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Preface

The state of matter known as Bose-Einstein condensate was first predicted in the
1920s. It took seventy years to prepare it experimentally. Following the first exper-
imental preparation in 1995, the interest in the field has greatly increased. Many
significant advances have been achieved recently. These include progress in labora-
tory technology - improved cooling, trapping and detection of particles - as well as
advances in theoretical description.

One of the results of this scientific endeavour is the invention of optical lattice. It
utilizes the same principle as an optical trap, which is a device used to confine atoms
in small space regions. However, instead of trapping all the atoms at a specific space
point, a periodic trapping structure is created. It is possible to create different lattice
shapes and even to create low dimensional systems such that atoms are confined to
one or two dimensions only.

The system of bosonic atoms confined in an optical lattice can be described
by the Bose-Hubbard model. Although the model is quite simple, it predicts many
properties of a real system. For example, the phase transition between “superfluid”
and “insulator” phase predicted by the model [1, 2] has been observed experimentally
as well [3].

The current experiments focus on loading atomic mixtures in the optical lattice
[4, 5]. Usually, one of the species is a bosonic isotope and the other is either a bosonic
or a fermionic isotope. The corresponding two-species Bose-Hubbard model is more
complex and exhibits many distinct phase transitions.

Most of the available references deal either with experimental results or with a
theoretical analysis of the Bose-Hubbard model with artificial parameters. Only a
few of them, for example Ref. [6], focus on theoretical modelling of actual experi-
ments.

This thesis has thus two goals:

• To derive the binary Bose-Hubbard model.

• To analyse the model for a real and feasible experimental configurations, par-
ticularly for RbCs and LiCs mixtures in a 1D optical lattice.

The analysis of the Bose-Hubbard model is essentially a many-body problem. The
complexity of such problems grows exponentially with increasing particle number.
Therefore it is very hard to get any quantitative results even for small systems. How-
ever, there exist methods and algorithms that make it possible to obtain results in
reasonable time. One of them is the Density Matrix Renormalization Group (DMRG)
algorithm [7]. This algorithm was used to study the binary Bose-Hubbard model for
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non-trivial lattice sizes. All the program code was written in the MATLAB R© [8]
environment by myself.

The topic is intriguing on its own, however, another interesting point is that it
encompasses many fields of physics, in particular:

• Atomic physics: fine structure, hyperfine structure

• Quantum optics: interactions of atoms with radiation, optical trap

• Solid state physics: band structure, Wannier functions

• Quantum field theory: many-body Hamiltonian, renormalization

• Scattering theory: interactions between atoms in the lattice

• Statistical physics: density matrix, grand-canonical ensemble

• Computational physics: DMRG

It is clearly not possible to cover all these topics in deserving detail here. Thus
only the most important results in connection with optical lattices are compiled in
this work. However, the breadth of necessary topics to describe the optical lattice
confirms that the nature is not divided into separated fields, but instead forms an
integral entity.
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Chapter 1

The alkalis

Most experiments with optical lattices are performed using alkali atoms. As we shall
show later, the trapping force in an optical trap depends on the properties of tran-
sitions between different states of the atom. Alkali transitions lie in the convenient
optical part of the spectrum and this makes them experimentally favourable.

Some of their properties can by qualitatively explained in a simplified picture
considering atom as a system with a single valence electron moving outside closed
electronic subshells. However, detailed analysis of atoms other than hydrogen re-
quires numerical calculation of the wavefunctions, which is a non-trivial task. Precise
alkali data are thus acquired from the measurement. This chapter summarizes basic
properties of alkalis in connection with optical lattices. Data for different isotopes
are given in Table 1.1.

1.1 Bosonic and fermionic isotopes

A neutral atom is a system of Z protons, N neutrons and Z electrons. Protons,
neutrons, and electrons are fermions with spin of 1/2. If the number of all constituent
particles is even, the total spin of the atom is integer and the atom is a boson.
Likewise, atom with odd number of constituent particles is a fermion. A neutral
atom has the same number of protons and electrons, therefore the type of atom
depends solely on the number of neutrons - isotopes with even number of neutrons
are bosons; isotopes with odd number of neutrons are fermions. Particularly, stable
alkali isotopes 7Li, 23Na, 39K, 41K, 85Li, 87Li, and 133Cs are bosons; isotopes 6Li, 40K
are fermions.

1.2 Energy spectrum

The energy of an electron in a spherically symmetric Coulombic potential, e.g. in
hydrogen atom, depends solely on the principal quantum number n. States with
same principal number n, but different orbital angular momentum quantum number
l, have identical energy. The situation differs for alkali atoms, where the energy
depends also on orbital angular momentum quantum number l.

Transitions in alkali atoms are dominated by transitions of outer electron from
it’s lowest orbital ns (l = 0) to np orbital (l = 1). For example, in the case of
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rubidium, it is a transition from 5s to 5p. This spectral line is called the D line.

Spin-orbit interaction

The spectrum splits into fine structure due to the spin-orbit coupling between orbital
angular momentum and spin of the valence electron. Fine structure Hamiltonian is

HFS = AL · S (1.1)

where L is the orbital angular momentum operator, S is the spin operator, and the
value of coupling strength A depends on the electronic configuration. The interaction
could be conveniently expressed in terms of total electron angular momentum J =
L + S. Using an expression

J2 = L2 + S2 + 2LS (1.2)

one obtains

HFS =
1

2
A
(
J2 − L2 − S2

)
(1.3)

Operator J2 commutes with L2 and S2, and the eigenvalues of the fine structure
Hamiltonian could be expressed in a form of quantum numbers as

EFS(J, L, S) =
1

2
A [J(J + 1)− L(L+ 1)− S(S + 1)] (1.4)

where J ,L and S are total angular, orbital angular and spin quantum numbers,
respectively.

According to the angular momentum theory [9], the total angular momentum J
can have values in range (electron spin S = 1/2):

|L− 1

2
| ≤ J ≤ L+

1

2
(1.5)

starting from the lowest possible number and spaced by one.
For L = 0 there exists just only value of J = 1/2 and (1.4) gives EFS = 0. Thus

the energy level of the s orbital remains unchanged and does not split.
For L = 1, one gets two possibilities, J = 1/2 and J = 3/2. The energy for p

orbital splits into two energies with difference:

∆EFS =
3

2
A (1.6)

The energy levels are usually labeled as n2S+1XJ , where X denotes orbital quan-
tum symbol (S for a state with L = 0, P for a state with L = 1, etc.). For example,
ground state of rubidium is 52S1/2 and the first two excited states are 52P1/2 and
52P3/2.

The D spectrum line in alkali atoms is thus split into a pair D1 and D2 corre-
sponding to transitions n2S1/2 → n2P1/2 and n2S1/2 → n2P3/2, respectively.
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Hyperfine interaction

Another important interaction in alkali atoms is a coupling between the outer-
electron angular momentum and the nuclear spin. It gives rise to a hyperfine struc-
ture. The interaction Hamiltonian, considering only dipole force, is

HHFS = BI · J (1.7)

where I is the nuclear spin operator, J is the angular momentum operator, and B
is a coupling strength. The coupling strength is not constant and differs for various
fine structure orbitals. This Hamiltonian has the same mathematical structure as
the spin-orbit interaction Hamiltonian (1.1) and it is thus treated identically.

By introducing total angular momentum operator F = I + J, the eigenvalues of
the Hamiltonian (1.7) become:

EHFS(F, I, J) =
1

2
B [F (F + 1)− I(I + 1)− J(J + 1)] (1.8)

where F ,I and J are the total angular momentum, nuclear spin and angular mo-
mentum quantum numbers, respectively. Possible values for F are:

|I − J | ≤ F ≤ I + J (1.9)

starting from the lowest possible number and spaced by one.
Nuclear spin I varies for different isotopes and it is determined experimentally.

The value of the coupling strength B for different orbitals is obtained from experi-
mental data as well.

For example, rubidium 87Rb has nuclear spin I = 3/2. If the atom is in the
ground state 52S1/2, the value of angular momentum is J = 1/2. Possible values of
total angular momentum are F = 1 and F = 2. Thus the ground state energy is
split into two, with energy difference:

∆EHFS
(
52S1/2

)
= B

(
52S1/2

)
(1.10)

If the atom is in the 52P1/2 state, the value of angular momentum is J = 1/2, too.
The level therefore splits into two, with energy difference:

∆EHFS
(
52P1/2

)
= B

(
52P1/2

)
(1.11)

If the atom is in the 52P3/2 state, F can take values 0, 1, 2, 3. The state splits into
four hyperfine states, and the difference between state with the lowest and with the
highest energy is:

∆EHFS
(
52P3/2

)
= 6B

(
52P3/2

)
(1.12)

The 87Rb fine and hyperfine structure scheme is in Figure 1.2.
The difference in energy levels for the hyperfine splitting is very small compared

to the fine structure splitting. Moreover, transitions between various states are gov-
erned by selection rules. For applications considered here, it is sufficient to restrict
possible transitions to the D1 and D2 transitions. However, the hyperfine structure
plays an important role in atom trapping and collisions.
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Figure 1.1: Energy levels diagram for 87Rb.

1.3 Hyperfine states

There are many constraints in ultracold alkali atoms experiments. Usually, atoms
are cooled down and trapped, but after inelastic collisions some atoms can leave the
trap. It is thus important to prepare the experiment in a feasible way.

The trapping, collisional, and many other atom properties depend heavily on its
hyperfine state. It was found that only some states have appropriate experimental
properties. The atoms are thus prepared in a particular hyperfine state at the begin-
ning of the experiment. The states are usually denoted as |F,mF 〉, where F is the
total angular momentum, and mF is the projection quantum number. The possible
values for mF are −F,−F + 1, . . . , F − 1, F .

The most popular states are:

1. |F = I + 1/2,mF = F 〉 — the double polarized state

2. |F = I − 1/2,mF = −F 〉 — the maximally stretched state

These hyperfine states have low inelastic scattering rates and can be trapped mag-
netically [10], thus they are favoured in experiments.
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Table 1.1: Alkali isotopes data: name, type (boson or fermion), the proton number
Z, the neutron number N , mass m (atomic mass unit u = 1.661 × 10−27 kg), the
nuclear spin I, the wavelength of D2 transition line, the wavelength of D1 transition
line, and the average transition linewidth Γ = (ΓD1 + ΓD2) /2.

Isotope Type Z N m [u] a I b D2 [nm] c D1 [nm] c Γ [MHz]

6Li F 3 3 6.01 1 671.0 671.0 36.90 d

7Li B 11 4 7.01 3/2

23Na B 19 12 22.99 3/2 589.0 589.6 61.45 e

39K B 19 20 38.96 3/2 766.7 769.9 39.0 c

40K F 19 21 39.96 4

41K B 37 22 40.96 3/2

85Rb B 37 48 84.91 5/2 780.0 794.8 37.11 f

87Rb B 37 50 86.91 3/2

133Cs B 55 78 132.91 7/2 852.1 894.3 30.74 g

a Ref. [11]
b Ref. [10]
c Ref. [12]
d Ref. [13]
e Ref. [14]
f Ref. [15]
g Ref. [16]
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Chapter 2

Optical traps

The confinement of ultracold bosons using optical devices is based on quantum
mechanical phenomena. This chapter contains a brief introduction to the optical
trap mechanism.

2.1 Optical potential

Optical traps are devices that exploit laser light to trap and confine atoms. They
make use of the AC-Stark effect - an effect of alternating electric field on energy
levels of a neutral atom. In this section a simple semiclassical derivation of formulae
describing this phenomenon based on Ref. [10] is presented. The derivation is limited
to a linearly polarized light only.

The Hamiltonian of a neutral atom in electric field could be expressed in terms of
a multipole expansion. It is assumed that the field is spatially uniform on the atomic
scale and thus quadrupole and higher terms can be neglected. The Hamiltonian is
then

H = H0 +H ′ (2.1)

where H0 is the atomic Hamiltonian without the influence of the electric field and
H ′ represents the dipole term of the multipole expansion.

The atom-field interaction H ′ is given by the correspondence principle as

H ′ = −d · ε, (2.2)

where ε is the electric field vector, and

d = −e
∑
j

rj (2.3)

is the electric dipole moment operator for the atomic electrons.
It is assumed that the light propagates in the x direction and that the time-

dependent electric-field vector lies in the z direction. Time variation of the electric-
field vector, for a fixed point in the x dimension, is ε(t) = ε (eiωt + e−iωt). Therefore
the interaction Hamiltonian is

H ′ = −dzε
(
eiωt + e−iωt

)
= −2dzε cosωt (2.4)
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The total Hamiltonian H is time-dependent, thus the dynamics of the system
could be examined by means of the time-dependent perturbation theory. Suppose
that the wave function ψ can be expressed as

|ψ(t)〉 =
∑
n

an(t)e−iEnt/~|n〉 (2.5)

where |n〉 are eigenkets of H0, En are the corresponding eigenvalues of H0, and an
are complex functions of time t. By inserting |ψ(t)〉 in the Schrödinger equation

H|ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 (2.6)

the set of coupled ordinary differential equations for the coefficients an is obtained:

i~ȧn(t) =
∑
k

〈n|H ′|k〉ak(t)eiωnkt (2.7)

where

ωnk =
En − Ek

~
(2.8)

Let us consider an atom initially in a state |m〉 of the unperturbed Hamiltonian
H (am = 1, and an = 0 for n 6= m), and assume that the electric field is turned on
at the time t = 0. The equations for coefficients an to the first approximation are
then

a(1)
n (t) = − 1

i~

∫ t

0

dt′〈n|dzε|m〉
[
ei(ωnm+ω)t′ + ei(ωnm−ω)t′

]
(2.9)

Suppose that the frequency of the electric field is not equal to any of the transition
frequencies so the integration can be simply carried out and the expression

a(1)
n (t) = −1

~
〈n|dzε|m〉

[
ei(ωnm+ω)t − 1

ωnm + ω
+

ei(ωnm−ω)t − 1

ωnm − ω

]
(2.10)

is obtained.
The expression to the second approximation is found by inserting (2.10) into

(2.7). The interesting part is the change of the original state |m〉. The differential
equation for the coefficient am(t) is:

i~ȧ(2)
m (t) = −2ε2

~
∑
n

〈m|dz|n〉〈n|dz|m〉eiωmnt cosωt

[
ei(ωnm+ω)t − 1

ωnm + ω
+

ei(ωnm−ω)t − 1

ωnm − ω

]

= −2ε2

~
∑
n

|〈m|dz|n〉|2eiωmnt cosωt

[
ei(ωnm+ω)t − 1

ωnm + ω
+

ei(ωnm−ω)t − 1

ωnm − ω

]
(2.11)

The coefficient am(t) can be also expressed in terms of a complex phase φm

am(t) = e−
i
h
φm(t) (2.12)
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Its derivative with respect to time is approximately:

ȧm(t) = − i
~
φ̇m(t)e−

i
h
φm(t) ≈ − i

h
φ̇m(t) (2.13)

Hence the derivative of the complex phase in this approximation is:

φ̇m(t) = i~ȧ(2)
m (t) = −2ε2

~
∑
n

|〈m|dz|n〉|2eiωmnt cosωt

[
ei(ωnm+ω)t − 1

ωnm + ω
+

ei(ωnm−ω)t − 1

ωnm − ω

]
(2.14)

The shift in the energy is given by the average rate at which the phase of the state
decreases in time. The time average over one oscillation period of the electric field
is carried out and the expression

∆E =< φ̇m >t= −
ε2

~
∑
n

|〈m|dz|n〉|2
[ 1

ωnm + ω
+

1

ωnm − ω

]
(2.15)

is obtained.
The energy shift forces the atom to stay at the places of minimal energy. The

resulting effect is that the atom is a subject to an optical potential V0 = ∆E.
Additionally, it is common to express the electric-field amplitude ε in the terms of
the field intensity I = 2ε0cε

2, where ε0 is the vacuum permittivity and c is the speed
of light:

V0 = − I

2ε0~c
∑
n

|〈m|dz|n〉|2
[ 1

ωnm + ω
+

1

ωnm − ω

]
(2.16)

The simplest analysis of above formula can be given for a two-level atom. If the
frequency of the alternating electric field is close to the transition frequency from the
ground state |g〉 to an excited state |e〉 (ωeg), then the corresponding transition in
(2.15) becomes dominant and others can be neglected. Also, the terms with “+” in
denominator of (2.15) are much smaller than terms with “−”, and can be neglected
too (this is called “rotating wave approximation”). It is convenient to introduce the
detuning ∆ = ω−ωeg. The positive detuning is called blue detuning and the negative
one red detuning. The expression for the energy shift is then reduced to:

V0 =
I

2ε0~c(ω − ωeg)
|〈g|dz|e〉|2 =

I

2ε0~c∆
|〈g|dz|e〉|2 (2.17)

The last unknown parameter in the formula above is the dipole matrix element
|〈g|dz|e〉|. It can be calculated, if the wavefunctions for |e〉 and |g〉 are known. The
calculation for alkali atoms is quite complicated because finding exact wavefunctions
is a complex problem. However, there is a connection between the dipole matrix
element and the natural linewidth of the transition spectral line. Spectral lines are
not discrete and in general have a gaussian shape. The natural linewidth is a size of
the spectral line at the half maximum. The relation between the natural linewidth
Γ and the dipole matrix element is [17]:

Γ =
ω3
eg

3πε0~c3
|〈g|dz|e〉|2 (2.18)
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The strength of the optical potential in the two-level-atom approximation is thus:

V0 =
3πc2Γ

2ω3
eg

I

∆
(2.19)

The energy shift of atoms in state |g〉 depends on the detuning of the electric-
field frequency ∆ and on the field intensity I. The source of alternating electric field
in optical traps is usually a laser light. It is simple to focus a laser light on a point in
space. Although the light frequency is the same everywhere, the intensity is maximal
at the focal point. Therefore the maximal energy shift is also at this point. The blue
detuning results in a positive shift, the red detuning in a negative shift. Using a red
detuned laser it is therefore possible to trap atoms in the focal point.

Optical potential is, however, quite shallow. Experiments involving optical traps
are thus performed with atoms that are precooled to µK range. Because the potential
strength is very small, it is often given in units of recoil energy, ER = ~2k2/(2m),
where k = 2π/λ is the light wavevector and m is the particle mass.

Alkali atoms

Obviously, the determination of the optical potential (2.16) for multi-level atoms
is more complicated than for a two-level atoms. The polarization of light, selection
rules, spectral line intensities, and hyperfine structure play an important role in
the calculation. However, there exists a simple approximate formula, if following
conditions are met:

1. The detuning is small compared to fine structure splitting, but large compared
to the excited state hyperfine splitting.

2. The light is linearly polarized.

3. The saturation is low (cf. next section).

The approximate formula is then [17, 18]

V0 =
πc2Γ

2ω3
0

(
1

∆1

+
2

∆2

)
I (2.20)

where ∆1 and ∆2 are detunings from the D1 and D2 lines, respectively, ω0 =
(ωD1 + 2ωD2) /3 is the weighted average of spectral lines frequency (intensity of D1

is half of D2), and Γ = (ΓD1 + ΓD2) /2 is the average linewidth.
Another important effect is the scattering of trapping light, which leads to the

heating of the atomic gas. The scattering rate limits the possible time interval of
the optical trap sustainability. The approximate scattering rate is [17]:

γ =
πc2Γ2

2~ω3
0

(
1

∆2
1

+
2

∆2
2

)
I (2.21)

Comparing (2.20) and (2.21) it is clear that the optical potential depends on
detuning as 1/∆, whereas the scattering rate as 1/∆2. It is thus favourable to use a
far detuned laser in real experiments, as the gas is less heated and experiments can
last longer. Nevertheless, a near detuned laser can be used if the sustainability of
the experiment is not an issue. Detailed analysis for binary mixtures of atoms can
be found in [18].
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2.2 Saturation intensity

An atom interacting with electromagnetic field close to a resonance could absorb a
photon and become an excited atom. On the other hand, the spontaneous emission
forces an excited atom to emit a photon and deexcite to a lower state. The population
of atoms in different states stabilizes when the system reaches equilibrium.

Optical trap is a tool to confine atoms, therefore a change in their state is an
undesirable effect. It is thus necessary to estimate the population of different states
and to find appropriate trap parameters, so that most of the atoms remain in the
ground state.

According to [12], the difference in population densities for a two-level atom is

N1 −N2 =
N

1 + I/Is(ω)
(2.22)

where N1 is the number of atoms in the first state, N2 is the number of atoms in
the second state, N = N1 +N2 is the total number of atoms, I is the field intensity,
and Is is the saturation intensity. Saturation intensity depends on the frequency of
the field ω:

Is(ω) =
~ωω2

0

3πc2
· (ω − ω0)

2 + Γ2/4

Γ
(2.23)

If the field intensity I is small compared to saturation intensity Is, the population
of the first state N1 is almost equal to the total number of atoms N . Using the above
formulas, it is possible to find reasonable intensity of the field that can be used to
confine atoms. Alternatively, for a given intensity one obtains suitable detuning
frequencies. The saturation intensity has a local minimum in the resonance ω = ω0

and increases rapidly if the frequency ω is detuned.

Example

In the seminal experiment with 87Rb atoms [3], authors were able to confine N = 2×
105 atoms in potential depths up to V0 = 22ER using laser light with wavelength λ =
852 nm. The article does not mention power of laser radiation, but the corresponding
intensity of the field can by calculated from the given data, and is about I =
5 × 106 W m−2. The saturation intensity for given parameters is however much
greater, approximately Is = 1015 W m−2. Thus all atoms are safely confined in the
ground state.

The next question is how close can the laser be tuned to the resonance, so that
a majority of atoms still stays in the ground state. Let k denotes the proportion of
atoms in the excited state, N2 = kN . From (2.22) one obtains

Is(ω) =

(
1

2k
− 1

)
I (2.24)

and from (2.23) it is possible to calculate the detuning limit for a given k. For the
above experimental data and k = 10−6, the minimal frequency detuning from D1 or
D2 line is quite small:

∆δ = λ− λ0 ≈ 3 nm (2.25)
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The parameter magnitudes of this experiment are typical in optical lattices ex-
periments.

The conclusion of this section is that even for a very small laser detunings,
the saturation I/Is is very low. The possible laser wavelengths in optical lattices
thus exclude only small regions close to resonances, where the excited states get
populated.
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Chapter 3

Optical lattices

The optical-trap effect can be used to create a periodic trapping structure — an
optical lattice. Instead of focusing the laser light to just one spatial point, where
the light intensity has its maximum, the periodic maxima and minima are created.
This can be achieved by creating a standing light wave, using a laser and a mirror
(Fig. 3.1). The amplitude of electric intensity differs along the x axis and thus
a periodic potential for atoms is created. In the case of a red detuned laser, the
ground-state energy of atoms is minimal at points of maximal light intensity. The
spatial dependency of the electric-field vector in the z direction is

ε(x) = ε0 sin(kx) (3.1)

where k = 2π/λ is the light wave vector. The corresponding field intensity is:

I(x) = 2ε0cε
2
0 sin2(kx) = I0 sin2(kx) (3.2)

According to (2.20), this gives a lattice potential:

V (x) = V0 sin2(kx) (3.3)

An optical lattice can be prepared in many ways. The most common approach
is to use orthogonally polarized lasers in all three dimensions to create a 3D lattice.
However, by using different frequencies and intensities in different directions it is
possible to effectively confine atoms in two or one dimensions. It is also possible
to create different lattice geometries (rectangular, triangular) by a different laser
geometry setup.

Cold atoms interacting with a spatially modulated optical potential resemble in
many aspects electrons in an ion lattice potential of a solid crystal. Therefore similar
ideas and theory are used in both fields. The main differences are:

• Optical lattices have bigger spacing.

• Optical lattices are mostly defect free.

• They are very easily controlled by laser parameters.
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Figure 3.1: Principle of an optical lattice: The standing wave of a laser light creates
a periodical trapping potential. The energy shift of the ground state ∆Eg forces
bosonic particles to occupy potential wells. The potential depth depends on the
laser-light intensity.

3.1 1D optical lattice

One of the biggest experimental advantages of optical lattices over crystal lattices is
the possibility to create lower-dimensional systems. If atoms are confined in trans-
verse dimensions y and z by a strong trap and in x dimension by a weaker optical
lattice, the particles are effectively confined in one dimension.

Instead of using strong trap, effective 1D optical lattice is usually realized using
optical lattices in all three dimensions. The potential depth in transverse directions
is set to higher values than in the x direction. Due to the strong confinement in
transverse directions, the tunnelling is possible only in the x direction. The resulting
system thus consists of multiple cylindrically shaped 1D systems, as showed in Figure
3.2.

For example, in the experiment [19] the authors were able to create an effective
1D optical lattice by using the optical potential Vy = Vz = 30ER in transverse
directions and the optical potential Vx from 4ER to 14ER in the x direction. The
potentials are given in terms of the recoil energy ER.

One of interesting physical systems that can be engineered in one dimension is a
system of impenetrable bosons - Tonks-Girardeau gas [11]. By tuning parameters so
that repulsive interactions between atoms get very strong, atoms cannot pass each
other and cannot exchange places. The situation resembles cars in a traffic jam.
Such bosons have properties similar to fermions but there are important differences
in their statistics. Such a system has been realized experimentally [20].

This thesis deals with 1D systems, therefore in the following sections it is assumed
that the system is trapped tightly in the directions y and z. The wavefunction is
in the ground state in these dimensions. It is thus sufficient to restrict description
just to the remaining dimension. However, a few parameters have to be calculated
from 3D system description to accurately describe 1D case. These parameters will
be pointed out in the appropriate sections.

3.2 Band structure

Optical lattice is a quantum system with a periodic potential. Periodic potentials are
extensively studied in the field of the solid state physics, where the most important
result is the band structure of the energy spectrum.
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Figure 3.2: 1D optical lattice: Optical potential in the y and z directions is much
deeper than in the x direction. Atoms are confined in cylindrically shaped regions and
hopping between cylinders is suppressed. Every cylinder thus becomes an effective
1D optical lattice.

The Hamiltonian of a 1D system with a periodic potential is

H = − ~2

2m
∇2 + V (x) (3.4)

where V (x) is a periodic function with period L. The eigenstates of this Hamiltonian
are called Bloch functions

φ
(n)
k (x) = eikxuk,n(x) (3.5)

where wave vector k lies in the interval −π/L < k ≤ π/L and functions uk,n are
periodic with the period L. The energy bands are numbered by n. Wave vector k
defines a particular energy in a band.

The exact properties of the spectrum and eigenfunctions depend on the corre-
sponding potential. The two cases that are usually solved in the solid-state-physics
introductory courses are the two limiting cases. In the first one, it is assumed that
the potential is very weak and the analysis is carried out perturbatively. This ap-
proximation is called nearly free electron. The opposing case, called tight binding,
assumes a very deep potential.

The optical lattice potential is, however, a special one. It has the form

V (x) = V0 sin2(kx) (3.6)

The characteristic equation for this potential

− ~2

2m
∇ψ(x) +

[
V0 sin2 (kx)− E

]
ψ(x) = 0 (3.7)

is a differential equation, which arises when dealing with several different problems
in physics and which is called Mathieu equation [21]. Stable solutions for the Mathieu
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equation exist just for particular combinations of parameters, in this case V0 and E.
This gives rise to the band structure of energetic spectrum.

Using a program from Ref. [21] for calculating stability regions of Mathieu equa-
tion, which is based on the formula from Ref. [22], it is possible to obtain exact
energy band diagram (Fig. 3.3). The first few energy bands become very narrow
already for moderately deep optical potential.

Figure 3.3: Energy spectrum of an optical lattice depends on optical potential depth
V0. The optical potential and energy are given in terms of the recoil energy. Allowed
energy bands are depicted in gray color. A deeper optical potential causes energy
bands to become narrower. The dashed red line shows the energy of harmonic oscil-
lator approximation.
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3.3 Wannier functions

Wannier functions [23] are a complete set of real orthonormal functions that can
be used instead of Bloch functions to describe a particle in an optical lattice. The
descriptions of system using Wannier functions wn(x−xi) is equivalent to description
using Bloch functions, as there is a transformation between them [23]

wn (x− xi) =

√
L

2π

∫ π/L

−π/L
dk eikxiφ

(n)
k (x) (3.8)
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where xi is a position of ith lattice site. The advantage of Wannier functions is the
fact they are localized on lattice sites, thus they are more appropriate for description
of particles in lattice, especially in deep optical potential.

3.4 Harmonic approximation

Atoms are located around potential minima in deep lattices. At these locations, it
is possible to approximate the potential (3.6) with:

V (x) ≈ V0k
2x2 (3.9)

It is a harmonic potential with frequency:

ω =
2
√
ERV0

~
(3.10)

The energy levels of harmonic approximation can be seen in Figure 3.3 as red dashed
lines. Even for moderately deep lattices it is a good approximation of the ground
state. Ground state wavefunction in this harmonic approximation is

ψ(x) =

(
1

πa2

)1/4

e−
x2

2`2 (3.11)

where ` =
√

~/(mω) is the ground-state size.
Wavefunctions of a harmonic oscillator coincide with Wannier functions (3.8) in

this approximation. However, true Wannier functions of potential (3.6) are oscillating
at positions distant from lattice center [24]. It must be thus taken into account that
the approximation is good around centres of lattice sites but worse elsewhere.
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Chapter 4

The Bose-Hubbard model

This chapter introduces a model that describes ultracold interacting particles in
an optical lattice. In the first part, interactions between particles are considered.
Subsequently, models for one-species gas and two-species gas are derived.

The derivation of models is the same irrespective of the number of dimensions.
However, the interaction parameters of the model need to be calculated keeping real
physical experiments in mind. Thus the next sections describe a three-dimensional
system, and after deriving appropriate model parameters the system is limited to
one dimension only.

Lattice experiments are usually performed with atoms in the same hyperfine
state. In the next sections it is thus assumed that atoms do not have any internal
degrees of freedom. This fact is important for fermions in particular — the atoms
are in the same spin state, therefore only single atom can occupy a specific quantum
state.

4.1 Interactions between atoms

A distinctive feature of ultracold alkali gases in optical lattices is the particle sep-
aration, which is much larger than interparticle interaction range. Under such cir-
cumstances, two-body interaction becomes dominant. Moreover, the particles are
neutral and thus interact mostly due to van der Waals forces (dipole–dipole forces).
Van der Waals interaction potential for distant particles could be approximated by
its leading term

U(r) = − C6

|r|6
(4.1)

where |r| is the particle distance and coefficient C6 depends on the interacting
species. The effects of interaction can be calculated using scattering theory.

Another assumption that is always met in real experiments is that gas tempera-
ture and kinetic energy of particles is very low. It is thus sufficient to limit scattering
calculation to the most dominant effect, s-wave scattering. Detailed analysis [10]
shows that the interactions could be approximated by pseudopotential

U(r) = gδ(r) (4.2)
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with potential strength

g =
2π~2a

µ
(4.3)

where a is the scattering length, µ is the reduced mass (µ = m/2 for identical
particles with mass m), and δ is the Dirac δ-function.

Strength of a long-range interaction is therefore included in the scattering length
a. Accurate values of scattering length, for particular pair of species, are obtained
from experimental data. It is important to note that the scattering length could be
positive, as well as negative. In the latter case, particles are attracted together and
tend to form a region of greater density in the centre of the gas.

Scattering length depends on internal states of interacting atoms. As each alkali
atom has a single valence electron, it is common to distinguish two cases — singlet
scattering length and triplet scattering length. Singlet and triplet refer to the elec-
tronic configurations of interacting atoms. If the atoms are in a particular hyperfine
state, the scattering length is a combination of these. Scattering lengths for different
isotope pairs are given in Table 4.1.

The data for atomic pairs of same the species have been thoroughly measured
for the past ten years. The situation is worse for heteronuclear pairs. Unfortunately,
there were no reliable data for RbCs and LiCs atomic pairs at the time of writing.
Because binary mixtures are presently a popular research topic, there is a hope
that reliable data will be available soon. For example, the data for KRb pairs were
measured recently with great accuracy.

The data, given in the Tab. 4.1, are values for free particles. However, scattering
length depends on an external potential, and this fact has important experimental
consequences. In particular, by using external magnetic field it is possible to tune
scattering length. The effect is related to the concept of Feshbach resonances. More
details can be found in [10].

4.2 Many-body Hamiltonian

In order to describe a system with a huge number of individual particles contained in
an optical lattice, it is necessary to introduce second quantized Hamiltonian. Firstly,
let us consider just one particle species with no internal degree of freedom. The field
annihilation operator Ψ(x) annihilates a particle at the position x. Annihilation
operator and corresponding creation operator Ψ†(x) have to satisfy commutation
relations

[Ψ(x),Ψ(x′)] =
[
Ψ†(x),Ψ†(x′)

]
= 0[

Ψ(x),Ψ†(x′)
]

= δ (x− x′)
(4.4)

in case of bosons and anticommutation relations

{Ψ(x),Ψ(x′)} =
{

Ψ†(x),Ψ†(x′)
}

= 0{
Ψ(x),Ψ†(x′)

}
= δ (x− x′)

(4.5)

in case of fermions.
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Table 4.1: Singlet (as) and triplet (at) scattering lengths for alkali atoms. Bohr radius
a0 = 5.292×10−11 m. More confidence is associated with the first value for the RbCs
pair.

Isotope pair as [a0] at [a0] Source

6Li↔ 6Li 45.5± 2.5 −2160± 250 [10]

7Li↔ 7Li 33.2± 2 −27.6± 0.5 [10]

23Na↔ 23Na 19.1± 2.1 65.3± 0.9 [10]

39K↔ 39K 140+3
−6 −17± 25 [10]

40K↔ 40K 105+2
−3 194+114

−35 [10]

41K↔ 41K 85± 2 65+13
−8 [10]

85Rb↔ 85Rb 2400+600
−350 −369± 16 [10]

87Rb↔ 87Rb 90± 1 106± 4 [10]

133Cs↔ 133Cs 280± 10 2400± 100 [10]

39K↔ 85Rb 33.4 63.9 [25]

39K↔ 87Rb 1868 35.90 [25]

40K↔ 85Rb 65.8 -28.55 [25]

40K↔ 87Rb -111.5 -215.6 [25]

41K↔ 85Rb 103.1 349.8 [25]

41K↔ 87Rb 7.06 164.4 [25]

87Rb↔133 Cs 700+700
−300 [26]

or 176± 2

7Li↔133 Cs 50± 20 [27]
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Operator O1, acting on a single-particle wavefunction, can be extended to many
particles as in Ref. [28]:

O1 =

∫
d3xΨ†(x)O1Ψ(x) (4.6)

Similarly, second quantized form of operator O2, acting on a two-particle wavefunc-
tion is:

O2 =
1

2

∫
d3x1d

3x2Ψ
†(x1)Ψ

†(x2)O2Ψ(x2)Ψ(x1) (4.7)

4.3 One-species Bose-Hubbard model

The simplest non-trivial model that describes interacting ultracold bosons in a pe-
riodic optical potential is the Bose-Hubbard model. It includes the main physics
describing strongly interacting bosons, which is governed by the competition be-
tween the kinetic and interaction energies. It originates from the Hubbard model,
which is very popular in the field of solid state physics, as it describes the transition
between the conducting and insulating phases in electron systems. In this section,
the model is derived following Ref. [29].

One boson, moving in an optical lattice, is described by the Hamiltonian (3.4).
The many-body version is thus:

HJ =

∫
d3xΨ†(x)

[
− ~2

2m
∇2 + V (x)

]
Ψ(x) (4.8)

Inserting pseudopotential (4.2) into (4.7) gives the interaction Hamiltonian:

HI =
1

2

∫
d3x1d

3x2Ψ
†(x1)Ψ

†(x2)U(x1−x2)Ψ(x2)Ψ(x1) =
g

2

∫
d3xΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

(4.9)
Finally, if the particles are subject to additional external trapping potential VT (x),
trapping contribution to the total Hamiltonian is:

HT =

∫
d3xΨ†(x)VT (x)Ψ(x) (4.10)

The total Hamiltonian is:
H = HJ +HI +HT (4.11)

The particles are in the ground state, so it is possible to approximate annihilation
operator Ψ(x) using the lowest-energy Wannier functions (3.8)

Ψ(x) =
∑
i

w0(x− xi)ai (4.12)

where the annihilation operator ai annihilates a particle at the lattice site i. Oper-
ators ai satisfy usual bosonic commutation relations:[

ai, aj

]
=
[
a†i , a

†
j

]
= 0[

ai, a
†
j

]
= δij

(4.13)
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Inserting (4.12) into (4.8–4.9), one obtains

HJ = −
∑
i,j

Jija
†
iaj (4.14)

HI =
1

2

∑
i,j,k,l

Uijkla
†
ia
†
jbkbl (4.15)

HT =
∑
i

Via
†
iai (4.16)

where tunnelling terms Jij, interaction terms Uijkl, and external trapping terms Vi
are given by:

Jij = −
∫

d3x w0(x− xi)

[
− ~2

2m
∇2 + V (x)

]
w0(x− xj) (4.17)

Uijkl = g

∫
d3x w0(x− xi)w0(x− xj)w0(x− xk)w0(x− xl) (4.18)

Vi = VT (xi) (4.19)

The minus sign in Jij is a matter of convention, so that Jij = Jji is positive.
For deep lattice potential the dominant tunnelling terms are J = Jij j = i ± 1,

describing hopping to a neighbouring site (the on-site hopping terms Jii give just
constant shifts in energy levels, thus they are not considered here). The dominant
term among interaction terms is the on-site interaction U = Uiiii. These terms are
equal on all lattice sites. Restricting to them gives:

HJ = −J
∑
〈i,j〉

a†iaj (4.20)

HI =
U

2

∑
i

a†ia
†
iaiai (4.21)

where 〈i, j〉 denotes neighbouring sites. Using commutation relations (4.13) it is
possible to rewrite HI as:

HI =
U

2

∑
i

a†i

(
aia
†
i − 1

)
ai =

U

2

∑
i

ni (ni − 1) (4.22)

where ni = a†iai is the particle number operator at the lattice site i.
The total Hamiltonian (4.11) becomes:

H = −J
∑
〈i,j〉

a†iaj +
U

2

∑
i

ni (ni − 1) +
∑
i

Vini (4.23)

A system, described by the Hamiltonian (4.23), is called the Bose-Hubbard
model. The difference between a 1D and a 3D lattice is a space arrangement of
lattice sites. For a cubic 3D lattice, every site has six nearest neighbouring sites. A
1D lattice is a system of sites arranged in a line, thus there are only two neighbouring
sites for every site.
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Model parameters

In order to compare theoretical predictions to the experimental results, it is necessary
to calculate model parameters U and J (notice that the calculation of Vi from (4.19)
is trivial). The right way to do so is to perform a band structure calculation of the
optical lattice, find Bloch functions and transform them into Wannier functions.
This can be done using solid-state-physics methods.

However, such an approach is not always comfortable. In many situations it
is good enough to have an approximate formulae. To calculate on-site interaction
energy U it is possible to consider the harmonic approximations of Wannier functions
(cf. Section 3.4). The harmonic approximation holds very well for deeper lattices.

Let us assume that there is an optical potential V
‖
0 in the axial direction x

and V ⊥0 in the transverse directions y and z. The corresponding ground-state sizes
of harmonic approximation (3.11) are `‖ and `⊥, respectively. The ground-state
wavefunctions in respective directions are

wx(x) =

(
1

π`‖
2

)1/4

e
−x2/

(
2`‖

2
)

(4.24)

wy(y) =

(
1

π`⊥2

)1/4

e−y
2/(2`⊥

2) (4.25)

wz(z) =

(
1

π`⊥2

)1/4

e−z
2/(2`⊥

2) (4.26)

and the corresponding 3D wavefunction:

w0 (x) = wx(x)wy(y)wz(z) (4.27)

Inserting (4.27) into (4.18), one obtains [30]

U = U0000 = g

∫
d3x w4

0(x) =

√
2

π

~2a

m

1

`⊥2`‖
=

√
2

π3

λa

`⊥2E
‖
R

(
V
‖
0

E
‖
R

)1/4

(4.28)

where λ is the laser wavelength in the axial direction, E
‖
R is the recoil energy in axial

direction and a is the scattering length.
A similar approach could be taken to calculate hopping parameter J [30, 31].

However, true Wannier functions oscillate at places distant from the site origin,
which is not the the case of exponential function (4.27). Such an approximation
is a source of errors, which can reach an order of magnitude for deep lattices [24].
Fortunately, the hopping term does not depend on transverse confinement and can be
calculated from the 1D Mathieu equation assuming a deep potential. The resulting
approximate formula is [32]:

J =
4√
π
E
‖
R

(
V
‖
0

E
‖
R

)3/4

e−2

√
V
‖
0 /E

‖
R (4.29)
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Example

Mean-field analysis of the Bose-Hubbard model predicts that a phase transition
between the superfluid and Mott insulator phases (cf. next section) occurs at U/J =
5.8m, where m is a number of neighbouring lattice sites [1]. In the case of 1D lattice
m = 2, and thus critical ratio is U/J = 11.6. The experimental data from [19] show
that a transition begins between optical potential strengths V0 = 4ER and V0 = 8ER
for the chosen experimental setup. Calculation using (4.28–4.29) with parameters
from [19], gives a ratio U/J = 3.9 for V0 = 4ER, and U/J = 14.3 for V0 = 8ER.
The accordance of the above mentioned prediction and parameter formulae with the
experimental evidence is very good.

4.4 Phases of the one-species model

At the zero temperature the physics described by the Bose-Hubbard Hamiltonian
can be divided into two different regimes. One is the interaction dominated regime
when J is much smaller than U , and the system is in the Mott insulator phase.
Atoms become localized at the lattice sites. In the J = 0 limit, the ground state of
the system for a lattice with an integer particle density of ρ atoms per lattice site is
described by the wave function [3]

|ψMI〉J=0 ∝
∏
i

(
a†i

)ρ
|0〉 (4.30)

The other regime is dominated by the kinetic energy — tunnelling overwhelms
the repulsion and the system exhibits superfluid properties. The particles become
delocalized on the whole lattice. The ground state in the U = 0 limit, for a lattice
filled with M atoms is given by [3]

|ψSF 〉U=0 ∝

(∑
i

a†i

)M

|0〉 (4.31)

Let us consider the situation, where the system is coupled to the environment and
can exchange particles with it. Particle exchange is described using grand-canonical
Hamiltonian

H ′ = H − µ
∑
i

ni (4.32)

where H is the Bose-Hubbard Hamiltonian (4.23) and µ is the chemical potential.
For high temperatures, it would be necessary to use full statistical density matrix.
However, under the assumption that the temperature is very low, the system is with
overwhelming probability in the ground state of H ′.

The phase diagram (Fig. 4.1) of Bose-Hubbard model in a J − µ plane includes
lobe-like structures [2]. Each Mott lobe is characterized by having a fixed integer
particle density ρ. The Mott insulator phases are incompressible, ∂ρ/∂µ = 0.

Mott insulator phases only occur at integer densities; non-integer density states
lie entirely in the superfluid phase because there is always an extra particle that can
hop without any energy cost.
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Figure 4.1: Schematic phase diagram of the Bose-Hubbard model. It shows two Mott
insulator (MI) phases with particle densities ρ = 1 and ρ = 2, surrounded by the
superfluid phase (SF).
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4.5 Two-species Bose-Hubbard model

The optical lattice with two species is more complicated than the one-species case,
but the formalism is the same as in the previous section. Let A and B denote
particle species, and ΨA(x) and ΨB(x) respective annihilation operators. Besides
commutation relations (4.4–4.5) for each species, they commute mutually [28]:[

ΨA(x),ΨB(x′)
]

=
[
Ψ†A(x),Ψ†B(x′)

]
=
[
ΨA(x),Ψ†B(x′)

]
= 0 (4.33)

Similarly to the previous section, kinetic Hamiltonians for species A and B are:

HJA =

∫
d3xΨ†A(x)

[
− ~2

2mA

∇2 + V (x)

]
ΨA(x) (4.34)

HJB =

∫
d3xΨ†B(x)

[
− ~2

2mB

∇2 + V (x)

]
ΨB(x) (4.35)

Instead of only one interaction Hamiltonian, in this case there are three different
interactions between different species (A↔ A,B ↔ B, and A↔ B). The interaction
Hamiltonians are

HIAA =
gAA
2

∫
d3xΨ†A(x)Ψ†A(x)ΨA(x)ΨA(x) (4.36)

HIBB =
gBB

2

∫
d3xΨ†B(x)Ψ†B(x)ΨB(x)ΨB(x) (4.37)

HIAB =
gAB

2

∫
d3xΨ†A(x)Ψ†B(x)ΨB(x)ΨA(x) (4.38)

where gAA, gBB, and gAB are pseudopotential strengths (4.3).
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The external trapping potential is in the same form as before, however, it can
differ for different species. If particle A is a subject to a potential VTA(x) and particle
B to a potential VTB(x), respective Hamiltonian are:

HTA =

∫
d3xΨ†A(x)VTA(x)ΨA(x) (4.39)

HTB =

∫
d3xΨ†B(x)VTB(x)ΨB(x) (4.40)

The above terms describe all the effects considered, so the total Hamiltonian for the
two species system is:

H = HJA +HJB +HIAA +HIBB +HIAB +HTA +HTB (4.41)

Approximating annihilation operators with the lowest-energy Wannier functions
gives:

ΨA(x) =
∑
i

wA0 (x− xi)ai (4.42)

ΨB(x) =
∑
i

wB0 (x− xi)bi (4.43)

where annihilation operators ai and bi annihilate a particle of species A and B,
respectively, in the site i. Besides satisfying commutation relations (4.13) for both
species, they satisfy a discrete version of (4.33):[

ai, bj

]
=
[
a†i , b

†
j

]
=
[
ai, b

†
j

]
= 0 (4.44)

Using this approximation and restricting to the nearest-neighbour tunnelling in the
case of HJA and HJB, and to the on-site interaction in the case of HIAA, HIBB and
HIAB gives:

HJA = −JA
∑
〈i,j〉

a†iaj (4.45)

HJB = −JB
∑
〈i,j〉

b†ibj (4.46)

HIAA =
UAA

2

∑
i

a†ia
†
iaiai (4.47)

HIBB =
UBB

2

∑
i

b†ib
†
ibibi (4.48)

HIAB =
UAB

2

∑
i

a†ib
†
ibiai (4.49)

HTA =
∑
i

V A
i a
†
iai (4.50)

HTB =
∑
i

V B
i b
†
ibi (4.51)

(4.52)
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Again, 〈i, j〉 denotes summation over neighbouring sites only. The model parameters
are:

JA = −
∫

d3x wA0 (x− x0)

[
− ~2

2m
∇2 + V (x)

]
wA0 (x− x1) (4.53)

JB = −
∫

d3x wB0 (x− x0)

[
− ~2

2m
∇2 + V (x)

]
wB0 (x− x1) (4.54)

UAA = gAA

∫
d3x

[
wA0 (x)

]4
(4.55)

UBB = gBB

∫
d3x

[
wB0 (x)

]4
(4.56)

UAB = gAB

∫
d3x

[
wA0 (x)wB0 (x)

]2
(4.57)

V A
i = VTA(xi) (4.58)

V B
i = VTB(xi) (4.59)

Bosons and fermions

There are two interesting cases for the two-species model:

1. Both species are bosons.

2. One species is a boson (A) and one is a fermion (B).

The difference in the commutation relations between bosons and fermions shows up
in the term (4.48), which is zero if B species are fermions. The final form of Hamil-
tonian is obtained by rearranging terms in (4.47–4.52) and using particle number
operators nAi and nBi for species A and B, respectively, at the site i. In the case of
boson-boson mixtures we have the Bose-Bose Hubbard model:

H =− JA
∑
〈i,j〉

a†iaj − JB
∑
〈i,j〉

b†ibj+

+
UAA

2

∑
i

nAi
(
nAi − 1

)
+
UBB

2

∑
i

nBi
(
nBi − 1

)
+
UAB

2

∑
i

nAi n
B
i +

+
∑
i

V A
i n

A
i +

∑
i

V B
i n

B
i

(4.60)

Likewise, for boson-fermion mixtures we have the Bose-Fermi Hubbard model:

H =− JA
∑
〈i,j〉

a†iaj − JB
∑
〈i,j〉

b†ibj +
UAA

2

∑
i

nAi
(
nAi − 1

)
+
UAB

2

∑
i

nAi n
B
i +

+
∑
i

V A
i n

A
i +

∑
i

V B
i n

B
i

(4.61)

Model parameters

The formulae for the hopping parameters JA and JB, as well as formulae for homonu-
clear on-site interaction UAA and UBB are the same as in the one-species model. It is
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thus possible to use (4.28–4.29) with constants for the A and B species to calculate
JA,UAA and JB,UBB, respectively.

To calculate heteronuclear on-site interaction UAB, a similar approach as in the
one-species case is taken. The Wannier functions are approximated by harmonic-
oscillator eigenfunctions (4.24–4.27). The functions are different for different species.
Inserting them into (4.57) and carrying out the integration gives:

UAB =
2~2a√
π

mA +mB

mAmB

1(
`⊥A

2
+ `⊥B

2
)√

`
‖
A

2
+ `
‖
B

2
(4.62)

where a is the interspecies scattering length, mA,B are species masses, and `
⊥,‖
A,B are

the ground site sizes in transverse and axial directions. Of course, UAB depends on
the strength of the optical potential, because the ` terms depend on it as well.

4.6 Phases of the two-species model

The number of distinct phases in the two-species model is much bigger than in the
one-species case. Besides the Mott insulator and the superfluid phase for each of
the species, some additional phases were identified in the two-component mixtures
[33, 34]:

1. Charge density wave: Atoms are localized on lattice sites and the species
are alternating (A,B,A,B,. . . ).

2. Phase separation: Atoms are localized on lattice sites and the same species
stick together (A,A,. . . ,B,B).

3. Supersolid: Atoms are delocalized and species are alternating (A,B,A,B,. . . ).

Finding a phase diagram for arbitrary parameters is a complex task, because the
two-species Bose-Hubbard model has many free parameters. However, it is possible
to get an insight into the important effects by studying the limiting cases.

Deep lattice limit

One of the important special cases is the case of a very deep lattice. The role of
hopping between sites is diminished in this case. It is thus interesting to analyse
two-species Bose-Hubbard model for vanishing hopping terms JA = JB = 0. Because
hopping is not possible, the atoms cannot move to the neighbouring sites. It is
sufficient to analyse one site only and neglect external trapping potential, VA =
VB = 0. The Bose-Bose Hubbard Hamiltonian (4.60) in this limit is:

H =
UAA

2
nA
(
nA − 1

)
+
UBB

2
nB
(
nB − 1

)
+
UAB

2
nAnB (4.63)

Let us consider the system is coupled to the environment and can exchange
particles with it. Particle exchange is described using grand-canonical Hamiltonian

H ′ = H − µAnA − µBnB (4.64)
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where µA and µB is the chemical potential for species A and B respectively. Varying
the chemical potentials µA and µB, the ground state number of particles varies as
well. The phase diagrams for various combination of parameters UAA,UBB, and UAB
can be seen in Figures 4.2 and 4.3.

The deep lattice limit gives an important insight into the phase diagram even for
moderate lattices. In real lattices the transition between different particle numbers is
gradual, thus there are intermediate transition regions between regions with constant
particle numbers.
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Figure 4.2: Phase diagrams in deep lattice limit: µA and µB are chemical potentials
for species A and B. The separated regions correspond to different particle numbers
of both species. Along the µA axis, the particle number of species A varies from 1
to 3. Similarly, the particle number of species B varies along the µB axis from 1 to
3. The regions in the centre of the figures correspond to states occupied by both
species.
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Figure 4.3: Phase diagrams in deep lattice limit: µA and µB are chemical potentials
for species A and B. The separated regions correspond to different particle numbers
of both species. Along the µA axis, the particle number of species A varies from 1
to 3. Similarly, the particle number of species B varies along the µB axis from 1 to
2. The regions in the centre of the figures correspond to states occupied by both
species.
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Chapter 5

Density matrix renormalization
group algorithm

The problem of finding bound states of a quantum system is one of the most funda-
mental problems in the field of quantum physics. The basic approach is to construct
the Hamiltonian and to diagonalize it. In special cases this can be done analytically.
However, only a small number of interesting Hamiltonians can be solved this way.
A perturbative approach is also useful in certain cases, but only if the perturbations
are very small. The only method, which is applicable almost in all cases is a numer-
ical approach — for example, to construct the matrix Hamiltonian and to find its
eigenstates. There are two important issues:

1. As many systems have infinite number of allowed states, the number of base
vectors has to be truncated to a finite number. Only the most essential states
have to be retained. A question is what are the most important states. The
answer depends on the bound states one is interested in. If the problem is
to find the ground state, that is the state with minimal energy, the most
important base vectors to retain are the vectors of minimal energy.

For example, in the case of the Bose-Hubbard model (4.23), the number of
particles on one site can be infinite. Nevertheless, it is clear that if the in-
teraction term U is positive, the states with more particles on the site have
higher energy. Thus if one wants to find the ground state of this model, it is
reasonable to limit the number of allowed particles on the site.

2. If the quantum system is composed of subsystems, the total Hilbert space
is the tensor product of Hilbert spaces of the subsystems. The total space
dimension is a product of the corresponding subsystem dimensions. As the
number of subsystems increases linearly, the dimension of total space increases
exponentially. Thus, for a big system, it is very complicated to diagonalize the
matrix Hamiltonian, because of the matrix size. This is called the many-body
problem.

For example, consider the Bose-Hubbard model and limit the number of par-
ticles on the site to n = 5. If the system has N sites, the dimension of the
total space is d = nN . For the system of N = 10 sites this gives dimension
d = 9765625. Obviously, it is very complicated to create, store and diagonalize
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such a big matrix. Even small system of N = 10 sites and n = 5 maximum
particles per site is in fact too complex for numerical computation on most of
today’s computers.

In the case of ultracold physics, one is usually interested in the ground state
properties. Thus the solution to the first issue is clear - limit the number of particles
on-site.

There are many approximate methods how to overcome the second issue, the
many-body problem, for example mean field theory model or quantum Monte Carlo.
However, there exists an approach which is powerful especially for one-dimensional
problems - the Renormalization Group approach. The focus of this thesis is primarily
on this approach and on a particular method called the Density Matrix Renormal-
ization Group (DMRG) algorithm [35, 36, 7].

The basic idea of renormalization group methods is quite simple - to divide
the system into blocks and to treat every block separately, considering interactions
between blocks. Only a fixed number of states is retained in every block. The way
of creating the blocks and choosing the retained states characterizes the particular
renormalization group method.

5.1 Blocks renormalization group algorithm

The basic method is a Blocks Renormalization Group (BRG) algorithm in one di-
mension. Consider a lattice system and let m be the number of states kept in a
block. Then the BRG algorithm is [7]:

1. Describe interactions on an initial sublattice (”block”) A of length l by a block
Hamiltonian HA acting on an m-dimensional Hilbert space.

2. Form a compound block AA of length 2l and the Hamiltonian HAA, consisting
of two block Hamiltonians and interblock interactions. HAA has dimension m2.

3. Diagonalize HAA to find the m lowest-lying eigenstates.

4. Project HAA onto the truncated space spanned by the m lowest-lying eigen-
states, HAA → H ′AA.

5. Restart from step (2), with doubled block size: 2l → l, AA→ A, and H ′AA →
HA, until the lattice size is reached.

The most time consuming part of this algorithm is the diagonalization of HAA.
In every block only m lowest-lying states are retained, and thus the size of matrix
Hamiltonians HAA is always the same. The complexity of the algorithm grows lin-
early with doubling the block length. Without the truncation of high-energy states
the system would grow exponentially, thus the improvement is significant.

However, the outlined procedure gives very poor results for certain problems.
The breakdown can best be understood visually (Fig. 5.1): assuming an already
rather large block size, where discretization can be neglected, the lowest-lying states
of the left block all vanish at the compound block center. The true ground state
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Figure 5.1: Poor results of the BRG: All the states lying in the left and right block
have boundary conditions such that the wavefunction vanishes at the block bound-
ary. These states cannot accurately represent low lying states of the compound
block.

BRG

Left block Right block

New block

of a new block has its maximum amplitude right there, thus it cannot be properly
approximated by a combination of the states from the left and right blocks only.

The problem lies in the inappropriate boundary conditions imposed on the states
in both blocks. The blocks cannot be treated as independent systems. They have to
be embedded in some environment.

5.2 Density matrix renormalization group algo-

rithm

The boundary condition problem could be solved by introducing an interaction
between the block and the environment. Instead of finding the ground state of the
block alone, the compound system of the block and the environment is constructed
— the superblock. The ground state of the superblock is found, projected onto the
block and then the block space is truncated. The question is how to perform the
projection and the truncation.

The compound system space is a tensor product of the block space and the
environment space. A pure state in the compound space is expressed as

|ψ〉 =
∑
i,j

ψi,j|αi〉 ⊗ |βj〉 (5.1)

where |αi〉 for i = 1, . . . ,m and |βj〉 for j = 1, . . . , n are base vectors of the block
space and the environment space, respectively. The state is generally an entangled
state for the block and the environment, therefore it could not be simply described
as a single block state or a single environment state. Nevertheless, the block states,
which best describe the ground state of the superblock, are sought.

The key is to trace environment out and to construct reduced density matrix ρB
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for the block [7]:

〈αi′|ρB|αi〉 =
∑
j

ψ∗i,jψi′,j (5.2)

ρB essentially describes the states on the block, which belong to the ground state
on the superblock. The density matrix is positive-semidefinite, self-adjoint and has
a unit trace. ρB has m eigenvalues wi ≥ 0 and respective eigenstates |γi〉, with∑

iwi = 1.
The most relevant states are the states with the highest eigenvalues of the density

matrix. Therefore in the truncation of the block space it is most reasonable to retain
these states as they best describe the ground state of the superblock in the block
space.

1D system

The DMRG for 1D system is briefly outlined here. The BRG algorithm, described
in Section 5.1, uses exponential growth of the system. For the DMRG algorithm the
linear growth is more appropriate, that means instead of doubling the block every
step it is better to add one site at the time. 1D system is a chain with interactions
between sites:

• − • − • − •.
Adding one site at the time, the block becomes:

• − • − • − • − ◦.

There are many ways how to select and describe environment. A good approach
in 1D case is to use the same type of system, inverted [36]:

• − • − • − • − ◦ − ◦ − • − • − • − •.

The right and left part could be represented as blocks:

L− ◦ − ◦ −R.

Let m be the number of states kept in a block and n be the number of allowed
states on a site. One DMRG step works as follows [7]:

1. Describe interactions on the left block L and on the right block R by a block
Hamiltonians HL and HR acting on an m-dimensional Hilbert spaces.

2. Describe interactions on the left and right central sites by Hamiltonians HCL

and HCR.

3. Form a compound superblock and respective Hamiltonian HSB, consisting of
the left block, left central site, right central site and right block Hamiltonians
and interactions between them. HSB has dimension m2n2.

4. Diagonalize HSB to find its ground state.

5. Create the density matrix for the left part (left block and central left site
combined).
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6. Find m density-matrix eigenstates with the highest eigenvalues.

7. Project the left part Hamiltonian (combination of HL and HCL) onto the m-
dimensional truncated space spanned by these eigenstates.

8. Do the steps 5-7 for the right part as well.

If the size of the original block (number of included sites) was l, the new block
size is l + 1.

There are several methods for calculating parameters of physical systems using
this algorithm. One approach, infinite-system DMRG, is used for very long chains.
The size of the block is increased in every step. The other approach, finite-system
DMRG, is used for finite-length systems. We will deal with the latter case only.

Warmup

The first step in finite-system DMRG is a warmup phase - preparing block data
(Hamiltonians and operators describing interactions with adjacent site) for different
system lengths. Repeating the above process from an initial small block, the size of
the system grows at the rate of two sites in a step (left and right block grows by
one site each). The block data for different system sizes are stored. The process is
repeated until the size of the left and right blocks and the two sites between them
reaches the size of the system N :

L(N/2− 1)− ◦ − ◦ −R(N/2− 1),

where L(n), R(n) are the left and right blocks containing n sites.

Sweep

During a sweep, the division point between the left and right parts moves in both
directions. Firstly to the right; new left blocks are created:

L(n)− ◦ − ◦ −R(N − n− 2)→ L(n+ 1)− ◦ − ◦ −R(N − n− 1),

When the smallest possible right block is reached, the sense of motion is inversed
and the right blocks for various partitioning of the system are created or updated:

L(n)− ◦ − ◦ −R(N − n− 2)→ L(n− 1)− ◦ − ◦ −R(N − n− 3),

When the smallest possible left block is reached, the sense is inverted one more time.
The left blocks are updated until the division point reaches the center of system.

In one sweep, the block data for all possible divisions of the chain are updated.
The sweeping process is repeated a few times. The block data and values of various
observables usually converge after several steps.

43



Boundary conditions

Important parts of the model are the boundary conditions imposed at the ends of
the lattice. There are two basic types of boundary conditions for a 1D lattice:

1. Open boundary condition: the site at the end of the lattice interacts only with
the site in the direction to the centre of the lattice.

2. Periodic boundary condition: the site at the end of the lattice interacts artifi-
cially with the site at the other end of the lattice.

To simulate a long lattice, a periodic boundary condition would be a better
choice. However, it was found out that the calculation using a periodic boundary
condition is far less accurate [7]; there could be a difference of several orders of mag-
nitude. Moreover, the Bose-Hubbard model (4.23) with external trapping potential
(Vi 6= 0) is not translationally invariant, therefore a periodic boundary condition is
not appropriate in this case.

For these reasons, the open boundary condition was always used in the actual
DMRG implementation.

Convergence

The DMRG algorithm is clearly not an exact algorithm. There is no mathematical
proof that the calculation will converge to the correct ground state. However, trial
calculations show that the method usually performs very good.

For example, Ref. [37] compares the exact solutions of the Hubbard model using
Bethe ansazt to the results of the DMRG calculation. The authors found out that
the relative error is below 0.3% for their calculation parameters. Another integrable
model, a single particle in a harmonic potential, was analyzed in Ref. [38], and again
the exact solution and DMRG calculation yielded very similar results.

However, most of the interesting models are not exactly solvable. The authors
usually compare the exact diagonalization results of a system of few (5–40) lattice
sites with a DMRG calculation on the same system. The results of the calculation
are very accurate and this fact gives them confidence, that the calculation is precise
for longer lattices as well [35].

Although the trust in the method is quite strong, a DMRG practitioner must
keep in mind that the method is not a “black box” that gives good results with high
precisions in every case. All the results have to be scrutinized for possible errors.

5.3 Implementation details

The detailed description of the DMRG algorithm can be found in Ref. [36, 38, 7, 39].
This section discusses important points of the actual implementation.

Site Hamiltonian

The Bose-Hubbard model describes a chain of lattice sites. If the particles in the
model are bosons, the number of particles located on any site is unlimited. However,
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for practical purposes it is necessary to limit this number — let M be the maximum
number of particles located on a single lattice site (MA and MB for species A and
B, respectively). In the case of fermions, the maximal number of particles on the
site is M = 1.

It is assumed that particles do not have internal degrees of freedom. One species
on a single lattice site could be now in M+1 different states — there are 0, 1, . . . ,M−
1 or M particles on the site. The Hilbert space of a single site is thus M + 1 dimen-
sional space H (HA and HB for species A and B, respectively). The eigenvectors of
the particle number operator form an orthonormal basis of space H and all of the
following operators are expressed in this basis.

For the construction of the Bose-Hubbards Hamiltonians (4.23), (4.60) and (4.61)
it is necessary to construct annihilation operators a, b, creation operators a†, b†, and
particle number operator nA, nB on the lattice site. The matrix forms of these
operators for species A are

A =


0
√

1 0 . . . 0

0 0
√

2 . . . 0
...

...
...

...
...

0 0 0 . . .
√
MA

0 0 0 . . . 0

 (5.3)

A† =


0 0 . . . 0 0√
1 0 . . . 0 0

0
√

2 . . . 0 0
...

...
...

...
...

0 0 . . .
√
MA 0

 (5.4)

NA = A†A =


0 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

...
...

0 0 0 . . . MA

 (5.5)

Operators for species B — B,B†, and NB — are created analogously.
Let us analyze the Bose-Bose Hubbard model (4.60) to understand how the

matrix form of the one-site Hamiltonian is constructed. The Hilbert space of the
system of both species on a single lattice site is HA⊗HB. The matrix Hamiltonian
of the site is thus:

HS =
1

2
UAANA(NA − IA)⊗ IB + IA ⊗

1

2
UBBNB(NB − IB) + UABNA ⊗NB (5.6)

where IA and IB are unit matrices of dimension MA + 1 and MB + 1, respectively,
and ⊗ is the Kronecker product.

The Hamiltonian HS and matrix operators A,B,A†,B†,NA and NB are used as a
basic building blocks of the program.
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Weight limit

The are two ways how to select the most important states of the density matrix
(5.2). The first one is to select a fixed number of states tmax every time. That means
the number of states that are stored in every block is also tmax. The second way is
to store such a number of states tlim that the sum w of the truncated-states weights
is lower than some truncation limit wlim:

w = 1−
tlim∑
i=1

wi < wlim (5.7)

where wi are the density-matrix weights sorted from the highest to the lowest.
Both methods have advantages and disadvantages. The current implementation

of the DMRG algorithm combines both strategies. The tlim most important states
are selected. Afterwards, if the number of these states is greater than tmax, only the
tmax states with highest weights are stored. This method ensures:

1. The number of states stored in blocks is small as there are usually only a few
states with significant weights. Consequently, it makes the algorithm run much
faster.

2. The number of states stored in blocks is fixed. The algorithm will not get stuck
due to matrices being too large.

Sweeps

The number of sweeps can be either constant or convergence dependent. In the latter
case, after every sweep the energy of the system is compared to the energy of the
previous sweep. The sweeping continues until the difference in energies ∆E is lower
than a convergence limit slim.

The sweeping is also performed after every step of the warmup procedure, as it
helps to obtain an accurate wavefunction [40].

Phase diagram

One of the differences between the insulator phase and the superfluid phase is the
existence of an energy gap in adding or removing a particle. Adding or removing
a particle in the insulator phase causes the energy of the system to rise or drop
significantly. On the other hand, if the system is in the superfluid phase, the energy
difference is negligible.

Therefore one of the ways to determine whether the species is in the insulator
phase or in the superfluid phase, is to calculate a phase diagram (4.1).

At the beginning, the ground state energy E0 for a system with N particles of
particular species is calculated. The chemical potential

µ =

(
∂U

∂N

)
(5.8)

is in fact an increase in energy caused by adding or removing one particle. The
ground state energies EH and EP for systems with N − 1 and N + 1 particles are
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calculated as well. The upper border µP and the lower border µH is then obtained
as:

µP = EP − E0 (5.9)

µH = E0 − EH (5.10)

The chemical potentials µP and µH differ for a system in the insulator phase. µP
and µH are equal for a system in the superfluid phase.

Using this algorithm it is possible to obtain the phase diagram and to find the
critical values of parameters of the transition from the insulating to the superfluid
phase.

5.4 Implementation testing

To test the DMRG implementation for two-species bosonic systems, the model sys-
tems from Ref. [40] were recalculated. Particle density graphs in Figure 5.2 and
Figure 5.3 agree with graphs given in the the reference. This should be re-assuring
that the implementation is correct.

Figure 5.2: Particle density for two bosonic species A and B for two values of U :
Model parameters: JA = JB = 1, UA = UB = U , UAB = 1.05×U . Particle densities:
ρA = ρB = 0.5. Calculation parameters: number of sites N = 50, number of sweeps
s = 10 (with additional sweeps during every step of warmup procedure, as mentioned
in the reference), maximal number of particles at a site MA = 3, MB = 3, truncation
weight limit wlim = 5 × 10−5, truncation states limit tmax = 128. The results are
identical to Ref. [40]
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Figure 5.3: Particle density for two bosonic species A and B for two values of U :
Model parameters: JA = JB = 1, UA = UB = U , UAB = 1.05×U . Particle densities:
ρA = 1, ρB = 0.5. Calculation parameters: number of sites N = 50, number of
sweeps s = 10 (with additional sweeps during every step of warmup procedure, as
mentioned in the reference), maximal number of particles at a site MA = 3, MB = 3,
truncation weight limit wlim = 5 × 10−5, truncation states limit tmax = 128.The
results are identical to Ref. [40]
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Chapter 6

Results

This section focuses on the analysis of real mixtures in 1D optical lattices, particu-
larly on the 87Rb133Cs and 6Li133Cs mixtures. The former is a boson-boson mixture,
whereas the latter is a boson-fermion mixture. In the first part, the role of the op-
tical potential for different detuning schemes is investigated and the possible model
parameters are determined. The systems are analysed for a particular parameter
selections in the second part.

6.1 Optical potential

The strength of the optical potential (2.20) depends on the laser wavelength, inten-
sity and on the properties of trapped atoms. It differs for different species. Figures
6.2 and 6.1 show the optical potential strength dependency on the wavelength for
RbCs and LiCs mixtures, respectively. The wavelengths of lithium resonance lines
D1 and D2 are very close, therefore it can be considered as one line only.

It is possible to identify following detuning regions:

• A,C: The laser is blue-detuned for both species, thus both atoms are trapped
at the positions, where the laser intensity is minimal.

• B,D,F: The laser is red-detuned for one species and blue-detuned for the other.
The lattices for both species are thus shifted in space by λ/4. The interaction
between species is small if the lattices are deep. It is thus possible to describe
it as the two independent one-species Bose-Hubbard models. More accurate
description would include an interaction between neighbouring sites of the two
lattices, which is important in the case of shallow lattices. Note that in the
RbCs and LiCs cases, the laser is always blue detuned for caesium atoms. The
caesium atoms are thus trapped at the places of maximal laser intensity.

• E,G: The laser is red-detuned for both species, thus they are trapped at the
positions of maximal laser intensity.

The favoured detuning strategy is a far detuned laser for the following reasons:

• The saturation is negligible.

• The scattering rate (2.21) is low.
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Figure 6.1: Optical potential for RbCs for a laser intensity I = 1 × 107 W m−2.
Blue line is the rubidium optical potential and the green line is the caesium optical
potential.
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Figure 6.2: Optical potential for LiCs for a laser intensity I = 1 × 107 W m−2.
Blue line is the lithium optical potential and the green line is the caesium optical
potential.
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Using a formula (2.23) it is possible to calculate the forbidden detunings due to
saturation. The forbidden regions are showed in Figure 6.3 for laser light intensity
I = 1× 107 W m−2 and population ratio k = 10−6.

Figure 6.3: The detail of optical potential in Figure 6.2 showing forbidden regions
due to high saturation for laser intensity I = 1×107 W m−2. For the laser wavelength
in grey regions, proportion of atoms in excited state and in the ground state is higher
than k = 10−6. Such detunings are thus unfavourable in experiments.
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Current experiments are typically performed with a far detuned laser wavelength
in the G region, for example with a wavelength λ = 1064 nm [41]. However, Ref. [18]
suggests to use also a near detuned laser in experiments. There exist two particularly
interesting schemes:

• To tune the laser to a wavelength such that the strength of the optical po-
tential vanishes for one species. Such a species becomes a background atomic
gas, whereas the second species is confined to the lattice. The corresponding
wavelengths are denoted as X and Y in the figures above.

• To tune the laser close to resonance of one species. The optical potential for
that species becomes very strong, whereas the second one is trapped with only
small force. An example of such a wavelength is denoted as Z in the above
figures.

Detailed analysis of possible species pair for these schemes is given in [18]. Such
configurations can introduce new effect to lattice experiments, for example a pos-
sibility of existence of phonons in the lattice. However, the practical feasibility of
these schemes has to be investigated yet.
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Trapping both species at the same space position is more interesting. In the
following, the description is thus restricted to the regions A,C,E, and G.

6.2 Model parameters

The parameters of the two-species Bose-Hubbard model, (4.28), (4.29), and (4.62),
depend on the laser wavelength, the laser intensity, and the species properties. If
the pair of species is given, it is only possible to modify the parameters by changing
the laser wavelength and intensity. The possible parameter ranges are investigated
in this section.

First of all, note that the optical potential (2.20) depends linearly on the light
intensity. Using this fact in formulae (4.28) and (4.62) it turns out that the ratio
UAA : UBB : UAB is independent of the laser intensity. Thus for a fixed wavelength it
is possible to change the ratio of JA and JB to UAA : UBB : UAB only. If the intensity
is high, hopping terms JA and JB become small.

The confinement in transverse direction must be strong enough to create a 1D
system. The transverse trapping potential in Ref. [19] was V ⊥0 = 30ER. Similar
values are to be used here. To confine both species for every pair, an appropriate
wavelength has to be chosen.

To determine interaction parameters for a pair of particular species, it is neces-
sary to known the corresponding scattering length a. The scattering length depends
on the hyperfine states of atoms. In actual experiments, the atoms are usually pre-
pared in a particular hyperfine state before the experiment. The description in the
following sections is thus restricted to particular cases only.

87Rb133Cs

Let us suppose that rubidium atoms are in the |F = 3/2,mF = 3/2〉 hyperfine state
and caesium atoms are in the |F = 7/2,mF = 7/2〉 state. The spin projections
of their valence electrons are identical. The intraspecies, as well as the interspecies
interactions are thus described by the triplet scattering length. The value of a =
700a0 from Table 4.1 is used in the following calculations. The dependency on the
laser wavelength for particular parameters is in Figure (6.4). Note that interaction
terms UAA, UBB, and UAB do not change very much with the wavelength.

6Li133Cs

Similarly to the previous case, let us suppose both species are in their doubly po-
larized states; that is the lithium atoms are in the |F = 3/2,mF = 3/2〉 state and
caesium atoms are in the |F = 7/2,mF = 7/2〉 state. However, the triplet scattering
length for 6Li133Cs was not available at the time of writing. The only available data,
the singlet scattering length for 7Li133Cs was used instead (a = 50a0). This substi-
tution is not very appropriate, but it is a best that can be done at this time. When
the new data are available, it is possible to recalculate the model. The dependency
on the laser wavelength is in the Figure (6.5). The interaction terms UAA, UBB, and
UAB does not depend very much on the detuning in this case as well.
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Figure 6.4: Dependency of the Bose-Hubbard model parameters on the laser wave-
length for species A = 87Rb and B = 133Cs. The laser wavelength in transverse
direction is λ⊥ = 1064 nm and the laser intensity is I⊥ = 2× 107 W m−2. The cor-
responding optical potentials are V ⊥A = 27ERA, V ⊥B = 72ERB, where ERA and ERB
are the recoil energies for species A and B, respectively. Laser intensity in the axial
direction is I‖ = 2×106 W m−2. The wavelength is restricted to the A,C,E,G regions
mentioned in the previous sections and detuned at least 4 nm from the resonance
to take account of the saturation.
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Figure 6.5: Dependency of the Bose-Hubbard model parameters on the laser wave-
length for species A = 6Li and B = 133Cs. The laser wavelength in transverse
direction is λ⊥ = 665 nm and the laser intensity is I⊥ = 6 × 107 W m−2. The cor-
responding optical potentials are V ⊥A = 34ERA, V ⊥B = 52ERB, where ERA and ERB
are the recoil energies for species A and B, respectively. Laser intensity in the axial
direction is I‖ = 6× 106 W m−2. The wavelength is restricted to the A,E,G regions
mentioned in the previous sections and detuned at least 4 nm from the resonance
to take account of the saturation.
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6.3 RbCs mixture

The 87Rb133Cs mixture is modelled on a lattice of N = 50 sites. The external
trapping potential of the two-species Bose-Hubbard model is not considered (V A

i =
V B
i = 0). The laser wavelength is λ = 1064 nm in all three spatial directions. The

transverse optical potential is I⊥ = 2× 107 W m−2. The dependence of the system
ground state on the laser intensity in the axial direction is studied for various total
particle densities ρA and ρB (the number of particles on the lattice is NρA and NρB).

The particle density distributions for ρA = 0.5 and ρB = 0.5 are in the Figure
6.6, and the corresponding phase diagram is in the Figure 6.7.

For low laser intensities, both species are superfluid and delocalized. Rubidium
atoms are slightly compressed. As the intensity grows, the atoms become more
localized. The phase transition between the insulating and the superfluid phase
occurs approximately at the laser intensity of I‖ = 2 ∼ 3 × 106 W m−2. The most
distinct feature is the phase separation — the particles of the same species tend to
stick together. There is almost no overlap between rubidium and caesium atoms.

The results for ρA = 1.0 and ρB = 0.5 are in the Figures 6.8 and 6.9. In this case
the particle density distribution does not change very much with the laser intensity.
However, as can be seen from the phase diagram, there is a phase transition from
the superfluid to the insulator phase that occurs at I‖ = 3 ∼ 4 × 106 W m−2. The
mixture is phase separated as well.

In case of densities ρA = 1.0 and ρB = 1.0, as can be seen in the Figure 6.10,
the phases are not separated any more. Both species tend to occupy whole lat-
tice. Rubidium is superfluid for the low laser intensities and insulating for the high
intensities.

6.4 LiCs mixture

The 6Li133Cs mixture is modelled on a lattice of N = 50 sites. The external trapping
potential of the two-species Bose-Hubbard model is not considered (V A

i = V B
i = 0).

The laser wavelength is λ = 665 nm in all three spatial directions. The transverse
optical potential is I⊥ = 6× 107 W m−2.

The dependence of the system ground state on the laser intensity in the axial
direction is studied for total particle densities ρA = 0.5 and ρB = 0.5 are in the
Figure 6.11.

The figure significantly differs from the RbCs case. The particles form an alter-
nating periodic structure. For low intensities, both species are delocalized on the
whole lattice. As the intensity grows, both species are still delocalized, but start to
alternate in the lattice. This corresponds to the supersolid phase [34]. The caesium
atoms become localized for a moderately deep lattice at the laser intensity about
I‖ = 6 × 106 W m−2. If the laser intensity is high enough, both species become
localized at alternating sites. This correspond to the charge density wave phase [34].
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Figure 6.6: Particle density for a system of two bosonic species A = 87Rb (blue)
and B = 133Cs (green) on a lattice with 50 sites for different laser intensities. Total
particle densities are ρA = 0.5 and ρB = 0.5. Lattice parameters: λ⊥ = λ‖ =
1064 nm, I⊥ = 2 × 107 W m−2 (the corresponding transverse optical potentials
are V ⊥A = 27ERA and V ⊥B = 71ERB). Calculation parameters: maximum number of
particles on a site MA = MB = 4, truncation weight limit wlim = 10−5, truncation
states limit tmax = 128, sweeping convergence limit slim = 10−10. The energy is
rescaled so that UAB = 1. The ratio of interaction parameters does not depend on
the laser intensity: UA = 0.1324, UB = 4.1045, UAB = 1.
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Figure 6.7: Phase diagram corresponding to the Fig. 6.6. The part between the lines
is the insulating phase. The phase transition occurs where the two lines meet. It can
be deduced that the phase transition occurs approximately at JA ≈ 0.05. The lines
do not meet accurately due to finite lattice size.
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Figure 6.8: Particle density for a system of two bosonic species A = 87Rb (blue)
and B = 133Cs (green) on a lattice with 50 sites for different laser intensities. Total
particle densities are ρA = 1.0 and ρB = 0.5. Lattice parameters: λ⊥ = λ‖ =
1064 nm, I⊥ = 2 × 107 W m−2 (the corresponding transverse optical potentials
are V ⊥A = 27ERA and V ⊥B = 71ERB). Calculation parameters: maximum number of
particles on a site MA = MB = 4, truncation weight limit wlim = 10−5, truncation
states limit tmax = 128, sweeping convergence limit slim = 10−10. The energy is
rescaled so that UAB = 1. The ratio of interaction parameters does not depend on
the laser intensity: UA = 0.1324, UB = 4.1045, UAB = 1.
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Figure 6.9: Phase diagram corresponding to the Fig. 6.8. The part between the lines
is the insulating phase. The phase transition occurs where the two lines meet. It can
be deduced that the phase transition occurs approximately at JA ≈ 0.03. The lines
do not meet accurately due to finite lattice size.
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Figure 6.10: Particle density for a system of two bosonic species A = 87Rb (blue)
and B = 133Cs (green) on a lattice with 50 sites for different laser intensities. Total
particle densities are ρA = 1.0 and ρB = 1.0. Lattice parameters: λ⊥ = λ‖ =
1064 nm, I⊥ = 2 × 107 W m−2 (the corresponding transverse optical potentials
are V ⊥A = 27ERA and V ⊥B = 71ERB). Calculation parameters: maximum number of
particles on a site MA = MB = 4, truncation weight limit wlim = 10−5, truncation
states limit tmax = 128, sweeping convergence limit slim = 10−10. The energy is
rescaled so that UAB = 1. The ratio of interaction parameters does not depend on
the laser intensity: UA = 0.1324, UB = 4.1045, UAB = 1.
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Figure 6.11: Particle density for a mixture of fermionic species A = 6Li (blue)
and bosonic species B = 133Cs (green) on a lattice with 50 sites for different laser
intensities. Total particle densities are ρA = 0.5 and ρB = 0.5. Lattice parameters:
λ⊥ = λ‖ = 665 nm, I⊥ = 6 × 107 W m−2 (the corresponding transverse optical
potentials are V ⊥A = 34ERA and V ⊥B = 52ERB). Calculation parameters: maximum
number of particles on a site MA = 1, MB = 4, truncation weight limit wlim = 10−5,
truncation states limit tmax = 128, sweeping convergence limit slim = 10−10. The
energy is rescaled so that UAB = 1. The ratio of interaction parameters does not
depend on the laser intensity: UB = 4.9204, UAB = 1.
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Conclusions

The properties of binary mixtures in one-dimensional optical lattices were investi-
gated on various levels. The approximate formulae for the parameters of the binary
Bose-Hubbard model based on real experimental parameters were derived. Selected
mixtures were analysed numerically, using the DMRG algorithm.

The dominating effect in the RbCs and LiCs mixtures is the heavy weight and
large scattering length of caesium atoms. The tunnelling in the lattice is low and
the intraspecies repulsion is high, thus there is usually up to a one caesium atom on
a lattice site.

It was found that 87Rb133Cs mixtures are phase separated for low density param-
eters. The same species tend to stick together, and the mixture phase varies from
superfluid to insulator as the laser intensity grows.

On the other hand, 6Li133Cs mixtures tend to form alternating-species structures.
For low laser intensities the mixture is in the supersolid phase; for high intensities
it is in the charge density wave phase. However, the LiCs calculation used a non-
appropriate scattering length, because the accurate value was not available at the
time of writing. The LiCs calculation thus cannot be considered quantitatively cor-
rect. It serves primarily as an example. A new calculation will have to be performed
when the scattering data will become available.

Currently, there are no known experimental results concerning binary mixtures
in 1D optical lattices. If such experiments are performed, it will be interesting to
compare the results.

Possible continuations of this work include:

1. To perform calculations using a model with an external trapping potential.
In case of the harmonic trapping potential, the model lattice should have at
least 100 sites to observe trapping effect for real parameter ranges. Another
interesting model introduces random disorder potential which gives rise to a
special phase — Bose-Glass phase.

2. Analysis of the 2D and 3D cases.
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phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms,” Nature 419 (2002) 39–44.
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[6] L. Pollet, C. Kollath, U. Schollwöck, and M. Troyer, “Mixture of bosonic and
spin-polarized fermionic atoms in an optical lattice,” Physical Review A 77
(2008) 023608.
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[28] J. Formánek, Úvod do kvantové teorie (Introduction to Quantum Theory),
Second edition. Academia, Prague, 2004.

62

http://www.steck.us/alkalidata/
http://www.steck.us/alkalidata/
http://www.steck.us/alkalidata/
http://www.physics.drexel.edu/~tim/open/mat/


[29] D. Jaksch and P. Zoller, “The cold atom Hubbard toolbox,” Annals of Physics
315 (2005) 52–79.

[30] A. Albus, F. Illuminati, and E. J., “Mixtures of Bosonic and Fermionic Atoms
in Optical Lattices,” Physical Review A 68 (2003) 023606.

[31] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, “Phase diagram of
two-component bosons on an optical lattice,” New Journal of Physics 5
(2003) 113.

[32] I. Bloch, J. Dalibard, and W. Zwerger, “Many-Body Physics with Ultracold
Gases,” arXiv:0704.3011v2 [cond-mat.other].

[33] A. Mering and M. Fleischhauer, “One-dimensional Bose-Fermi-Hubbard
model in the heavy-fermion limit,” Physical Review A 77 (2008) 023601.

[34] I. Titvinidze, M. Snoek, and W. Hofstetter, “Supersolid Bose-Fermi Mixtures
in Optical Lattices,” Physical Review Letters 100 (2008) 100401.

[35] S. R. White, “Density Matrix Formulation for Quantum Renormalization
Groups,” Physical Review Letters 69 (1992) 2863.

[36] S. R. White, “Density-matrix algorithms for quantum renormalization
groups,” Physical Review B 48 (1993) 10345.

[37] S. Ejima, F. Gebhard, and S. Nishimoto, “Accurate calculation of the
Tomonaga-Luttinger parameter Kρ using the density-matrix renormalization
group method,” in Physica B: Condensed MatterVolumes 378-380,
Proceedings of the International Conference on Strongly Correlated Electron
Systems - SCES 2005, pp. 304–305. 2006.

[38] M. A. Mart́ın-Delgado, G. Sierra, and R. M. Noack, “The density matrix
renormalization group applied to single particle quantum mechanics,” Journal
of Physics A 32 (1999) 6079.

[39] M. Urbanek, “Bose Gases in One-Dimensional Optical Lattices.”
Unpublished, 2006.

[40] T. Mishra, R. V. Pai, and B. P. Das, “Phase separation in a two-species Bose
mixture,” Physical Review A 76 (2007) 013604.

[41] S. L. Cornish and H.-C. Nägerl. Private communications.
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