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numerické simulace vývoje a vyhodnot́ıme výsledky. Zaj́ımáná nás zejména, zda-

li evolučńı proces RNA vyznačuje stejnou relaxačńı dynamiku jako např. spinová

skla. Rovněž diskutujeme matematický model procesu a studujeme daľśı vlastnosti

neutralńıch śıt́ı sekundárńı struktury RNA. Dále uvád́ıme model pro výpočet času

stráveného na neutrálńı śıti. Použ́ıváme model náhodné procházky po náhodném

grafu s absorbuj́ıćım uzlem. Výsledky našeho modelu testujeme na numerické sim-
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behavior as other slow dynamics relaxation systems such as spin glasses. Mathemat-

ical model of the process is also examined. We further examine several properties of

RNA secondary structure neutral networks. We then present a model to estimate
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Introduction

This diploma thesis is based on results obtained during a research internship which

was held at the Laboratoire de Physique Théorique et Modélisation Statistique at

the Université Paris-Sud, Orsay during the period from early April to the end of

July 2008. The internship was carried out under the supervision of Olivier Mar-

tin. We studied the dynamics of RNA structure evolution by the means of Monte

Carlo simulation and then interpreted the results. In the following chapter, we first

introduce and describe the problematics of RNA structure evolution and explain

its interdisciplinary relation to physics and biology. We then describe the actual

simulation algorithm and discuss the results produced. The mathematical aspect

of the problem is also examined. Finally, the simulation code is briefly described

in the appendix. The full source code together with simulation results are provided

on the enclosed CD-ROM. A brief glossary of biological terminology is included for

easier orientation throughout the text.
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Chapter 1

Motivation and goals

In many systems, dynamics undergo an anomalous slow-down, a feature character-

istic of “complex” landscapes. This arises for instance in physical systems (thermal

relaxation), in optimization problems (diminishing returns on search efforts), and

in evolutionary dynamics (long periods of stasis in the evolutionary records). In

this work, inspired by theoretical frameworks from statistical physics for glassy sys-

tems [1], we reconsider a toy model of evolutionary stasis, namely RNA secondary

structure evolution.

The relation between genotype and phenotype in biology is generally very com-

plex. The genotype of an organism is its genetic information while the phenotype

is associated with measurable properties of the organism (such as gene expression

level or proteome for single cells, size, longevity etc. for a pluricellular organism).

This “mapping” from genotype to phenotype can be extended to the molecular level

where it remains a difficult problem; for instance one doesn’t know how to reliably

predict the structure of a protein from its sequence of amino acids. One of the sim-

plest yet realistic maps however is the relation between RNA primary and secondary

structures. This simplicity is relative because the relation remains nevertheless non-

trivial. The relevant information about RNA secondary structure and its relation

to the genotype will be given in chapter 2.

Evolutionary pressures act on the phenotypes and so a natural question is whether

the mapping from genotype to phenotype allows for efficient “optimization” of geno-

types when putting selection pressures on phenotypes. Indeed, if the map is “en-

crypted”, it is impossible to produce a continuous path in genotype space which will

lead to successive improvements in the phenotype. The analogy with physical sys-

tems is quite direct and is best given in the context of a disordered system such as a

glass: by incrementally changing a configuration (positions of atoms), can one reach

low energies or even the ground state of the system? The microstate (configuration)

plays the role of the genotype, while the energy is related to the phenotype. Thus
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just as one studies energy landscapes in disordered system, it is natural in evolution

to study fitness landscapes.

We shall focus in this work on how evolutionary dynamics can lead to improved

phenotypes in the context of RNA. To specify the fitness (energy) of a genotype, we

compute the corresponding phenotype and measure the “distance” of this secondary

structure to that of some target structure. This last structure is considered to be

“optimal” i.e. preferred by the selection process because of an underlying enzymatic

function for instance. How does the fitness evolve with time? Specifically, we would

like to examine the following questions:

• During the evolution towards a target secondary structure, do the RNA dy-

namics slow down or does one have “standard” exponential approach to the

target?

• Does the speed of the dynamics vary a lot with the initial condition or with

the target structure?

• During the evolutionary process, does the trajectory encounter atypical geno-

types or structures? Indeed, the non-equilibrium process may favor transitions

to structures that are anomalously abundant or robust or evolvable.

• Finally, how do these different properties depend on the size of the RNA

molecule?

We used a computer Monte Carlo simulation to model the process of approaching

the optimal structure as a stochastic walk through the phase space of all possible

genotypes.

Inspired by the diffusion process in neutral network, we then examined random

absorbing walks on random graphs and estimated the mean time spent on such

graphs.
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Chapter 2

RNA folding and neutral networks

We briefly present basic facts about RNA molecules and use these to illustrate the

relation between genotypes and phenotypes in evolutionary dynamics. This will

bring us to the notion of neutral networks and neutral sets which play an important

role in the process of searching for the optimal phenotype. They will be described

in more detail in the later paragraphs.

2.1 RNA and its secondary structure

2.1.1 Primary structure

RNA molecules are organic molecules found in all living organisms. They consist of

nucleotides that are joined together to form a chain. There are four different bases

associated with these nucleotides in RNA molecules: adenine, cytosine, guanine

and uracil, which are usually denoted by the letters A, C, G, U respectively (whose

chemical structure is shown in figure 2.1). Together they polymerize to form a single

chain. The sequence of bases that composes the RNA molecule is called its primary

structure. It is believed that RNA arose before DNA and that it was originally RNA

that carried the genetic information in cells. In our simulation, the RNA primary

structure will play the role of genotype.

The composition of a chain is always described in terms of bases, for example

ACGGGUA is a chain of length 7. The distance between two primary structures

(genotypes) is defined as the number of positions where their bases are different; it

is thus a Hamming distance.

2.1.2 Secondary structure

The secondary structure of RNA refers to the shape of the folded molecule; different

bases can be paired through chemical bonds and therefore it is more advantageous to

make such bonds to minimize the total energy of the molecule. The hydrogen bonds

that appear in RNA are A-U and G-C, to lesser extent also G-U. Because of the
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Figure 2.1: An example of a short part of RNA molecule. The chemical structure
of the bases is shown on the right side. Source: chemis.org

interaction between bases, the RNA chain is neither linear nor coiled as a polymer

but is “folded” as a result of the pairing between different pairs of bases. Figures 2.2

and 2.3 illustrate secondary structures of RNA molecules. Note that the secondary

structure arises from the pairing of many bases. The secondary structure can be

effectively represented by a pairing in the plane as long as no “knots” are allowed.

Then one can specify such a folding by introducing a chain in which unpaired bases

are represented by dots while paired bases are represented by oriented parentheses.

The task of assigning a secondary structure to a given RNA chain is still an open

problem in bioinformatics [2]. Different algorithms have been developed and there

are several dynamical programming tools that compute a secondary structure of an

RNA chain. For our work, we used the ViennaRNA package [3], which uses Zuker

and Stiegler’s algorithm [4] to find an energetically optimal structure. Although the

current bioinformatic tools do not achieve 100% accuracy in predicting the secondary

structure of RNA molecules, the performance of ViennaRNA tool is sufficient for

our purposes.

A secondary structure of RNA molecules is often represented using a bracket-

dot notation. For example, a short chain AAAAAACCCCCGGGGGUUUUUU has

a secondary structure “(((((((((....)))))))))” where bracket “(” means that a corre-

sponding base is paired with a base corresponding to bracket “)”. The dot “.” means

that the corresponding base is not paired. ViennaRNA package also provides a visu-

alization tool for a given bracket-dot chain. The secondary structure corresponding

to our example is shown in figure 2.2. A more complicated example of bracket-dot

structure “(.((((....)))))......((((((((...........(((((((((.....))))))))).(((.((......)))))........)))).))))..”

is shown in figure 2.3. We say that an RNA chain folds into its secondary structure.
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Figure 2.2: Secondary structure of an RNA chain AAAAAACCCCCGGGGGUUU-
UUU, corresponding to bracket-dot notation (((((((((....)))))))))

It is important to note that two different genotypes (i.e., RNA chains that differ

in at least one base) can still have the same secondary structure. The secondary

structure denotes the spatial organization of the molecule and therefore determines

many of its properties. It is this spatial conformation of the chain that is usually

relevant for enzymatic properties, and thus is usually taken to be the molecule’s

phenotype.

When we mention distance between two RNA structures (or distance between

two phenotypes, since the RNA structure is the only phenotype that we will further

consider in the following chapters) we always mean the Hamming distance between

the two “bracket-dot” chains that specify the secondary structures. The possibility

for different genotypes to have the same phenotype leads quite directly to the notion

of a neutral network which we will discuss in next section.

2.1.3 Tertiary structure

The tertiary structure of a molecule refers to its three-dimensional structure, i.e., the

spatial coordinates of all of its atoms. The tertiary structure is usually determined

by the means of X-Ray crystallography or nuclear magnetic resonance spectroscopy.

Determining tertiary structures is still an outstanding problem today in spite of

years of efforts on the part of the research community.

For RNA, the tertiary structure involves non-planar pairings and thus compli-

cates very seriously the mapping from genotype to phenotype. The situation is

nevertheless simpler than in the protein world where the secondary structure can-

not be unambiguously determined without also obtaining the tertiary structure;

furthermore, the role of a protein is directly associated with its full 3D structure so

secondary structure provides no clue of biological function. Fortunately, in the case

of RNA, numerous enzymatic activities (e.g., in interfering RNA) do follow from the

secondary structure. In line with standard practice of RNA studies, we will give up

a bit of realism and will ignore effects due to tertiary RNA structures in our study.
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Figure 2.3: Secondary structure of an RNA chain of length 100

2.2 Neutral networks
To describe a neutral network, some elementary definitions from graph theory will

be used [5]. Here we just briefly present terminology used in the following chapters

and we give more details in section 5.1. By the term neutral network, we mean a

graph whose nodes (vertices) correspond to the different genotypes having a given

phenotype. Nodes are joined by an edge if they differ in one base, that is their

Hamming distance is equal to one and they have the same phenotype. In other

words, two nodes are adjacent if we can move from one to the other by a single

mutation. It is important to note that mutations which don’t leave the neutral

network do not change phenotype. It is therefore possible for evolution to perform a

diffusion through the neutral network without changing the phenotype. Thus it can

significantly modify the genetic sequence while keeping the same phenotype. The

number of neighbors is a called a degree of the node.

The fitness is an important notion in the theory of evolutionary dynamics. It
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Figure 2.4: An example of neutral network. Each node corresponds to a specific
genotype. All genotypes within the network have the same phenotype.

corresponds to a number (typically a positive one between 0 and 1) that is assigned

to a genotype which gives the probability that an offspring it generates will survive;

in general survival depends on the strength of natural selection which is applied

on the phenotype. All genotypes in a neutral network have the same fitness. In

computer simulations of evolutionary dynamics, the next generation is produced by

generating offspring, some of which survive the selection process.

Network “neutrality” or mean degree, denoted < d >, refers to a mean numer

of neighnors of a node in the neutral network. This notion can be extended to the

context of an evolving population, in which case the population neutrality is the

mean degree of the individuals in that population. It can be shown [6] that in the

limit of large populations, the population neutrality is equal to the spectral radius

of the adjacency matrix1 of the graph, given that the neutral network is irreducible

(meaning that we can reach any node from any arbitrarily chosen node).

Neutral network are of great interest because they allow one to address the re-

lation between evolvability and robustness [7, 8]. RNA structures and chains are

often used to test the theories and hypotheses related to evolution; they will also

play a central role in our work. To be precise, we shall have to deal with neutral sets

really rather than neutral networks, but the framework will be nearly the same. By

neutral set we mean a set of neutral networks that correspond to phenotypes with

the same Hamming distance to the target structure. Since the distance to a target

structure plays the role of fitness in our model, it is therefore possible to change a

phenotype while keeping the same fitness.

The mutations that keep the fitness unchanged correspond to a random walk

1Element Aij of adjacency matrix is equal to 1 if i-th and j-th nodes are adjacent, otherwise it
is 0. We will discuss adjacency matrix in section 5.1
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through the neutral network (or set in our case). We distinguish between two possi-

ble kinds of random walks: myopic ant and blind ant (meaning that we imagine an

ant that performs the random walk). The blind ant random walk means that in each

step, we choose randomly with equal probability one of the possible mutations of

the genotype. If the mutation leads to a genotype that belongs to the same neutral

set (i.e., the randomly selected mutation turns out to be neutral), we move onto

this new genotype, otherwise we stay at the node and do nothing (note that the ne-

glected mutations could have been either deleterious or advantageous, leading thus

to neutral networks / sets with different fitnesses, as illustrated in figure 2.5). The

second type of random walk, the myopic ant random walk, considers only mutations

that are neutral and chooses randomly one of them in each step.

Determining the size of a neutral network for a given phenotype is generally an

arduous task that we don’t have the time nor computational resources to address

in our work. However, we will be able to obtain some statistical information on the

neutral sets by the means of random walks.
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Figure 2.5: The connections between two neutrals sets. Some of the nodes are
connected to the nodes from other neutral sets (with smaller distance to the target,
thus greater fitness), while others have connections only to the nodes within the same
set. As it turns out from our simulation, a majority of the possible mutations are
deleterious, thus leading to phenotypes with smaller fitness. When such mutations
arise in our simulation, they are not accepted and the genotype is not changed. The
above image is informative only, the actual neutral sets in our simulations are much
larger.
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Chapter 3

The evolutionary model

3.1 Simulation algorithm
We simulate the process of RNA evolution towards a target structure by a random

walk algorithm allowing a point mutation (i.e., a mutation of one base) at each step.

After the mutation is applied to the genotype, we determine the distance between

phenotype of the new genotype and the target phenotype. If a mutation on the

current genotype increases the distance to the target, it is refused, otherwise it is

accepted, corresponding to the blind ant dynamics. We quantify the fraction of

the deleterious, neutral and advantageous steps as a function of the distance to the

target. The trajectory is stochastic and is influenced by the initial genotype (an

arbitrary RNA sequence) and the target (an arbitrary secondary structure). Only

the standard bases A, C, G and U are used.

In a more general context, if µ is the mutation rate and N the population size,

the effective number of genotypes in a population scales as Nµ. When Nµ � 1,

the population is essentially monoclonal and that is the case we focus on here for

simplicity. Another possible approach would be to simulate a population of some

number of structures; at each round we would increase in relative proportion those

structures that are more advantageous (in our case closer to the ideal structure).

However, a simulation of a large population is more expensive computationally and

the analysis is simpler when using our random walk framework. (Note that in the

literature, the random walk approach is referred to as an “adaptive walk”.)

Our algorithm can be summarized as follows:

1. Generate a random RNA chain.

2. In each mutation step, mutate randomly the chain at a random position. If

the (phenotypic) Hamming distance between the new secondary structure and

the target structure is higher than previously, the mutation is not accepted.

14



If the distance to the target has not increased, then we continue with the new

chain.

3. Repeat the step 2 until the target structure is reached or until a maximum

number of mutations is reached.

The target structure is specified at the beginning of the program. In some of the

simulations, we generated randomly the target structure and the simulation data

were averaged over multiple runs of the algorithm. We developed different variants

of the algorithm that provided different statistical information about the dynamics

of the approach to the optimal structure and also about the neutral sets.

To test whether the (non-equilibrium) evolutionary dynamics leads to atypical

structures produced during the trajectory, we must obtain a statistical description of

structures arising at each given distance to the target. This can be done by sampling

uniformly the fitness landscape at each such distance. We do that by Monte Carlo

with importance sampling using the Metropolis algorithm; it corresponds simply

to using the blind ant dynamics, accepting only mutations that do not change the

distance to the target. From this sampling, we can obtain the (equilibrium) mean

mutational robustness in this space. One can also consider statistical properties of

structures encountered, namely the number of stems or other indices. At the same

time, we measure the fraction of deleterious, neutral and advantageous mutations

for random genotypes in this space.

3.2 Mathematical model

The dynamics corresponds to a discrete Markov process [11], where the dimension of

the vector space is equal to size of the genotype space, 4L, where L is the length of the

RNA molecule. A unique vector corresponds to each of the 4L possible genotypes,

with entries all 0 except for one which has the value 1. More generally, the entries

of the state vector give the probabilities of having the system in a given state (given

state corresponds to a particular sequence) at the time of interest. The initial state

is a vector v0 with one entry equal to 1 (which corresponds to the initial sequence or

genotype) and all others equal to 0. The evolution matrix M is a matrix with non-

negative entries with the sum of numbers in a column equal to 1. The probability of

occupying any of the genotypes evolves from step to step and we have for the n-th

step:

vn = Mnv0. (3.1)

The average distance distribution for a given iteration (time) n is given by the inner

product of the vectors d and vn. We define d as follows: The i-th entry of vector d

is the Hamming distance of the RNA structure that corresponds to the i-th sequence
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in genotype (sequence) space. Therefore, the mean distance at iteration n is

〈d〉(n) =
4L∑
i=1

diαiλ
n
i (3.2)

where λi are the eigenvalues and αi are the coordinates of v in the basis composed

of the eigenvectors of M , di being the coefficients that come from the inner product

with v.

An important theorem describes properties of stochastic matrices [12]:

Theorem 1 (Perron-Frobenius theorem for nonnegative matrices). Let A be real

n× n matrix whose elements Aij ≥ 0. Then

1. There exists a real eigenvalue r such that |λ| ≤ r for all other eigenvalues λ.

2. There is non-negative eigenvector associated with the eigenvalue r

3. mini
∑n

j=1 aij ≤ r ≤ maxi
∑n

j=1 aij

Therefore, according to the Perron-Frobenius theorem, the eigenvalues of a stochas-

tic matrix will satisfy

|λi| ≤ 1 ∀i.

The Perron-Frobenius theorem for non-negative irreducible matrices1 is stronger

in a sense that it guarantees that all elements of the eigenvector g corresponding to

r will be positive and that r will be a simple root of the characteristic equation of

matrix A.

It is clear that the size of the matrix makes it impossible to estimate its eigenvalues

and eigenvectors by standard deterministic methods. But the Perron-Frobenius

theorem guarantees that only one eigenvector corresponding to eigenvalue 1 exists

if the matrix is irreducible (meaning it cannot be put into block diagonal form by

any permutation of rows and columns).

In the case of our evolutionary dynamics, the eigenvector corresponding to eigen-

value 1 is the uniform occupation of the genotypes at (phenotypic) distance 0 to

target, that is precisely the neutral network of the target. For our simulations at a

fixed distance to the target, the eigenvector is analogously the uniform occupation

of the neutral set, i.e., the whole space sampled at given distance to the target.

The components along eigenvectors whose eigenvalue is smaller than one in abso-

lute value approach zero for large times. However, since the expression contains 4L

1Irreducible matrices cannot be transformed into block diagonal form by any permutation of
rows and columns. A non-negative matrix A is irreducible if for any two indexes i, j, there exists
m such that (Am)ij > 0.
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eigenvalues and the Perron-Frobenius theorem says nothing about their distribution

(they can be actually very close to 1), we will seek a method to approximate the

dependence of mean distance on time by a simpler function.
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Chapter 4

Results for the evolutionary

dynamics

4.1 The approach to the optimal structure
We now present numerical simulation results. The relaxation curves that are shown

below were obtained by the algorithm described in section 3.1. Most of the results

presented in this section were obtained by averaging the simulation curves over

multiple runs (the number of the actual runs for the shown graphs varies between

1000 and 6000 for different graphs shown). The target structure was randomly

generated and 5 runs were performed with given initial and target structure, then a

new pair was randomly generated for the next 5 runs, etc.

The corresponding source code that performed simulations is described in ap-

pendix A.1 as well as the code that was used to evaluate the data from the simu-

lations. The shown plots were produced with program Gnuplot [13] which was also

used perform the fits.

4.1.1 Trajectories and slow dynamics

The y-axis of the following graphs shows the relative distance from the optimal

structure (Hamming distance divided by the length of the chain) while x-axis shows

the number of mutations. The graph then shows the average distance (taken over

several runs) after a given number of attempted mutations has taken place. For

comparison, figure 4.1 shows a typical trajectory produced by a single run (no av-

eraging), while the average over 6000 runs is shown in 4.2. We see that in the slow

dynamics part of the evolution (not for the first part of the curve where transitions

are frequent), the distance shows long plateaus separated by small changes (mainly

of 1, 2 and rarely more) in the Hamming distance to the target.

As figure 4.3 illustrates, the approach to the optimal structure is slower for longer

chains. The curves obtained from the simulation are smooth and demonstrate that
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Figure 4.1: Plot of distance to target structure as a function of the number of
mutation steps for a single simulation with an RNA chain of length 100.

the dynamics is slower than exponential, as can be seen from nearly all the plots.

In the next section, we will determine functions that fit well the obtained data.

4.2 Effective power-law decay for the average tra-

jectories

4.2.1 Plots

Figures 4.4 and 4.5 show semi-log and log-log plots respectively. Figure 4.5 also

shows the power law fit function.

4.2.2 Power law fits

As was mentioned previously, we try to approximate the equation (3.2) by a contin-

uous function. As semi-log plots suggest, the relaxation dynamics does not lead to

an exponential decay of the distance to the target. We were therefore motivated by

the trap model from the glass phenomology approaches that deal with relaxation of

a system to its equilibrium distribution [1, 14], where the glass system approaches

the equilibrium state as a power function of time. Although there are significant dif-

ferences between our evolutionary model and trap models, the power law fit worked

well with most of the simulations we performed.
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Figure 4.2: Plot of dependence of distance to target structure as a function of the
number of mutation steps averaged over 6000 different simulations of relaxation of
chains of length 100.

The power law fit function used for the graphs was

d(t) =
A

(t+ t0)β
(4.1)

and figures 4.5 and 4.6 provide examples of using such fits to match the evolu-

tionary dynamics.

The values of parameters for function (4.1) that were obtained by fitting the

relaxation curves for different lengths of chain are shown in the following table:

Chain length A t0 β Maximal t

40 36.0 299 0.89 5000

60 50.0 835 0.81 10000

80 14 964 0.6 25000

100 3.7 484 0.41 25000

180 0.95 -685 0.20 70000

200 1.9 -140 0.21 70000

300 0.7 -2641 0.15 140000

One can see several trends, the most important one being a general decrease of

the exponent β as the length L of the RNA molecule grows. The quality of the fits

is good, but the behavior of the fitting parameters is not easily interpreted.
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Figure 4.3: Plot with both axes on logarithmic scale of three different simulations
of chains of lengths 250, 280 and 300 respectively. The graphs show data averaged
over 1000 simulations of relaxation from randomly generated chain to a randomly
generated phenotype. The longer the chain, the slower the relaxation process.

4.3 Relaxation towards different targets
To further analyze the slow process of relaxation towards a target structure, we

investigated the dependence of the dynamics on the target structure.

We therefore ran simulations of a chain of length 100 with two different targets.

In these simulations, we kept the targets different and averaged the relaxation curves

over the randomly generated initial chains. The target structure of one of the

simulations is shown in figure 2.3, which turned out to be much easier to achieve:

relaxation dynamics was much faster than in the case of the structure which is shown

in figure 4.7.

Figure 4.8 illustrates how the relaxation speed is different for the two target

structures. We conclude that there is slow dynamics whose speed depends on the

target structure. This conclusion holds for all the L values we have investigated (see

for illustration figure 4.9). An indicator of what makes reaching a target difficult

is perhaps the size of the neutral network of the target phenotype. However, this

hypothesis is very difficult to test and is beyond our computational capacity.

We ran multiple simulations with fixed targets for different lengths of RNA chains

in order to determine whether the process is self-averaging, i.e. whether the relax-

ation curves have smaller dispersion for different targets when the chain length

increases. We ran simulations for tens of different targets and the relaxation curve
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Figure 4.4: Semi-log plot of dependence of mean distance to target structure as a
function of the number of mutation steps for chains of length 100, when averaged
over all initial genotypes and target structures.

for each respective target was averaged over 1000 random walks with arbitrary ini-

tial chain and fixed target phenotype. We then measured the standard deviation of

the relative distance to the target phenotype at times where the mean distance of

all curves was 10% of the chain length from the target. Data are summarized in the

following table:

Chain length T0.1 σ

40 499 0.0346

60 1439 0.02306

80 3349 0.02475

100 6933 0.02683

120 8953 0.02626

where T0.1 denotes the time where average of all selected target phenotypes reaches

distance 0.1L, where L is the chain length. The simulations were quite time-

consuming which prevented us from testing larger lengths than 120. However, the

dispersion decreases initially, but then remains practically unchanged. The relax-

ation process towards different targets therefore shows a non self-averaging behavior.

4.4 The neutral sets
During the simulation, we gathered data that can be helpful in understanding the

role of neutral sets in the approach to the optimal structure. In particular, we
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Figure 4.5: Log-log plot of mean distance to target structure as a function of the
number of mutation steps for chain of length 100 and 200, when averaged over all
initial genotypes and target structures. Also shown are the fits to a shifted power
law (see text).

measured additional information concerning the properties of neutral sets, namely,

for each neutral set encountered during the simulation (a neutral set is characterized

by its distance from the target structure), we measured the fraction of mutations

that are deleterious, neutral and advantageous; from this one has a measure of the

rate at which one can jump closer to the target. We also determined the distribution

of times between beneficial mutations, a quantity that will be useful for our modeling

of the dynamics.

Further statistics include waiting times on a given neutral set (figure 4.10), num-

ber of different phenotypes visited during the random walk in the neutral set ( figure

4.11) and mean distance between the consecutive neutral sets in the random walk.

(figure 4.12). All plotted data refer to simulations where we compared relaxation

towards two different targets of length 100 (shown in figure 4.8).
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effected at a given distance for two different targets.

26



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6

Ju
m

p 
di

st
an

ce

Distance / length

Easy target
Difficult target

Figure 4.12: The mean jump distance, that is the distance by which we approach the
target when we leave the neutral set whose distance is shown on x-axis (normalized).

27



Figure 4.13: Mean normalized genotypic distance to genotype arising at the begin-
ning of the current stasis period as a function of the number of accepted mutations
for chains of length 100 (shown for two different targets) exhibiting fast diffusion
in genotype space. Also shown is Jukes-Cantor correction, which is the function

f(x) = 3
4

(
1− e− 4

3
x
)

used in evolutionary biology [15] to estimate the distance from

the initial phenotype after x mutations have taken place. Our diffusion curves are
slower which is not surprising, because the diffusion is bound to the neutral set.

It should also be noted that we observed variations between proprieties of neutral

sets that have odd distance from the target and neutral sets that have even distance

from the target. In general, it is more difficult to find a beneficial mutation on

neutral set with odd distance and the waiting times are longer.

4.5 Normal diffusion during periods of stasis
Are the stasis periods associated with slow changes of genotype? It turns out that

they are not, instead genotypes diffuse normally. The periods of stasis are charac-

terized by slow phenotypic dynamics and during these periods many independent

genotypes are visited before the walk finds a mutation that brings one closer to the

target.

To test for this diffusion in genotype space, we have followed the distance between

the current genotype and the one at the beginning of the stasis plateau. Because L

is large, the initial growth in distance is linear in the number of accepted mutations

(see figures 4.13 and 4.14).
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4.6 A mean field modeling
The objective here is to use modeling to obtain insights into the slow dynamical

processes that we have observed. For this, we will replace the actual adaptive walk

by a different system which is easier to understand and then compare to the true

relaxation dynamics in the RNA fitness landscape.

The nested neutral sets allow for diffusion inside each set and for transitions to

other sets closer to the target. Each neutral set is a union of neutral networks;

the arguments developed in [16] for neutral networks apply also to neutral sets.

These sets are thus expected to be connected and heterogeneous, and we have con-

firmed that they are so. This makes modeling the dynamics rather challenging as

heterogeneous networks are always subtle objects.

The simplest modeling consists of neglecting the memory of the walk in each

neutral set and simply considering that at each mutational step there is a given

probability to perform a transition to a neutral set closer to the target. Input to

our mathematical model are the fractions of deleterious, neutral, and advantageous

mutations. Only these last ones are associated with transitions to better neutral

sets. We have measured these transition rates for each distance to the target (cf.

the uniform sampling of these sets as previously described). These rates define

an effective Markov process towards the target space which we have encoded into

Mathematica. Note that in such a modeling (where the memory of the walk inside

a neutral set is neglected), the waiting times in each neutral set are exponentially

distributed, a waiting time being precisely the period of stasis. As shown in fig-

ure 4.15, this is not too far from being the case in the real dynamics, at least for

times shorter than the mean. When we use this “well mixed” process to reconstruct

the relaxation to a given target, we find a discrepancy between the actual dynamics

and the simplified dynamics. Upon investigation, we found that the reason for this

was that the predicted waiting times were much smaller than the actual ones. This

means that the memory of the walk is in fact very important, a feature which re-

quires that the space in which the random walk occurs be irregular. In our context,

this means that the neutral set is highly inhomogeneous: the vast majority of the

nodes do not provide any exit transitions, and those that do are probably clustered

and have many favorable mutations. The main consequence of this heterogeneity

is that the walk wastes much of its time in unfavorable regions, and so the mean

exit probability (when averaged over the whole neutral space) is not relevant: this

“mean-field” approximation is too simplified.

4.7 Empiricial observation
The simplest approach to interpret the power law function is to find it as a solution

of a Langevin equation for Brownian motion. For the average motion, we omit the
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Figure 4.15: The distribution of waiting times between finding two beneficial mu-
tations that lead to a phenotype of distance closer by 2 to the target phenotype.
The distribution was obtained by several random walks that were performed in the
neutral sets of phenotypes of distance d=8 from the target. The length of the RNA
chain was 40. The plot is semilogarithmic.

random terms in the equation and therefore limit it only to an equation of a particle

that is moving in a potential field:

ḋ = −f(d) (4.2)

where d(t) is a function of mean distance at a given time. The above equation

cannot explain the shift t0 nor the value of the parameter A in equation (4.1). f(x)

can be chosen empirically to give a value of the exponent that was observed in our

fit. If we put

f(d) = dα, α > 1

we get a solution with integration constant C

d(t) =

(
1

(t− C)(α− 1)

) 1
α−1

(4.3)

given that α was chosen so that 1
α−1

= β where β is the value from the power-law

fit. We see that this approach is not able to sufficiently explain all the parameters

of the fit function (4.1) and is based only on an empirical observation that the closer

we get to the target (the smaller d), the longer it usually takes to find a mutation
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that would approach the target structure.

4.8 A random connection approximation
We are confronted with non-trivial random walk effects in each neutral set. One

could take a random graph modeling of these sets, but this would not lead to fat

tails in the distribution of waiting times. The properties of random walks on hetero-

geneous graphs has been considered in the literature, for instance in scale free cases.

For our purposes here, we shall simply take as given these distributions rather than

try to approximate them. What then is left to quantify? We must consider that

after a transition has arisen, a new period of stasis begins. Are the different times of

stasis statistically independent? We have seen in figure 4.16 that their linear corre-

lation coefficient is small, at least for short chains; this leads us to consider that an

acceptable modeling might be obtained by assuming that the transitions from one

neutral set connect to random nodes of the closer neutral sets. This assumption is

particularly easy to analyze as it means that the beginning genotype in each period

of stasis is taken uniformly in the associated space. Thus the approximation scheme

in this part is to treat the random walk in each neutral set exactly, but to randomize

the landing sites of the transitions.
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To test our model, we created a histogram of times δt for a given distance d.

The δt were obtained by performing 10 random walks through the neutral set and

counting the times (number of mutations) between finding two beneficial mutations.

Each random walk consists of 30000 steps through the neutral set. We then suppose

that the landing on the neutral set is random (uniform). The random walk then

proceeds until the first beneficial mutation is found. There are δt “places” between

two beneficial mutations where the landing of the random walk can arise. Given

such a position, we mark the time to start counting the number of mutations before

reaching a beneficial one as zero; then if the random walk starts at position i, the

time spent on the neutral set will be δt− i. Therefore, we have to average over all

possible times i where the random walk can start and average over all the sampling

random walks that we have performed. The “Monte-Carlo estimate” for waiting

time Tw at given distance d is then obtained as

Tw =
(δt1 + (δt1 − 1) + (δt1 − 2) + . . .+ 1) + . . .+ (δtn + (δtn − 1) + (δtn − 2) + . . .+ 1)

δt1 + δt2 + . . .+ δtn
=

=
1

2

(
〈δt2〉
〈δt〉

+ 1

)
where δti runs over all times that were measured during our random walk sampling.

How well does this approximation work? We have constructed the mean waiting

time as a function of distance to target for both the actual evolutionary dynamics

and for this random connection approximation. It is important to note that in the

simulation as well as in our random sampling that was used to construct the model,

we allowed only those beneficial mutations that decrease the distance by two. This

was done to simplify the otherwise complex dynamics when longer jumps appear as

well as to avoid the problems that would have arisen if we had to deal with neutral

sets with odd distances to the target (where a generally longer time is needed to find

a beneficial mutation). The resulting curve is shown in figure 4.17. We see that there

is a quantitative disagreement while the qualitative aspects of the predictions are

good. Of course deviations are clear; these show that for the evolutionary dynamics

the landing genotype is not uniformly distributed in the neutral space. We find

in fact that the evolutionary dynamics is slower, which may mean that the non-

equilibrium processes lead to genotypes at the beginning of the stasis periods that

are less evolvable than random.

4.9 Are the generated phenotypes atypical?
Given the long diffusion times at a given distance realized in the periods of stasis, the

genotypes are expected to be randomized and lose memory of the entry genotypes
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Figure 4.17: The points labeled as “Simulation” refer to mean waiting times at a
given distance for a simulation of a chain of length 40 (with fixed target structure
and averaged over random initial chains). The curve labeled as “model” refers to

the quantity 1
2

(
〈δt2〉
〈δt〉 + 1

)
where δt refer to the time between finding two beneficial

mutations during a random walk on the neutral set at given distance (see text).

(the genotype occurring at the beginning of the stasis period). However the exit

genotype is the one which produces the end of the stasis and often the single mutation

which takes one closer to the target initiates another period of stasis. Thus it is

plausible that the initial genotype and phenotype of a period of stasis is atypical.

In the previous section we used an approximation of the dynamics where this initial

genotype was uniformly taken from the space at a given distance to the target; we

found that this hypothesis led to an underestimation of the time to approach the

target. We thus hypothesized that the initial genotype has the property of being less

“evolvable” than a random one at the same distance to the target. This certainly

means that the corresponding phenotype is also atypical (note that the phenotype

evolves very slowly, so that the atypical behavior is not restricted to just the first

few steps in the stasis plateau.)

To quantify this property, we have studied the short term evolvability of the initial

genotype in a period of stasis and compared it to that of random genotypes at the

same distance to the target. We define the short term evolvability as the fraction

of mutations that lead to a higher fitness. We found that the fraction of beneficial

mutations is actually lower for the first genotype on the neutral set than for the

set average, as can be seen in figure 4.19. We also find that the first genotype has
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Figure 4.18: The fraction of beneficial plus neutral mutations. The statistics for the
first genotype of the neutral set was averaged over 4000 random walks that lead from
a randomly generated phenotype to the fixed target structure. The simulation was
stopped when a neutral set of given distance was reached and statistics for fractions
of beneficial / neutral mutations was then computed for the first genotype of the
neutral set. The statistics for the neutral set was averaged over 10 random walks on
the neutral set, each containing 30000 mutations. All simulations were performed
with chains of length 40.

a smaller number of deleterious mutations than the neutral set average, as shown

in figure 4.18. Our sampling of the neutral set also revealed a high dispersion of

the number of beneficial mutations in each genotype. This further confirms the

heterogeneity of the neutral sets and complicates the goal of finding a model that

would be able to adequately describe the evolutionary dynamics of RNA evolution.
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Figure 4.19: The data shown were obtained from the same set of simulations as data
shown in figure 4.18. Here, we display only the fraction of beneficial mutations.
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Chapter 5

Mean first passage time on a

random graph

In this chapter, motivated by the walks on RNA neutral sets, we introduce a model

of walks on random graphs with an absorbing node. We begin by introducing

terminology from graph theory [5] that will be used in this chapter.

5.1 Graph theory preliminaries
A graph is given by two sets V and E, where the elements of set V are called vertices

(or nodes) and the elements of the set E are edges (or lines). An edge is a pair of

two nodes and denotes that the two nodes are connected. For example, a graph with

V = {1, 2, 3} and E = {{1, 2}} denotes a graph with nodes 1 and 2 connected by

the edge {1, 2} and node 3 isolated. We will be dealing only with finite undirected

graphs, meaning that edges {i, j} and {j, i} are equivalent and V and E are finite

sets. An undirected graph such that there is at most one edge connecting two nodes

and no node is connected to itself 1 is called simple. We will only deal with simple

finite graphs.

Nodes i and j are called adjacent (neighbors) if there is an edge {i, j} in the set

E. The adjacency matrix of a simple graph is a symmetric matrix A whose elements

Aij are equal to 1 if the vertices i and j are adjacent, otherwise Aij is equal to zero.

The degree of a node is the number of its neighbors. If every node has d neighbors,

the graph is called d-regular.

A connected graph is a graph such that any two nodes i, j are linked by a path.

A path in a graph is a list of nodes x1, x2, . . . , xn such that ∀i < n : xi and xi + 1

are adjacent. We say that a graph is k-connected if in order to disconnect it, the

smallest number of nodes you have to remove is k.

A cycle in a graph refers to path in the graph with no repeated nodes except the

1This means that for all edges {i, j} : i 6= j
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starting and final one which are identical. A graph that doesn’t contain any cycles

is called acyclic. A connected acyclic graph is called a tree.

Cayley tree is a connected acyclic regular graph.

Random graphs are graphs that are generated by a random process. In a case

of a d-regular random graph, we suppose that each node is connected to other d

randomly chosen nodes. The most commonly studied random graph is an Erdös-

Rényi graph, denoted as G(n, p), where n is the total number of nodes and each pair

of nodes has probability p to be connected.

5.2 Neutral networks of the RNA secondary struc-

tures
To characterize the neutral networks of the secondary structures of RNA, we first

performed several simulations to better understand the structure of the graph with

nodes that correspond to a given phenotype. That means that we considered only

neutral networks, not neutral sets. To estimate the structure of the neutral networks,

we generated a random chain of a given length L and then considered all possible 3L

mutations (since each base can mutate into 3 other bases). The number of mutations

that leave the phenotype unchanged is then the degree of the node, i.e. the number

of its neighbor genotypes in the neutral set. We generated 1000 different genotypes

for each chain length. The distribution of degrees for different chain lengths is shown

in figure 5.1. We see that the mean degree as well as the degree dispersion increases

with higher chain length.

Another important property that is used in assessing networks [17] is assortativity.

The assortativity of a node i is defined as

ki =
1

di

N∑
j=1

Aijdj (5.1)

where Aij are the coefficients of the graph’s adjacency matrix and dj is the degree

of the j-th node. The assortativity of the node is then a sum of degrees of all

neighbors divided by the degree of the node. An assortative network is such a

network where the node’s assortativity increases with increasing degree, meaning

that nodes with high number of neighbors are connected to nodes which have many

neighbors themselves (a property found for example in social networks [17]). Figure

5.2 shows assortativity as a function of the node’s degree for chains of length 80 and

100. The neutral network of an RNA phenotype is therefore assortative, as the plots

show increasing functions. A neutral network is also heterogeneous, as we already

observed during our simulations of RNA chain evolution.

Another property of a network is provided by its clustering coefficient. The
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Figure 5.1: The histograms of degree of a node in a neutral network of a phenotype
of a given length.

clustering coefficient of the i-th node is

ci =
1

di(di − 1)

N∑
j,h=1

AijAihAjh (5.2)

where Aij again denotes an element of adjacency matrix. The product AijAihAjh
equals 1 if j-th and h-th nodes are connected and they are both neighbors of the

i-th node. Coefficient ci is then the number of triangle cycles that include the i-th

node divided by di(di − 1) so that

0 ≤ ci ≤ 1.

Our simulations show that clustering coefficients (figure 5.3) for neutral networks

are small and therefore triangle cycles are rather rare.

We decided to approximate the structure of a neutral network by a random graph.

For simplicity, we studied graphs with each node having the same degree d ( d-regular

graphs). Moreover, we will consider only connected graphs. It can be shown that

the probability of such a graph not being d-connected is O(1/Nd−2) for d ≥ 3 [18]

and therefore by accepting only the connected graphs with degree d ≥ 3 , we do not

exclude any important class of d-regular random graphs.

Although this random graph approximation is unable to describe heterogeneity of

the neutral network, it is a model that allows us to estimate the first passage time,
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Figure 5.2: The assortativity of a node as a function of its degree. The plot shows
the relation for chains of length 80 and 100 respectively.

that is a mean time needed to visit a particular node for the first time. We call such

a node “absorbing” because visiting such node results in leaving the network and

moving to a different phenotype.

5.3 Neutral networks and modeling with random

graphs

The time spent on a neutral network is linked to a first passage time H(s, t) (some-

times also called hitting time), which denotes a mean number of steps on the network

(mean time) that is necessary to get to a target node t while starting in a departing

node s. We will present two different approaches to calculate the first passage time

H(s, t) for a random graph, which we take to be an approximation of RNA neutral

networks. We start by presenting a relation between the value of H(s, t) averaged

over all nodes of the graph and the spectrum of its adjacency matrix as calculated

in [19] and apply it to the case of a d-regular random graph. Then, we show an

alternative approach, based on the diffusion equation on the graph. We compare

the prediction of the two approaches with numerical simulations of random walks

on random regular graphs.
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Figure 5.3: The clustering coefficient of a node as a function of its degree. The
mean number of degrees for chains of length 80 is about 71. The mean degree of a
chain of length 100 is about 84, therefore the clustering coefficient is rather small,
meaning that triangle cycles appear rarely in neutral networks.

5.4 First passage time and spectrum of the adja-

cency matrix

5.4.1 A general relation

The topology of a graph is described by its adjacency matrix A. Another matrix

that is often studied in relation to the structure of a graph is

N = D−
1
2AD−

1
2 (5.3)

where D is a diagonal matrix such that its i-th diagonal element Dii is equal to the

degree di of the i-th node. A random walk on a graph is described by a stochastic

matrix M = AD−1, since the evolution of vector v whose i-th element corresponds

to the probability of occupying i-th node is

vi =
∑
<ji>

1

dj
vj =

(
AD−1v

)
i

(5.4)

where the sum is taken over all nodes j that are adjacent to the node i. For the

case of a regular (i.e., all nodes having the same degree) graph, matrix M is equal
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to N , but in a general case (i.e., variable number of edges in each node), M is not

a symmetric matrix. In the case of a d-regular graph, the eigenvalues of matrix N

are just 1
d

multiples of eigenvalues of the adjacency matrix A and N is just

N =
1

d
A. (5.5)

According to the Perron-Frobenius theorem [12], the largest eigenvalue of the matrix

N is λ1 = 1 and all other eigenvalues satisfy

|λk| ≤ 1.

If the adjacency matrix is irreducible (which is equivalent to the graph being con-

nected, that is any node is reachable from any departing node), all other eigenvalues

are strictly smaller than λ1. We will consider only the case of connected graphs in

the rest of the chapter.

It can be shown [19] that the mean first passage time H(s, t), when averaged over

all possible target nodes, can be expressed in terms of the spectrum of the matrix

N as follows:

H(s) =
∑
t

π(t)H(s, t) =
n∑
k=2

1

1− λk
(5.6)

where λk are the eigenvalues of matrix N and π(x) is a stationary probability distri-

bution on the nodes of the graph, π(t) being the probability to occupy node t. One

can check that on a regular graph, π(t) = 1
n

where n is the number of nodes. Note

that the eigenvalue λ1 = 1 is not included in the sum (5.6). Since H(s) in equation

(5.6) does not depend on the departing node s, it follows that H(s) is equal to the

mean first passage time averaged over all departing nodes.

5.4.2 Spectrum of random graphs

As we mentioned before, the Perron-Frobenius theorem implies that the largest

eigenvalue is equal to one and that the other ones are smaller. However, in order to

estimate the value of first passage time (5.6) we need to know all eigenvalues. We

are therefore interested in estimating eigenvalues of a randomly generated d-regular

graph. The ensembles of random matrices have been closely studied with relation to

numerous problems in quantum physics and chaotic dynamics. It has been proved

by Wigner that the distribution of eigenvalues of the Hermitian matrices whose

elements follow a Gaussian distribution follows a semicircle law

f(λ) =
2

πR2

√
R2 − λ2, |λ| ≤ R (5.7)
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as the dimension of the matrix approaches infinity [20]. However, randomly gener-

ated adjacency matrix contains only 1 and 0 elements and in the case in which we

are interested is sparse.

We will now consider the spectrum of matrix N as defined in (5.5). We know that

its largest eigenvalue λ1 is equal to 1. Concerning the other eigenvalues, it has been

proved by F. Chung et al. [21] that the distribution function of eigenvalues λi 6= 1

converges to a semicircle law for large dimension of the adjacency matrix (i. e. large

number of nodes of the graph) given the condition that

〈d〉 �
√
〈d〉

where 〈d〉 is the average degree of a node. For the case of a d-regular graph, 〈d〉 = d.

The estimate of the radius of the semicircle distribution function (5.7) is then

R ≈ 2√
〈d〉

. (5.8)

To obtain a mean value of H, we compute the mean value of the sum (5.6) using

the semicircle probability distribution of its eigenvalues. Note that the trace of the

matrix N is equal to zero, which means that the sum of the eigenvalues that are

distributed according to the semicircle law is

n∑
i=2

λi = −1 (5.9)

The mean value of the semicircle distribution function therefore has to be shifted

by 1
n−1

. For our calculation of mean first passage time H for a d-regular random

graph, we will use a distribution function

fn(λ) =

{
2

πR2

√
R2 − (λ+ x0

n)2 if |λ+ x0
n| ≤ R

0 otherwise
(5.10)

with

x0
n =

1

n− 1
and R =

2√
d

(5.11)

The mean value of H (averaged over the space of all graphs) is then given by

〈H〉 =
n∑
k=2

∫
[−R−x0

n,R−x0
n]n−1

n∏
i=2

(dλifn(λi))
1

1− λk
δ

(
n∑
j=2

λj + 1

)
. (5.12)

For a numerical calculation, we simplify the above equation by omitting the Dirac
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function δ which should introduce no error in the large n limit:

〈H〉 = (n− 1)

∫ R−x0
n

−R−x0
n

dλ
fn(λ)

1− λ
. (5.13)

Inserting (5.10) into the previous equation, we get

〈H〉 =
2(n− 1)

π

∫ 1

−1

dx

√
1− x2

1 + x0
n −Rx

(5.14)

Integration gives

〈H〉 = 2(n− 1)
1 + x0

n −
√

(1 + x0
n −R)(1 + x0

n +R)

R2
(5.15)

where x0
n = 1

n−1
and R = 2√

d
. We can express equation (5.15) in terms of d as

〈H〉 = (n− 1)
d

2

(
(1 + x0

n)−
√

(1 + x0
n)2 − 4

d

)
, (5.16)

which could be further simplified in limit of large number of nodes n and high degree

d as

〈H〉 ≈ n− 1. (5.17)

Figure 5.4 shows the comparison between the spectrum distribution of 500 ran-

domly generated 10-regular graphs with 400 nodes compared with a semicircle dis-

tribution (5.10) for d = 10 and n = 400. A small systematic disagreement is visible

which is due to the fact that d is finite, i.e., the graphs considered are sparse rather

than dense. Thus equation (5.17) is exact only for dense graphs, while the next sec-

tions will provide an exact answer for sparse graphs. A comparison with a numerical

simulation of first passage time will be provided in section 5.7. The estimation of

the radius of the semicircle distribution is given by (5.11).

5.5 First passage times on random regular graphs
An exact analytic solution of the mean first passage time on random regular graphs

can be obtained by realizing that such graphs are locally tree-like. More explicitly,

for any given degree d, loops can arise in random regular graphs but their typical

length is O(ln(n)). Thus it is expected that most properties can be obtained by

studying what happens locally, as long as boundary conditions at “infinity” are

properly handled. Such procedures have been used in many contexts with a high

level of success [22].

For a given random regular graph, of fixed degree d, we consider a node t and ask
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Figure 5.4: A semicircle distribution (shown in red) of eigenvectors as presented
in (5.10) (with d = 10 and n = 400) compared with a histogram of eigenvalues of
matrix 1

10
A, where A is a adjacency matrix of 10-regular graph of size n = 400.

The histogram (shown in blue) was obtained by numerical diagonalization of 500
randomly generated 10-regular graphs.

what is the mean of H(s, t) when averaging over all s. This can be formulated in

terms of a diffusion problem where at time 0 a walker is equi-distributed amongst

the n − 1 nodes s (t 6= s) and all walkers hitting t get absorbed (disappear). The

evolution with time of the probability to find the walker on a given site allows one to

obtain 〈H(s, t)〉s by considering the influx into node t as a function of time. If one

denotes by F (τ) the flux into node t at time τ , then the first passage time averaged

over all s is given by the first moment of τ distributed as F (τ).

In the neighborhood of t, the graph is a Cayley tree with probability one at large

number of nodes n and thus does not depend on t in the large n limit. We thus

study the diffusion on this tree with the walker initially distributed uniformly. The

boundary condition is that the probability of finding the walker at t is zero at all

times (absorbing site).

The vector of probabilities on each site quickly converges to the dominant eigen-

vector of the evolution equation (that with the largest eigenvalue, decaying the

slowest). In the limit of large n, the decay rate goes to zero and all the transient be-

havior (associated with the other eigenvectors) becomes irrelevant. When n → ∞,

it is then enough to consider the solution to the discrete evolution equation on the

tree, where one has zero boundary conditions at t and the probability goes to 1
n−1

for the far away nodes.
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The recurrence equation that is then satisfied by the vector’s elements is

An+1 =
1

d
An+2 +

d− 1

d
An (5.18)

where An is a sum of all probabilities on all nodes that have distance n from the

root node:

An =
∑

distance(j,0)=n

aj (5.19)

where aj are elements of the state vector and their values correspond to the proba-

bilities of occupying the j-th node. The general solution of (5.18) is

α(d− 1)n + β. (5.20)

Given the conditions of absorption at the root node

A0 = 0

and the total probability of occupying the nodes of graph equal to one (where l is

total number of layers):
l∑

k=0

Ak = 1

we obtain a solution for A1

A1 =
(d− 2)2

(d− 1)l+1 − 1− (l + 1)(d− 2)
. (5.21)

The rate at which one falls into the absorbing node a0 = A0 is then p = 1
d
A1.

Note that since at large n only this eigenvector matters, the first passage time

τ is exponentially distributed with a mean given by the inverse of this rate. This

gives then for the mean first passage time

H =
1

p
=
d− 1

d− 2
n+

1

(d− 2)
− d

(d− 2)
(l + 1). (5.22)

The relation between the number of layers l and total number of nodes is

n =
d(d− 1)l − 2

d− 2
(5.23)
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so we can express l as

l =
ln
(
n(d−2)+2

d

)
ln(d− 1)

. (5.24)

For large n, the dominant term in equation (5.22) is proportional to n. Then on

a random regular graph of connectivity d, the mean first passage time behaves at

large n as

H =
d− 1

d− 2
n+O(lnn) . (5.25)

5.6 Numerical analysis
To compare the analytical calculations for the estimate of the first passage time, we

ran a numerical simulation of the d-regular graph for different sizes n.

5.6.1 Absorbing walk

One of the possible approaches to calculate the mean first passage time is to perform

an iteration of the probability distribution vector whose entries correspond to the

probability of occupying a selected node. The iteration of the vector then corre-

sponds to the stochastic process described by equation (3.1). We calculate the first

passage H(s, t) time by multiplying the probability of occupying the target node at

i-th iteration by i:

H(s, t) =
∑
i

ip(t). (5.26)

After each iteration, we set the probability to occupy the target node equal to zero.

This simulation process is equivalent to applying matrix TM on the probability

distribution vector

vk = (TM)k v0, (5.27)

where matrix T is equal to identical matrix with zero on diagonal element that

corresponds to the absorbing node. M is stochastic matrix for random walk on

graph as seen in equation (5.4). At each step, we measure the probability to remain

on the graph (which is equal to the sum of the elements of the vector v) and once

it is lower than a given bound (we used 10−8), the calculation is terminated. We

run the simulation multiple times, each time choosing an arbitrary departing and

absorbing node (separated at least by distance ln(n)) and then average the first

passage time over all graphs produced in the runs.

5.6.2 Iteration method

Since the absorbing walk algorithm was too much time-consuming, we decided to

complement the absorbing walk simulation by the fixed point method for calculation

of the eigenvector corresponding to the largest eigenvalue.
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The stochastic matrix M has the leading eigenvector that corresponds to the

uniform distribution vi = 1
n

with eigenvalue 1. However, the largest eigenvalue of

the matrix TM will be smaller than one.

We calculate the eigenvector corresponding to the largest eigenvalue by the iter-

ation method

vk+1 =
TMvk

‖TMvk‖1

where the norm used is l1:

‖v‖1 =
N∑
i=1

|vi|. (5.28)

The departing node is chosen arbitrarily. The simulation is terminated when the

maximal difference

δmax = max
i∈bn

∣∣vk+1
i − vki

∣∣
is smaller than a desired threshold (10−8 in our simulations). We then calculate the

probability of falling into the absorbing node j given the probability distribution

vector v as

pj =
∑

i∈<ij>

1

d
vi (5.29)

where the sum is taken over all neighbors of the absorbing node j. The mean first

passage time is then estimated as H = 1
pj

.

We supposed that for the matrix TM in normal Jordan form, the Jordan blocks

corresponding to eigenvalues that are smaller than the maximal one will become

negligible after a few iterations and therefore it will be only the leading eigenvector

that will determine the flow of probability. Thus, we can replace the calculation of

the first passage time from the previous section by the value calculated from the

probability flow (5.29). The simulation data indeed show that this approach gives

predictions compatible with those of the absorbing run approach. The iteration

method is much faster than the absorbing walk method, which allows us to perform

relatively fast simulations also for the graphs having several thousand nodes. The

values predicted by both methods are plotted in figure 5.5.

5.7 Comparison of models

Hereafter, all numerical simulations were obtained using the iteration method (de-

scribed in section 5.6.2) to calculate the first passage time. A brief description of

simulation code is given in appendix A.2. Figure 5.6 shows the ratio between the

first passage time calculated by the iteration method and the prediction of Cayley

tree calculation in (5.22). We see that the ratio approaches one for large size graphs.
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Figure 5.5: Comparison of the iteration method and the absorbing method for 4-
regular graphs of different sizes.
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from a numerical simulation by iteration method for a graph of given size n (x-axis).
The data were produced for 10-regular graphs.

The ratio between the first passage time estimated by calculation of the spectral

distribution of random 10-regular graphs and the first passage time obtained by

iteration method simulation is shown in the figure 5.7. Although the ratio doesn’t

seem to converge towards one, the difference between the two models is smaller than

one percent. Considering that the semi-circle law we used is only valid in the limit

of large degree d and large n, the results are satisfying.

5.8 Multiple absorbing nodes
Since our study of first passage time was inspired by the study of the time spent on

a neutral network, we should also discuss the case when multiple absorbing nodes

exist, as is often the case of a neutral network. We therefore consider here that we

have in total m possible sites where we can leave the graph of size n. We will show

that the mean time spent on the graph before visiting any of the m absorbing nodes

is equal to 1
m

of the mean first passage time of the graph with one absorbing node.

We use the fact that the probability distribution to stay on the graph (i.e. not

visit the absorbing node) follows an exponential distribution (cf. previous results).

The probability to leave the graph through the i-th node later than at time t0 is∫ ∞
t0

P (t)dt (5.30)
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with

P (t) = e−
t
τ (5.31)

where τ is equal the mean first passage time H for a graph with one absorbing

node. The probability of not being absorbed by any of the m independently selected

absorbing nodes before time t0 is

m∏
i=1

∫ ∞
t0

P (t)dt =

(∫ ∞
t0

P (t)dt

)m
= e−

t0m
τ (5.32)

The probability to leave the graph later than after t0 is∫ ∞
t0

Q(t)dt (5.33)

where Q(t) is a probability distribution that we want to determine. Comparing

(5.33) with (5.32) we get∫ ∞
t0

Q(t)dt = e−
t0m
τ ⇒ Q(t) =

m

τ
e−

mt
τ (5.34)

from which it follows that the mean leaving time of the graph τL is

τL =
τ

m
=
H

m
. (5.35)

This conclusion is in agreement with results that we have obtained when per-

forming a simulation of absorbing walk (as described in section 5.6.1) with multiple

absorbing nodes.

5.9 First passage times and return probability on

random graphs
In this section, we would like to estimate the mean first passage time on a random

graph. We will generalize the model of finite Cayley tree from section 5.5 and show

how the mean first passage time is linked to the probability of return to an origin.

We will assume that the graph is a tree, i.e., no loops are present. Furthermore, we

consider large number of nodes n→∞. While in the previous model, we considered

only regular graphs, we will also treat graphs where the degree of a node follows a

probability distribution with mean 〈d〉. We assume Poisson distribution of the degree

of each node. Our model is sufficient to describe a walk on a random Erdös-Rényi

graph, since the distribution of degree of a node approaches Poisson distribution for

large n and there are no cycles of given size with probability 1. In the following
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paragraph, we establish a connection between the first passage time and probability

of return to the departing node and then describe an algorithm used to compute

the distribution of return times on such a graph. In the rest of the section, we

will suppose that the first node (meaning that the first element of the probability

distribution vector corresponds to this node) is the absorbing node.

We suppose we have a tree with n nodes and n → ∞. We want to estimate the

steady state flux of probability into the absorbing node which gives the inverse of

the mean first passage time. We begin with an initial vector v0 whose i-th element

corresponds to the probability of occupying i-th node. The initial condition is that

every node is occupied with the same probability 1
n−1

except for the absorbing node

which has the probability 0. During the absorption process (that is subsequent

application of matrix TM = TAD−1, defined in section 5.6.1, on the state vector),

the probability of occupying node i after time k (k iterations) is

vki =
(

(TM)k v0
)
i
. (5.36)

In our case, T is a diagonal matrix

T = diag (0, 1, 1, . . . , 1) . (5.37)

We will denote s the normalized eigenvector of stochastic matrix M corresponding

to eigenvalue 1. It is

si =
di
〈d〉n

(5.38)

where di is the degree of the i-th node. We introduce vector bk that represents the

difference between the stationary distribution of matrix M and the vector vk :

1

n
bki =

di
〈d〉n

− vki . (5.39)

Since after each application of the matrix TM the probability of occupying the

absorbing node is zero, that is vk1 = 0, we get

bk1 =
d1

〈d〉
∀k. (5.40)

Since we treat the graph size n → ∞, after an initial relaxation the probability

distribution vector vk satisfies

vkm =
dm
〈d〉n

(5.41)

where the index m corresponds to nodes whose distance from the absorbing node
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dist(1,m)→∞. From equation (5.41), we obtain boundary conditions for b

bkm = 0 (5.42)

where again the index m corresponds to nodes with large distance from the node 1.

Considering the conditions (5.40) and (5.42), we can interpret the evolution of the

vector bk as diffusion of probability with fixed source at the departing node 1. This

interpretation will allow us to construct connection between the mean first passage

time and the probability of return to the origin.

After several applications of matrix TM , the vector vk will converge to the eigen-

vector ṽ of matrix TM that corresponds to the largest eigenvalue λ0 < 1. We again

define the corresponding steady state vector b̃ as

1

n
b̃i =

di
〈d〉n

− ṽi. (5.43)

The flow p of probability to the absorbing node is then the inverse of the mean first

passage time. We will express this quantity in terms of vector b̃:

p =
∑
<i1>

ṽi
di

=
1

n

∑
<i1>

1

di

(
di
〈d〉
− b̃i

)
=

1

n

∑
<i1>

(
1

〈d〉
− ci

di〈d〉

)
(5.44)

where the sum is taken over all neighbors of absorbing node. We also introduced a

new vector c which corresponds to b̃ up to a scaling factor

c = 〈d〉b̃. (5.45)

The equation (5.44) then becomes

p =
1

n〈d〉
∑
<i1>

(
1− ci

di

)
=

1

n〈d〉
∑
<i1>

(1− ri) . (5.46)

The quantity ri is equal to c
di

, which is the probability flow back to the origin of

diffusion, i.e., the probability of coming back to the departing node from the adjacent

node i. Vector c satisfies the following condition at the origin of diffusion

c0 = 〈d〉b̃0 = d0 (5.47)

which means that the probability flow to each of the neighbor nodes is equal to one.

In order to calculate the return probability ri in (5.46), we will consider a model of

an Erdös-Rényi graph where the departing node that has only one edge from which

the flow of probability into the rest of the graph is equal to 1. We will calculate
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numerically the distribution of the return probability r for such graph. In contrast

to the fixed connectivity case, r is a random variable. In the case when the departing

node is connected to a d-regular graph, the return probability satisfies the following

relation:

r =
1

d

(
1 +

d− 1

d
r +

(
d− 1

d
r

)2

+ . . .

)
=

1

d
(

1− (d−1)r
d

) (5.48)

where 1
d

is the probability of coming back to the departing node, while d−1
d

is the

probability of choosing different neighbor and making a step further from the original

node. The k-th term in the geometric series (5.48) then corresponds to the prob-

ability of visiting the node adjacent to the departing node k times before coming

back to the origin.

However, we are interested in the case where the degree of each node in the graph

follows a Poisson distribution p(d) with mean 〈d〉. For the numerical calculation of

the distribution of return probability, we construct a histogram of distribution of

return probabilities. This histogram is then iterated using the formula:

r =

〈
1

d

1

1−
Pd−1
j=1 rj

d

〉
d

=
dmax∑
d=1

p(d)

1

d

1

1−
Pd−1
j=1 rj

d

 (5.49)

which is an implicit formula for the distribution of r. The term
∑d−1

j=1 rj is con-

structed in our numerical calculation by composing the histograms of distribution

of r. Note that our calculation assumes an infinite graph.

The numerical solution for a distribution of return probability using formula 5.49

is shown in figure 5.8.

To obtain the mean first passage time, we calculate the mean value of quantity
1
p

from (5.46) using the obtained probability distribution for r. In the case of a

random graph with absorbing node having only one neighbor (which translates into

the departing node having only one neighbor for the return probability approach)

we have

〈H1〉 = 〈d〉n
〈

1

1− r

〉
r

. (5.50)

For example, considering the case of 〈d〉 = 5, the value calculated using the distri-

bution shown in figure 5.8 is

〈H1〉 = 6.72n (5.51)

The comparison with a numerical simulation of absorption is shown in figure 5.9.

To obtain a solution for for mean first passage time on a node whose degree is

given by a Poisson distribution (i.e. the general case for calculation of mean first
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Figure 5.8: The probability distribution of return probability r on a random graph
with Poisson distribution of a degree of a node with mean degree equal to 5. The
distribution was obtained by iterating the equation (5.49) until a stable solution was
obtained. The value of dmax in (5.49) was set to 16 for this calculation. The program
used to produce the distribution is available on the enclosed CD-ROM and its use
is described in A.2.4.

passage time on an Erdös-Rényi graph), we average the quantity 〈H1〉 for different

number of neighbors of the absorbing node

〈H〉 =
dmax∑
i=1

〈H1〉
di

P (di) (5.52)

which gives for the Poisson distribution with mean degree 5

H = 1.73n (5.53)

The comparison with the simulation is shown in figure 5.10.
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Figure 5.9: The comparison of the numerical simulation with calculation of mean
first passage time for Erdös-Rényi graph with absorbing node having only one neigh-
bor (equation (5.51)). The mean degree in the rest of the graph is 5.
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Figure 5.10: The comparison of calculation of mean first passage time for Erdös-
Rényi graph with mean degree equal to 5 (equation (5.53)) and the numerical sim-
ulation.
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Chapter 6

Discussion and conclusions

Mappings from genotypes to phenotypes play a central role in biology, from the

molecular scale up to whole organisms. Working at the level of RNA allowed us to

use a framework for such mappings that is accepted as “relevant” in the biological

community while being at the same time relatively tractable from the computational

point of view. We showed a rich phenomenology of the associated evolutionary

dynamics: not only does the “relaxation” towards the optimum undergo severe

slowing down, but also it seems possible that this slowing down remains sensitive to

the quenched disorder in the thermodynamic limit (long chain sizes). Thus there are

both analogies and differences with what happens in physical systems undergoing

ageing.

What causes this slowing down? We saw that the fraction of favorable mutations

decreases severely as one approaches the optimum, a property of the fitness land-

scape itself. Nevertheless, the major feature of the slow-down is the long waiting

times encountered by random walks on neutral sets, far larger than expected from

the frequency of favorable mutations. These neutral sets are strongly heterogeneous,

leading to walks that spend much time in unfavorable regions. Understanding where

these heterogeneities come from would be of major interest, just as in the case of

neutral networks where the same problem remains open today in spite of the many

groups investigating RNA neutral networks. Such heterogeneities seem to be general

features of complex landscapes.

The process of random walk through neutral sets has lead us to the study of

random walks on graphs, particularly to estimate the first passage time. We studied

several approaches to estimate the mean value of first passage time on random graphs

and supported our calculations by numerical simulations.

This work opened up for me the frontier between physics, biology and computer

science. Beyond the large amount of biological content I had to digest, I learned

about diverse mathematical and physical methods (random walks, Markov processes,
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trap models, graph theory, random matrices . . .). I also got a view of research in an

interdisciplinary field where quantitative tools are sure to be in high demand in the

foreseeable future.

Naturally, for this project, I had to develop many computational codes, shell

scripts for managing the long runs and to perform the analysis. Note that these stud-

ies are particularly intensive from the computational point of view. For a molecule

of length L, several times L mutations need to be applied to get to an indepen-

dent genotype. Each mutational step is followed by the folding of the molecule

which takes O(L3) operations. Thus the CPU time is dominated by these folding

operations, implemented in already optimized software, thus no real speed-ups are

possible. The C++ codes performing the evolution simulation are available on the

enclosed CD-ROM.
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Appendix A

The simulation code

A.1 The simulation code for RNA evolution
The source code was written in C++ programming language. The source code to-

gether with the results of our simulations is available on the enclosed CD-ROM.

In this section, we describe the structure of the code and explain how to the data

were produced. The code for RNA chains requires standard C++ library and Vien-

naRNA package [3] and ANSI C++ standard compatible compiler. The simulation

code for random graphs requires standard C++ library. The code is written using

object-oriented programming techniques. All source code concerning RNA evolution

simulation is in directory sourcecode/RNA.

A.1.1 RNA manipulation and simulation interface

The program for simulation of RNA chains consists of the following files:

1. rnass.h and rnass.cpp contain an interface for manipulation of RNA se-

quences and structures. It contains two classes, RNASequence and RNAStructure

that provide interface for manipulation with RNA chains and sequences in an

object-oriented program. RNASequence class encapsulates manipulation with

sequence which is represented as a string in the class. Class RNAStructure

encapsulates manipulation with secondary structure which is represented as a

string of brackets and dots.

2. randomwalk.h and randomwalk.cpp contain the simulation algorithm itself.

They contain declaration and implementation of random walk towards a given

target structure. The algorithm is encapsulated in class RandomWalk, which

comprises functions for saving the information about the evolution process.

The method RandomWalk::Walk starts the evolution simulation of random

walk from a given sequence to target secondary structure. It ends if the
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target structure is reached or the number of maximal allowed mutations is

reached, whatever comes first. Method RandomWalk::SaveWalk saves infor-

mation about the evolution process to file that can be later evaluated to obtain

statistics about the process. The information saved to file include time spent

on a given neutral set before finding a new beneficial mutation, number of

different structures encountered during the diffusion in neutral sets and Ham-

ming distance between the first and last RNA sequence encountered in the

set. The functions that are used to evaluate these data are declared in the file

simulation.h.

3. simulation.h and simulation.cpp contain declaration and implementation

of class Simulation which provides interface that either generates randomly

or loads from a file a departing chain and than starts the random simulation

by calling a method RandomWalk::Walk implemented in file randomwalk.cpp.

Method Simulation::StartRandomSimulation generates different target phe-

notypes and runs a simulation from a random departing sequence given number

of times. File also contains method Simulation::Statistics that performs

the statistical evaluation of the files produced during the evolution simulation.

A.1.2 Programs

Two main programs using the interface described in A.1.1 were used throughout the

simulation. Program walk produces simulation data while program analyze reads

the output files from the simulation and produces files that can be later processed

by data-analysis software such as Matlab or Gnuplot. Both programs use methods

from class Simulation.

Program walk

In order to compile the program, type make walk in the sourcecode/RNA (you need

to have make utility installed in your system. Note that ViennaRNA package has

to be installed on the system as well.). This command compiles file walk.cpp and

produces a binary file walk. The usage of the program is as follows:

walk -o data.out -m 1000 -t 20 -s 10 -n 20 -l 100 -r 7

The program generates randomly several secondary structures (as specified by pa-

rameter -n) and then randomly chooses the departing and target structure. It then

performs random mutations until the target structure is reached or until the number

of mutations reaches value specified by -m parameter. The whole random walk for

the same pair of structures is repeated as many times as specified by -s parameter.

The whole process is repeated -t times. The parameter -r serves to initialize the

60



random number generator. The length of the RNA molecules in the simulation is

specified by the -l parameter. Note that the time needed for the simulation in-

creases as O(l3) where l is the length of the molecule. Finally, the -o parameter

specifies the name of the file where the simulation output will be saved.

There are several other variants of the simulation program walk and whose usage

is very similar. Program uniquetargetwalk.cpp performs only evolution towards

a target structure that is saved in a file (in a bracket-dot notation) specified by the

-i parameter. Programs evenuniquetargetwalk.cpp and evenwalk.cpp perform

the same functions as programs uniquetargetwalk and walk.cpp, but allows only

beneficial mutations that bring the phenotype closer to target structure by the

distance equal to two.

Program analyze

This program analyzes data produced by program walk. To compile the program

analyze.cpp, type make analyze in the directory with source files. The usage is

as follows:

analyze -i data.out -m 1000 -o graphs.dat

The program takes as an input (specified by the -i parameter) file produced by walk.

The maximal number of mutations with which the program walk was executed must

be specified as well. The output is saved to file specified by -o parameter. The data

are saved into columns, the first column is the number of mutations, second column

is average Hamming distance to target phenotype (divided by the length of the RNA

molecule) after the given number of mutations, averaged over all simulation data.

The third column is the standard deviation. Note that the input file can be in fact

a result of several independent simulations merged together. In that case, all of

them have to be executed with the same parameters except for the random number

generator, which has to be different.

Program fullanalyze

Program fullanalyze (source code fullanalyze.cpp) extracts information from

simulation as a function of distance from the target structure. It has one addi-

tional parameter -t, compared to program analyze, that specifies the distance to

the target. For each distance from the target, the program saves into the output

file the following information: distance from the target structure, time spent on a

neutral sent before finding a beneficial mutation, number of different phenotypes

encountered in neutral set, number of neutral mutations performed before finding a

beneficial mutation, drift distance within the neutral set, length of jump (how much

closer is the new neutral set compared to the original one). To compile the program,

type make fullanalyze.
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Other programs

Additional programs are included in the source code directory. Their compilation

and use is the same as for the programs described above. Typically, there is always

one program that performs a desired simulation and another program that creates

statistics from the produced data. Program neutral walk.cpp has one additionally

parameter -d compared to uniquetargetwalk.cpp that specifies the distance from

target structure at which the simulation of evolution stops and then only neutral

mutations are accepted. It then accepts only neutral mutation in the same neutral

set. The file produced is then analyzed by program analyze neutral.cpp. The

program sampling.cpp works similarly as neutral walk.cpp, but saves data only

after a given number of steps in the neutral network (specified by -t parameter).

The data are analyzed by analyze sampling.cpp program. The rest of the source

code files in the directory contain functions used by the described programs. Please

note that all programs print on the screen an example of usage of they are executed

without any parameters. The format of files produced by program for analyzing data

from the simulation are described in the README.txt file in the sourcecode/RNA

directory.

A.1.3 Data

The simulation results are located in the data directory. The simulations for different

RNA molecule lengths are located in data/AveragedWalks. The subdirectories’s

names correspond to the length of the RNA molecule. The files in the directory with

file extension .dat are produced by the walk program, while files with .txt extension

are processed by program analyze into a form displayable in Gnuplot. Simulation

results discussed in section 4.8 are in the directory data/Heterogenity CHAIN40.

The data that contain properties of neutral networks described in section 5.2 are

saved in the directory data/NeutralNetworkSampling.

A.2 The simulation code for graphs
The source code for performing simulations for random graphs dynamics was written

in C++. It requires only standard C++ library and a compiler compatible with

ANSI C++ standard. They are located in sourcecode/graphs directory.

A.2.1 Main files

1. mygraph.cpp contains a class graph that provides interface for creating and

managing random graph. Mainly, it randomly generates a random graph with

a given fixed degree and number of nodes given by a parameter.

2. fixedgraph.cpp Implements absorbing walk and iteration methods as de-

scribed in sections 5.6.1 and 5.6.2.
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A.2.2 Programs

Program absorption.cpp is used to launch absorbing walk algorithm from section

5.6.1. It is launched with parameters specifying the number of nodes and degree of

a node.

Program iteration.cpp is used to launch iteration method algorithm described

in section 5.6.2. It runs the algorithm for graphs of sizes that are specified by the

parameters when executing the program. Both programs give an example of usage

if launched without any parameters.

Finally, matrice.cpp generates a random graph and computes numerically its eigen-

values. This program requires newmat library for matrix manipulation which can

be downloaded from http://www.robertnz.net/nm intro.htm.

A.2.3 Data

The data from random walk simulation with an absorbing node are located in the

directory graphdata. The degree of a regular graph for which the simulation was

run is specified in the name of the file after the letter Z. The files were produced by

launching program iteration for various graph sizes. The data in the first column

in the file is the mean first passage time computed for a given graph size and the

second column corresponds to the value calculated by formula (5.22).

A.2.4 Return probability calculation

The program iterHist12.C used to produce the figure 5.8 is located in the directory

graphdata/MATHvsSIM. The program requires the libraries from the ROOT program

which is available for free at root.cern.ch. The histogram for the distribution

of return probabilities as shown in figure 5.8 is then produced by calling function

IterHist which takes as parameters the maximal degree considered (dmax in equation

(5.49)), mean degree of a node, number of iterations and the number of bins in the

histogram.
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Appendix B

Glossary

DNA stands for deoxyribonucleic acid. DNA is a two-stranded molecule containing

nucleotides adenine (A), cytosine (C), guanine (G) and thymine (T). The two

strands form a double-helix structure, where adenine pairs with thymine and

guanine pairs with cytosine. The DNA molecule encodes genetic information

in the cell.

Enzyme is a biomolecule that is used to catalyze chemical reactions

Fitness is a number that is assigned to genotypes during evolutionary simulations.

How the number is assigned depends on the simulation requirements. Usually

only the genotypes with the best fitness are taken into account in the next

iteration of the evolution algorithm.

Genotype refers to a genetic constitution of an organism, i.e. its unique genetic

information stored in DNA.

Nucleotide Nucleotides are organic molecules that are basic structural units of

RNA and DNA.

Phenotype is an observable expression of a genotype. For example, a phenotype

might be the color of eyes of an individual. Different genotypes can lead to

the same phenotype, for example two individuals might have different genetic

code that is responsible for eye color, but still both have blue eyes. The

relation between genotype and phenotype is usually quite complicated and

often phenotype is a result of interaction of many genes.

Polymer is a large molecule composed of structural units connected together by a

chemical bond

Primary structure specifies the composition of a molecule. In case of an RNA

strand, the primary structure is a list of nucleotides that appear in the chain.
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Proteins are polymers of amino acids responsible for many functions in living or-

ganisms. Proteins are composed of aminoacids. They are basic constituents of

cells, but some of them take part in chemical reactions as enzymes or have sig-

nalling function in the organism. Proteins are produced in ribosomes in cells,

where the information that serves as a “cookbook” for the protein production

is transported by RNA molecules.

Proteome refers to a set of proteins found in a particular cell or organism.

RNA is an abbreviation for ribonucleic acid. It is a chain molecule that contains

nucleotide units adenine (A), cytosine (C), guanine (G) or uracil (U). RNA

molecules are usually single stranded. RNA is responsible for transport of

information from DNA to ribosomes for protein synthesis. In addition, certain

RNA molecules play the role of enzymes. It is believed that RNA molecule

served also as a carrier of genetic information in early life forms before DNA

appeared.

Secondary structure of a protein is the local ordering in space of the amino acid

chain. In the case of an RNA chain, secondary structure simply refers to

whether a given nucleotide base is paired with other nucleotide base or not.

Tertiary structure refers to a full three-dimensional description of a molecule. It

specifies the coordinates of each atom of the molecule

Neutral mutation refers to a change in genotype that does not change phenotype.

Neutral network In biology, the term neutral network refers to a graph whose

nodes are genotypes that correspond to the same phenotype.

Neutral set is an ensemble of neutral networks with some common property (for

example all of them have the same fitness).

Nucleotides are biomolecules that are structural units of DNA and RNA.
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