', in certain way to the effective

Hamiltonian

FE _ AT _ig ) 2
heﬁr = AD 1 —|—C(w) T+ Opp (51)

where k and 7 are Frenet’s curvature and torsion and 6 is the twisting angle of the uniform cross-
section with respect to the Frenet’s frame (FF). In this work we generalized this well known result
to curves that are more general in two aspects. At first we considered less regular curves, we
assumed only
I e W)

in comparison with C*-curves considered in papers like [7]. At second, we generalized also the
results of papers like [4] or [6] since we proved the norm resolvent convergence of the initial
Hamiltonian to (5.1) for wide range of I/Vlifo (I) curves also in case when the interval I is unbounded.

To introduce the quantum waveguide, firstly, we had to find an adapted moving frame for a
general curve I' € W2’°°(I ). Here we could not use the well known Frenet frame, since it exists only

loc

for C3 curves. That’s why we generalized the results of [2] on W2>°(I) curves and we built the
waveguide using the relatively parallel adapted frame (RPAF). Using this frame we also included
in our consideration the curves for which the curvature is allowed to vanish at some parts of the
curve. Such curves were excluded in other works, since for them the Frenet frame does not exist.

While using RPAF, the curvatures are assigned by ki, ko and they are related to Frenet’s
curvature k as k? = k? 4+ k3. Also the Frenet’s torsion can be expressed in terms of k1, k2, however,
for us the following relation concerning the torsion will be sufficient. The quantum waveguide 2
was built using the mapping (2.3), i.e. we rotated the cross-section w (an open subset of R?) in
every point s € I by an angle Ogpar(s) with respect to the normal vectors in RPAF. From the

definition of the RPAF it follows that Orpar is then related to g by
Orpar = T + Opp. (5.2)

Then we studied the Dirichlet Laplacian on {2, fA%. At first we renormalized the Hamiltonian
by subtracting the divergent term in the asymptotic of the spectrum % where the F is the first
eigenvalue of the transverse Dirichlet Laplacian —A¢%,. Then we followed the procedure which
was used e.g. in [7] and where the unitary transformation “straightening” the tube was performed.

However, we had to modify slightly this procedure since the curvatures need not to be differentiable
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in our case. This was done using the so called Steklov approximation which is described e.g. in [1]

and reads
5(2)
1 2

s+ .
ki(s)é(g)/sé(;) ki(6)de  i=1,2.

Of course, other approximation of the curvature could be used, we let as an open question if the
results would be better in this case. We used the Steklov approximation for we can work with it
easily in explicit form.

After the unitary transformation, the operator fA% became an operator that we assigned
by H.. Unfortunately, when the modified unitary transformation is used, the Hilbert space the
Hamiltonian H. is acting on is dependent on . We solved this problem using another unitary
transformation which was applied on the resolvent of H (a bounded operator) and which trans-
forms the resolvents of H. to operators that act on fixed Hilbert space Hg. After the identification
of subspace H} of Ho with the Hilbert space L?(I), we found in Theorem 3.1 that the opera-
tors unitarily equivalent to the resolvents of H. converge in norm to the resolvent of effective

Hamiltonian

2
K .
heg M = —Ap — T + C(w)bipar-

This is in accordance with previous results due to the relation (5.2).

The assumptions on the waveguide we required consisted of boundedness of the cross-section w
and boundedness of the functions x = k% + k3 (curvature) and 0 (derivative of the twisting angle).
For unbounded intervals we had to assume in addition that the functions oy, (d(¢)), i = 1,2 and

04(0(€)) tend to zero when e tends to zero. Recall that in general

n+1
o1(5() = 3sup | sup / 1£(s) — F(s +m)Pds | .

neZ \ i< o5

i.e. o7(d(¢)) expresses how much the function f is oscillating. Recall also that for all “well-behaved”
functions f as uniformly continuous functions, L?- functions or periodic functions, o¢(d(¢)) con-
verges to zero with €. Let us note that we include also the curvatures that do not vanish in infinity
which were excluded in [7].

On the other hand, we saw that in case of unbounded intervals, there must be some additional
assumption on the curvatures beyond the boundedness, since we have found in Section 4.4 the
curve I'gge such that the spectrum of the Hamiltonian on the waveguide built along I'os. is not well
approximated by the effective Hamiltonian. This was done on the two-dimensional model, however
it could be easily extended on the three-dimensional case.

As an open question remains if the class of curves we include into our considerations could
be described by some nicer condition. In future we would like also to explore in more detail the
spectrum of the Hamiltonian on the waveguide built along I'osc and what effective Hamiltonian
corresponds to this curve.

We gave only a brief overview of the consequences of the norm resolvent convergence, therefore
it could be interesting to find the particular consequences of the norm resolvent convergence in our
case, i.e. for example state a theorem on the convergence of the eigenvalues with the “speed” of
convergence. Also the spectral results such as the existence of Hardy inequality or the existence of
bound-states for waveguides with finite (not infinitely small) cross-section could be extended to less
regular curves in comparison with other works, if we used our techniques. This all are suggestions

for the future work.
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Appendix A

Framing of a 3D curve

Let T be a spatial curve, i.e. the (image of the) mapping I' : I — R3 : s s (''(s),'?(s),'3(5s)).
We assume that this curve is regular, i.e. [I'(s)| #0 Vs e I.
We define an adapted moving 3-frame using the terminology of [18] and [2].

Definition A.1. Let T': I — R? be a curve.

(i) A moving 3-frame along T is a collection of three differential mappings
e;: I —R3 i=1,2,3

such that for all s € I, e; - ¢; = 6;5. Each e;(s) is then a vector field along T' and in some
particular point so the vector e;(sq) is thought of as lying in the copy of R® identified with
the tangent space TF(SO)R3.

(1) We say that a moving frame is adapted to the curve if the members of the frame are either

tangent of perpendicular to the curve.

Our goal is now to find the adapted moving frame for as general curves as possible.

A.1 The Frenet frame

The commonly used adapted moving frame is the Frenet frame. We adopt the following definition
from [18]:

Definition A.2. A moving 3-frame is called a Frenet-3-frame, or simply Frenet frame, if for all
k =1,2,3, the k-th derivative T'®)(s) of T'(s) lies in the span of the vectors e;(s), ..., ex(s).

In particular, it follows from this definition that the vector field e;(s) is the normalized tangent

vector field of T" (i.e. the vector field |§8|

It is also clear that the Frenet frame can be defined for at least C? curves, however this condition

) and thus the Frenet frame is adapted to the curve I'.

is not sufficient for Frenet frame to exist. From the following proposition (adopted from [18]) it
follows that the existence of the Frenet frame is determined also by the linear independence of the
derivatives of the curve. We will mention here also the proof of this proposition since it gives us
the recipe how to construct the Frenet frame. The proposition is the special case of the general
proposition for R” and we will prove it in the same way as it is done in R™ even if for R? there are
also other possibilities how to find the Frenet frame.
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Proposition A.3. Let T': I — R3 be a C® curve such that for all s € I, the vectors I'(s) and

F(s) are linearly independent. Then there exists a unique Frenet frame with following properties:
i {T'(s),1'(s)} and {e1(s),es(s)} have the same orientation,
it {e1(s),ea(s),e3(s)} has the positive orientation.
Note that this frame is called the distinguished Frenet frame.

Remark A.4. Recall that two basis for a real vector space have the same orientation provided
the linear transformation taking one basis into the other has positive determinant. Basis of R? is

positively oriented if it has the same orientation as the canonical basis of R3.

Proof. We will use the Gram-Schmidt orthogonalization process on I'(s) and I'(s). Assumption
that I'(s) and I'(s) are linearly independent implies that T'(s) # 0 and we can set e;(s) := IEE:;I
Then we define

Ea(s) == I(s) — (f(s) : f(s)) I'(s) (A1)

and we let

ea(s) 2 (A.2)

= @.
Clearly, then e; and e, satisfy the assertion (¢) of the Theorem. The third vector is added in such
way that the basis e;(s), ea(s), e3(s) has the positive orientation, this can be done e.g. by setting

e3(s) :=e1(s) x ea(s). (A.3)

The differentiability of e; and ey is clear from their definition and from the fact that I'(s) € C3.
The differentiability of e3 is due to all the components e can be expressed from (A.3) using the

components of e; and e, which are differentiable. O

Let us note that in the case of R® which was considered here, the triplet {e1, ez, €3} is sometimes
denoted by {T, N, B} where the vector fields are called tangent, normal and binormal.

In particular the Frenet frame does not exist for curves where I'(s) = 0 for some s € I, i.e. for
example the curves where there is inflection in some point or where in some part the straight line
occurs. We refer to such curves as degenerate curves. In some cases it is possible to patch together
the frames for different parts of the curve where F(s) # 0 and we still get a differentiable Frenet

frame. However, let us take the curve

(s,exp (fs%),()) s <0,
I'(s) =< (0,0,0) s =0,
(S,O,exp (—S%)) s >0,

which turns from the (z,y)-plane to the (z, z)-plane in the point s = 0, where I‘(s) = 0, but all
the derivatives of the curve in this point are continuous. For this curve, it is not possible to find
a continuous Frenet frame, even if this curve is C* (see Figure A.1). That’s why we will look for
the frame that can be built even for such degenerate curve, in the next section. However, now we
will mention some other properties of the Frenet frame.

We will look for some relations for the derivatives of the vector fields in the Frenet frame, more
precisely we will look for the so called Cartan matrix M satisfying é;(s) = M;;(s)e;(s). Let us note
that the last relation yields M;;(s) = é;(s) - e;(s). Differentiating the relation e;(s) - e;(s) = d;; we

65



//\ e,

Figure A.1: Example of a C* curve for that the Frenet frame does not exist.

get that é;(s) - e;(s) +e;(s)é;(s) = 0 Vs € I, hence the matrix M is antisymmetric (for any moving
frame).

From the fact that ej(s) is the multiple of I'(s) and ey is the linear combination of I'(s) and
I'(s), it follows that ¢;(s) must be the linear combination of e;(s) and es(s). Furthermore due to

the argument above, é1(s) must be the multiple of e3(s). Summing up all these ideas we get

é1 0 k 0 el
és | =] -k 0 7 es (A4)
é3 0O —7 0 es

where the function «(s) is usually called the curvature and 7(s) the torsion.
Let us note that from (A.4) follows é1(s) = k(s)ez(s) and thus the curvature can be computed
as

wls) = léa(s)] = [P(s)]
If we now introduce the notion of the unit-speed curve (or also the curve parameterized by arc
length), which assigns the curve where [I'(s)] =1 Vs € I, we get e; = I, hence

for unit-speed curves. Let us note that for a regular curve we can also make the reparameterization
such that the reparameterized curve is unit-speed, so we can assume the curve to be parameterized
by arc-length without loss of generality. For a unit speed curve we have also simple formula for
the torsion:

(I(s) x I'(s)) - T(5)
r(s)2 '

From the uniqueness of the Frenet frame, it follows also the uniqueness of the functions (s) and

7(s) =

7(s) for the given curve. On the other hand, in [18] it is proved that if the differentiable functions
k(s) and 7(s) are given, there exists a unit-speed curve satisfying the assumptions of Proposition
A.3, with curvature k(s) and torsion 7(s), and two such curves differ only by Euclidian motion
(i.e. by translation and rotation of the curve).

A.2 The relatively parallel adapted frame

Using the ideas of the paper [2] we will find another adapted moving frame for more general (unit-
speed) curves. Namely, we will require I' € WQ’OO(I) for i = 1,2,3, where W2 is the Sobolev

loc loc
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space of functions ¢ for that (in case of functions of one variable) & and ¢ exist in the weak sense
and ||| o7y + |8l ey + |9l L= () < 00 for every compact subinterval J C I. In fact, we will
generalize the results of [2], since in there it is assumed T' € C2. The assumption T € W2>(I)
yields that I is locally Lipschitz continuous (see [10], chapter 5) which allows us to introduce a
continuous tangent vector field

T(s) :=T(s)

for every s € I. T has then the bounded weak derivative and it is identical to Frenet’s e; if the
Frenet frame exists. In fact we will slightly modify the Definition A.1 of the moving frame, since
we will require the differentiability of the individual vector fields only in the weak sense.

The frame will then consist of the tangent vector field T" and two relatively parallel normal
vector fields.

Definition A.5. We say that a normal vector field M(s) along the curve I' : I — R3 is parallel if

there exists a scalar function f(s) such that

Let us note that the relatively parallel normal field has the constant length, since its derivative
is perpendicular to it. Another important feature of these vector fields is stated in the following

proposition.

Proposition A.6. Let T be a unit-speed spatial curve with T € I/VIQOSO(I) fori=1,2,3 and let My
be a normal vector to this curve at the point T'(sg). Then there exists a unique relatively parallel
normal vector field M such that M(sg) = My. This vector field is continuous, its weak derivative

exists and is locally bounded.

Proof. To prove the uniqueness it’s enough to realize that if there is another vector field M satis-
fying the conditions above, the difference M — M is again the relatively parallel vector field. Since
the vector field M — M should be zero at sy and it should have the constant length, the fields M
and M must coincide.

To prove the existence we will at first have to find some differentiable normal vector field of
length |Mp| and then we will modify this field to get the relatively parallel one. Thus we look for
a continuous and weakly differentiable vector field N such that N(s)-T(s) =0 and |[N(s)| = | Mp|
Vs € I. Without loss of generality we will assume |Mp| = 1. Hence we have two equations for the

three components of N:

NiTi + NoTy + N3Ts = 0 (A.5)

N +Nj +Nj=1. (A.6)

Since we assume |T'(s)| = 1, there must always be one nonzero component of T, let us assume that
for some subinterval J C I, sg € J, it holds T7 > ¢ > 0. Then we can write

_ NoT5 + N3T3

N, =
1 T1

Since we have still some freedom in choice of the vector N, we pose No = 0 which yields

—T-
leﬁ
VIT + T

T

Ny = !
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Thus we have the components of N expressed in terms of the components of T', the components
N; are all bounded (|N1| < 1, N3] < 1), and they are continuous because of the continuity of T'.
Also the weak derivative of N; exists, and we can compute

3 - T(TTh = T T5) | _ [Ta| + |Ts| _ D%+ 17 A7)
T T e c ¢ |

|| (BT - T Ty) | T+ (T [T+ [

Ny| = < - A8
[y GRS . (4.8)

and from I' € VVIiCoo (I) it follows that these quantities have an upper bound on the interval J.
The same properties as N will have the vector field N := T x N since its components are just
products of the components of T and N.

Then the triplet {T, N, N } is the adapted frame and similarly as we derived the fact that the
Cartan matrix M is antisymmetric we get that for the derivatives of N and N that there exist

functions of s pg1, po2 and p1o such that
T = porN + po2 N,
N = —ppiT + p12N,
N = —poT — p12N.

Now we can construct the vector field M
M := Ncos® + N sin 9 (A.9)

where ¥(s) is a differentiable (in the weak sense) angle function which will be chosen in such way

that M is relatively parallel. Differentiating this relation we get
M = (9 + p12) (— sin YN + cos ﬁN) — (po1 cos ¥ + poasin®) T
thus the vector field M is relatively parallel if and only if
J(s) = —p1a(s) Vs el (A.10)

We derived above that N (which we mean in the weak sense) is locally bounded, thus the function

p12 (defined in the weak sense) is also locally bounded. Hence the function

(s) = — | " pra(€)de + 9(s0)

S0

is well defined and satisfies (A.10). Furthermore if we set 9(sg) such that

My = N(sg)cos?(sg) + N(sg)sind(so)

then M defined by (A.9) is the relatively parallel vector field we sought for.

The construction above was local, so the last step lies in finding some global vector field M.
This is possible patching together the fields on individual subintervals where we construct M as
above. If in so the component T} is nonzero, we will construct M on some neighborhood J,
of sqg where T} > ¢, then we find M(O)(sl) for s; € 0y, here another component of T' is nonzero
and we can continue with the construction of the vector field M) on some neighborhood J; of s;
satisfying M (D (s;) = M (9 (s;). Patching together M) (s) we get the field M on the whole I. [
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This proposition allows us to introduce the relatively parallel adapted frame (RPAF), i.e. the
frame where the vectors fields are relatively parallel. The tangential vector field is said to be
relatively parallel if it is the constant multiple of the unit tangent field 7.

Corollary A.7. LetT': I — R3 be a unit-speed spatial curve with T’ € VVE)COO(I) fori=1,2,3
and let MY and MY be two normal vectors in the point T'(sg) such that they form together with
the tangent vector T'(so) the orthonormal basis of the tangent space TF(SO)R?’. Then there exists a
unique relatively parallel adapted frame {T, My, My}, such that My(so) = MY and Ma(so) = MJ.
The vector fields in this frame change continuously with s and their weak derivative exists and is
locally bounded.

Proof. The existence and uniqueness of the unit vector fields M7 and M follows from the Propo-
sition A.6 and also clearly T'(s) = I'(s) fulfils the statement of the corollary. The regularity
properties of the vector fields T, M; and M5 were found in the proof of the Proposition A.6, too.
The only thing to check is then if the vectors M (s) and Ms(s) remain perpendicular. However,
knowing that there exist the functions f, g such that M;(s) = f(s)T(s) and Ma(s) = g(s)T(s),
we can differentiate the scalar product (My, Ms) getting (fT, Mz) + (M7, ¢T) = 0. Thus the angle
between M; and M, remains the same and this holds generally for every pair of two relatively
parallel vector fields. O

Remark A.8.

(i) If there is some preferred orientation in R?, then also the normal space of the curve has some

preferred orientation and we may refer to a properly oriented RPAF.

(#) It is clear that we can get a uniqgue RPAF for all the initial normal vectors in form M{ =
cosaM? + sinaMy, M$ = —sinaM? + cosaM?. Therefore for a given curve there exists
whole one-parametric set of RPAF’s consisting of frames {T, cos aM; +sin aMsy, — sin M7 +

cos oMo} where a € [0,27) is a constant.

Let {T, My, M>} be a RPAF. Let us have a look on the derivatives of the vector fields in
this frame. We already know that there must exist functions ki (s) and ko (s) such that M (s) =
—k1(s)T(s) and My(s) = —ko(s)T(s). Since again the Cartan matrix should be antisymmetric, we

get
T 0 ki ko T
Mo —ky 0 0 M,

Recalling remark A.8, point (i), certainly the Cartan matrix for a given curve is not unique,
however, all the matrices can be written in the form

0 kicosa+ kosina  —kysina + kg cosa
—kicosa — kysina 0 0 (A.12)
k1 sina — ko cos a 0 0

where € [0,27) is constant. Thus for a given curve, the vector (ki(s),k2(s)) € R? can differ
only by an orthogonal transformation, if only properly oriented RPAFs are considered, just the
transformations with matrix with determinant +1 can occur.

Let us now find the connection between the functions k1, k2 (from the relation (A.11)) and k,

7, in case the Frenet frame exists. We can easily find that

k= )f(s)‘ - ‘T(s)‘ = |ki My + ko M| = (/K2 + k2.
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Let us note that since I' € W2(I) for i = 1,2,3, I‘(s)’ is locally bounded and the same then

loc

holds for the functions ki, ky. We will assign k =

I‘(s)‘ even if the Frenet frame does not exist,
the important feature of x is that it is not dependent on choice of the RPAF.
The Frenet’s e; was defined by (A.1) and (A.2). In case when the curve is parameterized by

R .\ 2
arc length, we have I' - T' = % ((F) ) = 0, hence

r & k
ey = — = —1M1 + —QMQ =: cos My + sin BM>
T K K

where we denoted 3(s) = arctan ]ngjg (or equivalently 3(s) = arcsin ]22((5)) if k1(s) = 0). Differenti-

ating this relation we get
¢ = —kT + f3 (—sin M7 + cos BMs) .

If our RPAF is properly oriented, then Frenet’s e3 = —sin M7 + cos Mz and comparing the
relation above with
éz = —Kke1 + TE3
we can identify
7(s) = B(s).

We observe that the x and the indefinite integral f Tds are the polar coordinates for the curve
(K1, k2).

Finally let us mention some uniqueness properties of the functions k1, k2. We already mentioned
that for a given curve, the vector (ki,k2) is given up to rotations in a plane, on the other hand
we would like to know, if for a given curvatures, there exists a unique curve. This won’t be so
straightforward as in case of the Frenet’s curvatures, however, the notion of normal development
will help us solve this problem. We don’t use this part of theory in our text, hence we won’t
generalize it on VVlifo (I) curves and we will adopt following ideas straightly from [2], i.e. we will
consider only the C? curves.

Definition A.9. Let T' be a C? unit-speed curve. Let (ki,ks) be a curve parameterized by the
arc-length of T and lying in the centro-euclidian plane (i.e. the plane having a distinguished point).
Then (k1,k2) is called the normal development of T'.

As we mentioned above, the orthogonal transformations of the vector (k(s), k2(s)) in a plane

describes exactly the ambiguity of the RPAF, which is expressed by following Theorem.

Theorem A.10. Two C? regular curves in Euclidean space are congruent if and only if they have
the same normal development. For any parameterized continuous curve in a centro-euclidian plane
there is a C? regular curve in euclidian space having the given curve as its normal development.
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Appendix B

Selected topics from the functional

analysis

B.1 Weierstrass theorem for L? functions

In this section we cite the Theorem adopted from [1] saying that it is possible to approximate the
functions f € LP(a,b) by the polynomials and we yield some consequences of this result (which

can be also partly found in [1]).

Theorem B.1. Let f(x) € L?(a,b), where (a,b) is a finite interval and p > 1. Then for arbitrary
€ > 0 there exists a polynomial P.(x) such that

If = Pllzrap < e

This Theorem results from the theory of Lebesque integral, in particular from the fact that
the set of continuous functions is dense in LP. Then it is possible to prove Theorem B.1 using the

Weierstrass Theorem in its usual form, i.e. for the continuous functions.

Corollary B.2. Let f(x) € L*°(R) and let (a,b) be a finite interval. Then

h—0

b
lim/ fla+h) — f(@) dz =0,

Proof. We will show that for arbitrary € > 0 there exists h such that

[ 180 - ey ds < (B.1)

It is clear that f(z) [ (a—1,b+1) € LP(a—1,b+1) for all p > 1, thus as a consequence of Theorem
B.1 there exists a polynomial P such that

/:+1 \f(z) — P(z)[Pda < (i)p

-1
Hence

/ @) - PP < (5

and if we assume |h| < 1 then also
b
P
[ s+ m - P+ mpde < (5)
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Thus using the triangle inequality in LP(a,b) we get

b 1/p
( / @+ h) - f(x)"’dfv) <

1/p
(e
1/p -
(/ |P(x+h) — (x)|pdx> +1

Now we use that every polynomial is a uniformly continuous function on [a — 1,b + 1], thus for

_|_

mm

every € > 0 there exists h such that

|P(x + h) — P(z)| < 50— a)lr Vz € [a,b]
Then
b 1/p
(/ P+ h) - <>|”dz> <:
and
b 1/p
(/ |f(z+h) - ()|”dx> <e
which proves (B.1). O

Corollary B.3. Let f(x) € LP(R). Then
lim / |f(x+h)— f(z)]" dz = 0.
h—0 R
Proof. We will prove that for all € > 0 there exists h such that
/ fe+h) - f@)Pde<e.
R

Since f(z) € LP(R), there exists N > 0 such that

—N 0o
[ i@ m - s@pas [Tt - s s

—o0 N

Then since the interval (—N, N) is finite, we can use the statement from the proof of previous

corollary saying that there exists h such that

N e
[ e n) - papds <5,

-N

Combining these to estimates we get
/|f9€+h ()|pdx<§+§:5

which completes the proof. O
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B.2 Generalized Minkowski inequality

Here we will mention an inequality adopted from [1], which we also use in the text. Let (a,b) and

(¢,d) be intervals and p > 1. Then
1/p
>

</ab pdﬂ”) = ( A lf(w)l”dw) a 52

1/p
if f(z,y) as a function of x lies in L”(a,b) and (f: |f(x, y)\pdx) is an integrable function. Let

/ | Fedy

us note that this relation for p = 1 is the consequence of the Fubini Theorem.

B.3 The Norm Resolvent Convergence and its consequences

In this section we give a brief insight into the consequences of the fact that the sequence of operators
T,, converges to an operator T with respect to norm resolvent convergence. By C(H) we assign the
set of closed operator on Hilbert space H, p(T') denotes the resolvent set of the operator T

Definition B.4. Let {T,,}52, C C(H) be a sequence of operators and let T € C(H) be an operator
satisfying
lim (T, = X) ™" = (T =X s =0

n— oo
for some A € p(T). Then we say that T, converges to T with respect to the norm resolvent

convergence.

Sometimes (e.g. in [5]) the norm resolvent convergence is defined for A € C\ R or even
A = —i. However, the following theorem (Theorem IV.2.25 in [17]) shows that these definitions
are equivalent. Originally, this theorem refers to so called generalized convergence, which is in [17]
defined using the notion of gap between closed operators. However, the notions of generalized and
norm resolvent convergence coincide and we won’t give the original definition of the first of them
here.

Theorem B.5. Let T € C(H) have a non-empty resolvent set p(T). In order that a sequence
T, € C(H) converge to T with respect to norm resolvent convergence, it is necessary that each
X € p(T) belong to p(T,) for sufficiently large n and

(T =N = (T =Nl
while it is sufficient that this be true for some A € p(T).

In [17], there can be found number of consequences of the norm resolvent convergence for the
convergence of spectrum of operators 7,,. We mention here as an example the results of Section
IV.3.5. on the finite system of eigenvalues (i.e. a set of finite number of points of spectrum o(T)
that are eigenvalues with finite multiplicity). Briefly said, it is claimed there that the finite system
of eigenvalues changes with 7' continuously in the sense that the change of these eigenvalues is
small when T is subject to small perturbation in the sense of norm resolvent convergence.

Let T}, be the sequence of closed operators that converge to 1" with respect to norm resolvent
convergence. The important point in proof of the statement above is that the finite system of
eigenvalues ¢/ (T) can be separated from the rest of the spectrum o”(T) by a closed curve T in
complex plane that lies in the resolvent set of T. According to Theorem IV.3.6 in [17], then also

the spectrum of the operators T, is for large enough n separated by T' into two parts o/(7T},) and
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" (T;,) where in o/(T},) there are again only eigenvalues and their total multiplicity is the same
as total multiplicity of eigenvalues in o/(T"). If we realize, that we can place into o’ (T") right one
eigenvalue \ of T', we find that in arbitrary small neighborhood of A, there must be for large enough
n, also the eigenvalue \,, of operators T;, with the same multiplicity.

Finally, let us note that we can think of the relation limy, o [|(T, +A) ™' = (T +X) g =0
for self-adjoint operators T;, and T and for some A € C\ (o(T,,) Uo(T)) also in another way. We
can say that the sequence of bounded operators (T}, + A\)~! converges in norm to the operator
(T + )", hence the spectrum of (T}, + A) ™! converges to the spectrum of (T'+ A)~!. Then we can
use one consequence of spectral mapping Theorem which is formulated in [17]. Let us note that
by 6(T') we assign the extended spectrum of 7' where the point A = oo is added if the operator is
unbounded.

Theorem B.6. Let T be a closed invertible operator in H. &(T) and 6(T~') are mapped onto
each other by the mapping A — A\~! of the extended complex plane.

This approach is convenient in our case, since in fact, we prove the relation

Jim 0T+ 270 = (40 0y = 0

where U is some unitary transformation. The operator (U(T,, + )\)_1U—1)_1 =U(T, + \U!
does not have good sense in our case, hence the consequences of the norm resolvent convergence
can not be in fact used in the original form, however, the spectrum of U (T}, + A\) U ! is the same

as the spectrum of (T, + A\)~! and we can use the ideas above.

B.4 Quadratic forms

Definition B.7. Let H be a non-negative self-adjoint operator acting on Hilbert space H. For
$,1p € Dom (HY?) =: D C H we define sesquilinear form Q : D x D — C:

= H1/2 H1/2
Qo,v) = (B0, H'v)
and the quadratic form @ : D — [0,+00) associated with Q':

QY] == Q¥ ¥).

It might seem confusing that we assign the sesquilinear and the quadratic form by the same
letter, however, it is always clear from the number of arguments and the shape of the parenthesis
which of these two is intended.

In the following lemma, we will introduce the term of closed quadratic form (for proof see
Theorem 4.4.2 in [5]).

Lemma B.8. The following conditions are equivalent:
(i) Q is the form arising form a non-negative self-adjoint operator H.

(i) The domain D of Q is complete for the norm defined by
I£lle == QLA+ 1% (B.3)

Definition B.9. We say that the quadratic form fulfilling the conditions stated in Lemma B.8 is
closed.
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A form @, is said to be an extension of @ if it has a larger domain but coincides with @1 on
the domain of @1. A form @ is said to be closable of it has a closed extension, the smallest closed
extension is called its closure Q.

Finally let us introduce the notion of the core of the closed sesquilinear form Q. Let Q' be a
sesquilinear form for that Q' = @. Then the linear submanifold Dom @’ of Dom Q is called the
core of Q.

The connection between the quadratic form and the associated operator is expressed by the

representation theorem that we adopt from [17]:

Theorem B.10. Let Q(¢,v) be a densely defined, closed sesquilinear form in H. Then there

exists an operator H such that

(i) Dom H C Dom Q and for every ¢ € Dom H, v € Dom Q it holds
Q(d)a ’l,[}) = (Hgb?w)’}-[ 9

(ii) Dom H is a core of Q,

(iii) if ¢ € Dom@Q, p € H and

holds for ¥ € Dom @Q, then ¢ € Dom H and Hp = . The operator H is uniquely determined
by the condition (7).

B.5 Dirichlet boundary conditions and Sobolev spaces

In this text, we work with differential operators with specified boundary conditions. This restricts
the domain of the operator and the domain of the associated quadratic form as well. In this section,
we introduce in few steps the Sobolev space VVO1 2(Q) and we show, that it is suitable domain for
the operators considered in this work. The details can be found in Section 6.1 of [5].

The operators in the form

0 . Of
Hf :=-bz)"'— (a(z) == ] . B.4
==t o ()52 ) (B.4)
acting on L2(2,b(z)d"N x) will be studied. We will present here the most general result from [5],
where no smoothness conditions on coefficients a; ;(x) an b(z) are required and we also assume
that (2 is any open connected subset of RY. Namely, we assume that a(z) := {a; ;(z)} is a real
symmetric matrix depending measurably upon the variable 2 €  and that the matrices a(z) are

uniformly positive and bounded in the sense that there exists a constant ¢ > 1 such that
¢ 'E <a(r) <cE Vo € Q (B.5)

in the sense of matrices (F is the unit matrix). In addition, we suppose that b(z) is a positive

(thus real) measurable function on 2 satisfying

cl<b(z)<e Vo € Q. (B.6)

Usually, the construction is started with the initial domain C§°(2) which is the space of smooth
functions on  all of whose partial derivatives can be extended continuously to Q2 and which fulfil the
Dirichlet boundary conditions ¥ (x) = 0 for € Q2. However, in case of non-smooth coefficients, it
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might happen that even C§° () ¢ Dom H, hence we will skip to a more general construction. In
fact, in case we don’t assume the differentiability of a(x) and b(x), the operator (B.4) is no more
well defined in the classical sense and we will have to work with the quadratic forms only. The
quadratic form associated with (B.4) reads

. 9f 0O
Q(f,g) = /Qa”(w)agi a—xgdex. (B.7)

The initial domain of such quadratic form is Cg°(Q2), the space of smooth functions with

compact supports contained in 2. On this domain the operator (understood in the weak sense)
is symmetric and the Dirichlet boundary conditions in the original sense are fulfilled. Since the
matrices a(x) are positive, also the form (B.7) is positive and together with the symmetricity of
H, we get that this form is closable. To find the closure of this quadratic form, we will have to
introduce the notion of weak derivative and the Sobolev spaces.

At first we define the distribution as a linear functional ¢: C°(Q2) — C. If g is a function on
which is integrable when restricted to every compact subset of €2, then g determines a distribution

¢4 by means of the formula
00() = [ 1@g(e)Vs

If « is any multi-index, the weak derivative D¢ of the distribution ¢ is defined by

(D¢)(f) = (—1)!*lgp(D f).

If h is a smooth function on 2, then we define the product h¢ to be the distribution (he)(f) =
#(hf). Now we can define the Sobolev space W12(Q) (the definition of Sobolev spaces is more

general, but in this text this special case is sufficient).

Definition B.11. Let Q be an open connected subset of RN and f € L?(2). We say that f lies
in the Sobolev space W12(RN), if the weak partial derivatives O;f = g—i lie in L?(Q). For these

functions we define the Sobolev norm

I11325= [ (57 4 1942) a¥e.

In [5] it is e.g. shown that for any choice of 2 C R¥Y, the space W12(Q) is a Hilbert space with
respect to the inner product

(f,g)1,2=/Q(Wg(w)+Vf(x)vg(x)) dVe.

Finally, we define the subspace Wy*(€) of W12(2) to be the closure of the subspace C2°(£2)
for the norm || - ||1,2. It can be shown, that since the coefficients a(z) and b(z) are bounded, the
norms || - ||1,2 and || - ||¢ given by (B.3) are equivalent, thus the closures with respect to the norm
II-ll1,2 and || - || are equal, hence the space W 2(€) is precisely the space where the form (B.7) is
closed. According to the Lemma B.8, we know that the closure Q is associated with a non-negative

self-adjoint operator. All these facts are summarized in the following theorem.

Theorem B.12. Under the conditions above stated, the quadratic form Q defined by (B.7) is closed
on the domain W, '*(Q) in the Hilbert space H = L*(Q,b(z)dNz). There exists a non-negative self-

adjoint operator Hp on L?(,b(z)d™x) associated to the form, in such a way that
1/2 1/2
(H8*5HY%), = Qf.9)

forall f,g € Dom(H}J/Q) = Wol’z(Q)'
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The operator Hp is then called the Friedrichs extension of H. The crucial point is that the
domain of the form (B.7) is W, *(2) independently on the coefficients a(z) and b(z). Hence this
construction can be used for introducing the basic Laplace operator with Dirichlet conditions where
a(x) = FE and b(z) = 1, but also the Laplace-Beltrami operator which is the Laplace operator in
the curvilinear coordinates, can be introduced in this way and the domain of these two operators
is the same.

B.6 Neumann boundary conditions

In this section we will study an operator given by the same formula as the operator considered in
the previous section, i.e. by (B.4), however the initial domain D of this operator will be the set of
functions f € C°°(Q) satisfying

aij(x)a—f,ni (x)=0  Vz e (B.8)

oxI

where n(x) is the unit normal vector in the point x € 9Q. If we assume that the matrices a(z)
are symmetric and satisfy (B.5), the operator H is symmetric on D and the associated quadratic
form is positive on this domain, hence closable. Let us note that if a, ;(z) = «(z)d; ;, then the
condition (B.8) says that the normal derivatives of f vanish on the boundary, which is the usual
way how the Neumann boundary conditions are introduced. We will again cite the most general
results from [5], hence we again assume only that the matrices a(z) are measurable, for b(z) we
assume (B.6) and that it is also a measurable function.

If the boundary of € is smooth, then (as it is stated in [5]) the associated form (B.7) with
the initial domain D is closable and its closure is defined on the Sobolev space W2(§) that we
introduced in previous section. However, for arbitrary {2, the quadratic form (B.7) is closed on
W2 (this follows straightly from the equivalence of norms || - ||y1.2 and || - ||¢) and the associated
self-adjoint operator that we denote by Hp is said to satisfy Neumann boundary conditions, even
though it is not possible to identify its domain D in general, and even though a normal direction
may not be definable at any point of the boundary 0.

For another result to hold, we have to assume that ) satisfies so called extension property.

Definition B.13. We say that the bounded open connected subset Q of RN has the extension
property if there exists a bounded linear extension operator E: W12(Q) — WL2(RN) such that
(Ef)(z) = f(x) for all f € WH2(Q) and all x € Q.

This condition holds e.g. for  with piecewise smooth or Lipshitz boundary (see [5]). Now we
can cite the following theorem from [5].

Theorem B.14. If Q is a bounded region with extension property, then the Friedrichs exten-
sion Hy of the operator defined on the domain D by (B.4) has a compact resolvent. If {p,}22 4
(resp. {An}22,) are the eigenvalues of Hy (resp. the operator Hp satisfying Dirichlet boundary
conditions), then

0 < Hn—1 < )\n

for allm > 1.

Finally, let us note that in the similar way we can introduce also an operator with mixed
Dirichlet and Neumann conditions. Let 2 be a bounded region with the extension property and let
S be a closed subset of 9. Then we can introduce an operator Hg given by (B.4) with Dirichlet
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boundary conditions on S and the Neumann one on 9 \ S. It is again sufficient to assume the
coefficients a(z), b(x) to be measurable. As the domain of this operator we take the closure in
W12(Q) of the set of all smooth functions on € which vanish in a neighborhood of S. It again
holds that the operator Hg has then the compact resolvent (see [5]).

B.7 The projection theorem

Since we use the Hilbert space decomposition in the proof of norm resolvent convergence we recall
here the projection theorem. Notice that for the subset M of the Hilbert space H we assign M+

the set of all vectors in H that are orthogonal to all vectors of M.

Theorem B.15. Let G be a closed subspace in the Hilbert space H. Then for all x € H there exist
unique vectors y € G and z € G+ such that x = y + 2.

B.8 The min-max principle

When estimating the eigenvalues of self-adjoint operators, the variational formulae or the so called
min-max principle is very useful. Following theorems can be found e.g. in [5] and are proved
therein.

Let H be a non-negative self-adjoint operator on a Hilbert space H and let L be any finite-

dimensional subspace of the domain of H. We define
(L) = sup {(Hf, [): f € L,|IfIl = 1} (B.9)
We'll use these numbers to define a non-decreasing sequence of numbers A, :
An = iInf{\(L) : L C Dom (H),dim (L) = n}. (B.10)

Theorem B.16. Let H be a non-negative self-adjoint operator on H, and let A\, be defined by

(B.10). If H has non-empty essential spectrum then one of the following cases occurs.

(1) There exists a < 0o such that Ay, < a for all m and lim, o0 A, = a. Then a is the smallest
number in the essential spectrum, and the part of the spectrum of H in [0,a) consists of the

eigenvalues N\, each repeated a number of times equal to its multiplicity.

(2) There exists a < oo and N < oo such that Ay < a but \p, = a for allm > N. Then a is
the smallest number in the essential spectrum, and the part of the spectrum of H in [0,a)

consists of the eigenvalues A1, ..., Ay each repeated a number of times equal to its multiplicity.

When working with quadratic forms, some alternative to the definition (B.10) is needed. Let
Q be a closed quadratic form and let D be a core for Q, that is a subspace of Dom (H'/?) which
is dense in it for the norm | - [l = (Q[f] + ||f||2)1/2. If L is a finite-dimensional subspace of
Dom (H'/?), then we define the modified A(L) as:

L) :==sup{Q[f] : f € L, || fl| = 1}.

Following theorem shows the equivalent definition of \,, and is of great importance, since it enables
us to compare two operators with different domains if the domains of the associated quadratic forms
are identical (which is the case e.g. for wide range of elliptic operators with Dirichlet boundary

conditions).
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Theorem B.17. If we put

N = inf{\(L): L C D,dim (L) = n} (B.11)
N = inf{\(L) : L € Dom (H'/?),dim (L) = n}, (B.12)

then A, = A, = X! for alln > 1.

In the following we will in most cases use the definition of A,, with help of S\(L), i.e. using the
quadratic forms associated to a self-adjoint operator H. Sometimes we will point out the operator
H for that A, is computed, by assigning A, (H).

Remark B.18. The simple consequence of these theorems is e.g. the fact that if Dom @, C
Dom Q2 and the action of the two forms is identical then, since in definition of A, we make the

infimum over smaller set, it holds for the associated operators Hy and Ha, Ay (H1) < A (Ha).

B.8.1 The Dirichlet-Neumann Bracketing

In this section we will present some results of [25] that will help us to get some estimates on the
spectrum of the Dirichlet Laplacian when the domain (the strip or the tube) we are working on
is divided into more parts. The Dirichlet Laplacian on a domain 2 will be assigned —A% and
we introduce it in the way we described in Section B.5. Similarly —A% assigns the Neumann
Laplacian, which is also introduced as the Friedrichs extension as is described in Section B.6. We
will usually work with the associate quadratic forms instead of these operators, let us recall that
for the (closed) quadratic form associated to the Dirichlet Laplacian we have Dom Q% = W, *(Q)
and similarly Dom Q% = W2(Q) for the Neumann Laplacian.
The following formalism will be used.

Definition B.19. Let H = H1 D Ho. Let Ay resp. Ag be a self-adjoint operator on Hy, resp. Ha.
Then we define the direct sum A = A1®As with domain Dom A = {(¢,v)|¢ € Dom 41,1 € Dom Ay}
and with the action A(¢,v) = (A1, Ax).

It is easy to prove that A is then also a self-adjoint operator. It also follows from this definition
that for the associated quadratic forms we get Dom 4 = Dom Q 4, ® Dom Q) 4, .

Proposition B.20. Let Q; and Qo be disjoint open sets such that L*(Q) = L*(1) & L?(Q2).

Under this decomposition
_A%1UQ2 — —A%l a _A%l
—APYR = AV B —AY.

The proof of this proposition can be found in [25] and it is very easy due to the fact that £
and Qg are disjoint.

Next we define the order in the set of non-negative self-adjoint operators:

Definition B.21. Let A and B be self-adjoint non-negative operators with associated quadratic
forms Q4 and Qp. We write A < B if and only if

(i) Dom Qp C Dom @ 4

(i) For any v € Dom@Qp
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This definition is convenient since:
Lemma B.22. If0 < A < B then M\, (A) < A\, (B) for all n where A, is given by (B.10).

This lemma follows straightly from Theorem B.17 which gives the equivalent definition of A,
using the quadratic forms. Now we will state two propositions that both compare two Laplacians

on different domains.

Proposition B.23. If Q C Q' then
0< A% < -AP.

Proof. The first step consists of showing that W, *(Q) c W, ?(€'). This will hold true if we adopt
that L?(Q) C L%(€)) in the sense that the function from L?(£2) can be extended by zero on '\ Q
and such extension then lies in L?(€2). Hence in this sense also C§°(Q) C C§°(€2’) and the same
will hold for the closures. Finally for ¢ € W, *(Q), Q%] = QP [+] where on the right-hand side

we mean the prolonged function . O

Before we state the second proposition let us note that by M™ we mean the interior of the set
M and by M is assigned the closure of M.

Proposition B.24. Let Q4 and Qs be disjoint open subsets of an open set  so that (€1 U Qg)mt

Q and Q\ (1 U Q) has zero measure (see Figure B.1). Then

Q,UQ Q
0< —ARY% < AL

Added Neumann Surface

Figure B.1: The Neumann bracketing.

Proof. 1t is clear that if vy € W12(Q) then the restriction of 1 to 21U lies in W12 (Q)W12(Qy).
In proving the point (i7) of the definition B.21 we use that Q\ (€ U Q) has zero measure, and

therefore V) € W12(Q)
/ |V |2de = / \Vop|2da.
Q Q1UQs

Remark B.25.

(i) The proposition would hold also in case when we start with the Dirichlet Laplacian on Q and
then we pose the extra Neumann condition on the surface dividing 21 and Q5. To prove this

the arqumentation would be very similar to the proof above.
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(i) In the proposition above we performed so called Neumann bracketing, the Dirichlet bracketing
refers to the case where we add the extra Dirichlet boundary. We don’t use the Dirichlet
bracketing in our text, however, let’s note that the Dirichlet bracketing has the opposite effect
than the Neumann one, i.e. it holds fA% < fA%IUQZ which is in fact the corollary of the
Proposition B.23.
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