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fyziky. Důraz je kladen na experimentálńı ověřováńı jeho předpověd́ı. Na konci
je prob́ırán počet volných parametr̊u a možná rozš́ı̌reńı. Daľśı kapitola popisuje
urychlovačový komplex v CERNu, předevš́ım LHC a experimenty na něm. Představuj́ı
se hlavńı ćıle a očekáváńı fyzikálńıho programu na LHC. Třet́ı kapitola obsahuje
popis detektoru ATLAS a jeho subdetektor̊u. Ve čtvrté kapitole je vlastńı výzkumný
př́ınos autora. Je věnován metodickým, softwarovým a matematickým prostředk̊um
pro stanoveńı přesné pozice subdetektor̊u v celém detekčńım systému ATLAS, které
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Abstract: The opening sections of this thesis describe a contemporary state of high
energy physics, both from the view of theory and experiment. In the first chapter
the basic concepts of the Standard Model are briefly outlined. Emphasis is put on
the experimental verification of its predictions. Number of free parameters and pos-
sible extensions are discussed at the end. Next chapter describe CERN accelerator
complex and LHC experiments in particular. It shows the main goals and expec-
tations of LHC physics programme. The third chapters contains description of the
ATLAS detector and all its subdetectors. Author’s original research contribution is
in the fourth chapter. It is devoted to methodical, software and mathematical tools
for the determination of the precise position of subdetectors in the whole ATLAS
detection system, which is essential for the research programme described in the first
and second chapter. In particular, it treats the ATLAS Inner Detector misalignment
and pixel modules shape distortions. The thesis describe the concept of the iterative
detector alignment based on the optimization of particles tracks and position of hits
in detective modules.
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Chapter 1

Standard Model

1.1 Way to Standard Model

Although the idea that all matter is composed from tiny indivisible particles is quite
old (Democritus and Leucippus, 5th century BC), it had to wait for more than two
millennia for some experimental support. Inspired by his chemical discoveries, J.
Dalton proposed that each element is made from indivisible atoms of one type. Few
decades later D. Mendeleev noticed that some properties of elements sort by atomic
weight exhibit apparent periodicity. This was the first indication of the existence of
some atomic structure. The first subatomic particle, electron, was discovered by J.
J. Thomson before the end of the 19th century.

In the beginning of the 20th century Rutherford, Geiger and Marshden carried
out a series of scattering experiments which proved the existence of the atomic
nucleus. Since then the vast majority of subnuclear experiments modelled themselves
upon Rutherford, only using higher energies and more precise detectors.

A few years later scattering experiments showed that the immediate environment
of the nucleus is governed by other forces than electromagnetism or gravitation: the
concept of strong interaction was born. Meanwhile it became generally accepted,
that there also exist fourth force, responsible for β-decay - now it is called weak.

In 1932 Chadwick discovered neutron. Shortly afterwards, Heisenberg proposed
that atomic nuclei are composed from protons and neutrons, but he was not able
to figure out the nature of force which holds nucleus together. He thought that
this interaction works by the means of exchanging electrons. This also explained
electrons emerging out of nucleus during β-decay.

In 1933 Fermi published his theory of weak force - cause of a long known β-
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decay, which became the first successful theory of intranuclear force besides the
electromagnetism. It was formulated in a language of the quantum field theory,
so the particles were created and destroyed as a consequence of very notion of the
quantum field. The assumption of electrons present in nuclei was therefore no longer
necessary.

Couple of years later Yukawa realized the relation between the range of the force
and the mass of the intermediating particle. Hence, he supposed, that the strong
interaction is mediated by particles which have mass about two hundred times that
of electron and have charge plus or minus that of electron. Nevertheless, Yukawa
theory was not charge invariant, as it described the interaction between proton and
neutron only.

Later the experimental data showed that the strong interaction is charge invari-
ant. This fact was incorporated into the theory in the following way: proton and
neutron were considered to be members of a doublet, in analogy with two spin states
of particles with spin 1/2. So the new internal degree of freedom of the nucleon was
introduced, now called isospin. This property was supposed to be invariant under
strong interaction, which led to the extension of the Pauli exclusion principle by
adding a new variable describing the state of nucleon.

The concept of isospin is very similar to that of spin. The operator of isospin
satisfies angular commutation relations[

T̂i, T̂j

]
= iεijkT̂k and

[
T̂2, T̂j

]
= 0

where T̂ is the (vector) operator of isospin and T̂i are its components. From the
above relations it can be derived that the eigenvalues of the operator T̂2 take form
j(j + 1), where j is a nonnegative integer or half an odd positive integer and the
eigenvalues of T̂3 are numbers j, j − 1, . . . ,−j + 1,−j. It is common to say that
particle has isospin j while it is at the state corresponding to eigenvalue j(j + 1) of
T̂2.

Because for given value of isospin T = j there is 2T + 1 possible values of T3

(without hat it is just a symbol for the third value of isospin, not an operator), a
multiplet with isospin T has 2T + 1 members (e.g. nucleon doublet has isospin 1/2,
triplet π±, π0 has isospin 1). Multiplet members differs in the third component of
isospin (like particles with spin 1/2 can have its third component either +1/2 or
-1/2). The particle with most positive charge is assigned j as its T3 value, while
T3 = −j is assigned to the most negative particle. Table 1.1 shows isospin of chosen
particle multiplets.
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Table 1.1: Isospin values

particle T T3

p 1/2 +1/2
n 1/2 -1/2
π+ 1 +1
π0 1 0
π− 1 -1
η 0 0

To make the Yukawa theory charge (i.e. isospin) invariant, a neutral companion
of charged Yukawa mesons was introduced. This way the concept of isospin was
extended also on this triplet of intermediating mesons.

As the number of known particles increased (muon was discovered in late 1930s,
pions (Yukawa particles) - π± and π0 were founded in 1940s), they were divided into
two groups: strongly interacting particles (nucleons, pions) were called hadrons,
while the others (electron, muon) were called leptons. The first group was further
divided into baryons (i.e. particles that have an odd number of protons and an-
tiprotons among decay products - for example nucleons) and mesons (the rest - for
example pions).

In the end of 1940s and in the beginning of 1950s there were discovered some
particles which decayed (among others) into less massive hadrons, but this decay
was much slower than it was expected for the strong interaction, indicating that
the decay is mediated by the weak interaction. Because no known conservation
law prevented strong decay of this particles (called ”strange” particles), shortly
after this discovery Nishijima proposed, that this could be explained in a terms
of a new quantum number, which was later named strangeness. This was another
property conserved by the strong interaction but violated by the weak one. The
relation between isospin, strangeness, charge and baryon number (1 for baryons, -1
for antibaryons, 0 for others) was formulated in the famous Gell-Mann Nishijima
relation:

Q = T3 +
B + S

2
(1.1)

Q stands for charge, T3 for the third component of isospin, B for baryon number
and S for strangeness. It could be rewritten using hypercharge Y ≡ B + S, which
is twice the average charge of the multiplet. This is a direct consequence of formula
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1.1, because the average third component of isospin of a given multiplet is always
zero.

Since discoveries of the new particles did not stop, it was less and less probable
that all of them would be elementary, so various explanation od particle structure
appeared. The most important of them was proposed by Murray Gell-Mann who
supposed, that all hadrons are made out of some three basic components (which
he did not specify). Because of possible representations of SU(3) group (i.e. ap-
proximate symmetry to the interchange of this three basic components) Gell-Mann
supposed, that particles can be organized into decuplets, octets and singlets. He in-
deed created a multiplets from particles sharing the same spin and baryon numbers.
Figure 1.11 shows his meson octet with spin 0, figure 1.2 shows baryon octet with
spin 1/2, and figure 1.3 shows his baryon decuplet with spin 3/2. Gell-Mann called
this model Eightfold way. Because it predicted particle which was never before ob-
served, but was discovered a few years later (Ω−), Eightfold way was considered to
be a great success. The important consequence of this model is, that pions are no
longer privileged in any way, so that they could not mediate the strong interaction.

In January 1964 Murray Gell-Mann and George Zweig independently postulated
the existence of 3 particles which have fractionate baryon number and fractionate
charge and together they are the constituents of all hadrons. These particles were
called quarks up (u), down (d) and strange (s). They were supposed to form the
fundamental triplet of some SU(3) symmetry group. The multiplets of Eightfold
way were then viewed as different representations of this symmetry group. Although
three more quarks were later added to this model and the group of symmetry was
changed, the basic idea of hadrons made of quarks remained one of the most impor-
tant components of the Standard Model. It also became clear, that the quantum
number strangeness is just the number of s-quarks, therefore we can say, that strong
interaction does not change the species of the quark (”flavour”), while the weak in-
teraction does.

Today we suppose that all matter is composed from 24 elementary particles: 6
leptons, 6 antileptons, 6 flavours of quarks and 6 flavours of antiquarks - see table
1.2. According to their mass they are divided into three generations of matter.
Practically all observable mass belongs to the first generation, because particles
from the second and third family are highly unstable and quickly decay into less
massive particles.

Three quarks together form baryons (like n or p), while quark-antiquark couples
form mesons (e.g. π). Leptons and quarks are all fermions (i.e. they have half

1Pictures 1.1, 1.2 and 1.3 were taken from [6]

12



Figure 1.1: Mesons with spin 0 Figure 1.2: Baryons with spin 1/2

Figure 1.3: Baryons with spin 3/2

integer spin and obey the Pauli exclusion principle). Although leptons are directly
observable, quarks are confined in mesons and baryons.

The quark model is very successful in describing the particle world. If we restricts
ourselves to the baryons made from the tree lightest quarks (u, d, and s) only, there
are 33 = 27 possible states. Only one of them is fully antisymmetric (with respect
to the interchange of quarks):

uds+ dsu+ sud− usd− sdu− dus

Note that it depends on the ordering of quark wavefunctions, which is a natural
consequence of the introduction of an intrinsic quark property called colour charge
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(see below). In a similar way we can construct fully symmetrical decuplet of baryon
states, and two octets with mixed symmetry properties. We can also construct
mesons states: there are 32 = 9 of them and we can form a singlet and octuple out
of them. This way we can construct the famous multiplets of Gell-Mann’s Eightfold
Way. All particles predicted by this model have been found and no others. If we add
another three quarks, we can predict a lot of new particles, nevertheless, most of
them have not been observed yet, probably because of the high mass and instability
of other three quarks.

Particles interact through the four fundamental forces of nature. The gravitation
is universal and a long range force. That is why it is dominant on an astronomical
scale. However, it negligible on laboratory scale, so it is not incorporated in the
Standard Model.

The electromagnetic interaction is also of a long range, but it is not universal - it
affects only charged particles. Compared with others it is the second strongest force.
Its effects on the classical scale are perfectly described by the Maxwell equations.
The quantum version of theory of electromagnetism is called Quantum Electrody-
namics - QED. In the 1960s QED was merged with the theory of a weak force - the
Standard Model of electroweak interaction was created. Electromagnetic interaction
conserves parity (symmetry under spatial inversion) and it is mediated by massless
and neutral photons.

The weak interaction has a short range (about 10−18 m - 1000 times smaller
than atomic nucleus). However it affects all quarks and leptons and it is the only
interaction that changes flavour of quarks. The most common effect caused by
the weak interaction is β decay. It was first described by Fermi’s theory of four-
fermion interaction, but this theory was insufficient for higher energies. Today we
use the electroweak theory by Glashow, Weinberg and Salam which states that
weak interaction is mediated by three massive bosons: W+ boson has a positive
charge, W− is negative and the Z boson is neutral. All of them were experimentally
observed and their mass was in perfect agreement with the values predicted by the
GWS Standard Model.

The strong interaction has also short range - about 10−15 m, however it acts only
on particles with a ”colour charge” - this is an intrinsic property that each quark
carries beside electrical charge (sometimes it is called ”strong charge”). There are
three possible types of colour charge. The particles interact by exchanging gluons.
We suppose that there are eight types of this intermediating particles, each massless
and each carrying different colour charge.

Objects made from quarks - hadrons - are colour-neutral but interact due to
residual strong interaction between their components (similarly to the neutral atoms
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Table 1.2: Elementary Particles

First Second Third Electrical
generation generation generation charge

u-up c-charm t-top +2/3
quarks

d-down s-strange b-bottom -1/3
e-electron µ-muon τ -tauon -1

leptons
νe - e-neutrino νµ - µ-neutrino ντ - τ -neutrino 0

forming molecules) - this force is responsible for the existence of atomic nucleus. The
residual strong force is mediated by mesons, i.e. quark-antiquark bounded states.

Another interesting property of the strong interaction is the practical impossi-
bility to isolate quarks and gluons - when we try to do this, the energy of the colour
field binding them together increases until the new pair of quark-antiquark is cre-
ated. Finally all quarks and antiquarks form hadrons which then emerge from the
reaction. Therefore we say, that under normal conditions the quarks are confined
inside hadrons. However it is supposed, that deconfined quark states exists in an
extreme phase of matter called quark-gluon plasma.

All this phenomena are subject of the Quantum Chromodynamics (QCD) which
was formulated in 1970s by Gross, Wilczek and Politzer. Both QCD and GWS
Standard Model are gauge quantum field theories, so in the next sections the basic
ideas of this type of theory will be introduced.

1.2 Introduction to Quantum Field Theory

1.2.1 Quantum Mechanics

Quantum mechanics was formulated during the first half of the 20th century by
M. Planck, A. Einstein, N. Bohr, W. Heisenberg, E. Schrödinger, M. Born, J. von
Neumann, P. Dirac, W. Pauli and many others. It is able to precisely describe
the phenomena which cannot be explained by Newtonian mechanics of Maxwell
electromagnetism - for example the very existence of electrons in the electron cloud
around the atom nucleus.

In Hamiltonian mechanics the phase space of an n-dimensional system is R2n.
Each vector of this space represents a physical state of a particle - n coordinates of
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the position and n coordinates of the momentum. The observable quantities (mostly
called observable for short) like energy, angular momentum, etc. are represented as
real functions of generally 2n variables - for instance E =

∑n
i=1 p

2
i /(2m). The

dynamics of a classical system is given by the Hamiltonian (that is also one of the
observables): The time-dependence of an observable A is given by

dA(t)

dt
= {A(t), H} (1.2)

where we suppose that A is not explicit function of time and the {} denotes Poisson
bracket. Because the state is characterized by the position and momentum, that
are also observables on Hamilton phase space, the time-dependance of a given state
can be obtained by substituting A→ q and A→ p in (1.2). We would of course get
nothing else than well known Hamilton equations.

However, the mathematical structure of quantum mechanics is quite different.
The state is represented by a vector in a complex separable Hilbert space (i.e. it
has inner product and it is complete in a norm generated by the inner product).
For example one n-dimensional particle lives in L2(Rn, dnx), therefore the state of
a particle in three dimensions is represented by a (class of) complex, quadratically
integrable function(s) of n variables with unit norm. The last inquiry is necessary
because of physical interpretation of the states: if a particle is in a state ψ(x), then
the probability density of finding the particle at a point x is |ψ(x)|2. The integral
from the probability density over whole space (=1) is then nothing else than the
second power of the L2 norm of ψ.

The observables are represented by linear self-adjoint operators on respective
Hilbert spaces. The assignment of operators to the classical observables (i.e. func-
tions on phase space) is called canonical quantization. Natural requirement on such
a procedure is that it should not change the relations between the observables. This
is however complicated by a fact that operators (in contrast to the functions) do not
generally commute. Therefore we use Poisson brackets of the classical observables
to define commutators of the respective operators. The assignment is

{a, b} → − i

~

[
Â, B̂

]
(1.3)

where a and b are classical observables and Â, B̂ are operators on Hilbert space.
The fundamental commutator is that of position and momentum:[

Q̂i, P̂j

]
= i~δij (1.4)
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This is satisfied by

Q̂ψ(x) = xψ(x) P̂ψ(x) = −idψ(x)

dx

It is worth noting that operator P̂ is not defined on whole Hilbert space (the re-
quirement of being self-adjoint). Other operators must satisfy (among others) this
conditions:

• its commutation relations satisfy (1.3)

• the operator is self-adjoint

• the operator should be the same function of Q̂ and P̂ as in the classical case
- this is important to achieve classical limit, but some quantum mechanical
observables do not have classical analogy

• the operator has some physical relevance, i.e. it could be used to predict
outcome of the experiment

The dynamics is again given by the Hamiltonian Ĥ - it is an observable and therefore
self-adjoint linear operator on the Hilbert space. The relation for time-dependence
of states is called Schrödinger equation:

i
d

dt
ψt = Ĥψt (1.5)

where ψt denotes the state at a time t.

1.2.2 Quantum Field Theory

Although quantum mechanics is a very successful theory, it has several flaws. From
the construction is obvious that QM is a non-relativistic theory - it treats time and
space separately and, moreover, it is a fixed particle theory, so it cannot describe
such phenomena like excitation (an atom changes to atom at lower energy state and
a photon). Therefore the quantum field theory was introduced.

In case of QM we quantized the motion of a single particle using the relations
that came from the Hamiltonian formulation of classical mechanics. In QFT we
quantize a field. In practice this means that instead of finding operators of posi-
tion and momentum and subsequently constructing other operators from them, we
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have a space-time parameterized operator (field) φ̂(x, t) and all other operators are
constructed from it.

We will now quantize the real scalar field (Klein-Gordon field). This is described
by Klein-Gordon equation

(� +m2)φ = 0, (1.6)

where φ = φ(t,x), i.e. classical field. This relation could be derived using Euler-
Lagrange equations (cf. [1] or [2]) from Lagrangian

L =
1

2
(∂µφ)(∂µφ)− m2

2
φ2

where ∂µ = (∂0/c,∇). The general solution of (1.6) is the superposition of plane
waves:

φ(t,x) =

∫
d3k

(2π)3/2
√

2ωk

(ak exp(ik ·x− ωkt) + a∗k exp[−(ik ·x− ωkt)])

where
ωk =

√
m2 + k2

Now we can calculate momentum

π(t,x) =
∂L

∂φ̇
= φ̇

The quantization means that we (similar to the previous section) postulate some
commutation relation. In this case it is[

φ̂(t,x), π̂(t,y)
]

= i~δ(x− y) (1.7)

This relation is satisfied by the above written solution of the Klein-Gordon equation,
provided we are treating the coefficients of the Fourier expansion as an operators âk

and â†k. The relation (1.7) implies that

[âi, âj] = 0 [â†i , â
†
j ] = 0 [âi, â

†
j ] = δ(i− j)

This operators could be interpreted as creation and annihilation operators (see be-
low), therefore we have constructed a theory with varying number of particles.

We can also construct an operator of energy - a Hamiltonian:

Ĥ =

∫
(π̂∂tφ̂− L̂ )d3x =

∫
d3kωkâ

†
kâk
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From this relation it is obvious that creation and annihilation operators behave in
a similar way to the ”ladder” operators of quantum harmonic oscillator.

QFT operators also acts on a separable Hilbert space, though a very special
one. Let H be a Hilbert space of one-particle states. Then the tensor product
H (n) = H ⊗ · · · ⊗ H denotes a Hilbert space of n particles and H (0) = C is a
Hilbert space of no particles, so-called vacuum, or ground state. Now we can define
Fock space (cf. [27]) F (H ) as a direct sum

F (H ) =

∞∑⊕

n=0

H (n)

This is a Hilbert space of an arbitrary number of particles.
For the reasons of brevity, suppose we have a purely bosonic system (for fermionic

system we would only have to take care that maximum number of particles in one
state is one, do the antisymmetrization instead of symmetrization and replace all
commutators with anticommutators). All possible states of this system form a Fock
space. One particular state will look like

1√
3

(|φ2〉|φ4〉|φ4〉+ |φ4〉|φ2〉|φ4〉+ |φ4〉|φ4〉|φ2〉) ≡ |0, 1, 0, 2, 0, 0, . . . 〉 (1.8)

meaning that there is one particle in the first excited state, two in the second excited
state and no particles in other states. Equation (1.8) shows how are vectors from the
Fock space constructed: |φi〉 is properly normalized vector from one-particle Hilbert
space corresponding to the i-th energy state (i.e. (i− 1)-th excitation). All energy
states together form an orthonormal basis of corresponding Hilbert space. Vectors of
type |φi〉|φj〉|φk〉 form an orthonormal basis of a space H (3) because basis of a direct
product of Hilbert spaces can be formed from the all possible products of base vectors
of the original spaces. Last step is symmetrization - bosons are undistinguishable
particles - and normalization. All these are just an technical obstructions which are
hidden in the elegant form on the right side of (1.8).

The latter notation allow us to show effects of annihilation operator âi and
creation operator â†i . They work in a following way - they destroy or create particle
in a state i:

ai| . . . , Ni−1, Ni, Ni+1, . . . 〉 =
√
Ni| . . . , Ni−1, Ni − 1, Ni+1, . . . 〉

a†i | . . . , Ni−1, Ni, Ni+1, . . . 〉 =
√
Ni + 1| . . . , Ni−1, Ni + 1, Ni+1, . . . 〉 (1.9)

To sum up, to construct a proper field theory, we have to find operators which
satisfy (1.7), usually by finding a solution of an equation for a classical field. From
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Fourier expansion of this solution we will (usually) get an annihilation and creation
operator, which are crucial in particle interpretation. Other operators can be con-
structed from the generalized coordinate φ and generalized momentum π using the
relations of the classical physics. However, in practice we are not able to solve QFT
equations analytically, so to obtain some experimentally verifiable results from QFT
Lagrangians, it is often necessary to use perturbation theory and Feynman path in-
tegrals. Last remark to the QFT in general is, that it does not stand on such a firm
mathematical footing as QM - there has been proposed several sets of axioms, but
it is extraordinary difficult to show that some realistic QFT satisfies them.

1.3 Abelian gauge theories

Inhomogeneous Maxwell equations can be written in a familiar covariant form

∂µF
µν = jν (1.10)

where electromagnetic tensor F µν is a 4-dimensional curl

F µν = ∂µAν − ∂νAµ (1.11)

and jν = (ρ, j) is 4-current. Note that for Aµ = (φ,A) is equation (1.11) equivalent
to the homogenous Maxwell equations.

However, the 4-potential Aµ does not specify the electromagnetic field uniquely.
The physics remains unchanged under a gauge transformation

Aµ → Aµ + ∂µχ

where χ is an arbitrary scalar function. We showed that Maxwell equations of
electromagnetism imply the existence of the symmetry of their solution. The sym-
metry takes form of a local gauge invariance (χ can have different values at different
points).

But, on the other hand, can the gauge symmetry imply dynamics? Let us have
the Lagrangian of a free Dirac field (i.e. particles with spin 1/2)

L0 = iψ̄γµ∂µψ −mψ̄ψ (1.12)

where ψ is bispinor (i.e. 4-component) field variable and γµ are 4× 4 matrices

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi

σi 0

)
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where σi are Pauli 2× 2 matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and ψ̄ denotes Dirac adjoint which is defined as follows:

φ̄ = φ†γ0

Bispinor ψ can be written in a form

ψ =

(
φR

φL

)
(1.13)

Right-handed spinor (i.e. 2-component complex ”vector”) ψR transforms like

ψR =

(
ξ1
ξ2

)
→ exp

[
i
(σ

2
·θ − i

σ

2
·φ
)]( ξ1

ξ2

)
while left-handed ψL transforms like

ψL =

(
η1

η2

)
→ exp

[
i
(σ

2
·θ + i

σ

2
·φ
)]( η1

η2

)
Matrices J = σ/2 and K = ±iσ/2 each generate group SU(2). The first stands for
spatial rotation with parameter θ, the latter stands for Lorentz ”boost”. Together
they form two inequivalent (one with K = iσ/2, the other with K = −iσ/2)
representations of the Lorentz transformation group. It has six parameters - three
angles θ (meaning the angles of rotation) and three angles φ (related to the velocities
in a following way γ = coshφ and γβ = sinhφ). More information about spinors,
their construction and their transformation can be found in a book [2].

If we substitute Lagrangian (1.12) into Euler-Lagrange equation we get well
known Dirac equation

(iγµ∂µ −m)ψ = 0

The Lagrangian is clearly invariant under global transformation

ψ′ = eiΛψ; ψ̄′ = e−iΛψ̄ (1.14)

where Λ is a real constant. Noether’s theorem now says that if Lagrangian is invari-
ant under some group of transformations, then there exist one or more conserved
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quantities. In this case our group of transformations is U(1), i.e. rotation in a
complex plane, and the respective conserved quantity is

Jµ = ψ̄γµψ

Transformation (1.14) means that all points make the same rotation at the same
time. This, however, does not follow the relativistic principle because the infor-
mation about how to rotate cannot propagate more quickly than light. So let us
suppose, that Λ is an arbitrary function of a space-time Λ = Λ(xµ). Thus we got a
local gauge transformation which in this case takes form

ψ′ = eiΛ(x)ψ; ψ̄′ = e−iΛ(x)ψ̄ (1.15)

When transforming (1.12) we obtain

L ′
0 = iψ̄′γµ∂µψ

′ −mψ̄′ψ′ = ie−iΛψ̄γµ(ieiΛψ∂µΛ + eiΛ∂µψ)−mψ̄ψ

= −ψ̄γµψ∂µΛ + iψ̄γµ∂µψ −mψ̄ψ = −ψ̄γµψ∂µΛ + L0 (1.16)

Therefore L0 is not invariant under local gauge transformation. Let us now try
to cancel the term proportional to ∂µΛ by adding an interaction term involving a
new vector field Aµ (called gauge field) whose transformation will cancel the non-
invariant term in L ′

0. The interaction term will be

Lint = gψ̄γµψAµ

where g is a coupling constant. The transformation of a vector field Aµ is required
to be

A′µ = Aµ +
1

g
∂µΛ (1.17)

In case Λ = gχ we obtain a gauge transformation of the electromagnetic 4-potential.
The extended Lagrangian

L = L0 + Lint (1.18)

now transforms like

L ′ = L ′
0 + gψ̄′γµψ′A′µ = L0 − ψ̄γµψ∂µΛ + gψ̄γµψ(Aµ +

1

g
∂µΛ)

= L0 + Lint = L (1.19)

It is common to write (1.18) as

L = iψ̄γµ(∂µ − igAµ)ψ −mψ̄ψ = iψ̄γµDµψ −mψ̄ψ (1.20)
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where Dµ denotes covariant derivative, i.e. differential operator which transforms
covariantly under gauge transformations (1.15) and (1.17), i.e. like ψ itself. In
particular

D′µ = eiΛDµe
−iΛ

This, together with (1.20), makes gauge invariance of the Lagrangian really trans-
parent.

In order to get nontrivial Euler-Lagrange equations of motion for the Aµ we
should add another term involving derivatives of Aµ (so called kinetic term). If we
want to maintain gauge invariance of (1.20), this new term has to be also gauge
invariant. Electromagnetic field tensor (1.11) fulfills these requirements. Finally we
get

Ltotal = −1

4
FµνF

µν + iψ̄ /Dψ −mψ̄ψ

where the coefficient of the kinetic term has been fixed to reproduce correctly
Maxwell equations. Feynman slash /D is a common notation for γµDµ. It is worth
noting, that the gauge field tensor Fµν can be also obtained from commutator

−igFµν = [Dµ, Dν ] (1.21)

To sum up, starting with the requirement of a local gauge symmetry of a free
matter-field Lagrangian we were forced to introduce an interaction involving a vector
field (with specific transformation properties) and finally we got a Lagrangian of a
Maxwell electromagnetic theory. It was a simple example of an successful heuristic
principle which led to the formulation of a present-day Standard Model of particle
physics.

1.4 Non-Abelian gauge theories

In the previous section, the gauge transformations formed group U(1) which is
Abelian, i.e. commutative. Natural question which now arises is whether it is
possible to generalize the results of the preceding section to the field theory models
involving a non-Abelian internal symmetry (e.g. isospin). It is indeed so as we will
show on the example of Yang-Mills field (in the honour of C. N. Yang and R. Mills).
Let us consider again a free-field Lagrangian

L0 = iΨ̄γµ∂µΨ−mΨ̄Ψ (1.22)
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where Ψ is a doublet of Dirac spinors (i.e. it has 8 components).

Ψ =

(
ψ1

ψ2

)
Similarly to the previous case, Lagrangian is invariant under global unitary trans-
formation

Ψ′ = UΨ; Ψ̄′ = Ψ̄U † (1.23)

where U is constant 2 × 2 unitary matrix. Nevertheless, we can restrict ourselves
only to the matrices with unit determinant - SU(2) group (these form the simplest
suitable non-Abelian group). We will not lose anything because U(2) = U(1) ⊗
SU(2), and the U(1) part can be treated in the already described way.

Any SU(2) matrix S can be written in a form

S = exp(iΛiT i) (1.24)

generators T i defined as T i = σi/2, where σi denote, as usual, Pauli matrices, and
Λi are some complex parameters. Notation (1.24) is possible because SU(2) is a
Lie group. Its generators T i forms corresponding Lie algebra with commutation
relations [

T i, T j
]

= if ijkT k (1.25)

where f ijk denotes structure constants. In this case f ijk = εijk.
The (1.22) is again not invariant under local gauge transformations (i.e. when

Λi = Λi(xµ)). Thus we will introduce a triplet of vector fields Ai
µ which together

will form matrix

Aµ(xµ) = Ai
µ(xµ)T i

Now we can formally define covariant derivative in a same way as in the Abelian
case

L = iΨ̄γµDµΨ−mΨ̄Ψ = iΨ̄γµ(∂µ − igAµ)Ψ−mΨ̄Ψ (1.26)

Because we require Dµ to transform like

D′µ = SDµS
† = SDµS

−1

where D′µ = ∂µ − igA′µ, matrix field Aµ must transform as follows

A′µ = SAµS
−1 +

i

g
S∂µS

−1 (1.27)
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It can be easily proved ( [1], chapter 4) that transformed field can be also decomposed
to the triplet of components A′µ = Ai′

µT
i.

Although we have transformation law for the matrix field, it is generally not
possible to write transformation relations for its components. The notable exception
are infinitesimal gauge transformation. In this case the transformation matrix S can
be used in form

S(xµ) = 1 + iλi(xµ)T i; S−1(xµ) = 1− iλi(xµ)T i (1.28)

where λi is an infinitesimal local parameter. Substituting (1.28) into (1.27), neglect-
ing terms of O(λ2) and remembering relation (1.25) we will get

Ai′
µ = Ai

µ − f ijkλjAk
µ +

1

g
∂µλ

i (1.29)

In the case of U(1) group all generators commute, so that the middle term in
(1.29) vanishes and we get the known transformation of the electromagnetic po-
tential (1.17).

The last step is the construction of the kinetic term. We can take inspiration
from (1.21), so that

Fµν =
i

g
[Dµ, Dν ] (1.30)

After some algebra one gets

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]

If we define components of a field tensor in the same way as for the interaction field
(i.e. Fµν = F i

µνT
i) we get

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gf ijkAj

µA
k
ν

From definition (1.30) it is obvious that Fµν transforms covariantly. For infinitesimal
transformations of components it means that

F i′
µν = F i

µν − f ijkλjF k
µν

thus Fµν is not gauge invariant. It can, nevertheless, be used to construct a quadratic
invariant

Lkinetic = cTr(FµνF
µν) =

1

2
cF i

µνF
iµν
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where c is an arbitrary constant. The last equality is valid because

Tr(T iT j) =
1

2
δij

If we set c = −1/2 for the best resemblance to the Abelian case, the final Lagrangian
looks like

LYM = −1

4
F i

µνF
iµν + iΨ̄ /DΨ−mΨ̄Ψ (1.31)

The most interesting change, which has no analogy in Maxwell electrodynamics, is
that the first term in (1.31) contains (in addition to expected kinetic terms) also
cubic and quartic terms corresponding to self-interaction of the Yang-Mills fields.

From this general scheme we can construct gauge fields also for higher dimen-
sion groups (most common example is SU(3) used in QCD) using the respective
generators and structure constants. On the other hand, this way we can describe
only massless gauge fields (as photon or gluons) but it fails to describe phenom-
enology of weak interactions. In the next section it will be briefly explained how to
simultaneously introduce mass term and maintain gauge invariance.

1.5 Electroweak Interaction

1.5.1 Basic Ideas

The formulation of the standard model of electroweak interaction by S. L. Glashow,
S. Weinberg and A. Salam (GWS) in the late 1960s was one of the most astonish-
ing achievements of the 20th century physics. It has not only given one theoreti-
cal framework for rather different physical phenomena like parity-conserving long
range electromagnetism and parity-violating short range weak interaction, but it
has also (successfully) predicted the masses of intermediating bosons W . Moreover
it predicted the existence of neutral intermediating boson Z which had been totally
unexpected at that time (in the contrary to W bosons which were supposed to me-
diate interactions of charged and neutral leptons, e.g. β-decay). Another predicted
phenomenon that was not previously expected was neutral current, i.e. interactions
of the particles carrying the same charge mediated by Z boson.

The neutral weak current was indeed observed in 1970s in CERN and the bosons
W and Z were discovered in 1983, also in CERN. As of 2006 the only unobserved
prediction of GWS model is that of Higgs particle which should give masses to the
intermediating bosons as well as to the other weakly interacting particles.
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The appropriate group for electroweak unification is SU(2) × U(1). To incor-
porate different behaviour of electromagnetic and weak interaction, it is good to
request different transformation properties from right-handed and left-handed com-
ponents of lepton fields (1.13). It is convenient to introduce operator of chirality as
4× 4 matrix

γ5 =

(
1 0
0 −1

)
(1.32)

Now we can define left-handed components of neutrino and electron as νL = 1/2(1−
γ5)ν and eL = 1/2(1 − γ5)e. Similarly νR = 1/2(1 + γ5)ν and eR = 1/2(1 + γ5)e.
To describe proper phenomenology the electroweak theory we now require that left-
handed components form SU(2) doublet

L =

(
νL

eL

)
(1.33)

while right-handed components form SU(2) singlets. Let us define the transforma-
tion properties of lepton and gauge fields under the subgroup U(1) similarly as in
the section 1.2.:

B′µ = Bµ +
1

g
∂µΛ (1.34)

Ψ′ = eiY ΛΨ (1.35)

Bµ denotes the Abelian gauge field, Ψ is a symbol of either singlet or doublet of fields
and Y is a real parameter meaning that there are infinitely many representations of
U(1) group. To maintain invariance, covariant derivative takes form

Dµ = ∂µ − igY Bµ

We have introduced symmetry, so one can now ask, which properties are conserved.
The SU(2) symmetry stands for conservation of weak isospin, while U(1) stands for
weak hypercharge. Using experience from previous section we can now write down
SU(2)× U(1) gauge invariant Lagrangian involving lepton interactions

Llepton = iL̄γµ(∂µ − igAi
µ

σi

2
− ig′YLBµ)L+ iēRγ

µ(∂µ − ig′Y
(e)
R Bµ)eR +

+iν̄Rγ
µ(∂µ − ig′Y

(ν)
R Bµ)νR (1.36)

where Ai
µ is the triplet of Yang-Mills gauge fields (from SU(2) symmetry subgroup).

In terms containing SU(2) singlets the non-Abelian gauge fields are missing, because
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the generators of group are trivial in this representation. Parameter Y represents
(in all forms) weak hypercharge and its values are fixed by

Q = T3 + Y

where Q is electric charge and T3 is the third component of the weak isospin which
behaves similarly like the strong isospin defined in the section 1.1. In particular,
doublet members have the magnitude of spin 1/2 (T3 then has values ±1/2), singlets
have isospin of 0. So the hypercharge values

YL = −1

2
, Y

(e)
R = −1 and Y

(ν)
R = 0

denote also the average charge of a given multiplet. Notice that we have introduced
two coupling constants, as our symmetry group can be decomposed to the product
of two independent groups.

The gauge fields Ai
µ and Bµ need not have any direct physical meaning. Indeed,

the physical vector fields are their linear combination. Let us consider the interaction
part of (1.36)

L (int)
lepton = gL̄γµσ

i

2
LAi

µ + g′YLL̄γ
µLBµ + g′Y

(e)
R ēRγ

µeRBµ + g′Y
(ν)
R ν̄Rγ

µνRBµ

This we could rewrite in a following form

L (int)
lepton = g(L̄γµσ

+

2
LW+

µ + L̄γµσ
−

2
LW−

µ + L̄γµσ
3

2
LA3

µ) + . . .

=
g√
2
(ν̄Lγ

µeLW
+
µ + ēLγ

µνLW
−
µ ) + Ldiag (1.37)

where σ± = 1/
√

2(σ1±iσ2) and W±
µ = 1/

√
2(A1

µ∓iA2
µ). Ldiag denotes all remaining

terms - these involving diagonal matrix (σ3 or unit matrix). The first two terms in
(1.37) contain the weak charged current (that is an interaction when participating
particles exchange a W boson) and W±

µ represents the couple of the intermediating
bosons.

Lagrangian (1.36) should also describe electromagnetic interaction. When we
work out the matrix multiplication in diagonal terms we get

Ldiag =
1

2
gν̄Lγ

µνLA
3
µ −

1

2
gēLγ

µeLA
3
µ + g′YLν̄Lγ

µνLBµ + g′YLēLγ
µeLBµ +

+g′Y
(ν)
R ν̄Rγ

µνRBµ + g′Y
(e)
R ēRγ

µeRBµ
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It is now obvious that none of the fields A3
µ and Bµ can be directly associated with

electromagnetic field. They are coupled to the neutrino and there is no choice of
(generally arbitrary) YL and YR that could make interaction fields coupled to electron
only. This problem is solved when one considers an orthogonal transformation

A3
µ = cos θWZµ + sin θWAµ

Bµ = − sin θWZµ + cos θWAµ (1.38)

where Aµ will be electromagnetic field and Zµ will represent the new neutral vector
field. The parameter of transformation θW is called the Weinberg angle or weak
mixing angle. If we now write down the part of Lagrangian containing Aµ we get

L (A)
diag =

[1
2
gν̄Lγ

µνL sin θW − 1

2
gēLγ

µeL sin θW + g′YLν̄Lγ
µνL cos θW +

+g′YLēLγ
µeL cos θW + g′Y

(ν)
R ν̄Rγ

µνR cos θW + g′Y
(e)
R ēRγ

µeR cos θW

]
Aµ

When we now require that the interaction does not involve neutrino and that it
interacts with right-handed and left-handed component with equal strength (the
interaction conserves parity), we will get three conditions:

Y
(ν)
R = 0 (1.39)

1

2
g sin θW + YLg

′ cos θW = 0 (1.40)

−1

2
g sin θW + YLg

′ cos θW = Y
(e)
R g′ cos θW (1.41)

They are satisfied when

Y
(e)
R = 2YL and tan θW = −2YL

g′

g
(1.42)

When we choose the conventional value of lepton hypercharge (i.e. −1/2) we will
get following relations for weak mixing angle which links together coupling constants
from both interactions

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

(1.43)

Because electromagnetic Lagrangian is conventionally written as

LEM = −e ēγµeAµ
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we can obtain (from (1.41) and (1.42)) a relation between ”classical” coupling con-
stant e and gauge coupling

e = g sin θW (1.44)

The term in Ldiag containing neutral boson field Zµ describes weak neutral currents.
Using the relation (1.42) it can be recast as

L (Z)
diag =

g

cos θW

[
1

2
ν̄Lγ

µνL + (sin2 θW − 1

2
)ēLγ

µeL + sin2 θW ēRγ
µeR

]
Zµ

Thus we have analyzed the Llepton. Now we should add appropriate kinetic term
which is (in the spirit of the Yang-Mills construction)

Lgauge = −1

4
F i

µνF
iµν − 1

4
BµνB

µν (1.45)

where,

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gεijkAj

µA
k
ν and Bµν = ∂µBν − ∂νBµ (1.46)

1.5.2 Goldstone model

The Lagrangian Llepton + Lgauge constructed in the preceding section does not cor-
rectly describe what we can see in the experiment. Indeed (1.36) does not contain
any mass term (i.e. term in the form −m2ψ̄ψ where m is an arbitrary positive
constant), while we know from that both leptons and weak intermediating bosons
have mass. It is also obvious that introducing such a terms in a straightforward
way would break desired gauge symmetry of our Lagrangian. The way how to do
this without destroying the symmetry is called Higgs mechanism (after P. Higgs).
Its basic ingredient is the Goldstone phenomenon which is also the subject of this
section.

Let us have a Lagrangian of a classical complex scalar field in the form

L = ∂µφ∂
µφ∗ + µ2φφ∗ − λ(φφ∗)2 (1.47)

where µ is a real parameter with the dimension of mass (note that it has ”wrong
sign”) and λ is dimensionless positive coupling constant. Setting λ = 0 we will get
Lagrangian that ultimately leads to the Klein-Gordon equation with reversed sign
of mass squared.
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Corresponding energy density is

H = ∂µφ∂
µφ∗ +

V (φ)︷ ︸︸ ︷
(−µ2φφ∗ + λ(φφ∗)2)

Let us find the state with the minimal energy. Contributions from derivative terms is
always positive, so we should consider a constant field φ0 and try to find a minimum
of the ”potential” V (φ). It is obvious that the ”potential” is a function of one real
variable ρ2 = φφ∗. Remembering that λ > 0 we easily find that the minimum
of V corresponds ρ = ±µ/

√
2λ. Returning to the original variable φ we obtain a

continuous one-parameter set of constant fields

φ0 =
v√
2
eiα (1.48)

where v = µ/
√
λ and α is an arbitrary real parameter. The ground state is thus

infinitely degenerate. The existence of a non-zero ground state led J. Goldstone to
the idea that it would be more reasonable to study small oscillations around this
ground state rather than using φ = 0 as a reference point.

The first step is to factorize the field in a way

φ(x) = ρ(x) exp

(
i
π(x)

v

)
(1.49)

and rewrite the ”potential” as

V (ρ) = −µ2ρ2 + λρ4 = λ

[(
ρ2 − µ2

2λ

)2

−
(
µ2

2λ

)2
]

= λ

(
ρ2 − µ2

2λ

)2

− 1

4
λv4 (1.50)

where ρ and π are radial and angular field variables. The factor 1/v in (1.49)
guarantees that π has the right dimension of mass. Because without losing anything
essential we can drop the additive constant from (1.50), the Lagrangian (1.47) can
be written in a form

L = ∂µρ∂
µρ+

1

v2
ρ2∂µπ∂

µπ − λ

(
ρ2 − µ2

2λ

)2

(1.51)

Now its time to do what was suggested above. Let us introduce new field variable
σ by relation

ρ =
1√
2
(σ + v) (1.52)
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The factor 1/
√

2 was chosen to get proper normalization. Substituting (1.52) into
(1.51) one gets

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ∂

µπ − λv2σ2 + interaction terms (1.53)

where we denoted all terms higher than quadratic in fields or their derivatives as
”interaction terms”. The result of all this is that instead of a complex field φ with
wrong mass sign we now have two real fields σ and π. One is massless (π) while the
other has mass with right sign, i.e. 1/2 m2

σ = λv2.
To sum up, we started with Lagrangian which was invariant under transformation

φ′ = eiαφ. However, its ground state lost this symmetry, so the situation which is
usually called ”spontaneous symmetry breaking” occurred. This made us realize
that (1.47) describes in fact one massive scalar field σ and one massless field π,
which corresponds to the so-called Goldstone boson. If we rewrite transformation
law in terms of this new variables we get

σ′ = σ, π′ = π + vα

so we did not lose the Lagrangian invariance. This observation can be generalized by
Goldstone theorem which says that if a global continuous symmetry is spontaneously
broken, then there exist one massless scalar particle for each broken generator of the
original symmetry. Proof of this statement can be found in [4].

1.5.3 Higgs Mechanism for SU(2)⊗ U(1) gauge symmetry

Now we would like to introduce 3 massive vector bosons which we observe during
experiments. So we will need 3 Goldstone bosons. But because at least one scalar
boson survives the Higgs mechanism, we will need at least 4 real scalar fields. Let
us construct a (doublet) representation of SU(2) group as

Φ =

(
φ+

φ0

)
=

(
φ1 + iφ2

φ3 + iφ4

)
where φ+ and φ0 are complex and φj are real.

Our key purpose when constructing Lagrangian is that it remains gauge invari-
ant. In analogy with previous section (in particular with (1.47)) we should introduce
Lagrangian that is SU(2) invariant:

L = (∂µΦ†)(∂µΦ)

−V (Φ)︷ ︸︸ ︷
+µ2Φ†Φ− λ(Φ†Φ)2
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Similarly to the preceding section we can find that ”potential” V is minimal for

Φ†0Φ0 =
v2

2
; v =

µ√
λ

When we shift the ground state value to the level of minimal energy, we obtain

L = (∂µΦ†)(∂µΦ)− λ(Φ†Φ− v2

2
)2 (1.54)

Now we have to make (1.54) locally SU(2)⊗U(1) invariant. The Φ itself is not only
SU(2) doublet, but also carries weak hypercharge Y associated with U(1). Because
the ”potential” part of Lagrangian has already the required symmetry, it will be
sufficient to change normal derivatives to covariant as we have done in previous
sections. Resulting Lagrangian is then

LHiggs = Φ†(
←
∂µ +igAj

µ

σj

2
+ ig′Y Bµ)(

→
∂µ −igAkµσ

k

2
− ig′Y Bµ)Φ− λ(Φ†Φ− v2

2
)2

(1.55)
where the arrows denote in which direction the derivatives act, Aj

µ and Bµ are Yang-
Mills gauge fields which were introduced to maintain local gauge symmetry (in the
same way as in the sections 1.4 or 1.5.1), σj are Pauli matrices and g, g′ are coupling
constants of respective fields.

Continuing in analogy with the previous section (cf. (1.49)) , we should factorize
Φ. This can be done as

Φ(x) = exp

(
i

v
πj(x)σj

)(
0

1√
2
(v +H(x))

)
(1.56)

where we have already done the shift of radial variable (ρ in (1.49)) and πj are
Goldstone bosons.

The transformation which we use is unitary, i.e. it does not change the norm of
Φ. However, it can change its ”phase”. In particular it means, that there is a gauge
transformation for which

exp

(
i

v
πj(x)σj

)
→ 1 i.e. πj → 0 (1.57)

This is called U -gauge. Of course, the transformation affects also gauge fields, but,
as their transformation properties were mentioned earlier (1.27 and 1.17) we shall
not write them explicitly this time. Complex doublet Φ now transforms like

Φ(x) → ΦU(x) =

(
0

1√
2
(v +H(x))

)
(1.58)
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We shall remember, that this transformation changes also gauge fields Aj
µ and Bµ,

but for the sake of simplicity, we will denote the transformed fields in the same way
as the old ones (anyway, there was nothing special about the original fields). When
we write ΦU as

ΨU(x) =
1√
2
(v +H(x))ξ, where ξ =

(
0
1

)
(1.59)

and use the well known relations for Pauli matrices

σiσj + σjσi = 2δij1 (1.60)

ξ†σiξ = −δ3i (1.61)

ξ†ξ = 1 (1.62)

one can get, after some algebra

L (U)
Higgs =

1

2
∂µH∂

µH − λv2H2 − λvH3 − 1

4
λH4 +

+
1

8
(v +H)2(g2Aj

µA
jµ − 4Y gg′A3

µB
µ + 4Y 2g′2BµB

µ)

(1.63)

Focusing on the relevant mass term (i.e. quadratic in fields) we get

Lmass =
1

8
v2
[
g2
((
A1

µ

)2
+
(
A2

µ

)2)
+
(
gA3

µ − 2g′Y Bµ

)2]
(1.64)

This we now adjust to such a form where we will see familiar terms for vector bosons
known from previous section

Lmass =
1

8

(
g2 + 4g′2Y 2

)
v2

(
g√

g2 + 4g′2Y 2
A3

µ −
2Y g′√

g2 + 4g′2Y 2
Bµ

)2

+

+
1

4
g2v2W−

µ W
+µ (1.65)

where we used W±
µ = 1/

√
2(A1

µ∓ iA2
µ) (cf. 1.37). We can also find the neutral boson

Zµ in the above relation. Writing inverse transformation to (1.38) we find that

Zµ = cos θWA
3
µ − sin θWBµ (1.66)

34



Using the relations (1.43) it is easy to see that when we set the Higgs boson weak
hypercharge Y = 1/2 we get the mass term for boson Zµ. To be exhaustive, we can
introduce a gauge field Aµ (electromagnetic field) which is orthogonal to Zµ, i.e. the
same situation as in section 1.4.

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) (1.67)

where we had already put the conventional value of hypercharge Y . This field is
massless, because there is no such term in (1.65).

To sum up, we started with three Goldstone bosons (they emerged from sponta-
neously broken SU(2) symmetry), which were, however, unphysical - gauge trans-
formation made them disappear. On the other hand we got three massive bosons
W± and Z as well as massive Higgs boson. Their masses can be easily obtained
from (1.65), (1.66 and (1.63)

mW =
1

2
gv (1.68)

mZ =
1

2

√
g2 + g′2 v (1.69)

mH =
√

2λ v (1.70)

To see which parameters are free (i.e. their value comes from the experiment, not
from the theory itself) it is worth to rewrite boson masses as well as vacuum value
of the Higgs field in following way

mW =

(
πα

GF

√
2

) 1
2 1

sin θW

mZ =

(
πα

GF

√
2

) 1
2 1

sin θW cos θW

v =
1

(GF

√
2)

1
2

(1.71)

where we use the Fermi constant GF , fine structure constant α and unification
condition for electromagnetic coupling constant:

GF√
2

=
g2

8m2
W

, α =
e2

4π
, e = g sin θW (1.72)

35



From (1.71) and (1.63) we see that the masses of W± and Z are subject to two
independent parameters GF and θW (which can be measured), while the mass of
the Higgs boson is dependent on totally unknown parameter λ. We will close this
section with the current2 experimental values

mW = 80.425± 0.038 GeV

mZ = 91.1876± 0.0021 GeV

sin2 θW = 0.23120± 0.00015

GF = 1.16637± 0.00001× 10−5 GeV−2 (1.73)

1.5.4 Lepton masses

Previous section showed how to add masses to the interaction bosons and maintain
desired gauge invariance in the same time. However, we know that also leptons have
masses, but the Lagrangian (1.36) does not have any mass terms. This can be fixed
when we employ Yukawa-type coupling, which will be done in this section. Let us
have a left-handed SU(2) doublet

L =

(
νL

eL

)
(1.74)

the right-handed singlet eR and the Higgs doublet Φ. From that we can build an
SU(2) invariant term

LYukawa = −heL̄ΦeR − heL̄ΦeR (1.75)

One can see that (1.75) is also invariant under weak hypercharge U(1): hypercharge

of L̄ is YL̄ = −YL = 1/2, YΦ = 1/2 and Y
(e)
R = −1. Together we get YL̄ +YΦ +Y

(e)
R =

0. Similarly to the previous section, we can now use unitary gauge transformation
on (1.75):

L (U)
Yukawa = −he(ν̄L, ēL)

(
0

1√
2
(v +H)

)
eR − heν̄L, ēL)

(
0

1√
2
(v +H)

)
eR

= − 1√
2
he(v +H)ēLeR −

1√
2
he(v +H)ēLeR

= − 1√
2
hevēe−

1√
2
heēeH (1.76)

2data from 2002, cf. [5]
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Here we can see an electron mass term

me =
1√
2
hev

The second term means interaction of the electron and the Higgs field. Its strength
is determined by coupling constant

geeH = − 1√
2
he = −me

v

This approach can be of course simply generalized to the different charged lepton
types like µ or τ .

Because recent experiments (e.g. Super-Kamiokande) have shown that neutrino
mass is non-zero, natural question arises: Is it possible to give mass to the neutrino
through the same mechanism that gives mass to the electron?

It is easy to realize that it is impossible to construct a SU(2)⊗U(1) invariant out
of the doublets Φ and L and the singlet νR - the hypercharge assignments (Y ν

R = 0)
would break the U(1) invariance. However, we can use a trick. Let us define a new
Higgs doublet as

Φ̃ = i

(
0 −i
i 0

)
Φ∗ (1.77)

where Φ∗ is a complex conjugate to the original Higgs doublet Φ. We may also see
that the transformation matrix in (1.77) is in fact the second Pauli matrix σ2. It
can be shown that this quantity transforms in the same way like Φ itself (cf. [1]).
From the transforming properties under U(1) (see (1.35)) one can see that complex
conjugation changes the hypercharge sign. Thus, we have now YΦ̃ = −1/2. We can
now construct the invariant

L̃Yukawa = −hνL̄Φ̃νR − hνL̄Φ̃νR (1.78)

After applying the unitary gauge transformation and repeating the process from the
previous paragraph we get

L̃ (U)
Yukawa = − 1√

2
hνvν̄ν −

1√
2
hν ν̄νH

Thus the neutrino mass and the Yukawa coupling constant are

mν =
1√
2
hνv and gννH = −mν

v
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1.5.5 The electroweak interaction of quarks

So far we were interested only in leptons. But, as was said earlier, the weak inter-
action affects also quarks. One can now ask if it is possible to incorporate lepton
interaction into Lagrangian we have been constructing in the previous sections

L = Llepton + Lgauge + LHiggs + LYukawa (1.79)

whose parts were described above (cf. (1.36), (1.45), (1.55), (1.75)). Because LHiggs

and Lgauge do not contain any lepton fields, they will remain unchanged after the
addition of quarks. Let us therefore focus on Llepton and LYukawa . The extension
of the Lagrangian can be done quite easily and naturally. Let us have three SU(2)
doublets

L
(d)
0 =

(
u0L

d0L

)
, L

(s)
0 =

(
c0L

s0L

)
, L

(b)
0 =

(
t0L

b0L

)
(1.80)

and six SU(2) singlets u0R, d0R, c0R, s0R, t0R, b0R, where u, d, c, s, t, b stand for
up, down, charm, etc. (cf. table 1.2) and indices L, R denote left-handed and
right-handed components respectively.

Quarks doublets and singlets were constructed in analogy with lepton doublets
(1.33) and singlets, so they could be used in a similar way. Indeed nothing prevents
us from extending Llepton (1.36) to

Lfermion =
∑

`=e,µ,τ

iL̄(`)γµ(∂µ − igAj
µ

σj

2
− iY

(`)
L g′Bµ)L(`) +

+
∑

q=d,s,b

iL̄
(q)
0 γµ(∂µ − igAj

µ

σj

2
− iY

(q)
L g′Bµ)L

(q)
0 +

+
∑

`=e,µ,τ,νe,νµ,ντ

i¯̀Rγ
µ(∂µ − iY

(`)
R g′Bµ)`R +

+
∑

q=d,u,s,c,b,t

iq̄0Rγ
µ(∂µ − iY

(q)
R g′Bµ)q0R (1.81)

where we introduced also the other two generations of leptons. The lepton doublets
are defined as follows

L(e) =

(
νeL

eL

)
, L(µ) =

(
νµL

µL

)
, L(τ) =

(
ντL

τL

)
(1.82)

The hypercharge assignment must obey the relation

Q = T3 + Y
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Using the values from the table 1.2 one gets

Y
(`)
L = −1

2
(` = e, µ, τ), Y

(`)
R = −1 (` = e, µ, τ), Y

(`)
R = 0 (` = νe, νµ, ντ )

Y
(q)
L = +

1

6
(q = d, s, b), Y

(q)
R = −1

3
(q = d, s, b), Y

(q)
R = +

2

3
(q = u, c, t)

Lagrangian (1.81) was constructed in rather formal way treating the quarks like
”leptons of other type”. So we shall now ask if (1.81) has any physical meaning.
We already know from the previous section that Yang-Mills fields Aj

µ and Bµ are
only linear combination of physical fields. If we introduce W±

µ , Zµ and Aµ in the
same way as in the preceding sections, we can identify lepton charged currents as
(cf. (1.37))

L (`)
CC =

g

2
√

2
ν̄`γ

µ(1− γ5)`W
+
µ + hermitian conjugate

where γ5 is an operator of chirality (see (1.32)). However the appropriate quark
charged current Lagrangian would look like

L (u,d)
CC =

g

2
√

2
ū0γ

µ(1− γ5)d0W
+
µ + hermitian conjugate

which is in strong disagreement with the Lagrangian, which was derived before
GWS Standard Model and was generally accepted as correctly describing the quark
charged current phenomenology

L (u,d,s)
CC =

g

2
√

2
ūγµ(1− γ5)(d cos θC + s sin θC)W+

µ + hermitian conjugate (1.83)

where θC denotes the Cabibbo angle. Thus we can conclude, that fields q0, where
q denotes the flavour of particular quark, do not have direct physical meaning, but
they rather are (as in the case with the Yang-Mills fields) a linear combination of
the physical quark fields.

To find relevant transformation, we will make a step aside. Apart from Llepton

the lepton fields could also be found in the LYukawa . So let us formally extend the
Yukawa part in the most general way (which holds SU(2)⊗ U(1) invariance)

L (q)
Yukawa = −

∑
q=d,s,b
q′=d,s,b

(
hqq′L̄

(q)
0 Φq′0R + h.c.

)
−
∑

q=d,s,b
q′=u,c,t

(
h̃qq′L̄

(q)
0 Φ̃q′0R + h.c.

)
(1.84)

where Φ denotes Higgs scalar and Φ̃ its ”complex conjugate” (1.77). We wrote
only the quark part (the lepton part has already been examined in the previous
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section). From the construction it is obvious that Lagrangian remained SU(2)×U(1)
invariant. Note that in this case hqq′ and h̃qq′ are generally complex. When we
apply unitary gauge transformation on the (1.84) (defined in the same way as in the
preceding sections) we will get

L (q)
Yukawa = − 1√

2
(v +H)(d̄0L, s̄0L, b̄0L)

 hdd hds hdb

hsd hss hsb

hbd hbs hbb

 d0R

s0R

b0R

+ h.c.

− 1√
2
(v +H)(ū0L, c̄0L, t̄0L)

 h̃uu h̃uc h̃ut

h̃cu h̃cc h̃ct

h̃tu h̃tc h̃tt

 u0R

c0R

t0R

+ h.c.

Working out the matrix multiplication we will get not only desired mass terms
but also interaction terms. We will get rid of them using the fact, that every
nonsingular square complex matrix M can be decomposed3 as

M = U †MV

where U andV are unitary matrices and M is diagonal and positive.

Both matrices hqq′ and h̃qq′ are nonsingular (otherwise we would get zero quark
masses) so they could be diagonalized by means of biunitary transformation. Let
us transform quark fields asdL

sL

bL

 = U

d0L

s0L

b0L

,
dR

sR

bR

 = V

d0R

s0R

b0R

,
uL

cL
tL

 = Ũ

u0L

c0L

t0L

,
uR

cR
tR

 = Ṽ

d0R

s0R

b0R

 (1.85)

It is clear that L (q)
Yukawa now have only mass terms, so we have a good reason to

identify the fields u, d, c, s, t, b with quarks.

Let us return to our original problem with the charged current. Substituting

3Proof of this statement could be found in [1], chapter 7.4
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(1.85) into (1.81) we get the charged current term in form

L (quark)
CC =

g√
2
(ū0L, c̄0L, t̄0L)γµ

 d0L

s0L

b0L

W+
µ + h.c. =

=
g√
2
(ūL, c̄L, t̄L)γµŨU †

 dL

sL

bL

W+
µ + h.c. (1.86)

Matrix V = ŨU † has nine complex (18 real) parameters. But U is unitary, so that
also V is unitary which means, that V has 9 real parameters. However, we can go
further. Without the loss of generality we can factor out the complex phase factors
from the first column and put them into the front line vector of quark fields. We
can do the same in the first row, remembering that the [1, 1] element is already real.

The essential part of (1.86) then become

(ūLe
iδ11 , c̄Le

iδ21 , t̄Le
iδ31)

 R11 R12 R13

R21 V22e
−iδ21e−iδ′

12 V23e
−iδ21e−iδ′

13

R31 V32e
−iδ31e−iδ′

12 V33e
−iδ31e−iδ′

13

 dL

sLe
iδ′

12

bLe
iδ′

13


(1.87)

which can be recast as

(ū′L, c̄
′
L, t̄
′
L)

 R11 R12 R13

R21 V ′′22 V ′′23
R31 V ′′32 V ′′33

 dL

s′L
b′L

 (1.88)

because the change of the complex phase does not change the physical meaning of the
field. We ignored the other parts of (1.86) because they act only as numerical factors.
Thus we got rid of five complex phase factors and matrix V is now dependent on only
four real parameters. Such a parametrization of V is called Cabibbo-Kobayashi-
Maskawa matrix (or CKM matrix for short). If the V was purely real from the
beginning (i.e. V would be an orthogonal matrix), it would be parameterized by
three angles, therefore the fourth parameter is a complex phase.

Now it is time to ask if this process solved our original problem with the wrong
Lagrangian for the quark charged current. Because (1.83) does not contain particles
from the third generation of mass, we can restrict ourselves to two dimensions.
General matrix V now have 4 real parameters, from which only one will remain
after we factor out the complex phases from the first row and column. As a result
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the two-dimensional CKM matrix now represents rotation in a plane. The charged
current Lagrangian then becomes

L (quark)
CC =

g√
2
(ūL, c̄L)γµ

(
cos θC sin θC

− sin θC cos θC

)(
dL

sL

)
W+

µ + h.c. (1.89)

When we work out the matrix multiplication we will get the right charged current
Lagrangian (1.83). Moreover, we will get also the term describing c, d, s quark
charged current which is missing in the original theory, as quark c was not observed
until 1970s.

The existence of nontrivial complex phase of CKM matrix has one notable con-
sequence. The elements of CKM matrix determine (up to a real factor) the coupling
constants of W bosons and quarks - so that these constants can be complex. We will
see that under this condition the interaction Lagrangian is no longer CP invariant.
Let us write down a part of (1.89) describing the interaction of quarks q1 and q2

L (12)
int = g12q̄1γ

µ(1− γ5)q2W
+
µ + g∗12q̄2γ

µ(1− γ5)q1W
−
µ (1.90)

After charge and parity conjugation, the Lagrangian looks like

L (12)′
int = g12q̄2γµ(1− γ5)q1W

−µ + g∗12q̄1γµ(1− γ5)q2W
+µ (1.91)

thus for g∗12 6= g12 we have lost the universal CP invariance (which is a long known
experimental fact). Note that three is the lowest number of fermion generations for
which the theory allows CP violation.

Finally we will make a brief conclusion of this introduction to the GWS Stan-
dard Model. It is a gauge theory based on local SU(2) × U(1) symmetry and its
Lagrangian can be written as

L = Lfermion + Lgauge + LHiggs + LYukawa (1.92)

whose parts can be retrieved from (1.81), (1.45) and (1.55). Although we did not
write complete LY ukawa explicitly, it can be easily composed from (1.75), (1.78)
and (1.84). However this mathematically elegant form does not have direct physical
meaning - to achieve that we have to transform fields Aj

µ and Bµ to the fields W±
µ ,

Zµ and Aµ, and the quark fields q0 to the q.
Since its development in the late 1960s the GWS theory has met with tremendous

phenomenological success: it predicted (among others) the existence and masses of
intermediating bosons as well as the neutral weak current. All this phenomena were
later observed and measured values confirmed the predictions of GWS Standard
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Model. Nevertheless, it also predicted the existence of Higgs boson giving masses to
the intermediating bosons and leptons, which has not been observed so far. This is
one of the main reasons why the new collider is being built in CERN - if the Higgs
particle exist, it should be found there.

The last remark concerns the number of free parameters inside GWS Standard
Model. First of all, there ale coupling constants g, g′, λ and ”vacuum value” of
Higgs field v. They could be expressed in terms of other physical constants (e.g. α,
sin2 θW , mZ and mH), but there would be still four of them. Then there are particle
masses: we have six lepton masses, six quark masses, four parameters of quark CKM
matrix and four parameters of the lepton CKM matrix - that is 24 free parameters
altogether. Such a high number suggests that Standard Model is not an ultimate
theory of elementary particles, so the new discoveries at higher energies obtained
from LHC could lead us to the more fundamental theory.

1.6 Quantum Chromodynamics

The last part of the Standard Model is the theory of the strong interaction. Similarly
to the GWS electroweak theory, the QCD is also a non-Abelian gauge theory based
in this case on a symmetry group SU(3). Why this particular symmetry?

The Gell-Mann Eightfold Way brought order among hadrons, but created a new
mystery: it was ∆++ resonance particle which has spin 3/2, but according to the
Eightfold way it is composed from three u quarks which will therefore all have
parallel spins, thus violating Pauli exclusion principle. This problem was solved by
introducing another degree of freedom, later called colour charge. Because baryons
are composed from three quarks and we perceive them as colour neutral, it was
proposed that quarks can have ”red”, ”green” or ”blue” colour. This particular
choice suggests that when this three quarks mix together, the resulting colour is
”white”, i.e. the baryons are colour neutral.

Antiquarks were assigned anticolours, so mesons (composed of quark-antiquark
pair) are also colour neutral. And because it does not matter which particular quark
in baryon is red, which green and which blue (as long as all colours are present), a
SU(3) symmetry was chosen.

The mathematical structure of a general non-Abelian gauge theory was described
in section 1.4. So we can readily substitute to the Yang-Mills Lagrangian (1.31) to
get

LQCD = −1

4

8∑
j=1

F j
µνF

µνj +
∑

q=u,d,c,s,t,b

q̄(i /D −mq)q
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where /D = γµDµ and covariant derivative is defined (cf. (1.26))as follows

Dµ = ∂µ − igsGµ = ∂µ − igs

8∑
j=1

Gj
µt

j

where gs is coupling constant of the strong interaction and Gj
µ are vector fields

introduced to maintain local gauge invariance. In this case they are called gluons.
Matrices tj are generators of the SU(3) group and are called Gell-Mann matrices:

t1 =

 0 1 0
1 0 0
0 0 0

 , t2 =

 0 −i 0
i 0 0
0 0 0

 , t3 =

 1 0 0
0 −1 0
0 0 0

 ,

t4 =

 0 0 1
0 0 0
1 0 0

 , t5 =

 0 0 −i
0 0 0
i 0 0

 , t6 =

 0 0 0
0 0 1
0 1 0

 ,

t7 =

 0 0 0
0 0 −i
0 i 0

 , t8 =
1√
3

 1 0 0
0 1 0
0 0 −2


It is easy to verify that these matrices obey commutation relation[

ta, tb
]

= ifabctc

where the structure constants fabc are totally antisymmetric in their indices and the
only non-zero components are

f 123 = 2

f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 = 1

f 458 = f 678 =
√

3 (1.93)

The components of the field tensor Fµν are

F j
µν = ∂µG

j
ν − ∂νG

j
µ + gsf

jklGk
µG

l
ν

Because of the non-Abelian nature of SU(3) group we can see that LQCD con-
tains gluon-gluon coupling and the gluons carry the colour charge. Thanks to this
fact, QCD enjoys two very important properties which cannot be found in Abelian
theories like QED. This properties are asymptotic freedom and quark confinement.
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The asymptotic freedom in short means that the interaction between quarks can
be arbitrary weak at ever shorter distances (i.e. when the length scales converge
to zero or equivalently energy scales are arbitrary large). It was discovered by D.
Gross, F. Wilczek and D. Politzer in 1973.

This phenomenon can be intuitively explained in terms of screening and antis-
creening. Let us consider a field of virtual charged particles (for example electron-
positron pairs in the vacuum). If we put for example a positive charge in this field it
will repel the positrons from the surrounding electron-positron pairs. When looking
from distance the remaining electrons will cancel the field of this charge - thus the
name screening. However, if we go closer and closer to this charge, we will see less
and less effects from the virtual particles, so that the effective charge will increase.
Exactly this happen in QED.

The same effect will appear with colour charge and virtual quark-antiquark pairs.
But, unlike in QED, the force carriers (gluons) themselves are charged. And because
they carry colour charge in a different manner than quarks (roughly speaking, they
carry some combination of colour and anticolour), the gluons do not screen the
central charge but are acting in rather opposite way. This is called antiscreening.
Thus, when we come closer to the central charge it becomes weaker and weaker.

The question is, which effect wins? For three colour QCD the winner is an-
tiscreening as long as we do not have more than 16 different flavours of quarks
(today we know six). This means that in smaller and smaller distances the strong
interaction could be arbitrary weak.

The existence of the asymptotic freedom allowed the usage of a perturbation
theory to make highly precise prediction of experiment results - these from LEP did
not differ more than a few per cent.

The other property, quark confinement, could be understand as the other face of
asymptotic freedom. It states that the colour potential between two quarks increase
linearly with their distance. Although it has not been analytically proven so far, it
explains why we are not able to see free quarks: when we try to separate them, their
binding energy increases until there is enough energy to create a quark-antiquark
pair which recombines with original quarks to form new hadrons.

Since its creation in early 1970s, the QCD has successfully undergone a lot of
experimental testing, culminating in verification of perturbative QCD at LEP. How-
ever there are still unsolved problems mostly in areas which cannot be described by
perturbative QCD. This is for example one state of a quark matter called quark-
gluon plasma, where the quarks and gluons are expected to be unconfined. If this
state of matter really exists we should be able to create it at LHC. The experiment
ALICE is designed to study exactly this phenomenon.
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Chapter 2

High Energy Physics Experiments

2.1 CERN

The development of our understanding of the Universe would be unthinkable without
an experiment. In the field of particle physics we try to study objects which do not
behave according to our macroscopic experience, so the experiment is really essential.
Last century showed us many occasions when the well interpreted experimental
result completely changed our view of the microscopic world. For instance it was
the discovery of the atomic nucleus and of the neutron.

The most common scheme of the particle physics experiment is to make particles
collide and study what happens - the first experiment of this type was carried out
by E. Rutherford. His setting has however a big disadvantage: because of the
conservation of the momentum of the center of mass, large portion of energy of the
scattered particles cannot be used in collision. Hence today we prefer to collide two
particles moving in opposing directions in such way that their common center of
mass is stationary, so that all energy is used during collision.

In the late 1940s it was clear, that particles coming out of radioactive decay or
from cosmic rays have insufficient energies for further research, so the new powerful
accelerators were constructed in the United States. Those required huge teams of
scientists and engineers as well as generous funding. Because no single European
country (especially in the afterwar years) could compete with this, it was suggested
to create a joint European laboratory for particle physics. In 1952 eleven govern-
ments set up a provisional ”Conseil Européen pour la Recherche Nucléaire”, which
was dissolved in 1954 after the creation of the European Organization for Nuclear
research, but its acronym (CERN) has remained in use until today. The CERN is
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located at the Franco-Swiss border near Geneva and today it has 20 member states,
most of them from the EU, Switzerland and Norway being the notable exceptions.

In 1959 the CERN’s first major machine - 28 GeV Proton Synchrotron (PS) -
was finished, thus becoming the most powerful accelerator of that time. However,
due to the laboratory’s practice of linking accelerators it is still in use. The next
large accelerator is 300 GeV Super Proton Synchrotron (SPS) which was completed
in 1976. Soon after its completion it was converted from proton-proton collider to
the proton-antiproton collider. In 1983 the long-sought W± and Z bosons were
discovered at this machine, thus confirming the predictions of the GWS Standard
Model. In 1989 the Large Electron-Positron collider (LEP) was started. With its
circumference of 27 km it became the largest scientific instrument ever built. The
positron and electron beams were at first prepared and accelerated in the PS and
SPS and after that they were injected into LEP, which further increased their energy
up to the 50 GeV. This allowed productions of Z bosons (mZ = 91 GeV) during
collisions. In the second half of 1990s the LEP energy was increased to the 100
GeV, thus making production of W± pairs possible. The LEP was in operation for
11 years and its highly precise measurements confirmed the Standard Model in the
extraordinary fashion.

In 1994, CERN council approved the construction of the Large Hadron Collider
(LHC). It will be the first CERN machine constructed with substantial material
and financial contribution from non-member countries. For instance, the machine
hardware is being constructed in Canada, India, Japan, Russia and in the United
States. LHC is planned to start operation in the middle of 2007.

2.2 LHC

The LHC is being constructed in the old LEP tunnel which is buried from 50 to
175 m underground. Although the LHC will be the most powerful scientific instru-
ment ever built, the basic experimental scheme has not change since the time of
Rutherford - one particle (or today rather a beam of particles) collides with some
other and we measure the outcome. The LHC is designed to collide beams of pro-
tons (center of mass energy up to 14 TeV) and the beams of heavy ions, like lead
nuclei (center of mass energy up to 1150 TeV). It will be the last link in the CERN’s
accelerators chain (see figure 2.11). The proton beams will be prepared in the PS
and further accelerated in the SPS until they reach the energy of 450 GeV. After
that they will be injected into the LHC which will increase their energy up to 7

1Figure taken from [9]

48



Figure 2.1: Chain of the CERN accelerators

TeV per beam. From the technical point of view, the LHC is (as all big modern
accelerators) a synchrotron. This means that it uses variable magnetic and electric
field to keep particles on the constant track. Contrary to the LEP, the synchrotron
radiation is not significant at LHC, due to the large masses of accelerated particles.

The beams will be running in separate pipes in opposing direction (see figure
2.22) for LHC tube cross section). Because each beam will carry the same charge,
the only way to make them run in opposite directions is to have differently oriented
magnetic field in each pipe. However, there is not enough place in the LEP tunnel
to install two separate rings of magnets, so the LHC will use twin bore magnets with
two sets of coils and two beam channels sharing the same mechanical structure.

Besides energy, the other important parameter which decides the outcome of the

2Figure taken from [11]
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Figure 2.2: Cross section of the LHC tube

experiment is the luminosity L. It is defined as

Nevent = Lσevent (2.1)

where σevent is the cross section of studied collision and Nevent is the number of
events. Because with the energy the De Broglie wavelength decreases like 1/E and
consequently the cross section decreases like 1/E2, the luminosity must increase to
maintain the same efficiency of the physics programme. The LHC aims at the lumi-
nosity of 1034cm−2s−1, which is about 100 times higher than any other accelerator
in the present or past. It will be achieved by preparing high-density beams at PS
and SPS: each beam will consist of 2835 bunches of 1011 particles each. They will
be separated by 25 ns. This will result in rather large beam current (0.53 A) which
will require intense magnetic field. This will be secured by superconductive magnets
operating at temperature of about 2 K.

The LHC contains also eight regions, where there are no magnets, i.e. the par-
ticles run straight there, sharing the same pipe. These areas are called insertion re-
gions (IR) and inside them there are interaction points, where the beams can collide.
At this sections the LHC experiments are located (see figure 2.33) for LHC layout).
However, only a tiny fraction od particles collides head-on when two bunches cross
at the interaction point. Most of them are deflect by the strong electromagnetic field

3Figure taken from [13]
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Figure 2.3: Layout of the LHC

of the opposing beam. This effect is stronger for denser bunches and accumulates
turn after turn, leading ultimately to the beam loss. This sets certain critical limit
for bunch density, which we cannot cross if we want to maintain a reasonable lifetime
of the particle beam. The PS and SPS are set so that they produce beams with
particle density close to the critical one. The result is that LHC will have around
20 collisions for each bunch crossing.

The accelerated beams will be stored for about 10 hours, meaning some 400
million revolutions around the machine. During that time, the beam quality will
degrade - partly because of interaction with the other beam and partly due to chaotic
behaviour of particles caused (among other) by nonlinear components of guiding and
focusing magnetic field. Because there is no theory to predict their behaviour, robust
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Table 2.1: LHC Statistics

particles used protons and heavy ions (Pb82+)
circumference 26.659 m

injected beam energy 450 GeV (protons)
beam energy at collision 7 TeV
magnetic field at 7 TeV 8.33 Tesla
operating temperature 1.9 K
revolution frequency 11.2455 kHz
power consumption 120 MW

simulations are used do determine the tolerances for the quality of magnets. Despite
all this, a fraction of particles will diffuse towards the wall, converting their energy
into the heat. This could induce a quench in the superconductive magnets and so
interrupting the operation for hours. To prevent this, the collimation system will
catch the unstable particles before they would be able to reach the wall.

In the preceding paragraphs there were briefly outlined the main challenges the
constructors of the LHC have to deal with. Most of them are caused by the fact that
the LHC combines for the first time in history the large beam current at very high
energy with the sophisticated superconductive technology. Also fitting the LHC into
the tunnel which was build for less powerful machine is not without problems. The
vital statistics of the LHC are summarized in table 2.1.

2.3 Physics at LHC

The main reason, why the LHC is being built, is to discover the Higgs boson (and
thus prove GWS Standard Model) and to discover supersymmetric particles (if they
exist). It is also possible, that there is not just one Higgs boson, but a whole family of
them. Namely, according to the Minimal Supersymmetric extension of the Standard
Model (MSSM), there are four Higgs particles (H±, h, H and A).

However, there are plenty of other lines of research in which the LHC can partici-
pate. Even at initial lower luminosity (with the order of magnitude of 1033cm−2s−1)
the LHC will operate as a b-quark and t-quark factory, producing approximately
107 top-antitop pairs a year. This will allow us more detailed study of this heavy
quarks, particularly precise measurements of the top quark mass. So far the only
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machine capable of producing top quarks has been the Tevatron in the Fermilab,
USA. The latest result4 from Tevatron is mt = 172.7± 3.5 GeV. The LHC can also
provide detailed study of B-physics, i.e. the decay of B-mesons - bounded states of
b-quark and some other quark. These are of particular interest because they will
tell us more about possible mechanisms of CP-violation. The bb̄ year production
rate will be about 1012 − 1013, so the main problem will be to trigger and select
interesting decay modes.

The LHC will also allow us to study SM physics like QCD and electroweak
interactions. Very interesting seems to be the study of deconfined quarks during the
state of quark-gluon plasma, which will result from the collision of heavy ions.

Last but not least, the LHC has the capability to produce also events which are
not described by present-day SM, so if SM is just an effective theory for low energy
scales (which seems probable, cf. discussion at the end of the paragraph 1.5.5), the
LHC could give us a clue to some more comprehensive theory.

2.4 LHC Experiments

There are five experiments dedicated to measuring the outcome of the LHC colli-
sions:

ATLAS (A Toroidal LHC ApparatuS) is a general purpose detector designed to
exploit the full LHC potential. It is being built at Point 1 (see fig. 2.3).
The project involves collaboration of more than 1800 scientists and engineers
from 34 countries. Although ATLAS main task is to search for the origin
of spontaneous symmetry breaking in the electroweak sector of the SM, it
is designed to measure the broadest possible range of signals. Because of
unprecedented energy and collision rate of the LHC, the ATLAS will be larger
and more complex than any other detector. The main lines of the ATLAS
research are:

• The search for the Higgs boson or any other mechanism of the electroweak
symmetry breaking

• The investigation of CP violation in B-decays

• The precise measurement of mass of heavy particles like top quark or W
boson

4October 2005, [12]
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• The search for supersymmetric particles or any other new models of
physics

• The studies of compositeness of fundamental fermions

To fulfil these goals the ATLAS consists of several components which together
provide the full information about the collision. These subdetectors will be
described later.

CMS (Compact Muon Solenoid) is also a general purpose detector. The name
”compact” means that it is somewhat smaller than ATLAS (about 8 times
in volume), but has about twice its weight. It is being built at Point 5 (cf.
fig. 2.3) - unlike ATLAS it is being assembled on the surface and lowered
to the experimental cavern afterwards. The name also signalizes that CMS
is optimized for tracking muons and its magnet will be the largest solenoid
ever built, producing a magnetic field of the strength of 4 Tesla. The CMS
collaboration involves about 2000 scientists and engineers from 36 countries.
The scientific goals of the CMS are similar to that of ATLAS, namely

• The search for origin of the spontaneous symmetry breaking (Higgs bo-
son)

• The search for physics beyond the SM - for example supersymmetric
particles

• The study of heavy ion collisions and of the formation of the quark-gluon
plasma, emulating thus the very first moments after the Big Bang

Although the construction of two similar detectors may seem as a waste of time
and money, it fulfils the natural requirement on experimental physics - that
any result should be independently confirmed. This helps reduce systematic
as well as random errors.

ALICE (A Large Ion Collider Experiment) is a detector specially designed to
study the collisions of heavy ions. Experiments in the CERN in 1990’s and
in the Brookhaven National Laboratory, USA, in 2000’s showed that at very
high temperatures the quarks are not confined inside hadrons but they are are
rather free in a state which was called the quark-gluon plasma (QGP). It is
supposed that this state of matter exists naturally inside the quasars and that
it was also one of the initial stages of the Universe.

The LHC should create the quark-gluon plasma by colliding nuclei of lead with
an energy of 5.5 TeV per nucleon. The QGP will be then identified thanks
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to the specific signatures of leaving particles - for example the production
of strange particles and the suppression of the production of J/ψ mesons
(made from charm and anticharm pair of quarks), because the turmoil of QGP
prevents forming of heavy quark pairs.

ALICE is being constructed at Point 2 and its collaboration involves more
than 1000 people from 28 countries.

LHCb (Large Hadron Collider beauty) is an experiment devoted to the measure-
ment of CP violation. It is expected that it could be most clearly seen in the
difference between the decay of Bd meson (db̄) to J/ψ (cc̄) and K0 (ds̄) and the
decay of anti-Bd meson to respective antiparticles. By studying the difference
in the decay times, we would be able to determine the complex phase of CKM
matrix.

This type of experiment has been already tried (among others) at the LEP,
SPS or Tevatron. Nevertheless, none of these machines produced enough b
quarks to observe such a subtle effect like CP-violation. The LHC is able to
produce much more b quarks than previous accelerators, thus hopefully making
the observation of CP-violation possible.

The LHCb is located at Point 8. This experiment has nearly 900 participants
from 13 countries.

TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation at
the LHC) is an experiment dedicated to the measurement of the total cross
section, elastic scattering and diffractive processes at the LHC. Because its
measuring method is luminosity independent, the results obtained during ini-
tial lower luminosity runs will be used as a reference for the normal LHC
runs.

The TOTEM is a small experiment which does not require any special in-
frastructure so it is integrated with the CMS in the Point 5. More than 50
scientists from 9 countries participates at this experiment.
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Chapter 3

ATLAS Detector

3.1 Introduction

The most prominent quest of the ATLAS experiment is to find Higgs boson (or
”something similar” which will cause the spontaneous breaking of the electroweak
symmetry), as well as observe the behaviour of particles in the region of very high
energies (above 1 TeV) that could give as a clue which of the proposed extensions
of the Standard Model describes most correctly the Nature. To fulfil these require-
ments, the ATLAS has to be as complex as possible to measure everything which is
coming out of the proton-proton collision.

The overall picture of the detector and its main subsystems could be seen at
fig. 3.31. Whole detector is set into a strong magnetic field generated by the central
solenoid magnet as well as by air-core toroid magnets on the perimeter (in the barrel
area and in both endcaps - cf. Appendix and figure 3.3).

The innermost part is called Inner Detector - it measures the tracks of particles
immediately after the collision. There are three types of subdetectors: the impact
area is surrounded by highly precise semiconductor trackers (pixels and silicon strips)
and by less precise straw tracker which, however, gives large number of hits. Inner
detector also measures the momenta of particles from the position and time of hits.

Having left the Inner Detector, particles come to the electromagnetic calorimeter
- it absorbs photons and light charged leptons, and so it measures their momentum.
This could (combined with the information from the Inner Detector - leptons have
bent track, while photons go straight) identify the particles.

Energy of hadrons is measured in hadronic calorimeter. Its main task is to

1Figures 3.3 and 3.4 taken from [11]
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measure energy and direction of hadron jets created after the collision. Of high im-
portance is also the measurement of missing energy - it helps identify non interacting
particles like neutrinos.

The outermost part of ATLAS is muon spectrometer. It was designed to fully
exploit the potential offered by the superconducting toroid magnets, i.e. to pro-
vide precise measurements of muon tracks and momentum. The scheme of particle
identification is at figure 3.12.

The computing is crucial part of the whole experiment. ATLAS will produce huge
amount of data and only a small fraction of them will describe interesting events.
The decision which data to throw away and which to leave for further analysis is
made by the ATLAS trigger. It is organized in three levels (LVL1, LVL2, LVL3).
LVL1 accept data at frequency of 40 MHz and then uses the reduced-granularity data
from the subset of detectors to choose regions where interesting events happened.
This reduces the data frequency to some 10 - 100 kHz. Second level then uses full-
granularity full-precision data from most of the detectors, but examining only the
regions identified by LVL1. Data rate is reduced to 100 Hz - 1 kHz. Last level uses
full data for selection of events which will be stored for offline analysis. Events are
stored with a frequency of 10 - 100 Hz.

Afterwards, the raw data acquired from the detectors are used to reconstruct the
events. There are several reconstruction algorithms (each using data from different
set of detectors) and they all use a common software framework called Athena (for
more details cf. Appendix). Reconstructed events are then stored in the form of
ROOT ntuples that are subsequently used for further study. Such an analysis was
also subject of this thesis (see chapter 4).

3.2 Requirements on detector performance

It is not clear what kind of Higgs physics will be discovered by LHC. There could
be one Standard Model Higgs boson, five of them as proposes the Minimal Super-
symmetric Extension of the Standard Model (MSSM), or some more exotic scenario
would happen. Even if Standard Model is correct and there is only one Higgs bo-
son, there are several decay modes depending on its mass, so the detector has to be
prepared for all possibilities.

Although the Standard Model cannot predict the mass of Higgs boson, it could
give some limits to it. If we want our theory to be consistent for example to the
scale of 10 TeV, the Higgs mass should not be lower than 130 GeV and not higher

2Figure taken from [11]
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than 190 GeV. If we increase the scale, the allowed area is narrower and vice-versa.
Therefore, a discovery of very light Higgs would suggest that there exists some new
physics below 10 TeV, i.e. already in the region reachable by LHC.

The main production mechanism of Higgs boson at the LHC will be gluon fusion
and the dependance of branching ratio of various decays on Higgs boson mass could
be found at fig. 3.23. For lower Higgs mass the decay to bb̄ is dominant, while at
higher masses it decays preferably to heavier particles like W+W− or ZZ pairs. These
would however quickly decay to leptons. Therefore the clearest signature of Higgs at
LHC would be H → ZZ → 4`± for Higgs mass greater than 130 GeV. Nevertheless
we should also mention the decay to the photons: although its branching ratio is
about a per mile, it has a distinctive final state, so it could be exploited quite well.

All these processes have large background (in case of light Higgs and the decay
to bb̄, the Higgs signal is several orders of magnitude fainter than the background),
so the ATLAS has to be as precise as possible to be able to find Higgs boson. This
means excellent performance at momentum and energy measurement, as well as
ability to locate secondary vertex and measure the charged leptons tracks (in the
case of H → ZZ → 4`±).

In case of the MSSM, two Higgs doublets are required, resulting in five physical
states: charged doublet H+, H−, neutral lighter scalar h, neutral heavier scalar H
and neutral pseudoscalar A. They can be explored among others in decays A/H →
ττ , which will require very good τ identification and missing energy resolution.

High resolution secondary vertex identification, efficient charged particle track
reconstruction and lepton identification will be also necessary for B physics studies
as well as for measurement of top quark properties.

To sum up, ambitious ATLAS physics programme requires both high resolution
tracking (this will be task of Inner Detector and muon spectrometer) and precise
energy measurements performed by ATLAS calorimetry.

3.3 ATLAS components

3.3.1 Inner detector

The Inner Detector measures tracks of all charged particles created in pp collisions.
The core of Inner Detector form three layers of highly precise silicon semiconductor
trackers called pixel detectors. Most of them are placed in three cylinders (barrel

3Figure taken from [21]
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Figure 3.1: Basic scheme of particle identification

Figure 3.2: Branching ratio of
various SM Higgs decays

area), some of them are also placed on the disks perpendicular to the beam direc-
tion (see fig. 3.4). Together they cover the pseudorapidity area of |η| . 2.5 (cf.
Appendix).

Because each layer causes dissipation of energy (not to mention their high cost)
the number of pixel layers is limited. The three pixel layers are reasonable com-
promise. Pixels have very high granularity, so they offer measurements of exquisite
precision in both R − φ and z direction. There are about 1.4× 108 pixel elements,
each of them has size 50 × 300 µm and they are mounted on 1744 pixel modules
(1456 in barrel and 144 in each end-cap). The resolution is 14 µm in R−φ direction
and 87 µm in both z and R direction.

The second type of detector through which the particles pass are silicon strips.
Together they are called semiconductor tracker (SCT). They are in many aspects
similar to the pixels, however, they differ in the granularity in z direction. Therefore,
they offer precise measurements in R − φ direction, but have lesser resolution in z
direction. They are 75 or 112.5 µm wide and 12 cm long. The resolution in R−φ is
comparable with the pixels (15 µm), but in the z direction it is much worse, namely
770 µm.

The third subsystem of the Inner Detector is the transition radiation tracker
(TRT). It is composed from 370 000 straw detectors (50 000 in barrel and 320 000
in the end-caps). Electron identification capability is enhanced by xenon gas which
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Table 3.1: Inner Detector parameters

System Element size Resolution η coverage

Pixels 50 × 400 µm σRφ = 14 µm ± 2.5
σz = 87 µm
σR = 87 µm

SCT 75 or 112.5 µm × 12 cm σRφ = 15 µm ± 2.5
σz = 770 µm

TRT 4 mm diameter σRφ = 170 µm ± 2.5
150 cm long per straw

is set between and inside the straws. It detects the transition radiation photons
which were created by passing-by highly energetic particles and so it can distinguish
between the electrons and hadrons because each creates a different number of these
photons.

The TRT is designed to give large number of measurements over a long track
length, namely over 36 hits produced by about 64 layers. Each straw has 4 mm in
diameter and the length of 150 cm. The resolution is 170 µm in R−φ direction and
150 cm in z direction.

The combined hits from pixels, SCT and TRT are then used by some reconstruc-
tion software (typically within Athena framework) to compute the particle trajectory
and momentum. Main characteristics of the Inner Detector are summarized in the
table 3.1.

3.3.2 Calorimetry

The LHC physics programme impose high demands on the measurement of energy.
In particular, ATLAS calorimeter has to be capable of reconstructing the energy of
electrons, photons, and hadrons, as well as measuring the missing transverse energy
(and therefore identify neutrinos).

ATLAS calorimeter consists of two parts: the smaller inner part is the electro-
magnetic calorimeter, designed to measure the energy of electrons and photons. It
is build from a number of absorber plates between which is a liquid argon. Absorber
plates are made from lead and steel, and they cause the passing high-energy electron
or photon to decay to shower of less energetic electrons and positrons. These cause
ionization of molecules of liquid argon, thus creating electrical current which is then
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detected on copper electrodes. The energy of particles to which original electron
decayed can be calculated from the value of this electrical current. Comparing to
the momentum which was measured by the Inner Detector we can calculate also the
amount of missing transverse energy.

Hadronic calorimeter (also called tile calorimeter) is made from steel absorbers
and scintillating plates. Like in the LAr calorimeter, the interaction with absorbing
material cause hadrons to decay to the lighter particles. Subsequently the light
produced by scintillating plates is measured.

Because processes involving Higgs boson are extremely rare, the calorimeter
should have large rapidity coverage. That is achieved by having full segmentation
for |η| < 2.4 and coarser segmentation for 2.4 < |η| < 3.2. Hadronic calorimeter has
even larger acceptance: |η| < 5 - this allows studies of proposed supersymmetric
particles.

3.3.3 Muon Spectrometer

Precise muon measurement is a crucial part of ATLAS experiment. Such a demand
follows from the above mentioned physics programme, particularly from the decays
like: H → ZZ∗ → 4`. Also the total energy of particles could not be measured
correctly if we would ignore muons. Therefore the spectrometer has high resolution
(∼ 60 µm) over the momentum range from 5 GeV to more than 1 TeV.

The muon spectrometer is in fact very large straw tracker similar in function to
the TRT in Inner Detector. It forms the outermost part of ATLAS detector - its
inner and outer radius are 5 m and 10 m, respectively. Such a tremendous size is
necessary because muons easily penetrate through all other parts of the ATLAS.
That is why muon spectrometer serves also for simple identification of muons -
practically no particles of other types are able to pass the calorimeters and leave
signs at muon spectrometer (neutrinos are able to pass, but they do not leave any
signs anywhere - they are detectable only from missing energy).

In the barrel area there are three layers of muon chambers (precise Monitored
Drift Tubes - MDT and fast Resistive Plate Chambers -RPC) mounted on the toroid
air-core magnets. In the region of end-caps, there are also three layers - mounted
vertically on discs perpendicular to the beam axis. Precision measurement is done
by MDTs and by more radiation tolerant Cathode Strip Chambers (CSC) that are
in areas of high pseudorapidity |η| > 2 and on the innermost disc.
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Figure 3.3: ATLAS detector

Figure 3.4: Pixel detector
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Chapter 4

Calibration of the ATLAS Inner
Detector

4.1 Introduction

Previous chapters showed that precise tracking is absolutely necessary for identifying
the particles created in pp collisions at LHC, as well as for measuring their properties.
However, there are several things limiting our ability to find proper tracks. First of
them is the intrinsic resolution of the Inner Detector (Pixels and SCT, details given
in tab. 3.1). It is a given, unchangeable value resulting from the design of detectors.

On the contrary, the other two effects depends on how the Inner Detector is
assembled. First of them is module misalignment, i.e. the precision with which we
know the position. Note that the important thing is not the very value of module
deviance from the nominal position, but rather the precision of our knowledge of
this deviation.

The last significant cause of uncertainties are module shape distortions (most
important from them being the bows of module staves in barrel area). Nevertheless
we are able to determine both misalignment and shape distortions, and as a result
we can get rid of their effects. The way how to do that will be described in this
chapter.
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4.2 Alignment of the SCT and pixel detectors

4.2.1 Basic concepts

We may be interested in two issues concerning the alignment of pixel and SCT
modules: how well we have to know their position to degrade intrinsic detector
resolution in as small way as possible, and how well we would know their positions
before the data-taking begins. Previous studies [26] answer the first question: our
knowledge of module positions will have to better than 7 µm for pixels and 12 µm for
SCT in order that misalignment do not degrade the intrinsic resolution more than
20 %. This precision could be achieved with a statistics collected from a few-day
run, however the full understanding of associated systematics would take months.

The second question may not seem as important as the first, but the contrary is
the case - the answer would tell us if we would be able to find any tracks at all in
the beginning. This was discussed in great detail in a study [25].

Because we already have some experience from mounting the modules on the
staves, the main concern of [25] was to find if the ”as-built” precision will be good
enough and also whether some affordable improvement in assembling would lead to
a significant increase in detector performance. That study considered only pixels
and SCT because TRT will not be used in the initial alignment.

The idea of the survey of misalignment effects is following - we use the data from
direct measurement of module deviations to define a set of misalignment constants
- different for pixels and SCT as well as for different regions of Inner Detector
(for example, pixel endcap modules are mounted with greater precision than these
in barrel area). These constants were then used to build a misaligned detector
geometry during the reconstruction of tracks using iPatRec algorithm, while the
simulation of hits remained unchanged. The results were subsequently compared
with these obtained for unchanged, i.e. perfect geometry.

Several sets of misalignment constants were used: some of them reflecting the
best expected uncertainties in module assembly - 50 µm in pixel barrel, 25 µm in
the pixel endcaps, 100 µm in SCT barrel and about 50 µm in SCT endcaps. Other
sets introduced larger displacements in various directions to find out how sensitive
the track reconstruction is. Also two types of shifts were used: a displacement of a
complete layer of module with respect to the others, and a random displacement of
modules within one layer. Most of the sets used either the displacements of pixels
modules or of SCT modules, however, few of them combined shifts in both parts to
determine which of them has bigger effect on tracking resolution.

Detector performance was characterized by the track finding efficiency and the
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fake track rate (this will tell us how easy is to find a track), and by the deterioration
in the detector resolution (this will tell us how good will be the detector at doing
some discovery-type physics).

For reconstruction following data sets were used:

• single muon events with an energy of 5 GeV (representing initial alignment)
and 200 GeV (”discovery type” muons)

• dijet events with an energy of 17 GeV - typical low luminosity event from an
early ATLAS run giving a reasonable high track density

• Higgs production associated events - these represent highly demanding track
recognition

4.2.2 Results

Two sets of misalignment constants were used to describe pixel modules. The first
of them (P1) described the expected initial alignment. Studies of the reconstructed
tracks showed that the first case leads to a few-percent degradation in a trackfinding
efficiency (the exact criteria for recognizing the tracks can be found in [25]) and to
about 25-50 % degradation in the tracking resolution.

The second set of constants (P2) represented considerable layer-layer misalign-
ment (50 µm in contrast to maximum 20 µm expected from the direct survey) and
also the displacement within the layer was doubled with respect to the set P1. Com-
parison of the reconstructed tracks with these using perfect geometry showed that
such a misalignment causes deterioration in trackfinding efficiency (10-15 %) and
practically 100 % degradation in the resolution. The study of the dependence on
the pseudorapidity η and polar angle φ showed that efficiency drop is larger in the
barrel region and that there is no visible dependence on φ.

The SCT modules were also at first studied using the constants describing the
as-built misalignment (set S1). In contrary to pixels, this misalignment led to the
about 20 % degradation in trackfinding efficiency. The resolution was worsen by a
factor of two. Similarly to the pixels, this effects are worse in the barrel than in the
endcaps. Also a dependence on a polar angle φ was found: it is easier to reconstruct
tracks in the vertical direction than in the horizontal one. This phenomena seems
to be a general feature of misaligned SCT - this was verified by using other sets of
constants generated with different random number seed.
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Other two sets of constants tried to find out whether we would get better results if
the positions of SCT modules were determined somewhat better than it is expected.
However, the acquired gains in efficiency and resolution were rather negligible.

Several other sets of constants were used to investigate the sensitivity of track
reconstruction on misalignment in various direction. The result was that barrel
modules are very sensitive to any displacement in r direction while the endcap
modules are insensitive to any moves in z direction as large as 500 µm.

The last three sets described combined misalignments in both pixels and SCT.
First of them represented as-built misalignments, i.e. combined P1 and S1. The
performance was only slightly worse (about 1 - 2 %) than S1 alone. Nevertheless,
for bigger SCT misalignments, the relative effect of displaced pixels on resolution
also grew (5-8 % in trackfinding efficiency and resolution was degraded by additional
25 %).

Above studies investigated the performance lost directly - by comparing the
resolution with respect to the Monte Carlo Truth before and after the degradation.
However, other approach is also possible - using track refitting. This means that the
original track is being refitted twice - for the first time using perfect alignment and
for the second time, using above mentioned misalignment constants, i.e. the pattern
recognition (converting raw data to position of hits) is done only once. This isolates
the effect of misalignment on tracking resolution from any other effects. For this
purpose, tracks found by xKalman algorithm were used. Resolution degradation is
evaluated by using a factor f expressing ratio between the degradation produced by
misalignment and the intrinsic resolution with perfect alignment.

The results quantitatively confirmed these obtained from previous studies. For
constants P1 the f has values about 1, i.e. the degradation caused by misalignment
is about the same size as intrinsic resolution. This means that resolution is degraded
by a factor of

√
1 + f 2 = 1.4. Nevertheless for other sets of misalignment constants

the effect of misalignment grows, reaching value of f = 27 for large displacement in r
direction of SCT modules. This study also confirmed that endcaps are less sensitive
to module misalignments. The results from combined SCT and pixel misalignment
were almost the same as for SCT displacement alone.

4.2.3 Conclusions

The following results could be summed up in a following way:

1. The initial trackfinding will be possible with the as-built precision, although
it will be somewhat degraded from the state with perfect geometry.
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2. SCT appears to be very sensitive to the misalignments in r direction, therefore
we must measure this coordinate as carefully as possible.

3. Relaxing the tolerances of assembly precision of current values leads to signif-
icant losses in performance, on the other hand, improving our knowledge of
SCT modules brings only negligible improvement.

4. The detector performance is much more influenced by SCT misalignments
than by these of pixels.

5. The effects of misalignment are larger in the barrel than in the endcaps.

4.3 Module shape distortions

4.3.1 Initial Motivation

Another major cause of the deterioration of the the tracking resolution are the
module shape distortions (cf. [23]). An important type of shape distortion in the
pixel barrel area are bows. A study based on track refitting (similar to the previous
chapter) showed that bows with curvature over 0.0001 mm−1 have significant effect
on tracking resolution. Although we know the size of bows from the initial survey
(see [23]) - typical value is about 0.0002 mm−1, this section shows how to determine
their size using other approach - track reconstructions. First reason for such a study
is that bows can change their size during ATLAS run due to the mechanical fatigue,
humidity, etc., the other is that this method can (in a long run) give much better
results than direct survey (it is the same case as in the previous section - sufficiently
huge statistics gives better precision than any direct measurement). Though [23]
mentions general bows along axis which is rotated by angle Ψ with respect to local
x axis, this study considered only bows along the local y.

The difference between local z coordinate of the module plane and the local z
coordinate of actual position of the module can be calculated using this formula (see
fig. 4.1):

∆z =
1

2
ρy2, (4.1)

where ρ is the curvature of the bow (typically 0.0001 - 0.0005 mm−1). Following
paragraphs will show, if it is possible to determine such a bow from the fitted tracks.
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4.3.2 Effects of bows

At figure 4.1 it can be seen how the bow affects hit information. The view is in a
direction of a local x. Dashed line is the nominal plane of a module (i.e. without
bow), solid line is the bowed module. The bold line is a track of the particle -
because of a small curvature we can consider the track to be (at least locally) a line
- distance between the former plane and the bowed plane is smaller than 300 µm.
Point 1 is the position of a real hit, but the coordinates of point 2 (”fake hit”) are
used in reconstruction instead. We also suppose that distance 0-1 and 0-2 are the
same. That is correct, because dist0−1 = α · r, where r is radius of the bow and α
is central angle, if the bow is an arc of a circle. The horizontal distance from the
peak of the bow to the fake hit is r · sinα. For the bows of expected curvatures the
angle α is always smaller than 0.01 rad, so that α ∼ sinα.

This effect - shift of a position of the hit in z direction - means that we will get
nonzero z residue which should be a function of a local y. The way how to get its
value from the track information stored in the ntuple is revealed later.

An algorithm InDetAlignNt by Richard Hawkings was used to reconstruct tracks
from six sets of simple muon events. They had energies from 3 to 300 GeV and
very wide η range. The reconstruction was done within Athena framework and the
resulting ntuple was stored in a form of a ROOT file. Subsequently a ROOT macro
was used to generate plots and to compute the bows. This macro will be described
in the next section.

The events used in the reconstruction are stored in the following parts of DC2
datasets: 2929, 2865, 2930, 2870, 2920, 2931. At first only a small statistics (6 × 2
000 events) was used (for faster run), only later the effects of larger statistics (110
000 events altogether) were evaluated. That is why the cylindrical symmetry was
used in making plots: all modules sharing the same ring (i.e. global z coordinate)
and layer (i.e. radial distance from the center) were put into one plot to accumulate
statistics.

From the fig. 4.1 it is obvious that the bow has a significant effect on the size of
z residues. Figure 4.2 shows plot of z residues as the function of local y for module
without bows. The right mean square (RMS) of z residuals is zero, as expected.
But if we look on the same plot for the module with bow (fig. 4.3), we could see
something quite different. RMS of z residuals is shifted away from zero and the size
of the shift is a clear function of a local y. Because RMS shift as the function of
local y is more or less quadratic, we can expect some correlation between the size of
the bow of the module and the size of the bow in the plot.

If the curvature is taken from the plot (i.e. quadratic coefficient of the quadratic
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fit), the resulting number is somewhat smaller than the real physical bow of the
module. For example the curvature computed for the ring no. 0, layer 1 (figure 4.2)
is 0.00028 mm−1, that is 1.8 times less than the curvature (0.0005 mm−1) used in
the reconstruction. The explanation is that the change of the hit coordinates also
changes the fitted track. This results in decreasing the residuals in the favour of fake
hit (see fig. 4.4) - dotted line is original track, the solid one is the changed track).
So if we want to get a value of a real curvature from the fit, we have to use 1.8 as a
fudge factor.

However, the matter is a bit more complicated. Figure 4.3 shows the z residues
as a function of local y for all the rings in layer 1. There is a significant decline
in size of fitted bow, although the physical bow is same for all the modules in that
layer. The probable reason, why this happens, is different θ for different rings, while
the direction of shifting of hit remains the same. So in the ring 0 the hit is shifted
in a direction of a track (fig. 4.5 A) causing minimal change in that track, while
in the ring 6 (fig. 4.5 B) the hit is shifted perpendicular to the track, resulting in
bigger change of the track.

To determine an exact size of this effect, we should calculate (at least) the first
derivation of fitting function (that one which is used by Athena algorithm) in global
r direction. That is, however, too complicated for this function cannot be written
in an analytical form. Instead, the above mentioned effect was expected to be linear
for small bows and the from the fitted tracks we determined the fudge factors . This
is described in greater detail at section 4.3.4. Final test on random rings (section
4.3.5) showed, that this approach is reasonably precise for big numbers of fitted
tracks passing through particular module.

4.3.3 ROOT macro for making plots from Athena ntuple

Because none of the values used in making plots at figures 4.2 and 4.3 is contained
in the ntuple (for complete documentation see [24]), they had to be calculated using
basic trigonometry. Angle φ and the r−φ residue can be collected from the ntuple,
so

l = x cosφ, (4.2)

where l is x− y residue (as in fig. 4.1) and x is r − φ residue. Furthermore, we can
calculate z residue from

z = l cotg θ = x cosφ cotg θ, (4.3)

where z is the value of z residue.
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Figure 4.1: Effect of the bow

Also the value of the local y coordinate of the hit is not directly available but
must be calculated by subtracting the global z coordinate of hit and the global z
coordinate of the center of the module.

The ROOT macro consists of four C++ source files that can be found in a
directory (accessible for example from LXPLUS)

/afs/cern.ch/user/j/jez/public/bows/

There are three main functions used to make a plot. The first one is Modules

(int DetType, int Layer, int Ring, int Side,string Output). This func-
tion at first determines how many events there are in the ntuple and creates an
pointer to histogram. Then it is browsing through all the events using functions
Search(int DetType, int Layer, int Ring, int Event) and FillHist (int

module, int event). Search gets one particular event and looks if during this
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Figure 4.2: Modules without bows - plots of z residues as a function of local y
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Figure 4.3: Modules with the bow of a size of 0.0005 mm−1
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Figure 4.4: Change of the fitted track

event the muon passed through some module of given layer and ring and returns
the order of such a module in that event (e.g. muon passes through 12 modules and
the second of them lies in the desired layer and ring). In case muon goes through
neighboring modules in the same ring and layer (the modules slightly overlap), the
returned number is negative and its absolute value is the order of the first module
muon passed through. FillHist is an ”executive” function. It receives the number
of event and the order of module in particular event (e.g. 2nd in the event number
127) so it can collect all necessary data from ntuple, calculate z residue according to
(4.3) and place it into histogram. Finished histogram is finally written into ROOT
file by function Modules. Next task of Modules is to calculate the quadratic fit of
histogram values. The quadratic coefficient is called bow qualificator and it is pro-
portional to the size of the bow. The fudge factor is the coefficient of proportionality.
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Figure 4.5: Changing of the fitted track at different rings

Therefore in the end the ROOT macro calculates the real curvature and print the
resulting number into a text file. To get a set of histograms in one file (each of them
corresponds to one ring and layer), function Modules is run in a cycle by unnamed
ROOT script Master.c.

4.3.4 Determination of fudge factors

The fudge factors tell us the relation between the module’s bow and the effect it
produces as a consequence. As was mentioned above, the standard procedures do
not work optimally - the same size of bow produces different change in resolution
according to the module position. Therefore we introduced fudge factors as an
geometrical correction. In this particular case, the smallest correction is needed in
the central rings and the size of correction grows with η.

Practical way to determine fudge factors is to simulate different bows and find
the correlation between the bow qualificator (calculated from the plot) and the bow
used in simulation. Because of the forward-backward symmetry, only rings from 0
to 6 were used for determination of the fudge factors. Note that using fudge factors
determined in this way gives reasonable results also in opposite hemisphere: i.e. at
rings from -1 to -6.

The first task was to find a fudge constant for each ring and layer, indepen-
dently on the size of the bow. Results for different bows (curvatures 5 · 10−4 mm−1,
4 · 10−4 mm−1 and 2 · 10−4 mm−1) and layers could be found in the table 4.1. It
shows that there is no universal fudge factor applicable for each ring and bow, but
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on the other hand, for most of the rings a fudge factor can be found with error less
than 10 % for bows between 0.0005 and 0.0002 mm−1.

However, in outer rings with low statistics the fluctuations are bigger, so the
fudge factors are more unsure and imprecise. In the last column of tab. 4.1, there
is the number of tracks which were used to create the histograms (some of them are
at fig. 4.3).

These fudge factors were stored in ROOT macro (variables fudgeX, where X is
0, 1 or 2), so it could calculate physical curvatures. At the rings -6, -5, 5, 6 of
the layer 0 it was impossible to determine one fudge factor - due to the extremely
low statistics, the corresponding macro failed to give any usable results. Thus, a
factor of 1.0 was used instead. In this cases the first iteration is quite different from
the real value of bow. Nevertheless, after a few iterations we would get reasonable
values. Last remark is that the final precision is directly related to the robustness
of the statistics and therefore the size of fluctuations.

4.3.5 Determining the bows by iterations

Important test of the ROOT macro was the calculation of the random bow size from
the reconstructed tracks. After that the values of bow were used for recalculation of
the tracks by Athena reconstruction algorithm. As a result we get a new set of bows
which are used as an input in the next step of the iterative procedure. If everything
is correct, than all bows should converge to stable values.

To perform this calculation, Athena job option file was set to produce an ntuple
with parameters of tracks reconstructed using random bow value at each pixel mod-
ule - this situation is indeed expected to occur in the detector. ROOT macro applied
on such ntuple determined the size of bows using plots of z residuals and fudge ma-
trix, as described above. The calculated values of bows were subtracted from the
original bows (that ones used by Athena simulation) and obtained difference served
as an input for Athena to reconstruct track again with the new parameters. Then
the previous steps were iteratively repeated.

Results from that iteration are in table 4.2. The first column is the size of
original bows, which were used by Athena simulation. In the second, third and
fourth column there is what remained after first, second and third correction done
by ROOT macro. The same information presented in another way is in table 4.3
where there are relative changes (with respect to the previous iteration as well as
complete change - the fourth column). Last column shows the number of events
which was used in reconstruction. Note that only typical representatives are shown.

We can see that practically for all ”big” bows (i.e. with curvature bigger than
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Table 4.1: Fudge factors

Layer/no. of ring 0.0005 mm−1 0.0004 mm−1 0.0002 mm−1 hits

0/0 3.47 3.54 3.92 1664
0/1 3.52 3.53 3.55 1377
0/2 5.10 5.23 5.88 900
0/3 7.48 7.44 7.27 594
0/4 10.35 10.17 9.41 402
0/5 N/A N/A N/A 236
0/6 N/A N/A N/A 51
1/0 1.77 1.78 1.82 1114
1/1 1.88 1.88 1.90 974
1/2 2.39 2.37 2.33 741
1/3 3.36 3.39 3.53 529
1/4 4.29 4.24 4.03 397
1/5 5.10 5.12 5.21 354
1/6 6.49 6.78 8.94 289
2/0 1.61 1.61 1.64 825
2/1 1.74 1.76 1.85 768
2/2 1.86 1.84 1.73 646
2/3 2.75 2.84 2.96 470
2/4 4.09 4.25 5.53 367
2/5 5.18 5.33 6.27 314
2/6 5.07 5.17 5.70 283
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0.0001 mm−1) the correction worked properly. It converged quickly in the central
rings with better determined fudge factors. The outer rings show that lack of hits
(low statistics) makes this method of determination bows difficult.

Another phenomenon we can observe here is the bow low threshold of about
0.00009 mm−1 under which the method is also ineffective. The reason is that such
a small bow is comparable to statistical fluctuations and not excluded that also due
to problems with precision used. This feature is demonstrated at fig. 4.2 there are
plots made by ROOT macro for ntuple with no bows - we can see that although the
RMS is zero, the individual values are quite different from zero.

4.3.6 Improvement with growing statistics

After the close up the physical access to the detectors will not be possible and also
during the accelerator shut-down the access will be very limited. Mathematical
and software tools are powerful means for determination of individual sensing units
(modules, sensors, layers, etc.). The obtained precision depends on number of fac-
tors, data statistics in one of most important. Here we demonstrate how convergence
of the used method improves with statistics.

For quantitative verification of effect of statistics we analyzed two data sets: low
statistics - 12 000 events (it is the same data as we used in previous sections) and
high statistics - 110 000 single muon events. Comparison of the results from these
two data sets is in the table 4.4, which presents the outcome in similar fashion as
table 4.3, i.e. by calculation of relative changes.

Table 4.4 shows that in most cases the procedure significantly better converges
to expected results. Similar effect can be observed also from table 4.3 where the
iteration results (for sample low statistics) are shown with explicit indication of used
statistics (last column).

It is obvious that fudge factor is more precisely determined using higher statistics.
However, for more straightforward demonstration of the role of statistics, we used
the same fudge factors in both data samples.

In general we can say that with growing statistics nearly all divergences (i.e.
when the ROOT macro actually increases the size of bow) vanished and most of the
bow iteration corrections decrease under the curvature of 0.0001 mm−1 during a few
iterations (their effect on tracking performance is thus comparable or lower than
that one originating from the intrinsic resolution of pixel modules). Nevertheless
in some cases we can observe the fact, that the convergence is slower for higher
statistics than for the lower. This is probably due to not optimal starting values of
the fudge factors.
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Table 4.2: Changing of curvatures through iterations (in mm−1)

layer/no. of ring start 1st iteration 2nd iteration 3rd iteration

0/-6 -5,149E-05 1,074E-04 1,466E-04 1,505E-04
0/-3 1,604E-04 2,184E-05 -1,287E-05 -4,943E-05
0/-1 3,885E-04 4,297E-05 5,202E-06 3,804E-06
0/0 -2,444E-04 -1,174E-04 -6,807E-05 -5,525E-05
0/1 1,836E-05 2,078E-05 1,232E-05 9,392E-06
0/2 1,546E-05 -3,757E-05 -7,433E-05 -8,123E-05
0/3 -9,882E-06 5,303E-05 4,628E-05 4,385E-05
0/6 8,194E-05 8,520E-06 -4,296E-06 -5,796E-06

1/-6 2,868E-04 3,146E-04 3,343E-04 3,556E-04
1/-4 -2,764E-04 -1,389E-05 1,356E-04 1,633E-04
1/-1 -2,750E-05 -3,126E-05 -2,091E-05 -2,036E-05
1/0 -4,370E-04 -2,356E-05 -9,380E-07 -2,626E-06
1/1 -3,877E-04 -9,543E-06 -3,037E-06 -2,739E-06
1/2 1,274E-05 3,968E-05 1,619E-05 1,362E-05
1/4 2,078E-04 6,082E-05 4,010E-05 3,284E-05
1/6 -1,091E-04 -1,988E-04 -1,946E-04 -1,861E-04

2/-6 1,007E-04 3,984E-05 1,186E-05 -4,332E-06
2/-3 -2,927E-04 -2,545E-05 4,310E-05 5,305E-05
2/-1 2,931E-04 2,468E-05 3,713E-05 3,050E-05
2/0 1,081E-04 2,255E-05 -3,969E-06 -5,527E-06
2/1 -8,271E-05 -2,640E-05 -2,373E-05 -2,243E-05
2/2 -3,212E-04 4,255E-05 2,534E-05 2,459E-05
2/4 -3,350E-04 -4,328E-04 -4,516E-04 -4,594E-04
2/6 4,169E-04 6,914E-05 -2,286E-05 -4,492E-05
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Table 4.3: Relative changes during iterations

layer/ after 1st after 2nd after 3rd complete no. of hits
no. of ring iteration iteration iteration relative change

0/-6 -208,65% 136,42% 102,70% -292,34% 51
0/-3 13,61% -58,95% 384,03% -30,82% 574
0/-1 11,06% 12,11% 73,13% 0,98% 1334
0/0 48,04% 57,98% 81,17% 22,61% 1664
0/1 113,18% 59,28% 76,26% 51,16% 1377
0/2 -243,05% 197,83% 109,29% -525,49% 900
0/3 -536,69% 87,27% 94,75% -443,77% 594
0/6 10,40% -50,42% 134,93% -7,07% 51

1/-6 109,69% 106,29% 106,35% 123,99% 296
1/-4 5,03% -976,12% 120,40% -59,08% 402
1/-1 113,66% 66,89% 97,36% 74,02% 944
1/0 5,39% 3,98% 279,98% 0,60% 1114
1/1 2,46% 31,82% 90,19% 0,71% 974
1/2 311,45% 40,80% 84,12% 106,90% 741
1/4 29,27% 65,93% 81,90% 15,80% 397
1/6 182,28% 97,87% 95,64% 170,61% 289

2/-6 39,56% 29,76% -36,54% -4,30% 274
2/-3 8,70% -169,35% 123,08% -18,13% 469
2/-1 8,42% 150,47% 82,15% 10,41% 778
2/0 20,87% -17,60% 139,26% -5,11% 825
2/1 31,92% 89,91% 94,51% 27,12% 768
2/2 -13,25% 59,55% 97,05% -7,66% 646
2/4 129,22% 104,34% 101,72% 137,15% 367
2/6 16,58% -33,07% 196,45% -10,77% 283
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Table 4.4: Effect of higher statistics on the quality of the bow determination

layer/ initial after 1st after 1st after 3rd after 3rd
no. of ring bow iteration iteration iteration iteration

(mm−1) (low stats) (high stats) (low stats) (high stats)

0/-6 -5,149E-05 -208,65% -55,91% -292,34% -61,30%
0/-3 1,604E-04 13,61% 29,93% -30,82% -10,92%
0/-1 3,885E-04 11,06% 21,18% 0,98% -2,98%
0/0 -2,444E-04 48,04% 28,15% 22,61% -2,82%
0/1 1,836E-05 113,18% 4,70% 51,16% 2,45%
0/2 1,546E-05 -243,05% 110,80% -525,49% -43,80%
0/3 -9,882E-06 -536,69% -476,06% -443,77% 189,58%
0/6 8,194E-05 10,40% -93,76% -7,07% -88,74%

1/-6 2,868E-04 109,69% 39,61% 123,99% -15,62%
1/-4 -2,764E-04 5,03% 29,82% -59,08% -7,17%
1/-1 -2,750E-05 113,66% -90,55% 74,02% 4,49%
1/0 -4,370E-04 5,39% 5,04% 0,60% -0,54%
1/1 -3,877E-04 2,46% 0,46% 0,71% -0,12%
1/2 1,274E-05 311,45% 177,89% 106,90% -34,18%
1/4 2,078E-04 29,27% 20,99% 15,80% -9,06%
1/6 -1,091E-04 182,28% 106,28% 170,61% -60,68%

2/-6 1,007E-04 39,56% 70,85% -4,30% -34,32%
2/-3 -2,927E-04 8,70% 25,90% -18,13% -3,80%
2/-1 2,931E-04 8,42% 6,19% 10,41% -1,32%
2/0 1,081E-04 20,87% 34,11% -5,11% 2,85%
2/1 -8,271E-05 31,92% 3,70% 27,12% 0,77%
2/2 -3,212E-04 -13,25% -5,18% -7,66% -0,20%
2/4 -3,350E-04 129,22% 58,56% 137,15% -21,74%
2/6 4,169E-04 16,58% 43,34% -10,77% -13,16%

82



Chapter 5

Thesis Summary

The first chapter of this thesis presents the basic ideas of the Standard Model.
This theory turned out to be one of the greatest scientific achievements of the
twentieth century: the experiments in the last twenty years (LEP, Tevatron) verified
its predictions with the precision better than one per cent. However, some of its
predictions are not confirmed yet: one of the principal questions is the existence of
Higgs boson, the particle which plays crucial role in the mechanism that solves the
problem of the spontaneous symmetry breaking of the electroweak Lagrangian.

The search for Higgs boson is one of the main motivations why the LHC is being
built. Also, as discussed in section 1.5.5, the number of the free parameters of the
Standard Model (24 - cf. [1]) indicates that it is not the final theory of the particle
world, but rather an effective approximation for lower energy scales (. 1 TeV). The
LHC would help us to explore the physics beyond the Standard Model.

The second chapter describes the CERN experimental complex and the LHC in
particular. It reveals the challenges the constructors of the LHC have to deal with
and also briefly describes the main physics features to be studied with the help of
this machine. The second chapter also briefly presents the five experiments which
explore the LHC physics.

The third and fourth chapter are devoted to one of this experiments - ATLAS.
We described the main directions of research at ATLAS as well as the detector
apparatus. We showed that Inner Detector is crucial for tracking and particle iden-
tification, therefore we try to achieve the best possible resolution.

The most precise part of the Inner Detector are pixel modules. Their intrinsic
resolution is ∼ 14 µm, however this value can be degraded a lot due to module
misalignment and shape distortions. The effects of misalignment will not be negli-
gible from the beginning, on the contrary, the expected degradation is from 25 % to
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100 %, however it will still allow us to see tracks and therefore calibrate the Inner
Detector for precision measurements.

The other of the major sources of the deterioration of the tracking resolution
are module shape distortions. According to the initial surveys they take form of a
longitudinal bow with a curvature ∼ 0.0002 mm−1. This means, that the displace-
ment from the nominal planes is c. 100 µm at the end of the modules (cf. (4.1)).
The present study demonstrates the procedure of determination of bow using fitted
tracks. As an input in the iterative calculation serves approximative value of bow
obtained by the mechanical survey of module shapes before installation.

We used the method of the successive approximations: we calculated the size of
the bow, subtracted effects of such a bow from the reconstruction data and deter-
mined the size of the bow again. This was repeated twice. Results showed that the
improvement in the resolution is highly dependent on the number of events. Tables
4.2 and 4.3 show, that to achieve precision comparable with the intrinsic resolution
of pixels (∼ 15 µm), we need c. 500 events per module. For the statistics of 12 000
events, this was achieved in the central region of pixel barrel: rings -1 and 1 in the
layer 0 and rings from -2 to 2 in other two layers.

When we increased the total number of events to 110 000, we observed that c.
4000 hits per module (6000 in the layer 0) leads to negligible resolution degradation
(∼ 1 µm). As a result of this analysis we found that 4.7 × 106 single muon events
are sufficient for alignment in case of a uniform hit population.

In the realistic geometric detector configuration, the effects of bows are smaller
at the end of the barrels (see figure 4.3) - they are approximately halved there. If
we relax our demands on resolution to ∼ 30 - 40 µm, tables 4.2 and 4.3 tell us
that we would need c. 300 events per module. This means 2.9 × 106 single muon
events altogether. Such numbers are easily obtainable quite soon after ATLAS to
be put into operation. High statistics of experimental data implicates re-coding of
not enough efficient present macro to reach data rate requirement.

Table 4.4 presents direct comparison of low (12 000) and high (110 000) statistics.
It also shows several general characteristics of this method:

• The speed of convergence depends on the initial value and the best results
are achieved for bows with the size ∼ 0.0002 mm−1. On the other hand,
this method does not converge for the bows below certain threshold. For low
statistics it is about 0.0001 mm−1, but for the high statistics the low threshold
is more than 10 times smaller, corresponding to the deterioration in resolution
∼ 1-2 µm.

• The quality of the bow determination is also dependent on the position of the
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module. The leading effect plays here the spatial coverage of given detection
module, which is directly related to the number of detected hits. Further
influence comes from the particle momentum spectra and the magnetic field.

Similar to the previous case (pixel and SCT misalignment), it will take just a
few days of data taking to achieve a reasonable precision, but much longer time
is needed to understand the systematics (represented in this case by fudge factors
- tab. 4.1) of pixel module bows. The results from the section 4.3.6 (especially
table 4.4) signals that the very concept of fudge factors needs revision, as it is not
fully consistent - there were several groups of modules where the higher statistics
decreased the speed of convergence. The probable reason is that the initial results
for fudge factors (tab. 4.1) show some non-linearities - they could be caused by low
statistics, but (more probably) by the non-linear effect of shape distortions. Possible
solution would be bow dependent fudge factors. Detailed study of the reconstruction
algorithm is therefore inevitable.

The results described in the last part of this thesis were presented on ATLAS
Collaboration meetings - see [28] and [29].

To sum up, the approach described in this chapter will help us to achieve de-
signed precision of the Inner Detector, which is crucial for charge particle momentum
measurement. Obtained data are essential for offline analysis and thus allow us pre-
cise study of the outcome of the proton-proton collisions, which is the target of the
ATLAS physics programme.
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Appendix A

Glossary of ATLAS/High energy
physics terms

ATLAS global coordinate system is cylindrical. The z axis points in the direc-
tion of the beam, R is the distance from the center and φ is a polar angle. It
is measured from positive x axis (see below) clockwise. The plane perpendic-
ular to the beam direction is sometimes called R − φ plane. There is also a
global cartesian system, where x points to the center of the LHC ring, y going
upwards and z pointing towards the Point 8.

ATLAS local coordinate system is cartesian. At given point (with a distance
R from the beam axis), the local x and y axes are in a plane which is tangent
to the surface of cylinder around the beam axis with radius R. Local y axis
points in the direction of the beam (or global z), local x points in the direction
of global φ. Local z axis then points out of the beam axis, i.e. in the direction
of global R. Azimuthal angle θ is measured with respect to the local z axis.

Athena is a control software framework and it is a concrete implementation of an
underlying architecture called Gaudi. It is a skeleton of an application into
which developers can plug their code. It provides common functionality and
communications between different components, thus encouraging the common
approach. The user’s guide and the documentation can be found at [19].

Barrel is a central area of ATLAS, where the components (detectors, calorimeters,
magnets, etc.) are placed in a cylindrical fashion around the central axis.

Branching ratio for a particular decay is the ratio between the decay rates of
individual decay modes for the decay and the total decay rate.
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Endcaps is an overall term for area on both ends of ATLAS. Components are
mounted on a disks perpendicular to the central axis there.

Hit is a point where particle passes through the detector.

iPatRec is one of the reconstruction algorithms. Track finding is defined by calorime-
ter clusters or muon tracks starting in the silicon detectors. It adds TRT for
the best resolution.

Jets are group of highly collimated hadrons which result from the hadronization
of partons (quark and gluons) that were produced in hard collisions. It is a
consequence of quark confinement.

Ntuple is a set of information about an experiment. It contains the position of all
hits of all events that happened during the particular experiment/simulation.
Ntuple also harbours the parameters of reconstructed tracks - e.g. direction
in which they pass through particular module, or their momenta. However,
content of a particular ntuple depends on its purpose - for instance the ntuples
used in this study contained also position and characteristics of all participat-
ing pixel and SCT modules. Nowadays ntuples are usually stored in the form
of ROOT files.

Pseudorapidity is defined as

η = − ln tg
θ

2

It is a handy variable used to approximate the rapidity in case we do not know
the mass and the momentum of the particle. We can get it from the rapidity

y =
1

2
ln

1 + β cos θ

1− β cos θ

when we set β = 1. At LHC the particles will collide with more than 99.999 %
of the speed of light, so we can use this approximation.

ROOT is an object-oriented framework aimed at solving the data analysis chal-
lenges of high energy physics. It has a wide variety of objects like histograms,
fitting, etc. so the physicists can analyze the data with only little knowledge of
C++. It also encourages the common approach and reusability of analytical
macros. Complete (and very well written) documentation is available at [20]
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Transition radiation is produced when a relativistic particle crosses the interface
of two media of different dielectric constants. The emitted radiation is a
homogenous difference between the solutions of Maxwell’s equations for fields
generated by movement of particle in each medium separately. The intensity
of radiation is proportional to the particle energy E = mγ. This phenomenon
offer a possibility of identification of particles at highly relativistic energies,
where Cherenkov radiation is no longer useful for particle discrimination.

Vertex is other name for interaction point, i.e. a point where the number and/or
momenta of interacting particles have changed.

xKalman is one of the reconstruction algorithms. Track finding and fitting starts
from the TRT detector, then it extends to the precision layers of pixel and
SCT detectors.
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[25] R. Hawkings, P. Jež, Initial Alignment of the ATLAS SCT and Pixel Detectors
and Its Effect on Track-finding, ATLAS internal note on August 23rd, 2005
(revised version)

[26] S. Snow, A. Weidberg, The effects of inner detector misalignment on track
resolution, ATLAS internal note, INDET-97-160

92
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